WO2018003379A1 - 熱溶解積層型3次元プリンタ用材料及びそれを用いた熱溶解積層型3次元プリンタ用フィラメント - Google Patents

熱溶解積層型3次元プリンタ用材料及びそれを用いた熱溶解積層型3次元プリンタ用フィラメント Download PDF

Info

Publication number
WO2018003379A1
WO2018003379A1 PCT/JP2017/020137 JP2017020137W WO2018003379A1 WO 2018003379 A1 WO2018003379 A1 WO 2018003379A1 JP 2017020137 W JP2017020137 W JP 2017020137W WO 2018003379 A1 WO2018003379 A1 WO 2018003379A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
dimensional printer
copolymer
hot melt
heat
Prior art date
Application number
PCT/JP2017/020137
Other languages
English (en)
French (fr)
Inventor
原 義智
藤村 英樹
匡晴 松本
麻央 鶴
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=60786990&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018003379(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to US16/305,363 priority Critical patent/US20200317867A1/en
Priority to KR1020187037207A priority patent/KR20190024898A/ko
Priority to CN201780041074.1A priority patent/CN109414880A/zh
Priority to EP17819746.3A priority patent/EP3479998A4/en
Priority to JP2017548249A priority patent/JP6265314B1/ja
Publication of WO2018003379A1 publication Critical patent/WO2018003379A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/255Enclosures for the building material, e.g. powder containers
    • B29C64/259Interchangeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/40Polyamides containing oxygen in the form of ether groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/44Polyester-amides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/102Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material

