WO2018021045A1 - 活性エネルギー線硬化型インキ用樹脂、活性エネルギー線硬化型インキ用組成物、活性エネルギー線硬化型インキおよび硬化膜 - Google Patents

活性エネルギー線硬化型インキ用樹脂、活性エネルギー線硬化型インキ用組成物、活性エネルギー線硬化型インキおよび硬化膜 Download PDF

Info

Publication number
WO2018021045A1
WO2018021045A1 PCT/JP2017/025521 JP2017025521W WO2018021045A1 WO 2018021045 A1 WO2018021045 A1 WO 2018021045A1 JP 2017025521 W JP2017025521 W JP 2017025521W WO 2018021045 A1 WO2018021045 A1 WO 2018021045A1
Authority
WO
WIPO (PCT)
Prior art keywords
active energy
energy ray
curable ink
acid
resin
Prior art date
Application number
PCT/JP2017/025521
Other languages
English (en)
French (fr)
Inventor
啓至郎 大川内
笹倉 敬司
智也 棚次
博之 久田
章裕 森田
Original Assignee
ハリマ化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ハリマ化成株式会社 filed Critical ハリマ化成株式会社
Priority to CN201780042020.7A priority Critical patent/CN109476940B/zh
Priority to US16/320,304 priority patent/US10669439B2/en
Priority to ES17834053T priority patent/ES2955712T3/es
Priority to EP17834053.5A priority patent/EP3492537B1/en
Publication of WO2018021045A1 publication Critical patent/WO2018021045A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/914Polymers modified by chemical after-treatment derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/918Polycarboxylic acids and polyhydroxy compounds in which at least one of the two components contains aliphatic unsaturation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L93/00Compositions of natural resins; Compositions of derivatives thereof
    • C08L93/04Rosin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/102Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
    • C09D11/104Polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/06Unsaturated polyesters having carbon-to-carbon unsaturation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives

