WO2023199854A1 - 液晶ポリエステル樹脂、液晶ポリエステル樹脂組成物およびそれからなる成形品 - Google Patents

液晶ポリエステル樹脂、液晶ポリエステル樹脂組成物およびそれからなる成形品 Download PDF

Info

Publication number
WO2023199854A1
WO2023199854A1 PCT/JP2023/014353 JP2023014353W WO2023199854A1 WO 2023199854 A1 WO2023199854 A1 WO 2023199854A1 JP 2023014353 W JP2023014353 W JP 2023014353W WO 2023199854 A1 WO2023199854 A1 WO 2023199854A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
polyester resin
crystal polyester
mol
structural units
Prior art date
Application number
PCT/JP2023/014353
Other languages
English (en)
French (fr)
Inventor
純樹 田邉
彬人 小西
裕史 中川
秀之 梅津
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2023531579A priority Critical patent/JPWO2023199854A1/ja
Publication of WO2023199854A1 publication Critical patent/WO2023199854A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a liquid crystal polyester resin, a liquid crystal polyester resin composition, and a molded article made from the same.
  • Liquid crystal polyester resin has excellent heat resistance, fluidity, and dimensional stability, so it is used in electrical and electronic parts that require these properties.
  • Liquid crystal polyester resin has excellent heat resistance, fluidity, and dimensional stability, so it is used in electrical and electronic parts that require these properties.
  • liquid crystal polyester resins containing structural units derived from p-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, 4,4'-dihydroxybiphenyl, hydroquinone, and terephthalic acid for example, Patent Documents 1 to 4
  • Liquid crystal polyester resin containing structural units derived from p-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, 4,4'-dihydroxybiphenyl, terephthalic acid and isophthalic acid for example, Patent Document 5
  • p-hydroxybenzoic acid A liquid crystal polyester resin containing structural units derived from acid, 6-hydroxy-2-naphthoic acid, hydroquinone, terephthalic acid, and isophthalic acid (for example, Patent Document 6) has excellent flowability, high strength and durability.
  • liquid crystal polyester resins containing structural units derived from p-hydroxybenzoic acid, 4,4'-dihydroxybiphenyl, hydroquinone, terephthalic acid, and isophthalic acid have improved rigidity and retention stability. It is proposed to achieve both.
  • An object of the present invention is to provide a liquid crystal polyester resin, a liquid crystal polyester resin composition, and a molded product made from the same, which can be molded at a wide range of molding temperatures, has excellent molding stability, and has low thickness dependence of fluidity. .
  • the structural units derived from aromatic hydroxycarboxylic acids are 15 to 80 mol% based on 100 mol% of the total structural units of the liquid crystal polyester resin.
  • a liquid crystal polyester resin containing 2 to 40 mol% of structural units derived from aromatic diols and 2 to 40 mol% of structural units derived from aromatic dicarboxylic acids, the temperature sensitivity coefficient and solidification start temperature described below are controlled.
  • the inventors have discovered that the liquid crystalline polyester resin can be molded at a wide range of molding temperatures, has excellent molding stability, and has low dependence of fluidity on thickness, and has thus arrived at the present invention.
  • the present invention is as follows: (1) A liquid crystal polyester resin containing a structural unit derived from an aromatic hydroxycarboxylic acid, a structural unit derived from an aromatic diol, and a structural unit derived from an aromatic dicarboxylic acid, the total structural units of the liquid crystal polyester resin being 100 moles %, the content of structural units derived from aromatic hydroxycarboxylic acids is 15 to 80 mol%, the content of structural units derived from aromatic diols is 2 to 40 mol%, and the structural units derived from aromatic dicarboxylic acids.
  • Tm melting point
  • the absolute value of the slope of the straight line w connecting points A and B is defined as a temperature sensitivity coefficient, and the value of ⁇ T at point B is defined as B(x). ;
  • the above rheometer spectrum curve shows the complex viscosity of 50000 (Pa ⁇ s) after being held at a temperature of Tm + 30°C for 5 minutes in the vibration measurement mode of the rheometer with a parallel plate gap of 1 mm, strain of 10%, and frequency of 1 Hz.
  • the melting point Tm of the above-mentioned liquid crystal polyester resin is determined by the temperature of Tm 1 +20°C after the endothermic peak temperature Tm 1 observed when the liquid crystal polyester resin is heated from room temperature at a temperature increase of 20°C/min in differential calorimetry. This is the endothermic peak temperature observed when the temperature is maintained for 5 minutes, then cooled down to room temperature at a rate of 20° C./min, and then heated again at a rate of 20° C./min.
  • the liquid crystal polyester resin according to claim 1 which is a liquid crystal polyester resin containing a structural unit selected from the following structural units (I) to (V), and which satisfies the following requirements (a) to (d): 25 ⁇ [I] ⁇ 75...(a) 1 ⁇ [II] ⁇ 20...(b) 2 ⁇ [III]+[IV] ⁇ 35...(c) 2 ⁇ [V] ⁇ 35...(d) [I] to [V] indicate the content (mol %) of each of the following structural units (I) to (V) based on 100 mol % of all structural units of the liquid crystal polyester resin.
  • the liquid crystal polyester resin according to claim 1 or 2 which is a liquid crystal polyester resin containing the following structural units (II) and (VI), and which satisfies the following requirements (e) and (f): 0.01 ⁇ [VI] ⁇ 10...(e) [VI]/[II] ⁇ 1...(f) [II] and [VI] indicate the content (mol %) of each of the following structural units (II) and (VI) based on 100 mol % of all structural units of the liquid crystal polyester resin.
  • Polyester resin: 25 ⁇ [I] ⁇ 75...(g) 1 ⁇ [II] ⁇ 20...(h) 2 ⁇ [III]+[IV] ⁇ 35...(i) 2 ⁇ [V] ⁇ 35...(j) 0.01 ⁇ [VI] ⁇ 10...(k) [VI]/[II] ⁇ 1...(l) [I] to [VI] indicate the content (mol %) of each of the following structural units (I) to (VI) based on 100 mol % of all structural units of the liquid crystal polyester resin.
  • liquid crystal polyester resin according to any one of claims 1 to 4, which further satisfies the following requirement (m): 0 ⁇ [III]/[IV] ⁇ 1.5...(m) [III] and [IV] indicate the content (mol %) of each of the structural units (III) and (IV) based on 100 mol % of all structural units of the liquid crystal polyester resin.
  • the liquid crystal polyester resin of the present invention can be molded at a wide range of molding temperatures, has excellent molding stability, and has low thickness dependence of fluidity.
  • the liquid crystal polyester resin of the present invention can be suitably used especially when molding small electric/electronic parts.
  • Liquid crystal polyester resins are polyesters that form an anisotropic melt phase.
  • polyester resins include polyesters constituted by structural units selected from among oxycarbonyl units, dioxy units, dicarbonyl units, etc. described below so as to form an anisotropic melt phase.
  • the temperature sensitivity coefficient of the liquid crystal polyester resin obtained from the rheometer spectrum curve satisfies the following requirement ( ⁇ ).
  • The temperature sensitivity coefficient measured as follows is 0.020 or less, and B(x) is -35 to -15°C; How to obtain the above temperature sensitivity coefficient and B(x) will be explained based on FIG. 1.
  • the above rheometer spectrum curve shows the complex viscosity of 50000 (Pa ⁇ s) after being held at a temperature of Tm + 30°C for 5 minutes in the vibration measurement mode of the rheometer with a parallel plate gap of 1 mm, strain of 10%, and frequency of 1 Hz. This is a curve obtained while decreasing the temperature at a rate of 0.17°C/sec to a temperature of .
  • the melting point Tm of the above-mentioned liquid crystal polyester resin is determined by the temperature of Tm 1 +20°C after the endothermic peak temperature Tm 1 observed when the liquid crystal polyester resin is heated from room temperature at a temperature increase of 20°C/min in differential calorimetry. This is the endothermic peak temperature observed when the temperature is maintained for 5 minutes, then cooled down to room temperature at a rate of 20° C./min, and then heated again at a rate of 20° C./min.
  • Rheometer measurement is a method for evaluating rheological properties (flow properties), which is one of the important properties of resin.
  • the temperature sensitivity coefficient is a coefficient obtained from the rheometer spectrum as described above, and is a value defined by the absolute value of the slope of the straight line w connecting points A and B.
  • the temperature sensitivity coefficient indicates the magnitude of change in dynamic viscosity (complex viscosity) of the liquid crystal polyester resin with respect to temperature under shear conditions. The lower the temperature sensitivity coefficient, the less likely the fluid characteristics of the liquid crystal polyester resin to change due to external factors such as temperature and shear.
  • a liquid crystal polyester resin having a temperature sensitivity coefficient of 0.020 or less can be molded at a wide range of molding temperatures, has excellent molding stability, and has low dependence of fluidity on thickness.
  • the temperature sensitivity coefficient is larger than 0.020, it becomes difficult to control the behavior of the liquid crystal polyester resin from melting to solidification, the moldable temperature range becomes narrower, and the dependence of fluidity on thickness becomes greater.
  • the fluidity of liquid crystal polyester resins with a temperature sensitivity coefficient higher than 0.020 changes due to slight differences in the temperature of each part of the molding machine, so it takes time to obtain a good product after the molding machine is stopped, and the molding becomes stable. Sexuality decreases.
  • the temperature sensitivity coefficient is preferably 0.018 or less, more preferably 0.016 or less. Note that the lower the temperature sensitivity coefficient is, the more preferable it is, and the lowest value is 0.
  • the liquid crystal polyester resin of the present invention has a ⁇ T value B(x) at point B shown in the above requirement ( ⁇ ) of -35 to -15°C.
  • B(x) is the temperature at which solidification of the liquid crystal polyester resin starts under shear conditions (hereinafter, B(x) may be referred to as the solidification start temperature). If B(x) is lower than -35°C, burrs during molding and drawling from the nozzle tip become a problem, and the temperature range in which molding is possible becomes narrower. Furthermore, when B(x) is larger than -15°C, it becomes difficult to control the solidification behavior of the liquid crystal polyester resin, the moldable temperature range becomes narrow, the molding stability is poor, and the dependence of fluidity on the thickness becomes large.
  • B(x) is preferably -30°C or higher, more preferably -28°C or higher. Further, B(x) is preferably -16°C or lower, more preferably -18°C or lower, and still more preferably -20°C or lower.
  • FIG. 2 shows an example of the rheometer spectrum curve (S1) of the liquid crystal polyester resin of the present invention and an example of the rheometer spectrum curve (S2) of the conventional liquid crystal polyester resin. Further, straight lines L1 and L2 representing the temperature sensitivity coefficient defined above are shown, respectively. As shown in FIG. 2, the absolute value of the slope of L1 is smaller than that of L2, and it can be seen that the temperature sensitivity coefficient of the liquid crystal polyester resin of the present invention is smaller than that of the conventional liquid crystal polyester resin.
  • the structural units constituting the liquid crystal polyester resin are set in the preferred ranges described below, and/or the method for manufacturing the liquid crystal polyester resin is described below.
  • Preferred methods include: Details will be described in the following structural units constituting the liquid crystal polyester resin and the "method for producing liquid crystal polyester resin" described below.
  • the liquid crystal polyester resin of the present invention includes a structural unit derived from an aromatic hydroxycarboxylic acid, a structural unit derived from an aromatic diol, and a structural unit derived from an aromatic dicarboxylic acid.
  • the liquid crystal polyester resin of the present invention contains 15 to 80 mol% of structural units derived from aromatic hydroxycarboxylic acid as oxycarbonyl units, based on 100 mol% of the total structural units of the liquid crystal polyester resin. If the content of structural units derived from aromatic hydroxycarboxylic acid is less than 15%, liquid crystallinity will be impaired and the temperature range in which molding can be performed will be narrowed. The content is preferably 20 mol% or more, more preferably 25 mol% or more. On the other hand, if the content is more than 80 mol%, it becomes difficult to control the crystallinity and melting point of the liquid crystal polyester resin, and the temperature range in which it can be molded becomes narrow.
  • the content is preferably 75 mol% or less, more preferably 70 mol% or less.
  • Specific examples of structural units derived from aromatic hydroxycarboxylic acids include those derived from p-hydroxybenzoic acid, m-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, and the like.
  • the liquid crystal polyester resin of the present invention contains 2 to 40 mol% of structural units derived from aromatic diols as dioxy units based on 100 mol% of the total structural units of the liquid crystal polyester resin. If the content of structural units derived from aromatic diols is less than 2 mol %, it becomes difficult to control the crystallinity and melting point of the liquid crystal polyester resin, and the temperature range in which it can be molded becomes narrow. The content is preferably 7 mol% or more, more preferably 10 mol% or more. On the other hand, if the content is more than 40 mol%, the liquid crystallinity will be impaired and the temperature range in which molding can be performed will be narrowed.
  • Structural units derived from aromatic diols include, for example, 4,4'-dihydroxybiphenyl, hydroquinone, resorcinol, t-butylhydroquinone, phenylhydroquinone, chlorohydroquinone, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 3,4'-dihydroxybiphenyl, 2,2-bis(4-hydroxyphenyl)propane, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxydiphenyl sulfide, 4,4 Examples include structural units derived from '-dihydroxybenzophenone and the like. It is preferable to use a structural unit derived from 4,4'-dihydroxybiphenyl or hydroquinone from the viewpoint of excellent availability and
  • the liquid crystal polyester resin of the present invention contains 2 to 40 mol% of a structural unit derived from an aromatic dicarboxylic acid as a dicarbonyl unit based on 100 mol% of the total structural units of the liquid crystal polyester resin. If the content of structural units derived from aromatic dicarboxylic acid is less than 2 mol %, it becomes difficult to control the crystallinity and melting point of the liquid crystal polyester resin, and the temperature range in which it can be molded becomes narrow. The content is preferably 7 mol% or more, more preferably 10 mol% or more. On the other hand, if the content is more than 40 mol%, the liquid crystallinity will be impaired and the temperature range in which molding can be performed will be narrowed.
  • Structural units derived from aromatic dicarboxylic acids include, for example, terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4'-diphenyldicarboxylic acid, 3,3'-diphenyldicarboxylic acid, 2,2' -diphenyldicarboxylic acid, 1,2-bis(phenoxy)ethane-4,4'-dicarboxylic acid, 1,2-bis(2-chlorophenoxy)ethane-4,4'-dicarboxylic acid, 4,4'-diphenyl ether
  • Examples include structural units derived from dicarboxylic acids and the like. It is preferable to contain a structural unit derived from terephthalic acid or isophthalic acid from the viewpoints of excellent availability and moldable temperature range.
  • the liquid crystal polyester resin of the present invention can be molded at a wide range of molding temperatures, has excellent molding stability, and has a structural unit selected from the following structural units (I) to (V) from the viewpoint of having low thickness dependence of fluidity. It is preferable that the following requirements (a) to (d) are satisfied. 25 ⁇ [I] ⁇ 75...(a) 1 ⁇ [II] ⁇ 20...(b) 2 ⁇ [III]+[IV] ⁇ 35...(c) 2 ⁇ [V] ⁇ 35...(d) [I] to [V] each indicate the content (mol %) of each structural unit (I) to (V) with respect to 100 mol % of all structural units of the liquid crystal polyester resin.
