WO2018056294A1 - 液晶性ポリエステル樹脂組成物、成形品および成形品の製造方法 - Google Patents

液晶性ポリエステル樹脂組成物、成形品および成形品の製造方法 Download PDF

Info

Publication number
WO2018056294A1
WO2018056294A1 PCT/JP2017/033849 JP2017033849W WO2018056294A1 WO 2018056294 A1 WO2018056294 A1 WO 2018056294A1 JP 2017033849 W JP2017033849 W JP 2017033849W WO 2018056294 A1 WO2018056294 A1 WO 2018056294A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystalline
crystalline polyester
resin composition
metal
polyester resin
Prior art date
Application number
PCT/JP2017/033849
Other languages
English (en)
French (fr)
Inventor
宮本皓平
小西彬人
梅津秀之
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201780057305.8A priority Critical patent/CN109790361B/zh
Priority to JP2017552101A priority patent/JP6315152B1/ja
Priority to KR1020197004590A priority patent/KR102244483B1/ko
Publication of WO2018056294A1 publication Critical patent/WO2018056294A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Definitions

  • the present invention relates to a liquid crystalline polyester resin composition and a molded product using the same.
  • Liquid crystalline polyester is excellent in heat resistance, fluidity and dimensional stability. For this reason, the demand is expanding mainly for electric / electronic component applications that require these characteristics. By the way, in electrical / electronic component applications, as products become lighter, thinner and smaller, electrical and electronic components are becoming smaller and thinner. In order to further save space and reduce weight, an electronic circuit board is incorporated into resin parts. Development of a technology for forming a three-dimensional circuit board is required. Since the electronic circuit pattern is three-dimensionally formed on the surface of the resin molded product, it is possible to liberalize circuit board design, reduce the size of the module, reduce the number of parts, and reduce the number of assembly steps.
  • a technique for forming a circuit on a resin molded product for example, a mask forming technique for masking other than the circuit forming portion by two-time molding, a circuit pattern drawing technique by laser irradiation, and a combination of metallization techniques such as plating And continues to expand.
  • a polyamide resin composition excellent in solder heat resistance for example, Patent Documents 1 and 2
  • a polycarbonate resin composition excellent in impact strength for example, Patent Document 3
  • copper chromium oxide which contains copper chromium oxide and antimony-doped tin oxide.
  • the adhesion between the molded article made of the liquid crystalline polyester resin composition and the metal is low, or the surface of the molded article made of a resin composition mainly composed of a polyamide resin or the like is formed on the surface of the resin composition.
  • the expansion coefficient was larger than the metal linear expansion coefficient on the surface of the molded product.
  • the surface hardness of the molded product may be lowered due to the influence on the crystallinity of the resin composition and the orientation of the molecular chain. As a result, the surface of the molded product may be deformed or broken during assembly of the product. Therefore, the resin composition corresponding to the conventional technology for forming a three-dimensional circuit board is not sufficiently satisfactory with respect to the above-mentioned problems, and further improvement is required.
  • the present invention provides a liquid crystal excellent in the formability of the metal part on the surface of the molded product, the adhesion of the metal part when the ambient temperature of the product changes, and the hardness of the surface of the molded product for ensuring the reliability of the metal part during product assembly. It is an object to provide a conductive polyester resin composition and a molded product using the same.
  • the liquid crystalline polyester resin composition of the present invention has the following configuration in order to solve the above-described problems. That is, A liquid crystalline polyester resin composition comprising 3 to 25 parts by weight of a metal additive (B) based on 100 parts by weight of a wholly aromatic liquid crystalline polyester (A), wherein the wholly aromatic liquid crystalline polyester (A) comprises The total of the structural unit derived from hydroxybenzoic acid and the structural unit derived from terephthalic acid with respect to 100 mol% of all structural units of the wholly aromatic liquid crystalline polyester is 60 to 77 mol%, and the metal-based additive ( B) is a liquid crystalline polyester resin composition comprising a metal selected from any one of copper, tin, cobalt, nickel, or silver or a compound containing the metal.
  • the molded product of the present invention has the following configuration. That is, A molded article comprising the liquid crystalline polyester resin composition.
  • the method for producing a molded article of the present invention has the following configuration. That is, It is a manufacturing method of a molded product having a metal part on the surface, including a pattern drawing process by laser irradiation on the molded product and a metallization process by plating.
  • the metal additive (B) preferably has an average particle size larger than 1 ⁇ m.
  • the wholly aromatic liquid crystalline polyester (A) preferably contains a structural unit derived from hydroquinone.
  • the liquid crystalline polyester resin composition of the present invention preferably contains 10 to 200 parts by weight of the filler (C) with respect to 100 parts by weight of the wholly aromatic liquid crystalline polyester (A).
  • the filler (C) is preferably a plate-like filler having a Mohs hardness of 2.0 to 7.0.
  • the average particle diameter of the filler (C) is preferably 0.1 to 20 times the average particle diameter of the metal additive (B).
  • the liquid crystalline polyester resin composition of the present invention comprises a long-chain fatty acid compound (D) which is a metal salt of a long-chain fatty acid and / or an ester of a long-chain fatty acid with respect to 100 parts by weight of the wholly aromatic liquid crystalline polyester (A). ) Is preferably contained in an amount of 0.01 to 1 part by weight.
  • the liquid crystalline polyester resin composition of the present invention makes it possible to obtain a molded product that is excellent in the formation of the metal part of the molded product and excellent in the adhesion and surface hardness of the metal part when the temperature changes.
  • These molded articles are particularly suitable for electric / electronic component applications having a metal part on the surface.
  • the wholly aromatic liquid crystalline polyester (A) used in the present invention is a polyester called a thermotropic liquid crystal polymer that exhibits optical anisotropy when melted.
  • a thermotropic liquid crystal polymer that exhibits optical anisotropy when melted.
  • it is a liquid crystalline polyester comprising a structural unit selected from an aromatic oxycarbonyl unit, an aromatic dioxy unit, an aromatic dicarbonyl unit, and the like and forming an anisotropic melt phase.
  • the structural unit does not include a structural unit formed from an aliphatic compound such as ethylene glycol.
  • the wholly aromatic liquid crystalline polyester (A) used in the present invention comprises a structural unit derived from hydroxybenzoic acid, which is an aromatic oxycarbonyl unit, and an aromatic group, based on 100 mol% of all structural units of the wholly aromatic liquid crystalline polyester.
  • the total of the dicarbonyl unit and the structural unit derived from terephthalic acid is 60 to 77 mol%.
  • the wholly aromatic liquid crystalline polyester Lowers the heat resistance.
  • the total of the structural unit derived from hydroxybenzoic acid and the structural unit derived from terephthalic acid is preferably 65 mol% or more, more preferably 69 mol% or more, based on 100 mol% of all structural units of the wholly aromatic liquid crystalline polyester. . On the other hand, 76 mol% or less is preferable. Further, the structural unit derived from hydroxybenzoic acid and the structural unit derived from terephthalic acid may have either one of the structural units, and the other structural unit may be 0 mol%. It is preferable that the structural unit derived from hydroxybenzoic acid and the structural unit derived from terephthalic acid each exceed 0 mol%.
  • the wholly aromatic liquid crystalline polyester (A) used in the present invention preferably contains a structural unit derived from hydroquinone.
  • the crystallinity of the wholly aromatic liquid crystalline polyester is controlled, so that the balance between toughness and rigidity of the molded product is excellent, and the surface hardness of the molded product is excellent, which is preferable.
  • the content of the structural unit derived from hydroquinone is 2.5 mol% or more with respect to 100 mol% of the total structural unit of the wholly aromatic liquid crystalline polyester, the crystallinity of the wholly aromatic liquid crystalline polyester does not become too high, and molding is performed. This is preferable because the flexibility of the product is improved and the decrease in surface hardness is suppressed.
  • the crystallinity of the wholly aromatic liquid crystalline polyester does not become too low, the rigidity of the molded product is improved, and the decrease in surface hardness is suppressed, which is preferable.
  • Each structural unit constituting the wholly aromatic liquid crystalline polyester (A) used in the present invention includes, as the aromatic oxycarbonyl unit, a structural unit derived from hydroxybenzoic acid. Further, for example, 6-hydroxy-2- Structural units derived from naphthoic acid can be used in combination. As hydroxybenzoic acid, p-hydroxybenzoic acid is preferred.
  • aromatic dioxy unit examples include 4,4′-dihydroxybiphenyl, hydroquinone, 3,3 ′, 5,5′-tetramethyl-4,4′-dihydroxybiphenyl, t-butylhydroquinone, phenylhydroquinone, 2, Examples include structural units derived from 6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, etc. 4,4′-dihydroxybiphenyl and hydroquinone are preferred.
  • the aromatic dicarbonyl unit includes a structural unit derived from terephthalic acid, and, for example, a structural unit derived from isophthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, etc. Isophthalic acid is preferred.
  • wholly aromatic liquid crystalline polyester (A) used in the present invention include structural units derived from p-hydroxybenzoic acid, structural units derived from 6-hydroxy-2-naphthoic acid, and aromatic dihydroxy compounds.
  • Wholly aromatic liquid crystalline polyester comprising a structural unit derived from an aromatic dicarboxylic acid comprising a structural unit derived from and a structural unit derived from terephthalic acid, a structural unit derived from p-hydroxybenzoic acid, 4,4′-dihydroxybiphenyl
  • the raw material monomer constituting each structural unit described above is a structure capable of forming each structural unit, such as an acylated product of a hydroxyl group of each structural unit, an esterified product of a carboxyl group of each structural unit, an acid halide, an acid anhydride, etc. Or a carboxylic acid derivative thereof may be used.
  • the wholly aromatic liquid crystalline polyester (A) used in the present invention is composed of the above structural units, whereby the obtained liquid crystalline polyester resin composition is excellent in heat resistance and the amount of gas generation is suppressed. Therefore, a molded product using the liquid crystalline polyester resin composition is excellent in the adhesion of the metal part even when the temperature changes.
  • the total of aromatic dioxy units constituting the wholly aromatic liquid crystalline polyester (A) and the total of aromatic dicarbonyl units are substantially equimolar.
  • substantially equimolar means that the structural unit constituting the polymer main chain excluding the terminal is equimolar. For this reason, the aspect which does not necessarily become equimolar when it includes even the structural unit which comprises the terminal can satisfy the requirement of “substantially equimolar”.
  • the calculation method of content of each structural unit is shown below about the wholly aromatic liquid crystalline polyester (A) of this invention.
  • the wholly aromatic liquid crystalline polyester (A) is weighed into an NMR (nuclear magnetic resonance) test tube, and a solvent in which the wholly aromatic liquid crystalline polyester is soluble (for example, a pentafluorophenol / heavy tetrachloroethane-d 2 mixed solvent). ).
  • a solvent in which the wholly aromatic liquid crystalline polyester is soluble for example, a pentafluorophenol / heavy tetrachloroethane-d 2 mixed solvent.
  • the obtained solution can be subjected to 1 H-NMR spectrum measurement and calculated from the peak area ratio derived from each structural unit.
  • the melting point (Tm) of the wholly aromatic liquid crystalline polyester (A) of the present invention is preferably 220 ° C. or higher, more preferably 270 ° C. or higher, and further preferably 300 ° C. or higher from the viewpoint of heat resistance.
  • the melting point (Tm) of the wholly aromatic liquid crystalline polyester is preferably 350 ° C. or less, more preferably 345 ° C. or less, and further preferably 340 ° C. or less.
  • the melting point (Tm) is measured by differential scanning calorimetry. Specifically, first, an endothermic peak temperature (Tm 1 ) is observed by heating the polymer that has been polymerized from room temperature to a temperature rising condition of 20 ° C./min. After observation of an endothermic peak temperature (Tm 1), holding the polymer for 5 minutes at a temperature of the endothermic peak temperature (Tm 1) + 20 °C. Thereafter, the polymer is cooled to room temperature under a temperature drop condition of 20 ° C / min. Then, the endothermic peak temperature (Tm 2 ) is observed by heating the polymer under a temperature rising condition of 20 ° C./min. The melting point (Tm) refers to the endothermic peak temperature (Tm 2 ).
  • the melt viscosity of the wholly aromatic liquid crystalline polyester (A) of the present invention is preferably 1 Pa ⁇ s or more, more preferably 5 Pa ⁇ s or more, and further preferably 15 Pa ⁇ s or more from the viewpoint of mechanical strength.
  • the melt viscosity of the wholly aromatic liquid crystalline polyester is preferably 200 Pa ⁇ s or less, more preferably 100 Pa ⁇ s or less, and further preferably 50 Pa ⁇ s or less.
  • the melt viscosity is a value measured by a Koka flow tester at a temperature of the melting point (Tm) of the wholly aromatic liquid crystalline polyester + 20 ° C. and a shear rate of 1,000 / second.
  • the method for producing the wholly aromatic liquid crystalline polyester (A) used in the present invention is not particularly limited, and can be produced according to a known polyester polycondensation method.
  • Known polycondensation methods of polyester include structural units derived from p-hydroxybenzoic acid, wholly aromatic liquid crystalline polyesters, structural units derived from 4,4′-dihydroxybiphenyl, structural units derived from hydroquinone, terephthalic acid
  • wholly aromatic liquid crystalline polyesters composed of structural units derived from and structural units derived from isophthalic acid include the following.
  • (2) p-hydroxybenzoic acid, 4,4'-dihydroxybiphenyl and hydroquinone are reacted with terephthalic acid and isophthalic acid with acetic anhydride to acetylate the phenolic hydroxyl group and then deacetated and polymerized.
  • a method for producing a liquid crystalline polyester is reacted with terephthalic acid and isophthalic acid with acetic anhydride to acetylate the phenolic hydroxyl group and then deacetated and polymerized.
  • a predetermined amount of diphenyl carbonate is reacted with p-hydroxybenzoic acid and aromatic dicarboxylic acid such as terephthalic acid and isophthalic acid to form phenyl esters, respectively, and then aromatics such as 4,4′-dihydroxybiphenyl and hydroquinone.
  • a method for producing a wholly aromatic liquid crystalline polyester is preferably used because it is industrially excellent in controlling the terminal structure and the degree of polymerization of the wholly aromatic liquid crystalline polyester.
  • the polycondensation reaction can be completed by a solid phase polymerization method.
  • the treatment by the solid phase polymerization method include the following methods.
  • the polymer or oligomer of the wholly aromatic liquid crystalline polyester (A) is pulverized by a pulverizer.
  • the pulverized polymer or oligomer is heated under a nitrogen stream or under reduced pressure, and polycondensed to a desired degree of polymerization to complete the reaction.
  • the heating can be performed for 1 to 50 hours in the range of the melting point of the wholly aromatic liquid crystalline polyester ⁇ 50 ° C. to the melting point ⁇ 5 ° C. (eg, 200 to 300 ° C.).
  • the liquid crystalline polyester resin composition of the present invention contains a metal additive (B).
  • the metal additive (B) is exposed on the surface of the molded product when the molded product made of the liquid crystalline polyester resin composition is irradiated with laser, and plating is formed starting from that. Then, a metal part can be formed in the laser irradiation part.
  • the metal additive (B) used in the present invention is made of a metal selected from any one of copper, tin, cobalt, nickel, and silver or a compound containing the metal.
  • the metal additive (B) is appropriately dispersed in the liquid crystalline polyester resin composition and is excellent in the formability of the metal part of the molded product.
  • the reaction and decomposition of the metal additive during the molding process of the liquid crystalline polyester resin composition are suppressed, and the adhesion of the metal part of the molded product when temperature changes is excellent.
  • the metal-based additive (B) is a metal-based additive other than the above, or a metal-based additive composed of two or more metals among the above-mentioned metal types
  • the formation of the metal part of the laser irradiation part was insufficient.
  • a short circuit to a portion other than the metal part of the molded product occurs due to conduction between the metal additives, and the amount of generated gas increases due to reaction and decomposition of the metal additives during molding of the liquid crystalline polyester resin composition.
  • the adhesion of the metal part of the molded product when the temperature changes is lowered.
  • the metal additive (B) used in the present invention is a single metal or a compound containing a metal.
  • the compound containing a metal include oxides, sulfides, sulfates, nitrides, nitrates, carbonates, phosphorus Acid salts, halides, hydroxides, organometallic compounds, complexes, and the like can be used.
  • the metal additive (B) is preferably a simple metal or an oxide.