Definitions

  • the present invention relates to an active energy ray-curable ink resin, an active energy ray-curable ink composition, an active energy ray-curable ink, and a cured film.
  • active energy ray-curable inks that are cured by active energy rays such as ultraviolet rays and electron beams have been used for printed materials in various industrial fields.
  • the active energy ray curable ink specifically, in the active energy ray curable lithographic printing ink containing (a) a resin, (b) an active energy ray curable compound and (c) a pigment,
  • the resin acid was synthesized by addition reaction of 50 to 100 mol% of ⁇ , ⁇ -unsaturated carboxylic acid or anhydride with respect to the resin acid, and further reaction with polyhydric alcohol, (a ) The resin is contained in an amount of 10 to 40% by weight of the total amount of the ink; (b) the active energy ray-curable compound is contained in an amount of 30 to 75% by weight of the total amount of the ink;
  • An active energy ray-curable lithographic printing ink containing a weight percent has been proposed. Further, it is disclosed that in such an active energy ray-curable lithographic printing ink, it is desirable that the resin acid used contains 50% or more of a conjugated double bond-containing compound.
  • the varnish described in Patent Document 1 has a problem that it does not have sufficient storage stability. Moreover, in the active energy ray-curable lithographic printing ink obtained using the varnish, the reactivity between (a) the resin and (b) the active energy ray-curable compound (monomer) is not sufficient, and as a result, the active energy There is a problem that the mechanical strength of the film (cured film) cured by the wire is not sufficient.
  • inks are required to suppress scattering during use (resistance to misting), and further, depending on the application, gloss and durability (such as wear resistance) of the cured film are required.
  • An object of the present invention is to provide an active energy ray-curable ink resin that is excellent in misting resistance and storage stability, and that can provide a cured film excellent in mechanical strength, gloss, and durability (such as wear resistance).
  • An active energy ray curable ink composition containing the active energy ray curable ink resin and a cured film thereof, and an active energy ray curable ink containing the active energy ray curable ink composition and the cured film It is to provide a cured film.
  • the present invention [1] is an active energy ray-curable ink resin containing a rosin-modified unsaturated polyester resin (A), wherein the rosin-modified unsaturated polyester resin (A) includes rosins (a), ⁇ , ⁇ -unsaturated carboxylic acids (b) and polyols (c) are reaction products of raw material components, and the unsaturated bonds derived from the ⁇ , ⁇ -unsaturated carboxylic acids (b) with respect to the total amount of the raw material components
  • the molar ratio is 0.50 mol / kg or more and 2.00 mol / kg or less, and the rosins (a) contain 90% by mass or more of the stabilized rosin based on the total amount of the rosins (a).
  • the ⁇ , ⁇ -unsaturated carboxylic acids (b) contain ⁇ , ⁇ -unsaturated dicarboxylic acids, and the polyols (c) contain trihydric or higher alcohols for active energy ray-curable inks.
  • the content ratio of the ⁇ , ⁇ -unsaturated monocarboxylic acids is 3% by mass or less based on the total amount of the ⁇ , ⁇ -unsaturated carboxylic acids (b).
  • the active energy ray-curable ink resin described in 1) is included.
  • the present invention [3] is an active energy ray-curable ink according to the above [1] or [2], wherein the diol content is 10% by mass or less based on the total amount of the polyols (c). Contains resin.
  • the ⁇ , ⁇ -unsaturated dicarboxylic acids are at least one compound selected from the group consisting of fumaric acid, maleic acid and maleic anhydride.
  • the active energy ray-curable ink resin according to any one of the above.
  • the invention [5] provides the active energy ray-curable ink according to any one of the above [1] to [4], wherein the stabilizing rosin is a hydrogenated rosin and / or a disproportionated rosin. Contains resin.
  • the present invention [6] provides a mass ratio of the ⁇ , ⁇ -unsaturated carboxylic acids (b) to the rosins (a) (the ⁇ , ⁇ -unsaturated carboxylic acids (b) / the rosins (a)).
  • the active energy ray-curable ink resin according to any one of [1] to [5] above, which is 0.35 or more and 2 or less.
  • the present invention [7] provides an active energy ray curable ink comprising the active energy ray curable resin according to any one of the above [1] to [6] and an active energy ray curable monomer. Contains the composition for use.
  • the present invention [8] includes an active energy ray-curable ink containing the active energy ray-curable ink composition according to the above [7] and a pigment.
  • This invention [9] contains the cured film which is a hardened
  • the present invention [10] includes a cured film that is a cured product of the active energy ray-curable ink described in [8] above.
  • Active energy ray-curable ink resin of the present invention active energy ray-curable ink composition containing the active energy ray-curable ink resin, and activity containing the active energy ray-curable ink composition
  • the energy ray curable ink is excellent in misting resistance and storage stability, and can provide a cured film excellent in mechanical strength, gloss and durability (such as wear resistance).
  • the cured film of the present invention is a cured product of the active energy ray-curable ink composition of the present invention or a cured product of the active energy ray-curable ink of the present invention, it has mechanical strength, gloss and durability. Excellent wear resistance.
  • the resin for an active energy ray-curable ink of the present invention contains a rosin-modified unsaturated polyester resin (A), and preferably comprises a rosin-modified unsaturated polyester resin (A).
  • the rosin-modified unsaturated polyester resin (A) is a reaction product (polymer) of raw material components containing at least rosins (a), ⁇ , ⁇ -unsaturated carboxylic acids (b) and polyols (c).
  • the rosins (a) contain, as an essential component, a rosin modified product obtained by stabilizing natural rosin (hereinafter referred to as “stabilized rosin”).
  • Natural rosin is a natural resin mainly composed of resin acid.
  • Resin acid is a compound having a carboxyl group derived from a tree.
  • a resin acid having a conjugated double bond such as abietic acid, parastrinic acid, neoabietic acid, levopimaric acid, for example, dehydroabietic acid
  • resin acids having no conjugated double bond such as dihydroabietic acid and tetrahydroabietic acid.
  • examples of the natural rosin include tall oil rosin, gum rosin, and wood rosin. These natural rosins can be used alone or in combination of two or more.
  • the natural rosin is preferably a gum rosin.
  • the stabilization treatment is a treatment for reducing or eliminating the conjugated double bond of the resin acid having the conjugated double bond described above, and specifically includes, for example, a hydrogenation treatment, a disproportionation treatment, a polymerization treatment, and the like.
  • a hydrogenation process and a disproportionation process are mentioned.
  • the stabilized rosin examples include hydrogenated rosin obtained by hydrogenating natural rosin, disproportionated rosin obtained by disproportionating natural rosin, and polymerized rosin obtained by polymerizing natural rosin. It is done.
  • the stabilized rosin includes a hydrogenated product of polymerized rosin.
  • Stabilized rosin can be used alone or in combination of two or more.
  • the stabilized rosin is preferably a hydrogenated rosin or a disproportionated rosin, more preferably a disproportionated rosin, from the viewpoint of mechanical strength, gloss and durability (abrasion resistance, etc.).
  • the rosins (a) can contain, as an optional component, rosin that has not been stabilized (hereinafter referred to as non-stabilized rosin).
  • unstabilized rosin examples include the natural rosin described above.
  • the content ratio of the non-stabilized rosin is within a range that does not impair the excellent effects of the present invention. Specifically, from the viewpoint of storage stability, gloss, mechanical strength, and durability (such as friction resistance), It is 10 mass% or less with respect to the total amount of rosins (a), Preferably, it is 5 mass% or less, More preferably, it is 0 mass%. Moreover, the content rate of the stabilization process rosin is 90 mass% or more with respect to the total amount of rosins (a), Preferably, it is 95 mass% or more, More preferably, it is 100 mass%.
  • the rosins (a) are particularly preferably a stabilized rosin from the viewpoints of storage stability, gloss, mechanical strength, and durability (such as friction resistance).
  • the storage stability of the active energy ray-curable ink composition (described later) and the active energy ray-curable ink may not be sufficiently secured. .
  • the unstabilized rosin is easily oxidized because it contains a relatively large amount of resin acid having a conjugated double bond. Therefore, when an active energy ray-curable ink resin obtained by using an unstabilized rosin in excess is used in an active energy ray-curable ink composition (described later), an active energy ray-curable ink composition ( (To be described later) is in a state where radicals are likely to be generated due to formation of a peroxide or the like. As a result, it is presumed that the storage stability is not sufficient, for example, the active energy ray-curable ink composition (described later) is easily gelled.
  • the stabilized rosin has reduced or eliminated conjugated double bonds. Therefore, when an active energy ray-curable ink resin obtained by using rosins (a) by using a relatively large amount of stabilized rosin is used in an active energy ray-curable ink composition (described later), active energy ray curing is achieved.
  • the mold ink composition (described later) is in a state in which radicals are hardly generated. As a result, the storage stability can be improved, for example, the gelation of the active energy ray-curable ink composition (described later) is suppressed.
  • the double bond used in the Diels-Alder reaction is reduced or eliminated. Therefore, when the rosins (a) contain a relatively large amount of the stabilized rosin, the addition of ⁇ , ⁇ -unsaturated carboxylic acids (b) (described later) to the rosins (a) is suppressed. As a result, the ⁇ , ⁇ -unsaturated carboxylic acid (b) (described later) is introduced into the main chain of the rosin-modified unsaturated polyester resin (A).
  • the content ratio of rosins (a) is, for example, 1 part by mass or more, preferably 3 parts by mass or more, more preferably 5 parts by mass or more, with respect to 100 parts by mass of the total amount of raw material components. It is not more than part by mass, preferably not more than 60 parts by mass, and more preferably not more than 50 parts by mass.
  • the content ratio of the rosins (a) is within the above range, excellent gloss, mechanical strength and durability (such as friction resistance) can be secured, and the active energy ray-curable monomer (described later) can be used. Excellent compatibility.
  • the ⁇ , ⁇ -unsaturated carboxylic acids (b) contain ⁇ , ⁇ -unsaturated dicarboxylic acids as essential components.
  • the ⁇ , ⁇ -unsaturated dicarboxylic acids include carboxylic acids having two carboxyl groups in one molecule and an unsaturated bond between the ⁇ -position and ⁇ -position carbons of at least one carboxyl group, and The acid anhydride is mentioned.
  • ⁇ , ⁇ -unsaturated dicarboxylic acids include fumaric acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, citraconic acid, citraconic anhydride, mesaconic acid, glutaconic acid and the like.
  • ⁇ , ⁇ -unsaturated dicarboxylic acids can be used alone or in combination of two or more.
  • the ⁇ , ⁇ -unsaturated dicarboxylic acids are preferably fumaric acid, maleic acid and maleic anhydride from the viewpoint of mechanical strength, gloss and durability (such as abrasion resistance), more preferably fumaric acid, Maleic anhydride is mentioned, More preferably, maleic anhydride is mentioned.
  • the ⁇ , ⁇ -unsaturated carboxylic acids (b) can contain ⁇ , ⁇ -unsaturated monocarboxylic acids as optional components.
  • Examples of the ⁇ , ⁇ -unsaturated monocarboxylic acids include carboxylic acids having one carboxyl group in one molecule and an unsaturated bond between the ⁇ -position carbon and the ⁇ -position carbon of the carboxyl group.
  • ⁇ , ⁇ -unsaturated monocarboxylic acids include acrylic acid and methacrylic acid (hereinafter, acryl and methacryl may be collectively referred to as (meth) acryl).
  • ⁇ , ⁇ -unsaturated monocarboxylic acids can be used alone or in combination of two or more.
  • the content ratio of the ⁇ , ⁇ -unsaturated monocarboxylic acids is within a range that does not impair the excellent effects of the present invention. Specifically, from the viewpoint of gloss of a cured film (described later) and productivity, ⁇ , ⁇ -unsaturated carboxylic acids (b), for example, 3% by mass or less, preferably 1% by mass or less, and more preferably 0% by mass.
  • the content ratio of ⁇ , ⁇ -unsaturated monocarboxylic acids is 1% by mass or less based on the total amount of ⁇ , ⁇ -unsaturated carboxylic acids (b).
  • the reaction is performed in two stages in the production of the rosin-modified unsaturated polyester resin (A) as described in detail later.
  • ⁇ , ⁇ -unsaturated monocarboxylic acids are likely to undergo self-polymerization by radical reaction, strict control of the reaction conditions is required. Therefore, from the viewpoint of productivity, the ⁇ , ⁇ -unsaturated carboxylic acids (b) preferably do not contain ⁇ , ⁇ -unsaturated monocarboxylic acids.
  • the content ratio of the ⁇ , ⁇ -unsaturated dicarboxylic acids is 97% by mass or more based on the total amount of the ⁇ , ⁇ -unsaturated carboxylic acids (b).
  • it is 99 mass% or more, More preferably, it is 100 mass%.
  • the ⁇ , ⁇ -unsaturated carboxylic acids (b) are particularly preferably ⁇ , ⁇ -unsaturated dicarboxylic acids from the viewpoint of productivity.
  • the content ratio of the ⁇ , ⁇ -unsaturated carboxylic acid (b) is, for example, 1 part by mass or more, preferably 3 parts by mass or more, more preferably 5 parts by mass or more with respect to 100 parts by mass of the total amount of the raw material components. For example, 98 parts by mass or less, preferably 50 parts by mass or less, and more preferably 30 parts by mass or less.
  • the content ratio of the ⁇ , ⁇ -unsaturated carboxylic acid (b) is in the above range, excellent gloss, mechanical strength and durability (such as friction resistance) can be ensured.
  • the mass ratio of ⁇ , ⁇ -unsaturated carboxylic acids (b) to rosins (a) is, for example, 0.10 or more, Preferably, it is 0.20 or more, more preferably 0.28 or more, further preferably 0.35 or more, for example, 10 or less, preferably 3 or less, more preferably 2 or less.
  • the mass ratio of the ⁇ , ⁇ -unsaturated carboxylic acids (b) to the rosins (a) is in the above range, excellent gloss, mechanical strength and durability (such as friction resistance) can be ensured.
  • Polyols (c) are compounds having two or more hydroxyl groups in one molecule.
  • the polyols (c) contain a trivalent or higher alcohol as an essential component.
  • the trivalent or higher alcohol is a compound having three or more hydroxyl groups in one molecule.
  • glycerin 1,1,1-trimethylolethane, 1,1,1-trimethylolpropane (hereinafter simply referred to as “glycerin”).
  • Trioxyisobutane 1,2,3-butanetriol, 1,2,3-pentanetriol, 2,3,4-pentanetriol, 1,2,5-hexanetriol
  • a trihydric alcohol such as pentaerythritol, a pentahydric alcohol such as dipentaerythritol, glucose, sucrose, sorbitol, and the like.
  • these alkylene oxides ethylene oxide, propylene oxide, etc.
  • Examples include adducts.
  • These trivalent or higher alcohols can be used alone or in combination of two or more.
  • the trihydric or higher alcohol is preferably a trihydric alcohol or a tetrahydric alcohol, more preferably a trihydric alcohol, and further preferably glycerin or trimethylol.
  • a propane is mentioned, Especially preferably, a glycerol is mentioned.
  • the polyol (c) can contain a divalent or lower alcohol as an optional component.
  • a dihydric or lower alcohol is a compound having one or more and two or less hydroxyl groups in one molecule, for example, a monohydric alcohol such as methanol, ethanol, propanol, isopropanol, such as ethylene glycol, 1,2- Propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 1 , 10-decanediol, 4,4'-dihydroxyphenylpropane, 4,4'-dihydroxymethylmethane, diethylene glycol, triethylene glycol, polyethylene glycol (PEG), dipropylene glycol, polytetramethylene glycol (PTMG), polypropylene glycol (PPG), 1,4-cyclohexanedimethanol, 1,4
  • dihydric or lower alcohols can be used alone or in combination of two or more.
  • the dihydric or lower alcohol is preferably a dihydric alcohol, and more preferably 1,6-hexanediol.
  • the content ratio of the dihydric or lower alcohol is a range that does not impair the excellent effect of the present invention.
  • the content rate of trihydric or more alcohol is 90 mass% or more with respect to the total amount of a polyol (c), Preferably, it is 95 mass% or more, More preferably, it is 100 mass%.
  • the polyol (c) is particularly preferably a trivalent or higher alcohol from the viewpoint of glossiness and misting resistance.
  • the content ratio of the polyols (c) is, for example, 1 part by mass or more, preferably 5 parts by mass or more, more preferably 10 parts by mass or more, with respect to 100 parts by mass of the total amount of the raw material components. It is not more than part by mass, preferably not more than 60 parts by mass, more preferably not more than 40 parts by mass.
  • the content ratio of the polyols (c) is in the above range, a cured film having excellent misting resistance and storage stability, and excellent mechanical strength, gloss and durability (such as wear resistance) can be obtained.
  • the raw material component of the rosin-modified unsaturated polyester resin (A) may contain, as necessary, carboxylic acids (d) excluding ⁇ , ⁇ -unsaturated carboxylic acids (above (b)) (hereinafter referred to as other carboxylic acids ( d))).
  • carboxylic acids (d) include, for example, carboxylic acids having one or more carboxyl groups in one molecule and no unsaturated bond between the ⁇ -position carbon and the ⁇ -position carbon in all carboxyl groups. And acid anhydrides thereof. More specifically, for example, monobasic carboxylic acids having no unsaturated bond between the ⁇ -position carbon and the ⁇ -position carbon, and a polybasic having no unsaturated bond between the ⁇ -position carbon and the ⁇ -position carbon. Carboxylic acid and the like.
  • Examples of monobasic carboxylic acids having no unsaturated bond between the ⁇ -position carbon and the ⁇ -position carbon include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, lauric acid, stearic acid, and 2-ethylhexane.
  • Aliphatic monobasic carboxylic acids such as acids and cyclohexane acids, for example, aromatic monobasic carboxylic acids such as benzoic acid, methylbenzoic acid, para-t-butylbenzoic acid, orthobenzoylbenzoic acid, and naphthoic acid It is done.
  • These monobasic carboxylic acids having no unsaturated bond between the ⁇ -position carbon and the ⁇ -position carbon can be used alone or in combination of two or more.
  • the monobasic carboxylic acid having no unsaturated bond between the ⁇ -position carbon and the ⁇ -position carbon is preferably an aromatic monobasic carboxylic acid, more preferably benzoic acid, para-t-butyl. Benzoic acid is mentioned.
  • Examples of the polybasic carboxylic acid having no unsaturated bond between the ⁇ -position carbon and the ⁇ -position carbon include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, and sebacic acid.
  • polybasic carboxylic acids having no unsaturated bond between the ⁇ -position carbon and the ⁇ -position carbon can be used alone or in combination of two or more.
  • Preferred examples of the polybasic carboxylic acid having no unsaturated bond between the ⁇ -position carbon and the ⁇ -position carbon include dibasic carboxylic acids and acid anhydrides thereof, and more preferred are phthalic acid, tetrahydrophthalic acid, and the like. Examples include acid anhydrides of acids and adipic acid.
  • carboxylic acids (d) for example, animal and plant fatty acids including aliphatic monobasic carboxylic acids such as coconut oil fatty acid, soybean oil fatty acid, and palm kernel oil fatty acid are also included.
  • carboxylic acids (d) can be used alone or in combination of two or more.
  • the content ratio is, for example, with respect to 100 parts by mass of the total amount of raw material components, 5 parts by mass or more, preferably 10 parts by mass or more, for example, 70 parts by mass or less, preferably 50 parts by mass or less.
  • the reaction method is not particularly limited.
  • the above raw material components are mixed and heated in the presence of a solvent as necessary.
  • the solvent is not particularly limited.
  • petroleum hydrocarbon solvents such as hexane and mineral spirits
  • aromatic hydrocarbon solvents such as benzene, toluene, and xylene, such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and diisobutyl.
  • Ketone solvents such as ketone and cyclohexanone, for example, ester solvents such as methyl acetate, ethyl acetate, butyl acetate, ⁇ -butyrolactone, propylene glycol monomethyl ether acetate, such as N, N-dimethylformamide, N, N-dimethylacetamide
  • organic solvents such as aprotic polar solvents such as dimethyl sulfoxide, N-methylpyrrolidone and pyridine.
  • solvents can be used alone or in combination of two or more.
  • the mixing ratio of the solvent is not particularly limited and is appropriately set according to the purpose and application.
  • a solvent azeotropic with water for example, an azeotropic dehydrating agent such as xylene or toluene
  • an ester reaction is induced and water generated by the reaction is distilled.
  • a solvent azeotropic with water for example, an azeotropic dehydrating agent such as xylene or toluene
  • an ester reaction is induced and water generated by the reaction is distilled.
  • finish of reaction you may remove a solvent as needed.
  • an ester reaction can be induced and the resulting water can be distilled by a known method.
  • an esterification catalyst can be added as necessary.
  • the esterification catalyst is not particularly limited.
  • organic sulfonic acids such as benzenesulfonic acid, p-toluenesulfonic acid, p-dodecylbenzenesulfonic acid, methanesulfonic acid, ethanesulfonic acid, for example, sulfuric acid, hydrochloric acid, etc.
  • Mineral acids such as tetrabutyl zirconate, tetraisopropyl titanate, tetraisobutyl titanate, aluminum oxide, titanium oxide, magnesium oxide, magnesium hydroxide, magnesium acetate, calcium oxide, calcium hydroxide, calcium acetate, zinc oxide, zinc acetate, etc.
  • Metal catalysts such as trifluoromethyl sulfate and trifluoromethyl acetic acid.
  • esterification catalysts can be used alone or in combination of two or more.