  • the liquid crystal polyester resin of the present invention preferably contains 25 mol % or more of the structural unit (I) as an oxycarbonyl unit based on 100 mol % of the total structural units of the liquid crystal polyester resin.
  • Structural unit (I) is a structural unit derived from p-hydroxybenzoic acid. From the viewpoint of being moldable at a wide range of molding temperatures, having excellent molding stability, and having low thickness dependence of fluidity, the content of the structural unit (I) is more preferably 35 mol% or more, and even more preferably 45 mol% or more. preferable.
  • the liquid crystal polyester resin of the present invention preferably contains 75 mol% or less of the structural unit (I) based on 100 mol% of the total structural units of the liquid crystal polyester resin.
  • the content of structural unit (I) is preferably 65 mol% or less, more preferably 55 mol% or less.
  • the liquid crystal polyester resin of the present invention preferably contains 1 mol % or more of the structural unit (II) as an oxycarbonyl unit based on 100 mol % of the total structural units of the liquid crystal polyester resin.
  • Structural unit (II) is a structural unit derived from 6-hydroxy-2-naphthoic acid. From the viewpoints of being moldable at a wide range of molding temperatures, excellent molding stability, and low thickness dependence of fluidity, the content of structural unit (II) is preferably 2 mol% or more, more preferably 3 mol% or more. .
  • the liquid crystal polyester resin of the present invention preferably contains 20 mol% or less of the structural unit (II) based on 100 mol% of the total structural units of the liquid crystal polyester resin.
  • the content of structural unit (II) is preferably 15 mol% or less, more preferably 10 mol% or less. .
  • the liquid crystal polyester resin of the present invention can be molded at a wide range of molding temperatures, has excellent molding stability, and has a low thickness dependence of fluidity, and has the following advantages: ([I]/[II]) is preferably 3 or more, more preferably 5 or more, and even more preferably 7 or more. On the other hand, from the viewpoint of being moldable at a wide range of molding temperatures and having low dependence of fluidity on thickness, [I]/[II] is preferably 20 or less, more preferably 18 or less, and even more preferably 16 or less.
  • oxycarbonyl unit a structural unit derived from m-hydroxybenzoic acid or the like can be used within a range that does not impair the effects of the present invention.
  • the liquid crystal polyester resin of the present invention preferably contains a structural unit (III) as a dioxy unit.
  • Structural unit (III) is a structural unit derived from 4,4'-dihydroxybiphenyl. From the viewpoints that it can be molded at a wide range of molding temperatures, has excellent molding stability, and has low thickness dependence of fluidity, the content of the structural unit (III) is The content is preferably 1 mol% or more, more preferably 3 mol% or more, and even more preferably 5 mol% or more.
  • the content of the structural unit (III) is preferably 25 mol% or less, more preferably 20 mol% or less, and 15 mol%. The following are more preferable.
  • the liquid crystal polyester resin of the present invention preferably contains a structural unit (IV) as a dioxy unit.
  • Structural unit (IV) is a structural unit derived from hydroquinone. From the viewpoints that it can be molded at a wide range of molding temperatures, has excellent molding stability, and has low thickness dependence of fluidity, the content of structural unit (IV) is The content is preferably 1 mol% or more, more preferably 4 mol% or more, and even more preferably 7 mol% or more.
  • the content of the structural unit (IV) is preferably 30 mol% or less, and 25 mol% or less from the viewpoint of being moldable at a wide range of molding temperatures, having excellent molding stability, and having low thickness dependence of fluidity. More preferably, it is 20 mol% or less.
  • the total content of structural units (III) and (IV) is preferably 2 mol% or more based on 100 mol% of all structural units of the liquid crystal polyester resin.
  • the total content of structural units (III) and (IV) is preferably 5 mol % or more, and 10 mol % from the viewpoint of being moldable at a wide range of molding temperatures, having excellent molding stability, and having low thickness dependence of fluidity. % or more is more preferable, and even more preferably 15 mol% or more.
  • the total content of structural units (III) and (IV) is preferably 35 mol% or less based on 100 mol% of all structural units of the liquid crystal polyester resin.
  • the total content of structural units (III) and (IV) is preferably 30 mol% or less, and 25 mol%. % or less is more preferable.
  • the liquid crystalline polyester resin of the present invention can be molded at a wide range of molding temperatures, has excellent molding stability, and has a low thickness dependence of fluidity, in terms of the molar ratio of the content of structural units (III) and (IV).
  • ([III]/[IV]) is preferably larger than 0, more preferably 0.3 or more, and even more preferably 0.6 or more.
  • [III]/[IV] is preferably smaller than 1.5, more preferably 1.2 or less, and 1. It is more preferably 0 or less.
  • dioxy units include resorcinol, t-butylhydroquinone, phenylhydroquinone, chlorohydroquinone, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 3,4'-dihydroxybiphenyl, 2,2-bis(4- Structural units derived from aromatic diols such as hydroxyphenyl)propane, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxydiphenyl sulfide, and 4,4'-dihydroxybenzophenone; ethylene Structural units derived from aliphatic diols such as glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, and neopentyl glycol; fats such as 1,4-cyclohexanediol and 1,4-
  • the liquid crystal polyester resin of the present invention preferably contains 2 mol % or more of the structural unit (V) as a dicarbonyl unit based on 100 mol % of the total structural units of the liquid crystal polyester resin.
  • the structural unit (V) is a structural unit derived from terephthalic acid. From the viewpoints of being moldable at a wide range of molding temperatures, excellent molding stability, and low thickness dependence of fluidity, the content of the structural unit (V) is preferably 5 mol% or more, more preferably 10 mol% or more. , more preferably 15 mol% or more.
  • the liquid crystal polyester resin of the present invention preferably contains 35 mol% or less of the structural unit (V) based on 100 mol% of the total structural units of the liquid crystal polyester resin.
  • the content of the structural unit (V) is preferably 30 mol% or less, more preferably 25 mol% or less. .
  • the liquid crystal polyester resin of the present invention contains the following structural units (II) and (VI) and satisfies the following requirements (e) and (f). 0.01 ⁇ [VI] ⁇ 10...(e) [VI]/[II] ⁇ 1...(f) [II] and [VI] respectively indicate the content (mol %) of each structural unit (II) and (VI) with respect to 100 mol % of all structural units of the liquid crystal polyester resin.
  • the liquid crystal polyester resin of the present invention preferably contains 0.01 mol % or more of the structural unit (VI) as a dicarbonyl unit based on 100 mol % of the total structural units of the liquid crystal polyester resin.
  • Structural unit (VI) is a structural unit derived from isophthalic acid. From the viewpoints of being moldable at a wide range of molding temperatures, excellent molding stability, and low thickness dependence of fluidity, the content of the structural unit (VI) is preferably 0.05 mol% or more, and 0.1 mol%. The above is more preferable.
  • the liquid crystal polyester resin of the present invention preferably contains 10 mol% or less of the structural unit (VI) based on 100 mol% of the total structural units of the liquid crystal polyester resin.
  • the content of the structural unit (VI) is preferably 7 mol% or less, more preferably 4 mol% or less.
  • dicarbonyl units 2,6-naphthalenedicarboxylic acid, 4,4'-diphenyldicarboxylic acid, 3,3'-diphenyldicarboxylic acid, 2,2'-diphenyldicarboxylic acid, 1,2-bis(phenoxy ) Structures derived from aromatic dicarboxylic acids such as ethane-4,4'-dicarboxylic acid, 1,2-bis(2-chlorophenoxy)ethane-4,4'-dicarboxylic acid, and 4,4'-diphenyl ether dicarboxylic acid.
  • aromatic dicarboxylic acids such as ethane-4,4'-dicarboxylic acid, 1,2-bis(2-chlorophenoxy)ethane-4,4'-dicarboxylic acid, and 4,4'-diphenyl ether dicarboxylic acid.
  • Structural units derived from aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid, dodecanedioic acid, and hexahydroterephthalic acid; Alicyclic units such as 1,4-cyclohexanedicarboxylic acid and 1,3-cyclohexanedicarboxylic acid Structural units derived from the formula dicarboxylic acid can be used within the range that does not impair the effects of the present invention.
  • the molar ratio ([VI]/[II]) of the content of structural units (VI) and (II) is less than 1.
  • the molar ratio of the content of structural units (VI) and (II) ([VI]/[II] ) is preferably 0.9 or less.
  • the lower limit of [VI]/[II] is not particularly limited, and is preferably 0.005 or more.
  • [VI]/[II] is preferably 0.01 or more, more preferably 0.05 or more, from the viewpoint of being moldable at a wide range of molding temperatures and having a small dependence of fluidity on thickness.
  • the liquid crystal polyester resin of the present invention makes it easier to control the above-mentioned temperature sensitivity coefficient and solidification start temperature within a suitable range, can be molded at a wide range of molding temperatures, has excellent molding stability, and has a fluid thickness. From the viewpoint of further reducing the dependence, it is more preferable that the liquid crystal polyester resin contains all of the following structural units (I) to (VI) and satisfies the following requirements (g) to (l).
  • structural units (I) to (VI) structural units produced from p-aminobenzoic acid, p-aminophenol, etc. may be used in the liquid crystal polyester resin to the extent that the effects of the present invention are not impaired. can do.
  • the liquid crystal polyester resin of the present invention can more easily control the temperature sensitivity coefficient and solidification start temperature within a suitable range, It is preferable because it exhibits the effects of the present invention, such as being moldable at a wide range of molding temperatures, having excellent molding stability, and having a low dependence of fluidity on thickness.
  • the total content of the structural units (I) to (VI) is preferably 99 mol% or more based on 100 mol% of the total structural units of the liquid crystal polyester resin. The content is preferably 5 mol% or more, and more preferably 100 mol%.
  • the ratio of the total amount of structural units (III) and (IV) to the total amount of structural units (V) and (VI) ([III] + [IV])/([V] + [VI]) is preferably 0.9 or more and 1.1 or less from the viewpoint of polymerization control.
  • the monomers serving as raw materials constituting each of the above structural units are not particularly limited as long as they have a structure that can form each structural unit. Further, derivatives in which the hydroxyl group of such monomers is acylated, and carboxylic acid derivatives in which the carboxyl group is esterified, acid halide, acid anhydride, etc. may be used.
  • each structural unit for liquid crystal polyester resin The method for calculating the content of each structural unit for liquid crystal polyester resin is shown below. First, after pulverizing the liquid crystal polyester resin, tetramethylammonium hydroxide was added, and each structural unit was measured by pyrolysis GC/MS using a GC/MS analyzer (for example, Shimadzu GCMS-QP5050A). The content of can be determined. The content of structural units not detected or below the detection limit is calculated as 0 mol%.
  • the melting point (Tm) of the liquid crystal polyester resin is preferably 280°C or higher, more preferably 300°C or higher, and even more preferably 320°C or higher.
  • the melting point (Tm) of the liquid crystal polyester resin is preferably 370°C or lower, more preferably 360°C or lower, and even more preferably 350°C or lower. Note that Tm is a value measured using a differential scanning calorimeter as described below.
  • the melt viscosity of the liquid crystal polyester resin is preferably 3 Pa ⁇ s or more, more preferably 5 Pa ⁇ s or more, and even more preferably 7 Pa ⁇ s or more.
  • the melt viscosity of the liquid crystal polyester resin is preferably 50 Pa ⁇ s or less, preferably 30 Pa ⁇ s or less, and more preferably 20 Pa ⁇ s or less.
  • melt viscosity is a value measured using a Koka type flow tester at a temperature of +20° C. to the melting point (Tm) of the liquid crystal polyester resin and at a shear rate of 1000/sec.
  • the method for producing the liquid crystal polyester resin of the present invention includes a method of copolymerizing monomers providing the structural units (I) to (VI) in a content within the above-mentioned range, and a method of copolymerizing the monomers providing the structural units (I) to (VI). Two or more types of liquid crystal polyester resins obtained by copolymerizing monomers with a content outside the above range are blended so that the content of structural units (I) to (VI) is within the above range. There is a way.
  • the method for producing the liquid crystal polyester resin of the present invention there are no particular limitations on the method for producing the liquid crystal polyester resin of the present invention, and known polyester polycondensation methods can be used. From the viewpoint of controlling the above-mentioned temperature sensitivity coefficient and solidification start temperature within a suitable range, taking as an example a method for producing a liquid crystal polyester resin consisting of structural units (I) to (VI), p-hydroxybenzoic acid, 6 -Hydroxy-2-naphthoic acid, 4,4'-dihydroxybiphenyl, hydroquinone, terephthalic acid, and isophthalic acid are reacted with acetic anhydride to acetylate the phenolic hydroxyl groups, and then acetic acid polymerization is performed to produce liquid crystal polyester resin. A method of manufacturing is preferred.
  • Acetic acid depolymerization is carried out without a catalyst.
  • the acetic acid depolymerization is carried out under elevated temperature conditions, and the average temperature increase rate from 145°C to 270°C is 0.3 to 0.8°C/min.
  • the amount of acetic anhydride used is 1.05 to 1.20 molar equivalent of the total of the aromatic hydroxycarboxylic acid and the phenolic hydroxyl group of the aromatic diol.
  • catalysts when adding catalysts include stannous acetate, tetrabutyl titanate, metal salts containing alkali metals and alkaline earth metal salts such as sodium carbonate and calcium carbonate, potassium acetate, and sodium acetate.
  • the process from acetylation of aromatic hydroxycarboxylic acid and aromatic diol to oligomer formation proceeds.
  • the average temperature increase rate is preferably 0.35°C/min or more, more preferably 0.4°C/min or more.
  • the average temperature increase rate is preferably 0.7°C/min or less, more preferably 0.65°C/min or less, and even more preferably 0.6°C/min or less.
  • the amount of acetic anhydride is preferably 1.06 molar equivalent or more, more preferably 1.07 molar equivalent or more. Further, the amount of acetic anhydride is preferably 1.18 or less, more preferably 1.15 or less.
  • a liquid crystal polyester resin composition containing the liquid crystal polyester resin of the present invention and a filler may be used.
  • the filler used in the present invention is not particularly limited, but includes, for example, fibrous, whisker-like, plate-like, powder-like, and granular fillers.
  • fibrous and whisker-like fillers include glass fibers; PAN-based and pitch-based carbon fibers; metal fibers such as stainless steel fibers, aluminum fibers, and brass fibers; and aromatic polyamide fibers and liquid crystal polyester fibers.
  • Organic fibers gypsum fibers, ceramic fibers, asbestos fibers, zirconia fibers, alumina fibers, silica fibers, titanium oxide fibers, silicon carbide fibers, rock wool, potassium titanate whiskers, barium titanate whiskers, aluminum borate whiskers, silicon nitride whiskers , and acicular titanium oxide.