Definitions

  • the present invention relates to a material for a hot melt lamination type 3D printer and a filament for a hot melt lamination type 3D printer using the same.
  • ⁇ ⁇ ABS and PLA are widely used as the molten resin as a material for heat melting laminated type 3D printers.
  • advanced safety measures such as heat-resistant structure can be taken. May need to be applied.
  • the adhesion between layers is deteriorated during lamination, and the strength of the modeled product becomes insufficient.
  • Patent Document 1 describes a filament for molding a three-dimensional printer made of a polyester-based thermoplastic elastomer having predetermined physical properties.
  • Patent Document 2 describes a filament composition for a three-dimensional printer containing atactic polypropylene having predetermined physical properties.
  • ⁇ A molded product formed with a hot melt laminated 3D printer is required to have a texture and ease of post-processing.
  • the monofilament cannot withstand repeated bending due to repeated high-speed operation of the extrusion head during modeling. Further, some monofilaments of thermoplastic resin are liable to cause bubbles and uneven discharge during storage.
  • an object of the present invention is to provide a material for a heat-melting laminated three-dimensional printer having excellent formability and a filament for a heat-melting laminated three-dimensional printer using the same.
  • the present invention is as follows. [1] A material for a heat-dissolving laminated three-dimensional printer containing a polyamide copolymer. [2] The material for hot melt lamination type three-dimensional printer according to [1], wherein the polyamide copolymer is a polyamide elastomer. [3] The material for hot melt lamination type three-dimensional printer according to [2], wherein the polyamide elastomer is a polyether polyamide elastomer.
  • the polyether polyamide elastomer is an aminocarboxylic acid compound represented by the following formula (A1) and / or a lactam compound represented by the following formula (A2), a triblock poly represented by the following formula (B):
  • A1 aminocarboxylic acid compound represented by the following formula (A1) and / or a lactam compound represented by the following formula (A2), a triblock poly represented by the following formula (B):
  • the heat-dissolving laminated three-dimensional printer material according to [3] which is obtained by polymerizing an ether diamine compound and a dicarboxylic acid compound represented by the following formula (C).
  • R 1 represents a linking group containing a hydrocarbon chain.
  • R 2 represents a linking group containing a hydrocarbon chain.
  • R 3 represents a linking group containing a hydrocarbon chain, and m is 0 or 1.
  • a filament for a hot melt laminate type three-dimensional printer comprising the material for a hot melt laminate type three dimensional printer according to any one of [1] to [7].
  • the material for a hot melt lamination type three-dimensional printer of the present invention contains a polyamide copolymer.
  • the material for a hot melt laminate type three-dimensional printer of the present invention may be composed only of a polyamide copolymer, and is a composition comprising a polyamide copolymer and other components to such an extent that the effects of the present invention are not impaired. But you can.
  • Other components include polymers other than polyamide copolymers, heat-resistant agents, UV absorbers, light stabilizers, antioxidants, antistatic agents, lubricants, slip agents, crystal nucleating agents, tackifiers, and sealing properties. Agents, antifogging agents, mold release agents, plasticizers, pigments, dyes, fragrances, flame retardants, reinforcing materials and the like.
  • polymer other than the polyamide copolymer examples include, for example, acrylonitrile-butadiene-styrene resin (ABS resin), polylactic acid (PLA resin), polyurethane resin, polyolefin resin, polyester resin, homopolyamide resin, styrene resin, An acrylic resin, a polycarbonate resin, a polyvinyl chloride resin, a silicone resin, and rubber are mentioned.
  • ABS resin acrylonitrile-butadiene-styrene resin
  • PLA resin polylactic acid
  • polyurethane resin polyolefin resin
  • polyester resin homopolyamide resin
  • styrene resin an acrylic resin, a polycarbonate resin, a polyvinyl chloride resin, a silicone resin, and rubber are mentioned.
  • homopolyamide resin examples include, for example, polyamide 6, polyamide 11, polyamide 12, polyamide 66, polyamide 69, polyamide 610, polyamide 611, polyamide 612, polyamide 62, polyamide 92, polyamide 102, polyamide 122, polyamide IPD6, Polyamide MXD6 is mentioned.
  • the rubber include, for example, butyl rubber, chlorinated butyl rubber, brominated butyl rubber, isoprene rubber, isobutylene-bromoparamethylstyrene copolymer, ethylene-propylene copolymer (EPR), modified EPR, ethylene-butene copolymer.
  • EBR ethylene-ethyl acrylate copolymer
  • EA ethylene-ethyl acrylate copolymer
  • EPDM ethylene-propylene-diene terpolymer
  • NBR acrylonitrile butadiene rubber
  • CR chloropropylene rubber
  • Hydrogenated NBR acrylic rubber, ethylene acrylic rubber (AEM), styrene-ethylene-butylene-styrene copolymer (modified SEBS), and blends of two or more of these rubbers.
  • the polymer other than the polyamide copolymer is preferably a polyurethane resin, a polyolefin resin, a polyester resin, a homopolyamide resin, or rubber from the viewpoint of compatibility at the time of melt kneading with the polyamide copolymer.
  • the lubricant it is preferable to add particles.
  • any particles can be added.
  • inorganic particles silica, alumina, kaolin, titanium dioxide, calcium carbonate, magnesium carbonate, zinc carbonate, calcium stearate, magnesium stearate, zinc stearate
  • organic particles include acrylic resin particles, melamine resin particles, silicone resin particles, and polystyrene resin particles.
  • Reinforcing materials include inorganic fillers and inorganic fibers.
  • the inorganic filler include calcium carbonate, zinc carbonate, magnesium oxide, calcium silicate, sodium aluminate, calcium aluminate, sodium aluminosilicate, magnesium silicate, potassium titanate, glass balloon, glass flake, glass powder, Examples include silicon carbide, silicon nitride, boron nitride, gypsum, calcined kaolin, zinc oxide, antimony trioxide, zeolite, hydrotalcite, wollastonite, silica, talc, metal powder, alumina, graphite, carbon black, carbon nanotube, etc. It is done.
  • Specific examples of the inorganic fiber include glass cut fiber, glass milled fiber, glass fiber, gypsum whisker, metal fiber, metal whisker, ceramic whisker, carbon fiber, and cellulose nanofiber.
  • the proportion of the polyamide copolymer contained in the heat-melt laminated type three-dimensional printer material of the present invention is preferably 5% by weight or more, more preferably 30% by weight or more, further preferably 60% by weight or more, 85 A weight percent or more is particularly preferred.
  • the polyamide copolymer is preferably contained as a main component, not as a modifier, from the viewpoint of sufficiently exhibiting the effects of the present invention.
  • the main component means that the polyamide copolymer is preferably 50% by weight or more, more preferably 60% by weight or more, and more preferably 70% by weight or more with respect to the total amount of the material for the hot-melt laminated type three-dimensional printer.
  • the proportion of the polyamide copolymer contained in the material for the hot melt laminate type three-dimensional printer of the present invention may be 100% by weight, but may be 99% by weight or less, or 95% by weight or less.
  • the melting point of the polyamide copolymer is preferably 200 ° C. or lower. If the melting point is 200 ° C. or less, the temperature for modeling with the hot melt laminated type three-dimensional printer can be set low, and it is not necessary to take advanced safety measures, and the power consumption can be suppressed, and the running cost can be reduced. Can be lowered.
  • the melting point of the polyamide copolymer is more preferably 190 ° C. or less, further preferably 180 ° C. or less, and particularly preferably 170 ° C. or less.
  • the melting point of the polyamide copolymer is preferably 125 ° C or higher, more preferably 130 ° C or higher, further preferably 135 ° C or higher, particularly preferably 140 ° C or higher.
  • the melting point of the polyamide copolymer may be set to less than 140 ° C. in order to suppress the power consumption by making the modeling temperature with the hot melt lamination type three-dimensional printer as low as possible.
  • fusing point of a polyamide copolymer can be measured by the method described in the Example mentioned later.
  • the melt flow rate of the polyamide copolymer measured at 200 ° C. under a load of 5000 g in accordance with ISO 1133 is preferably 10 g / 10 min or more. If the melt flow rate of the polyamide copolymer is 10 g / 10 min or more, the polyamide copolymer is stably dissolved, so that not only the discharge amount from the tip of the extrusion head is stabilized but also the interlayer adhesion is improved. The formability of the hot melt laminated type three-dimensional printer is excellent.
  • the melt flow rate of the polyamide copolymer is more preferably 20 g / 10 min or more, further preferably 30 g / 10 min or more, and particularly preferably 40 g / 10 min or more.
  • the melt flow rate of the polyamide copolymer is preferably 95 g / 10 min or less, more preferably 85 g / 10 min or less, and 75 g / 10 minutes or less is more preferable, and 65 g / 10 minutes or less is particularly preferable.
  • the melt flow rate of the polyamide copolymer may be more than 65 g / 10 minutes in order to enhance the interlayer adhesion as much as possible and further improve the formability in the heat-melting laminated three-dimensional printer.
  • the melt flow rate of the polyamide copolymer measured at a load of 200 ° C. to 5000 g can be measured by the method described in the examples described later.
  • the flexural modulus of the polyamide copolymer measured at 23 ° C. and 50% RH is preferably 1000 MPa or less.
  • the flexural modulus of the polyamide copolymer is more preferably 800 MPa or less, further preferably 600 MPa or less, and particularly preferably 400 MPa or less.
  • the flexural modulus of the polyamide copolymer is preferably 50 MPa or more, more preferably 100 MPa or more, further preferably 150 MPa or more, particularly 200 MPa or more. preferable.
  • the bending elastic modulus of the polyamide copolymer may be less than 100 MPa so that the product formed by the hot melt lamination type three-dimensional printer has high flexibility.
  • the bending elastic modulus of a polyamide copolymer can be measured by the method described in the Example mentioned later.
  • the water absorption rate of the polyamide copolymer is preferably 2.5% or less.
  • the water absorption rate of the polyamide copolymer is more preferably 2.0% or less, further preferably 1.5% or less, and particularly preferably 1.0% or less.
  • the water absorption of the polyamide copolymer may be 0.3% or more, or may be 0.6% or more.
  • the polyamide copolymer means one having two or more types of repeating units and at least a part of which has an amide bond.
  • Specific examples of the polyamide copolymer include, for example, caprolactam / hexamethylene diamino adipic acid copolymer (polyamide 6 / polyamide 66 copolymer), caprolactam / hexamethylene diamino azelaic acid copolymer (polyamide 6 / polyamide 69 copolymer).
  • polyamide 6 / polyamide 12 copolymer polyamide 6 / polyamide 11 copolymer, polyamide 6 / polyamide 66 / polyamide 12 copolymer, and polyamide elastomer are preferred, and polyamide 6 / polyamide 12 copolymer is preferred.
  • a polymer and a polyamide elastomer are more preferable, and a polyamide elastomer is more preferable.
  • Polyamide elastomer has a hard segment and a soft segment, and the hard segment has a structural unit of polyamide.
  • the soft segment of the polyamide elastomer preferably has a structural unit of polyether.
  • Examples of the polyamide elastomer having a polyether structural unit as a soft segment include a polyether polyester polyamide elastomer in which a hard segment and a soft segment are bonded by an ester bond, and a polyether polyamide elastomer in which a hard segment and a soft segment are bonded by an amide bond. .
  • a polyether polyamide elastomer in which a hard segment and a soft segment are bonded by an amide bond is preferable.
  • the polyamide structural unit in the hard segment is composed of a polyamide-forming monomer [a nylon salt composed of a diamine and a dicarboxylic acid, an aminocarboxylic acid compound represented by the following formula (A1), and a lactam compound represented by the following formula (A2).
  • R 1 represents a linking group containing a hydrocarbon chain.
  • R 2 represents a linking group containing a hydrocarbon chain.
  • the hard segment can also be derived from a polyamide having carboxyl groups at both terminal groups, and is at least one selected from the group consisting of a polyamide constituent unit, an aliphatic dicarboxylic acid, an alicyclic dicarboxylic acid, and an aromatic dicarboxylic acid. It is also a segment containing dicarboxylic acid (C).
  • R 3 represents a linking group containing a hydrocarbon chain, and m is 0 or 1.
  • aminocarboxylic acid compound (A1) examples include 6-aminocaproic acid, 7-aminoheptanoic acid, 8-aminooctanoic acid, 10-aminocapric acid, 11-aminoundecanoic acid, 12-aminododecanoic acid, etc. 20 aliphatic ⁇ -aminocarboxylic acids and the like.
  • diamines examples include ethylene diamine, trimethylene diamine, tetramethylene diamine, hexamethylene diamine, heptamethylene diamine, octamethylene diamine, nonamethylene diamine, decamethylene diamine, undecamethylene diamine, dodecamethylene diamine, 2,2,4-trimethyl.
  • diamine compounds such as aliphatic diamines having 2 to 20 carbon atoms such as hexane-1,6-diamine, 2,4,4-trimethylhexane-1,6-diamine, and 3-methylpentane-1,5-diamine. It is done.
  • lactam compound (A2) examples include aliphatic lactams having 5 to 20 carbon atoms such as ⁇ -caprolactam, ⁇ -enantolactam, ⁇ -undecalactam, ⁇ -lauryllactam, 2-pyrrolidone, and the like.
  • ⁇ -lauryl lactam, 11-aminoundecanoic acid or 12-aminododecanoic acid is preferable from the viewpoint of dimensional stability due to low water absorption, chemical resistance, and mechanical properties.
  • dicarboxylic acid compound (C) at least one dicarboxylic acid selected from aliphatic, alicyclic and aromatic dicarboxylic acids or derivatives thereof can be used.
  • dicarboxylic acid examples include linear aliphatic dicarboxylic acids having 2 to 25 carbon atoms such as oxalic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, Or aliphatic dicarboxylic acids such as dimerized aliphatic dicarboxylic acids having 14 to 48 carbon atoms (dimer acid) obtained by dimerization of unsaturated fatty acids obtained by fractionation of triglycerides and hydrogenated products thereof (hydrogenated dimer acid) And alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid and aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid.
  • dimer acid and hydrogenated dimer acid trade names “Pripol 1004”, “Plipol 1006”, “Plipol 1009”, “Plipol
  • Polyamide having carboxyl groups at both ends can be obtained by ring-opening polymerization or polycondensation of the above polyamide constituent units in the presence of dicarboxylic acid by a conventional method.
  • the hard segment dicarboxylic acid can be used as a molecular weight modifier.
  • the number average molecular weight of the hard segment is preferably 300 to 15000, and more preferably 300 to 6000 from the viewpoint of flexibility and moldability.
  • the soft segment is preferably a polyether, and examples thereof include polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, and XYX type triblock polyether represented by the following formula (B). These may be used alone or in combination of two or more. Moreover, polyether diamine etc. which are obtained by making animonia etc. react with the terminal of polyether can be used.
  • the number average molecular weight of the soft segment is preferably 200 to 6000, and more preferably 650 to 2000.
  • x and z are each independently preferably an integer of 1 to 18, more preferably an integer of 1 to 16, still more preferably an integer of 1 to 14, particularly preferably an integer of 1 to 12.
  • Y is preferably an integer of 5 to 45, more preferably an integer of 6 to 40, still more preferably an integer of 7 to 35, and particularly preferably an integer of 8 to 30.
  • the combination of the hard segment and the soft segment the combination of the hard segment and the soft segment mentioned above can be given.
  • lauryl lactam ring-opening polycondensate / polyethylene glycol combination lauryl lactam ring-opening polycondensate / polypropylene glycol combination, lauryl lactam ring-opening polycondensate / polytetramethylene ether glycol combination, lauryl lactam
  • the ring-opening polycondensate / XYX-type triblock polyether combination is preferable, and the lauryl lactam ring-opening polycondensate / XYX-type triblock polyether combination is particularly preferable.
  • the hard segment / soft segment (weight ratio) is more preferably 95/5 to 25/75, and particularly preferably 50/50 to 30/70.
  • the hard segment / soft segment When the hard segment / soft segment (weight ratio) is smaller than the above range, the crystallinity of the polyamide component may be lowered, and mechanical properties such as strength and elastic modulus may be deteriorated.
  • the hard segment / soft segment (weight ratio) is larger than the above range, the function and performance as an elastomer such as rubber elasticity and flexibility are hardly exhibited, which is not preferable.
  • Examples of commercially available polyamide elastomers as described above include, for example, trade names “Daiamide (registered trademark) E1947”, “Daiamide (registered trademark) E47”, “Daiamide (registered trademark) E47H”, “Daiamide” manufactured by Daicel Evonik.
  • the product name “UBESTA XPA (registered trademark)” series manufactured by Ube Industries, Ltd. is preferable.
  • Polyamide elastomers may be used alone or in combination of two or more.
  • the hardness (Shore D) of the polyether polyamide elastomer is preferably in the range of 15 to 70, and the elongation recovery rate (%) and the hardness (Shore D) preferably have the relationship of the following formula.
  • the elongation recovery rate (%) and the hardness (Shore D) show the relationship of the following formula, the characteristic performance as an elastomer based on rubber elasticity such as anti-elasticity and bending resistance becomes particularly excellent. . Y> ( ⁇ 0.0042X 2 + 0.175X + Z)
  • X represents hardness (Shore D) and Y represents elongation recovery rate (%).
  • Z is preferably 91.5, more preferably 92, more preferably 92.5, and particularly preferably 93.
