WO2021095769A1 - 3次元造形用フィラメント - Google Patents

3次元造形用フィラメント Download PDF

Info

Publication number
WO2021095769A1
WO2021095769A1 PCT/JP2020/042076 JP2020042076W WO2021095769A1 WO 2021095769 A1 WO2021095769 A1 WO 2021095769A1 JP 2020042076 W JP2020042076 W JP 2020042076W WO 2021095769 A1 WO2021095769 A1 WO 2021095769A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
filament
modeling
dimensional
dimensional modeling
Prior art date
Application number
PCT/JP2020/042076
Other languages
English (en)
French (fr)
Inventor
奈央 山末
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to JP2021556124A priority Critical patent/JPWO2021095769A1/ja
Priority to EP20888425.4A priority patent/EP4059697A4/en
Publication of WO2021095769A1 publication Critical patent/WO2021095769A1/ja
Priority to US17/741,531 priority patent/US20220267593A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/92Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/06Unsaturated polyesters

Definitions

  • the present invention relates to a filament for 3D modeling, a wound body, a cartridge for a 3D printer, and a resin molded body.
  • 3D printers Today, three-dimensional printers (hereinafter sometimes referred to as "3D printers") of various additional manufacturing methods (for example, binder injection type, material extrusion type, liquid tank photopolymerization type, etc.) are on the market.
  • additional manufacturing methods for example, binder injection type, material extrusion type, liquid tank photopolymerization type, etc.
  • a 3D printer system using the Material Extrusion method is a computer-aided design in which a fluid raw material is extruded from a nozzle portion provided in an extrusion head. It is used to construct a three-dimensional object in layers based on a (CAD) model.
  • CAD CAD model
  • a raw material made of a thermoplastic resin is inserted into an extrusion head as a filament, and while being heated and melted, the extruded resin is continuously extruded from a nozzle portion provided on the extrusion head onto an XY plane substrate in a chamber.
  • thermoplastic resin such as acrylonitrile-butadiene-styrene resin or polylactic acid, which is amorphous or difficult to crystallize, is generally used from the viewpoint of molding processability and fluidity. It has been preferably used (Patent Documents 3 to 5).
  • the polyamide resin listed in Patent Document 6 is excellent in heat resistance, chemical resistance, strength and the like.
  • the polyamide-based resin has a problem that it has high water absorption and absorbs moisture in the air during or after molding to change its physical properties, and improvement thereof is required.
  • a polyester resin can be considered as one that can solve the problem of the filament for three-dimensional modeling made of the above-mentioned polyamide resin.
  • filaments using aromatic polyester-based resins having a generally high crystal dissolution temperature (melting point, Tm) generally exceeding 200 ° C.
  • Tm crystal dissolution temperature
  • the formability may be deteriorated, such as the adhesiveness between layers may be reduced or warpage may occur due to crystallization shrinkage, and the polyester resin cannot be applied as a printer resin used for a filament for three-dimensional modeling. Has been done.
  • an object of the present invention is a filament for three-dimensional molding, which has high heat resistance, less warp of the molded product (resin molded product) during three-dimensional molding, and excellent strength of the molded product (resin molded product). It is an object of the present invention to provide a wound body, a cartridge for a three-dimensional printer, and a resin molded body having a filament for three-dimensional molding.
  • the present inventors have completed the present invention by using a resin composition containing an aromatic polyester-based resin and having specific thermal properties for a filament for three-dimensional modeling. ..
  • the gist of the present invention is as follows.
  • the resin composition contains an aromatic polyester-based resin (A).
  • the resin composition has a three-dimensional modeling in which the crystal dissolution temperature (Tm) in the differential scanning calorimetry is 200 ° C. or higher and the crystallization calorie ( ⁇ Hc) in the differential scanning calorimetry is 10 J / g or more and 40 J / g or less.
  • Tm crystal dissolution temperature
  • ⁇ Hc crystallization calorie
  • the resin (B) is at least one resin selected from the group consisting of a polycarbonate resin, an amorphous polyester resin, and a polyetherimide resin.
  • a wound body having the three-dimensional modeling filament according to any one of [1] to [6].
  • a cartridge for a three-dimensional printer having the filament for three-dimensional modeling according to any one of [1] to [6].
  • a resin molded product having the filament for three-dimensional modeling according to any one of [1] to [6].
  • a three-dimensional molding filament having excellent heat resistance, suppressing warpage of a molded product (resin molded product) during three-dimensional molding, and having excellent strength of the molded product (resin molded product), said 3 It is possible to provide a wound body, a cartridge for a three-dimensional printer, and a resin molded body having a filament for three-dimensional molding.
  • the reason why the present invention is effective is not yet clear, but it can be inferred that the reason is as follows. That is, in the three-dimensional modeling filament of the present invention, the amount of crystallization shrinkage is reduced by adjusting the thermal characteristics such as the amount of heat of crystallization of the resin composition within a specific range. Therefore, the warp of the modeled object at the time of three-dimensional modeling can be suppressed, and the crystallization rate of the resin composition during cooling after modeling can be suppressed. Therefore, it can be inferred that the strength in the vertical direction with respect to the layers of the modeled object (resin molded article) can be improved when the three-dimensional model is formed.
  • the present embodiment a mode for carrying out the present invention (hereinafter, referred to as “the present embodiment”) will be described in detail.
  • the following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents.
  • the present invention can be implemented with various modifications within the scope of the gist thereof.
  • the resin composition used for the three-dimensional modeling filament of the present invention contains an aromatic polyester-based resin described later and has specific thermal properties described later.
  • the content of the resin composition in the three-dimensional modeling filament of the present invention is preferably 80% by mass or more, more preferably 90% by mass or more. Further, it is particularly preferable that the filament for three-dimensional modeling of the present invention is made of a resin composition.
  • the resin composition used for the three-dimensional modeling filament of the present invention has a crystallization heat quantity ( ⁇ Hc) of 10 J / g or more and 40 J / g or less when measured at a temperature decrease rate of 10 ° C./min by differential scanning calorimetry. It is characterized by that. As a result, it is possible to reduce the warp of the modeled product (resin molded product) due to crystallization shrinkage during three-dimensional modeling.
  • the amount of heat of crystallization ( ⁇ Hc) is preferably 38 J / g or less, more preferably 37 J / g or less, further preferably 36 J / g or less, and particularly preferably 35 J / g or less. , 34 J / g or less is most preferable.
  • the calorific value of crystallization ( ⁇ Hc) is preferably 12 J / g or more, more preferably 14 J / g or more, further preferably 16 J / g or more, particularly preferably 18 J / g or more, and particularly preferably 20 J / g, from the viewpoint of heat resistance. The above is particularly preferable, and 22 J / g or more is most preferable.
  • the calorific value of crystallization ( ⁇ Hc) can be adjusted by the composition of the resin, the blending ratio of the aromatic polyester resin (A) described later and the resin (B) having a carbonyl group, and the like.
  • the resin composition used for the filament for three-dimensional modeling of the present invention is characterized in that the crystal melting temperature (Tm) when measured at a temperature lowering rate of 10 ° C./min by differential scanning calorimetry is 200 ° C. or higher. There is.
  • the crystal dissolution temperature (Tm) is preferably 205 ° C. or higher, more preferably 210 ° C. or higher, and most preferably 215 ° C. or higher from the viewpoint of heat resistance.
  • the upper limit is not particularly limited, but the crystal melting temperature (Tm) is preferably 300 ° C. or lower, and more preferably 290 ° C. or lower, from the viewpoint of easy modeling with a general-purpose three-dimensional printer. It is preferably 280 ° C. or lower, more preferably 270 ° C. or lower, and most preferably 270 ° C. or lower.
  • Tm crystal melting temperature
  • the crystal dissolution temperature (Tm) can be adjusted by the composition of the resin, the blending ratio of the aromatic polyester resin (A) described later and the resin (B) having a carbonyl group, and the like.
  • the resin composition used for the three-dimensional modeling filament of the present invention preferably has a glass transition temperature (Tg) of 50 ° C. or higher when measured at a temperature lowering rate of 10 ° C./min by differential scanning calorimetry.
  • Tg glass transition temperature
  • the glass transition temperature (Tg) is more preferably 55 ° C. or higher, further preferably 60 ° C. or higher, and most preferably 65 ° C. or higher from the viewpoint of heat resistance.
  • the upper limit is not particularly limited, but the glass transition temperature (Tg) is preferably 200 ° C. or lower, more preferably 150 ° C. or lower, from the viewpoint of easy modeling with a general-purpose three-dimensional printer. It is more preferably 140 ° C. or lower, and most preferably 130 ° C. or lower.
  • Tg glass transition temperature
  • the glass transition temperature (Tg) can be adjusted by the composition of the resin composition, the blending ratio of the aromatic polyester resin (A) described later and the resin (B) having a carbonyl group, and the like.
  • the resin composition used for the three-dimensional modeling filament of the present invention may be a recycled product such as plastic waste or scraps.
  • the resin composition used for the three-dimensional modeling filament of the present invention may be used in a shape suitable for the embodiment.
  • the shape of the resin composition include pellets, powders, granules, filaments and the like. Above all, it is preferable to use the resin composition in the form of a filament.
  • the resin composition used for the three-dimensional modeling filament of the present invention contains an aromatic polyester-based resin (A).
  • the aromatic polyester resin (A) may be a resin composed of condensation polymerization of an aromatic dicarboxylic acid component and a diol component, and among them, one of the aromatic dicarboxylic acid component and the diol component or It is preferred that both components consist of a single compound.
  • aromatic dicarboxylic acid component examples include terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid and the like, but a part of terephthalic acid is replaced with “another dicarboxylic acid component”. It may be the one that has been used.
  • other dicarboxylic acid components oxalic acid, malonic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, neopentylic acid, isophthalic acid, naphthalenedicarboxylic acid, diphenyl ether dicarboxylic acid, p-oxybenzoic acid And so on.
  • These may be one kind or a mixture of two or more kinds, and the amount of other dicarboxylic acids to be substituted can be appropriately selected.
  • Typical examples of the above “diol component” are ethylene glycol, 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentadiol, 3-methylpentazyl, and the like.
  • Examples include 1,3-hexanediol, 1,6-hexanediol, hydrogenated bisphenol A, diethylene glycol, 1,4-cyclohexanedimethanol, triethylene glycol, polyethylene glycol, dipropylene glycol, polypropylene glycol and polytetramethylene glycol. Be done.
  • the aromatic polyester resin (A) is ethylene glycol, 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentadiol, 3-methylpentazil.
  • 1,3-Hexanediol, 1,6-hexanediol, diethylene glycol, 1,4-cyclohexanedimethanol, triethylene glycol, polyethylene glycol are preferable, ethylene glycol, 1,4-butanediol, 1,6-hexanediol , Diethylene glycol, triethylene glycol and polyethylene glycol are more preferable, ethylene glycol, 1,4-butanediol, diethylene glycol and polyethylene glycol are particularly preferable, and it is most preferable to have a structure derived from 1,4-butanediol.
  • aromatic polyester resin (A) in order to improve physical properties such as adjustment of crystallinity, a trimellitic acid, a pyromellitic acid or other trifunctional or higher carboxylic acid component and / or a trimethylolpropane pentaerythritol or the like trifunctional or higher A trace amount of the polyol component of the above may be copolymerized.
  • the aromatic polyester resin (A) is a mixture of two or more aromatic polyesters so that the thermal properties of the resin composition containing the aromatic polyester resin (A) are within the above range. Or a mixture of the same resin having a different degree of polymerization may be used.
  • aromatic polyester resin (A) examples include polyethylene terephthalate resin, polypropylene terephthalate resin, polybutylene terephthalate resin, polyethylene isophthalate resin, polyethylene naphthalate resin, polybutylene naphthalate resin, and polytrimethylene terephthalate. Examples include resin. Only one kind of these aromatic polyester-based resins (A) may be used alone, or two or more kinds thereof may be used in combination.
  • polyethylene terephthalate resin, polypropylene terephthalate resin, and polybutylene terephthalate resin are preferable, and polyethylene is preferable from the viewpoint that the same thermal characteristics and mechanical properties as the polyamide-based resin can be obtained.
  • a terephthalate resin and a polybutylene terephthalate resin are more preferable, and a polybutylene terephthalate resin is particularly preferable.
  • the calorific value of crystallization ( ⁇ Hc) when the differential scanning calorimetry of the aromatic polyester resin (A) is measured at a temperature lowering rate of 10 ° C./min is preferably 70 J / g or less from the viewpoint of formability. , 60 J / g or less, more preferably 55 J / g or less, particularly preferably 50 J / g or less, and most preferably 45 J / g or less.
  • the calorific value of crystallization ( ⁇ Hc) is preferably 10 J / g or more, more preferably 15 J / g or more, further preferably 20 J / g or more, particularly preferably 25 J / g or more, and particularly preferably 30 J / g, from the viewpoint of heat resistance. The above is the most preferable.
  • the crystal dissolution temperature (Tm) of the aromatic polyester resin (A) measured at a temperature reduction rate of 10 ° C./min by differential scanning calorimetry is preferably 180 ° C. or higher, preferably 190 ° C. or higher, from the viewpoint of heat resistance. Is more preferable, 200 ° C. or higher is further preferable, and 205 ° C. or higher is most preferable.
  • the upper limit is not particularly limited, but the crystal melting temperature (Tm) is preferably 300 ° C. or lower, and more preferably 270 ° C. or lower, from the viewpoint of easy modeling with a general-purpose three-dimensional printer. It is preferably 240 ° C. or lower, more preferably 220 ° C. or lower, and most preferably 220 ° C. or lower.
  • the aromatic polyester resin (A) preferably has a glass transition temperature (Tg) of 10 ° C. or higher when measured at a temperature decrease rate of 10 ° C./min by differential scanning calorimetry. , 20 ° C. or higher, more preferably 25 ° C. or higher, particularly preferably 30 ° C. or higher, and most preferably 35 ° C. or higher.