  • plate-like fillers include mica, talc, kaolin, glass flakes, clay, molybdenum disulfide, and wollastenite.
  • powdery and granular fillers include silica, glass beads, titanium oxide, zinc oxide, calcium polyphosphate, and graphite.
  • the surface of the above filler may be treated with a surface treatment agent such as a known coupling agent (for example, a silane coupling agent, a titanate coupling agent, etc.).
  • a surface treatment agent such as a known coupling agent (for example, a silane coupling agent, a titanate coupling agent, etc.).
  • glass fiber because it has excellent mechanical strength such as tensile strength and bending strength, heat resistance, and dimensional stability.
  • the type of glass fiber is not particularly limited as long as it is generally used for reinforcing resins, and examples include chopped strands and milled fibers of long fiber type and short fiber type. Further, it is also preferable to use a plate-shaped filler because of its excellent thin-wall fluidity.
  • the surface of the glass fiber may be treated with a surface treatment agent such as a known coupling agent (for example, a silane coupling agent, a titanate coupling agent, etc.). It may be coated or bundled with a thermoplastic resin such as a copolymer or a thermosetting resin such as an epoxy resin.
  • a surface treatment agent such as a known coupling agent (for example, a silane coupling agent, a titanate coupling agent, etc.). It may be coated or bundled with a thermoplastic resin such as a copolymer or a thermosetting resin such as an epoxy resin.
  • the liquid crystal polyester resin composition of the present invention may further contain antioxidants, heat stabilizers (for example, hindered phenol, hydroquinone, phosphite, thioethers, and substituted products thereof), to the extent that the effects of the present invention are not impaired.
  • antioxidants for example, hindered phenol, hydroquinone, phosphite, thioethers, and substituted products thereof.
  • UV absorbers e.g.
  • resorcinol, salicylates color inhibitors such as phosphites, hypophosphites, lubricants and mold release agents (montanic acid and its metal salts, its esters, its half esters, stearyl alcohol, Stearamide and polyethylene wax, etc.), colorants containing dyes or pigments, carbon black as conductive agents or colorants, crystal nucleating agents, plasticizers, flame retardants (brominated flame retardants, phosphorous flame retardants, red phosphorus, silicone retardants) Conventional additives selected from flame retardants (such as flame retardants), flame retardant aids, and antistatic agents can be included.
  • flame retardants such as flame retardants
  • flame retardant aids flame retardant aids, and antistatic agents can be included.
  • the content of the filler is preferably 10 to 200 parts by weight based on 100 parts by weight of the liquid crystal polyester resin. If the filler content is 10 parts by weight or more, the mechanical strength of the molded product can be improved.
  • the filler content is more preferably 15 parts by weight or more, and even more preferably 20 parts by weight or more. On the other hand, if the filler content is 200 parts by weight or less, it is preferable because a liquid crystal polyester resin composition having excellent moldability and thin-wall fluidity and capable of being easily injection-molded into small-sized thin-walled molded products can be obtained.
  • the filler content is more preferably 150 parts by weight or less, and even more preferably 100 parts by weight or less.
  • Methods for blending the above fillers and additives include, for example, a dry blend method in which fillers and other solid additives are blended into liquid crystal polyester resin, and a method in which fillers and other liquid additives are blended into liquid crystal polyester resin.
  • a method of adding fillers and other additives during polymerization of liquid crystal polyester resin, a method of melt-kneading fillers and other additives to liquid crystal polyester resin, etc. can be used. can. Among these, the method of melt-kneading is preferred.
  • a known method can be used for melt-kneading.
  • the apparatus used for melt-kneading include a Banbury mixer, a rubber roll machine, a kneader, and a single-screw or twin-screw extruder. Among these, a twin screw extruder is preferred.
  • the melt-kneading temperature is preferably higher than the melting point of the liquid crystal polyester resin and lower than the melting point +50°C.
  • the kneading methods are: 1) A method in which the liquid crystal polyester resin, filler, and other additives are added all at once from a feeder and kneaded (batch kneading method); 2) A method in which the liquid crystal polyester resin and other additives are added in a batch. A method in which fillers and other additives are added from a side feeder and kneaded after being fed from a feeder and kneaded (side feed method); 3) Other additives are added to the liquid crystal polyester resin at a high concentration.
  • Examples include a method (master pellet method) in which a liquid crystal polyester composition (master pellet) containing a liquid crystal polyester is prepared, and then the master pellet is kneaded with a liquid crystal polyester resin and a filler so that the additive has a specified concentration.
  • the liquid crystal polyester resin and liquid crystal polyester resin composition of the present invention can be produced by melt molding such as injection molding, extrusion molding, and spinning; and by molding methods such as press molding and solution casting film formation, to provide excellent surface appearance (color tone) and mechanical properties. It can also be processed into heat-resistant molded products.
  • the molded products here include injection molded products, extrusion molded products, press molded products, sheets, pipes, various films such as unstretched films, uniaxially stretched films, biaxially stretched films, unstretched yarns, superstretched yarns, etc. Examples include various fibers.
  • Injection molding is particularly preferred as a molding method from the viewpoint of processability.
  • melt molding is preferably carried out at a temperature of 370°C or lower, more preferably 360°C or lower.
  • Molded articles obtained by molding the liquid crystal polyester resin and liquid crystal polyester resin composition of the present invention can be preferably used as electrical/electronic parts.
  • electrical and electronic components include computers, GPS devices, mobile phones, millimeter wave and sub-millimeter wave radars such as collision prevention radars, and flexible printed circuit boards used in antennas for mobile communication and electronic devices such as tablets and smartphones. , laminated circuit boards, printed wiring boards, and three-dimensional circuit boards; lamp reflectors and lamp sockets for LEDs, communication base station small cells and microcell parts for mobile communication terminals, antenna covers, housings, sensors, and actuators for camera modules.
  • These include parts, connectors, relay cases and bases, switches, coil bobbins, capacitors, etc. Among these, it is useful for connectors, relays, switches, coil bobbins, camera module actuator parts, etc. that have thin, complex-shaped parts because they can be molded at a wide range of molding temperatures and their fluidity has little dependence on thickness.
  • Tm melting point
  • molding was performed by changing the cylinder temperature in 5°C increments within the range of the melting point of the liquid crystal polyester resin from ⁇ 0°C to +40°C, and the resulting test pieces were molded into shots with a length of 39 mm or less or 41 mm or more.
  • the mold was replaced with a mold that can mold a molded product with a width of 5.0 mm, a length of 50 mm, and a thickness of 0.5 mm on the flow end side, and a molded product with a width of 5.0 mm, a length of 30 mm, and a thickness of 0.2 mm. 10 pieces of each were molded under the same molding conditions, and the average flow length of the 0.2 mm thick portion of the resulting molded product was calculated. It was determined that the greater the flow length in the 0.2 mm thick portion, the smaller the dependence of fluidity on thickness and the better.
  • Figure 3 is a perspective view of a molded connector, which has a long surface (2) and a short surface (3), and has external dimensions of width (6) 3 mm x height (5) 2 mm x length (4) 30 mm. It is. It has terminals separated by partition walls (8), the distance between the terminals (7) is 0.4 mm, and the thickness of the partition wall (8), which is the minimum thickness of the product, is 0.2 mm.
  • the liquid crystal polyester resin or resin composition was filled from the pin gate G1 (gate diameter 0.3 mm) installed on one short side (3) of the connector molded product, and was sufficiently filled to the wall corner on the side facing the gate.
  • the molding was once stopped, the injection cylinder temperature was lowered to 150° C., and the molding was allowed to stand for 120 minutes. After that, the injection cylinder temperature was raised to 15°C above the melting point of the liquid crystal polyester, and one purge shot was performed using the same liquid crystal polyester resin or resin composition as in the above molding, followed by continuous molding under the same conditions and in the same mold.
  • the number of shots required to obtain a molded product that was sufficiently filled up to the corner of the wall facing the gate that is, the number of shots required for return, was evaluated.
  • the wall corners are a region where unfilling is likely to occur after return, and molding stability is excellent when the number of shots required for return is less than 10.
  • Temperature sensitivity coefficient
  • Example 1 In a 5 L reaction vessel equipped with a stirring blade and a distillation tube, 808 parts by weight of p-hydroxybenzoic acid (HBA), 88 parts by weight of 6-hydroxy-2-naphthoic acid (HNA), and 4,4'-dihydroxybiphenyl (DHB) were added. ), 161 parts by weight of hydroquinone (HQ), 428 parts by weight of terephthalic acid (TPA), 19 parts by weight of isophthalic acid (IPA) and 1278 parts by weight of acetic anhydride (1.07 equivalents of the total phenolic hydroxyl groups).
  • HBA p-hydroxybenzoic acid
  • HNA 6-hydroxy-2-naphthoic acid
  • HNB 4,4'-dihydroxybiphenyl
  • the temperature was raised from 145°C to 360°C over 4 hours (the average temperature increase rate from 145°C to 270°C was 0.9°C/min). ). Thereafter, the polymerization temperature was maintained at 360° C., and the pressure was reduced to 1.0 mmHg (133 Pa) over 1.0 hours, and the reaction was further continued, and the polymerization was completed when a predetermined stirring torque was reached. Next, the polymer was discharged in the form of a strand through a nozzle having one circular discharge port with a diameter of 6 mm, and pelletized with a cutter to obtain a liquid crystal polyester resin (A-1).
  • Example 2 Liquid crystal polyester resin (A-2) was produced in the same manner as in Example 1, except that the amounts of monomers were changed to 776 parts by weight of HBA, 66 parts by weight of HNA, 251 parts by weight of DHB, 168 parts by weight of HQ, 447 parts by weight of TPA, and 29 parts by weight of IPA. I got it.
  • Example 3 Liquid crystal polyester resin (A-3) was produced in the same manner as in Example 1, except that the amounts of monomers were changed to 1018 parts by weight of HBA, 264 parts by weight of HNA, 44 parts by weight of DHB, 135 parts by weight of HQ, 214 parts by weight of TPA, and 29 parts by weight of IPA. I got it.
  • Liquid crystal polyester resin (A-4) was prepared in the same manner as in Example 1 except that the amounts of monomers were changed to 905 parts by weight of HBA, 88 parts by weight of HNA, 109 parts by weight of DHB, 193 parts by weight of HQ, 321 parts by weight of TPA, and 68 parts by weight of IPA. I got it.
  • Example 5 Liquid crystal polyester resin (A-5) was produced in the same manner as in Example 1, except that the amounts of monomers were changed to 469 parts by weight of HBA, 242 parts by weight of HNA, 131 parts by weight of DHB, 309 parts by weight of HQ, 564 parts by weight of TPA, and 19 parts by weight of IPA. I got it.
  • Liquid crystal polyester resin (A-6) was prepared in the same manner as in Example 1, except that the amounts of monomers were changed to 986 parts by weight of HBA, 88 parts by weight of HNA, 360 parts by weight of DHB, 13 parts by weight of HQ, 321 parts by weight of TPA, and 19 parts by weight of IPA. I got it.
  • Example 7 The amount of monomers charged was changed to 792 parts by weight of HBA, 88 parts by weight of HNA, 251 parts by weight of DHB, 155 parts by weight of HQ, 457 parts by weight of TPA, and 1314 parts by weight of acetic anhydride (1.10 equivalents of the total phenolic hydroxyl groups), and the temperature was increased from 145°C to 270°C.
  • a liquid crystal polyester resin (A-7) was obtained in the same manner as in Example 1, except that the temperature was raised so that the average temperature increase rate to 0.5 °C/min.
  • Example 8 The amount of monomers charged was changed to 905 parts by weight of HBA, 88 parts by weight of HNA, 436 parts by weight of DHB, 321 parts by weight of TPA, 68 parts by weight of IPA, and 1314 parts by weight of acetic anhydride (1.10 equivalents of the total phenolic hydroxyl group), and the temperature was increased from 145°C to 270°C.
  • a liquid crystal polyester resin (A-8) was obtained in the same manner as in Example 1, except that the temperature was raised so that the average temperature increase rate to 0.5 °C/min.
  • Example 9 A liquid crystal polyester resin (A-9) was obtained in the same manner as in Example 1, except that the temperature was increased so that the average temperature increase rate from 145° C. to 270° C. was 0.5° C./min.
  • a liquid crystal polyester resin (A'-10) was obtained in the same manner as in Example 1, except that the amount of monomers charged was changed to 870 parts by weight of HBA, 352 parts by weight of DHB, 89 parts by weight of HQ, 292 parts by weight of TPA, and 157 parts by weight of IPA. .
  • a liquid crystal polyester resin (A'-11) was obtained in the same manner as in Example 1, except that the amount of monomers charged was changed to 808 parts by weight of HBA, 88 parts by weight of HNA, 501 parts by weight of DHB, 408 parts by weight of TPA, and 39 parts by weight of IPA. .
  • a liquid crystal polyester resin (A'-12) was obtained in the same manner as in Example 1, except that the amounts of monomers were changed to 970 parts by weight of HBA, 88 parts by weight of HNA, 196 parts by weight of DHB, 116 parts by weight of HQ, and 350 parts by weight of TPA. .
  • a liquid crystal polyester resin (A'-13) was obtained in the same manner as in Example 1, except that the amounts of monomers were changed to 743 parts by weight of HBA, 176 parts by weight of HNA, 296 parts by weight of HQ, 292 parts by weight of TPA, and 156 parts by weight of IPA. .
  • a liquid crystal polyester resin (A'-16) was obtained in the same manner as in Example 1, except that the amount of monomers charged was changed to 792 parts by weight of HBA, 88 parts by weight of HNA, 251 parts by weight of DHB, 155 parts by weight of HQ, and 457 parts by weight of TPA. .
  • a liquid crystal polyester resin (A'-17) was obtained in the same manner as in Example 1, except that the amount of monomers charged was changed to 905 parts by weight of HBA, 88 parts by weight of HNA, 436 parts by weight of DHB, 321 parts by weight of TPA, and 68 parts by weight of IPA. .
  • Tables 1 and 2 show the results of the above evaluations (1) to (7) for the liquid crystal polyester resins obtained in Examples 1 to 9 and Comparative Examples 1 to 8.
  • a filler was further added to the liquid crystal polyester resins obtained in Example 1 and Comparative Example 5 to produce liquid crystal polyester resin compositions.
  • the fillers used in each example and comparative example are shown below.
  • liquid crystal polyester resin and liquid crystal polyester resin composition of the present invention can be molded at a wide range of molding temperatures, have excellent molding stability, and have low dependence of fluidity on thickness, so they can be used in connectors, relays, switches, coil bobbins, and cameras. Suitable for electrical/electronic parts and mechanical parts such as module actuator parts.