  • the addition ratio of the esterification catalyst is not particularly limited, and is appropriately set according to the purpose and application.
  • the reaction temperature is, for example, 150 ° C. or higher, preferably 200 ° C. or higher, for example, 280 ° C. or lower, preferably 250 ° C. or lower.
  • the reaction time is, for example, 4 hours or more, preferably 6 hours or more, for example, 20 hours or less, preferably 15 hours or less.
  • the method of mixing the raw material components is not particularly limited, and the raw material components may be blended in a lump or sequentially. From the viewpoint of productivity, the above raw materials are preferably blended together.
  • the raw material component contains acrylic acid and / or methacrylic acid (hereinafter collectively referred to as (meth) acrylic acid) as an optional component ( ⁇ , ⁇ -unsaturated monocarboxylic acid), preferably First, components other than (meth) acrylic acid are reacted (first stage reaction), and then the obtained reaction product and (meth) acrylic acid are mixed and reacted (second stage reaction).
  • the reaction conditions in the first stage reaction are the same as described above, for example, under an inert gas atmosphere and atmospheric pressure
  • the reaction temperature is, for example, 150 ° C. or higher, preferably 200 ° C. or higher. 280 ° C. or lower, preferably 250 ° C. or lower.
  • the reaction time is, for example, 4 hours or more, preferably 6 hours or more, for example, 20 hours or less, preferably 15 hours or less.
  • the reaction conditions in the second stage reaction are, for example, an inert gas atmosphere and atmospheric pressure
  • the reaction temperature is, for example, 90 ° C. or higher, preferably 95 ° C. or higher, for example, 120 ° C. or lower, preferably 110 ° C. or lower.
  • the reaction time is, for example, 8 hours or more, preferably 10 hours or more, for example, 20 hours or less, preferably 15 hours or less.
  • a polymerization inhibitor is blended to prevent self-polymerization of (meth) acrylic acid.
  • the polymerization inhibitor include hydroquinone, methoxyphenol, methyl hydroquinone, 2-tertiary butyl hydroquinone, p-benzoquinone, tertiary butyl p-benzoquinone, phenothiazine and the like. These polymerization inhibitors can be used alone or in combination of two or more.
  • the blending ratio of the polymerization inhibitor is not particularly limited, and is appropriately set according to the purpose and application.
  • Rosin-modified unsaturated polyester resin (A) is a raw material containing rosins (a), ⁇ , ⁇ -unsaturated carboxylic acids (b) and polyols (c) (and other carboxylic acids (d) if necessary)
  • a rosin-modified unsaturated polyester resin (A) is obtained as a reaction product of the components.
  • the unsaturated bond molar ratio derived from the ⁇ , ⁇ -unsaturated carboxylic acids (b) calculated based on the raw material components is 0.50 mol / kg or more, preferably 0. It is 0.80 mol / kg or more and 2.00 mol / kg or less, preferably 1.90 mol / kg or less.
  • the unsaturated bond molar ratio is calculated from the raw material charge ratio according to the following formula.
  • Unsaturated bond molar ratio [number of moles of ⁇ , ⁇ -unsaturated carboxylic acids (b) (mol)] / [total mass of raw material components (kg)] If the unsaturated bond molar ratio exceeds the above lower limit, the content of unsaturated bonds derived from ⁇ , ⁇ -unsaturated carboxylic acids (b) in the rosin-modified unsaturated polyester resin (A) is relatively large. Reactive points (crosslinking points) with the active energy ray-curable monomer (described later) are relatively large. Therefore, a cured film having excellent mechanical strength (hardness) can be obtained. Moreover, if the unsaturated bond molar ratio is less than the said upper limit, the outstanding storage stability is securable.
  • the weight average molecular weight (standard polystyrene equivalent molecular weight by GPC measurement) of the rosin-modified unsaturated polyester resin (A) is, for example, 5000 or more, preferably 10,000 or more, for example, 100,000 or less, preferably 70000 or less. is there.
  • the acid value of the rosin-modified unsaturated polyester resin (A) is, for example, 1.0 mgKOH / g or more, preferably 2.0 mgKOH / g or more, for example, 20 mgKOH / g or less, preferably 10 mgKOH / g. It is as follows.
  • the active energy ray-curable ink resin may contain a known additive as required in addition to the rosin-modified unsaturated polyester resin (A).
  • additives include fillers, thickeners, foaming agents, antioxidants, light-resistant stabilizers, heat-resistant stabilizers, and flame retardants.
  • additives can be used alone or in combination of two or more.
  • the addition amount and timing of addition of the additive are not particularly limited, and are appropriately set according to the purpose and application.
  • the rosin (a) used as a raw material component contains the stabilized rosin in the above lower limit (90% by mass) or more. Since the stabilized rosin has a reduced double bond used in the Diels-Alder reaction, when the rosin (a) contains a relatively large amount of the stabilized rosin, ⁇ , Addition of ⁇ -unsaturated dicarboxylic acid is suppressed. As a result, the ⁇ , ⁇ -unsaturated dicarboxylic acid (b) is introduced into the main chain of the rosin-modified unsaturated polyester resin (A). Therefore, relatively many unsaturated bonds derived from the ⁇ , ⁇ -unsaturated dicarboxylic acid (b) are introduced into the rosin-modified unsaturated polyester resin (A).
  • ⁇ , ⁇ -unsaturated dicarboxylic acid and trihydric or higher alcohol are used as raw material components, and the rosin-modified unsaturated polyester resin (A)
  • the unsaturated bond molar ratio is adjusted to a predetermined range.
  • an active energy ray-curable ink resin includes an active energy ray-curable ink composition (hereinafter sometimes referred to as varnish) and an active energy ray-curable ink (hereinafter sometimes referred to as ink). Is preferably used in the production of
  • the active energy ray curable ink composition (varnish) contains the above active energy ray curable ink resin and an active energy ray curable monomer.
  • the active energy ray-curable monomer is a photopolymerizable polyfunctional compound having one or more photopolymerizable groups copolymerizable with the active energy ray-curable ink resin by irradiation with active energy rays, for example, Examples thereof include a photopolymerizable monofunctional compound having one photopolymerizable group in one molecule, a photopolymerizable polyfunctional compound having two or more photopolymerizable groups in one molecule, and the like.
  • Examples of the photopolymerizable monofunctional compound include 2-hydroxyethyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, isooctyl (meth) acrylate, and isomyristyl (meth) acrylate.
  • Isostearyl (meth) acrylate isobornyl (meth) acrylate, ethoxy-diethylene glycol (meth) acrylate, 2-ethylhexyl-carbitol (meth) acrylate, neopentyl glycol benzoate (meth) acrylate, nonylphenoxy polyethylene glycol (meth) acrylate Epichlorohydrin (ECH) modified phenoxy (meth) acrylate, phenoxyethyl (meth) acrylate, paracumylphenol Alkylene oxide modified (meth) acrylate, vinyl pyrrolidone, vinyl caprolactam, and the like acryloyl morpholine.
  • ECH Epichlorohydrin
  • Examples of the photopolymerizable polyfunctional compound include a photopolymerizable bifunctional compound having two photopolymerizable groups in one molecule, a photopolymerizable trifunctional compound having three photopolymerizable groups in one molecule, Photopolymerizable tetrafunctional compound having four photopolymerizable groups in the molecule, photopolymerizable pentafunctional compound having five photopolymerizable groups in the molecule, and light having six photopolymerizable groups in the molecule Examples thereof include polymerizable hexafunctional compounds.
  • Examples of the photopolymerizable bifunctional compound include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, and alkylene glycol di (meth) acrylate such as neopentyl glycol di (meth) acrylate; diethylene glycol di (meth) Polyalkylene glycol di (meth) acrylates such as acrylate, tetraethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate; 1,4-butanediol di (meth) acrylate 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, dicyclopentadiene di (meth) acrylate, neopentylglycol Pete di (meth) acrylate, hydroxypivalate neopenty
  • Examples of the photopolymerizable trifunctional compound include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, tris (acryloxyethyl) isocyanurate, or alkylene oxide modified products thereof, isocyanuric acid alkylene oxide modified products. And tri (meth) acrylate of the body.
  • photopolymerizable tetrafunctional compound examples include ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, and their modified alkylene oxides.
  • photopolymerizable pentafunctional compound examples include dipentaerythritol penta (meth) acrylate or their modified alkylene oxides.
  • photopolymerizable hexafunctional compound examples include dipentaerythritol hexa (meth) acrylate, pentaerythritol triacrylate hexamethylene diisocyanate urethane prepolymer (trade name “UA-306H” manufactured by Kyoeisha Chemical), caprolactone-modified dipentaerythritol hexa. (Meth) acrylates or their modified alkylene oxides are exemplified.
  • active energy ray-curable monomers can be used alone or in combination of two or more.
  • the active energy ray-curable monomer is preferably an active energy ray-curable monomer having a relatively high boiling point (for example, 200 ° C. or higher), more preferably dipentaerythritol, from the viewpoint of suppressing volatility.
  • a relatively high boiling point for example, 200 ° C. or higher
  • dipentaerythritol from the viewpoint of suppressing volatility.
  • examples include hexa (meth) acrylate and trimethylolpropane tri (meth) acrylate.
  • the active energy ray curable ink composition is not particularly limited, and the active energy ray curable ink resin and the active energy ray curable monomer may be mixed.
  • the content ratio of the active energy ray-curable ink resin and the active energy ray-curable monomer is the active energy ray-curing amount with respect to 100 parts by mass of the total amount of the active energy ray-curable ink resin and the active energy ray-curable monomer.
  • mold ink is 15 mass parts or more, for example, Preferably, it is 25 mass parts or more, for example, 80 mass parts or less, Preferably, it is 75 mass parts or less.
  • an active energy ray hardening-type monomer is 20 mass parts or more, for example, Preferably, it is 25 mass parts or more, for example, 85 mass parts or less, Preferably, it is 75 mass parts or less.
  • the active energy ray-curable ink composition can contain a known additive as required.
  • additives examples include the polymerization inhibitors described above, and further, fillers, thickeners, foaming agents, antioxidants, light-resistant stabilizers, heat-resistant stabilizers, flame retardants, and the like.
  • additives can be used alone or in combination of two or more.
  • the addition amount and timing of addition of the additive are not particularly limited, and are appropriately set according to the purpose and application.
  • an active energy ray-curable ink composition (varnish) is suitably used in the production of an active energy ray-curable ink.
  • the active energy ray-curable ink contains the active energy ray-curable ink composition (varnish) and a pigment.
  • the pigment is not particularly limited, and examples thereof include inorganic pigments and organic pigments.
  • inorganic pigment examples include chrome yellow, zinc yellow, bitumen, barium sulfate, cadmium red, titanium oxide, zinc white, petal, alumina white, calcium carbonate, ultramarine, carbon black, graphite, aluminum powder, and bengara. It is done. These inorganic pigments can be used alone or in combination of two or more.
  • organic pigment examples include soluble azo pigments such as ⁇ -naphthol pigments, ⁇ -oxynaphthoic acid pigments, ⁇ -oxynaphthoic acid anilide pigments, acetoacetanilide pigments, pyrazolone pigments, ⁇ -naphthol pigments, and the like.
  • Insoluble azo pigments such as pigments, ⁇ -oxynaphthoic acid anilide pigments, acetoacetanilide monoazo pigments, acetoacetanilide disazo pigments, pyrazolone pigments, copper phthalocyanine blue, halogenated (chlorine or brominated) copper phthalocyanine blue
  • Phthalocyanine pigments such as sulfonated copper phthalocyanine blue, metal-free phthalocyanine, quinacridone pigments, dioxazine pigments, selenium pigments (pyrantron, anthrone, indanthrone, anthrapyrimidine, flavantron, thioindigo, anthra Quinone-based, perinone-based, and perylene-based pigments), isoindolinone-based pigments, metal complex-based pigments, quinophthalone-based pigments, and other polycyclic pigments and heterocyclic pigments.
  • These organic pigments can be used alone
  • These pigments can be used alone or in combination of two or more.
  • the active energy ray-curable ink composition (varnish) and the pigment are mixed in an active energy ray-curable ink with respect to 100 parts by mass of the total amount of the active energy ray-curable ink composition (varnish) and the pigment.
  • the composition (varnish) is, for example, 30 parts by mass or more, preferably 40 parts by mass or more, for example, 95 parts by mass or less, preferably 90 parts by mass or less.
  • the pigment is, for example, 5 parts by mass or more, preferably 10 parts by mass or more, for example, 70 parts by mass or less, preferably 60 parts by mass or less.
  • the active energy ray-curable ink can further contain the above-mentioned active energy ray-curable monomer as necessary.
  • the amount of the active energy ray-curable monomer compounded when preparing the active energy ray-curable ink is, for example, 3 mass per 100 mass parts of the total amount of the active energy ray-curable ink composition (varnish) and the pigment. Part or more, preferably 5 parts by weight or more, for example, 45 parts by weight or less, preferably 35 parts by weight or less.
  • the active energy ray-curable ink can further contain a known photopolymerization initiator, if necessary.
  • the photopolymerization initiator is not particularly limited.
  • 2,2-dimethoxy-1,2-diphenylethane-1-one 1-hydroxycyclohexyl phenyl ketone, 1-cyclohexyl phenyl ketone, 2-hydroxy-2- Methyl-1-phenyl-propan-1-one, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-methyl-1- ( 4-methylthiophenyl) -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, bis (2,4,6-trimethylbenzoyl) -Phenylphosphine oxide, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, 4-methyl Benzophenone, benzophenone, 2-hydroxy-1- ⁇ 4- [4- (2-hydroxy-2-methyl-propionyl
  • photopolymerization initiators can be used alone or in combination of two or more.
  • the blending amount of the photopolymerization initiator is, for example, 0.5 parts by mass or more, preferably 1.0 part by mass with respect to 100 parts by mass of the total amount of the active energy ray-curable ink composition (varnish) and the pigment. For example, it is 20 parts by mass or less, preferably 15 parts by mass or less.
  • the active energy ray-curable ink can contain a known additive as required.
  • the additive examples include a curing accelerator (such as cobalt naphthenate), a filler, a thickener, a foaming agent, an antioxidant, a light-resistant stabilizer, a heat-resistant stabilizer, and a flame retardant.
  • a curing accelerator such as cobalt naphthenate
  • a filler such as a filler, a thickener, a foaming agent, an antioxidant, a light-resistant stabilizer, a heat-resistant stabilizer, and a flame retardant.
  • additives can be used alone or in combination of two or more.
  • the addition amount and timing of addition of the additive are not particularly limited, and are appropriately set according to the purpose and application.
  • Such an active energy ray-curable ink resin, an active energy ray-curable ink composition containing the active energy ray-curable ink resin, and an activity containing the active energy ray-curable ink composition is excellent in misting resistance and storage stability, and can provide a cured film excellent in mechanical strength, gloss and durability (such as wear resistance).
  • an active energy ray-curable ink composition or an active energy ray-curable ink is applied to a substrate by a known method, and then irradiated with active energy rays. , Cure.
  • the substrate is not particularly limited, for example, non-coated paper such as high-quality paper, for example, coated paper such as fine coated paper, art paper, coated paper, lightweight coated paper, cast coated paper, for example, white board
  • non-coated paper such as high-quality paper
  • coated paper such as fine coated paper, art paper, coated paper, lightweight coated paper, cast coated paper, for example, white board
  • paper and paperboard such as a ball coat, for example, synthetic paper, aluminum vapor-deposited paper, and plastic sheet.
  • the coating method is not particularly limited, and known printing methods such as screen printing, offset printing, flexographic printing, roll printing, and the like are employed.
  • active energy rays examples include ultraviolet rays and electron beams.
  • an ultraviolet irradiation device having a xenon lamp, a high-pressure mercury lamp, a metal halide lamp, or the like as a light source is used.
  • the amount of ultraviolet irradiation, the amount of light of the ultraviolet irradiation device, the arrangement of the light source, and the like are appropriately adjusted as necessary.
  • a high-pressure mercury lamp for example, a substrate coated with an active energy ray-curable ink composition or an active energy ray-curable ink is applied to a substrate having a luminous intensity of about 80 to 1000 W / cm 2. It is transported at a transport speed of 5 to 50 m / min.
  • the base material coated with the coating agent is transported at a transport speed of 5 to 50 m / min by an electron beam accelerator having an acceleration voltage of 10 to 300 kV, for example.
  • the active energy ray-curable ink composition or the active energy ray-curable ink is crosslinked and cured by irradiation with such active energy rays. As a result, a cured film is obtained as a cured product of the active energy ray-curable ink.
  • the cured film obtained is a cured product of the above active energy ray curable ink composition or a cured product of the above active energy ray curable ink, so that it has mechanical strength, gloss and durability (wear resistance). Excellent).
  • an active energy ray-curable ink resin an active energy ray-curable ink composition containing the active energy ray-curable ink resin, and an active energy containing the active energy ray-curable ink composition
  • the linear curable ink and the cured film thereof are, for example, in printing systems such as planographic printing, relief printing, intaglio printing, stencil printing, etc., for example, printed materials for foam, printed materials for packaging such as carton paper, printed materials for plastic, seals, printed materials for labels In order to obtain various prints such as fine art prints and metal prints, it is preferably used.
  • Example 1 While blowing nitrogen gas into a four-necked flask equipped with a stirrer, a reflux condenser with a water separator, and a thermometer, 7.0 parts of disproportionated rosin (trade name G-100F, manufactured by Harima Chemicals), para-t-butylbenzoic acid 35.0 parts of acid, 13.0 parts of maleic anhydride, 13.0 parts of phthalic acid and 32.0 parts of trimethylolpropane were mixed and subjected to dehydration condensation at 230 ° C. for about 8 hours to give an acid value of 8.0 mgKOH / g or less An active energy ray-curable ink resin (hereinafter abbreviated as resin) 1 was obtained.
  • resin active energy ray-curable ink resin
  • varnish Composition (hereinafter referred to as varnish) 1 was obtained.
  • the mixing ratio of each component in Ink 1 was 8.0 to 10.0 after 1 minute under the conditions of a roll temperature of 30 ° C. and 400 rpm with an incometer (D-2 manufactured by Toyo Seiki Co., Ltd.). It adjusted so that it might become.
  • D-2 manufactured by Toyo Seiki Co., Ltd.
  • varnishes 2 to 7 and varnishes 9 to 11 were obtained in the same manner as in Example 1.
  • inks 2 to 7 and inks 9 to 11 were obtained in the same manner as in Example 1.
  • Example 8 While nitrogen gas was blown into a four-necked flask equipped with a stirrer, a reflux condenser with a water separator, and a thermometer, 29.0 parts of disproportionated rosin (trade name G-100F, manufactured by Harima Chemicals), maleic anhydride 10.7 Parts, benzoic acid 25.0 parts, tetrahydrophthalic acid 11.3 parts, and glycerin 23.6 parts were mixed and subjected to dehydration condensation at 230 ° C. for about 8 hours to obtain an acid value of 8.0 or less. Then, it cooled, 0.1 part of hydroquinone and 0.3 part of acrylic acid were added, and it was made to react at 110 degreeC for about 12 hours, and the resin 8 with an acid value of 8.0 mgKOH / g or less was obtained.
  • disproportionated rosin trade name G-100F, manufactured by Harima Chemicals
  • maleic anhydride 10.7 Parts
  • benzoic acid 25.0 parts t
  • varnish 8 was obtained in the same manner as in Example 1.
  • ink 8 was obtained by the same operation as in Example 1.
  • Comparative Examples 1-2 and Comparative Examples 5-7 Resins 12 to 13 and resins 16 to 18 were obtained in the same manner as in Example 1 except that the blending ratios in Table 2 were changed.
  • varnishes 12 to 13 and varnishes 16 to 18 were obtained in the same manner as in Example 1.
  • ink 12 and inks 16 to 18 were obtained in the same manner as in Example 1.
  • the storage stability (after-mentioned) was not enough for the varnish 13
  • the ink 13 using the varnish 13 was not prepared.
  • the varnish 17 was gelled on the 10th day, it was not at a usable level, but the ink 17 was prepared in order to confirm the evaluation as an ink.
  • varnish 14 and varnish 15 were obtained in the same manner as in Example 1.
  • ink 14 and ink 15 were obtained by the same operation as in Example 1.
  • the evaluation criteria are as follows.
  • Friction resistance The cured printed matter created under the same conditions as those for the gloss value measurement was compliant with JIS K5701-1 (2000) using an S-type friction tester (manufactured by Yasuda Seiki Seisakusho).
  • the ink film was reciprocated 40 times under a load of 1816 g, and the degree of scuffing of the ink film on the surface of the printed material was evaluated in five stages.
  • the standard is as follows. 5: Rubbing was less than 20% after 40 reciprocations. 4: Friction was 20% or more and less than 40% after 40 reciprocations. 3: The rubbing off after 40 reciprocations was 40% or more and less than 60%. 2: The rubbing off after 40 reciprocations was 60% or more and less than 80%. 1: Friction was 80% or more after 40 reciprocations.
  • the active energy ray curable ink resin, the active energy ray curable ink composition, the active energy ray curable ink and the cured film of the present invention include various packaging prints, various plastic prints, seals, label prints, and art prints. It is preferably used in various printed materials such as metal printed materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