  • the upper limit is not particularly limited, but the glass transition temperature (Tg) is preferably 100 ° C. or lower, more preferably 80 ° C. or lower, from the viewpoint of easy modeling with a general-purpose three-dimensional printer. It is preferably 60 ° C. or lower, more preferably 40 ° C. or lower, and most preferably 40 ° C. or lower.
  • the aromatic polyester resin (A) preferably has a weight average molecular weight of 50,000 or more, more preferably 65,000 or more, and further preferably 80,000 or more. It is particularly preferably 90,000 or more, and most preferably 95,000 or more.
  • the upper limit is not particularly limited, but the weight average molecular weight is preferably 150,000 or less, more preferably 130,000 or less, and more preferably 110,000 or less from the viewpoint of easy modeling with a general-purpose three-dimensional printer. Most preferably.
  • the resin composition used for the three-dimensional modeling filament of the present invention preferably contains a resin (B) having a carbonyl group, which will be described later.
  • the resin composition used for the three-dimensional modeling filament of the present invention contains the aromatic polyester-based resin composition (A) and the resin (B) having a carbonyl group described later, the three-dimensional modeling filament of the present invention is used.
  • the content of the aromatic polyester resin (A) in the resin composition used in the above is preferably 30% by mass or more, more preferably 40% by mass or more, further preferably 50% by mass or more, from the viewpoint of heat resistance. 60% by mass or more is particularly preferable, and 70% by mass or more is particularly preferable. Further, the content is preferably 95% by mass or less, more preferably 90% by mass or less, further preferably 85% by mass or less, particularly preferably 80% by mass or less, and most preferably 75% by mass or less from the viewpoint of formability. preferable.
  • the filament for three-dimensional modeling of the present invention may contain a filler, other resin and other additives described later.
  • the content of the aromatic polyester resin (A) in the filament is not particularly limited, but is usually 50% by mass or more, more preferably 60% by mass or more, from the viewpoint of excellent heat resistance and formability. 80% by mass or more is more preferable, 90% by mass or more is particularly preferable, and 95% by mass or more is most preferable. Further, the content is preferably 100% by mass or less, more preferably 99% by mass or less, further preferably 98.5% by mass or less, and 98% by mass or less from the viewpoint of the strength of the modeled object and the addition of other functionality. Is particularly preferable.
  • the resin composition used for the three-dimensional modeling filament of the present invention preferably contains a resin (B) having a carbonyl group.
  • the resin (B) having a carbonyl group used in the present invention is a resin having excellent compatibility or dispersibility with the aromatic polyester resin (A).
  • the resin (B) having a carbonyl group is compatible with or well dispersed with the aromatic polyester resin (A)
  • the three-dimensional modeling filament of the present invention can crystallize the resin composition during cooling after molding. The speed can be suppressed.
  • the strength in the vertical direction with respect to the layers of the modeled object (resin molded product) can be improved.
  • the resin (B) having a carbonyl group is preferable because it has excellent dispersibility between the aromatic polyester resin (A) and the melt-kneading.
  • Examples of the resin (B) having a carbonyl group include polycarbonate-based resins, amorphous polyester-based resins, and polyetherimide-based resins.
  • As the resin (B) having these carbonyl groups a mixture of two or more kinds of resins may be used, or a mixture of the same resins having different degrees of polymerization may be used.
  • a polycarbonate resin and an amorphous polyester resin are preferable because they are close to the aromatic polyester resin (A) and the molding processing temperature.
  • a polycarbonate-based resin as the resin (B) having a carbonyl group, excellent formability can be imparted by the present invention, and the strength in the direction perpendicular to the layers of the three-dimensionally modeled molded product (resin molded product) can be increased. , Can be further improved, which is preferable.
  • polycarbonate-based resin examples include those produced by reacting a dihydric phenol with a carbonate precursor such as phosgene and a carbonic acid ester compound.
  • Polycarbonate-based resins are produced, for example, by reacting divalent phenol with a carbonate precursor such as phosgene in a solvent such as methylene chloride.
  • the polycarbonate resin can be obtained by a transesterification reaction between a dihydric phenol and a carbonate precursor such as a carbonic acid ester compound in the presence or absence of a solvent.
  • Divalent phenols include 2,2-bis (4-hydroxyphenyl) propane (bisphenol A), bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, and 2,2-bis.
  • Bis (4-hydroxyphenyl) alkane compounds such as (4-hydroxy-3,5-dimethylphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, bis (4-hydroxyphenyl) Examples thereof include sulfide and bis (4-hydroxyphenyl) sulfone.
  • the divalent phenol a bis (4-hydroxyphenyl) alkane compound and bisphenol A are preferable. These divalent phenols may be used alone or in combination of two or more.
  • carbonate precursor carbonyl halide, carbonyl ester, haloformate and the like are used.
  • carbonate precursors include phosgene, diphenyl carbonate, dihaloformates of divalent phenols and mixtures thereof.
  • the polycarbonate resin a homopolymer using one kind of divalent phenol may be used, or a copolymer using two or more kinds of divalent phenol may be used.
  • the polycarbonate resin may be a thermoplastic randomly branched polycarbonate resin obtained by using a polyfunctional aromatic compound in combination with a divalent phenol.
  • the polycarbonate-based resin may be a mixture of two or more kinds of various polycarbonate-based resins.
  • Typical examples of the above polycarbonate resins include the "Iupilon (registered trademark)” series manufactured by Mitsubishi Engineering Plastics Co., Ltd. and the “SD Polyca TM (registered trademark)” series manufactured by Sumika Polycarbonate Limited. It is listed as one that can be obtained as a target.
  • ⁇ Amorphous polyester resin The amorphous polyester resin is heated from ⁇ 50 ° C. to 300 ° C. at a heating rate of 10 ° C./min by a differential thermal scanning calorimeter (DSC) according to JIS K7121, and then held at 300 ° C. for 1 minute. , The temperature was lowered to -50 ° C at a cooling rate of 10 ° C / min, held at -50 ° C for 1 minute, and then raised again to 300 ° C at a heating rate of 10 ° C / min. Refers to a polyester resin in which a melting peak does not appear.
  • DSC differential thermal scanning calorimeter
  • the acid component of the amorphous polyester resin is mainly terephthalic acid
  • the diol component is mainly ethylene glycol.
  • the diol component contains a copolymerization component other than ethylene glycol in the range of 1 mol% or more, preferably 15 mol% or more, more preferably 25 mol% or more, and contains a copolymerization component other than ethylene glycol in the range of 49 mol% or less, preferably 45 mol% or more. It is contained in the following range.
  • copolymerizable acid and diol components include isophthalic acid, 2-chloroterephthalic acid, 2,5-dichloroterephthalic acid, 2-methylterephthalic acid, and 4,4-stylbenzicarboxylic acid, as examples of acid components.
  • the diol components are diethylene glycol, trans-tetramethyl-1,3-cyclobutanediol, 2,2,4,4-tetramethyl-1,3-cyclobutanediol, 1,4-butanediol, and 1,4-cyclohexanedimethanol.
  • 1,3-Cyclohexanedimethanol, 1,4-cyclohexanediol, 1,3-cyclohexanediol, spiroglycol, and polytetramethylene glycol are preferably at least one selected from the group.
  • the content of the diol component having an alicyclic structure is 1 mol% or more, preferably 15 mol% or more, more preferably 25 mol% or more, and the upper limit is 49 mol% in the total diol component of the amorphous polyester resin. Hereinafter, it is preferably 45 mol% or less.
  • the temperature is raised from -50 ° C to 300 ° C using DSC at a heating rate of 10 ° C / min according to JIS K7121, and the temperature is raised at 300 ° C for 1 minute. After holding, the temperature was lowered to -50 ° C at a cooling rate of 10 ° C / min, held at -50 ° C for 1 minute, and then raised again to 300 ° C at a heating rate of 10 ° C / min. Sometimes it is possible to obtain a resin in which a clear melting peak does not appear.
  • Examples of commercially available amorphous polyester resins include “SKYGREEN (registered trademark)” (manufactured by SK Chemical Co., Ltd.), “Easter Copolyester (registered trademark)” (manufactured by Eastman Chemical Co., Ltd.), and “TRITAN (registered trademark)”. (Manufactured by Eastman Chemical Company), “ALTESTER (registered trademark)” (manufactured by Mitsubishi Gas Chemical Company), and the like.
  • the polyetherimide-based resin preferably has a structure represented by the following formula (1) in that it has an excellent balance between heat resistance and moldability.
  • n (number of repetitions) is usually an integer in the range of 10 to 1,000, preferably 10 to 500.
  • n is in such a range, the polyetherimide-based resin has an excellent balance between moldability and heat resistance.
  • the above formula (1) can be classified into a structure represented by the following formula (2) and a structure represented by the following formula (3) based on the difference in the binding mode, specifically, the difference between the meta bond and the para bond.
  • n (number of repetitions) is usually an integer in the range of 10 to 1,000, preferably 10 to 500.
  • n is in such a range, the polyetherimide-based resin has an excellent balance between moldability and heat resistance.
  • polyetherimide-based resins having such a structure examples include the trade name "Ultem (registered trademark)" of SABIC Innovative Plastics.
  • the content of the resin (B) having a carbonyl group in the resin composition used for the filament for three-dimensional modeling of the present invention is preferably less than 70% by mass, more preferably less than 60% by mass, from the viewpoint of heat resistance. Less than 50% by mass is more preferable, and less than 45% by mass is more preferable. Further, from the viewpoint of formability, the content is preferably more than 5% by mass, more preferably more than 10% by mass, further preferably more than 15% by mass, and particularly more than 20% by mass. It is preferable, and most preferably more than 25% by mass.
  • the resin (B) having a carbonyl group used in the three-dimensional modeling filament of the present invention has a glass transition temperature (Tg) when measured at a temperature decrease rate of 10 ° C./min by differential scanning calorimetry.
  • Tg glass transition temperature
  • the glass transition temperature (Tg) is preferably 220 ° C. or lower, more preferably 200 ° C. or lower, from the viewpoint of easy modeling with a general-purpose three-dimensional printer. It is preferably 150 ° C. or lower, more preferably 100 ° C. or lower, and most preferably 80 ° C. or lower.
  • the resin (B) having a carbonyl group used in the three-dimensional modeling filament of the present invention preferably has a weight average molecular weight of 10,000 or more, more preferably 15,000 or more, from the viewpoint of durability of the modeled product. , 20000 or more, more preferably 24,000 or more, and most preferably 28,000 or more.
  • the upper limit is not particularly limited, but the weight average molecular weight is preferably 110,000 or less, more preferably 85,000 or less, and more preferably 60,000 or less, from the viewpoint of easy modeling with a general-purpose three-dimensional printer. It is more preferably 40,000 or less, and most preferably 30,000 or less.
  • the three-dimensional modeling filament of the present invention may contain fillers (organic particles, inorganic particles, reinforcing materials, etc.), other resins, and other components to the extent that the effects of the present invention are not impaired.
  • the details of the filler (organic particles, inorganic particles, reinforcing material, etc.) will be described below.
  • other resins include polyolefin-based resins, polystyrene-based resins, polyester-based resins other than the aromatic polyester-based resin (A), and various elastomers. These may be used alone or in combination of two or more.
  • the blending amount of the other resin in the three-dimensional modeling filament of the present invention is usually 50% by mass or less, preferably 30% by mass or less.
  • Other components include heat resistant agents, UV absorbers, light stabilizers, antioxidants, antistatic agents, lubricants, slip agents, crystal nucleating agents, tackifiers, sealability improvers, antifogging agents, and mold release agents.
  • heat resistant agents UV absorbers, light stabilizers, antioxidants, antistatic agents, lubricants, slip agents, crystal nucleating agents, tackifiers, sealability improvers, antifogging agents, and mold release agents.
  • examples include agents, plasticizers, pigments, dyes, fragrances, flame retardants and the like. These may be used alone or in combination of two or more.
  • organic particles among the fillers include acrylic resin particles and melamine resin particles.
  • the inorganic particles among the fillers include silica, alumina, kaolin, titanium dioxide, calcium carbonate, magnesium carbonate, zinc carbonate, calcium stearate, magnesium stearate, zinc stearate and the like.
  • the reinforcing material among the fillers include an inorganic filler and an inorganic fiber.
  • the inorganic filler include calcium carbonate, zinc oxide, magnesium oxide, calcium silicate, sodium aluminate, calcium aluminate, sodium aluminosilicate, magnesium silicate, potassium titanate, glass balloon, glass flakes, and glass powder.
  • inorganic fibers include glass cut fiber, glass milled fiber, glass fiber, gypsum whiskers, metal fibers, metal whiskers, ceramic whiskers, carbon fibers, cellulose nanofibers, and the like.
  • the content of the filler in the three-dimensional modeling filament of the present invention when the three-dimensional modeling filament of the present invention contains a filler is not particularly specified, but from the viewpoint of the strength of the resin molded body to be molded, the content of the filler is not particularly specified. 1% by mass or more is preferable, 5% by mass or more is more preferable, and 10% by mass or more is further preferable. Further, from the viewpoint of suppressing deterioration of the interlayer adhesiveness of the resin molded product to be molded, the content is preferably 50% by mass or less, more preferably 40% by mass or less, and further preferably 30% by mass or less.
  • the three-dimensional modeling filament of the present invention may be used as either a modeling material or a supporting material, which is roughly classified as a raw material used in a material extrusion method, but is preferably used as a modeling material.
  • the main body of the modeled object is the modeling material, and the supporting material is the one that supports the laminated modeling material until it solidifies into a desired shape.
  • the filament for three-dimensional modeling of the present invention is produced by using the above-mentioned resin composition.
  • the method for mixing the resin composition is not particularly limited, and examples thereof include known methods such as using a melt-kneading device such as a single-screw extruder, a multi-screw extruder, a Banbury mixer, and a kneader. ..
  • a twin-screw extruder in the same direction from the viewpoint of dispersibility and miscibility of each component. Excellent dispersibility and miscibility are preferable because the accuracy and roundness of the filament diameter can be improved.
  • the method for producing the three-dimensional molding filament of the present invention is not particularly limited, but a method for molding the above-mentioned resin composition by a known molding method such as extrusion molding, or a filament as it is at the time of producing the resin composition. And the like.