Abstract

芳香族ヒドロキシカルボン酸に由来する構造単位、芳香族ジオールに由来する構造単位および芳香族ジカルボン酸に由来する構造単位を含む液晶ポリエステル樹脂であって、液晶ポリエステル樹脂の全構造単位100モル%に対する、芳香族ヒドロキシカルボン酸に由来する構造単位の含有量が15~80モル%、芳香族ジオールに由来する構造単位の含有量が2~40モル%、芳香族ジカルボン酸に由来する構造単位の含有量が2~40モル%であって、かつ、レオメータースペクトルから得られる温度感応係数と固化開始温度が一定の範囲である液晶ポリエステル樹脂。幅広い成形温度で成形可能であり、成形安定性に優れ、かつ流動性の厚み依存性が小さい液晶ポリエステル樹脂を得る。

Description

液晶ポリエステル樹脂、液晶ポリエステル樹脂組成物およびそれからなる成形品
 本発明は、液晶ポリエステル樹脂、液晶ポリエステル樹脂組成物およびそれからなる成形品に関する。
 液晶ポリエステル樹脂は、耐熱性、流動性および寸法安定性に優れるため、それらの特性が要求される電気・電子部品に用いられている。近年、スマートフォン等の小型化により、部品の高集積度化、薄肉化、低背化等が一層求められている。例えば、p-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸、4,4’-ジヒドロキシビフェニル、ハイドロキノンおよびテレフタル酸に由来する構造単位を含む液晶ポリエステル樹脂や(例えば、特許文献1~4)、p-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸、4,4’-ジヒドロキシビフェニル、テレフタル酸およびイソフタル酸に由来する構造単位を含む液晶ポリエステル樹脂(例えば、特許文献5)、p-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸、ハイドロキノン、テレフタル酸およびイソフタル酸に由来する構造単位を含む液晶ポリエステル樹脂(例えば、特許文献6)により、優れた流動性を有しつつ、高強度や耐ブリスター性などを両立させることが提案されている。また、p-ヒドロキシ安息香酸、4,4’-ジヒドロキシビフェニル、ハイドロキノン、テレフタル酸およびイソフタル酸に由来する構造単位を含む液晶ポリエステル樹脂(例えば、特許文献7、8)により、剛性や滞留安定性などを両立させることが提案されている。
特開2021-24985号公報 特開2017-137438号公報 国際公開第2018/101214号 特開2012-126842号公報 国際公開第2012/137636号 国際公開第2013/51346号 特表2016-523291号公報 特開2004-256656号公報
 しかしながら、流動性に優れる樹脂は、成形温度が高い場合、成形時にハナタレ(成形時にノズル先端部分から漏れて垂れ下がる現象)や糸引き(金型の型開き時、固化しきらなかった樹脂がスプルー頂点から糸状に伸びる現象)が生じたり、ガスが発生するため、生産性が低下したりすることにより、成形品の品質が低下してしまう。このような問題を防ぐため、成形温度を下げる場合があるが、前記特許文献1~8に記載された技術では、成形温度を下げすぎると、樹脂が一部固化するため、流動性のバラつきを生じやすく、成形可能な温度範囲が狭い課題があった。また、流動性の厚み依存性が大きいため、厚みの異なる部位を有する成形品を成形する際に、流動性のバラつきを生じやすい課題があった。また、射出成形による生産は、品種切り替えや成形トラブルなどで成形機の停機と再開(復帰)を繰り返すため、復帰後に良品を得るまでに必要な時間を短縮させて成形安定性を高めることは重要である。特許文献1~8に記載された方法では成形安定性に課題があった。
 本発明の課題は、幅広い成形温度で成形可能であり、成形安定性に優れ、かつ流動性の厚み依存性が小さい液晶ポリエステル樹脂、液晶ポリエステル樹脂組成物およびそれからなる成形品を提供することである。
 本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、液晶ポリエステル樹脂の全構造単位100モル%に対して、芳香族ヒドロキシカルボン酸に由来する構造単位を15~80モル%、芳香族ジオールに由来する構造単位を2~40モル%、芳香族ジカルボン酸に由来する構造単位を2~40モル%含む液晶ポリエステル樹脂であって、後述する温度感応係数と固化開始温度が制御された液晶ポリエステル樹脂が、幅広い成形温度で成形可能であり、成形安定性に優れ、かつ流動性の厚み依存性が小さいことを見出し、本発明に到達した。
 すなわち本発明は以下のとおりである:
(1)芳香族ヒドロキシカルボン酸に由来する構造単位、芳香族ジオールに由来する構造単位および芳香族ジカルボン酸に由来する構造単位を含む液晶ポリエステル樹脂であって、液晶ポリエステル樹脂の全構造単位100モル%に対する、芳香族ヒドロキシカルボン酸に由来する構造単位の含有量が15~80モル%、芳香族ジオールに由来する構造単位の含有量が2~40モル%、芳香族ジカルボン酸に由来する構造単位の含有量が2~40モル%であって、かつ、下記要件(α)を満たす液晶ポリエステル樹脂:
(α):以下のようにして測定される温度感応係数が0.020以下であって、B(x)が-35~-15℃である;
液晶ポリエステル樹脂の融点をTm(℃)としたときに、下記のようにして液晶ポリエステル樹脂をレオメーターを用いて測定し、x軸をΔT(℃)=測定温度-Tm(℃)、y軸を複素粘度の対数(log(η(Pa・s)))として得られる液晶ポリエステル樹脂のレオメータースペクトル曲線において、ΔT=20℃の点を点A、ΔT=10℃の点を点A’、融点以下であって複素粘度ηが10000Pa・sの点を点C、複素粘度ηが5000Pa・sの点を点C’とし、点Aと点A’を通る直線を直線t、点Cと点C’を通る直線を直線u、直線tと直線uの交点を点B’、点B’を通りy軸に平行である直線を直線v、直線vとレオメータースペクトル曲線との交点を点Bとしたとき、点Aと点Bを結ぶ直線wの傾きの絶対値を温度感応係数、点BのΔTの値をB(x)と定義する。;
上記レオメータースペクトル曲線は、レオメーターの振動測定モードにおいて、パラレルプレートのギャップを1mm、歪み10%かつ周波数1Hzとして、Tm+30℃の温度で5分間保持した後、複素粘度が50000(Pa・s)になる温度まで0.17℃/秒で降温しながら得られた曲線である;
上記液晶ポリエステル樹脂の融点Tmは、示差熱量測定において、液晶ポリエステル樹脂を室温から20℃/分の昇温条件で加熱した際に観測される吸熱ピーク温度Tmの観測後、Tm+20℃の温度で5分間保持した後、20℃/分の降温条件で室温まで一旦冷却し、再度20℃/分の昇温条件で加熱した際に観測される吸熱ピーク温度である。
(2)下記構造単位(I)~(V)から選ばれる構造単位を含む液晶ポリエステル樹脂であって、下記要件(a)~(d)を満たす請求項1に記載の液晶ポリエステル樹脂:
25≦[I]≦75        ・・・(a)
1≦[II]≦20        ・・・(b)
2≦[III]+[IV]≦35  ・・・(c)
2≦[V]≦35          ・・・(d)
[I]~[V]は、液晶ポリエステル樹脂の全構造単位100モル%に対する、下記各構造単位(I)~(V)それぞれの含有量(モル%)を示す。
Figure JPOXMLDOC01-appb-C000004
(3)下記構造単位(II)および(VI)を含む液晶ポリエステル樹脂であって、下記要件(e)および(f)を満たす請求項1または2に記載の液晶ポリエステル樹脂:
0.01≦[VI]≦10     ・・・(e)
[VI]/[II]<1      ・・・(f)
[II]および[VI]は、液晶ポリエステル樹脂の全構造単位100モル%に対する、下記各構造単位(II)および(VI)それぞれの含有量(モル%)を示す。
Figure JPOXMLDOC01-appb-C000005
(4)下記構造単位(I)~(VI)から選ばれる構造単位を含む液晶ポリエステル樹脂であって、下記要件(g)~(l)を満たす請求項1~3のいずれかに記載の液晶ポリエステル樹脂:
25≦[I]≦75        ・・・(g)
1≦[II]≦20        ・・・(h)
2≦[III]+[IV]≦35  ・・・(i)
2≦[V]≦35         ・・・(j)
0.01≦[VI]≦10     ・・・(k)
[VI]/[II]<1      ・・・(l)
[I]~[VI]は、液晶ポリエステル樹脂の全構造単位100モル%に対する、下記各構造単位(I)~(VI)それぞれの含有量(モル%)を示す。
Figure JPOXMLDOC01-appb-C000006
(5)さらに、下記要件(m)を満たす請求項1~4のいずれかに記載の液晶ポリエステル樹脂:
0<[III]/[IV]<1.5 ・・・(m)
[III]、[IV]は、液晶ポリエステル樹脂の全構造単位100モル%に対する、前記各構造単位(III)、(IV)それぞれの含有量(モル%)を示す。
(6)さらに、下記要件(n)を満たす請求項1~5のいずれかに記載の液晶ポリエステル樹脂:
99≦[I]+[II]+[III]+[IV]+[V]+[VI]≦100 ・・・(n)
[I]~[VI]は、液晶ポリエステル樹脂の全構造単位100モル%に対する、前記各構造単位(I)~(VI)それぞれの含有量(モル%)を示す。
(7)(1)~(6)のいずれかに記載の液晶ポリエステル樹脂100重量部に対し、充填材10~200重量部を含有する、液晶ポリエステル樹脂組成物。
(8)(1)~(6)のいずれかに記載の液晶ポリエステル樹脂、または(7)に記載の液晶ポリエステル樹脂組成物からなる成形品。
(9)成形品が、コネクタ、リレー、スイッチ、コイルボビン、およびカメラモジュールのアクチュエータ部品からなる群から選択されるいずれかである(8)に記載の成形品。
 本発明の液晶ポリエステル樹脂は、幅広い成形温度で成形可能であり、成形安定性に優れ、かつ流動性の厚み依存性が小さい。本発明の液晶ポリエステル樹脂は、特に、小型の電気・電子部品などを成形する際に好適に用いることができる。
本発明の液晶ポリエステル樹脂が満たす要件(α)を説明するレオメータースペクトル曲線の図 本発明ならびに従来の液晶ポリエステル樹脂をそれぞれ測定したレオメータースペクトル曲線 成形安定性の評価に用いるコネクタ成形品を表す斜視図
 以下、本発明を詳細に説明する。
 <液晶ポリエステル樹脂>
 液晶ポリエステル樹脂は、異方性溶融相を形成するポリエステルである。このようなポリエステル樹脂としては、例えば、後述するオキシカルボニル単位、ジオキシ単位、ジカルボニル単位などから異方性溶融相を形成するよう選ばれた構造単位によって構成されるポリエステルが挙げられる。
 次に、レオメータースペクトル曲線から得られる液晶ポリエステル樹脂の温度感応係数について説明する。本発明の液晶ポリエステル樹脂は、下記要件(α)を満たす。
(α):以下のようにして測定される温度感応係数が0.020以下であって、B(x)が-35~-15℃である;
 上記の温度感応係数およびB(x)の求め方について、図1に基づいて説明する。液晶ポリエステル樹脂の融点をTm(℃)としたときに、下記のようにして液晶ポリエステル樹脂をレオメーターを用いて測定し、x軸をΔT(℃)=測定温度-Tm(℃)、y軸を複素粘度の対数(log(η(Pa・s)))として、図1に示す液晶ポリエステル樹脂のレオメータースペクトル曲線1を得る。レオメータースペクトル曲線1において、ΔT=20℃の点を点A、ΔT=10℃の点を点A’、融点以下であって複素粘度ηが10000Pa・sの点を点C、複素粘度ηが5000Pa・sの点を点C’とする。点Aと点A’を通る直線を直線t、点Cと点C’を通る直線を直線u、直線tと直線uの交点を点B’、点B’を通りy軸に平行である直線を直線v、直線vとレオメータースペクトル曲線1との交点を点Bとしたとき、点Aと点Bを結ぶ直線wの傾きの絶対値を温度感応係数、点BのΔTの値をB(x)と定義する。
 上記レオメータースペクトル曲線は、レオメーターの振動測定モードにおいて、パラレルプレートのギャップを1mm、歪み10%かつ周波数1Hzとして、Tm+30℃の温度で5分間保持した後、複素粘度が50000(Pa・s)になる温度まで0.17℃/秒で降温しながら得られた曲線である。
 上記液晶ポリエステル樹脂の融点Tmは、示差熱量測定において、液晶ポリエステル樹脂を室温から20℃/分の昇温条件で加熱した際に観測される吸熱ピーク温度Tmの観測後、Tm+20℃の温度で5分間保持した後、20℃/分の降温条件で室温まで一旦冷却し、再度20℃/分の昇温条件で加熱した際に観測される吸熱ピーク温度である。
 レオメーター測定は、樹脂の重要な特性の一つであるレオロジー特性(流動特性)を評価する手法である。前記温度感応係数は、前記のようにしてレオメータースペクトルから得られた係数であって、点Aと点Bを結ぶ直線wの傾きの絶対値で定義される値である。温度感応係数は、剪断条件下において、液晶ポリエステル樹脂の動的な粘度(複素粘度)の温度に対する変化の大きさを示している。温度感応係数が低いほど、温度や剪断などの外部要因に対して液晶ポリエステル樹脂の流動特性が変化しにくいことを示している。本発明では、特に温度感応係数が0.020以下である液晶ポリエステル樹脂が、幅広い成形温度で成形可能であって、成形安定性に優れ、流動性の厚み依存性が小さいことを見出した。温度感応係数が0.020より大きくなると、液晶ポリエステル樹脂の溶融から固化に至る挙動を制御することが困難となり、成形可能な温度範囲が狭くなるとともに、流動性の厚み依存性が大きくなる。また、温度感応係数が0.020より高い液晶ポリエステル樹脂は、成形機各部の温度の僅かな違いにより流動性が変化するため、成形機停機から復帰後に良品を得るまでに時間がかかり、成形安定性が低下する。成形可能な温度範囲、成形安定性および流動性の厚み依存性の観点から、温度感応係数は0.018以下が好ましく、0.016以下がより好ましい。なお、温度感応係数は低いほど好ましく、最低値は0である。
 さらに、本発明の液晶ポリエステル樹脂は、前記の要件(α)中に示した点BのΔTの値B(x)が-35~-15℃である。B(x)は、剪断条件下において液晶ポリエステル樹脂の固化が開始する温度である(以下、B(x)を固化開始温度と記載することがある)。B(x)が-35℃より低くなると成形時のバリやノズル先端からのドローリングが問題となり、成型可能な温度範囲が狭くなる。また、B(x)が-15℃より大きくなると、液晶ポリエステル樹脂の固化挙動を制御困難となり、成形可能な温度範囲が狭くなり、成形安定性に劣り、流動性の厚み依存性が大きくなる。B(x)は、好ましくは-30℃以上、より好ましくは-28℃以上である。また、B(x)は、好ましくは-16℃以下、より好ましくは-18℃以下、さらに好ましくは-20℃以下である。