活性エネルギー線硬化型インキ用樹脂は、ロジン変性不飽和ポリエステル樹脂(A)を含有する活性エネルギー線硬化型インキ用樹脂である。ロジン変性不飽和ポリエステル樹脂(A)は、ロジン類(a)、α,β-不飽和カルボン酸類(b)およびポリオール類(c)を含む原料成分の反応物であり、原料成分の総量に対する、α,β-不飽和カルボン酸類(b)由来の不飽和結合モル比率が0.50mol/kg以上2.00mol/kg以下でる。ロジン類(a)は、ロジン類(a)の総量に対して、安定化処理ロジンを90質量%以上含有し、α,β-不飽和カルボン酸類(b)は、α,β-不飽和ジカルボン酸類を含有し、ポリオール類(c)は、3価以上のアルコールを含有する。

Description

活性エネルギー線硬化型インキ用樹脂、活性エネルギー線硬化型インキ用組成物、活性エネルギー線硬化型インキおよび硬化膜
 本発明は、活性エネルギー線硬化型インキ用樹脂、活性エネルギー線硬化型インキ用組成物、活性エネルギー線硬化型インキおよび硬化膜に関する。
 従来、各種産業分野における印刷物には、例えば、紫外線、電子線などの活性エネルギー線により硬化する活性エネルギー線硬化型インキが用いられている。
 活性エネルギー線硬化型インキとして、具体的には、(a)樹脂、(b)活性エネルギー線硬化性化合物および(c)顔料を含有する活性エネルギー線硬化型平版印刷インキにおいて、(a)樹脂が、樹脂酸に、樹脂酸に対して50~100モル%のα,β-不飽和カルボン酸または該無水物を付加反応させ、さらに、多価アルコールを反応させて合成したものであり、(a)樹脂が、インキ全量の10~40重量%含有され、(b)活性エネルギー線硬化性化合物が、インキ全量の30~75重量%含有され、および(c)顔料が、インキ全量の5~40重量%含有されてなる活性エネルギー線硬化型平版印刷インキが、提案されている。また、このような活性エネルギー線硬化型平版印刷インキにおいては、使用される樹脂酸が、共役二重結合含有化合物を50%以上含有していることが望ましいと開示されている。
 より具体的には、ロジンおよび無水マレイン酸を反応させた後、安息香酸、無水フタル酸、トリメチロールプロパンおよびp-トルエンスルホン酸一水和物を添加して脱水縮合させて樹脂を得ること、また、得られた樹脂とジペンタエリスリトールヘキサアクリレートなどとを混合してワニスを得ること、さらに、得られたワニスを用いて平版印刷インキを得ることが、提案されている(特許文献1(実施例1)参照)。
特開2010-70742号公報
 一方、特許文献1に記載されるワニスは、十分な保存安定性を有していないという不具合がある。また、そのワニスを用いて得られる活性エネルギー線硬化型平版印刷インキでは、(a)樹脂と(b)活性エネルギー線硬化性化合物(モノマー)との反応性が十分ではなく、その結果、活性エネルギー線によって硬化された膜(硬化膜)の機械強度が十分ではないという不具合がある。
 また、このようなインキには、使用時における飛散の抑制(耐ミスチング性)が要求され、さらには、その用途に応じて、硬化膜の光沢、耐久性(耐摩耗性など)などが要求される。
 本発明の目的は、耐ミスチング性および保存安定性に優れ、また、機械強度、光沢および耐久性(耐摩耗性など)に優れる硬化膜を得ることができる活性エネルギー線硬化型インキ用樹脂、また、その活性エネルギー線硬化型インキ用樹脂を含有する活性エネルギー線硬化型インキ用組成物およびその硬化膜、さらに、その活性エネルギー線硬化型インキ用組成物を含有する活性エネルギー線硬化型インキおよびその硬化膜を提供することにある。
 本発明[1]は、ロジン変性不飽和ポリエステル樹脂(A)を含有する活性エネルギー線硬化型インキ用樹脂であって、前記ロジン変性不飽和ポリエステル樹脂(A)は、ロジン類(a)、α,β-不飽和カルボン酸類(b)およびポリオール類(c)を含む原料成分の反応物であり、前記原料成分の総量に対する、前記α,β-不飽和カルボン酸類(b)由来の不飽和結合モル比率が0.50mol/kg以上2.00mol/kg以下であり、前記ロジン類(a)は、前記ロジン類(a)の総量に対して、安定化処理ロジンを90質量%以上含有し、前記α,β-不飽和カルボン酸類(b)は、α,β-不飽和ジカルボン酸類を含有し、前記ポリオール類(c)は、3価以上のアルコールを含有する、活性エネルギー線硬化型インキ用樹脂を含んでいる。
 本発明[2]は、前記α,β-不飽和カルボン酸類(b)の総量に対して、α,β-不飽和モノカルボン酸類の含有割合が、3質量%以下である、上記[1]に記載の活性エネルギー線硬化型インキ用樹脂を含んでいる。
 本発明[3]は、前記ポリオール類(c)の総量に対して、ジオールの含有割合が、10質量%以下である、上記[1]または[2]に記載の活性エネルギー線硬化型インキ用樹脂を含んでいる。
 本発明[4]は、前記α,β-不飽和ジカルボン酸類が、フマル酸、マレイン酸および無水マレイン酸からなる群から選択される少なくとも1種の化合物である、上記[1]~[3]のいずれか一項に記載の活性エネルギー線硬化型インキ用樹脂を含んでいる。
 本発明[5]は、前記安定化処理ロジンが、水添ロジンおよび/または不均化ロジンである、上記[1]~[4]のいずれか一項に記載の活性エネルギー線硬化型インキ用樹脂を含んでいる。
 本発明[6]は、前記ロジン類(a)に対する前記α,β-不飽和カルボン酸類(b)の質量比率(前記α,β-不飽和カルボン酸類(b)/前記ロジン類(a))が、0.35以上2以下である、上記[1]~[5]のいずれか一項に記載の活性エネルギー線硬化型インキ用樹脂を含んでいる。
 本発明[7]は、上記[1]~[6]のいずれか一項に記載の活性エネルギー線硬化型インキ用樹脂と、活性エネルギー線硬化型モノマーとを含有する、活性エネルギー線硬化型インキ用組成物を含んでいる。
 本発明[8]は、上記[7]に記載の活性エネルギー線硬化型インキ用組成物と、顔料とを含有する、活性エネルギー線硬化型インキを含んでいる。
 本発明[9]は、上記[7]に記載の活性エネルギー線硬化型インキ用組成物の硬化物である、硬化膜を含んでいる。
 本発明[10]は、上記[8]に記載の活性エネルギー線硬化型インキの硬化物である、硬化膜を含んでいる。
 本発明の活性エネルギー線硬化型インキ用樹脂、その活性エネルギー線硬化型インキ用樹脂を含有する活性エネルギー線硬化型インキ用組成物、さらに、その活性エネルギー線硬化型インキ用組成物を含有する活性エネルギー線硬化型インキは、耐ミスチング性および保存安定性に優れ、また、機械強度、光沢および耐久性(耐摩耗性など)に優れる硬化膜を得ることができる。
 また、本発明の硬化膜は、本発明の活性エネルギー線硬化型インキ用組成物の硬化物、または、本発明の活性エネルギー線硬化型インキの硬化物であるため、機械強度、光沢および耐久性(耐摩耗性など)に優れる。
 本発明の活性エネルギー線硬化型インキ用樹脂は、ロジン変性不飽和ポリエステル樹脂(A)を含有しており、好ましくは、ロジン変性不飽和ポリエステル樹脂(A)からなる。
 ロジン変性不飽和ポリエステル樹脂(A)は、ロジン類(a)、α,β-不飽和カルボン酸類(b)およびポリオール類(c)を少なくとも含む原料成分の反応物(重合体)である。
 ロジン類(a)は、必須成分として、天然ロジンを安定化処理したロジン変性体(以下、安定化処理ロジンと称する。)を含有している。
 天然ロジンは、樹脂酸を主成分とする天然樹脂である。樹脂酸は、樹木由来のカルボキシル基を有する化合物であり、具体的には、例えば、アビエチン酸、パラストリン酸、ネオアビエチン酸、レボピマール酸などの共役二重結合を有する樹脂酸、例えば、デヒドロアビエチン酸、ジヒドロアビエチン酸、テトラヒドロアビエチン酸などの共役二重結合を有しない樹脂酸などが挙げられる。
 天然ロジンとして、より具体的には、例えば、トール油ロジン、ガムロジン、ウッドロジンなどが挙げられる。これら天然ロジンは、単独使用または2種類以上併用することができる。天然ロジンとして、好ましくは、ガムロジンが挙げられる。
 安定化処理は、上記した共役二重結合を有する樹脂酸の共役二重結合を低減または消失させる処理であって、具体的には、例えば、水添処理、不均化処理、重合処理などが挙げられ、好ましくは、水添処理、不均化処理が挙げられる。
 換言すれば、安定化処理ロジンとして、具体的には、天然ロジンを水添処理した水添ロジン、天然ロジンを不均化処理した不均化ロジン、天然ロジンを重合処理した重合ロジンなどが挙げられる。また、安定化処理ロジンとしては、重合ロジンの水添処理物も含まれる。
 安定化処理ロジンは、単独使用または2種類以上併用することができる。
 安定化処理ロジンとして、機械強度、光沢および耐久性(耐摩耗性など)の観点から、好ましくは、水添ロジン、不均化ロジンが挙げられ、より好ましくは、不均化ロジンが挙げられる。
 また、ロジン類(a)は、任意成分として、安定化処理されていないロジン(以下、非安定化処理ロジンと称する。)を含有することができる。
 非安定化処理ロジンとしては、例えば、上記した天然ロジンなどが挙げられる。
 非安定化処理ロジンの含有割合は、本発明の優れた効果を損なわない範囲であって、具体的には、保存安定性、光沢、機械強度および耐久性(耐摩擦性など)の観点から、ロジン類(a)の総量に対して、10質量%以下、好ましくは、5質量%以下、より好ましくは、0質量%である。また、安定化処理ロジンの含有割合は、ロジン類(a)の総量に対して、90質量%以上、好ましくは、95質量%以上、より好ましくは、100質量%である。
 換言すれば、ロジン類(a)は、保存安定性、光沢、機械強度および耐久性(耐摩擦性など)の観点から、とりわけ好ましくは、安定化処理ロジンからなる。
 例えば、ロジン類(a)として非安定化処理ロジンを過剰に用いると、活性エネルギー線硬化型インキ用組成物(後述)および活性エネルギー線硬化型インキの保存安定性を十分に確保できない場合がある。
 より具体的には、非安定化処理ロジンは、共役二重結合を有する樹脂酸を比較的多く含有するため酸化されやすい。そのため、非安定化処理ロジンを過剰に用いて得られる活性エネルギー線硬化型インキ用樹脂を、活性エネルギー線硬化型インキ用組成物(後述)に用いると、活性エネルギー線硬化型インキ用組成物(後述)は、過酸化物の形成などによって、ラジカルを発生させやすい状態になる。その結果、活性エネルギー線硬化型インキ用組成物(後述)がゲル化しやすくなるなど、保存安定性が十分ではなくなるものと推定される。
 さらに、ロジン類(a)として非安定化処理ロジンを過剰に用いると、α,β-不飽和カルボン酸類(b)(後述)がディールス・アルダー反応によりロジン類(a)に付加し、活性エネルギー線硬化型インキ用樹脂中の、α,β-不飽和カルボン酸類(b)(後述)由来の不飽和結合を十分に確保できない場合がある。このような場合には、活性エネルギー線硬化型インキ用樹脂と、活性エネルギー線硬化型モノマー(後述)との反応性が低下するため、活性エネルギー線によって硬化された膜(硬化膜)の機械強度および耐久性(耐摩擦性など)が十分ではなくなる場合がある。
 これに対して、安定化処理ロジンは、共役二重結合が低減または消失されている。そのため、ロジン類(a)が安定化処理ロジンを比較的多く用いて得られる活性エネルギー線硬化型インキ用樹脂を、活性エネルギー線硬化型インキ用組成物(後述)に用いると、活性エネルギー線硬化型インキ用組成物(後述)は、ラジカルを発生させにくい状態になる。その結果、活性エネルギー線硬化型インキ用組成物(後述)のゲル化が抑制されるなど、保存安定性の向上を図ることができる。
 また、安定化処理ロジンは、ディールス-アルダー反応に使用される二重結合が低減または消失されている。そのため、ロジン類(a)が安定化処理ロジンを比較的多く含有する場合、ロジン類(a)に対するα,β-不飽和カルボン酸類(b)(後述)の付加が抑制される。その結果、α,β-不飽和カルボン酸類(b)(後述)は、ロジン変性不飽和ポリエステル樹脂(A)の主鎖に導入される。そのため、ロジン変性不飽和ポリエステル樹脂(A)中に、α,β-不飽和カルボン酸類(b)(後述)由来の不飽和結合が比較的多く導入される。その結果、活性エネルギー線硬化型インキ用樹脂と、活性エネルギー線硬化型モノマー(後述)との反応性を十分に確保することができ、活性エネルギー線によって硬化された膜(硬化膜)の光沢、機械強度および耐久性(耐摩擦性など)の向上を図ることができる。
 ロジン類(a)の含有割合は、原料成分の総量100質量部に対して、例えば、1質量部以上、好ましくは、3質量部以上、より好ましくは、5質量部以上であり、例えば、98質量部以下、好ましくは、60質量部以下、より好ましくは、50質量部以下である。
 ロジン類(a)の含有割合が上記範囲であれば、優れた光沢、機械強度および耐久性(耐摩擦性など)を確保することができ、また、活性エネルギー線硬化型モノマー(後述)との相溶性にも優れる。
 α,β-不飽和カルボン酸類(b)は、必須成分として、α,β-不飽和ジカルボン酸類を含有する。
 α,β-不飽和ジカルボン酸類としては、1分子中に2つのカルボキシル基を有し、かつ、少なくとも1つのカルボキシル基のα位炭素とβ位炭素との間における不飽和結合を有するカルボン酸およびその酸無水物が挙げられる。
 α,β-不飽和ジカルボン酸類として、具体的には、例えば、フマル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、シトラコン酸、無水シトラコン酸、メサコン酸、グルタコン酸などが挙げられる。
 これらα,β-不飽和ジカルボン酸類は、単独使用または2種類以上併用することができる。
 α,β-不飽和ジカルボン酸類として、機械強度、光沢および耐久性(耐摩耗性など)の観点から、好ましくは、フマル酸、マレイン酸、無水マレイン酸が挙げられ、より好ましくは、フマル酸、無水マレイン酸が挙げられ、さらに好ましくは、無水マレイン酸が挙げられる。
 また、α,β-不飽和カルボン酸類(b)は、任意成分として、α,β-不飽和モノカルボン酸類を含有することができる。
 α,β-不飽和モノカルボン酸類は、1分子中に1つのカルボキシル基を有し、かつ、カルボキシル基のα位炭素とβ位炭素の間に不飽和結合を有するカルボン酸が挙げられる。
 α,β-不飽和モノカルボン酸類として、具体的には、例えば、アクリル酸、メタクリル酸などが挙げられる(以下、アクリルおよびメタクリルを(メタ)アクリルと総称する場合がある。)。
 これらα,β-不飽和モノカルボン酸類は、単独使用または2種類以上併用することができる。
 α,β-不飽和モノカルボン酸類の含有割合は、本発明の優れた効果を損なわない範囲であって、具体的には、硬化膜(後述)の光沢、および、生産性の観点から、α,β-不飽和カルボン酸類(b)の総量に対して、例えば、3質量%以下、好ましくは、1質量%以下、より好ましくは、0質量%である。
 具体的には、α,β-不飽和モノカルボン酸類が過剰に用いられる場合、硬化膜(後述)の光沢を十分に確保できない場合がある。そのため、硬化膜(後述)の光沢の観点から、α,β-不飽和モノカルボン酸類の含有割合は、α,β-不飽和カルボン酸類(b)の総量に対して1質量%以下である。
 さらに、α,β-不飽和モノカルボン酸類(例えば、(メタ)アクリル酸など)が用いられる場合、詳しくは後述するように、ロジン変性不飽和ポリエステル樹脂(A)の製造において、2段階で反応させる必要があり、また、α,β-不飽和モノカルボン酸類はラジカル反応による自己重合が進みやすいため、その反応条件の厳しい管理が要求される。そのため、生産性の観点から、α,β-不飽和カルボン酸類(b)は、好ましくは、α,β-不飽和モノカルボン酸類を含有しない。
 また、α,β-不飽和カルボン酸類(b)において、α,β-不飽和ジカルボン酸類の含有割合は、α,β-不飽和カルボン酸類(b)の総量に対して、97質量%以上、好ましくは、99質量%以上、より好ましくは、100質量%である。
 すなわち、α,β-不飽和カルボン酸類(b)は、生産性の観点から、とりわけ好ましくは、α,β-不飽和ジカルボン酸類からなる。
 α,β-不飽和カルボン酸類(b)の含有割合は、原料成分の総量100質量部に対して、例えば、1質量部以上、好ましくは、3質量部以上、より好ましくは、5質量部以上であり、例えば、98質量部以下、好ましくは、50質量部以下、より好ましくは、30質量部以下である。
 α,β-不飽和カルボン酸類(b)の含有割合が上記範囲であれば、優れた光沢、機械強度および耐久性(耐摩擦性など)を確保することができる。
 また、ロジン類(a)に対するα,β-不飽和カルボン酸類(b)の質量比率(α,β-不飽和カルボン酸類(b)/ロジン類(a))が、例えば、0.10以上、好ましくは、0.20以上、より好ましくは、0.28以上、さらに好ましくは、0.35以上であり、例えば、10以下、好ましくは、3以下、より好ましくは、2以下である。
 ロジン類(a)に対するα,β-不飽和カルボン酸類(b)の質量比率が上記範囲であれば、優れた光沢、機械強度および耐久性(耐摩擦性など)を確保することができる。
 ポリオール類(c)は、1分子中に2つ以上の水酸基を有する化合物である。ポリオール類(c)は、必須成分として、3価以上のアルコールを含有する。
 3価以上のアルコールは、1分子中に3つ以上の水酸基を有する化合物であって、例えば、グリセリン、1,1,1-トリメチロールエタン、1,1,1-トリメチロールプロパン(以下、単にトリメチロールプロパンと称する場合がある。)、トリオキシイソブタン、1,2,3-ブタントリオール、1,2,3-ペンタントリオール、2,3,4-ペンタントリオール、1,2,5-ヘキサントリオールなどの3価アルコール、例えば、ペンタエリスリトールなどの4価アルコール、例えば、ジペンタエリスリトール、グルコース、スクロース、ソルビトールなどの5価以上アルコールなど、さらには、これらのアルキレンオキサイド(エチレンオキサイド、プロピレンオキサイドなど)付加物などが挙げられる。
 これら3価以上のアルコールは、単独使用または2種類以上併用することができる。