  • the metal species is copper, tin, cobalt, nickel, or silver. Among these, tin, nickel, silver, a copper oxide, or a cobalt oxide is preferable, and copper oxide (II) is more preferable.
  • the liquid crystalline polyester resin composition of the present invention contains 3 to 25 parts by weight of the metal additive (B) with respect to 100 parts by weight of the wholly aromatic liquid crystalline polyester (A).
  • the compounding amount of the metal additive is preferably 3.5 parts by weight or more, and more preferably 5 parts by weight or more.
  • the compounding amount of the metal additive is preferably 23 parts by weight or less, and more preferably 21 parts by weight or less.
  • the compounding amount of the metal additive (B) is less than 3 parts by weight or if the metal additive is not compounded, the metal part of the molded product will not be formed, or the formation amount will be insufficient and the conductivity of the metal part will be obtained. In other words, the adhesion of the metal part at the time of temperature change also decreases.
  • the mechanical strength of the molded article which consists of a liquid crystalline polyester resin composition will fall, and the surface hardness of a molded article will fall.
  • the adhesiveness of the metal part of the molded product at the time of temperature change falls. Furthermore, when the liquid crystalline polyester resin composition is produced by extrusion, the strands are broken and the productivity is adversely affected.
  • the metal-based additive (B) used in the present invention preferably has an average particle size in the resin composition larger than 1 ⁇ m.
  • the average particle diameter here is a volume average particle diameter, and can be determined by the following method.
  • the resin component is removed by heating 50 g of the liquid crystalline polyester resin composition at 550 ° C. for 3 hours, and the metal-based additive (B) is taken out.
  • the filler is contained in the resin composition, it can be separated by the difference in specific gravity.
  • the filler is removed by decantation, and the precipitated metal additive (B) is removed by filtration.
  • 100 mg of the obtained metal additive is weighed, dispersed in water, and measured using a laser diffraction / scattering particle size distribution analyzer (“LA-300” manufactured by Horiba, Ltd.).
  • the average particle diameter of the metal additive (B) is larger than 1 ⁇ m, it is preferably dispersed in the liquid crystalline polyester resin composition, so that the adhesion of the metal part of the molded product is improved.
  • the filler when the filler is blended, the kneading of the metal additive and the filler is promoted at the time of production of the liquid crystalline polyester resin composition and at the time of molding processing, so that the aggregation of each is suppressed and obtained. Excellent dispersibility in molded products.
  • the adhesion of the metal part of the molded product is improved, and the surface hardness of the molded product is improved, which is preferable. 1.5 ⁇ m or more is preferable, and 2.0 ⁇ m or more is more preferable.
  • the upper limit of the average particle diameter of the metal additive is preferably 350 ⁇ m or less, more preferably 100 ⁇ m or less, and even more preferably 50 ⁇ m or less.
  • the metal-based additive in the liquid crystalline polyester resin composition is suppressed, and the metal part of the molded product is excellent in formability, which is preferable.
  • electrical_connection other than the metal part of the molded article surface is suppressed, it is preferable.
  • grains of a metal type additive reduce, the strength reduction of a molded article is suppressed and the surface hardness of a molded article improves, and it is preferable.
  • the liquid crystalline polyester resin composition of the present invention preferably contains a filler (C).
  • the filler (C) used in the present invention include fibrous, whisker-like, plate-like, powdery and granular fillers. Specifically, as fibrous and whisker-like fillers, glass fibers, PAN-based and pitch-based carbon fibers, stainless steel fibers, metal fibers such as aluminum fibers and brass fibers, aromatic polyamide fibers and liquid crystalline polyester fibers, etc.
  • Organic fiber gypsum fiber, ceramic fiber, asbestos fiber, zirconia fiber, alumina fiber, silica fiber, titanium oxide fiber, silicon carbide fiber, rock wool, potassium titanate whisker, barium titanate whisker, aluminum borate whisker, silicon nitride
  • whiskers examples include whiskers, wollastonite, and acicular titanium oxide.
  • the plate-like filler include mica, talc, kaolin, glass flake, clay, graphite, and molybdenum disulfide.
  • powder and granular fillers include silica, glass beads, titanium oxide, zinc oxide, and calcium polyphosphate.
  • the surface of the filler that can be used in the present invention is treated with a known coupling agent (for example, silane coupling agent, titanate coupling agent, etc.) or other surface treatment agents. Good. Moreover, you may use 2 or more types together for said filler used for this invention.
  • a known coupling agent for example, silane coupling agent, titanate coupling agent, etc.
  • plate-like fillers are particularly preferable.
  • a plate-like filler it is excellent in dispersibility and reinforcing effect when kneaded with a metal additive, the formability of the metal part in the molding of the obtained liquid crystalline polyester resin composition, the metal part at the time of temperature change This is preferable because of excellent adhesion.
  • the obtained liquid crystalline polyester resin composition is preferable because it is excellent in shape retention of the molded product during heat treatment and slidability of the molded product.
  • the filler preferably has a Mohs hardness in the range of 2.0 to 7.0.
  • the Mohs hardness can be determined by the presence or absence of scratches caused by rubbing with a standard material having a Mohs hardness of 1 to 10.
  • the Mohs hardness of the filler is within the above range, the dispersibility is improved by kneading with a metal-based additive during the production and molding of the liquid crystalline polyester resin composition, and the resulting resin composition Excellent formability of metal part of molded product, adhesion at temperature change, and excellent surface hardness of molded product.
  • the Mohs hardness of the filler is preferably 2.5 or more from the viewpoint of improving the adhesion of the metal part when the temperature changes due to the improvement of the reinforcing effect. On the other hand, it is preferably 6.5 or less from the viewpoint of suppressing wear of the cylinder and screw of the injection molding machine during the molding process.
  • Examples of fillers having a Mohs hardness of 2.0 to 7.0 include mica and glass flakes.
  • mica is preferable because it has a high reinforcing effect and is excellent in formability of the metal part of the molded product of the liquid crystalline polyester resin composition obtained, adhesion of the metal part when the temperature changes, and surface hardness of the molded product.
  • the amount of the filler (C) that can be used in the present invention is preferably 10 to 200 parts by weight with respect to 100 parts by weight of the wholly aromatic liquid crystalline polyester (A).
  • the blending amount of the filler is more preferably 15 parts by weight or more, and further preferably 20 parts by weight or more.
  • the fluidity and flexibility can be improved by setting the blending amount of the filler to 200 parts by weight or less, the smoothness of the surface of the molded product is excellent, and the location intended when forming the metal part on the molded product The formation of the metal part on the other side is suppressed.
  • the blending amount of the filler is more preferably 150 parts by weight or less, and further preferably 100 parts by weight or less.
  • the filler (C) that can be used in the present invention is preferably a filler having an average particle size in the resin composition of 10 to 1,000 ⁇ m.
  • the average particle diameter here is a volume average particle diameter, and can be determined by the method described above.
  • the average particle size of the filler is 10 ⁇ m or more, the reinforcing effect is excellent, and thus the adhesion of the metal part at the time of temperature change of the molded product of the obtained liquid crystalline polyester resin composition is preferable. 15 ⁇ m or more is more preferable, and 20 ⁇ m or more is more preferable.
  • the average particle size of the filler is 1000 ⁇ m or less, the dispersibility in the liquid crystalline polyester resin composition is improved, and thus the metal part formability of the molded product of the obtained liquid crystalline polyester resin composition is improved. Therefore, it is preferable. 900 ⁇ m or less is more preferable, and 700 ⁇ m or less is more preferable.
  • the average particle diameter of the filler is preferably 0.1 to 20 times the average particle diameter of the metal additive (B).
  • B average particle diameter of the metal additive
  • the average particle size of the platy filler is preferably 0.15 times or more, more preferably 0.3 times or more the average particle size of the metallic additive. More preferred. On the other hand, from the viewpoint of improving the reinforcing effect of the plate-like filler, it is preferably 15 times or less, more preferably 10 times or less.
  • the liquid crystalline polyester resin composition of the present invention preferably contains a long-chain fatty acid compound (D) that is a metal salt of a long-chain fatty acid and / or an ester of a long-chain fatty acid.
  • a long-chain fatty acid compound (D) that is a metal salt of a long-chain fatty acid and / or an ester of a long-chain fatty acid.
  • the thermal deterioration of the liquid crystalline polyester resin composition is suppressed by suppressing the residence time at the time of molding, it is preferable because the adhesion of the metal part of the molded product at the time of temperature change and the surface hardness of the molded product are excellent. .
  • the long chain fatty acid which is a raw material component of the long chain fatty acid compound (D) preferably used in the present invention is preferably a carboxylic acid having 10 to 32 carbon atoms.
  • the long chain fatty acid may be an unsaturated fatty acid and may have two or more double bonds.
  • decanoic acid, dodecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid, octadecanoic acid (stearic acid), nonadecanoic acid, icosanoic acid, docosanoic acid (behenic acid), tetradocosanoic acid, hexadocosanoic acid, octadocosanoic acid ( Montanic acid) and the like are preferable, octadecanoic acid (stearic acid), docosanoic acid (behenic acid), octadocosanoic acid (montanic acid) and the like are more preferable, and octadecanoic acid (stearic acid) is particularly preferable.
  • the melting point of the long-chain fatty acid compound (D) is easily controlled to become a solid, excellent in handling properties during the production of the liquid crystalline polyester resin composition, and the liquid crystalline polyester resin composition It is preferable because it is easily dispersed in the inside.
  • the metal species in the long-chain fatty acid metal salt calcium, lithium, sodium, magnesium, potassium, aluminum and the like are preferable. It is preferable to contain these metals because the dispersibility of the long-chain fatty acid compound (D) in the liquid crystalline polyester resin composition is excellent. Lithium is particularly preferable.
  • the ester of the long chain fatty acid is an ester of the above-mentioned long chain fatty acid and an alcohol
  • the alcohol may be any of primary, secondary, and tertiary alcohols, a dihydric alcohol such as ethylene glycol, Polyhydric alcohols such as trihydric alcohols such as glycerol and tetrahydric alcohols such as pentaerythritol may be used. Monoesters, diesters, triesters, tetraesters, and the like of polyhydric alcohols and long-chain fatty acids may be used, and pentaerythritol tetraesters are particularly preferable.
  • the long-chain fatty acid compound (D) used in the present invention may be either a long-chain fatty acid metal salt or a long-chain fatty acid ester, or may be used in combination. Moreover, only 1 type may be used for the long-chain fatty acid metal salt and the long-chain fatty acid ester, respectively, or 2 or more types may be used.
  • the amount of the long-chain fatty acid compound (D) used in the present invention is preferably 0.01 to 1 part by weight with respect to 100 parts by weight of the wholly aromatic liquid crystalline polyester (A).
  • the liquid crystal polyester resin composition is excellent in the smoothness of the surface of the molded product, and the formation of the metal part other than the intended part when forming the metal part on the molded product is possible. Since it is suppressed, it is preferable.
  • the thermal deterioration of the liquid crystalline polyester resin composition is suppressed by suppressing the residence time at the time of molding, it is preferable because the adhesion of the metal part of the molded product at the time of temperature change and the surface hardness of the molded product are excellent. . 0.02 parts by weight or more is more preferable, and 0.03 parts by weight or more is more preferable.
  • the deterioration of the mechanical strength of the molded product of the liquid crystalline polyester resin composition is suppressed when the long-chain fatty acid compound is 1 part by weight or less, the adhesion of the metal part of the molded product when the temperature changes, the molded product This is preferable because of its excellent surface hardness. 0.7 parts by weight or less is more preferable, and 0.4 parts by weight or less is more preferable.
  • the liquid crystalline polyester resin composition of the present invention further includes an antioxidant, a heat stabilizer (for example, hindered phenol, hydroquinone, phosphites, and substituted products thereof), ultraviolet rays and the like within a range not impairing the effects of the present invention.
  • an antioxidant for example, hindered phenol, hydroquinone, phosphites, and substituted products thereof
  • ultraviolet rays and the like within a range not impairing the effects of the present invention.
  • Absorbents for example, resorcinol, salicylate
  • anti-coloring agents such as phosphites and hypophosphites
  • lubricants and mold release agents silicones, higher fatty acid alcohols, higher fatty acid amides, polyethylene waxes, etc., except for lubricants
  • component (D) compounds corresponding to the long-chain fatty acid compound (D) are classified as component (D).
  • a colorant containing a dye or a pigment, a carbon black as a conductive agent or a colorant , Crystal nucleating agent, plasticizer, flame retardant (bromine flame retardant, phosphorus flame retardant, red phosphorus, silicone flame retardant, etc.), flame retardant Agents, and conventional additives selected from antistatic agent may be blended.
  • a polymer other than the wholly aromatic liquid crystalline polyester (A) can be blended to further impart predetermined characteristics.
  • a polymer other than the wholly aromatic liquid crystalline polyester (A) it is preferable that the ratio of the wholly aromatic liquid crystalline polyester (A) is the largest among the resin species in the liquid crystalline polyester resin composition.
  • Examples of the method of blending the liquid crystalline polyester resin composition of the present invention with a metal-based additive, a filler, a long-chain fatty acid compound, and other additives include, for example, a solid aromatic liquid crystalline polyester.
  • Dry blend method that mixes materials, metal-based additives, long-chain fatty acid compounds, and other additives, and other liquids for wholly aromatic liquid crystalline polyester, metal-based additives, fillers, and long-chain fatty acid compounds
  • a metal-based additive, a filler, a long-chain fatty acid compound, and a method of melt-kneading other additives can be used.
  • melt kneading method is preferred.
  • a known method can be used for melt kneading. For example, using a Banbury mixer, a rubber roll machine, a kneader, a single-screw or twin-screw extruder, etc., it can be melt-kneaded at a melting point of the wholly aromatic liquid crystalline polyester + 50 ° C. or lower to obtain a liquid crystalline polyester resin composition.
  • a twin screw extruder is preferable.
  • the twin screw extruder is preferably provided with one or more kneading parts in order to improve the dispersibility of the wholly aromatic liquid crystalline polyester, the metal additive, the filler, and the long chain fatty acid compound. It is more preferable to provide more than one place.
  • the kneading part is installed at one or more locations upstream of the side feeder of the filler in order to promote plasticization of the wholly aromatic liquid crystalline polyester.
  • a vent portion in order to remove moisture in the twin screw extruder and decomposition products generated during kneading, it is preferable to provide a vent portion, and more preferably to provide two or more locations.
  • the filler is added from the side feeder, at least one location on the upstream side of the side feeder into which the filler is introduced is melted in order to remove the adhering moisture of the wholly aromatic liquid crystalline polyester.
  • the vent part may be under normal pressure or under reduced pressure.
  • the maximum shear stress during melt kneading is preferably 5,000 to 20,000 Pa.
  • the pressure is preferably 7,500 to 18,000 Pa, more preferably 8,000 to 16,000 Pa.
  • the maximum shear stress is the Koka flow tester CFT-500D (orifice 0.5 ⁇ ⁇ ) at the maximum shear rate during kneading calculated from the resin temperature in the extruder, the cylinder diameter of the extruder, the screw rotation speed, and the clearance of the kneading part. 10 mm) (manufactured by Shimadzu Corporation).
  • a wholly aromatic liquid crystalline polyester (A), a metal-based additive (B), a filler (C), a long-chain fatty acid compound (D), and other additives are collectively fed from the original feeder.
  • Fully aromatic liquid crystalline polyester (A), metal additive (B), long chain fatty acid compound (D) and other additives are charged from the original feeder.
  • a master pellet containing a long-chain fatty acid compound (D) and other additives at a high concentration is prepared, and then the master pellet is made into a wholly aromatic liquid crystalline polyester (A) and a filler (filler ( ) And a method of kneading (master pellet method), may be used any method.
  • the liquid crystalline polyester resin composition of the present invention has an excellent surface appearance (color tone) by performing known melt molding such as injection molding, injection compression molding, compression molding, extrusion molding, blow molding, press molding, and spinning. It can be processed into a molded product having mechanical properties, heat resistance and flame retardancy.