  • the hardness (Shore D) of the polyether polyamide elastomer is preferably in the range of 15 to 70, more preferably in the range of 18 to 70, more preferably in the range of 20 to 70, and particularly preferably in the range of 25 to 70. is there.
  • the stress relaxation (t0.9) of the polyether polyamide elastomer is preferably 2 seconds or more, more preferably 2.2 seconds or more, more preferably 2.5 seconds or more, and particularly preferably 2.8 seconds or more. preferable.
  • the stress relaxation is in the above range, an elastomer particularly excellent in rubber elasticity can be obtained.
  • the elongation recovery rate of the polyether polyamide elastomer is preferably in the range of 86 to 100%, more preferably in the range of 87 to 100%, and particularly preferably in the range of 88 to 100%.
  • the elongation recovery rate is in the above range, an elastomer having particularly excellent recovery elasticity and anti-elasticity can be obtained.
  • the yield strength of the polyether polyamide elastomer is preferably in the range of 3 to 25 MPa, more preferably in the range of 3 to 22 MPa, more preferably in the range of 3 to 20 MPa, and particularly preferably in the range of 3 to 18 MPa.
  • the yield point strength is within the above range, an elastomer having particularly excellent toughness and rubber elasticity can be obtained.
  • the elongation at break of the polyether polyamide elastomer is preferably 300% or more, particularly preferably 600% or more. If the amount is less than this range, performance as an elastomer such as toughness and rubber elasticity becomes difficult to be exhibited, which may not be preferable.
  • the haze of the polyether polyamide elastomer is preferably 35 or less, more preferably 34 or less, more preferably 32 or less, and particularly preferably 30 or less. When the haze is lower than the above, an elastomer having excellent transparency can be obtained.
  • the number of cracks generated in the bending test by the demach method is preferably 50,000 times or more, more preferably 100,000 times or more, more preferably 110,000 times or more, particularly preferably 120,000 times. The above is preferable. When the number of cracks generated and bent in the polyether polyamide elastomer is in the above range, it is preferable because the bending fatigue resistance is excellent.
  • the polyether polyamide elastomer has a bending strength of preferably 0.8 to 15 MPa, more preferably 1.0 to 13 MPa, more preferably 1.1 to 10 MPa, and particularly preferably 1.2 to 9 MPa.
  • a bending strength of the polyether polyamide elastomer is within the above range, an elastomer having an excellent balance between toughness such as bending strength and rubber elasticity can be obtained.
  • the polyether polyamide elastomer does not break in the measurement of impact strength with an Izod notch at 23 ° C. (abbreviated as NB) because it is particularly excellent in impact resistance.
  • the polyether polyamide elastomer preferably has a deflection temperature under load of 50 ° C or higher. If it is less than the above range, the material is likely to be deformed during use, which is not preferable.
  • a method for producing a polyether polyamide elastomer three components of a polyamide-forming monomer, an XYX type triblock polyether diamine and a dicarboxylic acid are melt-polymerized under pressure and / or normal pressure, and further if necessary.
  • a method comprising a step of melt polymerization under reduced pressure can be used, and further, three components of polyamide-forming monomer, XYX type triblock polyetherdiamine and dicarboxylic acid are simultaneously melt polymerized under pressure and / or normal pressure, If necessary, a method comprising a step of melt polymerization under reduced pressure can be used. It is also possible to use a method in which a polyamide-forming monomer and a dicarboxylic acid are first polymerized and then an XYX type triblock polyether diamine is polymerized.
  • the polyamide-forming monomer is preferably 20 to 95% by weight, more preferably based on the polyamide-forming monomer and the XYX type triblock polyether diamine.
  • the range of 25 to 95% by weight, particularly preferably 30 to 50% by weight, XYX type triblock polyether diamine is preferably 5 to 80% by weight, more preferably 5 to 75% by weight, particularly preferably 50 to 70% by weight. Range.
  • the XYX type triblock polyether diamine and the dicarboxylic acid are preferably charged so that the amino group of the XYX type triblock polyether diamine and the carboxyl group of the dicarboxylic acid are approximately equimolar.
  • the polyether polyamide elastomer can be produced at a polymerization temperature of preferably 150 to 300 ° C., more preferably 160 to 280 ° C., and particularly preferably 180 to 250 ° C.
  • a polymerization temperature preferably 150 to 300 ° C., more preferably 160 to 280 ° C., and particularly preferably 180 to 250 ° C.
  • the polyether polyamide elastomer can be produced by a method comprising steps of normal pressure melt polymerization or normal pressure melt polymerization followed by low pressure melt polymerization when ⁇ -aminocarboxylic acid is used as the polyamide-forming monomer.
  • the polyether polyamide elastomer can be produced with a polymerization time of usually 0.5 to 30 hours. When the polymerization time is shorter than the above range, the molecular weight is not sufficiently increased, and when the polymerization time is long, coloring due to thermal decomposition or the like occurs, and in any case, a polyether polyamide elastomer having desired physical properties may not be obtained.
  • the production of the polyether polyamide elastomer can be carried out batchwise or continuously, and a batch reactor, a single- or multi-tank continuous reactor, a tubular continuous reactor, etc. can be used alone or in combination. Can be used.
  • the polyether polyamide elastomer preferably has a relative viscosity ( ⁇ r) in the range of 1.2 to 3.5 (0.5 wt / vol% metacresol solution, 25 ° C.).
  • Monoamines and diamines such as laurylamine, stearylamine, hexamethylenediamine, and metaxylylenediamine, acetic acid, benzoic acid to adjust the molecular weight and stabilize the melt viscosity during molding in the production of polyether polyamide elastomer
  • Monocarboxylic acids such as stearic acid, adipic acid, sebacic acid, dodecanedioic acid, or dicarboxylic acids can be added. These amounts are preferably added as appropriate so that the relative viscosity of the finally obtained elastomer is in the range of 1.2 to 3.5 (0.5 wt / vol% metacresol solution, 25 ° C.). .
  • the amount of the monoamine and diamine, monocarboxylic acid, dicarboxylic acid and the like is preferably within a range that does not impair the properties of the obtained polyether polyamide elastomer.
  • phosphoric acid In the production of a polyether polyamide elastomer, phosphoric acid, pyrophosphoric acid, polyphosphoric acid, etc. are used as a catalyst as necessary, and phosphorous acid, hypophosphorous acid, and the like for the purpose of both the catalyst and the heat resistance.
  • Inorganic phosphorus compounds such as alkali metal salts and alkaline earth metal salts can be added. The addition amount is usually 50 to 3000 ppm with respect to the charged raw material.
  • Polyether polyamide elastomer has low water absorption, excellent melt moldability, excellent moldability, excellent toughness, excellent bending fatigue resistance, excellent resilience, low specific gravity, and low temperature flexibility. Excellent low temperature impact resistance, excellent stretch recovery, excellent sound deadening properties, rubber properties and transparency.
  • a filament for a hot-melt laminated type three-dimensional printer can be obtained.
  • the monofilament can be formed by, for example, extrusion molding.
  • any of those that are simply formed as a monofilament, those that are formed by converging the monofilament to be twisted, and those that are obtained by converging and melting the multifilament to form a monofilament can be used.
  • it can be set as a wound body by winding the obtained filament for hot melt laminated type 3D printers, and further, by storing the wound body in a cartridge, it can be attached to the hot melt laminated type 3D printer. It can also be a cartridge.
  • the present invention it is possible to provide a material for a heat-melting laminated three-dimensional printer having excellent formability and a filament for a heat-melting laminated three-dimensional printer using the same.
  • the hot-melt laminated type three-dimensional printer filament using the hot-melt laminated type three-dimensional printer material of the present invention, it is not necessary to take advanced safety measures.
  • the filament for hot melt lamination type 3D printer using the material for hot melt lamination type 3D printer of the present invention the interlaminar adhesion becomes good, the moldability is excellent, and the impact resistance is excellent. A model that is hard to break even if dropped is obtained.
  • the material for the hot melt lamination type 3D printer of the present invention and the filament for the hot melt lamination type 3D printer using the material can be used for both the construction of a model and the construction of the support. Since the material for a mold 3D printer and the filament for a heat melting laminated 3D printer using the material are excellent in formability, interlayer adhesion, and impact resistance, it is preferably used for construction of a modeled object.
  • the modeled object modeled by the filament for the hot melt laminate type three-dimensional printer of the present invention can be used in various fields ranging from medical parts and automobile parts to household articles. It can be used for artificial legs, toys, baby models, school machine models, and the like.
  • the model When a model is dropped or an object is dropped on the model, the model may be delaminated or destroyed, and the model may not be usable.
  • a method for quantitatively evaluating these there is a method in which a Charpy impact test in conformity with ISO 179 and a bending test in conformity with ISO 178 are performed to confirm the formability and durability of the shaped object. Specifically, it can be evaluated by confirming the degree of delamination, the occurrence of cracks and cracks, and the degree of plastic deformation in the modeled samples after these tests.
  • the modeling sample produced from the filament obtained from the filament for the hot melt laminated three-dimensional printer of the present invention does not delaminate in the Charpy impact test based on the ISO 179 standard and the bending test based on the ISO 178 standard. If the shaped sample does not delaminate in the Charpy impact test and the bending test, the interlaminar adhesion becomes good, and the formability in the heat-melting laminated three-dimensional printer becomes excellent.
  • the shaped sample does not crack, and more preferably, the shaped sample does not crack. If the shaped sample is not cracked in the Charpy impact test and the bending test, a shaped article that has excellent impact resistance and is not easily broken even when dropped is obtained. Moreover, if a crack does not occur in the shaped sample, a shaped article that is superior in impact resistance and is less likely to break even if dropped is obtained.
  • the bending angle is preferably less than 45 degrees, more preferably less than 25 degrees, and further preferably less than 5 degrees. preferable.
  • PA is an abbreviation for polyamide
  • PAE1 to PAE4 used in Examples 1 to 4 are polyether polyamide elastomers produced by the following method.
  • each material was measured at 200 ° C. under a load of 5000 g using an orifice having a nozzle diameter of 2.0 mm and a length of 8.0 mm.
  • ⁇ Bending elastic modulus> Using each material, injection molding was performed at a molding temperature of a melting point plus 40 ° C. and a mold temperature of 40 ° C. to obtain a 10 mm ⁇ 4 mm ⁇ 80 mm flat plate. The flat plate was sufficiently conditioned by leaving it at 23 ° C. and 50% RH for about 3 days, and then the flexural modulus was measured at 23 ° C. and 50% RH according to the method of ISO178.
  • the molding temperature in a single screw extruder is set to a melting point plus 40 ° C.
  • the molten resin is fed into the die head
  • the molten resin is extruded from a nozzle with a diameter of 3.0 mm
  • the take-up speed is 10 m / min
  • the cooling water bath temperature is set to The condition was set to 15 ° C.
  • an unstretched monofilament having a diameter of 2.0 mm was extruded.
  • the obtained monofilament was stored in an environment of a temperature of 23 ° C. and a humidity of 50% RH for 30 days. Then, the water absorption rate of the monofilament after 30 days was measured by the Karl Fischer method.
  • Modeling with each material was performed by the same operation as the measurement of MFR. Specifically, after each material is filled in the melt flow index tester and sufficiently deaerated, the stage is installed at a position of 50 mm from the nozzle, and the length is about 50 mm ⁇ height is about 10 mm while moving the stage. Thus, the molten resin was laminated. At that time, the height of the stage was adjusted so that the adhesion surface to be laminated was always 50 mm below the nozzle. And the obtained laminated body was pulled by hand and it was confirmed whether it peeled between layers.
  • the state where the layers are melted and in close contact is set as “excellent” ( ⁇ )
  • the state where the layers are in close contact and does not peel even when pulled by hand is set as “good” ( ⁇ ).
  • the state where the adhesion between the layers was insufficient and the layer peeled off when pulled by hand was defined as “defective” ( ⁇ ).
  • the obtained monofilament was set in a 3D printer (trade name: Value3D MagiX MF-2200D, manufactured by Muto Kogyo Co., Ltd.), and a bending test piece (according to ISO179) under the conditions of a height of 0.5 mm per layer and a filament width of 1 mm.
  • the modeling sample of size 80mmx10mmx4mmt (8 layers) was obtained.
  • the obtained shaped sample is subjected to a Charpy impact test based on ISO 179 standard and a bending test based on ISO 178 standard under a room temperature (23 ° C.) condition, and a fracture state (delamination, crack / cracking, plasticity) The degree of deformation) was confirmed.
  • the occurrence of delamination was defined as “ ⁇ ” when there was no delamination and “x” when there was delamination.
  • the occurrence of cracks / cracks is “ ⁇ ” when there is no crack and no crack, “ ⁇ ” when there is a crack but no crack, and “(” when one layer is completely separated into two or more). ⁇ ”.
  • the degree of plastic deformation is “ ⁇ ” when the molding sample is not plastically deformed (curved angle is less than 5 degrees), and “ ⁇ ” when the plastic sample is slightly plastically deformed (curved angle is 5 degrees or more and less than 45 degrees). Those having large plastic deformation (bending angle of 45 ° or more) were determined as “ ⁇ ”.
  • Table 4 shows examples of modeling samples that are the above judgments regarding the occurrence of delamination, the occurrence of cracks / cracks, and the degree of plastic deformation.
  • the temperature inside the container was raised from room temperature to 230 ° C. over 1 hour while adjusting the pressure in the container to 0.05 MPa while supplying nitrogen gas at a rate of 200 liters / hour.
  • the polymerization was carried out at 230 ° C. while maintaining the pressure at 0.05 MPa.
  • the amperage value (stirring current value) of stirring power was recorded over time, and the time point when the amperage value of stirring power became plus 0.2 A from the start of polymerization was defined as the polymerization end point. After completion of the polymerization, the stirring was stopped, and the colorless and transparent polymer in a molten state was drawn out from the polymer takeout port into a string shape, cooled with water, and pelletized to obtain pellets.
  • the temperature inside the container was raised from room temperature to 230 ° C. over 1 hour while adjusting the pressure in the container to 0.05 MPa while supplying nitrogen gas at a rate of 200 liters / hour.
  • the polymerization was carried out at 230 ° C. while maintaining the pressure at 0.05 MPa.
  • the amperage value (stirring current value) of stirring power was recorded over time, and the time point when the amperage value of stirring power became plus 0.2 A from the start of polymerization was defined as the polymerization end point. After completion of the polymerization, the stirring was stopped, and the colorless and transparent polymer in a molten state was drawn out from the polymer takeout port into a string shape, cooled with water, and pelletized to obtain pellets.
  • the temperature inside the container was raised from room temperature to 230 ° C. over 1 hour while adjusting the pressure in the container to 0.05 MPa while supplying nitrogen gas at a rate of 200 liters / hour.
  • the polymerization was carried out at 230 ° C. while maintaining the pressure at 0.05 MPa.
  • the amperage value (stirring current value) of stirring power was recorded over time, and the time point when the amperage value of stirring power became plus 0.2 A from the start of polymerization was defined as the polymerization end point. After completion of the polymerization, the stirring was stopped, and the colorless and transparent polymer in a molten state was drawn out from the polymer takeout port into a string shape, cooled with water, and pelletized to obtain pellets.
  • the temperature inside the container was raised from room temperature to 230 ° C. over 1 hour while adjusting the pressure in the container to 0.05 MPa while supplying nitrogen gas at a rate of 200 liters / hour.
  • the polymerization was carried out at 230 ° C. while maintaining the pressure at 0.05 MPa.
  • the amperage value (stirring current value) of stirring power was recorded over time, and the time point when the amperage value of stirring power became plus 0.2 A from the start of polymerization was defined as the polymerization end point. After completion of the polymerization, the stirring was stopped, and the colorless and transparent polymer in a molten state was drawn out from the polymer takeout port into a string shape, cooled with water, and pelletized to obtain pellets.
  • the pressure in the polymerization tank was released to normal pressure over about 2 hours. After releasing the pressure, the mixture was polymerized for 1 hr under a nitrogen stream and then subjected to vacuum polymerization for 2 hr. Nitrogen was introduced and the pressure was restored to normal pressure. Then, the stirrer was stopped, and the strand was extracted and pelletized. The polyamide pellets were placed in boiling water, washed with stirring for about 12 hours to extract and remove unreacted monomers, and then dried under reduced pressure at 100 ° C. for 24 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polyamides (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は、造形性に優れた熱溶解積層型3次元プリンタ用材料及びそれを用いた熱溶解積層型3次元プリンタ用フィラメントを提供する。本発明に係る熱溶解積層型3次元プリンタ用材料は、ポリアミド共重合体を含む。本発明に係る熱溶解積層型3次元プリンタ用フィラメントは、上記熱溶解積層型3次元プリンタ用材料を含む。

