WO2021066011A1 - 樹脂組成物、フィルム、複合材料、移動体及び3次元造形用材料 - Google Patents

樹脂組成物、フィルム、複合材料、移動体及び3次元造形用材料 Download PDF

Info

Publication number
WO2021066011A1
WO2021066011A1 PCT/JP2020/037149 JP2020037149W WO2021066011A1 WO 2021066011 A1 WO2021066011 A1 WO 2021066011A1 JP 2020037149 W JP2020037149 W JP 2020037149W WO 2021066011 A1 WO2021066011 A1 WO 2021066011A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
repeating unit
resin composition
polyaryletherketone
represented
Prior art date
Application number
PCT/JP2020/037149
Other languages
English (en)
French (fr)
Inventor
真保 蓮池
奈央 山末
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to CN202080067300.5A priority Critical patent/CN114466897A/zh
Priority to EP20870718.2A priority patent/EP4039747B1/en
Priority to JP2021551374A priority patent/JPWO2021066011A1/ja
Publication of WO2021066011A1 publication Critical patent/WO2021066011A1/ja
Priority to US17/708,156 priority patent/US20220220303A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • C08G65/4056(I) or (II) containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/1053Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the tetracarboxylic moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/1064Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/20Polysulfones
    • C08G75/23Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/06Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2071/00Use of polyethers, e.g. PEEK, i.e. polyether-etherketone or PEK, i.e. polyetherketone or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2081/00Use of polymers having sulfur, with or without nitrogen, oxygen or carbon only, in the main chain, as moulding material
    • B29K2081/06PSU, i.e. polysulfones; PES, i.e. polyethersulfones or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group
    • C08G2650/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group containing ketone groups, e.g. polyarylethylketones, PEEK or PEK
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2465/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2471/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2471/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2479/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a resin composition made of super engineering plastic, which can be applied to insulating films, printed circuit boards, spacers, housings, surface materials, packaging materials, etc. in electric / electronic devices, automobiles, aircraft, etc.
  • the present invention also relates to a film, a composite material, a moving body, a material for three-dimensional molding, a filament for three-dimensional molding, and a molded body using this resin composition.
  • polyetherketoneketone is mainly used as a matrix material for speaker diaphragms and fiber reinforced materials as a material that can achieve both heat resistance and melt moldability because the glass transition temperature and crystal melting temperature can be controlled by the primary structure.
  • Polyetherketone Ketone has excellent adhesiveness to glass fibers and carbon fibers, and therefore can exhibit excellent mechanical properties when used as a matrix resin as a fiber reinforced material.
  • Polyetherketone Ketone was required to have improved heat resistance that could withstand use in even harsher environments.
  • Patent Document 1 discloses a multi-component phase-separated polymer blend in which a polyetherimide sulfone is blended with a polyaryletherketone. There is a description that the blend system can improve the heat resistance of the polyaryletherketone. ..
  • Patent Document 1 describes that a polyetherketone ketone may be used as the polyaryletherketone, the repeating unit constituting the resin, particularly the repeating unit derived from terephthalic acid and the repeating unit derived from isophthalic acid. There is no description about the preferable ratio of the repeating unit to be used.
  • Patent Document 1 lists a large number of monomer components that can be used for polyetherimide sulfone, but there is no description of a structure that can exhibit excellent performance in combination with polyetherketoneketone. ..
  • an object of the present invention is to provide a resin composition having high heat resistance and excellent melt moldability and secondary processability.
  • the polyaryletherketone resin (A) and the polyetherimidesulfone resin (B) are combined and compatible with each other.
  • the heat resistance of the polyaryletherketone resin (A) which is excellent in heat resistance and melt moldability, is further improved, and the two are compatible with each other to provide a resin composition having excellent secondary processability. To do.
  • the present invention also comprises a polyaryletherketone resin (A) in which the ratio of the number of ether groups to the ketone group is less than 2, and a resin (A') other than the polyaryletherketone resin (A), which is subjected to differential scanning.
  • the calorific value of crystallization ( ⁇ Hc) in the thermal measurement is 5 J / g or more and 40 J / g or less, and the polyaryletherketone resin (A) and the resin (A') other than the resin (A) are compatible with each other. This provides a three-dimensional modeling material having excellent heat resistance and formability.
  • the polyaryletherketone resin (A) and the resin (A') other than the resin (A) are compatible with each other to provide excellent secondary processability, and for three-dimensional modeling having excellent uniformity of shape and size.
  • the material can be obtained. Furthermore, it is possible to obtain a three-dimensional model having excellent mechanical properties such as appearance and tensile strength.
  • the present invention provides the following [1] to [26].
  • the polyaryletherketone resin (A) is a repeating unit (a-1) represented by the following general formula (1) and / or a repeating unit (a-2) represented by the following general formula (2).
  • Ar 1 to Ar 6 each independently represent an arylene group having 6 to 24 carbon atoms which may have a substituent.
  • Ar 3 in the general formula (1) the ketone group is bonded to the 1-position and the 4-position of the Ar 3 group.