  • the molded product include injection molded products, extrusion molded products, press molded products, sheets, pipes, unstretched films, uniaxially stretched films, various films such as biaxially stretched films, unstretched yarns, superstretched yarns, and the like. Examples include various fibers.
  • injection molding is preferred from the viewpoint of processability.
  • Molded articles made of the liquid crystalline polyester resin composition thus obtained include, for example, various gears, various cases, sensors, LED lamps, connectors, sockets, resistors, relay cases, relay bases, relay spools, switches, Coil bobbins, capacitors, variable capacitor cases, optical pickups, oscillators, various terminal boards, transformers, plugs, printed wiring boards, inter-board joint parts, tuners, speakers, microphones, headphones, small motors, magnetic head bases, power modules, housings , Semiconductors, liquid crystal display parts, FDD carriages, FDD chassis, HDD parts, motor brush holders, parabolic antennas, thermal protectors, mobile phone built-in antennas, wearable terminal members, computer-related parts Electric and electronic parts represented by: VTR parts, TV parts, irons, hair dryers, rice cooker parts, microwave oven parts, acoustic parts, audio equipment parts such as audio / laser discs (registered trademark) / compact discs, lighting Household / office electrical product parts represented by parts, refrigerator parts, air conditioner
  • the molded product of the present invention has the advantage that the metal part can be formed on the surface of the molded product, the adhesion of the metal part at the time of temperature change and the surface hardness of the molded product are excellent. It is useful for small electric / electronic parts having a metal conductive part, and is used, for example, for connectors, sensors, LED lamp substrates, camera modules, mobile phone built-in antennas, wearable terminal members, and the like.
  • the molded product of the present invention preferably has a metal part on the surface.
  • a method of forming a metal part on the surface a method by various plating processes including application of a catalyst to a molded product, a mask forming method for masking other than the circuit formation location by molding twice, a modification of the molded product surface by laser irradiation, Examples include a method by partial removal, and a combination thereof.
  • a method for selectively forming a metal part on a laser irradiation part including a pattern drawing process by laser irradiation on a molded product and a metallization process by plating is preferable.
  • advantages such as the ability to create a molded product by single molding, the ease of narrowing the circuit pitch, and the need to change the laser irradiation pattern without changing the mold when changing the circuit pattern. Therefore, it is preferable.
  • Laser is irradiated to the metal portion forming portion is not particularly limited, YVO 4 laser, CO 2 laser, Ar laser, and excimer laser.
  • YVO 4 laser CO 2 laser
  • Ar laser Ar laser
  • excimer laser an Nd; YAG laser, YVO 4 laser, and FAYb laser that operate at a fundamental wavelength of 1064 nm or a second high wavelength of 532 nm are preferable because they are excellent in forming a metal part.
  • the oscillation method of the laser beam may be a continuous wave laser or a pulsed laser.
  • the laser that irradiates the metal part formation site is preferably a pulsed laser that irradiates a strong laser output for a short time from the viewpoint of suppressing thermal degradation of the surface of the molded product and burying of the metal additive by the molten resin.
  • Examples of the metal species of the metal part formed by the above method include gold, silver, copper, platinum, zinc, tin, nickel, cadmium, chromium, and alloys containing them, and in particular, gold, copper, and nickel are metal parts. From the viewpoint of the formability and adhesion of the film. Further, from the viewpoint of improving the stability and conductivity of the metal part, a metal layer made of a different kind of metal may be formed on the metal part of the molded product by a technique such as plating.
  • the molded product having a metal part on the surface obtained by the above method is space-saving and simplifies the manufacturing process compared to the circuit member consisting of the substrate forming the circuit and the molded product holding the circuit, which is a conventional technique. Therefore, it is useful for use as a small electric / electronic component.
  • the wholly aromatic liquid crystalline polyester (A) used in each example and comparative example is shown below.
  • composition analysis and property evaluation of the wholly aromatic liquid crystalline polyester were performed by the following methods.
  • Tm Melting point measurement of wholly aromatic liquid crystalline polyester Totally aromatic liquid crystalline polyester was measured from room temperature to 20 ° C./min with a differential scanning calorimeter DSC-7 (manufactured by Perkin Elmer). After observing the endothermic peak temperature (Tm 1 ) observed at that time, hold at Tm 1 + 20 ° C. for 5 minutes, then cool to room temperature under a temperature drop condition of 20 ° C./minute, and then rise again to 20 ° C./minute. The endothermic peak temperature (Tm 2 ) observed when measured under temperature conditions was defined as the melting point (Tm). In the following production examples, the melting point is described as Tm.
  • the polymerization temperature was maintained at 350 ° C.
  • the pressure was reduced to 1.0 mmHg (133 Pa) in 1.0 hour
  • the reaction was continued, and the polymerization was completed when the torque required for stirring reached 20 kg ⁇ cm.
  • the inside of the reaction vessel is pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer is discharged onto a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter.
  • a wholly aromatic liquid crystalline polyester (A-1) was obtained.
  • composition analysis of this wholly aromatic liquid crystalline polyester (A-1) was conducted.
  • the proportion of structural units derived from p-hydroxybenzoic acid was 60.0 mol%, and the structural units derived from 4,4′-dihydroxybiphenyl
  • the proportion is 12.0 mol%
  • the proportion of structural units derived from hydroquinone is 8.0 mol%
  • the proportion of structural units derived from terephthalic acid is 15.2 mol%
  • the proportion of structural units derived from isophthalic acid is 4.8 mol% %Met.
  • the total of the structural unit derived from hydroxybenzoic acid and the structural unit derived from terephthalic acid was 75.2 mol% with respect to 100 mol% of all structural units of the wholly aromatic liquid crystalline polyester.
  • the Tm was 330 ° C. and the melt viscosity was 28 Pa ⁇ s.
  • the polymerization temperature was maintained at 330 ° C.
  • the pressure was reduced to 1.0 mmHg (133 Pa) in 1.0 hour
  • the reaction was continued, and the polymerization was completed when the torque required for stirring reached 20 kg ⁇ cm.
  • the inside of the reaction vessel is pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer is discharged onto a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter.
  • a wholly aromatic liquid crystalline polyester (A-2) was obtained.
  • composition analysis of this wholly aromatic liquid crystalline polyester (A-2) was conducted.
  • the proportion of structural units derived from p-hydroxybenzoic acid was 53.8 mol%
  • the structural units derived from 4,4′-dihydroxybiphenyl The proportion is 13.8 mol%
  • the proportion of structural units derived from hydroquinone is 9.2 mol%
  • the proportion of structural units derived from terephthalic acid is 12.7 mol%
  • the proportion of structural units derived from isophthalic acid is 10.4 mol% %Met.
  • the total of the structural unit derived from hydroxybenzoic acid and the structural unit derived from terephthalic acid was 66.5 mol% with respect to 100 mol% of all structural units of the wholly aromatic liquid crystalline polyester. Moreover, Tm was 310 degreeC and melt viscosity was 30 Pa.s.
  • the polymerization temperature was maintained at 340 ° C.
  • the pressure was reduced to 1.0 mmHg (133 Pa) in 1.0 hour
  • the reaction was continued, and the polymerization was completed when the torque required for stirring reached 20 kg ⁇ cm.
  • the inside of the reaction vessel is pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer is discharged onto a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter.
  • a wholly aromatic liquid crystalline polyester (A-3) was obtained.
  • composition analysis of this wholly aromatic liquid crystalline polyester (A-3) was conducted.
  • the proportion of structural units derived from p-hydroxybenzoic acid was 54.2 mol%
  • the structural units derived from 4,4′-dihydroxybiphenyl The proportion was 22.9 mol%
  • the proportion of structural units derived from terephthalic acid was 14.7 mol%
  • the proportion of structural units derived from isophthalic acid was 8.2 mol%.
  • the total of the structural unit derived from hydroxybenzoic acid and the structural unit derived from terephthalic acid was 68.9 mol% with respect to 100 mol% of all structural units of the wholly aromatic liquid crystalline polyester.
  • the Tm was 321 ° C. and the melt viscosity was 26 Pa ⁇ s.
  • the polymerization temperature was maintained at 365 ° C.
  • the pressure was reduced to 1.0 mmHg (133 Pa) in 1.0 hour
  • the reaction was continued, and the polymerization was completed when the torque required for stirring reached 20 kg ⁇ cm.
  • the inside of the reaction vessel is pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer is discharged onto a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter.
  • a wholly aromatic liquid crystalline polyester (A-4) was obtained.
  • composition analysis of the wholly aromatic liquid crystalline polyester (A-4) was conducted.
  • the proportion of structural units derived from p-hydroxybenzoic acid was 73.9 mol%
  • the structural units derived from 4,4′-dihydroxybiphenyl The proportion is 7.8 mol%
  • the proportion of structural units derived from hydroquinone is 5.2 mol%
  • the proportion of structural units derived from terephthalic acid is 11.7 mol%
  • the proportion of structural units derived from isophthalic acid is 1.3 mol% %Met.
  • the total of the structural unit derived from hydroxybenzoic acid and the structural unit derived from terephthalic acid was 85.7 mol% with respect to 100 mol% of all structural units of the wholly aromatic liquid crystalline polyester.
  • the Tm was 351 ° C. and the melt viscosity was 31 Pa ⁇ s.
  • the polymerization temperature was maintained at 355 ° C.
  • the pressure was reduced to 1.0 mmHg (133 Pa) in 1.0 hour
  • the reaction was continued, and the polymerization was completed when the torque required for stirring reached 20 kg ⁇ cm.
  • the inside of the reaction vessel is pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer is discharged onto a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter.
  • a wholly aromatic liquid crystalline polyester (A-5) was obtained.
  • the composition analysis of the wholly aromatic liquid crystalline polyester (A-5) was conducted.
  • the proportion of structural units derived from p-hydroxybenzoic acid was 57.2 mol%, and structural units derived from 6-oxy-2-naphthalate.
  • the proportion was 2.8 mol%
  • the proportion of structural units derived from 4,4′-dihydroxybiphenyl was 20 mol%
  • the proportion of structural units derived from terephthalic acid was 20 mol%.
  • the total of the structural unit derived from hydroxybenzoic acid and the structural unit derived from terephthalic acid was 77.2 mol% with respect to 100 mol% of all structural units of the wholly aromatic liquid crystalline polyester.
  • Tm was 336 degreeC and melt viscosity was 27 Pa.s.
  • Liquid crystalline polyester (A-6) In a 5 L reaction vessel equipped with a stirring blade and a distillation pipe, 994 parts by weight of p-hydroxybenzoic acid, 126 parts by weight of 4,4′-dihydroxybiphenyl, 112 parts by weight of terephthalic acid, and an intrinsic viscosity of about 0.6 dl / g 216 parts by weight of polyethylene terephthalate and 960 parts by weight of acetic anhydride (1.10 equivalents of total phenolic hydroxyl groups) were charged, and the mixture was reacted at 145 ° C. for 1 hour with stirring under a nitrogen gas atmosphere. The temperature was raised over time.
  • the polymerization temperature was maintained at 320 ° C.
  • the pressure was reduced to 1.0 mmHg (133 Pa) in 1.0 hour
  • the reaction was continued, and the polymerization was completed when the torque required for stirring reached 20 kg ⁇ cm.
  • the inside of the reaction vessel is pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer is discharged onto a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter.
  • a liquid crystalline polyester (A-6) was obtained.
  • Composition analysis of the liquid crystalline polyester (A-6) revealed that the proportion of structural units derived from p-hydroxybenzoic acid was 66.7 mol%, and the proportion of structural units derived from 4,4′-dihydroxybiphenyl was 6.
  • the proportion of ethylenedioxy units derived from polyethylene terephthalate was 10.4 mol%, and the proportion of structural units derived from terephthalic acid was 16.7 mol%.
  • Tm was 313 degreeC and melt viscosity was 13 Pa.s.
  • B-1 Copper (II) oxide (manufactured by Wako Pure Chemical Industries, Ltd., average particle size 3 ⁇ m)
  • B-2 Silver-coated glass beads ES-6000-S7 (manufactured by Potters Ballotini Co., Ltd., glass beads having an average particle diameter of 6 ⁇ m and coated with silver on the surface)
  • B-3 Tin (manufactured by Wako Pure Chemical Industries, Ltd., average particle size 75 ⁇ m)
  • B-4) Nickel (manufactured by Wako Pure Chemical Industries, Ltd., average particle size 150 ⁇ m)
  • B-5) Triiron tetroxide (manufactured by Kanto Chemical Co., Inc., average particle size 3 ⁇ m)
  • B-6) Copper chromium oxide Black 3702 (manufactured by Asahi Kasei Kogyo Co., Ltd., average particle size 0.6 ⁇ m
  • C-1 Glass milled fiber EPDE-40M-10A (manufactured by Nippon Electric Glass Co., Ltd., Mohs hardness 6.5)
  • C-2 Talc NK64 (Fuji Talc Kogyo Co., Ltd., Mohs hardness 1)
  • C-3 Mica AB-25S (manufactured by Yamaguchi Mica Co., Ltd., Mohs hardness 2.8)
  • C-4) Mica A-41 (manufactured by Yamaguchi Mica Co., Ltd., Mohs hardness 2.8)
  • C-5) Glass flake REFG-112 (manufactured by Nippon Sheet Glass Co., Ltd., Mohs hardness 6.5).
  • D-1 Lithium stearate Li-St (manufactured by Katsuta Chemical Corporation)
  • D-2 Pentaerythritol tetrastearate LOXIOL VPG861 (manufactured by Cognis Japan).
  • Examples 1 to 26, Comparative Examples 1 to 8 A TEM35B type twin screw extruder manufactured by Toshiba Machine Co., Ltd. equipped with a side feeder, and wholly aromatic liquid crystalline polyesters (A-1) to (A-6) obtained in each production example, and wholly aromatic liquid crystalline Based on 100 parts by weight of the polyester, based on the metal additives (B-1) to (B-6) and the long chain fatty acid compounds (D-1) and (D-2) in the amounts shown in Tables 1 and 2.
  • Fillers (C-1) to (C-5) are charged from the side feeder in the amounts shown in Tables 1 and 2 with respect to 100 parts by weight of the wholly aromatic liquid crystalline polyester.
  • the molded product was subjected to an electroless copper plating treatment, and then the number of copper plating formed was determined among 36 laser irradiated portions with different laser irradiation conditions. It was evaluated that the larger the number of copper plating formed (number of formed metal parts), the better the formability of the metal parts on the molded product.
  • the wavelength was 1064 nm, the frequency was 50 Hz, the laser output was 6.0 W, and the scanning speed was 3,000 mm / s.
  • Laser irradiation was performed under the conditions, and the molded article was subjected to 6 ⁇ m-thick electroless copper plating treatment. Then, with a thermal shock absorber (TSA-70L manufactured by Espec Corp.), the test conditions were lowered from room temperature to ⁇ 40 ° C. in 5 minutes and held for 30 minutes, then raised to 125 ° C. in 5 minutes and held for 30 minutes. A heat shock test was conducted.
  • TSA-70L thermal shock absorber
  • the surface of the obtained molded product was irradiated with laser under the conditions of a wavelength of 1064 nm, a frequency of 50 Hz, a laser output of 5.0 W, and a scanning speed of 3,000 mm / s using the above laser device.
  • the molded article was subjected to a 6 ⁇ m-thick electroless copper plating treatment. Then, with the above thermal shock device, the temperature was lowered from room temperature to ⁇ 40 ° C. in 5 minutes and held for 30 minutes, and then heated to 150 ° C. in 5 minutes and held for 30 minutes, and the heat treatment was performed under the test conditions repeated 10 times as one cycle. went.
  • NT Cutter (registered trademark) (made by NTT Co., Ltd., 9 mm wide, 35 ° inclined blade) was used. Then, cuts were made at a depth reaching the resin molded product so that 100 squares with a 1 mm interval could be formed. Adhere the tape (adhesive strength 3.4 to 3.9 N / cm “Cello Tape” (registered trademark), width 18 mm) by Nichiban Co., Ltd. The number of squares that were peeled off and remained on the plated surface without being peeled off was measured.
  • the amount of deformation is determined by placing the unit on a horizontal surface plate and holding one of the four sides of the square plate using a universal projector (V-16A (manufactured by Nikon Corporation)). was measured as the amount of lifting relative to a diagonal horizontal surface plate. In the case where the lift amount cannot be measured small, it was set to 0.5 mm or less. It was evaluated that the smaller the amount of deformation, the better the shape retention during heat treatment.
  • the liquid crystalline polyester resin composition of the embodiment of the present invention is excellent in the metal part formability on the surface of the molded product, and the adhesion of the metal part of the molded product when the temperature changes, the surface of the molded product It turns out that it is excellent in hardness.
  • the liquid crystalline polyester resin composition of the embodiment of the present invention uses a plate-like filler having a specific Mohs hardness as the filler, so that the metal part of the molded product at the time of temperature change can be obtained. It can be seen that, in addition to adhesion, the slidability of the molded product and the shape retention of the molded product during heat treatment are excellent. Therefore, it can be said that it is particularly suitable for use in electrical / electronic component applications having a metal part on the surface.
  • the liquid crystalline polyester resin composition of the present invention has excellent formability of the metal part of the molded product, and has excellent adhesion of the metal part of the molded product when the temperature changes and the surface hardness of the molded product. Useful for parts.