  • the conditions thereof are appropriately adjusted depending on the flow characteristics, molding processability, etc. of the resin composition used, but are usually 220 to 300 ° C., preferably 250 to 250. It is 280 ° C.
  • the diameter of the three-dimensional molding filament of the present invention depends on the specifications of the system used for molding the resin molded product by the material extrusion method, but is usually 1.0 mm or more, preferably 1.5 mm or more, more preferably 1. It is 6 mm or more, particularly preferably 1.7 mm or more, while the upper limit is usually 5.0 mm or less, preferably 4.0 mm or less, more preferably 3.5 mm or less, and particularly preferably 3.0 mm or less.
  • the accuracy of the filament diameter is within ⁇ 5% with respect to an arbitrary measurement point of the filament from the viewpoint of stability of raw material supply.
  • the standard deviation of the filament diameter is preferably 0.07 mm or less, and particularly preferably 0.06 mm or less.
  • the filament for three-dimensional modeling of the present invention preferably has a roundness of 0.93 or more, and particularly preferably 0.95 or more.
  • the upper limit of roundness is 1.0.
  • a three-dimensional molding filament with a small standard deviation of filament diameter and high roundness suppresses discharge unevenness during molding and stabilizes a resin molded body having excellent appearance and surface texture. Can be manufactured. Then, by using the above-mentioned resin composition, a three-dimensional modeling filament satisfying such standard deviation and roundness can be relatively easily manufactured.
  • the 3D modeling filament is stably stored and the 3D modeling filament is stably supplied to the 3D printer. Is required. Therefore, the filament for three-dimensional modeling of the present invention is packaged as a winding body wound around a bobbin, or the winding body is housed in a cartridge for long-term storage, stable feeding, and ultraviolet rays. It is preferable from the viewpoint of protection from environmental factors such as, twist prevention, and the like.
  • the cartridge examples include a wound body wound around a bobbin, a structure in which a moisture-proof material or a moisture-absorbing material is used inside, and at least an orifice portion for feeding the filament is sealed.
  • a winding body in which a filament for 3D modeling is wound on a bobbin, or a cartridge containing the winding body is installed in or around the 3D printer, and the filament is always introduced from the cartridge into the 3D printer during molding. to continue.
  • a resin molded product is obtained by molding with a three-dimensional printer using the filament for three-dimensional molding of the present invention.
  • the molding method using a three-dimensional printer include a material extrusion method (ME method), a powder sintering method, an inkjet method, and a stereolithography method (SLA method). It is particularly preferable to use it.
  • ME method material extrusion method
  • SLA method stereolithography method
  • the three-dimensional modeling filament of the present invention may be used as either a modeling material or a supporting material, which is roughly classified as a raw material used in the material extrusion method, but is preferably used as a modeling material.
  • the main body of the modeled object is the modeling material
  • the supporting material is the one that supports the laminated modeling material until it solidifies into the desired shape.
  • a 3D printer used in a material extrusion method generally has a chamber, in which a heatable substrate, an extrusion head installed in a gantry structure, a heating melter, a filament guide, and a filament cartridge installation unit are provided. It is equipped with a raw material supply unit such as. In some 3D printers, the extrusion head and the heating / melting device are integrated.
  • the base is a platform for constructing a target three-dimensional object, support material, etc., and by heating and keeping warm, adhesiveness with the laminate can be obtained, and the obtained resin molded body can be used as a desired three-dimensional object to improve dimensional stability. It is preferable that the specifications are such that they can be used. Further, in order to improve the adhesiveness with the laminate, an adhesive glue may be applied on the substrate, or a sheet or the like having good adhesiveness with the laminate may be attached.
  • the sheet having good adhesiveness to the laminate examples include a sheet having fine irregularities on the surface such as an inorganic fiber sheet, and a sheet made of the same type of resin as the laminate.
  • a sheet having fine irregularities on the surface such as an inorganic fiber sheet
  • a sheet made of the same type of resin as the laminate Normally, at least one of the extrusion head and the substrate is movable in the Z-axis direction perpendicular to the XY plane.
  • the number of extrusion heads is usually one or two. With two extrusion heads, two different polymers can be melted in different heads and selectively printed.
  • one of the polymers can be a modeling material for modeling a 3D object, and the other can be, for example, a supporting material needed as temporary equipment. The supporting material can then be removed, for example, by complete or partial dissolution in an aqueous system (eg, basic or acidic medium).
  • aqueous system eg, basic or acidic medium
  • the three-dimensional modeling filament is unwound from the raw material supply unit, fed to the extrusion head by a pair of opposing rollers or gears, heated and melted by the extrusion head, and extruded from the tip nozzle.
  • the extrusion head moves its position and supplies the raw material onto the substrate for stacking and deposition.
  • the laminated deposit can be taken out from the substrate, and if necessary, the support material or the like can be peeled off or the excess portion can be cut off to obtain a resin molded body as a desired three-dimensional object. ..
  • the means for continuously supplying the raw material to the extrusion head is a method of feeding out filaments or fibers, a method of supplying powder or liquid from a tank or the like via a quantitative feeder, and plasticizing pellets or granules with an extruder or the like.
  • An example is an example of a method of extruding and supplying the product. From the viewpoint of simplicity of the process and supply stability, the method of feeding and supplying the filament, that is, the method of feeding and supplying the above-mentioned three-dimensional modeling filament of the present invention is most preferable.
  • the temperature for obtaining appropriate fluidity for extrusion is usually about 180 to 300 ° C., which is a temperature that can be set by a normal three-dimensional printer.
  • the temperature of the heat extrusion head is usually 290 ° C. or lower, preferably 200 to 280 ° C.
  • the base temperature is usually 120 ° C. or lower to stably produce the resin molded product. be able to.
  • the temperature (discharge temperature) of the molten resin discharged from the extrusion head is preferably 220 ° C. or higher, more preferably 250 ° C. or higher, and preferably 300 ° C. or lower, preferably 290 ° C. or lower. More preferably, it is more preferably 280 ° C. or lower.
  • the temperature of the molten resin is at least the above lower limit value, it is preferable for extruding the resin having high heat resistance, and it is possible to discharge the molten resin at a high speed, which tends to improve the molding efficiency, which is preferable.
  • the temperature of the molten resin is equal to or lower than the above upper limit, it is easy to prevent problems such as thermal decomposition of the resin, burning, smoking, odor, and stickiness, and generally, a fragment of the molten resin called stringing is thinly stretched. It is also preferable from the viewpoint of preventing the lumps of excess resin called lumps from adhering to the resin molded product and deteriorating the appearance.
  • the molten resin discharged from the extrusion head is preferably discharged in the form of a strand having a diameter of 0.01 to 1.0 mm, more preferably 0.02 to 0.5 mm in diameter. It is preferable that the molten resin is discharged in such a shape because the reproducibility of the CAD model tends to be good.
  • High-speed modeling in 3D modeling using the 3D modeling filament of the present invention means that the modeling speed is 1 mm / s or more. From the viewpoint of the time required for modeling, the modeling speed is preferably 3 mm / s or more, more preferably 5 mm / s or more, further preferably 7 mm / s or more, and most preferably 10 mm / s or more.
  • the upper limit is not particularly limited, but the faster the speed, the more preferable.
  • the molding speed is preferably 100 mm / s or less, more preferably 80 mm / s or less, and more preferably 60 mm / s, in order to have a speed at which there is no problem in formability such as bending of the filament described above and deterioration of appearance described later. It is more preferably s or less.
  • the filament for three-dimensional molding of the present invention has good adhesiveness between the resin strands discharged earlier and the resin strands discharged on the strands, and has a high roundness of diameter, so that the filaments are discharged during molding. Unevenness is suppressed, and a resin molded product having excellent appearance and surface properties can be stably produced.
  • the filament for three-dimensional molding of the present invention has excellent molding processability because it has specific thermal characteristics, has a small standard deviation of diameter, has high roundness, and has an appropriate crystallization rate and high breaking strain. Therefore, stringing is suppressed, and a resin molded product having excellent appearance, surface texture, etc. can be stably produced.
  • the resin molded product of the present invention may promote or complete crystallization by heat treatment after molding, depending on the intended use.
  • the supporting material may be molded at the same time.
  • the type of the supporting material is not particularly limited, but the composition of the commercially available supporting material filament includes ethylene-vinyl alcohol copolymer resin (EVOH), butenediol-vinyl alcohol copolymer resin (BVOH), and polyvinyl. Examples thereof include alcohol (PVOH) and impact-resistant polystyrene (HIPS).
  • the resin molded product of the present invention is excellent in formability and heat resistance.
  • the use is not particularly limited, but stationery; toys; covers for mobile phones and smartphones; parts such as grips; school teaching materials; parts for home appliances, OA equipment, automobiles, motorcycles, bicycles, etc.; Equipment materials; agricultural materials; horticultural materials; fishery materials; civil engineering / building materials; medical supplies and the like.
  • Modeling evaluation of 3D modeling filament ⁇ warp during modeling> As an evaluation sample, a dumbbell-shaped sample having a sample length of 75 mm, a width of 10 mm, and a thickness of 5 mm was used, and a 3D printer (manufactured by 3DGene, trade name: INDUSTRY F340) was used with the sample thickness direction as the Z-axis direction (stacking direction). I modeled it. At that time, using BVOH as a supporting material, modeling was performed under modeling conditions of a modeling table temperature of 65 ° C., a nozzle temperature of 265 ° C., a modeling speed of 7 mm / s, and an internal filling rate of 100%.
  • the evaluation sample After manufacturing the evaluation sample, the evaluation sample is removed from the modeling table, the distance between the four corners of the evaluation sample and the horizontal plane when placed on the horizontal plane is measured, and the average value of the obtained values can be used as the warp amount. From this amount of warpage, the warp at the time of modeling was evaluated according to the following criteria.
  • AA The amount of warpage was less than 1 mm.
  • A The amount of warpage was 1 mm or more and less than 2 mm.
  • B The amount of warpage was 2 mm or more, or a large warp occurred during modeling, so that modeling could not be completed.
  • ⁇ Heat resistance> As an evaluation sample, a tubular sample having a diameter of 5 cm, a height of 4 cm, and a single wall layer was modeled using a 3D printer (manufactured by 3DGene, trade name: INDUSTRY F340) with a brim of 5 mm. At that time, using BVOH as a supporting material, modeling was performed under modeling conditions of a modeling table temperature of 65 ° C., a nozzle temperature of 265 ° C., a modeling speed of 7 mm / s, and an internal filling rate of 100%.
  • the evaluation sample was removed from the modeling table and heated in an oven at 200 ° C. for 1 minute. After that, the diameter of the uppermost part of the evaluation sample was measured, and the amount of deformation from before modeling was investigated. From this amount of change, the heat resistance of the modeled object was evaluated according to the following criteria.
  • AA The amount of change was ⁇ 3 mm or less.
  • A The amount of change was less than ⁇ 5 mm.
  • B The amount of change was ⁇ 5 mm or more, or the modeling could not be completed because a large warp occurred during the modeling.
  • modeling was performed under modeling conditions of a modeling table temperature of 65 ° C., a nozzle temperature of 265 ° C., a modeling speed of 7 mm / s, and an internal filling rate of 100%.
  • the interlayer adhesiveness of the modeled object can be evaluated by the ratio to the tensile strength of the sample obtained by electrically heating and pressing the three-dimensional modeling filament of the present invention at 250 ° C. From this ratio, the interlayer adhesiveness was evaluated according to the following criteria.
  • AA The ratio was 30% or more.
  • A The ratio was 15% or more and less than 30%.
  • B The modeling could not be completed because the ratio was less than 15% or a large warp occurred during the modeling.
  • the raw materials used in the examples and comparative examples are as follows.
  • ⁇ Aromatic polyester resin (A)> (A-1); manufactured by Mitsubishi Engineering Plastics Co., Ltd., trade name: Novaduran 5020 (aromatic polyester, Tm: 228 ° C., ⁇ Hc: 47J / g, Tg: 43 ° C., weight average molecular weight: 98200)
  • B ⁇ Resin (B) having a carbonyl group> (B-1); manufactured by Mitsubishi Engineering Plastics Co., Ltd., trade name: Iupiron S3000 (polycarbonate, Tg: 147 ° C., weight average molecular weight: 29500) (B-2); manufactured by SK Chemical Corp., trade name: SKYGREEN S2008 (amorphous polyester, Tg: 72 ° C., weight average molecular weight: 84100)
  • Example 1 60 parts by mass of aromatic polyester resin (A-1) and 40 parts by mass of resin (B-1) are mixed, and a resin composition is produced at a kneading temperature of 250 ° C. using a biaxial kneader in the same direction. did.
  • This polyester resin composition was extruded from a nozzle having a diameter of 2.5 mm from a nozzle having a diameter of 2.5 mm at a melting temperature of 250 ° C. and then cooled in cooling water at 40 ° C. to obtain a filament having a diameter of 1.75 mm. .. Table 1 shows various evaluation results for this filament.
  • Example 2 A filament was produced in the same manner as in Example 1 except that the resin (B-1) was changed to the resin (B-2). Table 1 shows various evaluation results for this filament.
  • Example 1 A filament was produced in the same manner as in Example 1 except that only the aromatic polyester resin (A-1) was used in producing the resin composition. Table 1 shows various evaluation results for this filament.
  • Example 2 A filament was produced in the same manner as in Example 1 except that 40 parts by mass of the aromatic polyester resin (A-1) was used and 60 parts by mass of the resin (B-1) was used. Table 1 shows various evaluation results for this filament.
  • the three-dimensional molding filament made of the resin composition having a specific thermal property specified in the present invention was excellent in all the evaluations of the obtained resin molded product.
  • the three-dimensional modeling filament containing the aromatic polyester-based resin and the polycarbonate-based resin shown in Example 1 has further excellent interlayer adhesiveness of the modeled product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)