Description

熱溶解積層型3次元プリンタ用材料及びそれを用いた熱溶解積層型3次元プリンタ用フィラメント
 本発明は、熱溶解積層型3次元プリンタ用材料及びそれを用いた熱溶解積層型3次元プリンタ用フィラメントに関する。
 熱溶解積層型3次元プリンタ用材料としての溶融樹脂は、ABSやPLAが広く使用されている。しかし、いずれの溶融樹脂も造形温度が240℃以上を設定する必要があり、熱溶解積層型3次元プリンタの種類によっては、造形温度が200℃を超えると、耐熱構造などの高度な安全対策を施す必要が生じる場合がある。一方、200℃以下の低い温度で造形しようとすると、積層時に層間の接着が悪くなり、造形品の強度が不十分となる。
 そこで、他の材料を用いた熱溶解積層型3次元プリンタ用材料の開発がされている。特許文献1には、所定の物性を有するポリエステル系熱可塑性エラストマーからなる3次元プリンタ成形用フィラメントが記載されている。特許文献2には、所定の物性を有するアタクチックポリプロピレンを含有する3次元プリンタのフィラメント組成物が記載されている。
特開2016-55637号公報 特開2016-88101号公報
 熱溶解積層型3次元プリンタで形成した造形品には、風合い及び後加工の容易さが求められる。また、熱溶解積層型3次元プリンタ用フィラメントでは、造形時に押出ヘッドが高速稼動を繰り返すことにより、モノフィラメントが繰り返しの屈曲に耐え切れなくなり、切れてしまうという問題も発生する。さらに、熱可塑性樹脂のモノフィラメントの中には保管時に気泡や吐出ムラが生じ易いものがある。
 そこで、本発明は、造形性に優れた熱溶解積層型3次元プリンタ用材料及びそれを用いた熱溶解積層型3次元プリンタ用フィラメントを提供することを目的とする。
 本発明は、以下のとおりである。
[1]ポリアミド共重合体を含む熱溶解積層型3次元プリンタ用材料。
[2]前記ポリアミド共重合体がポリアミドエラストマーである[1]に記載の熱溶解積層型3次元プリンタ用材料。
[3]前記ポリアミドエラストマーがポリエーテルポリアミドエラストマーである[2]に記載の熱溶解積層型3次元プリンタ用材料。
[4]前記ポリエーテルポリアミドエラストマーが、下記式(A1)で表されるアミノカルボン酸化合物及び/又は下記式(A2)で表されるラクタム化合物、下記式(B)で表されるトリブロックポリエーテルジアミン化合物、並びに下記式(C)で表されるジカルボン酸化合物を重合して得られるものである[3]に記載の熱溶解積層型3次元プリンタ用材料。
Figure JPOXMLDOC01-appb-C000005
[但し、Rは、炭化水素鎖を含む連結基を表す。]
Figure JPOXMLDOC01-appb-C000006
[但し、Rは、炭化水素鎖を含む連結基を表す。]
Figure JPOXMLDOC01-appb-C000007
[但し、xは1~20の数値、yは4~50の数値、zは1~20の数値を表す。]
Figure JPOXMLDOC01-appb-C000008
[但し、Rは、炭化水素鎖を含む連結基を表し、mは0または1である。]
[5]前記ポリアミド共重合体の融点が200℃以下である[1]~[4]のいずれか1項に記載の熱溶解積層型3次元プリンタ用材料。
[6]ISO1133に従い、200℃、5000gの荷重で測定した前記ポリアミド共重合体のメルトフローレートが10g/10分以上である請求項[1]~[5]のいずれか1項に記載の熱溶解積層型3次元プリンタ用材料。
[7]ISO178に従い、23℃、50%RHで測定した前記ポリアミド共重合体の曲げ弾性率が1000MPa以下である[1]~[6]のいずれか1項に記載の熱溶解積層型3次元プリンタ用材料。
[8][1]~[7]のいずれか1項に記載の熱溶解積層型3次元プリンタ用材料を含む熱溶解積層型3次元プリンタ用フィラメント。
[9][8]に記載の熱溶解積層型3次元プリンタ用フィラメントの巻回体。
[10][9]に記載の巻回体が収納された熱溶解積層型3次元プリンタ装着用カートリッジ。
 本発明によれば、造形性に優れた熱溶解積層型3次元プリンタ用材料及びそれを用いた熱溶解積層型3次元プリンタ用フィラメントを提供することができる。
 本発明の熱溶解積層型3次元プリンタ用材料は、ポリアミド共重合体を含むものである。本発明の熱溶解積層型3次元プリンタ用材料は、ポリアミド共重合体のみからなるものであってもよく、本発明の効果を損なわない程度にポリアミド共重合体と他の成分とを含む組成物でもよい。他の成分としては、ポリアミド共重合体以外のポリマー、耐熱剤、紫外線吸収剤、光安定剤、酸化防止剤、帯電防止剤、滑剤、スリップ剤、結晶核剤、粘着性付与剤、シール性改良剤、防曇剤、離型剤、可塑剤、顔料、染料、香料、難燃剤、補強材などが挙げられる。
 ポリアミド共重合体以外のポリマーの具体例としては、例えば、アクリロニトリル-ブタジエン-スチレン系樹脂(ABS樹脂)、ポリ乳酸(PLA樹脂)、ポリウレタン樹脂、ポリオレフィン樹脂、ポリエステル樹脂、ホモポリアミド樹脂、スチレン樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリ塩化ビニル樹脂、シリコーン樹脂、ゴムが挙げられる。
 ホモポリアミド樹脂の具体例としては、例えば、ポリアミド6、ポリアミド11、ポリアミド12、ポリアミド66、ポリアミド69、ポリアミド610、ポリアミド611、ポリアミド612、ポリアミド62、ポリアミド92、ポリアミド102、ポリアミド122、ポリアミドIPD6、ポリアミドMXD6が挙げられる。
 ゴムの具体例としては、例えば、ブチルゴム、塩素化ブチルゴム、臭素化ブチルゴム、イソプレンゴム、イソブチレン-ブロモパラメチルスチレン共重合体、エチレン-プロピレン共重合体(EPR)、変性EPR、エチレン-ブテン共重合体(EBR)、変性EBR、エチレン-エチルアクリレート共重合(EEA)、変性EEA、エチレン-プロピレン-ジエン三元共重合体(EPDM)、変性EPDM、アクリロニトリルブタジエンゴム(NBR)、クロロプロピレンゴム(CR)、水素添加NBR、アクリルゴム、エチレンアクリルゴム(AEM)、スチレン-エチレン-ブチレン-スチレン共重合体(変性SEBS)、これらのゴムの2種以上のブレンド物が挙げられる。
 ポリアミド共重合体以外のポリマーは、ポリアミド共重合との溶融混練時の相溶性の観点から、ポリウレタン樹脂、ポリオレフィン樹脂、ポリエステル樹脂、ホモポリアミド樹脂、ゴムが好ましい。
 滑剤としては、粒子を添加することが好ましい。粒子としては、任意のものを添加可能であるが、例えば、無機系粒子としては、シリカ、アルミナ、カオリン、二酸化チタン、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸亜鉛等が挙げられ、有機粒子としては、アクリル樹脂粒子、メラミン樹脂粒子、シリコーン樹脂粒子、ポリスチレン樹脂粒子等が挙げられる。
 補強材としては、無機充填材や無機繊維が挙げられる。無機充填材の具体例としては、炭酸カルシウム、炭酸亜鉛、酸化マグネシウム、ケイ酸カルシウム、アルミン酸ナトリウム、アルミン酸カルシウム、アルミノ珪酸ナトリウム、珪酸マグネシウム、チタン酸カリウム、ガラスバルーン、ガラスフレーク、ガラス粉末、炭化ケイ素、窒化ケイ素、窒化ホウ素、石膏、焼成カオリン、酸化亜鉛、三酸化アンチモン、ゼオライト、ハイドロタルサイト、ワラストナイト、シリカ、タルク、金属粉、アルミナ、グラファイト、カーボンブラック、カーボンナノチューブなどが挙げられる。無機繊維の具体例としては、ガラスカットファイバー、ガラスミルドファイバー、ガラスファイバー、石膏ウィスカー、金属繊維、金属ウィスカー、セラミックウィスカー、炭素繊維、セルロースナノファイバーなどが挙げられる。
 本発明の熱溶解積層型3次元プリンタ用材料に含まれるポリアミド共重合体の割合は、5重量%以上であることが好ましく、30重量%以上がより好ましく、60重量%以上がさらに好ましく、85重量%以上が特に好ましい。本発明の熱溶解積層型3次元プリンタ用材料において、ポリアミド共重合体は、本発明の効果を十分に発現する観点から、改質剤としてではなく、主成分として含まれることが好ましい。主成分とは、熱溶解積層型3次元プリンタ用材料全量に対して、ポリアミド共重合体が50重量%以上であることが好ましく、60重量%以上であることがより好ましく、70重量%以上であることがさらに好ましく、80重量%以上であることが特に好ましく、90重量%以上であることが殊更に好ましく、95重量%以上であることが最も好ましい。本発明の熱溶解積層型3次元プリンタ用材料に含まれるポリアミド共重合体の割合は、100重量%でもよいが、99重量%以下でもよく、95重量%以下でもよい。
 ポリアミド共重合体の融点は、200℃以下であることが好ましい。融点が200℃以下であれば、熱溶解積層型3次元プリンタで造形する温度を低く設定することができ、高度な安全対策を施す必要がなくなる上、消費電力も抑えることができ、ランニングコストを低くすることができる。ポリアミド共重合体の融点は、190℃以下がより好ましく、180℃以下がさらに好ましく、170℃以下が特に好ましい。また、ポリアミド共重合体の安定性や耐熱性を考慮すると、ポリアミド共重合体の融点は、125℃以上が好ましく、130℃以上がより好ましく、135℃以上がさらに好ましく、140℃以上が特に好ましい。ただし、熱溶解積層型3次元プリンタで造形する温度をできるだけ低くして消費電力を抑えるため、ポリアミド共重合体の融点を140℃未満としてもよい。なお、ポリアミド共重合体の融点は、後述する実施例に記載された方法により測定することができる。
 ISO1133に従い、200℃、5000gの荷重で測定した前記ポリアミド共重合体のメルトフローレートは、10g/10分以上であることが好ましい。ポリアミド共重合体のメルトフローレートが10g/10分以上であれば、ポリアミド共重合体の溶解が安定化するため押出ヘッド先端からの吐出量が安定化するだけでなく、層間接着性が良好となり、熱溶解積層型3次元プリンタでの造形性が優れたものとなる。ポリアミド共重合体のメルトフローレートは、20g/10分以上がより好ましく、30g/10分以上がさらに好ましく、40g/10分以上が特に好ましい。また、熱溶解積層型3次元プリンタで造形した物の形状保持性を考慮すると、ポリアミド共重合体のメルトフローレートは、95g/10分以下が好ましく、85g/10分以下がより好ましく、75g/10分以下がさらに好ましく、65g/10分以下が特に好ましい。ただし、層間接着性をできるだけ高めて熱溶解積層型3次元プリンタでの造形性をさらに優れたものとするため、ポリアミド共重合体のメルトフローレートを65g/10分超としてもよい。なお、ポリアミド共重合体の200℃-5000g荷重で測定したメルトフローレートは、後述する実施例に記載された方法により測定することができる。
 ISO178に従い、23℃、50%RHで測定したポリアミド共重合体の曲げ弾性率は、1000MPa以下であることが好ましい。ポリアミド共重合体の曲げ弾性率は、800MPa以下がより好ましく、600MPa以下がさらに好ましく、400MPa以下が特に好ましい。また、熱溶解積層型3次元プリンタで造形した物の強度を考慮すると、ポリアミド共重合体の曲げ弾性率は、50MPa以上が好ましく、100MPa以上がより好ましく、150MPa以上がさらに好ましく、200MPa以上が特に好ましい。ただし、熱溶解積層型3次元プリンタで造形した物が高い柔軟性を有するようにするため、ポリアミド共重合体の曲げ弾性率を100MPa未満としてもよい。なお、ポリアミド共重合体の曲げ弾性率は、後述する実施例に記載された方法により測定することができる。
 熱溶解積層型3次元プリンタで造形した物の機械物性や変色の観点から、ポリアミド共重合体の吸水率は、2.5%以下であることが好ましい。ポリアミド共重合体の吸水率は、2.0%以下がより好ましく、1.5%以下がさらに好ましく、1.0%以下が特に好ましい。ポリアミド共重合体の吸水率は、0.3%以上でもよく、0.6%以上でもよい。
 ポリアミド共重合体とは、2種類以上の繰り返し単位を有し、その少なくとも一部にアミド結合を有するものを意味する。ポリアミド共重合体の具体例としては、例えば、カプロラクタム/ヘキサメチレンジアミノアジピン酸共重合体(ポリアミド6/ポリアミド66共重合体)、カプロラクタム/ヘキサメチレンジアミノアゼライン酸共重合体(ポリアミド6/ポリアミド69共重合体)、カプロラクタム/ヘキサメチレンジアミノセバシン酸共重合体(ポリアミド6/ポリアミド610共重合体)、カプロラクタム/ヘキサメチレンジアミノウンデカン酸共重合体(ポリアミド6/ポリアミド611共重合体)、カプロラクタム/ヘキサメチレンジアミノドデカン酸共重合体(ポリアミド6/ポリアミド612共重合体)、カプロラクタム/アミノウンデカン酸共重合体(ポリアミド6/ポリアミド11共重合体)、カプロラクタム/ラウリルラクタム共重合体(ポリアミド6/ポリアミド12共重合体)、カプロラクタム/ヘキサメチレンジアミノアジピン酸/ラウリルラクタム(ポリアミド6/ポリアミド66/ポリアミド12共重合体)、カプロラクタム/ヘキサメチレンジアミノアジピン酸/ヘキサメチレンジアミノセバシン酸(ポリアミド6/ポリアミド66/ポリアミド610共重合体)、カプロラクタム/ヘキサメチレンジアミノアジピン酸/ヘキサメチレンジアミノドデカンジカルボン酸(ポリアミド6/ポリアミド66/ポリアミド612共重合体)、ポリアミド92/ポリアミド62共重合体、ポリアミド102/ポリアミド62共重合体、ポリアミド122/ポリアミド62共重合体、カプロラクタム/ポリイソホロンアジパミド共重合体(ポリアミド6/IPD6共重合体)、ポリアミドエラストマー等が挙げられる。本発明の効果発現の観点から、ポリアミド6/ポリアミド12共重合体、ポリアミド6/ポリアミド11共重合体、ポリアミド6/ポリアミド66/ポリアミド12共重合体、ポリアミドエラストマーが好ましく、ポリアミド6/ポリアミド12共重合体、ポリアミドエラストマーがより好ましく、ポリアミドエラストマーがさらに好ましい。
 ポリアミドエラストマーは、ハードセグメントとソフトセグメントを有し、ハードセグメントがポリアミドの構成単位を有する。ポリアミドエラストマーのソフトセグメントはポリエーテルの構成単位を有することが好ましい。ソフトセグメントとしてポリエーテルの構成単位を有するポリアミドエラストマーとしては、ハードセグメントとソフトセグメントをエステル結合で結合したポリエーテルポリエステルポリアミドエラストマー、ハードセグメントとソフトセグメントをアミド結合で結合したポリエーテルポリアミドエラストマーが挙げられる。本発明の効果発現の観点、耐加水分解性に優れ、造形性を長期に渡って安定化させる観点から、ハードセグメントとソフトセグメントをアミド結合で結合したポリエーテルポリアミドエラストマーが好ましい。