 3価以上のアルコールとして、反応性および入手容易性の観点から、好ましくは、3価アルコール、4価アルコールが挙げられ、より好ましくは、3価アルコールが挙げられ、さらに好ましくは、グリセリン、トリメチロールプロパンが挙げられ、とりわけ好ましくは、グリセリンが挙げられる。
 また、ポリオール(c)は、任意成分として、2価以下のアルコールを含有することができる。
 2価以下のアルコールは、1分子中に1つ以上2つ以下の水酸基を有する化合物であって、例えば、メタノール、エタノール、プロパノール、イソプロパノールなどの1価アルコール、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,10-デカンジオール、4,4'-ジヒドロキシフェニルプロパン、4,4'-ジヒドロキシメチルメタン、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール(PEG)、ジプロピレングリコール、ポリテトラメチレングリコール(PTMG)、ポリプロピレングリコール(PPG)、1,4-シクロヘキサンジメタノール、1,4-シクロヘキサンジオール、ビスフェノールA、ビスフェノールFなどの2価アルコール、さらには、これらのアルキレンオキサイド(エチレンオキサイド、プロピレンオキサイドなど)付加物などが挙げられる。
 これら2価以下のアルコールは、単独使用または2種類以上併用することができる。
 2価以下のアルコールとして、好ましくは、2価アルコールが挙げられ、より好ましくは、1,6-ヘキサンジオールが挙げられる。
 2価以下のアルコールの含有割合は、本発明の優れた効果を損なわない範囲であって、具体的には、光沢性、耐ミスチング性の観点から、ポリオール(c)の総量に対して、例えば、10質量%以下、好ましくは、5質量%以下、より好ましくは、0質量%である。また、3価以上のアルコールの含有割合は、ポリオール(c)の総量に対して、90質量%以上、好ましくは、95質量%以上、より好ましくは、100質量%である。
 換言すれば、ポリオール(c)は、光沢性、耐ミスチング性の観点から、とりわけ好ましくは、3価以上のアルコールからなる。
 ポリオール類(c)の含有割合は、原料成分の総量100質量部に対して、例えば、1質量部以上、好ましくは、5質量部以上、より好ましくは、10質量部以上であり、例えば、98質量部以下、好ましくは、60質量部以下、より好ましくは、40質量部以下である。
 ポリオール類(c)の含有割合が上記範囲であれば、耐ミスチング性および保存安定性に優れ、また、機械強度、光沢および耐久性(耐摩耗性など)に優れる硬化膜を得ることができる。
 また、ロジン変性不飽和ポリエステル樹脂(A)の原料成分は、必要に応じて、α,β-不飽和カルボン酸類(上記(b))を除くカルボン酸類(d)(以下、その他のカルボン酸類(d)と称する。)を含有することができる。
 その他のカルボン酸類(d)としては、例えば、1分子中に1つ以上のカルボキシル基を有するとともに、全てのカルボキシル基におけるα位炭素とβ位炭素との間に不飽和結合を有しないカルボン酸およびその酸無水物が挙げられる。より具体的には、例えば、α位炭素とβ位炭素との間に不飽和結合を有しない1塩基性カルボン酸類、α位炭素とβ位炭素との間に不飽和結合を有しない多塩基性カルボン酸などが挙げられる。
 α位炭素とβ位炭素との間に不飽和結合を有しない1塩基性カルボン酸としては、例えば、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、ラウリン酸、ステアリン酸、2-エチルヘキサン酸、シクロヘキサン酸などの脂肪族1塩基性カルボン酸、例えば、安息香酸、メチル安息香酸、パラ-t-ブチル安息香酸、オルトベンゾイル安息香酸、ナフトエ酸などの芳香族1塩基性カルボン酸などが挙げられる。
 これらα位炭素とβ位炭素との間に不飽和結合を有しない1塩基性カルボン酸は、単独使用または2種類以上併用することができる。
 α位炭素とβ位炭素との間に不飽和結合を有しない1塩基性カルボン酸として、好ましくは、芳香族1塩基性カルボン酸が挙げられ、より好ましくは、安息香酸、パラ-t-ブチル安息香酸が挙げられる。
 α位炭素とβ位炭素との間に不飽和結合を有しない多塩基性カルボン酸としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、テトラデカン二酸、ヘキサデカン二酸、フタル酸、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、オキサロ酢酸、メチルマロン酸、ジメチルマロン酸、メチルコハク酸、2,2-ジメチルコハク酸、メチルグルタル酸、ジメチルグルタル酸、ジグリコール酸、1,3-アセトンジカルボン酸、ケトグルタル酸、シクロプロパン-1,1-ジカルボン酸、シクロブタン-1,1-ジカルボン酸、シクロヘキサン-1,1-ジカルボン酸、2-オキソアジピン酸、4-オキソヘプタン二酸、5-オキソアゼライン酸、フェニレンジオキシ二酢酸、インダン-2,2-ジカルボン酸、ナフタレン-2,6-ジカルボン酸、ナフタレン-2,7-ジカルボン酸、シクロヘキサンジカルボン酸などの2塩基性カルボン酸およびその酸無水物、その他、トリメリット酸、ピロメリット酸などの3塩基性以上のカルボン酸およびその酸無水物などが挙げられる。
 これらα位炭素とβ位炭素との間に不飽和結合を有しない多塩基性カルボン酸は、単独使用または2種類以上併用することができる。
 α位炭素とβ位炭素との間に不飽和結合を有しない多塩基性カルボン酸として、好ましくは、2塩基性カルボン酸およびその酸無水物が挙げられ、より好ましくは、フタル酸、テトラヒドロフタル酸の酸無水物、アジピン酸が挙げられる。
 また、その他のカルボン酸類(d)としては、例えば、ヤシ油脂肪酸、大豆油脂肪酸、パーム核油脂肪酸などの脂肪族1塩基性カルボン酸を含む動植物性脂肪酸も含まれる。
 これらその他のカルボン酸類(d)は、単独使用または2種類以上併用することができる。
 原料成分がその他のカルボン酸類(d)(α,β-不飽和カルボン酸類を除くカルボン酸類(d))を含有する場合、その含有割合は、原料成分の総量100質量部に対して、例えば、5質量部以上、好ましくは、10質量部以上であり、例えば、70質量部以下、好ましくは、50質量部以下である。
 その他のカルボン酸類(d)の含有割合が上記範囲であれば、耐ミスチング性および保存安定性に優れ、また、機械強度、光沢および耐久性(耐摩耗性など)に優れる硬化膜を得ることができる。
 そして、ロジン類(a)、α,β-不飽和カルボン酸類(b)およびポリオール類(c)(さらに、必要によりその他のカルボン酸類(d))を含有する原料成分を反応(エステル化反応)させることにより、ロジン変性不飽和ポリエステル樹脂(A)が得られる。
 反応方法としては、特に制限されないが、例えば、上記の原料成分を、必要により溶剤の存在下において、混合および加熱する。
 溶剤としては、特に制限されないが、例えば、ヘキサン、ミネラルスピリットなどの石油系炭化水素溶剤、例えば、ベンゼン、トルエン、キシレンなどの芳香族炭化水素系溶剤、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノンなどのケトン系溶剤、例えば、酢酸メチル、酢酸エチル、酢酸ブチル、γ―ブチロラクトン、プロピレングリコールモノメチルエーテルアセテートなどのエステル系溶剤、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、N-メチルピロリドン、ピリジンなどの非プロトン性極性溶剤などの有機溶剤などが挙げられる。
 これら溶剤は、単独使用または2種類以上併用することができる。なお、溶剤の配合割合は、特に制限されず、目的および用途に応じて、適宜設定される。
 例えば、水と共沸可能な溶剤(例えば、キシレン、トルエンなどの共沸脱水剤)の存在下で原料成分を加熱することにより、エステル反応を惹起するとともに、その反応により生じる水を留出させることができる。また、反応終了後、溶剤は必要に応じて除いてもよい。また、例えば、無溶剤下で原料成分を加熱することにより、エステル反応を惹起し、生じる水を公知の方法で留出させることもできる。
 また、この反応では、必要に応じて、エステル化触媒を添加することもできる。
 エステル化触媒としては、特に制限されないが、例えば、ベンゼンスルホン酸、p-トルエンスルホン酸、p-ドデシルベンゼンスルホン酸、メタンスルホン酸、エタンスルホン酸などの有機スルホン酸類、例えば、硫酸、塩酸などの鉱酸、例えば、テトラブチルジルコネート、テトライソプロピルチタネート、テトライソブチルチタネート、酸化アルミニウム、酸化チタン、酸化マグネシウム、水酸化マグネシウム、酢酸マグネシウム、酸化カルシウム、水酸化カルシウム、酢酸カルシウム、酸化亜鉛、酢酸亜鉛などの金属触媒、例えば、トリフルオロメチル硫酸、トリフルオロメチル酢酸などが挙げられる。
 これらエステル化触媒は、単独使用または2種類以上併用することができる。
 エステル化触媒の添加割合は、特に制限されず、目的および用途に応じて、適宜設定される。
 反応条件としては、例えば、不活性ガス雰囲気および大気圧下において、反応温度が、例えば、150℃以上、好ましくは、200℃以上であり、例えば、280℃以下、好ましくは、250℃以下である。また、反応時間が、例えば、4時間以上、好ましくは、6時間以上であり、例えば、20時間以下、好ましくは、15時間以下である。
 また、上記の反応において、原料成分の混合方法としては、特に制限されず、上記原料成分を一括で配合してもよく、また、順次配合してもよい。生産性の観点から、好ましくは、上記原料を一括配合する。
 なお、原料成分が任意成分(α,β-不飽和モノカルボン酸類)として、アクリル酸および/またはメタクリル酸(以下、(メタ)アクリル酸と総称する。)を含有する場合には、好ましくは、まず、(メタ)アクリル酸を除く成分を反応(第1段反応)させた後、得られた反応生成物と、(メタ)アクリル酸とを混合して反応(第2段反応)させる。
 このような場合、第1段反応における反応条件は、上記と同様、例えば、不活性ガス雰囲気および大気圧下において、反応温度が、例えば、150℃以上、好ましくは、200℃以上であり、例えば、280℃以下、好ましくは、250℃以下である。また、反応時間が、例えば、4時間以上、好ましくは、6時間以上であり、例えば、20時間以下、好ましくは、15時間以下である。
 また、第2段反応における反応条件は、例えば、不活性ガス雰囲気および大気圧下において、反応温度が、例えば、90℃以上、好ましくは、95℃以上であり、例えば、120℃以下、好ましくは、110℃以下である。また、反応時間が、例えば、8時間以上、好ましくは、10時間以上であり、例えば、20時間以下、好ましくは、15時間以下である。
 また、上記の第2段反応においては、好ましくは、(メタ)アクリル酸の自己重合を防止するため、重合禁止剤を配合する。重合禁止剤としては、例えば、ハイドロキノン、メトキシフェノール、メチルハイドロキノン、2-ターシャリーブチルハイドロキノン、p-ベンゾキノン、ターシャリーブチルp-ベンゾキノン、フェノチアジンなどが挙げられる。これら重合禁止剤は、単独使用または2種類以上併用することができる。重合禁止剤の配合割合は、特に制限されず、目的および用途に応じて、適宜設定される。
 ロジン変性不飽和ポリエステル樹脂(A)は、ロジン類(a)、α,β-不飽和カルボン酸類(b)およびポリオール類(c)(さらに、必要によりその他のカルボン酸類(d))を含む原料成分の反応物として、ロジン変性不飽和ポリエステル樹脂(A)が得られる。
 ロジン変性不飽和ポリエステル樹脂(A)において、原料成分に基づいて算出されるα,β-不飽和カルボン酸類(b)由来の不飽和結合モル比率は、0.50mol/kg以上、好ましくは、0.80mol/kg以上であり、2.00mol/kg以下、好ましくは、1.90mol/kg以下である。
 なお、不飽和結合モル比率は、下記式により、原料成分の仕込み比率から算出される。
 不飽和結合モル比率=[α,β-不飽和カルボン酸類(b)のモル数(mol)]/[原料成分の総質量(kg)]
 不飽和結合モル比率が上記下限を上回っていれば、ロジン変性不飽和ポリエステル樹脂(A)中におけるα,β-不飽和カルボン酸類(b)由来の不飽和結合の含有割合が比較的多いため、活性エネルギー線硬化型モノマー(後述)との反応点(架橋点)が比較的多くなる。そのため、優れた機械強度(硬度)の硬化膜を得ることができる。また、不飽和結合モル比率が上記上限を下回っていれば、優れた保存安定性を確保することができる。
 また、ロジン変性不飽和ポリエステル樹脂(A)の重量平均分子量(GPC測定による標準ポリスチレン換算分子量)は、例えば、5000以上、好ましくは、10000以上であり、例えば、100000以下、好ましくは、70000以下である。
 また、ロジン変性不飽和ポリエステル樹脂(A)の酸価は、例えば、1.0mgKOH/g以上、好ましくは、2.0mgKOH/g以上であり、例えば、20mgKOH/g以下、好ましくは、10mgKOH/g以下である。
 また、活性エネルギー線硬化型インキ用樹脂は、ロジン変性不飽和ポリエステル樹脂(A)の他、必要により、公知の添加剤を含有することができる。
 添加剤としては、例えば、充填剤、増粘剤、発泡剤、酸化防止剤、耐光安定剤、耐熱安定剤、難燃剤などが挙げられる。
 これら添加剤は、単独使用または2種類以上併用することができる。添加剤の添加量および添加のタイミングは、特に制限されず、目的および用途に応じて、適宜設定される。
 そして、このような活性エネルギー線硬化型インキ用樹脂は、原料成分として使用されるロジン類(a)が安定化処理ロジンを上記下限(90質量%)以上含有する。安定化処理ロジンは、ディールス-アルダー反応に使用される二重結合が低減されているため、ロジン類(a)が安定化処理ロジンを比較的多く含有する場合、ロジン類(a)に対するα,β-不飽和ジカルボン酸の付加が抑制される。その結果、α,β-不飽和ジカルボン酸(b)は、ロジン変性不飽和ポリエステル樹脂(A)の主鎖に導入される。そのため、ロジン変性不飽和ポリエステル樹脂(A)中に、α,β-不飽和ジカルボン酸(b)に由来する不飽和結合が比較的多く導入される。
 さらに、ロジン変性不飽和ポリエステル樹脂(A)では、その原料成分として、α,β-不飽和ジカルボン酸および3価以上のアルコールが用いられており、かつ、ロジン変性不飽和ポリエステル樹脂(A)の不飽和結合モル比率が所定範囲に調整されている。
 その結果、上記の活性エネルギー線硬化型インキ用樹脂によれば、耐ミスチング性の向上を図ることができ、また、機械強度、光沢および耐久性(耐摩耗性など)に優れる硬化膜を得ることができる。
 そのため、このような活性エネルギー線硬化型インキ用樹脂は、活性エネルギー線硬化型インキ用組成物(以下、ワニスと称する場合がある。)および活性エネルギー線硬化型インキ(以下、インキと称する場合がある。)の製造において、好適に用いられる。
 活性エネルギー線硬化型インキ用組成物(ワニス)は、上記の活性エネルギー線硬化型インキ用樹脂と、活性エネルギー線硬化型モノマーとを含有する。
 活性エネルギー線硬化型モノマーは、活性エネルギー線の照射により上記の活性エネルギー線硬化型インキ用樹脂と共重合可能な光重合性基を、1つ以上有する光重合性多官能化合物であって、例えば、1分子中に1つの光重合性基を有する光重合性単官能化合物、1分子中に2つ以上の光重合性基を有する光重合性多官能化合物などが挙げられる。
 光重合性単官能化合物としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、イソステアリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、エトキシ-ジエチレングリコール(メタ)アクリレート、2-エチルヘキシル-カルビトール(メタ)アクリレート、ネオペンチルグリコールベンゾエート(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、エピクロロヒドリン(ECH)変性フェノキシ(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、パラクミルフェノールエチレンオキサイド変性(メタ)アクリレート、ビニルピロリドン、ビニルカプロラクタム、アクリロイルモルフォリンなどが挙げられる。
 光重合性多官能化合物としては、例えば、1分子中に2つの光重合性基を有する光重合性2官能化合物、1分子中に3つの光重合性基を有する光重合性3官能化合物、1分子中に4つの光重合性基を有する光重合性4官能化合物、1分子中に5つの光重合性基を有する光重合性5官能化合物、1分子中に6つの光重合性基を有する光重合性6官能化合物などが挙げられる。
 光重合性2官能化合物としては、例えば、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレートなどのアルキレングリコールジ(メタ)アクリレート;ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレートなどのポリアルキレングリコールジ(メタ)アクリレート;1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ジシクロペンタジエンジ(メタ)アクリレート、ネオペンチルグリコールアジペートジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート;ペンタエリスリトールジ(メタ)アクリレート、ビスフェノールAエチレンオキサイド(EO)付加ジアクリレート、カプロラクトン変性ジシクロペンテニルジ(メタ)アクリレート、エチレンオキシド変性リン酸ジ(メタ)アクリレート、アリル化シクロヘキシルジ(メタ)アクリレート、イソシアヌレートジ(メタ)アクリレートまたはそれらのアルキレンオキシド変性体、ジビニルベンゼン、ブタンジオール-1,4-ジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、ジエチレングリコールジビニルエーテル、ジプロピレングリコールジビニルエーテルジプロピレングリコールジビニルエーテル、ヘキサンジオールジビニルエーテル、トリエチレングリコールジビニルエーテル、フェニルグリシジルエーテルアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー(共栄社化学製の商品名「AH-600」)、フェニルグリシジルエーテルアクリレートトルエンジイソシアネートウレタンプレポリマー(共栄社化学製の商品名「AT-600」)などが挙げられる。