Abstract

本発明は、樹脂組成物を含有する3次元造形用フィラメントであって、前記樹脂組成物は、芳香族ポリエステル系樹脂(A)を含み、前記樹脂組成物は、示差走査熱量測定における結晶溶解温度(Tm)が200℃以上であり、示差走査熱量測定における結晶化熱量(ΔHc)が10J/g以上40J/g以下である、3次元造形用フィラメントに関する。

Description

3次元造形用フィラメント
 本発明は、3次元造形用フィラメント、巻回体、3次元プリンタ用カートリッジおよび樹脂成形体に関する。
 今日、種々の付加製造方式(例えば結合剤噴射式、材料押出式、液槽光重合式等)の3次元プリンタ(以下「3Dプリンタ」と称することがある)が販売されている。
 これらの中で、材料押出(Material Extrusion)式による3Dプリンタシステム(例えば米国のストラタシス・インコーポレイテッド社製のシステム)は、流動性を有する原料を押出ヘッドに備えたノズル部位から押し出してコンピュータ支援設計(CAD)モデルを基にして3次元物体を層状に構築するために用いられている。このシステムは、熱可塑性樹脂からなる原料をフィラメントとして押出ヘッドへ挿入し、加熱溶融しながら押出ヘッドに備えたノズル部位からチャンバー内のX-Y平面基盤上に連続的に押し出し、押し出した樹脂を既に堆積している樹脂積層体上に堆積させると共に融着させ、これが冷却するにつれ一体固化する、という簡単なシステムである。そのため、このシステムは広く用いられるようになってきている。材料押出法では、通常、基盤に対するノズル位置がX-Y平面に垂直方向なZ軸方向に上昇しつつ前記押出工程が繰り返されることによりCADモデルに類似した3次元物体が構築される(特許文献1、2)。
 従来、材料押出式の原料としては、一般的にアクリロニトリル-ブタジエン-スチレン系樹脂やポリ乳酸等の、非晶性、あるいは結晶化がしにくい熱可塑性樹脂が、成形加工性や流動性の観点から好適に用いられてきた(特許文献3~5)。
 一方で、近年、上記の汎用プラスチックだけでなく、ポリアミド系樹脂のようなエンジニアプラスチックについても、材料押出式の3次元造形材料としての使用が検討されてきている。これらは、耐熱性や耐薬品性、強度などに優れる。そのため、製品や製造ツールの造形といった産業用途も含めて広く活用の可能性がある。(特許文献6)。
日本国特表2003-502184号公報 日本国特表2003-534159号公報 日本国特表2010-521339号公報 日本国特開2008-194968号公報 国際公開第2015/037574号 国際公開第2018/003379号
 前述の通り、特許文献6に挙げられるようなポリアミド系樹脂は、耐熱性や耐薬品性、強度などに優れる。しかしながら、ポリアミド系樹脂は吸水性が高く、造形中や造形後に空気中の水分を吸収して物性が変化してしまうといった問題点があり、その改良が求められている。
 上記のポリアミド系樹脂よりなる3次元造形用フィラメントの問題点を解決し得るものとして、ポリエステル系樹脂が考えられる。しかしながら、このようなポリエステル系樹脂のうち、一般的に結晶溶解温度(融点、Tm)が高い(おおむね200℃を超える)芳香族ポリエステル系樹脂を用いたフィラメントは、結晶加速度が早すぎる。そのため、層間の接着性が低下したり、結晶化収縮による反りが発生したりするなど造形性の低下が懸念され、ポリエステル系樹脂は3次元造形用フィラメントに用いるプリンタ樹脂としては適用し得ないとされている。
 本発明はかかる課題を解決しようとするものである。すなわち、本発明の目的は、高い耐熱性を持ち、3次元造形時の造形物(樹脂成形体)の反りが少なく、造形物(樹脂成形体)の強度に優れた3次元造形用フィラメント、当該3次元造形用フィラメントを有する、巻回体、3次元プリンタ用カートリッジおよび樹脂成形体を提供することにある。
 本発明者らは、鋭意検討を重ねた結果、芳香族ポリエステル系樹脂を含有し、特定の熱特性を有する樹脂組成物を3次元造形用フィラメントに用いることにより、本発明を完成するに至った。
 即ち、本発明の要旨は以下のとおりである。
[1]樹脂組成物を含有する3次元造形用フィラメントであって、
 前記樹脂組成物は、芳香族ポリエステル系樹脂(A)を含み、
 前記樹脂組成物は、示差走査熱量測定における結晶溶解温度(Tm)が200℃以上であり、示差走査熱量測定における結晶化熱量(ΔHc)が10J/g以上40J/g以下である、3次元造形用フィラメント。
[2]前記芳香族ポリエステル系樹脂(A)が1,4-ブタンジオールに由来する構造を有する、[1]に記載の3次元造形用フィラメント。
[3]前記樹脂組成物がカルボニル基を有する樹脂(B)を含む、[1]または[2]に記載の3次元造形用フィラメント。
[4]前記樹脂(B)がポリカーボネート系樹脂、非晶性ポリエステル系樹脂およびポリエーテルイミド系樹脂からなる群より選ばれる少なくとも一種の樹脂である、[3]に記載の3次元造形用フィラメント。
[5]前記樹脂組成物における前記芳香族ポリエステル系樹脂(A)の含有量が50質量%以上である、[1]~[4]のいずれか1つに記載の3次元造形用フィラメント。
[6]前記フィラメントの直径が1.0mm以上5.0mm以下である、[1]~[5]のいずれか1つに記載の3次元造形用フィラメント。
[7][1]~[6]のいずれか1つに記載の3次元造形用フィラメントを有する巻回体。
[8][1]~[6]のいずれか1つに記載の3次元造形用フィラメントを有する3次元プリンタ用カートリッジ。
[9][1]~[6]のいずれか1つに記載の3次元造形用フィラメントを有する樹脂成形体。
 本発明によれば、耐熱性に優れ、3次元造形時の造形物(樹脂成形体)の反りを抑制し、かつ造形物(樹脂成形体)の強度に優れた3次元造形用フィラメント、当該3次元造形用フィラメントを有する、巻回体、3次元プリンタ用カートリッジおよび樹脂成形体を提供することができる。
(本発明が効果を奏する理由)
 本発明が効果を奏する理由は、未だ明らかでないが、以下のような理由と推察できる。
 すなわち、本発明の3次元造形用フィラメントにおいては、樹脂組成物の、結晶化熱量等の熱特性を特定の範囲内に調整することにより、結晶化収縮量が小さくなる。そのために、3次元造形時の造形物の反りが抑制されると共に、造形後の冷却中における樹脂組成物の結晶化速度を抑制することができる。そのため、3次元造形した際に、造形物(樹脂成形体)の層間に対する垂直方向の強度を向上させることができるものと推察できる。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で種々変形して実施することができる。
<樹脂組成物>
 本発明の3次元造形用フィラメントに用いる樹脂組成物は、後述の芳香族ポリエステル系樹脂を含有し、後述の特定の熱特性を有する。
 本発明の3次元造形用フィラメントにおける樹脂組成物の含有量は、80質量%以上が好ましく、90質量%以上がより好ましい。また、本発明の3次元造形用フィラメントは樹脂組成物からなることが特に好ましい。
(樹脂組成物の熱特性)
 本発明の3次元造形用フィラメントに用いる樹脂組成物は、示差走査熱量測定にて10℃/分の降温速度で測定した際の結晶化熱量(ΔHc)が10J/g以上40J/g以下であることを特徴としている。これにより、3次元造形時の結晶化収縮による造形物(樹脂成形体)の反りを低減することができる。
 結晶化熱量(ΔHc)は、38J/g以下であることが好ましく、37J/g以下であることがより好ましく、36J/g以下であることがさらに好ましく、35J/g以下であることが特に好ましく、34J/g以下であることが最も好ましい。また、結晶化熱量(ΔHc)は、耐熱性の観点から、12J/g以上が好ましく、14J/g以上がより好ましく、16J/g以上がさらに好ましく、18J/g以上がことさら好ましく、20J/g以上が特に好ましく、22J/g以上が最も好ましい。
 また、結晶化熱量(ΔHc)は、樹脂の組成や、後述する芳香族ポリエステル系樹脂(A)とカルボニル基を有する樹脂(B)との配合比率などによって調整できる。
 本発明の3次元造形用フィラメントに用いる樹脂組成物は、示差走査熱量測定にて10℃/分の降温速度で測定した際の結晶溶解温度(Tm)が、200℃以上であることを特徴としている。
 結晶溶解温度(Tm)は、耐熱性の観点から、205℃以上が好ましく、210℃以上がより好ましく、215℃以上が最も好ましい。
 また、上限は特に限定されるものではないが、汎用の3次元プリンタで造形しやすい観点から、結晶溶解温度(Tm)は、300℃以下であることが好ましく、290℃以下であることがより好ましく、280℃以下であることがさらに好ましく、270℃以下であることが最も好ましい。
 また、結晶溶解温度(Tm)は、樹脂の組成や、後述する芳香族ポリエステル系樹脂(A)とカルボニル基を有する樹脂(B)との配合比率などによって調整できる。
 本発明の3次元造形用フィラメントに用いる樹脂組成物は、示差走査熱量測定にて10℃/分の降温速度で測定した際のガラス転移温度(Tg)が、50℃以上であることが好ましい。
 ガラス転移温度(Tg)は、耐熱性の観点から、55℃以上がより好ましく、60℃以上がさらに好ましく、65℃以上が最も好ましい。
 また、上限は特に限定されるものではないが、汎用の3次元プリンタで造形しやすい観点から、ガラス転移温度(Tg)は、200℃以下であることが好ましく、150℃以下であることがより好ましく、140℃以下であることがさらに好ましく、130℃以下であることが最も好ましい。
 また、ガラス転移温度(Tg)は、樹脂組成物の組成や、後述する芳香族ポリエステル系樹脂(A)とカルボニル基を有する樹脂(B)との配合比率などによって調整できる。
 本発明の3次元造形用フィラメントに用いる樹脂組成物には、プラスチック廃棄物や端材などのリサイクル品を使用しても構わない。
 本発明の3次元造形用フィラメントに用いる樹脂組成物は、実施の形態に合わせた形状で用いて構わない。樹脂組成物の形状は、例えば、ペレット、粉体、顆粒、フィラメント等が挙げられる。中でも、樹脂組成物はフィラメント形状で用いることが好ましい。
(芳香族ポリエステル系樹脂(A))
 本発明の3次元造形用フィラメントに用いる樹脂組成物は、芳香族ポリエステル系樹脂(A)を含む。
 ここで、芳香族ポリエステル系樹脂(A)としては、芳香族ジカルボン酸成分とジオール成分との縮合重合からなる樹脂であればよく、中でも、芳香族ジカルボン酸成分およびジオール成分のうち片方の成分もしくは両方の成分が単一の化合物からなるものが好ましい。
 ここで、上記の「芳香族ジカルボン酸成分」の代表的なものとしては、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸等が挙げられるが、テレフタル酸の一部が「他のジカルボン酸成分」で置換されたものであってもよい。
 この際、「他のジカルボン酸成分」としては、シュウ酸、マロン酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ネオペンチル酸、イソフタル酸、ナフタレンジカルボン酸、ジフェニルエーテルジカルボン酸、p-オキシ安息香酸などが挙げられる。これらは、一種でも二種以上の混合物であってもよく、また、置換される他のジカルボン酸の量も適宜選択することができる。
 上記の「ジオール成分」の代表的なものとしてはエチレングリコール、1,2-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタジオール、3-メチルペンタジール、1,3-ヘキサンジオール、1,6-ヘキサンジオール、水添ビスフェノールA、ジエチレングリコール、1,4-シクロヘキサンジメタノール、トリエチレングリコール、ポリエチレングリコール、ジプロピレングリコール、ポリプロピレングリコール及びポリテトラメチレングリコールなどが挙げられる。これらの中でも、芳香族ポリエステル系樹脂(A)は、エチレングリコール、1,2-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタジオール、3-メチルペンタジール、1,3-ヘキサンジオール、1,6-ヘキサンジオール、ジエチレングリコール、1,4-シクロヘキサンジメタノール、トリエチレングリコール、ポリエチレングリコールが好ましく、エチレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコールがさらに好ましく、エチレングリコール、1,4-ブタンジオール、ジエチレングリコール、ポリエチレングリコールが特に好ましく、1,4-ブタンジオールに由来する構造を有することが最も好ましい。
 芳香族ポリエステル系樹脂(A)としては、結晶性の調整など物性を改良するために、トリメリット酸、ピロメリット酸など三官能以上のカルボン酸成分及び/又はトリメチロールプロパンペンタエリスリトールなど三官能以上のポリオール成分などが微量共重合されたものを用いてもよい。
 また、芳香族ポリエステル系樹脂(A)としては、芳香族ポリエステル系樹脂(A)を含有する樹脂組成物の熱特性が、上記範囲内となるように2種以上の芳香族ポリエステルを混合したものを用いてもよく、重合度の異なる同一樹脂の混合物を用いてもよい。
 このような芳香族ポリエステル系樹脂(A)の具体例としては、ポリエチレンテレフタレート樹脂、ポリプロピレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンイソフタレート樹脂、ポリエチレンナフタレート樹脂、ポリブチレンナフタレート樹脂及びポリトリメチレンテレフタレート樹脂などが挙げられる。
 これらの芳香族ポリエステル系樹脂(A)は、1種のみを単独で用いてもよく、2種以上を併用してもよい。
 上述した芳香族ポリエステル系樹脂(A)の中でも、ポリアミド系樹脂と同様の熱特性及び機械物性を得ることが可能となる観点から、ポリエチレンテレフタレート樹脂、ポリプロピレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂が好ましく、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂がさらに好ましく、ポリブチレンテレフタレート樹脂が特に好ましい。
 上記ポリブチレンテレフタレート系樹脂としては、三菱エンジニアリングプラスチックス社製の商品名「ノバデュラン(登録商標)」シリーズ、及びウィンテックポリマー社製の商品名「ジュラネックス(登録商標)」シリーズが商業的に入手できるものとして挙げられる。
 芳香族ポリエステル系樹脂(A)の示差走査熱量測定にて10℃/分の降温速度で測定した際の結晶化熱量(ΔHc)は、造形性の観点から、70J/g以下であることが好ましく、60J/g以下であることがより好ましく、55J/g以下であることがさらに好ましく、50J/g以下であることが特に好ましく、45J/g以下であることが最も好ましい。また、結晶化熱量(ΔHc)は、耐熱性の観点から、10J/g以上が好ましく、15J/g以上がより好ましく、20J/g以上がさらに好ましく、25J/g以上が特に好ましく、30J/g以上が最も好ましい。
 芳香族ポリエステル系樹脂(A)の示差走査熱量測定にて10℃/分の降温速度で測定した際の結晶溶解温度(Tm)は、耐熱性の観点から、180℃以上が好ましく、190℃以上がより好ましく、200℃以上がさらに好ましく、205℃以上が最も好ましい。また、上限は特に限定されるものではないが、汎用の3次元プリンタで造形しやすい観点から、結晶溶解温度(Tm)は、300℃以下であることが好ましく、270℃以下であることがより好ましく、240℃以下であることがさらに好ましく、220℃以下であることが最も好ましい。
 芳香族ポリエステル系樹脂(A)は、耐熱性の観点から、示差走査熱量測定にて10℃/分の降温速度で測定した際のガラス転移温度(Tg)が、10℃以上であることが好ましく、20℃以上であることがより好ましく、25℃以上であることがさらに好ましく、30℃以上であることが特に好ましく、35℃以上であることが最も好ましい。また、上限は特に限定されるものではないが、汎用の3次元プリンタで造形しやすい観点から、ガラス転移温度(Tg)は、100℃以下であることが好ましく、80℃以下であることがより好ましく、60℃以下であることがさらに好ましく、40℃以下であることが最も好ましい。
 芳香族ポリエステル系樹脂(A)は、造形物の耐久性の観点から、重量平均分子量が、50000以上であることが好ましく、65000以上であることがより好ましく、80000以上であることがさらに好ましく、90000以上であることが特に好ましく、95000以上であることが最も好ましい。また、上限は特に限定されるものではないが、汎用の3次元プリンタで造形しやすい観点から、重量平均分子量は、150000以下であることが好ましく、130000以下であることがより好ましく、110000以下であることが最も好ましい。