Abstract

全芳香族液晶性ポリエステル(A)100重量部に対して金属系添加剤(B)を3~25重量部含む液晶性ポリエステル樹脂組成物であって、前記全芳香族液晶性ポリエステル(A)が、前記全芳香族液晶性ポリエステルの全構造単位100モル%に対するヒドロキシ安息香酸に由来する構造単位とテレフタル酸に由来する構造単位との合計が60~77モル%であり、前記金属系添加剤(B)が銅、スズ、コバルト、ニッケル、または銀のいずれか1種から選ばれる金属または当該金属を含む化合物からなる液晶性ポリエステル樹脂組成物。 成形品表面の金属部の形成性に優れ、温度変化時の成形品の金属部の密着性、成形品の表面硬度に優れる液晶性ポリエステル樹脂組成物およびそれからなる成形品を提供すること。

Description

液晶性ポリエステル樹脂組成物、成形品および成形品の製造方法
 本発明は、液晶性ポリエステル樹脂組成物およびそれを用いた成形品に関するものである。
 液晶性ポリエステルは、耐熱性、流動性、寸法安定性に優れている。このため、それらの特性が要求される電気・電子部品用途を中心に需要が拡大している。ところで、電気・電子部品用途においては、製品の軽薄短小化に伴い電気・電子部品の小型化、薄肉化が進んでおり、さらなる省スペース化、軽量化のため、樹脂部品に電子回路基板を組み込む立体回路基板形成技術の発展が求められている。樹脂成形品表面に立体的に電子回路パターンが形成されることで、回路基板設計の自由化、モジュールの小型化、部品点数の削減、組み立て工数の削減が可能となる。樹脂成形品に回路を形成する手法として、例えば、2回成形により回路形成箇所以外へマスキングを施すマスク形成手法や、レーザー照射による回路パターン描画手法などとめっき等の金属化技術との組み合わせが挙げられ、拡大を続けている。
 なかでも、レーザー照射による回路パターン描画手法は、回路の狭ピッチ化への対応が容易であることから拡大を続けている。そのため、レーザー照射によるめっき形成性を付与するため種々の添加剤を配合した樹脂組成物の検討が進められている。
 例えば、銅クロム酸化物やアンチモンドープ酸化スズを配合し、ハンダ耐熱性に優れるポリアミド樹脂組成物(例えば特許文献1、2)や衝撃強度に優れるポリカーボネート樹脂組成物(例えば特許文献3)、銅クロム酸化物を配合し、引張強度、曲げ強度などの機械強度や誘電特性に優れる液晶ポリマー(例えば特許文献4、5)、アルミニウムドープ酸化亜鉛を配合し、白色度を向上させたポリカーボネート、ポリアミド、ポリエステル樹脂組成物(例えば特許文献6)、金属酸化物を樹脂等でコーティングしたコアシェル構造の添加剤を配合し、添加剤を含有する樹脂への悪影響を抑制した基板材料(例えば特許文献7)の提案がなされている。
特開2014-240452号公報 国際公開第2013/141157号 特開2015-108124号公報 特表2015-502418号公報 国際公開第2016/003588号 特開2015-71739号公報 特表2016-507650号公報
 しかしながら、かかる従来技術においては、液晶性ポリエステル樹脂組成物からなる成形品と金属との密着性が低かったり、ポリアミド樹脂などを主成分とする樹脂組成物からなる成形品表面では樹脂組成物の線膨張率が成形品表面の金属の線膨張率に比べ大きかったりすることがあった。それにより、製品周辺温度の変化時に成形品表面の金属部の密着強度が低下したり、金属部が脱離、剥離したりする課題があった。また、金属部形成性向上のための種々の添加剤を配合した場合に、樹脂組成物の結晶性、分子鎖の配向に影響するためか成形品の表面硬度が低下することがあった。それにより、製品の組み立て時に成形品表面の変形、欠損が生じることがあった。したがって、従来の立体回路基板の形成技術に対応した樹脂組成物は、上記課題に対し十分満足できる物ではなく、更なる改良が求められている。
 本発明は、成形品表面への金属部の形成性、製品周辺温度の変化時における金属部の密着性、および製品組み立て時の金属部の信頼性確保のための成形品表面の硬度に優れる液晶性ポリエステル樹脂組成物およびそれを用いた成形品を提供することを課題とする。
 本発明の液晶性ポリエステル樹脂組成物は、上述の課題を解決するため次の構成を有する。すなわち、
 全芳香族液晶性ポリエステル(A)100重量部に対して金属系添加剤(B)を3~25重量部含む液晶性ポリエステル樹脂組成物であって、前記全芳香族液晶性ポリエステル(A)が、前記全芳香族液晶性ポリエステルの全構造単位100モル%に対するヒドロキシ安息香酸に由来する構造単位とテレフタル酸に由来する構造単位との合計が60~77モル%であり、前記金属系添加剤(B)が銅、スズ、コバルト、ニッケル、または銀のいずれか1種から選ばれる金属または当該金属を含む化合物からなる液晶性ポリエステル樹脂組成物、である。
 本発明の成形品は、次の構成を有する。すなわち、
上記液晶性ポリエステル樹脂組成物からなる成形品、である。
 本発明の成形品の製造方法は、次の構成を有する。すなわち、
上記成形品へのレーザー照射によるパターン描画工程とめっき処理による金属化工程とを含む、表面に金属部を有する成形品の製造方法、である。
 本発明の液晶性ポリエステル樹脂組成物は、前記金属系添加剤(B)の平均粒子径が1μmより大きいことが好ましい。
 本発明の液晶性ポリエステル樹脂組成物は、前記全芳香族液晶性ポリエステル(A)が、ハイドロキノンに由来する構造単位を含むことが好ましい。
 本発明の液晶性ポリエステル樹脂組成物は、前記全芳香族液晶性ポリエステル(A)100重量部に対して、充填材(C)を10~200重量部含むことが好ましい。
 本発明の液晶性ポリエステル樹脂組成物は、前記充填材(C)が、モース硬度2.0~7.0の板状充填材であることが好ましい。
 本発明の液晶性ポリエステル樹脂組成物は、前記充填材(C)の平均粒子径が、前記金属系添加剤(B)の平均粒子径の0.1~20倍であることが好ましい。
 本発明の液晶性ポリエステル樹脂組成物は、前記全芳香族液晶性ポリエステル(A)100重量部に対して、長鎖脂肪酸の金属塩および/または長鎖脂肪酸のエステルである長鎖脂肪酸化合物(D)を0.01~1重量部含むことが好ましい。
 本発明の液晶性ポリエステル樹脂組成物により、成形品の金属部の形成性に優れ、温度変化時の金属部の密着性および表面硬度に優れる成形品を得ることができる。これら成形品は、特に、表面に金属部を有する電気・電子部品用途に好適である。
 以下、本発明を詳細に説明する。
 [全芳香族液晶性ポリエステル]
 本発明で使用する全芳香族液晶性ポリエステル(A)は、溶融時に光学的異方性を示すサーモトロピック液晶ポリマーと呼ばれるポリエステルである。例えば芳香族オキシカルボニル単位、芳香族ジオキシ単位、芳香族ジカルボニル単位などから選ばれた構造単位からなり、かつ異方性溶融相を形成する液晶性ポリエステルである。その構造単位はエチレングリコールなどの脂肪族化合物から生成した構造単位を含まない。
 本発明で使用する全芳香族液晶性ポリエステル(A)は、前記全芳香族液晶性ポリエステルの全構造単位100モル%に対する、芳香族オキシカルボニル単位であるヒドロキシ安息香酸に由来する構造単位と芳香族ジカルボニル単位であるテレフタル酸に由来する構造単位との合計が60~77モル%である。ヒドロキシ安息香酸に由来する構造単位とテレフタル酸に由来する構造単位の合計が、全芳香族液晶性ポリエステルの全構造単位100モル%に対して60モル%未満であると、全芳香族液晶性ポリエステルの耐熱性が低下する。そのため、成形品の温度変化時に成形品の変形が大きくなるため、金属部の密着性が低下する。また、77モル%を超えると、全芳香族液晶性ポリエステルの結晶性が過度に高くなるため、成形品の温度変化時の金属部の密着性が低下し、また成形品の表面硬度が低下する。
 全芳香族液晶性ポリエステルの全構造単位100モル%に対する、ヒドロキシ安息香酸に由来する構造単位とテレフタル酸に由来する構造単位との合計は、65モル%以上が好ましく、69モル%以上がさらに好ましい。一方、76モル%以下が好ましい。また、ヒドロキシ安息香酸に由来する構造単位とテレフタル酸に由来する構造単位は、いずれか一方の構造単位を有し、もう一方の構造単位が0モル%であってもよい。ヒドロキシ安息香酸に由来する構造単位とテレフタル酸に由来する構造単位は、それぞれが0モル%を超えることが好ましい。
 本発明で使用する全芳香族液晶性ポリエステル(A)は、ハイドロキノンに由来する構造単位を含むことが好ましい。ハイドロキノンに由来する構造単位を含むことで、全芳香族液晶性ポリエステルの結晶性が制御されることから、成形品のじん性と剛性のバランスに優れ、成形品の表面硬度に優れるため好ましい。全芳香族液晶性ポリエステルの全構造単位100モル%に対するハイドロキノンに由来する構造単位の含有量は、2.5モル%以上であると全芳香族液晶性ポリエステルの結晶性が高くなりすぎず、成形品の柔軟性が向上し表面硬度の低下が抑制されるため好ましい。一方、12モル%以下であると全芳香族液晶性ポリエステルの結晶性が低くなりすぎず、成形品の剛性が向上し表面硬度の低下が抑制されるため好ましい。
 本発明で使用する全芳香族液晶性ポリエステル(A)を構成する各構造単位は、芳香族オキシカルボニル単位としては、ヒドロキシ安息香酸に由来する構造単位を含み、さらに例えば、6-ヒドロキシ-2-ナフトエ酸などに由来する構造単位を併用することができる。ヒドロキシ安息香酸としては、p-ヒドロキシ安息香酸が好ましい。芳香族ジオキシ単位としては、例えば、4,4’-ジヒドロキシビフェニル、ハイドロキノン、3,3’,5,5’-テトラメチル-4,4’-ジヒドロキシビフェニル、t-ブチルハイドロキノン、フェニルハイドロキノン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレンなどに由来する構造単位が挙げられ4,4’-ジヒドロキシビフェニル、ハイドロキノンが好ましい。芳香族ジカルボニル単位としては、テレフタル酸に由来する構造単位を含み、さらに例えば、イソフタル酸、2,6-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸などに由来する構造単位を併用することができ、イソフタル酸が好ましい。
 本発明で使用する全芳香族液晶性ポリエステル(A)の具体例としては、p-ヒドロキシ安息香酸に由来する構造単位、6-ヒドロキシ-2-ナフトエ酸に由来する構造単位、芳香族ジヒドロキシ化合物に由来する構造単位およびテレフタル酸に由来する構造単位を含む芳香族ジカルボン酸に由来する構造単位からなる全芳香族液晶性ポリエステル、p-ヒドロキシ安息香酸に由来する構造単位、4,4’-ジヒドロキシビフェニルに由来する構造単位、テレフタル酸およびイソフタル酸等の芳香族ジカルボン酸に由来する構造単位からなる全芳香族液晶性ポリエステル、p-ヒドロキシ安息香酸に由来する構造単位、4,4’-ジヒドロキシビフェニルに由来する構造単位、ハイドロキノンに由来する構造単位、テレフタル酸およびイソフタル酸等の芳香族ジカルボン酸に由来する構造単位からなる全芳香族液晶性ポリエステル、p-ヒドロキシ安息香酸に由来する構造単位、芳香族ジヒドロキシ化合物に由来する構造単位、テレフタル酸、イソフタル酸および2,6-ナフタレンジカルボン酸などの芳香族ジカルボン酸に由来する構造単位からなる全芳香族液晶性ポリエステル、p-ヒドロキシ安息香酸に由来する構造単位、6-ヒドロキシ-2-ナフトエ酸に由来する構造単位、4,4’-ジヒドロキシビフェニルに由来する構造単位、2,6-ナフタレンジカルボン酸に由来する構造単位からなる全芳香族液晶性ポリエステルなどが挙げられる。
 特に好ましいのは、p-ヒドロキシ安息香酸に由来する構造単位、4,4’-ジヒドロキシビフェニルに由来する構造単位、ハイドロキノンに由来する構造単位、テレフタル酸およびイソフタル酸などの芳香族ジカルボン酸に由来する構造単位からなる全芳香族液晶性ポリエステルである。
 上記の各構造単位を構成する原料モノマーは、各構造単位を形成しうる構造である、各構造単位の水酸基のアシル化物、各構造単位のカルボキシル基のエステル化物、酸ハロゲン化物、酸無水物などのカルボン酸誘導体などが使用されてもよい。
 本発明で使用する全芳香族液晶性ポリエステル(A)は、上記の構造単位から構成されることで、得られる液晶性ポリエステル樹脂組成物の耐熱性に優れ、ガス発生量が抑制される。したがって、その液晶性ポリエステル樹脂組成物を用いた成形品は、温度変化時にあっても金属部の密着性に優れる。
 全芳香族液晶性ポリエステル(A)を構成する芳香族ジオキシ単位の合計と、芳香族ジカルボニル単位の合計とは実質的に等モルである。ここでいう「実質的に等モル」とは、末端を除くポリマー主鎖を構成する構造単位が等モルであることを示す。このため、末端を構成する構造単位まで含めた場合には必ずしも等モルとはならない態様も、「実質的に等モル」の要件を満たしうる。
 本発明の全芳香族液晶性ポリエステル(A)について、各構造単位の含有量の算出法を以下に示す。まず、全芳香族液晶性ポリエステル(A)をNMR(核磁気共鳴)試験管に量りとり、全芳香族液晶性ポリエステルが可溶な溶媒(例えば、ペンタフルオロフェノール/重テトラクロロエタン-d混合溶媒)に溶解する。次に、得られた溶液について、H-NMRスペクトル測定を行い、各構造単位由来のピーク面積比から算出することができる。
 本発明の全芳香族液晶性ポリエステル(A)の融点(Tm)は、耐熱性の観点から220℃以上が好ましく、270℃以上がより好ましく、300℃以上がさらに好ましい。一方、加工性の観点から全芳香族液晶性ポリエステルの融点(Tm)は、350℃以下が好ましく、345℃以下がより好ましく、340℃以下がさらに好ましい。
 融点(Tm)の測定は、示差走査熱量測定により行う。具体的には、まず、重合を完了したポリマーを室温から20℃/分の昇温条件で加熱することにより吸熱ピーク温度(Tm)を観測する。吸熱ピーク温度(Tm)の観測後、吸熱ピーク温度(Tm)+20℃の温度でポリマーを5分間保持する。その後、20℃/分の降温条件で室温までポリマーを冷却する。そして、20℃/分の昇温条件でポリマーを加熱することにより吸熱ピーク温度(Tm)を観測する。融点(Tm)とは、該吸熱ピーク温度(Tm)を指す。
 本発明の全芳香族液晶性ポリエステル(A)の溶融粘度は、機械強度の観点から1Pa・s以上が好ましく、5Pa・s以上がより好ましく、15Pa・s以上がさらに好ましい。一方、流動性の観点から、全芳香族液晶性ポリエステルの溶融粘度は、200Pa・s以下が好ましく、100Pa・s以下がより好ましく、50Pa・s以下がさらに好ましい。
 なお、この溶融粘度は、全芳香族液晶性ポリエステルの融点(Tm)+20℃の温度で、かつ、せん断速度1,000/秒の条件下で、高化式フローテスターによって測定した値である。
 本発明で使用する全芳香族液晶性ポリエステル(A)を製造する方法は、特に制限がなく、公知のポリエステルの重縮合法に準じて製造できる。公知のポリエステルの重縮合法としては、全芳香族液晶性ポリエステルがp-ヒドロキシ安息香酸に由来する構造単位、4,4’-ジヒドロキシビフェニルに由来する構造単位、ハイドロキノンに由来する構造単位、テレフタル酸に由来する構造単位、およびイソフタル酸に由来する構造単位からなる全芳香族液晶性ポリエステルを例に、以下が挙げられる。
(1)p-アセトキシ安息香酸および4,4’-ジアセトキシビフェニル、ジアセトキシベンゼンとテレフタル酸、イソフタル酸から脱酢酸縮重合反応によって全芳香族液晶性ポリエステルを製造する方法。
(2)p-ヒドロキシ安息香酸、4,4’-ジヒドロキシビフェニルおよびハイドロキノンとテレフタル酸、イソフタル酸に無水酢酸を反応させて、フェノール性水酸基をアセチル化した後、脱酢酸重合することによって全芳香族液晶性ポリエステルを製造する方法。
(3)p-ヒドロキシ安息香酸フェニルおよび4,4’-ジヒドロキシビフェニル、ハイドロキノンとテレフタル酸ジフェニル、イソフタル酸ジフェニルから脱フェノール重縮合反応により全芳香族液晶性ポリエステルを製造する方法。
(4)p-ヒドロキシ安息香酸およびテレフタル酸、イソフタル酸などの芳香族ジカルボン酸に所定量のジフェニルカーボネートを反応させて、それぞれフェニルエステルとした後、4,4’-ジヒドロキシビフェニル、ハイドロキノンなどの芳香族ジヒドロキシ化合物を加え、脱フェノール重縮合反応により全芳香族液晶性ポリエステルを製造する方法。
 なかでも、(2)p-ヒドロキシ安息香酸および4,4’-ジヒドロキシビフェニル、ハイドロキノン、テレフタル酸、イソフタル酸に無水酢酸を反応させて、フェノール性水酸基をアセチル化した後、脱酢酸重縮合反応によって全芳香族液晶性ポリエステルを製造する方法が、全芳香族液晶性ポリエステルの末端構造の制御および重合度の制御に工業的に優れる点から、好ましく用いられる。
 本発明で使用する全芳香族液晶性ポリエステル(A)の製造方法として、固相重合法により重縮合反応を完了させることも可能である。固相重合法による処理としては、例えば、以下の方法が挙げられる。まず、全芳香族液晶性ポリエステル(A)のポリマーまたはオリゴマーを粉砕機で粉砕する。粉砕したポリマーまたはオリゴマーを、窒素気流下、または、減圧下において加熱し、所望の重合度まで重縮合することで、反応を完了させる。上記加熱は、全芳香族液晶性ポリエステルの融点-50℃~融点-5℃(例えば、200~300℃)の範囲で1~50時間行うことができる。
 全芳香族液晶性ポリエステル(A)の重縮合反応は、無触媒でも進行するが、酢酸第一錫、テトラブチルチタネート、酢酸カリウムおよび酢酸ナトリウム、三酸化アンチモン、金属マグネシウムなどを触媒として使用することもできる。
 [金属系添加剤]
 本発明の液晶性ポリエステル樹脂組成物は、金属系添加剤(B)を含む。金属系添加剤(B)を配合することで、液晶性ポリエステル樹脂組成物からなる成形品へのレーザー照射時に金属系添加剤(B)が成形品表面に露出し、それを起点としてめっきが形成され、レーザー照射部に金属部を形成することができる。
 本発明で使用する金属系添加剤(B)は、銅、スズ、コバルト、ニッケル、または銀のいずれか1種から選ばれる金属または当該金属を含む化合物からなる。金属系添加剤(B)が上記金属のいずれか1種から構成されることで、液晶性ポリエステル樹脂組成物中に適度に分散し、成形品の金属部の形成性に優れる。また、液晶性ポリエステル樹脂組成物の成形加工時における金属系添加剤の反応、分解が抑制され、温度変化時の成形品の金属部の密着性に優れる。
 金属系添加剤(B)が、上記以外の金属種や、上記金属種のうち2種以上の金属からなる金属系添加剤である場合は、レーザー照射部の金属部の形成が不十分であったり、金属系添加剤間の導通により成形品の金属部以外への短絡が生じたり、液晶性ポリエステル樹脂組成物の成形加工時における金属系添加剤の反応、分解により発生ガス量が増加する。さらに発生ガス量の増加によって、温度変化時における成形品の金属部の密着性が低下する。
 本発明で使用する金属系添加剤(B)は、金属単体または、金属を含む化合物であり、金属を含む化合物としては、酸化物、硫化物、硫酸塩、窒化物、硝酸塩、炭酸塩、リン酸塩、ハロゲン化物、水酸化物、有機金属化合物、錯体などを用いることができる。金属系添加剤(B)は、金属単体または酸化物が好ましい。金属種としては、銅、スズ、コバルト、ニッケル、または銀である。なかでもスズ、ニッケル、銀、銅の酸化物、またはコバルトの酸化物であることが好ましく、酸化銅(II)であることがより好ましい。
 本発明の液晶性ポリエステル樹脂組成物は、金属系添加剤(B)を全芳香族液晶性ポリエステル(A)100重量部に対して、3~25重量部含む。金属系添加剤の配合量は3.5重量部以上が好ましく、5重量部以上がより好ましい。金属系添加剤の配合量は、23重量部以下が好ましく、21重量部以下がより好ましい。
 金属系添加剤(B)の配合量が3重量部より少ない、または金属系添加剤を配合しないと、成形品の金属部が形成されない、または形成量が不十分で金属部の導通性が得られず、温度変化時の金属部の密着性も低下する。一方、金属系添加剤の配合量が25重量部よりも多いと、液晶性ポリエステル樹脂組成物からなる成形品の機械強度が低下し、成形品の表面硬度が低下する。また、温度変化時における成形品の金属部の密着性が低下する。さらに、液晶性ポリエステル樹脂組成物の押出製造時に、ストランド切れが生じるなど生産性に悪影響を及ぼす。