 光重合性3官能化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、またはそれらのアルキレンオキシド変性体、イソシアヌル酸アルキレンオキシド変性体のトリ(メタ)アクリレートなどが挙げられる。
 光重合性4官能化合物としては、例えば、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレートまたはそれらのアルキレンオキシド変性体などが挙げられる。
 光重合性5官能化合物としては、例えば、ジペンタエリスリトールペンタ(メタ)アクリレートまたはそれらのアルキレンオキシド変性体などが挙げられる。
 光重合性6官能化合物としては、例えば、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールトリアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー(共栄社化学製の商品名「UA-306H」)、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレートまたはそれらのアルキレンオキシド変性体などが挙げられる。
 これら活性エネルギー線硬化型モノマーは、単独使用または2種類以上併用することができる。
 活性エネルギー線硬化型モノマーとして、好ましくは、揮発性を抑制する観点から、沸点が比較的高温(例えば、200℃以上)である活性エネルギー線硬化型モノマーが挙げられ、より好ましくは、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレートが挙げられる。
 活性エネルギー線硬化型インキ用組成物(ワニス)を得るには、特に制限されず、活性エネルギー線硬化型インキ用樹脂と、活性エネルギー線硬化型モノマーとを混合すればよい。
 活性エネルギー線硬化型インキ用樹脂と活性エネルギー線硬化型モノマーとの含有割合は、活性エネルギー線硬化型インキ用樹脂と活性エネルギー線硬化型モノマーとの総量100質量部に対して、活性エネルギー線硬化型インキ用樹脂が、例えば、15質量部以上、好ましくは、25質量部以上であり、例えば、80質量部以下、好ましくは、75質量部以下である。また、活性エネルギー線硬化型モノマーが、例えば、20質量部以上、好ましくは、25質量部以上であり、例えば、85質量部以下、好ましくは、75質量部以下である。
 また、活性エネルギー線硬化型インキ用組成物(ワニス)は、必要により、公知の添加剤を含有することができる。
 添加剤としては、例えば、上記した重合禁止剤、さらには、充填剤、増粘剤、発泡剤、酸化防止剤、耐光安定剤、耐熱安定剤、難燃剤などが挙げられる。
 これら添加剤は、単独使用または2種類以上併用することができる。添加剤の添加量および添加のタイミングは、特に制限されず、目的および用途に応じて、適宜設定される。
 そして、このような活性エネルギー線硬化型インキ用組成物(ワニス)は、活性エネルギー線硬化型インキの製造において、好適に用いられる。
 具体的には、活性エネルギー線硬化型インキは、上記の活性エネルギー線硬化型インキ用組成物(ワニス)と、顔料とを含有している。
 顔料としては、特に制限されないが、無機顔料および有機顔料が挙げられる。
 無機顔料としては、例えば、黄鉛、亜鉛黄、紺青、硫酸バリウム、カドミウムレッド、酸化チタン、亜鉛華、弁柄、アルミナホワイト、炭酸カルシウム、群青、カーボンブラック、グラファイト、アルミニウム粉、ベンガラなどが挙げられる。これら無機顔料は、単独使用または2種類以上併用することができる。
 有機顔料としては、例えば、β-ナフトール系顔料、β-オキシナフトエ酸系顔料、β-オキシナフトエ酸系アニリド系顔料、アセト酢酸アニリド系顔料、ピラゾロン系顔料などの溶性アゾ顔料、β-ナフトール系顔料、β-オキシナフトエ酸系アニリド系顔料、アセト酢酸アニリド系モノアゾ顔料、アセト酢酸アニリド系ジスアゾ顔料、ピラゾロン系顔料などの不溶性アゾ顔料、銅フタロシアニンブルー、ハロゲン化(塩素または臭素化)銅フタロシアニンブルー、スルホン化銅フタロシアニンブルー、金属フリーフタロシアニンなどのフタロシアニン系顔料、キナクリドン系顔料、ジオキサジン系顔料、スレン系顔料(ピラントロン、アントアントロン、インダントロン、アントラピリミジン、フラバントロン、チオインジゴ系、アントラキノン系、ペリノン系、ペリレン系顔料など)、イソインドリノン系顔料、金属錯体系顔料、キノフタロン系顔料などの多環式顔料および複素環式顔料などが挙げられる。これら有機顔料は、単独使用または2種類以上併用することができる。
 これら顔料は、単独使用または2種類以上併用することができる。
 活性エネルギー線硬化型インキ用組成物(ワニス)と顔料との配合割合は、活性エネルギー線硬化型インキ用組成物(ワニス)と顔料との総量100質量部に対して、活性エネルギー線硬化型インキ用組成物(ワニス)が、例えば、30質量部以上、好ましくは、40質量部以上であり、例えば、95質量部以下、好ましくは、90質量部以下である。また、顔料が、例えば、5質量部以上、好ましくは、10質量部以上であり、例えば、70質量部以下、好ましくは、60質量部以下である。
 また、活性エネルギー線硬化型インキは、必要により、さらに、上記した活性エネルギー線硬化型モノマーを配合することができる。
 活性エネルギー線硬化型インキの調製時に配合する活性エネルギー線硬化型モノマーの配合量は、活性エネルギー線硬化型インキ用組成物(ワニス)と顔料との総量100質量部に対して、例えば、3質量部以上、好ましくは、5質量部以上であり、例えば、45質量部以下、好ましくは、35質量部以下である。
 また、活性エネルギー線硬化型インキは、必要により、さらに、公知の光重合開始剤を配合することができる。
 光重合開始剤としては、特に制限されないが、例えば、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、1-シクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、4-メチルベンゾフェノン、ベンゾフェノン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチルプロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オンなどが挙げられる。
 これら光重合開始剤は、単独使用または2種類以上併用することができる。
 光重合開始剤の配合量は、活性エネルギー線硬化型インキ用組成物(ワニス)と顔料との総量100質量部に対して、例えば、0.5質量部以上、好ましくは、1.0質量部以上であり、例えば、20質量部以下、好ましくは、15質量部以下である。
 また、活性エネルギー線硬化型インキは、必要により、公知の添加剤を含有することができる。
 添加剤としては、例えば、硬化促進剤(ナフテン酸コバルトなど)、さらには、充填剤、増粘剤、発泡剤、酸化防止剤、耐光安定剤、耐熱安定剤、難燃剤などが挙げられる。
 これら添加剤は、単独使用または2種類以上併用することができる。添加剤の添加量および添加のタイミングは、特に制限されず、目的および用途に応じて、適宜設定される。
 このような活性エネルギー線硬化型インキ用樹脂、その活性エネルギー線硬化型インキ用樹脂を含有する活性エネルギー線硬化型インキ用組成物、さらに、その活性エネルギー線硬化型インキ用組成物を含有する活性エネルギー線硬化型インキは、耐ミスチング性および保存安定性に優れ、また、機械強度、光沢および耐久性(耐摩耗性など)に優れる硬化膜を得ることができる。
 具体的には、硬化膜を得るには、活性エネルギー線硬化型インキ用組成物、または、活性エネルギー線硬化型インキを、公知の方法により基材に塗布した後、活性エネルギー線を照射して、硬化させる。
 基材としては、特に制限されず、例えば、上質紙などの非塗工紙、例えば、微塗工紙、アート紙、コート紙、軽量コート紙、キャストコート紙などの塗工紙、例えば、白板紙、ボールコートなどの板紙、例えば、合成紙、アルミ蒸着紙、プラスチックシートなどが挙げられる。
 塗布方法としては、特に制限されず、公知の印刷方法、例えば、スクリーン印刷、オフセット印刷、フレキソ印刷、ロール印刷などが採用される。
 活性エネルギー線としては、例えば、紫外線、電子線などが挙げられる。
 紫外線により硬化させる場合には、光源として、例えば、キセノンランプ、高圧水銀灯、メタルハライドランプなどを有する紫外線照射装置が用いられる。紫外線照射量、紫外線照射装置の光量、光源の配置などは、必要により適宜調整される。具体的には、高圧水銀灯を使用する場合には、例えば、活性エネルギー線硬化型インキ用組成物または活性エネルギー線硬化型インキが塗布された基材を、光度80~1000W/cm程度の1灯に対して、搬送速度5~50m/分で搬送する。また、電子線により硬化させる場合には、コーティング剤が塗布された基材を、例えば、10~300kVの加速電圧を有する電子線加速装置にて、搬送速度5~50m/分で搬送する。
 このような活性エネルギー線の照射によって、活性エネルギー線硬化型インキ用組成物または活性エネルギー線硬化型インキが架橋および硬化する。その結果、活性エネルギー線硬化型インキの硬化物として、硬化膜が得られる。
 そして、得られる硬化膜は、上記の活性エネルギー線硬化型インキ用組成物の硬化物、または、上記の活性エネルギー線硬化型インキの硬化物であるため、機械強度、光沢および耐久性(耐摩耗性など)に優れる。
 そのため、活性エネルギー線硬化型インキ用樹脂、その活性エネルギー線硬化型インキ用樹脂を含有する活性エネルギー線硬化型インキ用組成物、さらに、その活性エネルギー線硬化型インキ用組成物を含有する活性エネルギー線硬化型インキおよびその硬化膜は、例えば、平版、凸版、凹版、孔版印刷などの印刷方式において、例えば、フォーム用印刷物、カルトン紙などの各種包装用印刷物、各種プラスチック印刷物、シール、ラベル用印刷物、美術印刷物、金属印刷物などの種々の印刷物を得るために、好適に用いられる。
 次に、本発明を、実施例および比較例に基づいて説明するが、本発明は、下記の実施例によって限定されるものではない。なお、「部」および「%」は、特に言及がない限り、質量基準である。また、以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。
 実施例1
 攪拌機、水分離器付き還流冷却器および温度計付き4つ口フラスコに窒素ガスを吹き込みながら、不均化ロジン(商品名G-100F、ハリマ化成製)7.0部、パラ-t-ブチル安息香酸35.0部、無水マレイン酸13.0部、フタル酸13.0部、トリメチロールプロパン32.0部を混合し、230℃で約8時間脱水縮合させ、酸価8.0mgKOH/g以下の活性エネルギー線硬化型インキ用樹脂(以下、樹脂と略する。)1を得た。
 得られた樹脂1を30.0部、ジペンタエリスリトールヘキサアクリレート(DPHA)を69.9部、および、ハイドロキノン0.1部を混合し、約110℃で加熱溶解させ、活性エネルギー線硬化型インキ用組成物(以下、ワニスと称する。)1を得た。
 さらに、得られたワニス1を55.0部、中性カーボンブラック(CB、顔料、三菱化学製、RCF#52)20.0部、トリメチロールプロパントリアクリレート(TMPTA)19.7部、イルガキュア907(光重合開始剤、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、BASF社製)5.0部、および、ナフテン酸コバルト(乾燥剤)0.3部を配合し、3本ロールミル(井上製作所製、S-4 3/4×11)にて最大粒子径が7.5μm以下となるように分散させた。これにより、活性エネルギー線硬化型インキ(以下、インキと称する。)1を得た。
 なお、インキ1における各成分の配合割合は、インコメーター(東洋精機社製D-2)にてロール温度30℃、400rpmの条件で、1分後のタック値が8.0~10.0となるように調整した。
 実施例2~7および実施例9~11
 表1の配合比率に変更した以外は、実施例1と同様の操作で、樹脂2~7および樹脂9~11を得た。
 また、実施例1と同様の操作で、ワニス2~7およびワニス9~11を得た。
 さらに、実施例1と同様の操作で、インキ2~7およびインキ9~11を得た。
 実施例8
 攪拌機、水分離器付き還流冷却器および温度計付き4つ口フラスコに窒素ガスを吹き込みながら、不均化ロジン(商品名G-100F、ハリマ化成製)29.0部、無水マレイン酸10.7部、安息香酸25.0部、テトラヒドロフタル酸11.3部、および、グリセリン23.6部を混合し、230℃で約8時間脱水縮合させ、酸価8.0以下にした。その後、冷却し、ハイドロキノン0.1部、アクリル酸0.3部を添加し110℃で約12時間反応させ、酸価8.0mgKOH/g以下の樹脂8を得た。
 また、実施例1と同様の操作で、ワニス8を得た。
 さらに、実施例1と同様の操作で、インキ8を得た。
 比較例1~2および比較例5~7
 表2の配合比率に変更した以外は、実施例1と同様の操作で、樹脂12~13および樹脂16~18を得た。
 また、実施例1と同様の操作で、ワニス12~13およびワニス16~18を得た。
 さらに、実施例1と同様の操作で、インキ12およびインキ16~18を得た。なお、ワニス13は保存安定性(後述)が十分ではなかったため、ワニス13を用いたインキ13を調製しなかった。また、ワニス17は10日目でゲル化したため、使用可能レベルではないが、インキとしての評価を確認するためにインキ17を調製した。
 比較例3および4
 表2の配合比率に変更した以外は、実施例8と同様の操作で、樹脂14および15を得た。
 また、実施例1と同様の操作で、ワニス14およびワニス15を得た。
 さらに、実施例1と同様の操作で、インキ14およびインキ15を得た。
 <ワニス評価>
 各実施例および各比較例において得られたワニスを、下記の方法により評価した。
 (1)保存安定性
 ワニスを約60℃で保管し、ゲル化の有無を目視で確認した。評価の基準を下記する。
A: 1か月後ゲル化しなかった。
B: 10日目以降ゲル化した。
C: 3日目以降ゲル化した。
 上記の基準において、Aであれば実用可能であると判断した。
 <インキ評価>
 各実施例および各比較例において得られたインキを、下記の方法により評価した。
 (1)光沢値
 0.4mLの各インキをRIテスター全面ロールでアート紙に展色した。その後、UV照射装置(アイグラフィック(株)社製ESC-4011GX)を用いて、メタルハライドランプ80W/cm、コンベアスピード24m/minの条件で、紫外線を照射し、印刷物を硬化させた。また硬化後の印刷物の光沢値を60°-60°光沢計(太佑機材(株)製マイクロトリグロス)で測定した。尚、本試験で光沢値60以上であれば、高い光沢値を有していると判断した。
 (2)鉛筆硬度
 光沢値測定時と同条件で作成した硬化後の印刷物をJIS K5600(2007年)に準拠し、三菱鉛筆「ユニ」により印刷物皮膜が乖離しない最高硬度を評価した。
 なお、評価の基準を下記する。
 (硬い)2H > H > F > HB > B > 2B  (柔らかい)
 また、上記の基準において、F以上であれば実用可能であると判断した。
 (3)耐摩擦性
 光沢値測定時と同条件で作成した硬化後の印刷物をJIS K5701-1(2000)に準拠し、S形摩擦試験機((株)安田精機製作所製)を使用して、1816gの加重で40回往復させ、印刷物表面のインキ皮膜の擦れ落ち度合いを5段階で評価した。その基準を下記する。
5:40回往復で擦れ落ちが20%未満であった。
4:40回往復で擦れ落ちが20%以上40%未満であった。
3:40回往復で擦れ落ちが40%以上60%未満であった。
2:40回往復で擦れ落ちが60%以上80%未満であった。
1:40回往復で擦れ落ちが80%以上であった。
 また、上記の基準において、3以上であれば実用可能であると判断した。
 (4)耐ミスチング性
 各インキを約360mL取り、インコメーター(東洋精機社製 D-2)に均一となるように載せて、1200rpm、ロール温度30℃で回転させ、ロール前面と下面においた白紙に付着したインキの飛散状態を目視確認し、5段階で評価した。その基準を下記する。
5:インキの飛散が殆どなかった。
4:インキの飛散が僅かにあった。
3:インキの飛散はあるが実使用可能であった。
2:インキの飛散が多かった。
1:インキの飛散が著しく激しかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表中の略号の詳細を下記する。
DPHA:ジペンタエリスリトールヘキサアクリレート
TMPTA:トリメチロールプロパントリアクリレート
CB:カーボンブラック
イルガキュア907:光重合開始剤、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、BASF社製
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。
 本発明の活性エネルギー線硬化型インキ用樹脂、活性エネルギー線硬化型インキ用組成物、活性エネルギー線硬化型インキおよび硬化膜は、各種包装用印刷物、各種プラスチック印刷物、シール、ラベル用印刷物、美術印刷物、金属印刷物などの種々の印刷物において、好適に用いられる。