 ハードセグメントにおけるポリアミド構成単位は、ポリアミド形成性モノマー[ジアミンとジカルボン酸からなるナイロン塩、下記式(A1)で表されるアミノカルボン酸化合物及び下記式(A2)で表されるラクタム化合物からなる群から選択される少なくとも1種]から形成される構成単位が好ましい。
Figure JPOXMLDOC01-appb-C000009
[但し、Rは、炭化水素鎖を含む連結基を表す。]
Figure JPOXMLDOC01-appb-C000010
[但し、Rは、炭化水素鎖を含む連結基を表す。]
 ハードセグメントは、両末端基にカルボキシル基を有するポリアミドから誘導することもでき、ポリアミド構成単位と、脂肪族ジカルボン酸、脂環族ジカルボン酸及び芳香族ジカルボン酸からなる群より選ばれる少なくとも1種のジカルボン酸(C)とを含むセグメントでもある。
Figure JPOXMLDOC01-appb-C000011
[但し、Rは、炭化水素鎖を含む連結基を表し、mは0または1である。]
 アミノカルボン酸化合物(A1)としては、6-アミノカプロン酸、7-アミノヘプタン酸、8-アミノオクタン酸、10-アミノカプリン酸、11-アミノウンデカン酸、12-アミノドデカン酸等の炭素数5~20の脂肪族ω-アミノカルボン酸等が挙げられる。
 ジアミンとしては、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4-トリメチルヘキサン-1,6-ジアミン、2,4,4-トリメチルヘキサン-1,6-ジアミン、3-メチルペンタン-1,5-ジアミン等の炭素数2~20の脂肪族ジアミン等のジアミン化合物が挙げられる。
 ラクタム化合物(A2)としては、ε-カプロラクタム、ω-エナントラクタム、ω-ウンデカラクタム、ω-ラウリルラクタム、2-ピロリドン等の炭素数5~20の脂肪族ラクタム等が挙げられる。
 これらの中でも、低吸水による寸法安定性、耐薬品性、機械特性の観点からω-ラウリルラクタム、11-アミノウンデカン酸又は12-アミノドデカン酸が好ましい。
 ジカルボン酸化合物(C)としては、脂肪族、脂環族及び芳香族ジカルボン酸から選ばれる少なくとも一種のジカルボン酸又はこれらの誘導体を用いることができる。
 ジカルボン酸の具体例としては、シュウ酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸などの炭素数2~25の直鎖脂肪族ジカルボン酸、又は、トリグリセリドの分留により得られる不飽和脂肪酸を二量化した炭素数14~48の二量化脂肪族ジカルボン酸(ダイマー酸)及びこれらの水素添加物(水添ダイマー酸)などの脂肪族ジカルボン酸、1,4-シクロヘキサンジカルボン酸などの脂環族ジカルボン酸、および、テレフタル酸、イソフタル酸などの芳香族ジカルボン酸を挙げることができる。ダイマー酸及び水添ダイマー酸としては、ユニケマ社製商品名「プリポール1004」、「プリポール1006」、「プリポール1009」、「プリポール1013」などを用いることができる。
 ジカルボン酸の存在下、上記ポリアミド構成単位を、常法により、開環重合又は重縮合させることによって両末端にカルボキシル基を有するポリアミドを得ることができる。ハードセグメントのジカルボン酸は、分子量調整剤として使用することができる。
 ハードセグメントの数平均分子量は、300~15000であることが好ましく、柔軟性、成形性の観点から300~6000であることがより好ましい。
 ソフトセグメントは、ポリエーテルが好ましく、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール、下記式(B)に示されるXYX型トリブロックポリエーテル等が挙げられる。これらは、単独で又は2種以上を用いることができる。また、ポリエーテルの末端にアニモニア等を反応させることによって得られるポリエーテルジアミン等を用いることができる。ソフトセグメントの数平均分子量は、200~6000であることが好ましく、650~2000であることがより好ましい。
Figure JPOXMLDOC01-appb-C000012
[式中、xは1~20の数値、yは4~50の数値、zは1~20の数値を表す。]
 上記式(B)において、x及びzは、それぞれ独立して、1~18の整数が好ましく、1~16の整数がより好ましく、1~14の整数がさらに好ましく、1~12の整数が特に好ましい。また、yは、5~45の整数が好ましく、6~40の整数がより好ましく、7~35の整数がさらに好ましく、8~30の整数が特に好ましい。
 上記ハードセグメントと上記ソフトセグメントとの組み合わせとしては、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組み合わせを挙げることができる。この中でも、ラウリルラクタムの開環重縮合体/ポリエチレングリコールの組み合わせ、ラウリルラクタムの開環重縮合体/ポリプロピレングリコールの組み合わせ、ラウリルラクタムの開環重縮合体/ポリテトラメチレンエーテルグリコールの組み合わせ、ラウリルラクタムの開環重縮合体/XYX型トリブロックポリエーテルの組み合わせが好ましく、ラウリルラクタムの開環重縮合体/XYX型トリブロックポリエーテルの組み合わせが特に好ましい。
 上記ハードセグメントと上記ソフトセグメントとの割合(重量比)は、ハードセグメント/ソフトセグメント=95/5~20/80であることが好ましい。この範囲であれば、成形体からのブリードアウトを回避しやすく、十分な柔軟性も確保しやすい。ハードセグメント/ソフトセグメント(重量比)は、95/5~25/75であることがより好ましく、50/50~30/70であることが特に好ましい。
 上記ハードセグメント/ソフトセグメント(重量比)が上記範囲より小さい場合、ポリアミド成分の結晶性が低くなる場合があり、強度、弾性率などの機械的物性が低下するので好ましくない場合がある。上記ハードセグメント/ソフトセグメント(重量比)が上記範囲より大きい場合、ゴム弾性や柔軟性などのエラストマーとしての機能、性能が発現しにくくなるために好ましくない場合がある。
 以上のようなポリアミドエラストマーの市販品としては、例えば、ダイセル・エボニック社製商品名「ダイアミド(登録商標)E1947」、「ダイアミド(登録商標)E47」、「ダイアミド(登録商標)E47H」、「ダイアミド(登録商標)E55」、「ダイアミド(登録商標)E55H」、「ダイアミド(登録商標)E62」、「ダイアミド(登録商標)E62H」、「ダイアミド(登録商標)E73K2」、「ダイアミド(登録商標)E75K2」、「ダイアミド(登録商標)EX9200」、「ダイアミド(登録商標)MSP-S」、「ダイアミド(登録商標)X4442W2」、「ダイアミド(登録商標)ZE7000」、「ダイアミド(登録商標)ZE7200」、「ベスタミド(登録商標)E47-S1」、「ベスタミド(登録商標)E47-S4」、「ベスタミド(登録商標)E55-S4」、「ベスタミド(登録商標)E58-S4」、「ベスタミド(登録商標)E62-S1」、「ベスタミド(登録商標)E62-S4」、「ベスタミド(登録商標)EX9200」、「ベスタミド(登録商標)EX9202」、ARKEMA社製商品名「Pebax」シリーズ、エムスケミー・ジャパン社製商品名「グリルフレックス(登録商標)EBG」、「グリルフレックス(登録商標)ELG」、「グリロン(登録商標)ELX」、宇部興産株式会社製商品名「UBESTA XPA(登録商標)」シリーズ等が挙げられる。
 この中でも、本発明の効果発現の観点、耐加水分解性に優れる観点から、宇部興産株式会社製商品名「UBESTA XPA(登録商標)」シリーズが好ましい。
 ポリアミドエラストマーは、単独でも、2種以上を併用してもよい。
 ポリエーテルポリアミドエラストマーにおいて、ポリエーテルポリアミドエラストマーの硬度(ショアD)が15~70の範囲であって、伸長回復率(%)と硬度(ショアD)とは下記式の関係にあることが好ましい。伸長回復率(%)と硬度(ショアD)とが下記式の関係を示すことにより、反ぱつ弾性や耐屈曲性などのゴム弾性に基づくエラストマーとしての特徴的な性能が特に優れたものとなる。
  Y>(-0.0042X+0.175X+Z)
 上記の式において、Xは硬度(ショアD)を表わし、Yは伸長回復率(%)を表わす。Zは91.5、さらに好ましくは92、より好ましくは92.5、特に好ましくは93が好ましい。
 ポリエーテルポリアミドエラストマーの硬度(ショアD)は、好ましくは15~70の範囲、さらに好ましくは18~70の範囲、より好ましくは20~70の範囲、特に好ましいのは25~70の範囲のものである。
 ポリエーテルポリアミドエラストマーの応力緩和(t0.9)は、好ましくは2秒以上、さらに好ましくは2.2秒以上、より好ましくは2.5秒以上、特に好ましくは2.8秒以上であることが好ましい。応力緩和が上記範囲であると特にゴム弾性に優れたエラストマーが得られる。
 ポリエーテルポリアミドエラストマーの伸長回復率は、好ましくは86~100%の範囲、さらに好ましくは87~100%の範囲、特に好ましくは88~100%の範囲が好ましい。伸長回復率が上記範囲であることにより、特に回復弾性、反ぱつ弾性に優れたエラストマーが得られる。
 ポリエーテルポリアミドエラストマーの降伏点強度は、好ましくは3~25MPaの範囲、さらに好ましくは3~22MPaの範囲、より好ましくは3~20MPaの範囲、特に好ましくは3~18MPaの範囲が好ましい。降伏点強度が上記範囲であることにより、特に強靭性とゴム弾性に優れるエラストマーが得られる。
 ポリエーテルポリアミドエラストマーの破断伸びは、300%以上が好ましく、特に600%以上が好ましい。この範囲よりも少ないと、強靭性、ゴム弾性などのエラストマーとしての性能が発現しにくくなるために好ましくない場合がある。
 ポリエーテルポリアミドエラストマーのヘイズは、好ましくは35以下、さらに好ましくは34以下、より好ましくは32以下、特に好ましくは30以下が好ましい。ヘイズが上記よりも低いことによって透明性に優れるエラストマーが得られる。
 ポリエーテルポリアミドエラストマーは、デマチャ法による屈曲試験における亀裂発生屈曲回数が好ましくは50,000回以上、さらに好ましくは100,000回以上、より好ましくは110,000回以上、特に好ましくは120,000回以上が好ましい。ポリエーテルポリアミドエラストマーのき裂発生屈曲回数が上記範囲では、耐屈曲疲労性に優れるために好ましい。
 ポリエーテルポリアミドエラストマーは、その曲げ強さが、好ましくは0.8~15MPa、さらに好ましくは1.0~13MPa、より好ましくは1.1~10MPa、特に好ましくは1.2~9MPaが好ましい。ポリエーテルポリアミドエラストマーの曲げ強さが、上記範囲内では、曲げ強さなどの強靭性とゴム弾性とのバランスの優れるエラストマーが得られるために好ましい。
 ポリエーテルポリアミドエラストマーは、23℃におけるアイゾットノッチ付き衝撃強さの測定において破壊しないこと(NBと略す)が、特に耐衝撃性に優れるために好ましい。
 ポリエーテルポリアミドエラストマーは、荷重たわみ温度が50℃以上が好ましい。上記範囲未満であると使用時に材料が変形しやすくなるために好ましくない。
 ポリエーテルポリアミドエラストマーの製造方法として、一例を挙げると、ポリアミド形成性モノマー、XYX型トリブロックポリエーテルジアミン及びジカルボン酸の三成分を、加圧及び/又は常圧下で溶融重合し、必要に応じさらに減圧下で溶融重合する工程からなる方法を用いることができ、さらにポリアミド形成性モノマー、XYX型トリブロックポリエーテルジアミン及びジカルボン酸の三成分を同時に、加圧及び/又は常圧下で溶融重合し、必要に応じさらに減圧下で溶融重合する工程からなる方法を用いることができる。なお、ポリアミド形成性モノマーとジカルボン酸の二成分を先に重合させ、ついで、XYX型トリブロックポリエーテルジアミンを重合させる方法も利用できる。
 ポリエーテルポリアミドエラストマーの製造に当たり、原料の仕込む方法に特に制限はないが、ポリアミド形成性モノマー及びXYX型トリブロックポリエーテルジアミンに対してポリアミド形成性モノマーが好ましくは20~95重量%、さらに好ましくは25~95重量%、特に好ましくは30~50重量%の範囲、XYX型トリブロックポリエーテルジアミンが好ましくは5~80重量%、さらに好ましくは5~75重量%、特に好ましくは50~70重量%の範囲である。原料のうち、XYX型トリブロックポリエーテルジアミンとジカルボン酸は、XYX型トリブロックポリエーテルジアミンのアミノ基とジカルボン酸のカルボキシル基がほぼ等モルになるように仕込むことが好ましい。
 ポリエーテルポリアミドエラストマーの製造は、重合温度が好ましくは150~300℃、さらに好ましくは160~280℃、特に好ましくは180~250℃で行うことができる。重合温度が上記温度より低い場合重合反応が遅く、上記温度より大きい場合熱分解が起きやすく良好な物性のポリマーが得られない場合がある。
 ポリエーテルポリアミドエラストマーは、ポリアミド形成性モノマーとしてω-アミノカルボン酸を使用する場合、常圧溶融重合又は常圧溶融重合とそれに続く減圧溶融重合での工程からなる方法で製造することができる。
 一方、ポリアミド形成性モノマーとしてラクタム、又はジアミンとジカルボン酸から合成されるもの及び/又はそれらの塩を用いる場合には、適量の水を共存させ、0.1~5MPaの加圧下での溶融重合とそれに続く常圧溶融重合及び/又は減圧溶融重合からなる方法で製造することができる。
 ポリエーテルポリアミドエラストマーは、重合時間が通常0.5~30時間で製造することができる。重合時間が上記範囲より短いと、分子量の上昇が十分でなく、長いと熱分解による着色などが起こり、いずれの場合も所望の物性を有するポリエーテルポリアミドエラストマーが得られない場合がある。
 ポリエーテルポリアミドエラストマーの製造は、回分式でも、連続式でも実施することができ、またバッチ式反応釜、一槽式ないし多槽式の連続反応装置、管状連続反応装置などを単独であるいは適宜組み合わせて用いることができる。
 ポリエーテルポリアミドエラストマーは、相対粘度(ηr)が1.2~3.5(0.5重量/容量%メタクレゾール溶液、25℃)の範囲にあることが好ましい。
 ポリエーテルポリアミドエラストマーの製造において、必要に応じて分子量調節や成形加工時の溶融粘度安定のために、ラウリルアミン、ステアリルアミン、ヘキサメチレンジアミン、メタキシリレンジアミンなどのモノアミン及びジアミン、酢酸、安息香酸、ステアリン酸、アジピン酸、セバシン酸、ドデカン二酸などのモノカルボン酸、或はジカルボン酸などを添加することができる。これらの使用量は、最終的に得られるエラストマーの相対粘度が1.2~3.5(0.5重量/容量%メタクレゾール溶液、25℃)の範囲になるように適宜添加することが好ましい。