 本発明で使用する金属系添加剤(B)は、樹脂組成物中での平均粒子径が1μmより大きいことが好ましい。ここでいう平均粒子径は体積平均粒子径であり、次の方法により求めることができる。液晶性ポリエステル樹脂組成物50gを550℃で3時間加熱することにより樹脂成分を除去し、金属系添加剤(B)を取り出す。樹脂組成物中に充填材を含有する場合には比重差により分離することができる。例えば樹脂成分が除去された金属系添加剤と充填材の混合物を取り出し、これをヨウ化メチレン(比重3.33)や1,1,2,2-テトラブロモエタン(比重2.970)、エタノール(比重0.789)などを用いて金属系添加剤と充填材との間の比重となるよう適宜混合した混合液中に分散させ、回転数10,000rpmで5分間遠心分離した後、浮遊した充填材をデカンテーションで取り除き、沈降した金属系添加剤(B)をろ過により取り出す。得られた金属系添加剤を100mg秤量し、水中に分散させ、レーザー回折/散乱式粒子径分布測定装置((株)堀場製作所製“LA-300”)を用いて測定する。
 金属系添加剤(B)の平均粒子径が1μmより大きいと、液晶性ポリエステル樹脂組成物中で適度に分散するため、成形品の金属部の密着性が向上するので好ましい。また、充填材を配合している場合に、液晶性ポリエステル樹脂組成物の製造時、成形加工時において金属系添加剤と充填材との混練が促進されるため、それぞれの凝集が抑制され、得られる成形品中での分散性に優れる。それにより成形品の金属部の密着性が向上し、成形品の表面硬度が向上するため好ましい。1.5μm以上が好ましく、2.0μm以上がより好ましい。
 一方、金属系添加剤の平均粒子径の上限は、350μm以下が好ましく、100μm以下がより好ましく、50μm以下がさらに好ましい。それにより、金属系添加剤の液晶性ポリエステル樹脂組成物中での分布むらが抑制され、成形品の金属部の形成性に優れるため好ましい。また、成形品表面の金属部以外への導通による短絡が抑制されるため好ましい。また、金属系添加剤の粗大な粒子が低減することにより成形品の強度低下が抑制され、成形品の表面硬度が向上するため好ましい。
 [充填材]
 本発明の液晶性ポリエステル樹脂組成物は、充填材(C)を含むことが好ましい。本発明で使用する充填材(C)は、例えば、繊維状、ウィスカー状、板状、粉末状、粒状などの充填材を挙げることができる。具体的には、繊維状、ウィスカー状充填材としては、ガラス繊維、PAN系やピッチ系の炭素繊維、ステンレス繊維、アルミニウム繊維や黄銅繊維などの金属繊維、芳香族ポリアミド繊維や液晶性ポリエステル繊維などの有機繊維、石膏繊維、セラミック繊維、アスベスト繊維、ジルコニア繊維、アルミナ繊維、シリカ繊維、酸化チタン繊維、炭化ケイ素繊維、ロックウール、チタン酸カリウムウィスカー、チタン酸バリウムウィスカー、ホウ酸アルミニウムウィスカー、窒化ケイ素ウィスカー、ワラステナイト、および針状酸化チタンなどが挙げられる。板状充填材としては、マイカ、タルク、カオリン、ガラスフレーク、クレー、黒鉛、および二硫化モリブデンなどが挙げられる。粉状、粒状の充填材としては、シリカ、ガラスビーズ、酸化チタン、酸化亜鉛、およびポリリン酸カルシウムなどが挙げられる。
 本発明に使用することができる上記の充填材は、その表面が公知のカップリング剤(例えば、シラン系カップリング剤、チタネート系カップリング剤など)、その他の表面処理剤で処理されていてもよい。また、本発明に使用する上記の充填材は、2種以上を併用してもよい。
 これら充填材のなかで、板状充填材が特に好ましい。板状充填材を用いることで、金属系添加剤との混練時の分散性、補強効果に優れ、得られる液晶性ポリエステル樹脂組成物の成形の金属部の形成性、温度変化時の金属部の密着性に優れるため好ましい。さらに、得られる液晶性ポリエステル樹脂組成物の熱処理時の成形品の形状保持性、および成形品の摺動性に優れるため好ましい。
 上記充填材は、モース硬度が2.0~7.0の範囲であることが好ましい。モース硬度は、モース硬度1~10の標準物質との擦り合わせによる傷の有無で判別することができる。充填材のモース硬度が上記範囲であることで、液晶性ポリエステル樹脂組成物の製造、成形加工時において、金属系添加剤と混練されることで、それぞれの分散性が向上し、得られる樹脂組成物の成形品の金属部の形成性、温度変化時の密着性に優れ、成形品の表面硬度に優れる。充填材のモース硬度は、補強効果の向上による温度変化時の金属部の密着性の向上の観点から2.5以上が好ましい。一方、成形加工時に、射出成形機のシリンダー、スクリューの摩耗を抑制する観点から6.5以下が好ましい。
 モース硬度が2.0~7.0の充填材として、例えばマイカ、ガラスフレークなどが挙げられる。なかでも補強効果が高く、得られる液晶性ポリエステル樹脂組成物の成形品の金属部の形成性、温度変化時の金属部の密着性、成形品の表面硬度に優れることからマイカが好ましい。
 本発明で使用することができる充填材(C)の配合量は、全芳香族液晶性ポリエステル(A)100重量部に対して、10~200重量部であることが好ましい。充填材の配合量を10重量部以上とすることにより、耐熱性および機械強度をより向上させることができるため、温度変化時の成形品の金属部の密着性が向上し、成形品の表面硬度に優れる。充填材の配合量は、15重量部以上がより好ましく、20重量部以上がさらに好ましい。また、充填材の配合量を200重量部以下とすることにより、流動性、柔軟性を向上させることができるため、成形品表面の平滑性に優れ、成形品への金属部形成時に意図する箇所以外への金属部の形成が抑制される。充填材の配合量は、150重量部以下がより好ましく、100重量部以下がさらに好ましい。
 本発明で使用することができる充填材(C)は、樹脂組成物中での平均粒子径が10~1,000μmの充填材であることが好ましい。ここでいう平均粒子径は体積平均粒子径であり、前述の方法により求めることができる。充填材の平均粒子径が10μm以上であると、補強効果に優れるため、得られる液晶性ポリエステル樹脂組成物の成形品の温度変化時の金属部の密着性が向上するため好ましい。15μm以上がより好ましく、20μm以上がさらに好ましい。一方、充填材の平均粒子系が1000μm以下であると、液晶性ポリエステル樹脂組成物中の分散性が向上するため、得られる液晶性ポリエステル樹脂組成物の成形品の金属部の形成性が向上するため好ましい。900μm以下がより好ましく、700μm以下がさらに好ましい。
 本発明の液晶性ポリエステル樹脂組成物は、充填材の平均粒子径が、金属系添加剤(B)の平均粒子径の0.1~20倍であることが好ましい。金属系添加剤と板状充填材の平均粒子径の関係が上記範囲である場合、液晶性ポリエステル樹脂組成物の製造時、成形加工時に金属系添加剤と板状充填材とが混練されることで、それぞれの凝集が抑制され、得られる成形品中で金属系添加剤と板状充填材がそれぞれ分散性に優れるため好ましい。金属系添加剤と板状充填材の分散性向上の観点から、板状充填材の平均粒子径は、金属系添加剤の平均粒子径の0.15倍以上が好ましく、0.3倍以上がより好ましい。一方、板状充填材の補強効果の向上の観点から、15倍以下が好ましく、10倍以下がより好ましい。
 [長鎖脂肪酸化合物]
 本発明の液晶性ポリエステル樹脂組成物は、長鎖脂肪酸の金属塩および/または長鎖脂肪酸のエステルである長鎖脂肪酸化合物(D)を含むことが好ましい。長鎖脂肪酸化合物(D)を含むことで、液晶性ポリエステル樹脂組成物の成形品表面の平滑性に優れ、成形品への金属部形成時に意図する箇所以外への金属部の形成が抑制される。また、成形時の滞留時間が抑制されることで液晶性ポリエステル樹脂組成物の熱劣化が抑制されるため、温度変化時の成形品の金属部の密着性、成形品の表面硬度に優れるため好ましい。
 本発明で好ましく使用する長鎖脂肪酸化合物(D)の原料成分である長鎖脂肪酸は、炭素数10~32のカルボン酸であることが好ましい。長鎖脂肪酸は不飽和脂肪酸であってもよく、2つ以上の二重結合を有していてもよい。なかでも、デカン酸、ドデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸(ステアリン酸)、ノナデカン酸、イコサン酸、ドコサン酸(ベヘン酸)、テトラドコサン酸、ヘキサドコサン酸、オクタドコサン酸(モンタン酸)などが好ましく、オクタデカン酸(ステアリン酸)、ドコサン酸(ベヘン酸)、オクタドコサン酸(モンタン酸)などがより好ましく、オクタデカン酸(ステアリン酸)が特に好ましい。長鎖脂肪酸が上記種類であることで、長鎖脂肪酸化合物(D)の融点が制御されて固体状となりやすく、液晶性ポリエステル樹脂組成物の製造時のハンドリング性に優れ、液晶性ポリエステル樹脂組成物中に分散しやすくなるため好ましい。
 長鎖脂肪酸の金属塩における金属種としては、カルシウム、リチウム、ナトリウム、マグネシウム、カリウム、アルミニウムなどが好ましい。これら金属を含むことで、液晶性ポリエステル樹脂組成物中における長鎖脂肪酸化合物(D)の分散性に優れるため好ましい。特にリチウムが好ましい。
 長鎖脂肪酸のエステルは、前述の長鎖脂肪酸とアルコールとのエステルであり、アルコールとしては、1級、2級、3級のいずれのアルコールであってもよく、エチレングリコールなどの2価アルコール、グリセロールなどの3価アルコール、ペンタエリスリトールなどの4価アルコールなど多価アルコールであってもよい。多価アルコールと長鎖脂肪酸のモノエステル、ジエステル、トリエステル、テトラエステルなどであってもよく、特にペンタエリスリトールのテトラエステルが好ましい。
 本発明で使用する長鎖脂肪酸化合物(D)は、長鎖脂肪酸の金属塩または長鎖脂肪酸のエステルの一方のみを使用してもよく、併用してもよい。また、長鎖脂肪酸の金属塩および長鎖脂肪酸のエステルは、それぞれ、1種のみを使用してもよく、2種以上を使用してもよい。
 本発明で使用する長鎖脂肪酸化合物(D)の配合量は、全芳香族液晶性ポリエステル(A)100重量部に対して0.01~1重量部であることが好ましい。長鎖脂肪酸化合物が0.01重量部以上であることで液晶性ポリエステル樹脂組成物の成形品表面の平滑性に優れ、成形品への金属部形成時に意図する箇所以外への金属部の形成が抑制されるため好ましい。また、成形時の滞留時間が抑制されることで液晶性ポリエステル樹脂組成物の熱劣化が抑制されるため、温度変化時の成形品の金属部の密着性、成形品の表面硬度に優れるため好ましい。0.02重量部以上がより好ましく、0.03重量部以上がさらに好ましい。一方、長鎖脂肪酸化合物が1重量部以下であることで液晶性ポリエステル樹脂組成物の成形品の機械強度の低下が抑制されるため、温度変化時の成形品の金属部の密着性、成形品の表面硬度に優れるため好ましい。0.7重量部以下がより好ましく、0.4重量部以下がさらに好ましい。 
 本発明の液晶性ポリエステル樹脂組成物には、本発明の効果を損なわない範囲でさらに酸化防止剤、熱安定剤(例えば、ヒンダードフェノール、ヒドロキノン、ホスファイト類およびこれらの置換体など)、紫外線吸収剤(例えば、レゾルシノール、サリシレート)、亜リン酸塩、次亜リン酸塩などの着色防止剤、滑剤および離型剤(シリコーン、高級脂肪酸アルコール、高級脂肪酸アマイド、およびポリエチレンワックスなど。ただし、滑剤および離型剤の効果を有する化合物のうち、長鎖脂肪酸化合物(D)に該当する化合物は(D)成分に分類する。)、染料または顔料を含む着色剤、導電剤あるいは着色剤としてカーボンブラック、結晶核剤、可塑剤、難燃剤(臭素系難燃剤、燐系難燃剤、赤燐、シリコーン系難燃剤など)、難燃助剤、および帯電防止剤から選択される通常の添加剤を配合することが出来る。あるいは、全芳香族液晶性ポリエステル(A)以外の重合体を配合して、所定の特性をさらに付与することができる。全芳香族液晶性ポリエステル(A)以外の重合体を配合する場合、液晶性ポリエステル樹脂組成物中の樹脂種の中で、全芳香族液晶性ポリエステル(A)の割合が最も多いことが好ましい。
 本発明の液晶性ポリエステル樹脂組成物に、金属系添加剤、充填材、長鎖脂肪酸化合物、および他の添加剤等を配合する方法としては、例えば、全芳香族液晶性ポリエステルに固体状の充填材、金属系添加剤、長鎖脂肪酸化合物、およびその他の添加剤等を配合するドライブレンド法や、全芳香族液晶性ポリエステル、金属系添加剤、充填材、および長鎖脂肪酸化合物にその他の液体状の添加剤等を配合する溶液配合法、金属系添加剤、充填材、長鎖脂肪酸化合物、およびその他の添加剤を全芳香族液晶性ポリエステルの重合時に添加する方法、全芳香族液晶性ポリエステルと金属系添加剤、充填材、長鎖脂肪酸化合物、およびその他の添加剤を溶融混練する方法などを用いることができる。なかでも溶融混練する方法が好ましい。溶融混練には公知の方法を用いることができる。例えば、バンバリーミキサー、ゴムロール機、ニーダー、単軸もしくは二軸押出機などを用い、全芳香族液晶性ポリエステルの融点+50℃以下で溶融混練して液晶性ポリエステル樹脂組成物とすることができる。なかでも二軸押出機が好ましい。
 二軸押出機については、全芳香族液晶性ポリエステルと金属系添加剤、充填材、および長鎖脂肪酸化合物の分散性を向上させるため、ニーディング部を1箇所以上設けていることが好ましく、2箇所以上設けていることがより好ましい。ニーディング部の設置箇所は、例えば、充填材をサイドフィーダーから添加する場合、全芳香族液晶性ポリエステルの可塑化を促進させるために、充填材のサイドフィーダーより上流側に1箇所以上、全芳香族液晶性ポリエステルと充填材との分散性を向上させるため、サイドフィーダーよりも下流側に1箇所以上の計2箇所以上設置することが好ましい。
 また、二軸押出機中の水分や混練中に生じた分解物を除去するため、ベント部を設けていることが好ましく、2箇所以上設けていることがより好ましい。ベント部の設置箇所は、例えば、充填材をサイドフィーダーから添加する場合、全芳香族液晶性ポリエステルの付着水分を除去するために、充填材を投入するサイドフィーダーより上流側に1箇所以上、溶融混練時の分解ガス成分、充填材供給時の持ち込み空気を除去するため、サイドフィーダーよりも下流側に1箇所以上の計2箇所以上設置することが好ましい。ベント部は、常圧下としてもよく、減圧下としてもよい。また、溶融混練時の最大せん断応力は5,000~20,000Paとすることが好ましい。好ましくは、7,500~18,000Pa、更に好ましくは、8,000~16,000Paである。最大せん断応力は押出機中の樹脂温度、および押出機シリンダー径、スクリュー回転数、ニーディング部のクリアランスから算出した混練時の最大せん断速度において高化式フローテスターCFT-500D(オリフィス0.5φ×10mm)(島津製作所製)を用いて測定することができる。溶融混練時の最大せん断応力を上記範囲とすることで、金属系添加剤、充填材の分散性を向上させつつ樹脂組成物の劣化が抑制される。そのため、成形品の金属部の成形性、温度変化時の金属部の密着強度、および成形品の表面硬度に優れるため好ましい。
 混練方法としては、1)全芳香族液晶性ポリエステル(A)、金属系添加剤(B)、充填材(C)、長鎖脂肪酸化合物(D)およびその他の添加剤を元込めフィーダーから一括で投入して混練する方法(一括混練法)、2)全芳香族液晶性ポリエステル(A)、金属系添加剤(B)、長鎖脂肪酸化合物(D)およびその他の添加剤を元込めフィーダーから投入して混練した後、充填材(C)およびその他添加剤をサイドフィーダーから添加して混練する方法(サイドフィード法)、3)全芳香族液晶性ポリエステル(A)と金属系添加剤(B)、長鎖脂肪酸化合物(D)およびその他の添加剤を高濃度に含むマスターペレットを作製し、次いで規定の濃度になるようにマスターペレットを全芳香族液晶性ポリエステル(A)および充填材(C)と混練する方法(マスターペレット法)など、どの方法を用いてもかまわない。
 本発明の液晶性ポリエステル樹脂組成物は、射出成形、射出圧縮成形、圧縮成形、押出成形、ブロー成形、プレス成形、紡糸などの公知の溶融成形を行うことによって、優れた表面外観(色調)および機械的性質、耐熱性、難燃性を有する成形品に加工することが可能である。ここでいう成形品としては、射出成形品、押出成形品、プレス成形品、シート、パイプ、未延伸フィルム、一軸延伸フィルム、二軸延伸フィルムなどの各種フィルム、未延伸糸、超延伸糸などの各種繊維などが挙げられる。特に加工性の観点から射出成形であることが好ましい。
 このようにして得られる液晶性ポリエステル樹脂組成物からなる成形品は、例えば、各種ギヤー、各種ケース、センサー、LEDランプ、コネクター、ソケット、抵抗器、リレーケース、リレーベース、リレー用スプール、スイッチ、コイルボビン、コンデンサー、バリコンケース、光ピックアップ、発振子、各種端子板、変成器、プラグ、プリント配線板、基板間関節部品、チューナー、スピーカー、マイクロフォン、ヘッドフォン、小型モーター、磁気ヘッドベース、パワーモジュール、ハウジング、半導体、液晶ディスプレイ部品、FDDキャリッジ、FDDシャーシ、HDD部品、モーターブラッシュホルダー、パラボラアンテナ、サーマルプロテクター、携帯電話内蔵アンテナ、ウェアラブル端末部材、コンピューター関連部品などに代表される電気・電子部品;VTR部品、テレビ部品、アイロン、ヘアードライヤー、炊飯器部品、電子レンジ部品、音響部品、オーディオ・レーザーディスク(登録商標)・コンパクトディスクなどの音声機器部品、照明部品、冷蔵庫部品、エアコン部品、タイプライター部品、ワードプロセッサー部品などに代表される家庭・事務電気製品部品;オフィスコンピューター関連部品、電話機関連部品、ファクシミリ関連部品、複写機関連部品、洗浄用治具、オイルレス軸受、船尾軸受、水中軸受などの各種軸受、モーター部品、ライター、タイプライターなどに代表される機械関連部品、レンズホルダ、ベース、バレル、カバー、センサーカバー、アクチュエーターなどに代表されるカメラモジュール関連部品、顕微鏡、双眼鏡、カメラ、時計、医療用器具などに代表される光学機器、精密機械関連部品;オルタネーターターミナル、オルタネーターコネクター、ICレギュレーター、ライトディマー用ポテンショメーターベース、排気ガスバルブなどの各種バルブ、燃料関係・排気系・吸気系各種パイプ、エアーインテークノズルスノーケル、インテークマニホールド、燃料ポンプ、エンジン冷却水ジョイント、キャブレターメインボディー、キャブレタースペーサー、排気ガスセンサー、冷却水センサー、油温センサー、スロットルポジションセンサー、クランクシャフトポジションセンサー、エアーフローメーター、ブレーキバット磨耗センサー、エアコン用サーモスタットベース、エアコン用モーターインシュレーター、パワーウインド等の車載用モーターインシュレーター、暖房温風フローコントロールバルブ、ラジエーターモーター用ブラッシュホルダー、ウォーターポンプインペラー、タービンベイン、ワイパーモーター関係部品、デュストリビューター、スタータースィッチ、スターターリレー、トランスミッション用ワイヤーハーネス、ウィンドウオッシャーノズル、エアコンパネルスィッチ基板、燃料関係電磁弁用コイル、ヒューズ用コネクター、ハンドル、ホーンターミナル、電装部品絶縁板、ステップモーターローター、ランプベゼル、ランプソケット、ランプリフレクター、ランプハウジング、ブレーキピストン、ソレノイドボビン、エンジンオイルフィルター、点火装置ケース、センサーなどに代表される自動車・車両関連部品などに用いることができる。
 本発明の成形品は、上記各種用途の中でも、成形品表面に金属部を形成できる点、温度変化時の金属部の密着性および成形品の表面硬度に優れる点を生かして、成形品表面に金属導電部を有する小型の電気・電子部品に有用であり、例えば、コネクターやセンサー、LEDランプ基板、カメラモジュール、携帯電話内蔵アンテナ、ウェアラブル端末部材などに用いられる。
 本発明の成形品は、表面に金属部を有していることが好ましい。表面に金属部を形成させる方法としては、成形品への触媒付与を含む各種めっき処理による方法、2回成形により回路形成箇所以外へマスキングを施すマスク形成方法、レーザー照射による成形品表面の変性、部分除去による方法、およびそれらの組み合わせによるものが挙げられる。特に成形品へのレーザー照射によるパターン描画工程とめっき処理による金属化工程とを含む、レーザー照射部への選択的な金属部形成方法が好ましい。それにより、1回成形で成形品を作成可能なこと、回路の狭ピッチ化が容易なこと、回路パターンの変更時に金型変更が不要でレーザー照射パターンを変えるだけでよいことなどの利点があるため好ましい。
 金属部形成箇所に照射するレーザーについては、特に制限はなく、YVOレーザー、COレーザー、Arレーザー、およびエキシマレーザーなどが挙げられる。特に、基本波長1064nmまたは第2高波長532nmの波長で作動するNd;YAGレーザー、YVOレーザー、FAYbレーザーが、金属部の形成性に優れるため好ましい。また、レーザー光線の発振方式は連続発振レーザーであってもパルスレーザーであってもよい。金属部形成箇所に照射するレーザーは、成形品表面の熱劣化、溶融樹脂による金属系添加剤の埋没を抑制する点から、強いレーザー出力を短時間照射するパルスレーザーが好ましい。