Claims (10)

  1.  ロジン変性不飽和ポリエステル樹脂(A)を含有する活性エネルギー線硬化型インキ用樹脂であって、
     前記ロジン変性不飽和ポリエステル樹脂(A)は、ロジン類(a)、α,β-不飽和カルボン酸類(b)およびポリオール類(c)を含む原料成分の反応物であり、
      前記原料成分の総量に対する、前記α,β-不飽和カルボン酸類(b)由来の不飽和結合モル比率が0.50mol/kg以上2.00mol/kg以下であり、
      前記ロジン類(a)は、前記ロジン類(a)の総量に対して、安定化処理ロジンを90質量%以上含有し、
      前記α,β-不飽和カルボン酸類(b)は、α,β-不飽和ジカルボン酸類を含有し、
      前記ポリオール類(c)は、3価以上のアルコールを含有する
    ことを特徴とする、活性エネルギー線硬化型インキ用樹脂。
  2.  前記α,β-不飽和カルボン酸類(b)の総量に対して、α,β-不飽和モノカルボン酸類の含有割合が、3質量%以下である、請求項1に記載の活性エネルギー線硬化型インキ用樹脂。
  3.  前記ポリオール類(c)の総量に対して、ジオールの含有割合が、10質量%以下である、請求項1に記載の活性エネルギー線硬化型インキ用樹脂。
  4.  前記α,β-不飽和ジカルボン酸類が、フマル酸、マレイン酸および無水マレイン酸からなる群から選択される少なくとも1種の化合物である、請求項1に記載の活性エネルギー線硬化型インキ用樹脂。
  5.  前記安定化処理ロジンが、水添ロジンおよび/または不均化ロジンである、請求項1に記載の活性エネルギー線硬化型インキ用樹脂。
  6.  前記ロジン類(a)に対する前記α,β-不飽和カルボン酸類(b)の質量比率(前記α,β-不飽和カルボン酸類(b)/前記ロジン類(a))が、0.35以上2以下である、請求項1に記載の活性エネルギー線硬化型インキ用樹脂。
  7.  請求項1に記載の活性エネルギー線硬化型インキ用樹脂と、
     活性エネルギー線硬化型モノマーと
    を含有することを特徴とする、活性エネルギー線硬化型インキ用組成物。
  8.  請求項7に記載の活性エネルギー線硬化型インキ用組成物と、
     顔料と
    を含有することを特徴とする、活性エネルギー線硬化型インキ。
  9.  請求項7に記載の活性エネルギー線硬化型インキ用組成物の硬化物であることを特徴とする、硬化膜。
  10.  請求項8に記載の活性エネルギー線硬化型インキの硬化物であることを特徴とする、硬化膜。
     