 ポリエーテルポリアミドエラストマーの製造において、上記のモノアミン及びジアミン、モノカルボン酸及びジカルボン酸などの添加量は、得られるポリエーテルポリアミドエラストマーの特性を阻害されない範囲とするのが好ましい。
 ポリエーテルポリアミドエラストマーの製造において、必要に応じて触媒として、リン酸、ピロリン酸、ポリリン酸などを、また触媒と耐熱剤の両方の効果をねらって亜リン酸、次亜リン酸、及びこれらのアルカリ金属塩、アルカリ土類金属塩などの無機系リン化合物を添加することができる。添加量は、通常、仕込み原料に対して50~3000ppmである。
 ポリエーテルポリアミドエラストマーは、吸水性が低く、溶融成形性に優れ、成形加工性に優れ、強靭性に優れ、耐屈曲疲労性に優れ、反ぱつ弾性に優れ、低比重性、低温柔軟性に優れ、低温耐衝撃性に優れ、伸長回復性に優れ、消音特性に優れ、ゴム的な性質及び透明性などに優れている。
 以上のような本発明の熱溶解積層型3次元プリンタ用材料をモノフィラメント状に成形することで、熱溶解積層型3次元プリンタ用フィラメントとすることができる。モノフィラメント状への成形は、例えば押出成形で行うことができる。モノフィラメントの形態は、単にモノフィラメントとして成形するもの、モノフィラメントを集束させて撚糸状にするもの、マルチフィラメントを集束溶融してモノフィラメントとするもの、いずれも使用することができる。
 また、得られた熱溶解積層型3次元プリンタ用フィラメントを巻回することで巻回体とすることができ、さらにその巻回体をカートリッジに収納することで熱溶解積層型3次元プリンタ装着用カートリッジとすることもできる。
 以上のように、本発明によれば、造形性に優れた熱溶解積層型3次元プリンタ用材料及びそれを用いた熱溶解積層型3次元プリンタ用フィラメントを提供することができる。本発明の熱溶解積層型3次元プリンタ用材料を用いた熱溶解積層型3次元プリンタ用フィラメントを用いることで、高度な安全対策を施す必要がなくなる。さらに、本発明の熱溶解積層型3次元プリンタ用材料を用いた熱溶解積層型3次元プリンタ用フィラメントを用いることで、層間接着性が良好となり、造形性に優れるとともに、耐衝撃性に優れ、落としても壊れにくい造形物が得られる。
 本発明の熱溶解積層型3次元プリンタ用材料及びそれを用いた熱溶解積層型3次元プリンタ用フィラメントは、造形物の構築、支持体の構築いずれにも使用可能だが、本発明の熱溶解積層型3次元プリンタ用材料及びそれを用いた熱溶解積層型3次元プリンタ用フィラメントが造形性、層間接着性、耐衝撃性に優れることから造形物の構築に使用することが好ましい。
 本発明の熱溶解積層型3次元プリンタ用フィラメントにより造形された造形物は、医療用部品や自動車部品から家庭用物品に至るまで多様な分野への用途展開が可能であり、例えば、靴底、義足、玩具、乳児用模型品、学校工作用模型品等に用いることができる。
 造形物を落下させたり、もしくは造形物の上に物を落下させたりなどした場合、造形物が層間剥離または破壊してしまい、造形物が使用できなくなることがある。これらを定量的に評価する方法として、ISO179に準拠したシャルピー衝撃試験、及びISO178に準拠した曲げ試験を行い、造形物の造形性及び耐久性を確認する方法が挙げられる。具体的には、これら試験後の造形サンプルにおける層間剥離の発生、亀裂や割れの発生、塑性変形の度合いを確認することで、評価することができる。
 本発明の熱溶解積層型3次元プリンタ用フィラメントより得たフィラメントから作製した造形サンプルは、ISO179の規格に基づくシャルピー衝撃試験とISO178の規格に基づく曲げ試験において、層間剥離しないことが好ましい。前記シャルピー衝撃試験と前記曲げ試験において造形サンプルが層間剥離しなければ、層間接着性が良好となり、熱溶解積層型3次元プリンタでの造形性が優れたものとなる。
 また、前記シャルピー衝撃試験と前記曲げ試験において、造形サンプルに割れが生じないことが好ましく、造形サンプルに亀裂も生じないことがより好ましい。前記シャルピー衝撃試験と前記曲げ試験において造形サンプルに割れが生じなければ、耐衝撃性に優れ、落としても壊れにくい造形物が得られる。また、造形サンプルに亀裂も生じなければ、耐衝撃性により優れ、落としてもより壊れにくい造形物が得られる。
 さらに、前記シャルピー衝撃試験と前記曲げ試験において、造形サンプルに塑性変形が生じないことが好ましい。前記シャルピー衝撃試験と前記曲げ試験において造形サンプルに塑性変形が生じなければ、耐衝撃性に優れ、落としても壊れにくい造形物が得られる。前記シャルピー衝撃試験と前記曲げ試験後の造形サンプルの塑性変形の度合いに関しては、湾曲角度が45度未満であることが好ましく、25度未満であることがより好ましく、5度未満であることがさらに好ましい。
 本発明の実施例及び比較例として、表1に記載した材料(「PA」はポリアミドの略)を準備し、各材料に対して以下の評価を行った。結果を表2~3に示す。なお、実施例1~4で使用したPAE1~PAE4は、以下に示す方法により製造したポリエーテルポリアミドエラストマーである。
 <融点>
 ISO11357-3に従い、各材料の融点を測定した。
 <MFR>
 ISO1133に従い、ノズル径2.0mm、長さ8.0mmのオリフィスを用い、200℃、5000g荷重で、各材料の測定を行った。
 <曲げ弾性率>
 各材料を用いて、成形温度を融点プラス40℃、金型温度を40℃とした射出成形を行い、10mm×4mm×80mmの平板を得た。この平板を23℃、50%RH環境下に3日程度放置することで十分に調湿した後、ISO178の手法に従って23℃、50%RHで曲げ弾性率を測定した。
 <吸水率>
 各材料を用いて、単軸押出機における成形温度を融点プラス40℃とし、ダイヘッドに溶融樹脂を送り込み、直径3.0mmのノズルから溶融樹脂を押し出し、引取速度を10m/分、冷却水槽温度を15℃の条件に設定し、直径2.0mmの未延伸モノフィラメントを押出成形した。得られたモノフィラメントを温度23℃-湿度50%RHの環境下で30日間保管した。そして、その30日後のモノフィラメントの吸水率をカールフィッシャー法にて測定した。
 <造形性>
 MFRの測定と同様の操作により各材料による造形を行った。具体的には、メルトフローインデックテスターに各材料を充填し、十分に脱気した後、ノズルから50mmの位置にステージを設置し、ステージを動かしながら、長さ約50mm×高さ約10mmになるように溶融樹脂を積層させた。その際、積層させる接着面は、常にノズルから50mm下になるよう、ステージの高さを調節した。そして、得られた積層体を手で引っ張り、層間で剥離するかを確認した。造形性の評価としては、層同士が溶融して密着している状態を「優良」(◎)とし、層間が密着しており手で引っ張っても剥離しない状態を「良好」(○)とし、層間の密着が不十分であり手で引っ張ると剥離してしまう状態を「不良」(×)とした。
 <長期造形安定性>
 吸水率の測定と同じ条件で押出成形し、30日間保管したモノフィラメントを約3mm長にカッティングし、メルトフローインデクサーのバレルに約5g充填した。ピストンを挿入し、5000gの荷重をかけてノズルから樹脂を押し出す際、発煙・発泡がないかを目視にて確認した。長期造形安定性の評価としては、発煙・発泡がなく安定して押出すことができる状態を「良好」(○)とし、発煙・発泡が発生し押出しが不安定な状態を「不良」(×)とした。
 <破壊試験>
 各ペレット材料を90℃、24時間乾燥させてペレット水分量を0.1%以下とした。そのペレットを用いて30mmの一軸押出機にてペレットを溶融させた。その際の押出機温度は、融点プラス40℃に設定した。溶融樹脂を口径6mmのノズルから押出、15℃に設定した水浴で冷却固化させた。引取速度を35m/minとし、モノフィラ直径が1.75mmとなるようにギアポンプにて吐出量を調整し、3Dプリンター造形用のモノフィラメントを得た。得られたモノフィラメントを3Dプリンター(武藤工業株式会社製、商品名:Value3D MagiX MF-2200D)にセットし、1層当たりの高さ0.5mm、フィラメント幅1mmの条件で曲げ試験片(ISO179に従う)の積層を行い、サイズ80mm×10mm×4mmt(8層)の造形サンプルを得た。
 得られた造形サンプルを、室温(23℃)条件下で、ISO179の規格に基づくシャルピー衝撃試験及びISO178の規格に基づく曲げ試験を行い、破壊状態(層間剥離の発生、亀裂・割れの発生、塑性変形の度合い)を確認した。層間剥離の発生は、層間剥離がないものを「○」、層間剥離があるものを「×」とした。亀裂・割れの発生は、亀裂も割れもないものを「○」、亀裂があるものの割れていないものを「△」、割れているもの(一層が2つ以上に完全に分離した状態)を「×」とした。塑性変形の度合いは、造形サンプルがほどんど塑性変形していないもの(湾曲角度5度未満)を「○」、やや塑性変形しているもの(湾曲角度5度以上45度未満)を「△」、塑性変形が大きいもの(湾曲角度45度以上)を「×」と判定した。なお、層間剥離の発生、亀裂・割れの発生、塑性変形の度合いに関し、上記の判定となる造形サンプルの例を、それぞれ表4に示す。
 [PAE1の製造]
 攪拌機、温度計、トルクメーター、圧力計、窒素ガス導入口、圧力調整装置及びポリマー取り出し口を備えた容量70リットルの圧力容器に、12-アミノドデカン酸(宇部興産株式会社製)6.30kg、アジピン酸(旭化成ケミカルズ株式会社製)1.70kg、XYX型のトリブロックポリエーテルジアミン(HUNTSMAN社製、商品名:ELASTAMINE RT-1000)12.00kg、ヒンダードフェノール系酸化防止剤(BASFジャパン社製、商品名:イルガノックス245)0.06kg、及び次亜リン酸ナトリウム(太平化学産業株式会社製)0.03kgを仕込んだ。容器内を十分窒素置換したあと、窒素ガスを200リットル/時間で供給しながら、容器内の圧力を0.05MPaに調整しながら、1時間かけて室温から230℃まで昇温し、さらに容器内の圧力を0.05MPaに維持しながら230℃で重合を行った。
 攪拌動力のアンペア値(撹拌電流値)を経時記録し、攪拌動力のアンペア値が重合開始時からプラス0.2Aとなった時点を重合終点とした。重合終了後、攪拌停止し、ポリマー取り出し口から溶融状態の無色透明の重合体を紐状に抜出、水冷した後、ペレタイズしてペレットを得た。
 [PAE2の製造]
 攪拌機、温度計、トルクメーター、圧力計、窒素ガス導入口、圧力調整装置及びポリマー取り出し口を備えた容量70リットルの圧力容器に、12-アミノドデカン酸(宇部興産株式会社製)8.00kg、アジピン酸(旭化成ケミカルズ株式会社製)1.49kg、XYX型のトリブロックポリエーテルジアミン(HUNTSMAN社製、商品名:ELASTAMINE RT-1000)10.51kg、ヒンダードフェノール系酸化防止剤(BASFジャパン社製、商品名:イルガノックス245)0.06kg、及び次亜リン酸ナトリウム(太平化学産業株式会社製)0.03kgを仕込んだ。容器内を十分窒素置換したあと、窒素ガスを200リットル/時間で供給しながら、容器内の圧力を0.05MPaに調整しながら、1時間かけて室温から230℃まで昇温し、さらに容器内の圧力を0.05MPaに維持しながら230℃で重合を行った。
 攪拌動力のアンペア値(撹拌電流値)を経時記録し、攪拌動力のアンペア値が重合開始時からプラス0.2Aとなった時点を重合終点とした。重合終了後、攪拌停止し、ポリマー取り出し口から溶融状態の無色透明の重合体を紐状に抜出、水冷した後、ペレタイズしてペレットを得た。
 [PAE3の製造]
 攪拌機、温度計、トルクメーター、圧力計、窒素ガス導入口、圧力調整装置及びポリマー取り出し口を備えた容量70リットルの圧力容器に、12-アミノドデカン酸(宇部興産株式会社製)14.00kg、アジピン酸(旭化成ケミカルズ株式会社製)0.74kg、XYX型のトリブロックポリエーテルジアミン(HUNTSMAN社製、商品名:ELASTAMINE RT-1000)5.26kg、ヒンダードフェノール系酸化防止剤(BASFジャパン社製、商品名:イルガノックス245)0.06kg、及び次亜リン酸ナトリウム(太平化学産業株式会社製)0.03kgを仕込んだ。容器内を十分窒素置換したあと、窒素ガスを200リットル/時間で供給しながら、容器内の圧力を0.05MPaに調整しながら、1時間かけて室温から230℃まで昇温し、さらに容器内の圧力を0.05MPaに維持しながら230℃で重合を行った。
 攪拌動力のアンペア値(撹拌電流値)を経時記録し、攪拌動力のアンペア値が重合開始時からプラス0.2Aとなった時点を重合終点とした。重合終了後、攪拌停止し、ポリマー取り出し口から溶融状態の無色透明の重合体を紐状に抜出、水冷した後、ペレタイズしてペレットを得た。
 [PAE4の製造]
 攪拌機、温度計、トルクメーター、圧力計、窒素ガス導入口、圧力調整装置及びポリマー取り出し口を備えた容量70リットルの圧力容器に、12-アミノドデカン酸(宇部興産株式会社製)18.40kg、アジピン酸(旭化成ケミカルズ株式会社製)0.20kg、XYX型のトリブロックポリエーテルジアミン(HUNTSMAN社製、商品名:ELASTAMINE RT-1000)1.40kg、ヒンダードフェノール系酸化防止剤(BASFジャパン社製、商品名:イルガノックス245)0.06kg、及び次亜リン酸ナトリウム(太平化学産業株式会社製)0.02kgを仕込んだ。容器内を十分窒素置換したあと、窒素ガスを200リットル/時間で供給しながら、容器内の圧力を0.05MPaに調整しながら、1時間かけて室温から230℃まで昇温し、さらに容器内の圧力を0.05MPaに維持しながら230℃で重合を行った。
 攪拌動力のアンペア値(撹拌電流値)を経時記録し、攪拌動力のアンペア値が重合開始時からプラス0.2Aとなった時点を重合終点とした。重合終了後、攪拌停止し、ポリマー取り出し口から溶融状態の無色透明の重合体を紐状に抜出、水冷した後、ペレタイズしてペレットを得た。
 [PA1の製造]
 70リットルのオートクレーブにε-カプロラクタム(宇部興産株式会社製)16.0kg、AH塩水溶液(50wt%水溶液)(旭化成ケミカルズ株式会社製)2.4kg、12-アミノドデカン酸(宇部興産株式会社製)2.8kgおよび蒸留水2.8kgを仕込み、重合槽内を窒素置換したのち、密閉して180℃まで昇温し、次いで攪拌しながら重合槽内を17.5kgf/cmGに調圧しながら、重合槽内温度を240℃まで昇温した。重合温度が240℃に達して2hr後に重合槽内の圧力を約2hrかけて常圧に放圧した。放圧後、窒素気流下で1hr重合した後、2hr減圧重合を行った。窒素を導入して常圧に復圧後、攪拌機を止めて、ストランドとして抜き出しペレット化した。このポリアミドペレットを沸騰水中に入れ、攪拌下に約12時間、洗浄して未反応モノマーを抽出除去した後、100℃で24時間減圧乾燥した。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016