 上記方法により形成される金属部の金属種は、金、銀、銅、白金、亜鉛、スズ、ニッケル、カドミウム、クロム、およびそれらを含む合金などが挙げられ、特に金、銅、ニッケルが金属部の形成性、密着性の点から好ましい。また、金属部の安定性、導通性の向上の観点から、成形品の金属部上にめっき等の手法によりさらに異なる種類の金属種からなる金属層を形成してもよい。
 上記の方法により得られた表面に金属部を有する成形品は、従来技術である回路を形成する基板とそれを保持する成形品からなる回路部材に比べ、省スペースであり、製造工程の簡略化が図れることから、小型の電気・電子部品としての使用に有用である。
 以下、実施例により本発明をさらに詳述するが、本発明の骨子は以下の実施例のみに限定されるものではない。
 各実施例および比較例に用いた全芳香族液晶性ポリエステル(A)を次に示す。
 全芳香族液晶性ポリエステルの組成分析および特性評価は以下の方法により行った。
 (1)全芳香族液晶性ポリエステルの組成分析
 全芳香族液晶性ポリエステルの組成分析は、H-核磁気共鳴スペクトル(H-NMR)測定により実施した。全芳香族液晶性ポリエステルをNMR試料管に50mg秤量し、溶媒(ペンタフルオロフェノール/1,1,2,2-テトラクロロエタン-d=65/35(重量比)混合溶媒)800μLに溶解して、UNITY INOVA500型NMR装置(バリアン社製)を用いて観測周波数500MHz、温度80℃でH-NMR測定を実施し、7~9.5ppm付近に観測される各構造単位に由来するピーク面積比から組成を分析した。
 (2)全芳香族液晶性ポリエステルの融点(Tm)測定
 示差走査熱量計DSC-7(パーキンエルマー社製)により、全芳香族液晶性ポリエステルを室温から20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm)の観測後、Tm+20℃の温度で5分間保持した後、20℃/分の降温条件で室温まで一旦冷却し、再度20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm)を融点(Tm)とした。以下の製造例においては、融点をTmと記載する。
 (3)全芳香族液晶性ポリエステルの溶融粘度測定
 高化式フローテスターCFT-500D(オリフィス0.5φ×10mm)((株)島津製作所製)を用い、全芳香族液晶性ポリエステルの融点+20℃に設定された高化式フローテスター炉内で、全芳香族液晶性ポリエステルを溶融させるため全芳香族液晶性ポリエステルを装填してから5分間保持した後に、せん断速度1,000/秒で溶融粘度を測定した。
 製造例1 全芳香族液晶性ポリエステル(A-1)
 撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸932重量部、4,4’-ジヒドロキシビフェニル251重量部、ハイドロキノン99重量部、テレフタル酸284重量部、イソフタル酸90重量部および無水酢酸1,252重量部(フェノール性水酸基合計の1.09当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、ジャケット温度を145℃から350℃まで4時間で昇温させた。その後、重合温度を350℃に保持し、1.0時間で1.0mmHg(133Pa)に減圧し、更に反応を続け、撹拌に要するトルクが20kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズして全芳香族液晶性ポリエステル(A-1)を得た。
 この全芳香族液晶性ポリエステル(A-1)について組成分析を行なったところ、p-ヒドロキシ安息香酸由来の構造単位の割合が60.0モル%、4,4’-ジヒドロキシビフェニル由来の構造単位の割合が12.0モル%、ハイドロキノン由来の構造単位の割合が8.0モル%、テレフタル酸由来の構造単位の割合が15.2モル%、イソフタル酸由来の構造単位の割合が4.8モル%であった。ヒドロキシ安息香酸由来の構造単位とテレフタル酸由来の構造単位の合計は全芳香族液晶性ポリエステルの全構造単位100モル%に対して、75.2モル%であった。また、Tmは330℃、溶融粘度は28Pa・sであった。
 製造例2 全芳香族液晶性ポリエステル(A-2)
 撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸870重量部、4,4’-ジヒドロキシビフェニル302重量部、ハイドロキノン119重量部、テレフタル酸247重量部、イソフタル酸202重量部および無水酢酸1,302重量部(フェノール性水酸基合計の1.09当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、ジャケット温度を145℃から330℃まで4時間で昇温させた。その後、重合温度を330℃に保持し、1.0時間で1.0mmHg(133Pa)に減圧し、更に反応を続け、撹拌に要するトルクが20kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズして全芳香族液晶性ポリエステル(A-2)を得た。
 この全芳香族液晶性ポリエステル(A-2)について組成分析を行なったところ、p-ヒドロキシ安息香酸由来の構造単位の割合が53.8モル%、4,4’-ジヒドロキシビフェニル由来の構造単位の割合が13.8モル%、ハイドロキノン由来の構造単位の割合が9.2モル%、テレフタル酸由来の構造単位の割合が12.7モル%、イソフタル酸由来の構造単位の割合が10.4モル%であった。ヒドロキシ安息香酸由来の構造単位とテレフタル酸由来の構造単位の合計は全芳香族液晶性ポリエステルの全構造単位100モル%に対して、66.5モル%であった。また、Tmは310℃、溶融粘度は30Pa・sであった。
 製造例3 全芳香族液晶性ポリエステル(A-3)
 撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸874重量部、4,4’-ジヒドロキシビフェニル498重量部、テレフタル酸285重量部、イソフタル酸159重量部および無水酢酸1,299重量部(フェノール性水酸基合計の1.09当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、ジャケット温度を145℃から340℃まで4時間で昇温させた。その後、重合温度を340℃に保持し、1.0時間で1.0mmHg(133Pa)に減圧し、更に反応を続け、撹拌に要するトルクが20kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズして全芳香族液晶性ポリエステル(A-3)を得た。
 この全芳香族液晶性ポリエステル(A-3)について組成分析を行なったところ、p-ヒドロキシ安息香酸由来の構造単位の割合が54.2モル%、4,4’-ジヒドロキシビフェニル由来の構造単位の割合が22.9モル%、テレフタル酸由来の構造単位の割合が14.7モル%、イソフタル酸由来の構造単位の割合が8.2モル%であった。ヒドロキシ安息香酸由来の構造単位とテレフタル酸由来の構造単位の合計は全芳香族液晶性ポリエステルの全構造単位100モル%に対して、68.9モル%であった。また、Tmは321℃、溶融粘度は26Pa・sであった。
 製造例4 全芳香族液晶性ポリエステル(A-4)
 撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸1,057重量部、4,4’-ジヒドロキシビフェニル151重量部、ハイドロキノン59重量部、テレフタル酸202重量部、イソフタル酸22重量部および無水酢酸1152重量部(フェノール性水酸基合計の1.09当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、ジャケット温度を145℃から365℃まで4時間で昇温させた。その後、重合温度を365℃に保持し、1.0時間で1.0mmHg(133Pa)に減圧し、更に反応を続け、撹拌に要するトルクが20kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズして全芳香族液晶性ポリエステル(A-4)を得た。
 この全芳香族液晶性ポリエステル(A-4)について組成分析を行なったところ、p-ヒドロキシ安息香酸由来の構造単位の割合が73.9モル%、4,4’-ジヒドロキシビフェニル由来の構造単位の割合が7.8モル%、ハイドロキノン由来の構造単位の割合が5.2モル%、テレフタル酸由来の構造単位の割合が11.7モル%、イソフタル酸由来の構造単位の割合が1.3モル%であった。ヒドロキシ安息香酸由来の構造単位とテレフタル酸由来の構造単位の合計は全芳香族液晶性ポリエステルの全構造単位100モル%に対して、85.7モル%であった。また、Tmは351℃、溶融粘度は31Pa・sであった。
 製造例5 全芳香族液晶性ポリエステル(A-5)
 撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸711重量部、6-ヒドロキシ-2-ナフトエ酸47重量部、4,4’-ジヒドロキシビフェニル335重量部、テレフタル酸299重量部および無水酢酸965重量部(フェノール性水酸基合計の1.05当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、145℃から355℃まで4時間で昇温させた。その後、重合温度を355℃に保持し、1.0時間で1.0mmHg(133Pa)に減圧し、更に反応を続け、撹拌に要するトルクが20kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズして全芳香族液晶性ポリエステル(A-5)を得た。
 この全芳香族液晶性ポリエステル(A-5)について組成分析を行ったところ、p-ヒドロキシ安息香酸由来の構造単位の割合が57.2モル%、6-オキシ-2-ナフタレート由来の構造単位の割合が2.8モル%、4,4’-ジヒドロキシビフェニル由来の構造単位の割合が20モル%、テレフタル酸由来の構造単位の割合が20モル%であった。ヒドロキシ安息香酸由来の構造単位とテレフタル酸由来の構造単位の合計は全芳香族液晶性ポリエステルの全構造単位100モル%に対して、77.2モル%であった。また、Tmは336℃、溶融粘度は27Pa・sであった。
 製造例6 液晶性ポリエステル(A-6)
 撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸994重量部、4,4’-ジヒドロキシビフェニル126重量部、テレフタル酸112重量部、固有粘度が約0.6dl/gのポリエチレンテレフタレート216重量部および無水酢酸960重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、145℃から320℃まで4時間で昇温させた。その後、重合温度を320℃に保持し、1.0時間で1.0mmHg(133Pa)に減圧し、更に反応を続け、撹拌に要するトルクが20kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズして液晶性ポリエステル(A-6)を得た。
 この液晶性ポリエステル(A-6)について組成分析を行ったところ、p-ヒドロキシ安息香酸由来の構造単位の割合が66.7モル%、4,4’-ジヒドロキシビフェニル由来の構造単位の割合が6.3モル%、ポリエチレンテレフタレート由来のエチレンジオキシ単位の割合が10.4モル%、テレフタル酸由来の構造単位の割合が16.7モル%であった。また、Tmは313℃、溶融粘度は13Pa・sであった。
 各実施例および比較例に用いた金属系添加剤(B)を次に示す。
(B-1):酸化銅(II)(和光純薬工業(株)製、平均粒子径3μm)
(B-2):銀コートガラスビーズ ES-6000-S7(ポッターズ・バロティーニ(株)製、表面に銀コーティングされた平均粒子径6μmのガラスビーズ)
(B-3):スズ(和光純薬工業(株)製、平均粒子径75μm)
(B-4):ニッケル(和光純薬工業(株)製、平均粒子径150μm)
(B-5):四酸化三鉄(関東化学(株)製、平均粒子径3μm)
(B-6):銅クロム酸化物 Black3702(アサヒ化成工業(株)製、平均粒子径0.6μm)。
 各実施例および比較例に用いた充填材(C)を次に示す。
(C-1):ガラスミルドファイバー EPDE-40M-10A(日本電気硝子(株)製、モース硬度6.5)
(C-2):タルク NK64(富士タルク工業(株)製、モース硬度1)
(C-3):マイカ AB-25S((株)ヤマグチマイカ製、モース硬度2.8)
(C-4):マイカ A-41((株)ヤマグチマイカ製、モース硬度2.8)
(C-5):ガラスフレーク REFG-112(日本板硝子(株)製、モース硬度6.5)。
 各実施例および比較例に用いた長鎖脂肪酸化合物(D)を次に示す。
(D-1):ステアリン酸リチウム Li-St(勝田化工(株)製)
(D-2):ペンタエリスリトールテトラステアレート LOXIOL VPG861(コグニスジャパン(株)製)。
 実施例1~26、比較例1~8
 サイドフィーダーを備えた東芝機械(株)製TEM35B型2軸押出機で、各製造例で得られた全芳香族液晶性ポリエステル(A-1)~(A-6)と、全芳香族液晶性ポリエステル100重量部に対し、表1、2に示す配合量で、金属系添加剤(B-1)~(B-6)、長鎖脂肪酸化合物(D-1)、(D-2)を元込めフィーダーから投入し、全芳香族液晶性ポリエステル100重量部に対し、表1、2に示す配合量で、充填材(C-1)~(C-5)をサイドフィーダーから投入し、シリンダー温度を全芳香族液晶性ポリエステル(A)の融点+10℃に設定し、溶融混練してペレットとした。得られた液晶性ポリエステル樹脂組成物のペレットを熱風乾燥後を用いて150℃で3時間乾燥した後、以下(1)~(6)の評価を行った。結果は表1、2に示す。
 (1)金属部形成性の評価
 各実施例および比較例により得られた液晶性ポリエステル樹脂組成物を、ファナックα30C射出成形機(ファナック(株)製、スクリュー径28mm)に供し、シリンダー温度を全芳香族液晶性ポリエステルの融点+20℃、金型温度を90℃として、70mm×70mm×1mm厚の角形成形品を成形した。得られた成形品表面に、パナソニック(株)製LP-V10U FAYbレーザー装置を用い、波長1,064nm、周波数50Hzで、レーザー出力を1.2、2.4、3.6、4.8、6.0、7.2W、走査速度を1,000、2,000、3,000、4,000、5,000、6,000mm/sと変えて、それぞれ5mm×5mmの範囲にレーザー照射を行った。その成形品に無電解銅めっき処理を実施し、その後、レーザー照射条件の異なる36カ所のレーザー照射部のうち、銅めっきが形成された数を求めた。銅めっき形成個数(金属部形成個数)が多いほど、成形品への金属部の形成性に優れると評価した。
 (2)温度変化時の金属部密着性の評価
 各実施例、比較例および参考例により得られた液晶性ポリエステル樹脂組成物を、ファナックα30C射出成形機(ファナック(株)製、スクリュー径28mm)に供し、シリンダー温度を全芳香族液晶性ポリエステルの融点+20℃、金型温度を90℃として、70mm×70mm×1mm厚の角形成形品を成形した。得られた成形品表面へのレーザー照射、めっき処理、ヒートショック試験を、条件を変えて実施した。条件(1)として、得られた成形品表面に、パナソニック(株)製LP-V10U FAYbレーザー装置を用い、波長1064nm、周波数50Hz、レーザー出力を6.0W、走査速度を3,000mm/sの条件でレーザー照射を行い、その成形品に6μm厚の無電解銅めっき処理を実施した。その後、冷熱衝撃器(エスペック(株)製TSA-70L)にて、室温から5分で-40℃まで降温させ30分保持、その後5分で125℃まで昇温し30分保持する試験条件でヒートショック試験を行った。条件(2)として、得られた成形品表面に、上記レーザー装置を用い、波長1,064nm、周波数50Hz、レーザー出力5.0W、走査速度3,000mm/sの条件でレーザー照射を行い、その成形品に6μm厚の無電解銅めっき処理を実施した。その後、上記冷熱衝撃装置にて、室温から5分で-40℃まで降温させ30分保持、その後5分で150℃まで昇温し30分保持を1サイクルとして10回繰り返す試験条件で冷熱処理を行った。条件(1)、(2)で得られたヒートショック処理成形品のめっき表面を、市販の「NTカッター」(登録商標)(エヌティー(株)製、幅9mm、35°傾斜の刃)を用いて、1mm間隔のマス目が100個出来るよう、樹脂成形品に達する深さで切り傷を入れた。マス目にテープ(粘着力3.4~3.9N/cmのニチバン(株)製「セロテープ」(登録商標)、幅18mm)を十分に密着させ、テープの両端を持ち垂直方向に瞬間的に引き剥がし、めっき処理面が剥離せずに残ったマス目の数を測定した。また成形品表面にめっきが形成されなかったものは「×」とした。めっき処理面が剥離せずに残ったマス目の数(めっき処理面残存数)が多いほど、ヒートショック時の金属部の密着性に優れると評価した。
 (3)成形品の表面硬度の評価
 各実施例および比較例により得られた液晶性ポリエステル樹脂組成物を、ファナックα30C射出成形機(ファナック(株)製、スクリュー径28mm)に供し、シリンダー温度を全芳香族液晶性ポリエステルの融点+20℃、金型温度を90℃として、70mm×70mm×1mm厚の角形成形品を成形した。得られた成形品を用い、ASTM D785に従い、硬度計(松沢精機(株)製、DRH-FA)により、Rスケールのロックウェル硬さを評価した。得られた数値が大きいほど、成形品の表面硬度が優れると評価した。
 (4)金属系添加剤、板状充填材の平均粒子径測定
 各実施例により得られた液晶性ポリエステル樹脂組成物のペレット50gを550℃で3時間加熱することにより樹脂成分を除去し、液晶性ポリエステル樹脂組成物中の金属系添加剤および板状充填材の混合物を取り出した。得られた混合物を、ヨウ化メチレン(比重3.33)中に分散させ、回転数10,000rpmで5分間遠心分離した後、浮遊した板状充填材をデカンテーションで取り出し、沈降した金属系添加剤をろ過により取り出す。得られた金属系添加剤、板状充填材を100mg秤量し、水中に分散させ、レーザー回折/散乱式粒子径分布測定装置((株)堀場製作所製、“LA-300”)を用いて測定し、体積平均粒径を算出した。
 (5)摺動性の評価
 各実施例により得られた液晶性ポリエステル樹脂組成物を、ファナックα30C射出成形機(ファナック(株)製、スクリュー径28mm)に供し、シリンダー温度を全芳香族液晶性ポリエステルの融点+20℃、金型温度を90℃として、30mm×30mm×3.2mm厚の角形成形品を成形した。得られた成形品をスラスト摩耗試験機(鈴木式摩耗試験機)を用いて、相手材としてアルミニウム合金(5056)を用い、荷重P=5kgf/cm、速度V=20m/minの条件で角板の摩耗量を測定した。試験n数は5であり、値はその平均値であるとして測定した。摩耗量が少ないほど摺動性に優れていると評価した。
 (6)熱処理時の形状保持性の評価
 各実施例により得られた液晶性ポリエステル樹脂組成物を、ファナックα30C射出成形機(ファナック(株)製、スクリュー径28mm)に供し、シリンダー温度を全芳香族液晶性ポリエステルの融点+20℃、金型温度を90℃として、70mm×70mm×1mm厚の角形成形品を成形した。得られた試験片を200℃で1時間熱処理した後に変形量を測定した。なお変形量は、水平な定盤の上に静置して、万能投影機(V-16A((株)ニコン製))を用いて、角板の四辺のいずれか1カ所を押さえた状態での、対角の水平定盤に対する浮き上がり量として測定した。浮き上がり量小さく測定できない場合は0.5mm以下とした。変形量が小さいほど、熱処理時の形状保持性に優れると評価した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1の結果から、本発明の実施形態の液晶性ポリエステル樹脂組成物は、成形品表面への金属部形成性に優れ、また温度変化時の成形品の金属部の密着性、成形品の表面硬度に優れていることがわかる。また、表2の結果から、本発明の実施形態の液晶性ポリエステル樹脂組成物は、充填材として特定のモース硬度を有する板状充填材を用いることで、温度変化時の成形品の金属部の密着性に加え、成形品の摺動性、熱処理時の成形品の形状保持性に優れていることがわかる。そのため、特に表面に金属部を有する電気・電子部品用途への使用に適しているといえる。
 本発明の液晶性ポリエステル樹脂組成物は、成形品の金属部の形成性に優れ、また温度変化時の成形品の金属部の密着性、成形品の表面硬度に優れているため、電気・電子部品などに有用である。