 図2に本発明の液晶ポリエステル樹脂のレオメータースペクトル曲線の例(S1)ならびに従来の液晶ポリエステル樹脂のレオメータースペクトル曲線の例(S2)を示す。また、前記にて定義される温度感応係数を表す直線L1およびL2をそれぞれ図示している。図2に示す通り、L1の傾きの絶対値はL2と比較して小さく、本発明の液晶ポリエステル樹脂の温度感応係数は、従来の液晶ポリエステル樹脂の温度感応係数よりも小さいことが分かる。
 図2におけるS1とS2のスペクトル曲線を比較すると、S1は固化開始温度B(x)以上では粘度変化が抑えられており、温度が下がるにつれ、固化開始温度付近から粘度が急激に上昇することが分かる。S1のような粘度変化挙動を示す本発明の液晶ポリエステル樹脂は、幅広い成形温度で成形可能であって、成形安定性に優れ、流動性の厚み依存性が小さいという特性を併せ持つ。レオメータースペクトル曲線がS1と同様の形状であることを定量的に示す値が、前記にて定義される温度感応係数である。
 前記した温度感応係数と固化開始温度を好適な範囲に制御する手法としては、例えば、液晶ポリエステル樹脂を構成する構造単位を後述の好ましい範囲とすること、および/または液晶ポリエステル樹脂の製造方法を後述の好ましい方法とすることが挙げられる。詳細については、次の液晶ポリエステル樹脂を構成する構造単位、ならびに後述の「液晶ポリエステル樹脂の製造方法」に記載する。
 次に、液晶ポリエステル樹脂を構成する構造単位について説明する。
 本発明の液晶ポリエステル樹脂は、芳香族ヒドロキシカルボン酸に由来する構造単位、芳香族ジオールに由来する構造単位および芳香族ジカルボン酸に由来する構造単位を含む。
 本発明の液晶ポリエステル樹脂は、オキシカルボニル単位として、液晶ポリエステル樹脂の全構造単位100モル%に対して、芳香族ヒドロキシカルボン酸に由来する構造単位を15~80モル%含む。芳香族ヒドロキシカルボン酸に由来する構造単位の含有量が15%未満であると、液晶性が損なわれるため成形可能な温度範囲が狭くなる。含有量は20モル%以上が好ましく、25モル%以上がより好ましい。一方で、含有量が80モル%より多いと、液晶ポリエステル樹脂の結晶性および融点の制御が困難となり、成形可能な温度範囲が狭くなる。含有量は75モル%以下が好ましく、70モル%以下がより好ましい。芳香族ヒドロキシカルボン酸に由来する構造単位の具体例としては、p-ヒドロキシ安息香酸、m-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸などに由来する構造単位を使用することができる。
 本発明の液晶ポリエステル樹脂は、ジオキシ単位として、液晶ポリエステル樹脂の全構造単位100モル%に対して、芳香族ジオールに由来する構造単位を2~40モル%含む。芳香族ジオールに由来する構造単位の含有量が2モル%未満であると、液晶ポリエステル樹脂の結晶性および融点の制御が困難となり、成形可能な温度範囲が狭くなる。含有量は7モル%以上が好ましく、10モル%以上がより好ましい。一方で、含有量が40モル%より多いと、液晶性が損なわれるため成形可能な温度範囲が狭くなる。含有量は37モル%以下が好ましく、35モル%以下がより好ましい。芳香族ジオールに由来する構造単位としては、例えば、4,4’-ジヒドロキシビフェニル、ハイドロキノン、レゾルシノール、t-ブチルハイドロキノン、フェニルハイドロキノン、クロロハイドロキノン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、3,4’-ジヒドロキシビフェニル、2,2-ビス(4-ヒドロキシフェニル)プロパン、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシベンゾフェノンなどに由来する構造単位が挙げられる。入手性に優れ、成形可能な温度範囲に優れる観点から、4,4’-ジヒドロキシビフェニルまたはハイドロキノンに由来する構造単位を使用することが好ましい。
 本発明の液晶ポリエステル樹脂は、ジカルボニル単位として、液晶ポリエステル樹脂の全構造単位100モル%に対して、芳香族ジカルボン酸に由来する構造単位を2~40モル%含む。芳香族ジカルボン酸に由来する構造単位の含有量が2モル%未満であると、液晶ポリエステル樹脂の結晶性および融点の制御が困難となり、成形可能な温度範囲が狭くなる。含有量は7モル%以上が好ましく、10モル%以上がより好ましい。一方で、含有量が40モル%より多いと、液晶性が損なわれるため成形可能な温度範囲が狭くなる。含有量は37モル%以下が好ましく、35モル%以下がより好ましい。芳香族ジカルボン酸に由来する構造単位としては、例えば、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、3,3’-ジフェニルジカルボン酸、2,2’-ジフェニルジカルボン酸、1,2-ビス(フェノキシ)エタン-4,4’-ジカルボン酸、1,2-ビス(2-クロロフェノキシ)エタン-4,4’-ジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸などに由来する構造単位が挙げられる。入手性に優れ、成形可能な温度範囲に優れる観点から、テレフタル酸またはイソフタル酸に由来する構造単位を含むことが好ましい。
 次に、液晶ポリエステル樹脂を構成する構造単位についてより詳細に説明する。本発明の液晶ポリエステル樹脂は、幅広い成形温度で成形可能であり、成形安定性に優れ、かつ流動性の厚み依存性が小さい観点から、下記構造単位(I)~(V)から選ばれる構造単位を含み、下記要件(a)~(d)を満たすことが好ましい。
25≦[I]≦75        ・・・(a)
1≦[II]≦20        ・・・(b)
2≦[III]+[IV]≦35  ・・・(c)
2≦[V]≦35         ・・・(d)
[I]~[V]は、それぞれ液晶ポリエステル樹脂の全構造単位100モル%に対する、各構造単位(I)~(V)の含有量(モル%)を示す。
Figure JPOXMLDOC01-appb-C000007
 本発明の液晶ポリエステル樹脂は、液晶ポリエステル樹脂の全構造単位100モル%に対して、オキシカルボニル単位として、構造単位(I)を25モル%以上含むことが好ましい。構造単位(I)はp-ヒドロキシ安息香酸に由来する構造単位である。幅広い成形温度で成形可能であり、成形安定性に優れ、かつ流動性の厚み依存性が小さい観点から、構造単位(I)の含有量は35モル%以上がより好ましく、45モル%以上がさらに好ましい。
 一方、本発明の液晶ポリエステル樹脂は、液晶ポリエステル樹脂の全構造単位100モル%に対して、構造単位(I)を75モル%以下含むことが好ましい。幅広い成形温度で成形可能であり、成形安定性に優れ、かつ流動性の厚み依存性が小さい観点から、構造単位(I)の含有量は65モル%以下が好ましく、55モル%以下がより好ましい。
 本発明の液晶ポリエステル樹脂は、液晶ポリエステル樹脂の全構造単位100モル%に対して、オキシカルボニル単位として、構造単位(II)を1モル%以上含むことが好ましい。構造単位(II)は6-ヒドロキシ-2-ナフトエ酸に由来する構造単位である。幅広い成形温度で成形可能であり、成形安定性に優れ、かつ流動性の厚み依存性が小さい観点から、構造単位(II)の含有量は2モル%以上が好ましく、3モル%以上がより好ましい。
 一方、本発明の液晶ポリエステル樹脂は、液晶ポリエステル樹脂の全構造単位100モル%に対して、構造単位(II)を20モル%以下含むことが好ましい。幅広い成形温度で成形可能であり、成形安定性に優れ、かつ流動性の厚み依存性が小さい観点から、構造単位(II)の含有量は15モル%以下が好ましく、10モル%以下がより好ましい。
 本発明の液晶ポリエステル樹脂は、幅広い成形温度で成形可能であり、成形安定性に優れ、かつ流動性の厚み依存性が小さい観点から、構造単位(I)と(II)の含有量のモル比([I]/[II])が、3以上であることが好ましく、5以上がより好ましく、7以上がさらに好ましい。一方、幅広い成形温度で成形可能であり、かつ流動性の厚み依存性が小さい観点から、[I]/[II]は20以下が好ましく、18以下がより好ましく、16以下がさらに好ましい。
 他に、オキシカルボニル単位として、m-ヒドロキシ安息香酸などに由来する構造単位を、本発明の効果を損なわない範囲で使用することができる。
 本発明の液晶ポリエステル樹脂は、ジオキシ単位として、構造単位(III)を含むことが好ましい。構造単位(III)は、4,4’-ジヒドロキシビフェニルに由来する構造単位である。幅広い成形温度で成形可能であり、成形安定性に優れ、かつ流動性の厚み依存性が小さい観点から、液晶ポリエステル樹脂の全構造単位100モル%に対して、構造単位(III)の含有量は1モル%以上が好ましく、3モル%以上がより好ましく、5モル%以上がさらに好ましい。一方、幅広い成形温度で成形可能であり、かつ流動性の厚み依存性が小さい観点から、構造単位(III)の含有量は25モル%以下が好ましく、20モル%以下がより好ましく、15モル%以下がより好ましい。
 本発明の液晶ポリエステル樹脂は、ジオキシ単位として、構造単位(IV)を含むことが好ましい。構造単位(IV)は、ハイドロキノンに由来する構造単位である。幅広い成形温度で成形可能であり、成形安定性に優れ、かつ流動性の厚み依存性が小さい観点から、液晶ポリエステル樹脂の全構造単位100モル%に対して、構造単位(IV)の含有量は1モル%以上が好ましく、4モル%以上がより好ましく、7モル%以上がさらに好ましい。一方、幅広い成形温度で成形可能であり、成形安定性に優れ、かつ流動性の厚み依存性が小さい観点から、構造単位(IV)の含有量は30モル%以下が好ましく、25モル%以下がより好ましく、20モル%以下がより好ましい。
 本発明の液晶ポリエステル樹脂は、液晶ポリエステル樹脂の全構造単位100モル%に対して、構造単位(III)および(IV)の合計含有量が2モル%以上であることが好ましい。幅広い成形温度で成形可能であり、成形安定性に優れ、かつ流動性の厚み依存性が小さい観点から、構造単位(III)および(IV)の合計含有量は5モル%以上が好ましく、10モル%以上がより好ましく、15モル%以上がさらに好ましい。
 一方、本発明の液晶ポリエステル樹脂は、液晶ポリエステル樹脂の全構造単位100モル%に対して、構造単位(III)および(IV)の合計含有量が35モル%以下であることが好ましい。幅広い成形温度で成形可能であり、成形安定性に優れ、かつ流動性の厚み依存性が小さい観点から、構造単位(III)および(IV)の合計含有量は30モル%以下が好ましく、25モル%以下がより好ましい。
 本発明の液晶ポリエステル樹脂は、幅広い成形温度で成形可能であり、成形安定性に優れ、かつ流動性の厚み依存性が小さい観点から、構造単位(III)と(IV)の含有量のモル比([III]/[IV])が、0より大きいことが好ましく、0.3以上であることがより好ましく、0.6以上であることがさらに好ましい。一方、幅広い成形温度で成形可能であり、かつ流動性の厚み依存性が小さい観点から、[III]/[IV]は1.5より小さいことが好ましく、1.2以下がより好ましく、1.0以下がさらに好ましい。
 他に、ジオキシ単位として、レゾルシノール、t-ブチルハイドロキノン、フェニルハイドロキノン、クロロハイドロキノン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、3,4’-ジヒドロキシビフェニル、2,2-ビス(4-ヒドロキシフェニル)プロパン、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシベンゾフェノンなどの芳香族ジオールに由来する構造単位;エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコールなどの脂肪族ジオールに由来する構造単位;1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノールなどの脂環式ジオールに由来する構造単位を、本発明の効果を損なわない範囲で使用することができる。
 本発明の液晶ポリエステル樹脂は、液晶ポリエステル樹脂の全構造単位100モル%に対して、ジカルボニル単位として、構造単位(V)を2モル%以上含むことが好ましい。構造単位(V)は、テレフタル酸に由来する構造単位である。幅広い成形温度で成形可能であり、成形安定性に優れ、かつ流動性の厚み依存性が小さい観点から、構造単位(V)の含有量は5モル%以上が好ましく、10モル%以上がより好ましく、15モル%以上がさらに好ましい。
 一方、本発明の液晶ポリエステル樹脂は、液晶ポリエステル樹脂の全構造単位100モル%に対して、構造単位(V)を35モル%以下含むことが好ましい。幅広い成形温度で成形可能であり、成形安定性に優れ、かつ流動性の厚み依存性が小さい観点から、構造単位(V)の含有量は30モル%以下が好ましく、25モル%以下がより好ましい。
 また、本発明の液晶ポリエステル樹脂は、下記構造単位(II)および(VI)を含み、下記要件(e)および(f)を満たすことがより好ましい。
0.01≦[VI]≦10     ・・・(e)
[VI]/[II]<1      ・・・(f)
[II]および[VI]は、それぞれ液晶ポリエステル樹脂の全構造単位100モル%に対する、各構造単位(II)および(VI)の含有量(モル%)を示す。
Figure JPOXMLDOC01-appb-C000008
 本発明の液晶ポリエステル樹脂は、液晶ポリエステル樹脂の全構造単位100モル%に対して、ジカルボニル単位として、構造単位(VI)を0.01モル%以上含むことが好ましい。構造単位(VI)は、イソフタル酸に由来する構造単位である。幅広い成形温度で成形可能であり、成形安定性に優れ、かつ流動性の厚み依存性が小さい観点から、構造単位(VI)の含有量は0.05モル%以上が好ましく、0.1モル%以上がより好ましい。
 一方、本発明の液晶ポリエステル樹脂は、液晶ポリエステル樹脂の全構造単位100モル%に対して、構造単位(VI)を10モル%以下含むことが好ましい。幅広い成形温度で成形可能であり、成形安定性に優れ、かつ流動性の厚み依存性が小さい観点から、構造単位(VI)の含有量は7モル%以下が好ましく、4モル%以下がより好ましい。
 他に、ジカルボニル単位として、2,6-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、3,3’-ジフェニルジカルボン酸、2,2’-ジフェニルジカルボン酸、1,2-ビス(フェノキシ)エタン-4,4’-ジカルボン酸、1,2-ビス(2-クロロフェノキシ)エタン-4,4’-ジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸などの芳香族ジカルボン酸に由来する構造単位;アジピン酸、アゼライン酸、セバシン酸、ドデカンジオン酸、ヘキサヒドロテレフタル酸などの脂肪族ジカルボン酸に由来する構造単位;1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸などの脂環式ジカルボン酸に由来する構造単位を、本発明の効果を損なわない範囲で使用することができる。