PCT/JP2017/025521 2016-07-26 2017-07-13 活性エネルギー線硬化型インキ用樹脂、活性エネルギー線硬化型インキ用組成物、活性エネルギー線硬化型インキおよび硬化膜 WO2018021045A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780042020.7A CN109476940B (zh) 2016-07-26 2017-07-13 活性能量射线固化型油墨用树脂、油墨用组合物、油墨及固化膜
US16/320,304 US10669439B2 (en) 2016-07-26 2017-07-13 Resin for active energy ray curable ink, composition for active energy ray curable ink, active energy ray curable ink, and cured film
ES17834053T ES2955712T3 (es) 2016-07-26 2017-07-13 Resina para tintas curables con rayos de energía activa, composición para tintas curables con rayos de energía activa, tinta curable con rayos de energía activa y película curada
EP17834053.5A EP3492537B1 (en) 2016-07-26 2017-07-13 Resin for active energy ray-curable inks, composition for active energy ray-curable inks, active energy ray-curable ink and cured film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-146312 2016-07-26
JP2016146312A JP6378720B2 (ja) 2016-07-26 2016-07-26 活性エネルギー線硬化型インキ用樹脂、活性エネルギー線硬化型インキ用組成物、活性エネルギー線硬化型インキおよび硬化膜

Publications (1)

Publication Number Publication Date
WO2018021045A1 true WO2018021045A1 (ja) 2018-02-01

Family

ID=61016473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025521 WO2018021045A1 (ja) 2016-07-26 2017-07-13 活性エネルギー線硬化型インキ用樹脂、活性エネルギー線硬化型インキ用組成物、活性エネルギー線硬化型インキおよび硬化膜

Country Status (6)

Country Link
US (1) US10669439B2 (ja)
EP (1) EP3492537B1 (ja)
JP (1) JP6378720B2 (ja)
CN (1) CN109476940B (ja)
ES (1) ES2955712T3 (ja)
WO (1) WO2018021045A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6421268B1 (ja) * 2018-05-14 2018-11-07 東洋インキScホールディングス株式会社 ロジン変性樹脂とその製造方法、活性エネルギー線硬化型平版印刷インキ用ワニス、活性エネルギー線硬化型平版印刷インキ、及び印刷物
US11472976B2 (en) 2020-05-26 2022-10-18 Harima Chemicals, Incorporated Resin for active-energy-ray-curable ink, composition for active-energy-ray-curable ink, and active-energy-ray-curable ink

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11414518B2 (en) * 2016-03-22 2022-08-16 Toyo Ink Sc Holdings Co., Ltd. Rosin-modified resin and method for producing same, varnish for active energy ray-curable lithographic ink, active energy ray-curable lithographic ink, and printed product
JP6665910B2 (ja) * 2017-12-25 2020-03-13 東洋インキScホールディングス株式会社 活性エネルギー線硬化型平版印刷インキ用ロジン変性樹脂とその製造方法、活性エネルギー線硬化型平版印刷インキ用ワニス、活性エネルギー線硬化型平版印刷インキ、及び印刷物
JP7099247B2 (ja) * 2018-10-22 2022-07-12 東洋インキScホールディングス株式会社 活性エネルギー線硬化型平版印刷インキ用ロジン変性樹脂とその製造方法、活性エネルギー線硬化型平版印刷インキ用ワニス、活性エネルギー線硬化型平版印刷インキ、及び印刷物
JP7281317B2 (ja) * 2019-03-22 2023-05-25 サカタインクス株式会社 活性エネルギー線硬化型インキ組成物及びその製造方法、並びにそれを用いた印刷物の製造方法
JP7342683B2 (ja) * 2019-12-20 2023-09-12 東洋インキScホールディングス株式会社 活性エネルギー線硬化性インキ組成物およびその印刷物
CN115135730B (zh) * 2020-06-03 2023-10-20 东洋油墨Sc控股株式会社 活性能量射线固化型平版印刷油墨和印刷物
JP7463873B2 (ja) 2020-06-18 2024-04-09 Dic株式会社 平版オフセット印刷用活性エネルギー線硬化型インキ、インキ硬化物の製造方法及び印刷物
US20230399521A1 (en) 2020-11-27 2023-12-14 Basf Se Peroxide-free coating compositions comprising unsaturated polyester
CN117677681A (zh) * 2021-05-17 2024-03-08 哈利玛化成株式会社 水性涂布剂、物品和松香改性聚酯树脂的制造方法
JP7067662B1 (ja) 2021-08-19 2022-05-16 東洋インキScホールディングス株式会社 活性エネルギー線硬化型コーティングニス、および積層体
JP7164782B1 (ja) * 2021-08-19 2022-11-02 東洋インキScホールディングス株式会社 活性エネルギー線硬化型コーティングニス、および積層体
CN114015272B (zh) * 2021-11-22 2022-10-11 湖南志洲新型干混建材有限公司 一种高强度耐水抗裂腻子粉及其制备方法
EP4186940A1 (en) * 2021-11-29 2023-05-31 Hubergroup Deutschland GmbH A polymer being suitable as inert component of a radiation curing coating and in particular of a radiation curing ink
CN114574104B (zh) 2022-03-18 2023-12-19 广西科茂林化有限公司 一种紫外光固化松香树脂及其制备方法与应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001139670A (ja) * 1999-08-31 2001-05-22 Arakawa Chem Ind Co Ltd ポリエステル樹脂、その製造法、印刷インキ用バインダーおよび印刷インキ
JP2003268283A (ja) * 2002-03-20 2003-09-25 The Inctec Inc インキワニスおよびインキ
JP2004256716A (ja) * 2003-02-27 2004-09-16 Harima Chem Inc 印刷インキ用樹脂及びその製造方法
JP2004352877A (ja) * 2003-05-29 2004-12-16 Arakawa Chem Ind Co Ltd 印刷インキ用樹脂組成物、印刷インキ用樹脂ワニス、これらの製造方法、および印刷インキ
JP2006160806A (ja) * 2004-12-03 2006-06-22 Harima Chem Inc 印刷インキ用樹脂、並びに当該樹脂を用いた印刷用インキ
JP2007231220A (ja) * 2006-03-03 2007-09-13 Toyo Ink Mfg Co Ltd 活性エネルギー線硬化型平版オフセットインキおよびその印刷物
JP2011074112A (ja) * 2009-09-29 2011-04-14 Dnp Fine Chemicals Co Ltd オフセット印刷用墨インキ
WO2014024549A1 (ja) * 2012-08-09 2014-02-13 ハリマ化成株式会社 オフセット印刷インキ用樹脂

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2998263B2 (ja) 1991-03-19 2000-01-11 荒川化学工業株式会社 印刷インキ用バインダーおよびその製造法
DE19837302A1 (de) * 1998-08-18 2000-02-24 Clariant Gmbh Pigmentpräparation für den Offsetdruck mit verbesserten rheologischen Eigenschaften
JP3876647B2 (ja) * 2001-05-21 2007-02-07 東洋インキ製造株式会社 硬化性被覆組成物、硬化性インキ、その印刷方法およびその印刷物
CN100424141C (zh) * 2002-04-30 2008-10-08 大日本油墨化学工业株式会社 紫外线固化性油墨及使用该油墨的印刷物
JP2004245716A (ja) * 2003-02-14 2004-09-02 Kubota Corp 回転検出装置
US7011302B2 (en) * 2003-05-21 2006-03-14 Systems Technology, Inc. Vertical pocket feeder
JP4522665B2 (ja) * 2003-05-29 2010-08-11 花王株式会社 水系インク
EP1629054A1 (en) * 2003-06-03 2006-03-01 Ciba SC Holding AG Process for preparing pigment concentrates for use in radiation-curable coatings
JP2007177081A (ja) * 2005-12-28 2007-07-12 Toyo Ink Mfg Co Ltd 印刷インキ組成物
JP5493424B2 (ja) 2008-08-19 2014-05-14 東洋インキScホールディングス株式会社 活性エネルギー線硬化型平版印刷インキおよびその印刷物
JP6256212B2 (ja) 2014-06-11 2018-01-10 東洋インキScホールディングス株式会社 平版印刷インキおよび印刷物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001139670A (ja) * 1999-08-31 2001-05-22 Arakawa Chem Ind Co Ltd ポリエステル樹脂、その製造法、印刷インキ用バインダーおよび印刷インキ
JP2003268283A (ja) * 2002-03-20 2003-09-25 The Inctec Inc インキワニスおよびインキ
JP2004256716A (ja) * 2003-02-27 2004-09-16 Harima Chem Inc 印刷インキ用樹脂及びその製造方法
JP2004352877A (ja) * 2003-05-29 2004-12-16 Arakawa Chem Ind Co Ltd 印刷インキ用樹脂組成物、印刷インキ用樹脂ワニス、これらの製造方法、および印刷インキ
JP2006160806A (ja) * 2004-12-03 2006-06-22 Harima Chem Inc 印刷インキ用樹脂、並びに当該樹脂を用いた印刷用インキ
JP2007231220A (ja) * 2006-03-03 2007-09-13 Toyo Ink Mfg Co Ltd 活性エネルギー線硬化型平版オフセットインキおよびその印刷物
JP2011074112A (ja) * 2009-09-29 2011-04-14 Dnp Fine Chemicals Co Ltd オフセット印刷用墨インキ
WO2014024549A1 (ja) * 2012-08-09 2014-02-13 ハリマ化成株式会社 オフセット印刷インキ用樹脂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3492537A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6421268B1 (ja) * 2018-05-14 2018-11-07 東洋インキScホールディングス株式会社 ロジン変性樹脂とその製造方法、活性エネルギー線硬化型平版印刷インキ用ワニス、活性エネルギー線硬化型平版印刷インキ、及び印刷物
JP2019199492A (ja) * 2018-05-14 2019-11-21 東洋インキScホールディングス株式会社 ロジン変性樹脂とその製造方法、活性エネルギー線硬化型平版印刷インキ用ワニス、活性エネルギー線硬化型平版印刷インキ、及び印刷物
US11472976B2 (en) 2020-05-26 2022-10-18 Harima Chemicals, Incorporated Resin for active-energy-ray-curable ink, composition for active-energy-ray-curable ink, and active-energy-ray-curable ink

Also Published As

Publication number Publication date
JP2018016688A (ja) 2018-02-01
EP3492537A4 (en) 2020-07-15
EP3492537A1 (en) 2019-06-05
CN109476940A (zh) 2019-03-15
US20190264044A1 (en) 2019-08-29
ES2955712T3 (es) 2023-12-05
US10669439B2 (en) 2020-06-02
EP3492537B1 (en) 2023-06-28
CN109476940B (zh) 2021-09-28
JP6378720B2 (ja) 2018-08-22

Similar Documents

Publication Publication Date Title
JP6378720B2 (ja) 活性エネルギー線硬化型インキ用樹脂、活性エネルギー線硬化型インキ用組成物、活性エネルギー線硬化型インキおよび硬化膜
US8802222B2 (en) Acrylated natural oil compositions
CN112513132A (zh) 酯树脂和酯树脂的制造方法
WO2015163184A1 (ja) 活性エネルギー線硬化型オフセットインキの硬化方法
JP2017043743A (ja) 変性ロジンエステル樹脂、活性エネルギー線硬化型樹脂組成物及び硬化物
JP6914606B1 (ja) 活性エネルギー線硬化型インキ用樹脂、活性エネルギー線硬化型インキ用組成物および活性エネルギー線硬化型インキ
JP2010229298A (ja) 活性エネルギー線硬化型平版印刷インキおよびその印刷物
JP2015172137A (ja) 平版印刷インキおよび印刷物
JP6256212B2 (ja) 平版印刷インキおよび印刷物
JP2003040949A (ja) 硬化性不飽和樹脂組成物
TW201343690A (zh) 活性能量線硬化性組成物、使用其的活性能量線硬化性塗料及活性能量線硬化性印刷墨水
JP6160870B2 (ja) 水酸基含有重合性共重合体及びその製造方法、並びに活性エネルギー線硬化型樹脂組成物及び硬化物
JPWO2018123774A1 (ja) 光硬化型マスク材用インキ及びその硬化物
JP7319506B1 (ja) 活性エネルギー線硬化型インキ組成物および印刷物
JP7368673B1 (ja) 金属印刷用活性エネルギー線硬化型オフセットインキ組成物および積層体
JP7341388B1 (ja) 金属印刷用活性エネルギー線硬化型インキ組成物およびその積層体
JP2023146223A (ja) 活性エネルギー線硬化型インキ用樹脂、活性エネルギー線硬化型インキ用組成物、インキ組成物および印刷物
WO2019004075A1 (ja) 活性エネルギー線硬化型インキ用樹脂、活性エネルギー線硬化型インキ用組成物、活性エネルギー線硬化型インキ及び硬化膜
JP2023088352A (ja) 活性エネルギー線硬化型オフセット輪転印刷用墨インキおよび印刷物
WO2023281971A1 (ja) 活性エネルギー線硬化性樹脂組成物、活性エネルギー線硬化型顔料分散体、オフセットインキ用インキ組成物、及びフレキソインキ用インキ組成物
JPH11246635A (ja) 活性エネルギー線硬化性樹脂組成物
JP2023041621A (ja) 活性エネルギー線硬化型樹脂組成物、インキおよび印刷物
JP2021519358A (ja) 放射線硬化性組成物
JP2018035287A (ja) 活性エネルギー線硬化型オフセット印刷インキ用樹脂、ワニス及びインキ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017834053

Country of ref document: EP

Effective date: 20190226