Claims (10)

  1. 全芳香族液晶性ポリエステル(A)100重量部に対して金属系添加剤(B)を3~25重量部含む液晶性ポリエステル樹脂組成物であって、前記全芳香族液晶性ポリエステル(A)が、前記全芳香族液晶性ポリエステルの全構造単位100モル%に対する、ヒドロキシ安息香酸に由来する構造単位とテレフタル酸に由来する構造単位との合計が60~77モル%であり、前記金属系添加剤(B)が銅、スズ、コバルト、ニッケル、または銀のいずれか1種から選ばれる金属または当該金属を含む化合物からなる液晶性ポリエステル樹脂組成物。
  2. 前記金属系添加剤(B)の平均粒子径が1μmより大きい請求項1に記載の液晶性ポリエステル樹脂組成物。
  3. 前記全芳香族液晶性ポリエステル(A)が、ハイドロキノンに由来する構造単位を含む請求項1または2に記載の液晶性ポリステル樹脂組成物。
  4. 前記全芳香族液晶性ポリエステル(A)100重量部に対して、充填材(C)を10~200重量部含む請求項1~3のいずれかに記載の液晶性ポリエステル樹脂組成物。
  5. 前記充填材(C)が、モース硬度2.0~7.0の板状充填材である請求項1~4のいずれかに記載の液晶性ポリエステル樹脂組成物。
  6. 前記充填材(C)の平均粒子径が、前記金属系添加剤(B)の平均粒子径の0.1~20倍である請求項1~5のいずれかに記載の液晶性ポリエステル樹脂組成物。
  7. 前記全芳香族液晶性ポリエステル(A)100重量部に対して、長鎖脂肪酸の金属塩および/または長鎖脂肪酸のエステルである長鎖脂肪酸化合物(D)を0.01~1重量部含む請求項1~6のいずれかに記載の液晶性ポリエステル樹脂組成物。
  8. 請求項1~7のいずれか1項に記載の液晶性ポリエステル樹脂組成物からなる成形品。
  9. 表面に金属部を有する請求項6に記載の成形品。
  10. 請求項8に記載の成形品へのレーザー照射によるパターン描画工程とめっき処理による金属化工程とを含む、表面に金属部を有する成形品の製造方法。
PCT/JP2017/033849 2016-09-26 2017-09-20 液晶性ポリエステル樹脂組成物、成形品および成形品の製造方法 WO2018056294A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780057305.8A CN109790361B (zh) 2016-09-26 2017-09-20 液晶性聚酯树脂组合物、成型品及成型品的制造方法
JP2017552101A JP6315152B1 (ja) 2016-09-26 2017-09-20 液晶性ポリエステル樹脂組成物、成形品および成形品の製造方法
KR1020197004590A KR102244483B1 (ko) 2016-09-26 2017-09-20 액정성 폴리에스테르 수지 조성물, 성형품 및 성형품의 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016186633 2016-09-26
JP2016-186633 2016-09-26
JP2017125717 2017-06-28
JP2017-125717 2017-06-28