 本発明の液晶ポリエステル樹脂は、構造単位(VI)と(II)の含有量のモル比([VI]/[II])が1未満であることが好ましい。幅広い成形温度で成形可能であり、成形安定性に優れ、かつ流動性の厚み依存性が小さい観点から、構造単位(VI)と(II)の含有量のモル比([VI]/[II])が、0.9以下であることが好ましい。一方、[VI]/[II]の下限は特に限定されるものではなく、0.005以上が好ましい。幅広い成形温度で成形可能であり、かつ流動性の厚み依存性が小さい観点から、[VI]/[II]は0.01以上が好ましく、0.05以上がより好ましい。
 本発明の液晶ポリエステル樹脂は、前記した温度感応係数と固化開始温度を好適な範囲に制御することがさらに容易となり、幅広い成形温度で成形可能であり、成形安定性に優れ、かつ流動性の厚み依存性がさらに小さくなる観点から、下記構造単位(I)~(VI)を全て含む液晶ポリエステル樹脂であって、下記要件(g)~(l)を満たすことがさらに好ましい。
25≦[I]≦75        ・・・(g)
1≦[II]≦20        ・・・(h)
2≦[III]+[IV]≦35  ・・・(i)
2≦[V]≦35         ・・・(j)
0.01≦[VI]≦10     ・・・(k)
[VI]/[II]<1      ・・・(l)
[I]~[VI]は、それぞれ液晶ポリエステル樹脂の全構造単位100モル%に対する、各構造単位(I)~(VI)の含有量(モル%)を示す。
Figure JPOXMLDOC01-appb-C000009
 各構造単位(I)~(VI)については、上述の通りである。
 また、液晶ポリエステル樹脂には、上記構造単位(I)~(VI)に加えて、p-アミノ安息香酸、p-アミノフェノールなどから生成した構造単位を、本発明の効果を損なわない範囲で使用することができる。
 本発明の液晶ポリエステル樹脂は、上記構造単位(I)~(VI)を上述の範囲で全て含むことにより、前記した温度感応係数と固化開始温度を好適な範囲に制御することがさらに容易となり、幅広い成形温度で成形可能であり、成形安定性に優れ、かつ流動性の厚み依存性が小さいという本発明の効果を発揮するので好ましい。本発明の効果を損なわない観点から、前記構造単位(I)~(VI)の合計含有量が液晶ポリエステル樹脂の全構造単位100モル%に対して99モル%以上であることが好ましく、99.5モル%以上が好ましく、100モル%がより好ましい。
 また、前記構造単位(III)および(IV)の合計量と、構造単位(V)および(VI)の合計量の比([III]+[IV])/([V]+[VI])は、重合性制御の観点から、0.9以上1.1以下が好ましい。
 上記の各構造単位を構成する原料となるモノマーは、各構造単位を形成しうる構造であれば特に限定されない。また、そのようなモノマーの水酸基がアシル化された誘導体や、カルボキシル基がエステル化物、酸ハロゲン化物、酸無水物などになったカルボン酸誘導体などが使用されてもよい。
 液晶ポリエステル樹脂について、各構造単位の含有量の算出法を以下に示す。まず、液晶ポリエステル樹脂を粉砕後、水酸化テトラメチルアンモニウムを添加し、GC/MS分析計(例えば、島津製GCMS-QP5050A)を用いて、熱分解GC/MS測定を行うことによって、各構造単位の含有量を求めることができる。検出されなかった、あるいは検出限界以下の構造単位の含有量は0モル%として計算する。
 液晶ポリエステル樹脂の融点(Tm)は、耐熱性の観点から、280℃以上が好ましく、300℃以上がより好ましく、320℃以上がさらに好ましい。一方、加工性の観点から、液晶ポリエステル樹脂の融点(Tm)は、370℃以下が好ましく、360℃以下がより好ましく、350℃以下がさらに好ましい。なお、Tmは示差走査熱量計を用いて、後述のようにして測定した値である。
 液晶ポリエステル樹脂の溶融粘度は、耐熱性の観点から、3Pa・s以上が好ましく、5Pa・s以上がより好ましく、7Pa・s以上がさらに好ましい。一方、流動性の観点から、液晶ポリエステル樹脂の溶融粘度は、50Pa・s以下が好ましく、30Pa・s以下が好ましく、20Pa・s以下がさらに好ましい。
 なお、この溶融粘度は、液晶ポリエステル樹脂の融点(Tm)+20℃の温度において、かつ、せん断速度1000/秒の条件下で、高化式フローテスターによって測定した値である。
 <液晶ポリエステル樹脂の製造方法>
 本発明の液晶ポリエステル樹脂を製造する方法は、構造単位(I)~(VI)を与えるモノマーを、上述の範囲の含有量で共重合する方法や、構造単位(I)~(VI)を与えるモノマーを上述の範囲外の含有量で共重合して得られた2種類以上の液晶ポリエステル樹脂をブレンドして、構造単位(I)~(VI)の含有量が上述の範囲となるようにする方法がある。ブレンド前の液晶ポリエステル樹脂の性質を引き継がずに、前記した温度感応係数と固化開始温度を好適な範囲に制御することが容易となり、幅広い成形温度で成形可能であり、成形安定性に優れ、かつ流動性の厚み依存性が小さくなる観点から、構造単位(I)~(VI)を与えるモノマーを、上述の範囲の含有量で共重合する方法が好ましい。
 本発明の液晶ポリエステル樹脂を製造する方法としては、特に制限はなく、公知のポリエステルの重縮合法を用いることができる。前記した温度感応係数と固化開始温度を好適な範囲に制御する観点から、構造単位(I)~(VI)からなる液晶ポリエステル樹脂を製造する方法を例にとると、p-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸、4,4’-ジヒドロキシビフェニル、ハイドロキノン、テレフタル酸およびイソフタル酸に無水酢酸を反応させて、フェノール性水酸基をアセチル化した後、脱酢酸重合することによって液晶ポリエステル樹脂を製造する方法が好ましい。
 さらに、前記した製造方法において、以下の1~3の要件を満たすことによって、前記した温度感応係数と固化開始温度を好適な範囲に制御することが容易になるので好ましい。
1.脱酢酸重合を無触媒で行う。
2.脱酢酸重合を昇温条件で行い、145℃から270℃までの平均昇温速度を、0.3~0.8℃/分とする。
3.モノマーをアセチル化する工程において、無水酢酸の使用量を、芳香族ヒドロキシカルボン酸および芳香族ジオールのフェノール性水酸基の合計の1.05~1.20モル当量にする。
 上記要件1について、脱酢酸重合に触媒を添加すると反応が高速で進行する一方、芳香族ヒドロキシカルボン酸からなる長連鎖の生成を誘発する。芳香族ヒドロキシカルボン酸の長連鎖は高結晶であるため、液晶ポリエステル樹脂が芳香族ヒドロキシカルボン酸の長連鎖を含む場合、耐熱性などの物性が向上する反面、不融結晶や異物生成の原因となるだけではなく、溶融状態からの固化結晶化が急速に進行するため、前記した温度感応係数と固化開始温度の制御が困難となる。したがって、脱酢酸重合を無触媒で行うことが好ましい。なお、触媒を添加する場合における触媒の具体例としては、酢酸第一錫、テトラブチルチタネート、炭酸ナトリウムや炭酸カルシウムなどのアルカリ金属やアルカリ土類金属塩を含む金属塩、酢酸カリウムおよび酢酸ナトリウムなどの有機酸とアルカリ金属やアルカリ土類金属類からなる金属塩、三酸化アンチモン、金属マグネシウムなどが挙げられる。
 上記要件2について、重合温度が145℃から270℃の範囲においては、芳香族ヒドロキシカルボン酸および芳香族ジオールのアセチル化からオリゴマー形成までが進行する。このとき、平均昇温速度を、0.3~0.8℃/分にすることによって、オリゴマー形成がエステル交換を伴って進行しやすくなり、主鎖の構成単位のランダム化が促進される。従って、前述した芳香族ヒドロキシカルボン酸の長連鎖生成が抑制されるため、前記した温度感応係数と固化開始温度の制御が容易となる。平均昇温速度は、0.35℃/分以上が好ましく、0.4℃/分以上がより好ましい。また、平均昇温速度は、0.7℃/分以下が好ましく、0.65℃/分以下がより好ましく、0.6℃/分以下がさらに好ましい。
 上記要件3について、無水酢酸の量をフェノール性水酸基の合計の1.05~1.20モル当量とすることによって、オリゴマー形成から分子量が上昇する過程がエステル交換を伴って進行しやすくなり、主鎖の構成単位のランダム化が促進される。従って、前述した芳香族ヒドロキシカルボン酸の長連鎖生成が抑制されるため、前記した温度感応係数と固化開始温度の制御が容易となる。無水酢酸の量は、1.06モル当量以上が好ましく、1.07モル当量以上がより好ましい。また、無水酢酸の量は、1.18以下が好ましく、1.15以下がより好ましい。
 以上のように、上記1~3の要件を満たすことによって、液晶ポリエステル樹脂中の芳香族ヒドロキシカルボン酸の長連鎖生成を抑制することができ、前記した温度感応係数と固化開始温度を好適な範囲に制御することが容易になる。
 <充填材>
 液晶ポリエステル樹脂に機械強度その他の特性を付与するために、本発明の液晶ポリエステル樹脂および充填材を含有する液晶ポリエステル樹脂組成物としてもよい。本発明で使用される充填材は、特に限定されるものではないが、例えば、繊維状、ウィスカー状、板状、粉末状、粒状などの充填材を挙げることができる。具体的には、繊維状、ウィスカー状充填材としては、ガラス繊維;PAN系やピッチ系の炭素繊維;ステンレス繊維、アルミニウム繊維や黄銅繊維などの金属繊維;芳香族ポリアミド繊維や液晶ポリエステル繊維などの有機繊維;石膏繊維、セラミック繊維、アスベスト繊維、ジルコニア繊維、アルミナ繊維、シリカ繊維、酸化チタン繊維、炭化ケイ素繊維、ロックウール、チタン酸カリウムウィスカー、チタン酸バリウムウィスカー、ホウ酸アルミニウムウィスカー、窒化ケイ素ウィスカー、および針状酸化チタンなどが挙げられる。板状充填材としては、マイカ、タルク、カオリン、ガラスフレーク、クレー、二硫化モリブデン、およびワラステナイトなどが挙げられる。粉状、粒状の充填材としては、シリカ、ガラスビーズ、酸化チタン、酸化亜鉛、ポリリン酸カルシウムおよび黒鉛などが挙げられる。上記の充填材は、その表面が公知のカップリング剤(例えば、シラン系カップリング剤、チタネート系カップリング剤など)等の表面処理剤で処理されていてもよい。また、上記の充填材は、2種以上を併用してもよい。
 上記充填材中、特に引張強度や曲げ強度などの機械的強度、耐熱性、寸法安定性に優れる点から、ガラス繊維を使用することが好ましい。ガラス繊維の種類は、一般に樹脂の強化用に用いるものであれば特に限定はなく、例えば、長繊維タイプや短繊維タイプのチョップドストランド、ミルドファイバーなどを挙げることができる。また、薄肉流動性に優れる点から、板状充填材を使用することも好ましい。
 ガラス繊維は、その表面が公知のカップリング剤(例えば、シラン系カップリング剤、チタネート系カップリング剤など等の表面処理剤により処理されていてもよい。また、ガラス繊維は、エチレン/酢酸ビニル共重合体などの熱可塑性樹脂またはエポキシ樹脂などの熱硬化性樹脂で被覆あるいは集束されていてもよい。
 本発明の液晶ポリエステル樹脂組成物には、本発明の効果を損なわない範囲でさらに酸化防止剤、熱安定剤(例えば、ヒンダードフェノール、ハイドロキノン、ホスファイト、チオエーテル類およびこれらの置換体など)、紫外線吸収剤(例えば、レゾルシノール、サリシレート)、亜リン酸塩、次亜リン酸塩などの着色防止剤、滑剤および離型剤(モンタン酸およびその金属塩、そのエステル、そのハーフエステル、ステアリルアルコール、ステアラミドおよびポリエチレンワックスなど)、染料または顔料を含む着色剤、導電剤あるいは着色剤としてカーボンブラック、結晶核剤、可塑剤、難燃剤(臭素系難燃剤、燐系難燃剤、赤燐、シリコーン系難燃剤など)、難燃助剤、および帯電防止剤から選択される通常の添加剤を配合することができる。
 本発明の液晶ポリエステル樹脂組成物において、充填材の含有量は、液晶ポリエステル樹脂100重量部に対し、10~200重量部が好ましい。充填材含有量が10重量部以上であれば、成形品の機械強度を向上させることができる。充填材含有量は15重量部以上がより好ましく、20重量部以上がさらに好ましい。一方、充填材含有量が200重量部以下であれば、成形性および薄肉流動性に優れ、小型薄肉成形品を容易に射出成形可能な液晶ポリエステル樹脂組成物が得られるため好ましい。充填材含有量は150重量部以下がより好ましく、100重量部以下がさらに好ましい。
 上記の充填材および添加剤を配合する方法としては、例えば、液晶ポリエステル樹脂に充填材およびその他の固体状の添加剤等を配合するドライブレンド法や、液晶ポリエステル樹脂に充填材およびその他の液体状の添加剤等を配合する溶液配合法、充填材およびその他の添加剤を液晶ポリエステル樹脂の重合時に添加する方法、液晶ポリエステル樹脂に充填材およびその他の添加剤を溶融混練する方法等を用いることができる。なかでも溶融混練する方法が好ましい。
 溶融混練には、公知の方法を用いることができる。溶融混練に用いる装置としては、例えば、バンバリーミキサー、ゴムロール機、ニーダー、単軸もしくは二軸押出機などを挙げることができる。なかでも二軸押出機が好ましい。溶融混練温度は、液晶ポリエステル樹脂の融点以上、融点+50℃以下が好ましい。
 混練方法としては、1)液晶ポリエステル樹脂、充填材およびその他の添加剤を元込めフィーダーから一括で投入して混練する方法(一括混練法)、2)液晶ポリエステル樹脂とその他の添加剤を元込めフィーダーから投入して混練した後、充填材および必要に応じてその他の添加剤をサイドフィーダーから添加して混練する方法(サイドフィード法)、3)液晶ポリエステル樹脂中にその他の添加剤を高濃度に含む液晶ポリエステル組成物(マスターペレット)を作製し、次いで該添加剤が規定の濃度になるように該マスターペレットを液晶ポリエステル樹脂および充填材と混練する方法(マスターペレット法)などが挙げられる。
 <成形品>
 本発明の液晶ポリエステル樹脂および液晶ポリエステル樹脂組成物は、射出成形、押出成形、紡糸などの溶融成形;プレス成形、溶液キャスト製膜などの成形方法によって、優れた表面外観(色調)、機械的性質および耐熱性を有する成形品に加工することが可能である。ここでいう成形品としては、射出成形品、押出成形品、プレス成形品、シート、パイプ、未延伸フィルム、一軸延伸フィルム、二軸延伸フィルムなどの各種フィルム、未延伸糸、超延伸糸などの各種繊維などが挙げられる。特に加工性の観点から成形方法としては射出成形が好ましい。溶融成形する場合、液晶ポリエステル樹脂組成物の劣化を抑制し、機械強度を向上させる観点から、370℃以下で溶融成形するのが好ましく、360℃以下がより好ましい。