 本発明の3次元造形用フィラメントに用いる樹脂組成物は、後述のカルボニル基を有する樹脂(B)を含有することが好ましい。なお、本発明の3次元造形用フィラメントに用いる樹脂組成物が芳香族ポリエステル系樹脂組成物(A)と後述のカルボニル基を有する樹脂(B)を含有する場合、本発明の3次元造形用フィラメントに用いられる樹脂組成物中の芳香族ポリエステル系樹脂(A)の含有量は、耐熱性の観点から、30質量%以上が好ましく、40質量%以上がより好ましく、50質量%以上がさらに好ましく、60質量%以上が特に好ましく、70質量%以上が特に好ましい。また、当該含有量は、造形性の観点から、95質量%以下が好ましく、90質量%以下がより好ましく、85質量%以下がさらに好ましく、80質量%以下が特に好ましく、75質量%以下が最も好ましい。
 また、本発明の3次元造形用フィラメントは、後述のフィラー、その他の樹脂やその他の添加剤を含有していてもよい。この場合、フィラメント中の芳香族ポリエステル系樹脂(A)の含有量は、特に制限されないが、耐熱性や造形性に優れる点から、通常50質量%以上であり、60質量%以上がより好ましく、80質量%以上がさらに好ましく、90質量%以上が特に好ましく、95質量%以上が最も好ましい。また、当該含有量は、造形物の強度や、その他機能性付与の観点から、100質量%以下が好ましく、99質量%以下がより好ましく、98.5質量%以下がさらに好ましく、98質量%以下が特に好ましい。
<カルボニル基を有する樹脂(B)>
 本発明の3次元造形用フィラメントに用いる樹脂組成物は、カルボニル基を有する樹脂(B)を含有することが好ましい。
 本発明に用いるカルボニル基を有する樹脂(B)は、芳香族ポリエステル系樹脂(A)に対する相溶、もしくは分散性に優れる樹脂である。カルボニル基を有する樹脂(B)が芳香族ポリエステル系樹脂(A)と相溶、もしくは良分散することにより、本発明の3次元造形用フィラメントは、造形後の冷却中における樹脂組成物の結晶化速度を抑制することができる。そのため、本発明の3次元造形用フィラメントを3次元造形した際に、造形物(樹脂成形体)の層間に対する垂直方向の強度を向上させることができる。特に、カルボニル基を有する樹脂(B)は、芳香族ポリエステル系樹脂(A)と溶融混練との分散性に優れ、好ましい。
 カルボニル基を有する樹脂(B)として採用できるものとしては、ポリカーボネート系樹脂、非晶性ポリエステル系樹脂、ポリエーテルイミド系樹脂などが挙げられる。これらのカルボニル基を有する樹脂(B)は、2種以上の樹脂を混合したものを用いてもよく、重合度の異なる同一樹脂の混合物を用いてもよい。
 なかでも、芳香族ポリエステル系樹脂(A)と成型加工温度に近しい点から、ポリカーボネート系樹脂、非晶性ポリエステル系樹脂が好ましい。特に、カルボニル基を有する樹脂(B)としてポリカーボネート系樹脂を用いることで、本発明により優れた造形性を付与できるとともに、3次元造形した造形物(樹脂成形体)の層間に対する垂直方向の強度を、より向上させることができ、好ましい。
<ポリカーボネート系樹脂>
 ポリカーボネート系樹脂としては、二価フェノールと、ホスゲン、及び炭酸エステル化合物などのカーボネート前駆体とを反応させることによって製造したものが挙げられる。ポリカーボネート系樹脂は、例えば、塩化メチレンなどの溶媒中において、二価フェノールとホスゲンなどのカーボネート前駆体との反応により製造される。また、ポリカーボネート系樹脂は、溶媒の存在下又は不存在下に、二価フェノールと炭酸エステル化合物などのカーボネート前駆体とのエステル交換反応などによって得ることができる。
 二価フェノールとしては、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパンなどのビス(4-ヒドロキシフェニル)アルカン系化合物、ビス(4-ヒドロキシフェニル)サルファイド、ビス(4-ヒドロキシフェニル)スルホンなどが挙げられる。これらの中でも、二価フェノールとしては、ビス(4-ヒドロキシフェニル)アルカン系化合物及びビスフェノールAが好ましい。これらの二価フェノールは、それぞれ単独で用いてもよく、2種以上を混合して用いられてもよい。
 カーボネート前駆体としては、カルボニルハライド、カルボニルエステル、及びハロホルメートなどが用いられる。カーボネート前駆体としては、例えば、ホスゲン、ジフェニルカーボネート、二価フェノールのジハロホルメート及びそれらの混合物が挙げられる。
 ポリカーボネート系樹脂としては、二価フェノールの1種を用いたホモポリマーを用いてもよく、二価フェノールを2種以上用いたコポリマーを用いてもよい。さらに、ポリカーボネート系樹脂は、多官能性芳香族化合物を二価フェノールと併用して得られる熱可塑性ランダム分岐ポリカーボネート系樹脂であってもよい。さらには、ポリカーボネート系樹脂は、各種ポリカーボネート系樹脂の2種以上の混合物であってもよい。
 上記ポリカーボネート系樹脂の代表的なものとしては、三菱エンジニアリングプラスチックス社製の商品名「ユーピロン(登録商標)」シリーズ及び住化ポリカーボネート株式会社製の「SDポリカTM(登録商標)」シリーズなどが商業的に入手できるものとして挙げられる。
<非晶性ポリエステル系樹脂>
 非晶性ポリエステル系樹脂は、JIS K7121に準じて、示差熱走査型熱量計(DSC)により-50℃から300℃まで加熱速度10℃/分で昇温し、300℃で1分間保持した後、-50℃まで冷却速度10℃/分で降温を行い、-50℃で1分間保持した後、再度300℃まで加熱速度10℃/分で昇温した際、2度目の昇温時に明確な融解ピークが現れないポリエステル系樹脂を指す。
 非晶性ポリエステル系樹脂の酸成分はテレフタル酸を主成分とし、ジオール成分はエチレングリコールを主成分とする。ジオール成分は、エチレングリコール以外の共重合成分を1mol%以上、好ましくは15mol%以上、さらに好ましくは25mol%以上の範囲で含有し、エチレングリコール以外の共重合成分を49mol%以下、好ましくは45mol%以下の範囲で含有する。
 共重合可能なその他の酸成分およびジオール成分は、酸成分の例としては、イソフタル酸、2-クロロテレフタル酸、2,5-ジクロロテレフタル酸、2-メチルテレフタル酸、4,4-スチルベンジカルボン酸、4,4-ビフェニルジカルボン酸、オルトフタル酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、ビス安息香酸、ビス(p-カルボキシフェニル)メタン、アントラセンジカルボン酸、4,4-ジフェニルエーテルジカルボン酸、4,4-ジフェノキシエタンジカルボン酸、5-Naスルホイソフタル酸、エチレン-ビス-p-安息香酸等から誘導される芳香族ジカルボン酸成分や、アジピン酸、セバシン酸、アゼライン酸、ドデカン二酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸等から誘導される脂肪族ジカルボン酸成分が挙げられる。なかでもイソフタル酸、2,6-ナフタレンジカルボン酸をはじめとする芳香族ジカルボン酸成分が好ましい。
 ジオール成分は、ジエチレングリコール、トランス-テトラメチル-1,3-シクロブタンジオール、2,2,4,4-テトラメチル-1,3-シクロブタンジオール、1,4-ブタンジオール、1,4-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジオール、1,3-シクロヘキサンジオール、スピログリコール、及びポリテトラメチレングリコールからなる群から選ばれる少なくとも1種であることが好ましい。特に、トランス-テトラメチル-1,3-シクロブタンジオール、2,2,4,4-テトラメチル-1,3-シクロブタンジオール、1,4-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジオール、1,3-シクロヘキサンジオール、スピログリコールからなる群から選ばれる少なくとも1種の脂環構造を有するジオール成分が好適に用いられ、経済性、工業的な入手し易さなどの観点から、特に1,4-シクロヘキサンジメタノールやスピログリコールが好ましい。
 ここで、脂環構造を有するジオール成分の含有率は、非晶性ポリエステル系樹脂の全ジオール成分中に1mol%以上、好ましくは15mol%以上、さらに好ましくは25mol%以上であり、上限は49mol%以下、好ましくは45mol%以下であることが望ましい。
 脂環構造を有するジオール成分の含有率が上記範囲であれば、JIS K7121に準じて、DSCを用いて-50℃から300℃まで加熱速度10℃/分で昇温し、300℃で1分間保持した後、-50℃まで冷却速度10℃/分で降温を行い、-50℃で1分間保持した後、再度300℃まで加熱速度10℃/分で昇温した際、2度目の昇温時に明確な融解ピークが現れない樹脂を得ることができる。
 非晶性ポリエステル系樹脂の市販品としては、例えば、「SKYGREEN(登録商標)」(SKケミカル社製)、「Eastar Copolyester(登録商標)」(イーストマンケミカル社製)、「TRITAN(登録商標)」(イーストマンケミカル社製)、「ALTESTER(登録商標)」(三菱ガス化学社製)などが挙げられる。
<ポリエーテルイミド系樹脂>
 ポリエーテルイミド系樹脂としては、具体的には、下記式(1)で表される構造を有していることが、耐熱性と成形性のバランスに優れる点で好ましい。
Figure JPOXMLDOC01-appb-C000001
 上記式(1)において、n(繰り返し数)は通常10~1,000の範囲の整数であり、好ましくは10~500である。nがかかる範囲にあれば、ポリエーテルイミド系樹脂が成形性と耐熱性のバランスに優れる。
 上記式(1)は、結合様式の違い、具体的にはメタ結合とパラ結合の違いから、下記式(2)で表される構造と下記式(3)で表される構造に分類できる。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 上記式(2)及び式(3)において、n(繰り返し数)は通常10~1,000の範囲の整数であり、好ましくは10~500である。nがかかる範囲にあれば、ポリエーテルイミド系樹脂が成形性と耐熱性のバランスに優れる。
 このような構造をもつポリエーテルイミド系樹脂の市販品としては、例えばサビックイノベーティブプラスチックス社の商品名「Ultem(登録商標)」などが挙げられる。
 本発明の3次元造形用フィラメントに用いる樹脂組成物中の、カルボニル基を有する樹脂(B)の含有量は、耐熱性の観点から、70質量%未満が好ましく、60質量%未満がより好ましく、50質量%未満がさらに好ましく、45質量%未満がより好ましい。また、当該含有量は、造形性の観点から、5質量%より多いことが好ましく、10質量%より多いことがより好ましく、15質量%より多いことがさらに好ましく、20質量%より多いことが特に好ましく、25質量%より多いことが最も好ましい。
 本発明の3次元造形用フィラメントに用いるカルボニル基を有する樹脂(B)は、耐熱性の観点から、示差走査熱量測定にて10℃/分の降温速度で測定した際のガラス転移温度(Tg)が、20℃以上であることが好ましく、40℃以上であることがより好ましく、50℃以上であることがさらに好ましく、60℃以上であることがことさら好ましく、70℃以上であることが特に好ましく、75℃以上であることが最も好ましい。また、上限は特に限定されるものではないが、汎用の3次元プリンタで造形しやすい観点から、ガラス転移温度(Tg)は、220℃以下であることが好ましく、200℃以下であることがより好ましく、150℃以下であることがさらに好ましく、100℃以下であることが特に好ましく、80℃以下であることが最も好ましい。
 本発明の3次元造形用フィラメントに用いるカルボニル基を有する樹脂(B)は、造形物の耐久性の観点から、重量平均分子量が、10000以上であることが好ましく、15000以上であることがより好ましく、20000以上であることがさらに好ましく、24000以上であることが特に好ましく、28000以上であることが最も好ましい。また、上限は特に限定されるものではないが、汎用の3次元プリンタで造形しやすい観点から、重量平均分子量は、110000以下であることが好ましく、85000以下であることがより好ましく、60000以下であることがさらに好ましく、40000以下であることが特に好ましく、30000以下であることが最も好ましい。
(その他の成分)
 本発明の3次元造形用フィラメントは、本発明の効果を損なわない程度にフィラー(有機系粒子、無機系粒子および補強材など)やその他の樹脂、その他の成分を含んでもよい。フィラー(有機系粒子、無機系粒子および補強材など)としては、以下に詳細を詳述する。その他の樹脂としてはポリオレフィン系樹脂やポリスチレン系樹脂、芳香族ポリエステル系樹脂(A)以外のポリエステル系樹脂や各種エラストマー等が挙げられる。これらは1種のみで用いても2種以上を組み合わせて用いてもよい。本発明の3次元造形用フィラメント中のその他の樹脂の配合量は、通常50質量%以下であり、好ましくは30質量%以下である。
 その他の成分としては、耐熱剤、紫外線吸収剤、光安定剤、酸化防止剤、帯電防止剤、滑剤、スリップ剤、結晶核剤、粘着性付与剤、シール性改良剤、防曇剤、離型剤、可塑剤、顔料、染料、香料、難燃剤などが挙げられる。これらは1種のみで用いても2種以上を組み合わせて用いてもよい。
 フィラーのうち有機系粒子の具体例としては、アクリル系樹脂粒子、メラミン系樹脂粒子などが挙げられる。
 フィラーのうち無機系粒子の具体例としては、シリカ、アルミナ、カオリン、二酸化チタン、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸亜鉛などが挙げられる。
 フィラーのうち補強材の具体例としては、無機充填材や無機繊維が挙げられる。
 無機充填材の具体例としては、炭酸カルシウム、炭酸亜鉛、酸化マグネシウム、ケイ酸カルシウム、アルミン酸ナトリウム、アルミン酸カルシウム、アルミノ珪酸ナトリウム、珪酸マグネシウム、チタン酸カリウム、ガラスバルーン、ガラスフレーク、ガラス粉末、炭化ケイ素、窒化ケイ素、窒化ホウ素、石膏、焼成カオリン、酸化亜鉛、三酸化アンチモン、ゼオライト、ハイドロタルサイト、ワラストナイト、シリカ、タルク、金属粉、アルミナ、グラファイト、カーボンブラック、カーボンナノチューブなどが挙げられる。
 無機繊維の具体例としては、ガラスカットファイバー、ガラスミルドファイバー、ガラスファイバー、石膏ウィスカー、金属繊維、金属ウィスカー、セラミックウィスカー、炭素繊維、セルロースナノファイバーなどが挙げられる。
 ここで、本発明の3次元造形用フィラメントがフィラーを含有する際の本発明の3次元造形用フィラメント中のフィラーの含有量は、特に規定されないが、造形する樹脂成形体の強度の観点から、1質量%以上が好ましく、5質量%以上がより好ましく、10質量%以上がさらに好ましい。また、造形する樹脂成形体の層間接着性低下を抑制する観点から、当該含有量は、50質量%以下が好ましく、40質量%以下がより好ましく、30質量%以下がさらに好ましい。
<3次元造形用フィラメント>
 本発明の3次元造形用フィラメントは、材料押出法に用いられる原料として大別される、造形材料と支持材料のどちらに用いても構わないが、造形材料として用いることが好ましい。造形物本体となるものが造形材料であり、積層された造形材料が所望の形に固まるまで支えるものが支持材料である。
<3次元造形用フィラメントの製造方法>
 本発明の3次元造形用フィラメントは、上述の樹脂組成物を用いて製造される。樹脂組成物の混合方法としては特に制限されるものではないが、公知の方法、例えば単軸押出機、多軸押出機、バンバリーミキサー、ニーダーなどの溶融混練装置を用いる等方法を挙げることができる。本発明においては、各成分の分散性や混和性などの観点から同方向二軸押出機を用いることが好ましい。分散性や混和性が優れると、フィラメント径の精度や真円度を高めることができるため好ましい。
 本発明の3次元造形用フィラメントの製造方法は特に制限されるものではないが、上述の樹脂組成物を、押出成形等の公知の成形方法により成形する方法や、樹脂組成物の製造時にそのままフィラメントとする方法等を挙げることができる。例えば、本発明の3次元造形用フィラメントを押出成形により得る場合、その条件は、用いる樹脂組成物の流動特性や成形加工性等によって適宜調整されるが、通常220~300℃、好ましくは250~280℃である。
<3次元造形用フィラメントの物性等>
 本発明の3次元造形用フィラメントの直径は、材料押出法による樹脂成形体の成形に使用するシステムの仕様に依存するが、通常1.0mm以上、好ましくは1.5mm以上、より好ましくは1.6mm以上、特に好ましくは1.7mm以上であり、一方、上限は通常5.0mm以下、好ましくは4.0mm以下、より好ましくは3.5mm以下、特に好ましくは3.0mm以下である。
 更にフィラメントの直径の精度はフィラメントの任意の測定点に対して±5%以内の誤差に収めることが原料供給の安定性の観点から好ましい。特に、本発明の3次元造形用フィラメントは、フィラメントの直径の標準偏差が0.07mm以下であることが好ましく、0.06mm以下であることが特に好ましい。