 

Claims (10)

  1.  ポリアミド共重合体を含む
    熱溶解積層型3次元プリンタ用材料。
  2.  前記ポリアミド共重合体がポリアミドエラストマーである
    請求項1に記載の熱溶解積層型3次元プリンタ用材料。
  3.  前記ポリアミドエラストマーがポリエーテルポリアミドエラストマーである
    請求項2に記載の熱溶解積層型3次元プリンタ用材料。
  4.  前記ポリエーテルポリアミドエラストマーが、下記式(A1)で表されるアミノカルボン酸化合物及び/又は下記式(A2)で表されるラクタム化合物、下記式(B)で表されるトリブロックポリエーテルジアミン化合物、並びに下記式(C)で表されるジカルボン酸化合物を重合して得られるものである
    請求項3に記載の熱溶解積層型3次元プリンタ用材料。
    Figure JPOXMLDOC01-appb-C000001
    [但し、Rは、炭化水素鎖を含む連結基を表す。]
    Figure JPOXMLDOC01-appb-C000002
    [但し、Rは、炭化水素鎖を含む連結基を表す。]
    Figure JPOXMLDOC01-appb-C000003
    [但し、xは1~20の数値、yは4~50の数値、zは1~20の数値を表す。]
    Figure JPOXMLDOC01-appb-C000004
    [但し、Rは、炭化水素鎖を含む連結基を表し、mは0または1である。]
  5.  前記ポリアミド共重合体の融点が200℃以下である
    請求項1~4のいずれか1項に記載の熱溶解積層型3次元プリンタ用材料。
  6.  ISO1133に従い、200℃、5000gの荷重で測定した前記ポリアミド共重合体のメルトフローレートが10g/10分以上である
    請求項1~5のいずれか1項に記載の熱溶解積層型3次元プリンタ用材料。
  7.  ISO178に従い、23℃、50%RHで測定した前記ポリアミド共重合体の曲げ弾性率が1000MPa以下である
    請求項1~6のいずれか1項に記載の熱溶解積層型3次元プリンタ用材料。
  8.  請求項1~7のいずれか1項に記載の熱溶解積層型3次元プリンタ用材料を含む
    熱溶解積層型3次元プリンタ用フィラメント。
  9.  請求項8に記載の熱溶解積層型3次元プリンタ用フィラメントの巻回体。
  10.  請求項9に記載の巻回体が収納された熱溶解積層型3次元プリンタ装着用カートリッジ。
PCT/JP2017/020137 2016-07-01 2017-05-30 熱溶解積層型3次元プリンタ用材料及びそれを用いた熱溶解積層型3次元プリンタ用フィラメント WO2018003379A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/305,363 US20200317867A1 (en) 2016-07-01 2017-05-30 Material for fused deposition modeling 3d printer and filament for fused deposition modeling 3d printer using the same
KR1020187037207A KR20190024898A (ko) 2016-07-01 2017-05-30 열 용해 적층형 3차원 프린터용 재료 및 그것을 사용한 열 용해 적층형 3차원 프린터용 필라멘트
CN201780041074.1A CN109414880A (zh) 2016-07-01 2017-05-30 热熔层叠型三维打印用材料及使用了其的热熔层叠型三维打印用长丝
EP17819746.3A EP3479998A4 (en) 2016-07-01 2017-05-30 HOT-MELT LAMINATING MATERIAL FOR 3D PRINTERS AND HOT-MELT LAMINATING THREAD FOR 3D PRINTERS THEREFOR
JP2017548249A JP6265314B1 (ja) 2016-07-01 2017-05-30 熱溶解積層型3次元プリンタ用材料及びそれを用いた熱溶解積層型3次元プリンタ用フィラメント

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-131332 2016-07-01
JP2016131332 2016-07-01

Publications (1)

Publication Number Publication Date
WO2018003379A1 true WO2018003379A1 (ja) 2018-01-04

Family

ID=60786990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020137 WO2018003379A1 (ja) 2016-07-01 2017-05-30 熱溶解積層型3次元プリンタ用材料及びそれを用いた熱溶解積層型3次元プリンタ用フィラメント

Country Status (7)

Country Link
US (1) US20200317867A1 (ja)
EP (1) EP3479998A4 (ja)
JP (2) JP6265314B1 (ja)
KR (1) KR20190024898A (ja)
CN (1) CN109414880A (ja)
TW (1) TW201819533A (ja)
WO (1) WO2018003379A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123763A1 (ja) * 2016-12-26 2018-07-05 ユニチカ株式会社 樹脂組成物およびフィラメント状成形体
JP2018167469A (ja) * 2017-03-29 2018-11-01 ユニチカ株式会社 造形材料
CN108752918A (zh) * 2018-06-29 2018-11-06 三叠打印线材有限公司 基于fdm的3d打印用低温尼龙材料及其制备方法
CN108912667A (zh) * 2018-06-29 2018-11-30 三叠打印线材有限公司 基于fdm的3d打印用弹性低温尼龙材料及其制备方法
WO2019088014A1 (ja) * 2017-10-31 2019-05-09 ユニチカ株式会社 熱溶解積層法3dプリンターの造形材料用樹脂組成物およびそのフィラメント状成形体
WO2019151234A1 (ja) * 2018-02-02 2019-08-08 三菱ケミカル株式会社 3次元造形用材料、3次元造形用フィラメント、該フィラメントの巻回体および3次元プリンター用カートリッジ
JP2020029089A (ja) * 2018-08-17 2020-02-27 ユニチカ株式会社 熱溶解積層方式3次元造形用樹脂組成物およびそれからなるフィラメント状成形体、造形体
WO2020162366A1 (ja) * 2019-02-05 2020-08-13 株式会社ブリヂストン 樹脂組成物及び樹脂製品
WO2021095769A1 (ja) 2019-11-12 2021-05-20 三菱ケミカル株式会社 3次元造形用フィラメント
JP2021529694A (ja) * 2018-10-04 2021-11-04 アルケマ フランス 3d印刷された半結晶性及びアモルファスのポリマー物品
WO2022097590A1 (ja) * 2020-11-06 2022-05-12 株式会社神戸製鋼所 ストランド
US11396130B2 (en) 2018-03-23 2022-07-26 Hewlett-Packard Development Company, L.P. Three-dimensional printing