Publications (1)

Publication Number Publication Date
WO2018056294A1 true WO2018056294A1 (ja) 2018-03-29

Family

ID=61690365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033849 WO2018056294A1 (ja) 2016-09-26 2017-09-20 液晶性ポリエステル樹脂組成物、成形品および成形品の製造方法

Country Status (5)

Country Link
JP (1) JP6315152B1 (ja)
KR (1) KR102244483B1 (ja)
CN (1) CN109790361B (ja)
TW (1) TWI786063B (ja)
WO (1) WO2018056294A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110145200A (zh) * 2019-05-20 2019-08-20 宁波多泰自动门有限公司 一种皮带式家用门自动机组
JP2020015886A (ja) * 2018-07-24 2020-01-30 佳勝科技股▲ふん▼有限公司 回路板構造及び絶縁基板を形成するための組成物
WO2020039878A1 (ja) * 2018-08-22 2020-02-27 東レ株式会社 積層体用液晶ポリエステル樹脂、液晶ポリエステル樹脂組成物、積層体および液晶ポリエステル樹脂フィルム
US10743423B2 (en) 2017-09-15 2020-08-11 Azotek Co., Ltd. Manufacturing method of composite substrate
US10813213B2 (en) 2017-02-16 2020-10-20 Azotek Co., Ltd. High-frequency composite substrate and insulating structure thereof
US11044802B2 (en) 2017-02-16 2021-06-22 Azotek Co., Ltd. Circuit board
CN113767134A (zh) * 2019-04-03 2021-12-07 宝理塑料株式会社 全芳香族聚酯和聚酯树脂组合物
US11225563B2 (en) 2017-02-16 2022-01-18 Azotek Co., Ltd. Circuit board structure and composite for forming insulating substrates
US11258184B2 (en) 2019-08-21 2022-02-22 Ticona Llc Antenna system including a polymer composition having a low dissipation factor
US11555113B2 (en) 2019-09-10 2023-01-17 Ticona Llc Liquid crystalline polymer composition
JP2023007326A (ja) * 2021-06-30 2023-01-18 南亞塑膠工業股▲分▼有限公司 抗菌・防カビのポリエステル材料
US11637365B2 (en) 2019-08-21 2023-04-25 Ticona Llc Polymer composition for use in an antenna system
US11646760B2 (en) 2019-09-23 2023-05-09 Ticona Llc RF filter for use at 5G frequencies
US11721888B2 (en) 2019-11-11 2023-08-08 Ticona Llc Antenna cover including a polymer composition having a low dielectric constant and dissipation factor
US11729908B2 (en) 2020-02-26 2023-08-15 Ticona Llc Circuit structure
US11728559B2 (en) 2021-02-18 2023-08-15 Ticona Llc Polymer composition for use in an antenna system
WO2023199854A1 (ja) * 2022-04-11 2023-10-19 東レ株式会社 液晶ポリエステル樹脂、液晶ポリエステル樹脂組成物およびそれからなる成形品
US11917753B2 (en) 2019-09-23 2024-02-27 Ticona Llc Circuit board for use at 5G frequencies
US11912817B2 (en) 2019-09-10 2024-02-27 Ticona Llc Polymer composition for laser direct structuring
US11968980B2 (en) 2021-06-30 2024-04-30 Nan Ya Plastics Corporation Antibacterial and antifungal polyester material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113015765B (zh) * 2018-11-15 2022-04-26 宝理塑料株式会社 液晶性树脂组合物、及包含该液晶性树脂组合物的成形品的连接器
KR102104753B1 (ko) * 2019-07-31 2020-04-24 세양폴리머주식회사 고주파영역에서 저유전 특성을 갖는 레이저 직접 구조화 가능한 중합체 조성물.
KR102104752B1 (ko) * 2019-07-31 2020-04-24 세양폴리머주식회사 고주파영역에서 저유전 특성을 갖는 방향족 액정 폴리에스테르 수지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08176287A (ja) * 1994-12-26 1996-07-09 Toray Ind Inc 液晶性樹脂、その製造方法および液晶性樹脂組成物
JP2002294039A (ja) * 2001-03-28 2002-10-09 Toray Ind Inc 液晶性樹脂組成物
JP2006089714A (ja) * 2004-06-22 2006-04-06 Toray Ind Inc 液晶性樹脂、その製造方法、液晶性樹脂組成物および成形品
JP2008111010A (ja) * 2006-10-30 2008-05-15 Sumitomo Chemical Co Ltd 液晶ポリエステル樹脂組成物及び電磁波シールド用部材
JP2011208014A (ja) * 2010-03-30 2011-10-20 Sumitomo Chemical Co Ltd 液晶ポリエステル組成物及びその成形体

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3493703B2 (ja) * 1994-01-25 2004-02-03 松下電工株式会社 回路板の形成方法
JP2002020513A (ja) 2000-07-06 2002-01-23 Toray Ind Inc エッチング方法
CN101379893A (zh) * 2005-12-30 2009-03-04 E.I.内穆尔杜邦公司 用于电子电路型应用的基板
CN101859613B (zh) * 2009-04-09 2013-03-27 深圳市微航磁电技术有限公司 立体电路制造工艺
JP2010267652A (ja) * 2009-05-12 2010-11-25 Hitachi Cable Ltd プリント配線板およびその製造方法
JP5486889B2 (ja) * 2009-09-28 2014-05-07 Jx日鉱日石エネルギー株式会社 液晶ポリエステル樹脂組成物
JP5136720B2 (ja) * 2011-04-06 2013-02-06 東レ株式会社 液晶性ポリエステル樹脂組成物およびそれを用いた金属複合成形品
KR101773204B1 (ko) * 2011-10-31 2017-09-01 심천 워트 어드밴스드 머티리얼즈 주식회사 대전방지 특성을 갖는 전방향족 액정 폴리에스테르 수지 컴파운드 및 물품
US9074070B2 (en) 2011-10-31 2015-07-07 Ticona Llc Thermoplastic composition for use in forming a laser direct structured substrate
KR101427558B1 (ko) * 2011-12-27 2014-08-06 도레이 카부시키가이샤 열가소성 수지 조성물 및 그 성형품
JP2013185225A (ja) * 2012-03-09 2013-09-19 National Institute Of Advanced Industrial Science & Technology 無電解めっき方法、及びこの方法によって形成した無電解めっき層を有する構造体
EP2711399B1 (en) 2012-03-23 2014-12-31 Mitsubishi Engineering-Plastics Corporation Thermoplastic resin composition, resin article, and method of manufacturing resin article with plated layer
JP5924527B2 (ja) * 2012-03-29 2016-05-25 住友化学株式会社 液晶ポリエステル組成物、液晶ポリエステル成形体及び液晶ポリエステル組成物を用いたコネクター
CN102817018A (zh) * 2012-09-13 2012-12-12 格林精密部件(惠州)有限公司 外壳激光成型装饰加工方法及制作设备
CN103694719B (zh) * 2012-09-27 2016-03-30 金发科技股份有限公司 一种可选择性沉积金属的树脂组合物及其制备方法与应用
DE102013100016A1 (de) 2013-01-02 2014-07-03 Lpkf Laser & Electronics Ag Verfahren zur Herstellung einer elektrisch leitfähigen Struktur auf einem nichtleitenden Trägermaterial sowie ein hierzu bestimmtes Additiv und Trägermaterial
WO2014197659A1 (en) * 2013-06-07 2014-12-11 Ticona Llc High strength thermotropic liquid crystalline polymer
JP6147107B2 (ja) 2013-06-11 2017-06-14 三菱エンジニアリングプラスチックス株式会社 熱可塑性樹脂組成物、樹脂成形品、及びメッキ層付樹脂成形品の製造方法
JP5710826B2 (ja) 2013-07-09 2015-04-30 三菱エンジニアリングプラスチックス株式会社 樹脂組成物、樹脂成形品、樹脂成形品の製造方法およびレーザーダイレクトストラクチャリング添加剤
JP5847907B2 (ja) 2013-10-24 2016-01-27 三菱エンジニアリングプラスチックス株式会社 樹脂組成物、樹脂成形品、および樹脂成形品の製造方法
CN103700597A (zh) * 2013-12-27 2014-04-02 苏州市奥普斯等离子体科技有限公司 模塑互联器件的制备方法
WO2016003588A1 (en) 2014-07-01 2016-01-07 Ticona Llc Laser activatable polymer composition
CN105837803B (zh) * 2016-02-01 2017-05-31 金发科技股份有限公司 一种液晶聚酯以及由其组成的模塑组合物和其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08176287A (ja) * 1994-12-26 1996-07-09 Toray Ind Inc 液晶性樹脂、その製造方法および液晶性樹脂組成物
JP2002294039A (ja) * 2001-03-28 2002-10-09 Toray Ind Inc 液晶性樹脂組成物
JP2006089714A (ja) * 2004-06-22 2006-04-06 Toray Ind Inc 液晶性樹脂、その製造方法、液晶性樹脂組成物および成形品
JP2008111010A (ja) * 2006-10-30 2008-05-15 Sumitomo Chemical Co Ltd 液晶ポリエステル樹脂組成物及び電磁波シールド用部材
JP2011208014A (ja) * 2010-03-30 2011-10-20 Sumitomo Chemical Co Ltd 液晶ポリエステル組成物及びその成形体

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10813213B2 (en) 2017-02-16 2020-10-20 Azotek Co., Ltd. High-frequency composite substrate and insulating structure thereof
US11225563B2 (en) 2017-02-16 2022-01-18 Azotek Co., Ltd. Circuit board structure and composite for forming insulating substrates
US11044802B2 (en) 2017-02-16 2021-06-22 Azotek Co., Ltd. Circuit board
US10743423B2 (en) 2017-09-15 2020-08-11 Azotek Co., Ltd. Manufacturing method of composite substrate
JP7243953B2 (ja) 2018-07-24 2023-03-22 佳勝科技股▲ふん▼有限公司 回路板構造及び絶縁基板を形成するための組成物
JP2020015886A (ja) * 2018-07-24 2020-01-30 佳勝科技股▲ふん▼有限公司 回路板構造及び絶縁基板を形成するための組成物
WO2020039878A1 (ja) * 2018-08-22 2020-02-27 東レ株式会社 積層体用液晶ポリエステル樹脂、液晶ポリエステル樹脂組成物、積層体および液晶ポリエステル樹脂フィルム
US11802178B2 (en) 2018-08-22 2023-10-31 Toray Industries, Inc. Liquid crystal polyester resin for laminate, liquid crystal polyester resin composition, laminate, and liquid crystal polyester resin film
CN112533975A (zh) * 2018-08-22 2021-03-19 东丽株式会社 叠层体用液晶聚酯树脂、液晶聚酯树脂组合物、叠层体及液晶聚酯树脂膜
CN113767134A (zh) * 2019-04-03 2021-12-07 宝理塑料株式会社 全芳香族聚酯和聚酯树脂组合物
CN113767134B (zh) * 2019-04-03 2024-02-09 宝理塑料株式会社 全芳香族聚酯和聚酯树脂组合物
CN110145200A (zh) * 2019-05-20 2019-08-20 宁波多泰自动门有限公司 一种皮带式家用门自动机组
US11705641B2 (en) 2019-08-21 2023-07-18 Ticoan Llc Antenna system including a polymer composition having a low dissipation factor
US11637365B2 (en) 2019-08-21 2023-04-25 Ticona Llc Polymer composition for use in an antenna system
US11258184B2 (en) 2019-08-21 2022-02-22 Ticona Llc Antenna system including a polymer composition having a low dissipation factor
US11555113B2 (en) 2019-09-10 2023-01-17 Ticona Llc Liquid crystalline polymer composition
US11912817B2 (en) 2019-09-10 2024-02-27 Ticona Llc Polymer composition for laser direct structuring
US11646760B2 (en) 2019-09-23 2023-05-09 Ticona Llc RF filter for use at 5G frequencies
US11917753B2 (en) 2019-09-23 2024-02-27 Ticona Llc Circuit board for use at 5G frequencies
US11721888B2 (en) 2019-11-11 2023-08-08 Ticona Llc Antenna cover including a polymer composition having a low dielectric constant and dissipation factor
US11729908B2 (en) 2020-02-26 2023-08-15 Ticona Llc Circuit structure
US11728559B2 (en) 2021-02-18 2023-08-15 Ticona Llc Polymer composition for use in an antenna system
JP7414788B2 (ja) 2021-06-30 2024-01-16 南亞塑膠工業股▲分▼有限公司 抗菌・防カビのポリエステル材料
JP2023007326A (ja) * 2021-06-30 2023-01-18 南亞塑膠工業股▲分▼有限公司 抗菌・防カビのポリエステル材料
US11968980B2 (en) 2021-06-30 2024-04-30 Nan Ya Plastics Corporation Antibacterial and antifungal polyester material
WO2023199854A1 (ja) * 2022-04-11 2023-10-19 東レ株式会社 液晶ポリエステル樹脂、液晶ポリエステル樹脂組成物およびそれからなる成形品

Also Published As

Publication number Publication date
JPWO2018056294A1 (ja) 2018-09-20
JP6315152B1 (ja) 2018-04-25
CN109790361B (zh) 2021-10-01
TWI786063B (zh) 2022-12-11
TW201817788A (zh) 2018-05-16
KR102244483B1 (ko) 2021-04-23
CN109790361A (zh) 2019-05-21
KR20190055792A (ko) 2019-05-23

Similar Documents

Publication Publication Date Title
JP6315152B1 (ja) 液晶性ポリエステル樹脂組成物、成形品および成形品の製造方法
JP6841220B2 (ja) 液晶性ポリエステル樹脂組成物、成形品および成形品の製造方法
JP5560714B2 (ja) 液晶性ポリエステルおよびその製造方法
US9045621B2 (en) Liquid crystalline polyester composition and metal composite molded product using the same
KR101305878B1 (ko) 액정성 폴리에스테르 수지 조성물 및 그 제조 방법과 그로부터 이루어진 성형품
JP7159693B2 (ja) 液晶性ポリエステル樹脂組成物およびそれからなる成形品
US9085672B2 (en) Liquid crystalline polyester composition and metal composite molded product using the same
JP2009030015A (ja) 液晶性ポリエステル組成物
JP2007146123A (ja) 熱可塑性樹脂組成物およびその製造方法
JP5262138B2 (ja) 液晶性樹脂組成物およびその製造方法
JPH06172619A (ja) 液晶性樹脂組成物
JP2015063641A (ja) 液晶性ポリエステル樹脂組成物およびそれからなる成形品
JP2010174114A (ja) 液晶性樹脂組成物
JP6206174B2 (ja) 液晶性ポリエステル樹脂組成物およびその成形品
JP5182240B2 (ja) 液晶性ポリエステルおよびその製造方法、組成物、成形品
JP6255978B2 (ja) 液晶性ポリエステル樹脂組成物およびそれを用いた金属複合成形品
JP2009249536A (ja) 液晶性樹脂射出成形材料およびその製造方法
JP7290084B2 (ja) 熱可塑性ポリエステル樹脂組成物、成形品および成形品の製造方法
JP2016088985A (ja) 液晶性ポリエステル樹脂組成物およびその成形品
WO2022191099A1 (ja) 液晶性樹脂組成物およびそれからなる成形品
JPH11349794A (ja) 液晶性樹脂組成物およびその成形品
JP2011132282A (ja) 液晶性ポリエステル組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017552101

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17853064

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197004590

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17853064

Country of ref document: EP

Kind code of ref document: A1