 また、本発明の3次元造形用フィラメントは、真円度が0.93以上であることが好ましく、0.95以上であることが特に好ましい。真円度の上限は1.0である。このように、フィラメントの直径の標準偏差が小さく、真円度が高い3次元造形用フィラメントであれば、造形時の吐出ムラが抑制され、外観や表面性状等に優れた樹脂成形体を安定して製造することができる。そして、前述の樹脂組成物を用いることで、このような標準偏差及び真円度を満たす3次元造形用フィラメントを比較的容易に製造することができる。
<3次元造形用フィラメントの巻回体>
 本発明の3次元造形用フィラメントを用いて3次元プリンタにより樹脂成形体を製造するにあたり、3次元造形用フィラメントを安定に保存すること、及び、3次元プリンタに3次元造形用フィラメントを安定供給することが求められる。そのために、本発明の3次元造形用フィラメントは、ボビンに巻きとった巻回体として包装されている、又は、巻回体がカートリッジに収納されていることが、長期保存、安定した繰り出し、紫外線等の環境要因からの保護、捩れ防止等の観点から好ましい。
 カートリッジとしては、ボビンに巻き取った巻回体の他、内部に防湿材または吸湿材を使用し、少なくともフィラメントを繰り出すオリフィス部以外が密閉されている構造のものが挙げられる。
 通常、3次元造形用フィラメントをボビンに巻きとった巻回体、又は、巻回体を含むカートリッジは3次元プリンタ内又は周囲に設置され、成形中は常にカートリッジからフィラメントが3次元プリンタに導入され続ける。
<樹脂成形体の製造方法>
 本発明の樹脂成形体の製造方法においては、本発明の3次元造形用フィラメントを用い、3次元プリンタにより成形することにより樹脂成形体を得る。3次元プリンタによる成形方法としては材料押出法(ME法)、粉末焼結方式、インクジェット方式、光造形方式(SLA法)などが挙げられるが、本発明の次元プリンタ用フィラメントは、材料押出法に用いることが特に好ましい。以下、材料押出法の場合を例示して説明する。
 本発明の3次元造形用フィラメントは、材料押出法に用いられる原料として大別される、造形材料と支持材料のどちらに用いても構わないが、造形材料として用いることが好ましい。 造形物本体となるものが造形材料であり、積層された造形材料が所望の形に固まるまで支えるものが支持材料である。
 材料押出法に用いられる3次元プリンタは一般に、チャンバーを有しており、該チャンバー内に、加熱可能な基盤、ガントリー構造に設置された押出ヘッド、加熱溶融器、フィラメントのガイド、フィラメントカートリッジ設置部等の原料供給部を備えている。3次元プリンタの中には押出ヘッドと加熱溶融器とが一体化されているものもある。
 押出ヘッドはガントリー構造に設置されることにより、基盤のX-Y平面上に任意に移動させることができる。基盤は目的の3次元物体や支持材等を構築するプラットフォームであり、加熱保温することで積層物との接着性を得たり、得られる樹脂成形体を所望の3次元物体として寸法安定性を改善したりできる仕様であることが好ましい。また、積層物との接着性を向上させるため、基盤上に粘着性のある糊を塗布したり、積層物との接着性が良好なシート等を貼りつけてもよい。ここで積層物との接着性が良好なシートとしては、無機繊維のシートなど表面に細かな凹凸を有するシートや、積層物と同種の樹脂からなるシートなどが挙げられる。なお、押出ヘッドと基盤とは、通常、少なくとも一方がX-Y平面に垂直なZ軸方向に可動となっている。
 押出ヘッドの数は、通常1~2つである。押出ヘッドが2つあれば、2つの異なるポリマーをそれぞれ異なるヘッド内で溶融し、選択的に印刷することができる。この場合、ポリマーの1つは3D対象物を造形する造形材料であり、もう一方は、例えば一時的な機材として必要とされる支持材料とすることができる。この支持材料は、例えば、水性系(例えば、塩基性又は酸性媒体)における完全な又は部分的な溶解によって、その後除去することができる。
 3次元造形用フィラメントは原料供給部から繰り出され、対向する1組のローラー又はギアーにより押出ヘッドへ送り込まれ、押出ヘッドにて加熱溶融され、先端ノズルより押し出される。CADモデルを基にして発信される信号により、押出ヘッドはその位置を移動しながら原料を基盤上に供給して積層堆積させていく。この工程が完了した後、基盤から積層堆積物を取り出し、必要に応じて支持材等を剥離したり、余分な部分を切除したりして所望の3次元物体として樹脂成形体を得ることができる。
 押出ヘッドへ連続的に原料を供給する手段は、フィラメント又はファイバーを繰り出して供給する方法、粉体又は液体をタンク等から定量フィーダを介して供給する方法、ペレット又は顆粒を押出機等で可塑化したものを押し出して供給する方法等が例示できる。工程の簡便さと供給安定性の観点から、フィラメントを繰り出して供給する方法、即ち、前述の本発明の3次元造形用フィラメントを繰り出して供給する方法が最も好ましい。
 3次元プリンタにフィラメントを供給する場合、ニップロールやギアロール等の駆動ロールにフィラメントを係合させて、引き取りながら押出ヘッドへ供給することが一般的である。ここでフィラメントと駆動ロールとの係合による把持をより強固にすることで原料供給を安定化させるために、フィラメントの表面に微小凹凸形状を転写させておいたり、係合部との摩擦抵抗を大きくするための無機添加剤、展着剤、粘着剤、ゴム等を配合したりすることも好ましい。フィラメントの太さにムラがある場合、フィラメントと駆動ロールとの係合による把持が行えず、駆動ロールが空転しフィラメントを押出ヘッドに供給出来なくなる場合がある。
 本発明で用いる3次元造形用フィラメントは、押出に適当な流動性を得るための温度が、通常180~300℃程度と、通常の3次元プリンタが設定可能な温度である。本発明の樹脂成形体の製造方法においては、加熱押出ヘッドの温度を通常290℃以下、好ましくは200~280℃とし、また、基盤温度を通常120℃以下として安定的に樹脂成形体を製造することができる。
 押出ヘッドから吐出される溶融樹脂の温度(吐出温度)は220℃以上であることが好ましく、250℃以上であることがより好ましく、一方、300℃以下であることが好ましく、290℃以下であることがより好ましく、280℃以下であることが更に好ましい。溶融樹脂の温度が上記下限値以上であると、耐熱性の高い樹脂を押し出す上で好ましく、また、高速で吐出することが可能となり、造形効率が向上する傾向にあるため好ましい。一方、溶融樹脂の温度が上記上限値以下であると、樹脂の熱分解や焼け、発煙、臭い、べたつきといった不具合の発生を防ぎやすく、また一般に、糸引きと呼ばれる溶融樹脂が細く伸ばされた破片や、ダマと呼ばれる余分な樹脂が塊状になったものが樹脂成形体に付着し、外観を悪化させることを防ぐ観点からも好ましい。
 押出ヘッドから吐出される溶融樹脂は、好ましくは直径0.01~1.0mm、より好ましくは直径0.02~0.5mmのストランド状で吐出される。溶融樹脂がこのような形状で吐出されると、CADモデルの再現性が良好となる傾向にあるために好ましい。
 本発明の3次元造形用フィラメントを用いる3次元造形における高速造形とは、造形速度が1mm/s以上であることを表す。造形に要する時間の観点から、造形速度は3mm/s以上が好ましく、5mm/s以上がより好ましく、7mm/s以上がさらに好ましく、10mm/s以上が最も好ましい。上限は特に限定されないが、速ければ速いほど好ましい。ただし、前述のフィラメントの屈曲や、後述の外観の悪化等、造形性に問題のない速度であるためには、造形速度は、100mm/s以下が好ましく、80mm/s以下がより好ましく、60mm/s以下がさらに好ましい。
 3次元造形用フィラメントを用いて3次元プリンタにより樹脂成形体を製造するにあたり、押出ヘッドから吐出させたストランド状の樹脂を積層しながら樹脂成形体を作る際に、先に吐出させた樹脂のストランドと、その上に吐出させた樹脂ストランドとの接着性が十分でないことや吐出ムラによって、成形物の表面に、凹凸部(スジ等)が生じることがある。成形物の表面にこのような凹凸部が存在すると、外観の悪化だけでなく、樹脂成形体が破損しやすい等の問題が生じることがある。
 本発明の3次元造形用フィラメントは、先に吐出させた樹脂のストランドと、その上に吐出させた樹脂ストランドとの接着性が良好であり、また径の真円度が高いため成形時の吐出ムラが抑制され、外観や表面性状等に優れた樹脂成形体を安定して製造することができる。
 3次元プリンタによって押出ヘッドから吐出させたストランド状の樹脂を積層しながら樹脂成形体を作る際に、樹脂の吐出を止めた上で次工程の積層箇所にノズルを移動する工程がある。この時、樹脂が途切れずに細い樹脂繊維が生じ、糸を引いたように樹脂成形体表面に残ることがある。上記の様な糸引きが発生すると樹脂成形体の外観が悪化する等の問題が生じることがある。
 本発明の3次元造形用フィラメントは、特定の熱特性を有することから成形加工性に優れ、径の標準偏差が小さく、真円度が高いことに加え、適度な結晶化速度と、高い破断ひずみを有することから糸引きが抑制され、外観や表面性状等に優れた樹脂成形体を安定して製造することができる。
 本発明の樹脂成形体は、使用する用途などに応じて、造形後、熱処理により結晶化を促進あるいは完了させてもよい。
 本発明の樹脂成形体を製造するにあたり、支持材料を同時に造形してもよい。支持材料の種類は特に限定されるものではないが、市販されている支持材料フィラメントの組成としては、エチレン-ビニルアルコール共重合樹脂(EVOH)、ブテンジオール-ビニルアルコール共重合樹脂(BVOH)、ポリビニルアルコール(PVOH)、耐衝撃性ポリスチレン(HIPS)などが挙げられる。
(樹脂成形体の用途)
 本発明の樹脂成形体は、造形性や耐熱性に優れたものである。用途については特に制限されるものではないが、文房具;玩具;携帯電話やスマートフォン等のカバー;グリップ等の部品;学校教材;家電製品、OA機器、自動車、オートバイ、自転車等の部品;電機・電子機器用資材;農業用資材;園芸用資材;漁業用資材;土木・建築用資材;医療用品等の用途に好適に用いることができる。
 以下に実施例でさらに詳しく説明するが、これらにより本発明は何ら制限を受けるものではない。なお、本明細書中に表示される種々の測定値および評価は次のようにして行った。
(1)結晶化熱量(ΔHc)
 (株)パーキンエルマー製の示差走査熱量計、商品名「Pyris1 DSC」を用いて、JIS K7122に準じて、試料約10mgを加熱速度10℃/分で0℃から250℃まで昇温し、該温度で1分間保持した。その後、冷却速度10℃/分で0℃まで降温した時に測定されたサーモグラムから結晶化熱量(ΔHc)(降温過程)を求めた。
(2)結晶溶解温度(Tm)、ガラス転移温度(Tg)
 (株)パーキンエルマー製の示差走査熱量計、商品名「Pyris1 DSC」を用いて、JIS K7121に準じて、試料約10mgを加熱速度10℃/分で0℃から250℃まで昇温し、該温度で1分間保持した。その後、冷却速度10℃/分で0℃まで降温し、再度、加熱速度10℃/分で250℃まで昇温した時に測定された各サーモグラムから結晶溶解温度(Tm)(℃)(再昇温過程)およびガラス転移温度(Tg)(℃)(再昇温過程)を求めた。
(3)3次元造形用フィラメントの造形評価
<造形時反り>
 評価用サンプルとして、サンプル長さ75mm、幅10mm、厚み5mmのダンベル状サンプルを、サンプルの厚さ方向をZ軸方向(積層方向)として、3Dプリンタ(3DGence製、商品名:INDUSTRY F340)を用いて造形した。その際、支持材料としてBVOHを用いて、造形テーブル温度65℃、ノズル温度265℃、造形速度7mm/s、内部充填率100%の造形条件にて造形を行った。
 評価用サンプル製造後に、評価用サンプルを造形テーブルから取り外して、水平面に置いた際の評価用サンプルの四隅と水平面との距離を測定し、得られた値の平均値を反り量とできる。この反り量から、以下の基準で造形時の反りを評価した。
AA:反り量が1mm未満であった。
A:反り量が1mm以上2mm未満であった。
B:反り量が2mm以上であった、あるいは造形途中に大きな反りが発生したため造形が完了できなかった。
<耐熱性>
 評価用サンプルとして、直径5cm、高さ4cm、壁1層の筒状サンプルを、5mmのブリムを付けて、3Dプリンタ(3DGence製、商品名:INDUSTRY F340)を用いて造形した。その際、支持材料としてBVOHを用いて、造形テーブル温度65℃、ノズル温度265℃、造形速度7mm/s、内部充填率100%の造形条件にて造形を行った。
 評価用サンプル製造後に、評価用サンプルを造形テーブルから取り外して、200℃のオーブンで1分間加熱した。その後、評価用サンプル最上部の直径を測定し、造形前からの変形量を調査した。この変化量から、以下の基準で造形物の耐熱性を評価した。
AA:変化量が±3mm以下であった。
A:変化量が±5mm未満であった。
B:変化量が±5mm以上であった、あるいは造形途中に大きな反りが発生したため造形が完了できなかった。
<層間接着性>
 JIS K 7161に準拠して、引張破断伸びを測定することにより評価した。評価用サンプルとしては、サンプル長さ75mm、幅10mm、厚み5mmのダンベル状サンプルを、サンプルの長さ方向をZ軸方向(積層方向)として、3Dプリンタ(3DGence製、商品名:INDUSTRY F340)を用いて造形した。その際、支持材料としてBVOHを用いて、造形テーブル温度65℃、ノズル温度265℃、造形速度7mm/s、内部充填率100%の造形条件にて造形を行った。
 この評価用サンプルにて、初期のチャック間距離45mm、速度50mm/min、23℃で引張試験を行い、引張強度を測定した。
 造形物の層間接着性は、本発明の3次元造形用フィラメントを250℃で電熱プレスしたサンプルの引張強度に対する比率で、評価できる。この比率から、以下の基準で層間接着性を評価した。
AA:比率が30%以上であった。
A:比率が15%以上30%未満であった。
B:比率が15%未満であった、あるいは造形途中に大きな反りが発生したため造形が完了できなかった。
<総合評価>
 上記の造形時反り評価の結果、耐熱性評価の結果及び層間接着性評価の結果に基づき、以下の基準により総合評価した。
AA:上記三つの結果が、いずれも「AA」であった。
A:上記三つの結果のいずれか一つが「A」であった。ただし、上記三つの結果がいずれも「B」ではなかった。
B:上記三つの結果がいずれも「B」であった、もしくはいずれか二つ以上が「A」であった。
 実施例、比較例で用いた原料を下記する。
<芳香族ポリエステル系樹脂(A)>
(A-1);三菱エンジニアリングプラスチックス(株)製、商品名:ノバデュラン5020(芳香族ポリエステル、Tm:228℃、ΔHc:47J/g、Tg:43℃、重量平均分子量:98200)
<カルボニル基を有する樹脂(B)>
(B-1);三菱エンジニアリングプラスチックス(株)製、商品名:ユーピロンS3000(ポリカ―ボネート、Tg:147℃、重量平均分子量:29500)
(B-2);SKケミカル(株)製、商品名:SKYGREEN S2008(非晶性ポリエステル、Tg:72℃、重量平均分子量:84100)
(実施例1)
 芳香族ポリエステル系樹脂(A-1)60質量部と、樹脂(B-1)40質量部とを配合し、同方向二軸混練機を用いて、混練温度250℃にて樹脂組成物を製造した。このポリエステル系樹脂組成物を、単軸押出機にて直径2.5mmのノズルから溶融温度250℃にて押出後、40℃の冷却水中で冷却することで、直径1.75mmのフィラメントを得た。このフィラメントについて各種評価結果を表1に示す。
(実施例2)
 樹脂(B-1)を樹脂(B-2)とした以外は、実施例1と同様にフィラメントを製造した。このフィラメントについて各種評価結果を表1に示す。
(比較例1)
 樹脂組成物を製造する際に芳香族ポリエステル系樹脂(A-1)のみを用いた以外は実施例1と同様にフィラメントを製造した。このフィラメントについて各種評価結果を表1に示す。
(比較例2)
 芳香族ポリエステル系樹脂(A-1)を40質量部用い、樹脂(B-1)を60質量部用いた以外は、実施例1と同様にフィラメントを製造した。このフィラメントについて各種評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000004
 表1より、本発明で規定した、特定の熱特性を有する樹脂組成物からなる3次元造形用フィラメントは、得られる樹脂成形体のすべての評価で優れていることが確認できた。特に、実施例1に示す、芳香族ポリエステル系樹脂とポリカーボネート系樹脂を含む3次元造形用フィラメントは、造形物の層間接着性がさらに優れた。
 これに対し、比較例1より、結晶化熱量(ΔHc)が本発明で規定する範囲以上であると、結晶化収縮による造形時の反りが大きく、造形性及び層間接着性も劣ることが確認できた。一方、比較例2より、結晶化熱量(ΔHc)が本発明で規定する範囲未満であると、層間接着性は良好であるが、反りや耐熱性が劣ることが確認できた。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2019年11月12日出願の日本特許出願(特願2019-204444)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (9)