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7184079B2 (ja) 2018-04-26 2022-12-06 三菱ケミカル株式会社 ポリアミド系3次元プリンタ用材料
EP3795022B1 (en) * 2018-05-18 2022-09-21 ASICS Corporation Midsole and shoe
CN111518271A (zh) * 2020-06-18 2020-08-11 广州鸿为新材料科技有限公司 一种用于激光3d打印的尼龙材料及制备方法
US12071539B2 (en) 2021-04-19 2024-08-27 Jabil Inc. Elastomeric additive manufacturing composition
CN113637176A (zh) * 2021-08-19 2021-11-12 郑州大学 一种用于熔融沉积3d打印的热塑性聚酰胺弹性体丝材及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057805A1 (ja) * 2007-10-31 2009-05-07 Ube Industries, Ltd. ポリエーテルポリアミドエラストマー及びそれを用いた積層体
WO2014081594A1 (en) * 2012-11-21 2014-05-30 Stratasys, Inc. Additive manufacturing with polyamide consumable materials

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6228923B1 (en) * 1997-04-02 2001-05-08 Stratasys, Inc. Water soluble rapid prototyping support and mold material
ES2299649T3 (es) * 2002-09-21 2008-06-01 Evonik Degussa Gmbh Procedimiento para la produccion de un objeto tridimensional.
EP1459871B1 (de) * 2003-03-15 2011-04-06 Evonik Degussa GmbH Verfahren und Vorrichtung zur Herstellung von dreidimensionalen Objekten mittels Mikrowellenstrahlung sowie dadurch hergestellter Formkörper
DE102004012682A1 (de) * 2004-03-16 2005-10-06 Degussa Ag Verfahren zur Herstellung von dreidimensionalen Objekten mittels Lasertechnik und Auftragen eines Absorbers per Inkjet-Verfahren
DE102004020452A1 (de) * 2004-04-27 2005-12-01 Degussa Ag Verfahren zur Herstellung von dreidimensionalen Objekten mittels elektromagnetischer Strahlung und Auftragen eines Absorbers per Inkjet-Verfahren
DE202005021503U1 (de) * 2005-02-19 2008-07-24 Evonik Degussa Gmbh Polymerpulver mit Blockpolyetheramid, Verwendung in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Polymerpulver
WO2007145324A1 (ja) * 2006-06-16 2007-12-21 Ube Industries, Ltd. ポリエーテルポリアミドエラストマー
DE102008000755B4 (de) * 2008-03-19 2019-12-12 Evonik Degussa Gmbh Copolyamidpulver und dessen Herstellung, Verwendung von Copolyamidpulver in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Copolyamidpulver
DE102010062347A1 (de) * 2010-04-09 2011-12-01 Evonik Degussa Gmbh Polymerpulver auf der Basis von Polyamiden, Verwendung in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Polymerpulver
US9238329B2 (en) * 2010-12-22 2016-01-19 Stratasys, Inc. Voice coil mechanism for use in additive manufacturing system
US9527242B2 (en) * 2012-11-21 2016-12-27 Stratasys, Inc. Method for printing three-dimensional parts wtih crystallization kinetics control
JP2015150781A (ja) * 2014-02-14 2015-08-24 帝人株式会社 3次元造形物の製造方法およびこれにより得られた3次元造形物
JP2015176944A (ja) * 2014-03-14 2015-10-05 日立マクセル株式会社 表面に三次元回路が形成された樹脂部品及びその製造方法
CN103980594B (zh) * 2014-04-30 2016-02-24 中国科学院化学研究所 一种用于3d打印的紫外辐射交联聚合物材料及其制备方法和制品
ES2753248T3 (es) * 2014-07-08 2020-04-07 Emery Oleochemicals Gmbh Materia prima sinterizable para el uso en dispositivos de impresión 3D
WO2016035889A1 (ja) 2014-09-05 2016-03-10 Mcppイノベーション合同会社 3次元プリンター成形用フィラメント及び結晶性軟質樹脂成形体の製造方法
KR101617099B1 (ko) 2014-11-05 2016-04-29 롯데케미칼 주식회사 3차원 프린터 필라멘트용 열가소성 수지 조성물
JP6537250B2 (ja) * 2014-11-13 2019-07-03 ユニチカ株式会社 ポリ乳酸系モノフィラメント
CN104559909B (zh) * 2015-01-29 2017-06-06 上海化工研究院有限公司 一种低熔点共聚酰胺热熔胶及其制备方法
CN105504801B (zh) * 2015-12-14 2018-09-21 中广核三角洲(江苏)塑化有限公司 一种用于3d打印的高强度低收缩尼龙材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057805A1 (ja) * 2007-10-31 2009-05-07 Ube Industries, Ltd. ポリエーテルポリアミドエラストマー及びそれを用いた積層体
WO2014081594A1 (en) * 2012-11-21 2014-05-30 Stratasys, Inc. Additive manufacturing with polyamide consumable materials

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3479998A4 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123763A1 (ja) * 2016-12-26 2018-07-05 ユニチカ株式会社 樹脂組成物およびフィラメント状成形体
JP2018167469A (ja) * 2017-03-29 2018-11-01 ユニチカ株式会社 造形材料
JPWO2019088014A1 (ja) * 2017-10-31 2020-11-19 ユニチカ株式会社 熱溶解積層法3dプリンターの造形材料用樹脂組成物およびそのフィラメント状成形体
US11608427B2 (en) 2017-10-31 2023-03-21 Unitika Ltd. Resin composition for shaping material of fused deposition modeling method-3D printer and filamentary molded body thereof
JP7130256B2 (ja) 2017-10-31 2022-09-05 ユニチカ株式会社 熱溶解積層法3dプリンターの造形材料用樹脂組成物およびそのフィラメント状成形体
WO2019088014A1 (ja) * 2017-10-31 2019-05-09 ユニチカ株式会社 熱溶解積層法3dプリンターの造形材料用樹脂組成物およびそのフィラメント状成形体
JPWO2019151234A1 (ja) * 2018-02-02 2021-01-28 三菱ケミカル株式会社 3次元造形用材料、3次元造形用フィラメント、該フィラメントの巻回体および3次元プリンター用カートリッジ
CN111670105A (zh) * 2018-02-02 2020-09-15 三菱化学株式会社 三维造型用材料、三维造型用细丝、该细丝的卷绕体和三维打印机用盒
WO2019151234A1 (ja) * 2018-02-02 2019-08-08 三菱ケミカル株式会社 3次元造形用材料、3次元造形用フィラメント、該フィラメントの巻回体および3次元プリンター用カートリッジ
JP7136131B2 (ja) 2018-02-02 2022-09-13 三菱ケミカル株式会社 3次元造形用材料、3次元造形用フィラメント、該フィラメントの巻回体および3次元プリンター用カートリッジ
CN111670105B (zh) * 2018-02-02 2022-06-07 三菱化学株式会社 三维造型用材料、三维造型用细丝、该细丝的卷绕体和三维打印机用盒
US11396130B2 (en) 2018-03-23 2022-07-26 Hewlett-Packard Development Company, L.P. Three-dimensional printing
CN108752918A (zh) * 2018-06-29 2018-11-06 三叠打印线材有限公司 基于fdm的3d打印用低温尼龙材料及其制备方法
CN108912667A (zh) * 2018-06-29 2018-11-30 三叠打印线材有限公司 基于fdm的3d打印用弹性低温尼龙材料及其制备方法
JP2020029089A (ja) * 2018-08-17 2020-02-27 ユニチカ株式会社 熱溶解積層方式3次元造形用樹脂組成物およびそれからなるフィラメント状成形体、造形体
JP7435996B2 (ja) 2018-08-17 2024-02-21 ユニチカ株式会社 熱溶解積層方式3次元造形用樹脂組成物およびそれからなるフィラメント状成形体、造形体
JP7223126B2 (ja) 2018-10-04 2023-02-15 アルケマ フランス 3d印刷された半結晶性及びアモルファスのポリマー物品
JP2021529694A (ja) * 2018-10-04 2021-11-04 アルケマ フランス 3d印刷された半結晶性及びアモルファスのポリマー物品
JPWO2020162366A1 (ja) * 2019-02-05 2021-12-09 株式会社ブリヂストン 樹脂組成物及び樹脂製品
WO2020162366A1 (ja) * 2019-02-05 2020-08-13 株式会社ブリヂストン 樹脂組成物及び樹脂製品
JP7482794B2 (ja) 2019-02-05 2024-05-14 株式会社ブリヂストン 樹脂組成物及び樹脂製品
WO2021095769A1 (ja) 2019-11-12 2021-05-20 三菱ケミカル株式会社 3次元造形用フィラメント
WO2022097590A1 (ja) * 2020-11-06 2022-05-12 株式会社神戸製鋼所 ストランド

Also Published As

Publication number Publication date
CN109414880A (zh) 2019-03-01
JPWO2018003379A1 (ja) 2018-06-28
JP6265314B1 (ja) 2018-01-24
JP2018043525A (ja) 2018-03-22
JP6627854B2 (ja) 2020-01-08
TW201819533A (zh) 2018-06-01
EP3479998A4 (en) 2020-05-27
KR20190024898A (ko) 2019-03-08
EP3479998A1 (en) 2019-05-08
US20200317867A1 (en) 2020-10-08

Similar Documents

Publication Publication Date Title
JP6265314B1 (ja) 熱溶解積層型3次元プリンタ用材料及びそれを用いた熱溶解積層型3次元プリンタ用フィラメント
KR100818901B1 (ko) 자유 유동성 폴리에스테르 성형 조성물
EP3342827B1 (en) Thermoplastic resin composition and molded article produced therefrom
JP4161802B2 (ja) ポリアミド組成物
JP4860611B2 (ja) 難燃性ポリアミド組成物
US6956081B2 (en) Filled polyamide molding materials having improved processing behavior
KR101846525B1 (ko) 폴리에테르 폴리아미드 엘라스토머
JP4978425B2 (ja) ポリアミド積層体
CN104448810A (zh) 基于部分芳族的共聚酰胺的模塑料
CN104448794A (zh) 基于部分芳族的共聚酰胺的模塑料
JPWO2008123450A1 (ja) 樹脂組成物および成形物
EP2581400A1 (en) Polyamide and polyamide composition
WO2016182001A1 (ja) ポリアミドエラストマー、医療機器及びポリアミドエラストマーの製造方法
KR20200082436A (ko) 폴리아미드 수지 조성물 및 이를 포함하는 성형품
EP3587472A1 (en) Amorphous polyamide resin and molded article
JP6273882B2 (ja) ポリアミドエラストマー及びそれを用いて製造される成形品
JP5669623B2 (ja) ポリアミド樹脂組成物及び成形品
JP2011126243A (ja) 多層構造体
JP6778678B2 (ja) ポリアミドエラストマー、医療機器及びポリアミドエラストマーの製造方法
JP6526974B2 (ja) ポリアミド樹脂組成物、成形体、及びポリアミド樹脂組成物の製造方法
JP2003012800A (ja) ポリアミド系エラストマー及びその製造方法
JP4106656B2 (ja) 難燃剤含有樹脂組成物及び成形物
CN112533993A (zh) 纤维增强聚酰胺组合物及由其制成的模制件
JP2022149860A (ja) ポリアミドエラストマー組成物及びその成形品
JP2016204490A (ja) 組成物及びそれからなる成形品

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017548249

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17819746

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187037207

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017819746

Country of ref document: EP

Effective date: 20190201