 本発明の液晶ポリエステル樹脂および液晶ポリエステル樹脂組成物を成形して得られる成形品は、電気・電子部品として好ましく用いることができる。電気・電子部品としては、例えば、パソコン、GPS内蔵機器、携帯電話、衝突防止用レーダーなどのミリ波および準ミリ波レーダー、タブレットやスマートフォンなどの移動通信・電子機器のアンテナに用いられるフレキシブルプリント基板、積層用回路基板、プリント配線基板および三次元回路基板;LEDなどのランプリフレクターやランプソケット、移動通信端末の通信基地局スモールセルやマイクロセル部材、アンテナカバー、筐体、センサー、カメラモジュールのアクチュエータ部品、コネクタ、リレーケースおよびベース、スイッチ、コイルボビン、コンデンサーなどが挙げられる。なかでも、幅広い成形温度で成形可能であり、かつ流動性の厚み依存性が小さい観点から、薄肉複雑形状部を有するコネクタ、リレー、スイッチ、コイルボビン、カメラモジュールのアクチュエータ部品などに有用である。
 以下、実施例を用いて本発明を説明するが、本発明は実施例に限定されない。実施例中、液晶ポリエステル樹脂の組成および特性評価は以下の方法により測定した。
 (1)液晶ポリエステル樹脂の組成分析
 粉砕した液晶ポリエステル樹脂ペレット0.1mgに、水酸化テトラメチルアンモニウム25%メタノール溶液2μLを添加し、島津製GCMS-QP5050Aを用いて熱分解GC/MS測定を行い、液晶ポリエステル樹脂中の各構成成分の組成比を求めた。
 (2)液晶ポリエステル樹脂の融点(Tm)測定
 示差走査熱量計DSC-7(パーキンエルマー製)により、液晶ポリエステル樹脂を室温から20℃/分の昇温条件で加熱し、この際に観測される吸熱ピーク温度(Tm)の観測後、Tm+20℃の温度で5分間保持した後、20℃/分の降温条件で室温まで一旦冷却し、再度20℃/分の昇温条件で室温からTm+20℃の温度まで加熱した際に観測される吸熱ピーク温度を融点(Tm)とした。
 (3)液晶ポリエステル樹脂の溶融粘度
 高化式フローテスターCFT-500D(オリフィス0.5φ×10mm)(島津製作所製)を用いて、温度Tm+20℃、せん断速度1000/sの条件で液晶ポリエステル樹脂の溶融粘度を測定した。
 (4)成形可能な温度範囲の評価
 液晶ポリエステル樹脂を、熱風乾燥機を用いて150℃で3時間乾燥した後、ファナックα30C射出成形機(ファナック製)に供し、幅5.0mm×長さ50mm×0.2mm厚みの成形品を成形できる金型を用い、金型温度90℃、射出速度200mm/sの成形条件で、得られる成形品の平均長さが40mmになるように成形圧力を調整して100ショット連続成形を行った。この際、液晶ポリエステル樹脂の融点±0℃~融点+40℃の範囲でシリンダー温度を5℃刻みで変更して成形を行い、得られた試験片について、長さが39mm以下または41mm以上となるショット数が100ショット中5ショット以下となるシリンダー温度を、成形可能な温度とし、成形可能な温度範囲=(成形可能な最高温度)-(成形可能な最低温度)を算出した。この数値が大きいほど、成形可能な温度範囲が広いことを示す。
 (5)流動性の厚み依存性評価
 液晶ポリエステル樹脂を、熱風乾燥機を用いて150℃で3時間乾燥した後、ファナックα30C射出成形機(ファナック製)に供し、幅5.0mm×長さ50mm×厚み0.2mmの成形品を成形できる金型を用い、シリンダー温度が液晶ポリエステル樹脂の融点+10℃、金型温度90℃として、射出速度200mm/sの成形条件で、得られる成形品の平均長さが40mmになる成形条件に調整した。その後、金型を幅5.0mm×長さ50mm×厚み0.5mmの流動末端側に、さらに幅5.0mm×長さ30mm×厚み0.2mmの成形品を成形できる金型に交換した以外は、同様の成形条件で、それぞれ10本成形し、得られた成形品における0.2mm厚部分の平均の流動長を算出した。0.2mm厚み部分の流動長が大きいほど、流動性の厚み依存性が小さく、優れるとした。
 (6)成形安定性(復帰に必要なショット数の評価)
 各実施例および比較例により得られた液晶ポリエステル樹脂ペレットを、熱風乾燥機を用いて150℃で3時間熱風乾燥した後、ファナック製ファナックα30C射出成形機に供し、射出シリンダー温度を液晶ポリエステルの融点+15℃、金型温度:90℃として、射出圧力を100MPa、速度を最低充填速度に設定して射出成形を行い、図3に示すコネクタ成形品を得た。図3はコネクタ成形品の斜視図であり、長尺面(2)と短尺面(3)を有し、外形寸法が幅(6)3mm×高さ(5)2mm×長さ(4)30mmである。隔壁部(8)で区画された端子を有し、端子間距離(7)は0.4mm、製品の最小肉厚部である隔壁部(8)の厚みが0.2mmである。コネクタ成形品の片側の短尺面(3)に設置したピンゲートG1(ゲート径0.3mm)から液晶ポリエステル樹脂または樹脂組成物を充填し、ゲート対面側の壁角部まで十分に充填されていた。100ショット連続成形を行った後、いったん成形を停止し、射出シリンダー温度を150℃まで下げて120分間静置した。その後、射出シリンダー温度を液晶ポリエステルの融点+15℃に上昇させ、前記成形と同じ液晶ポリエステル樹脂または樹脂組成物を用いて、パージショットを1ショット行った後、同条件、同一金型にて連続成形を行い、前記成形と同様にゲート対面側の壁角部まで十分に充填された成形品が得られるまでに必要なショット数、すなわち復帰に必要なショット数を評価した。該壁角部は復帰後に未充填が発生しやすい部位であり、復帰に必要なショット数が10個より少ないと成形安定性に優れる。
 (7)温度感応係数および固化開始温度の評価
 液晶ポリエステル樹脂を、熱風乾燥機を用いて150℃で3時間乾燥した後、レオメーターPhysicaMCR501(アントンパールトン社製レオメーター)を用いて、以下の通り測定を行った。直径25mmのパラレルプレート間に液晶ポリエステル樹脂を配置し、レオメーターの振動測定モードにおいて、パラレルプレートのギャップを1mm、歪み10%かつ周波数1Hzとして、Tm+30℃の温度で5分間保持した後、複素粘度が50,000(Pa・s)となる温度まで0.17℃/秒で降温しながら測定を行い、レオメータースペクトルを得た。x軸をΔT(℃)=測定温度-Tm(℃)、y軸を複素粘度の対数(log(η(Pa・s)))として、図1に示すレオメータースペクトル曲線1を得て、得られたレオメータースペクトルから、前述したとおりの手順により、B(x)(固化開始温度)と点Aと点Bを結ぶ直線wの傾きの絶対値(温度感応係数)を算出した。なお、温度感応係数は以下の式
温度感応係数=|(点Aのlog(η(Pa・s))-点Bのlog(η(Pa・s)))/(20-B(x))|
で求める。
 [実施例1]
 撹拌翼および留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸(HBA)808重量部、6-ヒドロキシ-2-ナフトエ酸(HNA)88重量部、4,4’-ジヒドロキシビフェニル(DHB)229重量部、ハイドロキノン(HQ)161重量部、テレフタル酸(TPA)428重量部、イソフタル酸(IPA)19重量部および無水酢酸1278重量部(フェノール性水酸基合計の1.07当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で120分反応させた後、145℃から360℃まで4時間かけて昇温した(145℃から270℃までの平均昇温速度が0.9℃/分)。その後、重合温度を360℃に保持し、1.0時間かけて1.0mmHg(133Pa)に減圧し、さらに反応を続け、所定の撹拌トルクに到達したところで重合を完了させた。次に、直径6mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状に吐出し、カッターによりペレタイズして液晶ポリエステル樹脂(A-1)を得た。
 [実施例2]
 モノマーの仕込み量を、HBA776重量部、HNA66重量部、DHB251重量部、HQ168重量部、TPA447重量部、IPA29重量部に変更した以外は実施例1と同様にして、液晶ポリエステル樹脂(A-2)を得た。
 [実施例3]
 モノマーの仕込み量を、HBA1018重量部、HNA264重量部、DHB44重量部、HQ135重量部、TPA214重量部、IPA29重量部に変更した以外は実施例1と同様にして、液晶ポリエステル樹脂(A-3)を得た。
 [実施例4]
 モノマーの仕込み量を、HBA905重量部、HNA88重量部、DHB109重量部、HQ193重量部、TPA321重量部、IPA68重量部に変更した以外は実施例1と同様にして、液晶ポリエステル樹脂(A-4)を得た。
 [実施例5]
 モノマーの仕込み量を、HBA469重量部、HNA242重量部、DHB131重量部、HQ309重量部、TPA564重量部、IPA19重量部に変更した以外は実施例1と同様にして、液晶ポリエステル樹脂(A-5)を得た。
 [実施例6]
 モノマーの仕込み量を、HBA986重量部、HNA88重量部、DHB360重量部、HQ13重量部、TPA321重量部、IPA19重量部に変更した以外は実施例1と同様にして、液晶ポリエステル樹脂(A-6)を得た。
 [実施例7]
 モノマーの仕込み量を、HBA792重量部、HNA88重量部、DHB251重量部、HQ155重量部、TPA457重量部、無水酢酸1314重量部(フェノール性水酸基合計の1.10当量)に変更し、145℃から270℃までの平均昇温速度が0.5℃/分となるように昇温した以外は実施例1と同様にして、液晶ポリエステル樹脂(A-7)を得た。
 [実施例8]
 モノマーの仕込み量を、HBA905重量部、HNA88重量部、DHB436重量部、TPA321重量部、IPA68重量部、無水酢酸1314重量部(フェノール性水酸基合計の1.10当量)に変更し、145℃から270℃までの平均昇温速度が0.5℃/分となるように昇温した以外は実施例1と同様にして、液晶ポリエステル樹脂(A-8)を得た。
 [実施例9]
 145℃から270℃までの平均昇温速度が0.5℃/分となるように昇温した以外は実施例1と同様にして、液晶ポリエステル樹脂(A-9)を得た。
 [比較例1]
 モノマーの仕込み量を、HBA870重量部、DHB352重量部、HQ89重量部、TPA292重量部、IPA157重量部に変更した以外は実施例1と同様にして、液晶ポリエステル樹脂(A’-10)を得た。
 [比較例2]
 モノマーの仕込み量を、HBA808重量部、HNA88重量部、DHB501重量部、TPA408重量部、IPA39重量部に変更した以外は実施例1と同様にして、液晶ポリエステル樹脂(A’-11)を得た。
 [比較例3]
 モノマーの仕込み量を、HBA970重量部、HNA88重量部、DHB196重量部、HQ116重量部、TPA350重量部に変更した以外は実施例1と同様にして、液晶ポリエステル樹脂(A’-12)を得た。
 [比較例4]
 モノマーの仕込み量を、HBA743重量部、HNA176重量部、HQ296重量部、TPA292重量部、IPA156重量部に変更した以外は実施例1と同様にして、液晶ポリエステル樹脂(A’-13)を得た。
 [比較例5]
 モノマーの仕込み量を、HBA937重量部、HNA44重量部、DHB261重量部、HQ103重量部、TPA292重量部、IPA97重量部に変更した以外は実施例1と同様にして、液晶ポリエステル樹脂(A’-14)を得た。
 [比較例6]
 モノマーの仕込み量を、HBA792重量部、HNA88重量部、DHB251重量部、HQ155重量部、TPA457重量部、無水酢酸1231重量部(フェノール性水酸基合計の1.03当量)に変更し、触媒として酢酸カリウムを1重量部添加し、145℃から270℃までの平均昇温速度が0.5℃/分となるように昇温した以外は実施例1と同様にして、液晶ポリエステル樹脂(A’-15)を得た。
 [比較例7]
 モノマーの仕込み量を、HBA792重量部、HNA88重量部、DHB251重量部、HQ155重量部、TPA457重量部に変更した以外は実施例1と同様にして、液晶ポリエステル樹脂(A’-16)を得た。
 [比較例8]
 モノマーの仕込み量を、HBA905重量部、HNA88重量部、DHB436重量部、TPA321重量部、IPA68重量部に変更した以外は実施例1と同様にして、液晶ポリエステル樹脂(A’-17)を得た。
 実施例1~9および比較例1~8で得られた液晶ポリエステル樹脂について、上記(1)~(7)の評価を行った結果を表1および2に示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 実施例1および比較例5で得られた液晶ポリエステル樹脂に対して、さらに充填材を加えて、液晶ポリエステル樹脂組成物を作製した。各実施例および比較例において用いた充填材を次に示す。
 充填材(B)
(B-1)日本電気硝子製  ミルドファイバー(40M-10A)
 [実施例10、比較例9]
 サイドフィーダーを備えた東芝機械製TEM35B型2軸押出機を用いて、各製造例で得られた液晶ポリエステル樹脂(A-1、A’-14)を表3に示す配合量でホッパーから投入し、充填材(B-1)を表3に示す配合量でサイドフィーダーから投入し、シリンダー温度を液晶ポリエステル樹脂の融点+10℃に設定し、溶融混練してペレットを得た。得られた液晶ポリエステル樹脂組成物のペレットを熱風乾燥後、(4)~(6)と同様に評価を行った結果を表3に示す。
Figure JPOXMLDOC01-appb-T000012
 表1~3の結果から、温度感応係数が0.020以下であり、固化開始温度が-35~-15℃である液晶ポリエステル樹脂、または該樹脂を用いた液晶ポリエステル樹脂組成物を用いることにより、幅広い成形温度で成形可能であり、成形安定性に優れ、かつ流動性の厚み依存性が小さい成形品を得られることがわかる。
 本発明の液晶ポリエステル樹脂および液晶ポリエステル樹脂組成物は、幅広い成形温度で成形可能であり、成形安定性に優れ、かつ流動性の厚み依存性が小さいため、コネクタ、リレー、スイッチ、コイルボビン、およびカメラモジュールのアクチュエータ部品などの電気・電子部品や機械部品用途に好適である。
1 液晶ポリエステル樹脂のレオメータースペクトル曲線
A レオメータースペクトル曲線上のΔTが20℃の点
A’ レオメータースペクトル曲線上のΔTが10℃の点
t 点A’と点Aを通る直線
C レオメータースペクトル曲線上の融点以下であって複素粘度が10000Pa・sの点
C’ レオメータースペクトル曲線上の融点以下であってレオメータースペクトル曲線上の複素粘度が5000Pa・sの点
u 点Cと点C’を通る直線
B’ 直線tと直線uの交点
v 点B’を通りy軸に平行である直線
B 直線vとレオメータースペクトル曲線との交点
w 点Aと点Bを結ぶ直線
S1 本発明の液晶ポリエスル樹脂のレオメータースペクトル曲線の例
S2 従来の液晶ポリエステル樹脂のレオメータースペクトル曲線の例
L1 図1におけるwに相当する、S1の温度感応係数を表す直線
L2 図1におけるwに相当する、S2の温度感応係数を表す直線
2 長尺面
3 短尺面
4 長さ
5 高さ
6 幅
7 端子間距離
8 隔壁部
G1 ピンゲート