  1.  樹脂組成物を含有する3次元造形用フィラメントであって、
     前記樹脂組成物は、芳香族ポリエステル系樹脂(A)を含み、
     前記樹脂組成物は、示差走査熱量測定における結晶溶解温度(Tm)が200℃以上であり、示差走査熱量測定における結晶化熱量(ΔHc)が10J/g以上40J/g以下である、3次元造形用フィラメント。
  2.  前記芳香族ポリエステル系樹脂(A)が1,4-ブタンジオールに由来する構造を有する、請求項1に記載の3次元造形用フィラメント。
  3.  前記樹脂組成物がカルボニル基を有する樹脂(B)を含む、請求項1または2に記載の3次元造形用フィラメント。
  4.  前記樹脂(B)がポリカーボネート系樹脂、非晶性ポリエステル系樹脂およびポリエーテルイミド系樹脂からなる群より選ばれる少なくとも一種の樹脂である、請求項3に記載の3次元造形用フィラメント。
  5.  前記樹脂組成物における前記芳香族ポリエステル系樹脂(A)の含有量が50質量%以上である、請求項1~4のいずれか1項に記載の3次元造形用フィラメント。
  6.  前記フィラメントの直径が1.0mm以上5.0mm以下である、請求項1~5のいずれか1項に記載の3次元造形用フィラメント。
  7.  請求項1~6のいずれか1項に記載の3次元造形用フィラメントを有する巻回体。
  8.  請求項1~6のいずれか1項に記載の3次元造形用フィラメントを有する3次元プリンタ用カートリッジ。
  9.  請求項1~6のいずれか1項に記載の3次元造形用フィラメントを有する樹脂成形体。
PCT/JP2020/042076 2019-11-12 2020-11-11 3次元造形用フィラメント WO2021095769A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021556124A JPWO2021095769A1 (ja) 2019-11-12 2020-11-11
EP20888425.4A EP4059697A4 (en) 2019-11-12 2020-11-11 FILAMENTS FOR THREE-DIMENSIONAL MOLDING
US17/741,531 US20220267593A1 (en) 2019-11-12 2022-05-11 Filament for three-dimensional printing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019204444 2019-11-12
JP2019-204444 2019-11-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/741,531 Continuation US20220267593A1 (en) 2019-11-12 2022-05-11 Filament for three-dimensional printing

Publications (1)

Publication Number Publication Date
WO2021095769A1 true WO2021095769A1 (ja) 2021-05-20

Family

ID=75912691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042076 WO2021095769A1 (ja) 2019-11-12 2020-11-11 3次元造形用フィラメント

Country Status (4)

Country Link
US (1) US20220267593A1 (ja)
EP (1) EP4059697A4 (ja)
JP (1) JPWO2021095769A1 (ja)
WO (1) WO2021095769A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149561A1 (ja) * 2022-02-07 2023-08-10 三菱ケミカル株式会社 3次元造形用材料、及びそれを用いた樹脂成形体

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003502184A (ja) 1999-06-23 2003-01-21 ストラタシス・インコーポレイテッド 高温模型製作装置
JP2003534159A (ja) 2000-05-19 2003-11-18 ネイダーランゼ、オルガニザティー、ボー、トゥーゲパストナトゥールウェテンシャッペルーク、オンダーツォーク、ティーエヌオー 改良されたfdm製品、方法、及び装置
JP2008194968A (ja) 2007-02-14 2008-08-28 Imoto Seisakusho:Kk 高分子材料の直接造形法および直接造形装置
JP2010521339A (ja) 2007-03-14 2010-06-24 ストラタシス,インコーポレイテッド 改質abs材料を用いて3次元オブジェクトを構築する方法
WO2015037574A1 (ja) 2013-09-11 2015-03-19 東レ株式会社 熱融解積層方式三次元造形用素材および熱融解積層方式3dプリント機器用フィラメント
JP2016055637A (ja) * 2014-09-05 2016-04-21 Mcppイノベーション合同会社 3次元プリンター成形用フィラメント及び結晶性軟質樹脂成形体の製造方法
JP2016060048A (ja) * 2014-09-16 2016-04-25 帝人株式会社 ポリ乳酸ストランド
WO2016181995A1 (ja) * 2015-05-13 2016-11-17 三菱化学メディア株式会社 材料押出式3次元プリンター用フィラメント、該フィラメントからなる巻回体、該フィラメントを含むカートリッジ及び該フィラメントを用いた樹脂成形体の製造方法
WO2018003379A1 (ja) 2016-07-01 2018-01-04 宇部興産株式会社 熱溶解積層型3次元プリンタ用材料及びそれを用いた熱溶解積層型3次元プリンタ用フィラメント
WO2019053237A1 (en) * 2017-09-18 2019-03-21 Solvay Specialty Polymers Usa, Llc ADDITIVE MANUFACTURING METHOD FOR MANUFACTURING THREE-DIMENSIONAL OBJECT USING SELECTIVE LASER FRITTAGE
WO2019189323A1 (ja) * 2018-03-27 2019-10-03 株式会社壽 筆記具
JP2019204444A (ja) 2018-05-25 2019-11-28 凸版印刷株式会社 睡眠評価レポート生成装置、及び睡眠評価レポート生成方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3785882A4 (en) * 2018-04-26 2021-08-25 Mitsubishi Chemical Corporation POLYAMIDE MATERIAL FOR 3D PRINTERS

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003502184A (ja) 1999-06-23 2003-01-21 ストラタシス・インコーポレイテッド 高温模型製作装置
JP2003534159A (ja) 2000-05-19 2003-11-18 ネイダーランゼ、オルガニザティー、ボー、トゥーゲパストナトゥールウェテンシャッペルーク、オンダーツォーク、ティーエヌオー 改良されたfdm製品、方法、及び装置
JP2008194968A (ja) 2007-02-14 2008-08-28 Imoto Seisakusho:Kk 高分子材料の直接造形法および直接造形装置
JP2010521339A (ja) 2007-03-14 2010-06-24 ストラタシス,インコーポレイテッド 改質abs材料を用いて3次元オブジェクトを構築する方法
WO2015037574A1 (ja) 2013-09-11 2015-03-19 東レ株式会社 熱融解積層方式三次元造形用素材および熱融解積層方式3dプリント機器用フィラメント
JP2016055637A (ja) * 2014-09-05 2016-04-21 Mcppイノベーション合同会社 3次元プリンター成形用フィラメント及び結晶性軟質樹脂成形体の製造方法
JP2016060048A (ja) * 2014-09-16 2016-04-25 帝人株式会社 ポリ乳酸ストランド
WO2016181995A1 (ja) * 2015-05-13 2016-11-17 三菱化学メディア株式会社 材料押出式3次元プリンター用フィラメント、該フィラメントからなる巻回体、該フィラメントを含むカートリッジ及び該フィラメントを用いた樹脂成形体の製造方法
WO2018003379A1 (ja) 2016-07-01 2018-01-04 宇部興産株式会社 熱溶解積層型3次元プリンタ用材料及びそれを用いた熱溶解積層型3次元プリンタ用フィラメント
WO2019053237A1 (en) * 2017-09-18 2019-03-21 Solvay Specialty Polymers Usa, Llc ADDITIVE MANUFACTURING METHOD FOR MANUFACTURING THREE-DIMENSIONAL OBJECT USING SELECTIVE LASER FRITTAGE
WO2019189323A1 (ja) * 2018-03-27 2019-10-03 株式会社壽 筆記具
JP2019204444A (ja) 2018-05-25 2019-11-28 凸版印刷株式会社 睡眠評価レポート生成装置、及び睡眠評価レポート生成方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149561A1 (ja) * 2022-02-07 2023-08-10 三菱ケミカル株式会社 3次元造形用材料、及びそれを用いた樹脂成形体

Also Published As

Publication number Publication date
US20220267593A1 (en) 2022-08-25
JPWO2021095769A1 (ja) 2021-05-20
EP4059697A4 (en) 2023-01-11
EP4059697A1 (en) 2022-09-21

Similar Documents

Publication Publication Date Title
JP7400809B2 (ja) 3次元造形用フィラメント、巻回体、及び3次元プリンター用カートリッジ
JP6647749B2 (ja) 3次元プリンター成形用フィラメント及び結晶性軟質樹脂成形体の製造方法
JP6481496B2 (ja) 材料押出式3次元プリンター用フィラメント用樹脂
JP7184079B2 (ja) ポリアミド系3次元プリンタ用材料
JP6446707B2 (ja) 3次元プリンター成形用フィラメント、及び樹脂成形体の製造方法
WO2021095769A1 (ja) 3次元造形用フィラメント
JP7207409B2 (ja) 3次元プリンタ用材料
WO2022138954A1 (ja) 3次元造形用フィラメント
WO2023149561A1 (ja) 3次元造形用材料、及びそれを用いた樹脂成形体
JP2023053430A (ja) 3次元造形用材料、及びそれを用いた樹脂成形体
WO2021066102A1 (ja) 3次元造形用フィラメント
WO2021025161A1 (ja) 材料押出方式(me方式)3次元プリンタ用フィラメント、樹脂成型体、巻回体、および、3次元プリンタ装着用カートリッジ
WO2021153637A1 (ja) 3次元造形用フィラメント
JP2024070634A (ja) 3次元プリンタ用材料及びこれを用いた樹脂成形体の製造方法
JP2024037465A (ja) 3次元プリンタ用材料、3次元プリンタ用フィラメント及びその巻回体、3次元プリンタ装着用カートリッジ、並びに、樹脂成形体の製造方法
JP4283651B2 (ja) ポリ乳酸系マット調帯電防止性二軸延伸フィルム
JP2023143185A (ja) 3次元造形用フィラメント
JPH02127437A (ja) ポリエステル樹脂組成物よりなるシート及びその熱成形体
WO2021066011A1 (ja) 樹脂組成物、フィルム、複合材料、移動体及び3次元造形用材料
JP2007031720A (ja) パ−ル光沢を有する樹脂成形品
JP2007046066A (ja) 樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20888425

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021556124

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020888425

Country of ref document: EP

Effective date: 20220613