Claims (9)

  1. 芳香族ヒドロキシカルボン酸に由来する構造単位、芳香族ジオールに由来する構造単位および芳香族ジカルボン酸に由来する構造単位を含む液晶ポリエステル樹脂であって、液晶ポリエステル樹脂の全構造単位100モル%に対する、芳香族ヒドロキシカルボン酸に由来する構造単位の含有量が15~80モル%、芳香族ジオールに由来する構造単位の含有量が2~40モル%、芳香族ジカルボン酸に由来する構造単位の含有量が2~40モル%であって、かつ、下記要件(α)を満たす液晶ポリエステル樹脂:
    (α):以下のようにして測定される温度感応係数が0.020以下であって、B(x)が-35~-15℃である;
    液晶ポリエステル樹脂の融点をTm(℃)としたときに、下記のようにして液晶ポリエステル樹脂をレオメーターを用いて測定し、x軸をΔT(℃)=測定温度-Tm(℃)、y軸を複素粘度の対数(log(η(Pa・s)))として得られる液晶ポリエステル樹脂のレオメータースペクトル曲線において、ΔT=20℃の点を点A、ΔT=10℃の点を点A’、融点以下であって複素粘度ηが10000Pa・sの点を点C、複素粘度ηが5000Pa・sの点を点C’とし、点Aと点A’を通る直線を直線t、点Cと点C’を通る直線を直線u、直線tと直線uの交点を点B’、点B’を通りy軸に平行である直線を直線v、直線vとレオメータースペクトル曲線との交点を点Bとしたとき、点Aと点Bを結ぶ直線wの傾きの絶対値を温度感応係数、点BのΔTの値をB(x)と定義する。;
    上記レオメータースペクトル曲線は、レオメーターの振動測定モードにおいて、パラレルプレートのギャップを1mm、歪み10%かつ周波数1Hzとして、Tm+30℃の温度で5分間保持した後、複素粘度が50000(Pa・s)になる温度まで0.17℃/秒で降温しながら得られた曲線である;
    上記液晶ポリエステル樹脂の融点Tmは、示差熱量測定において、液晶ポリエステル樹脂を室温から20℃/分の昇温条件で加熱した際に観測される吸熱ピーク温度Tmの観測後、Tm+20℃の温度で5分間保持した後、20℃/分の降温条件で室温まで一旦冷却し、再度20℃/分の昇温条件で加熱した際に観測される吸熱ピーク温度である。
  2. 下記構造単位(I)~(V)から選ばれる構造単位を含む液晶ポリエステル樹脂であって、下記要件(a)~(d)を満たす請求項1に記載の液晶ポリエステル樹脂:
    25≦[I]≦75        ・・・(a)
    1≦[II]≦20        ・・・(b)
    2≦[III]+[IV]≦35  ・・・(c)
    2≦[V]≦35         ・・・(d)
    [I]~[V]は、液晶ポリエステル樹脂の全構造単位100モル%に対する、下記各構造単位(I)~(V)それぞれの含有量(モル%)を示す。
    Figure JPOXMLDOC01-appb-C000001
  3. 下記構造単位(II)および(VI)を含む液晶ポリエステル樹脂であって、下記要件(e)および(f)を満たす請求項1または2に記載の液晶ポリエステル樹脂:
    0.01≦[VI]≦10     ・・・(e)
    [VI]/[II]<1      ・・・(f)
    [II]および[VI]は、液晶ポリエステル樹脂の全構造単位100モル%に対する、下記各構造単位(II)および(VI)それぞれの含有量(モル%)を示す。
    Figure JPOXMLDOC01-appb-C000002
  4. 下記構造単位(I)~(VI)から選ばれる構造単位を含む液晶ポリエステル樹脂であって、下記要件(g)~(l)を満たす請求項1~3のいずれかに記載の液晶ポリエステル樹脂:
    25≦[I]≦75        ・・・(g)
    1≦[II]≦20        ・・・(h)
    2≦[III]+[IV]≦35  ・・・(i)
    2≦[V]≦35         ・・・(j)
    0.01≦[VI]≦10     ・・・(k)
    [VI]/[II]<1      ・・・(l)
    [I]~[VI]は、液晶ポリエステル樹脂の全構造単位100モル%に対する、下記各構造単位(I)~(VI)それぞれの含有量(モル%)を示す。
    Figure JPOXMLDOC01-appb-C000003
  5. さらに、下記要件(m)を満たす請求項1~4のいずれかに記載の液晶ポリエステル樹脂:
    0<[III]/[IV]<1.5 ・・・(m)
    [III]、[IV]は、液晶ポリエステル樹脂の全構造単位100モル%に対する、前記各構造単位(III)、(IV)それぞれの含有量(モル%)を示す。
  6. さらに、下記要件(n)を満たす請求項1~5のいずれかに記載の液晶ポリエステル樹脂:
    99≦[I]+[II]+[III]+[IV]+[V]+[VI]≦100 ・・・(n)
    [I]~[VI]は、液晶ポリエステル樹脂の全構造単位100モル%に対する、前記各構造単位(I)~(VI)それぞれの含有量(モル%)を示す。
  7. 請求項1~6のいずれかに記載の液晶ポリエステル樹脂100重量部に対し、充填材10~200重量部を含有する、液晶ポリエステル樹脂組成物。
  8. 請求項1~6のいずれかに記載の液晶ポリエステル樹脂、または請求項7に記載の液晶ポリエステル樹脂組成物からなる成形品。
  9. 成形品が、コネクタ、リレー、スイッチ、コイルボビン、およびカメラモジュールのアクチュエータ部品からなる群から選択されるいずれかである請求項8に記載の成形品。
PCT/JP2023/014353 2022-04-11 2023-04-07 液晶ポリエステル樹脂、液晶ポリエステル樹脂組成物およびそれからなる成形品 WO2023199854A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023531579A JPWO2023199854A1 (ja) 2022-04-11 2023-04-07

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-064980 2022-04-11
JP2022064980 2022-04-11
JP2022-085736 2022-05-26
JP2022085736 2022-05-26

Publications (1)

Publication Number Publication Date
WO2023199854A1 true WO2023199854A1 (ja) 2023-10-19

Family

ID=88329719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014353 WO2023199854A1 (ja) 2022-04-11 2023-04-07 液晶ポリエステル樹脂、液晶ポリエステル樹脂組成物およびそれからなる成形品

Country Status (2)

Country Link
JP (1) JPWO2023199854A1 (ja)
WO (1) WO2023199854A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108180A (ja) * 2007-10-30 2009-05-21 Sumitomo Chemical Co Ltd 液晶性ポリエステル樹脂組成物
WO2012090406A1 (ja) * 2010-12-27 2012-07-05 東レ株式会社 液晶性ポリエステルおよびその製造方法
WO2015016141A1 (ja) * 2013-07-31 2015-02-05 東レ株式会社 液晶ポリエステルの製造方法および液晶ポリエステル
KR20170070866A (ko) * 2015-11-26 2017-06-23 세양폴리머주식회사 전방향족 폴리에스테르 수지의 제조방법 및 이에 따라 제조된 전방향족 폴리에스테르 수지
JP2017193704A (ja) * 2016-04-15 2017-10-26 東レ株式会社 液晶ポリエステル樹脂組成物およびそれからなる成形品
WO2018056294A1 (ja) * 2016-09-26 2018-03-29 東レ株式会社 液晶性ポリエステル樹脂組成物、成形品および成形品の製造方法
CN109705322A (zh) * 2018-12-28 2019-05-03 金发科技股份有限公司 一种液晶聚合物的固相增黏方法
CN110982050A (zh) * 2019-12-20 2020-04-10 江门市德众泰工程塑胶科技有限公司 一种热致性液晶聚酯及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108180A (ja) * 2007-10-30 2009-05-21 Sumitomo Chemical Co Ltd 液晶性ポリエステル樹脂組成物
WO2012090406A1 (ja) * 2010-12-27 2012-07-05 東レ株式会社 液晶性ポリエステルおよびその製造方法
WO2015016141A1 (ja) * 2013-07-31 2015-02-05 東レ株式会社 液晶ポリエステルの製造方法および液晶ポリエステル
KR20170070866A (ko) * 2015-11-26 2017-06-23 세양폴리머주식회사 전방향족 폴리에스테르 수지의 제조방법 및 이에 따라 제조된 전방향족 폴리에스테르 수지
JP2017193704A (ja) * 2016-04-15 2017-10-26 東レ株式会社 液晶ポリエステル樹脂組成物およびそれからなる成形品
WO2018056294A1 (ja) * 2016-09-26 2018-03-29 東レ株式会社 液晶性ポリエステル樹脂組成物、成形品および成形品の製造方法
CN109705322A (zh) * 2018-12-28 2019-05-03 金发科技股份有限公司 一种液晶聚合物的固相增黏方法
CN110982050A (zh) * 2019-12-20 2020-04-10 江门市德众泰工程塑胶科技有限公司 一种热致性液晶聚酯及其制备方法

Also Published As

Publication number Publication date
JPWO2023199854A1 (ja) 2023-10-19

Similar Documents

Publication Publication Date Title
KR101867623B1 (ko) 액정 폴리에스테르 조성물 및 그 제조 방법
JP6411702B1 (ja) 全芳香族液晶ポリエステル樹脂
JP5633338B2 (ja) 液晶ポリエステル組成物
JP5155769B2 (ja) 全芳香族ポリエステル及びポリエステル樹脂組成物
JP2018168320A (ja) 液晶ポリエステル組成物および成形体
WO2017135365A1 (ja) 全芳香族液晶ポリエステル樹脂およびその製造方法
CN114805773B (zh) 一种液晶聚合物及其制备方法和应用
JP4281377B2 (ja) 液晶性ポリエステルおよびその組成物
TWI797308B (zh) 液晶聚酯樹脂、其製造方法及由其所構成之成形品
KR20120059382A (ko) 액정 폴리에스테르 조성물
WO2023199854A1 (ja) 液晶ポリエステル樹脂、液晶ポリエステル樹脂組成物およびそれからなる成形品
JP6206174B2 (ja) 液晶性ポリエステル樹脂組成物およびその成形品
TW201843020A (zh) 液晶聚酯組成物的製造方法及液晶聚酯組成物
TW202222900A (zh) 超薄膜注塑用液晶聚酯樹脂組合物以及其製備方法
JP4887645B2 (ja) 液晶性樹脂組成物およびそれからなる成形品
JP2018104527A (ja) 液晶ポリエステル樹脂組成物およびそれからなる成形品
WO2022004630A1 (ja) 樹脂組成物および該樹脂組成物からなる樹脂成形品
TW202405050A (zh) 液晶聚酯樹脂、液晶聚酯樹脂組成物及由其構成之成形品
JP2023109329A (ja) 液晶ポリエステル樹脂、その製造方法、液晶ポリエステル樹脂組成物およびそれからなる成形品
JP2023109330A (ja) 液晶ポリエステル樹脂、その製造方法、液晶ポリエステル樹脂組成物およびそれからなる成形品
JP7446916B2 (ja) 全芳香族ポリエステル樹脂及びそれを含む樹脂組成物、並びに成形品
JP2024042190A (ja) 液晶ポリエステル樹脂組成物およびそれからなる成形品
JP6507783B2 (ja) 液晶性ポリエステル樹脂組成物およびその成形品
JP2022070568A (ja) 液晶ポリエステル樹脂、液晶ポリエステル樹脂組成物およびそれからなる成形品
JP2023155573A (ja) 液晶ポリエステル樹脂組成物及びその製造方法とそれからなる成形品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023531579

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23788273

Country of ref document: EP

Kind code of ref document: A1