  • (1,3) Ar 6 in the general formula (2) the ketone group is bonded to the 1-position and the 3-position of the Ar 6 group.
  • the polyaryletherketone resin (A) has a repeating unit (a-1) represented by the general formula (1) and a repeating unit (a-2) represented by the general formula (2).
  • the unit molar ratio [(a-1) / (a-2)] of the repeating unit (a-1) and the repeating unit (a-2) is 1 or more and 5 or less, [3].
  • the repeating unit (a-1) represented by the general formula (1) is a repeating unit represented by the following structural formula (1A), and the repeating unit (a) represented by the general formula (2).
  • the resin composition according to [3] or [4], wherein -2) is a repeating unit represented by the following structural formula (2A).
  • Y 1 to Y 6 independently represent a hydrogen atom, an alkyl group, or an alkoxy group.
  • Ar 7 to Ar 10 each independently represent an arylene group having 6 to 24 carbon atoms which may have a substituent.
  • the unit molar ratio [(a-1) / (a-2)] of the repeating unit (a-1) and the repeating unit (a-2) constituting the polyaryletherketone resin (A) is 1 or more.
  • Y 7 to Y 12 independently represent a hydrogen atom, an alkyl group, or an alkoxy group.
  • Ar 11 to Ar 14 each independently represent an arylene group having 6 to 24 carbon atoms which may have a substituent.
  • a film comprising the resin composition according to any one of [1] to [14].
  • [16] A composite material obtained by combining the resin composition according to any one of [1] to [14] or the film according to [15] with reinforcing fibers.
  • a moving body that is an aircraft, automobile, ship, or railroad vehicle, including the composite material according to [16] or [17].
  • a three-dimensional modeling material comprising the resin composition according to any one of [1] to [14].
  • a three-dimensional modeling filament made of the three-dimensional modeling material according to any one of [19] to [21].
  • a three-dimensional modeling cartridge in which the three-dimensional modeling filament according to [22] or [23] is housed in a container.
  • a resin composition having high heat resistance, excellent melt moldability and secondary processability, and a film, composite material, mobile body, three-dimensional molding material, and three-dimensional molding using the resin composition are used. Filaments and compacts can be provided.
  • the reason why the resin composition of the present invention is effective is not yet clear, but it is presumed as follows. That is, by kneading the polyetherketoneketone resin and the polyetherimidesulfone resin in a specific combination, only one glass transition temperature is higher than that of the polyetherketoneketone resin alone, and the melt viscosity is also lowered. It is presumed that the resin composition has high heat resistance, excellent melt moldability, and secondary processability.
  • the reason why the three-dimensional modeling material of the present invention is effective is not yet clear, but it can be inferred as follows. That is, a polyetherketoneketone resin having an optimum ratio of a chemically stable ether group and a ketone group that imparts high heat resistance in three-dimensional modeling is used, and the crystallinity of the polyetherketoneketone resin is reduced. As a result, the crystallization shrinkage of the modeled product during three-dimensional modeling is reduced, so it is presumed that the resin composition has high heat resistance, excellent melt moldability, and secondary processability.
  • the resin composition of the present invention contains a polyaryletherketone resin (A) and a polyetherimidesulfone resin (B), and the polyaryletherketone resin (A) and the polyetherimidesulfone resin (B) are compatible with each other. It is characterized by doing.
  • the three-dimensional modeling material of the present invention contains a polyaryletherketone resin (A) in which the ratio of the number of ether groups to the ketone group is less than 2, and a resin (A') other than the polyaryletherketone resin (A).
  • the calorific value of crystallization ( ⁇ Hc) in the differential scanning heat measurement is 5 J / g or more and 40 J / g or less, and the polyaryletherketone resin (A) and the resin (A') other than the resin (A) are compatible with each other. It is characterized by doing.
  • the polyaryletherketone resin (A) used in the present invention may be any resin having at least an aryl group, an ether group and a ketone group as structural units.
  • Examples of the polyaryletherketone resin (A) include polyetherketoneketone (PEKK), polyetherketone (PEK), polyetheretherketone (PEEK), polyetherketone etherketoneketone (PEKEKK), and polyaryletherketone.
  • Etherketone Ketone PAEKEK
  • PAEK Polyetheretherketone
  • PAEEK Polyetheretherketone
  • PEEKK Polyetheretherketone Ketone
  • PEEKK Polyaryletherketone Ketone
  • PAEEKK Polyetheretherketone Ketone
  • polyetherketoneketone resin, polyetherketone resin, polyetheretherketone resin, polyetherketoneetherketoneketone resin, polyetheretherketoneketone resin are excellent because of their excellent mechanical properties, thermal stability, and melt moldability.
  • a polyetherketoneketone resin or a polyetherketone resin is more preferable, and a polyetherketoneketone resin is particularly preferable because it is excellent in thermal stability and melt moldability, and is represented by the following general formula (1).
  • each of these repeating units (a-1) and (a-2) has one ether group and two ketone groups.
  • the polyaryletherketone resin in which the ratio of the number of ether groups to the ketone groups is less than 2 is used.
  • the heating time during molding is longer than that during film formation or injection molding, and voids are likely to be formed inside the molded product. Therefore, the ether group of the polyaryletherketone resin used for 3D molding material.
  • Ar 1 to Ar 6 independently represent an arylene group having 6 to 24 carbon atoms which may have a substituent.
  • the ketone group is bonded to the 1-position and the 4-position of the Ar 3 group.
  • the ketone group is bonded to the 1-position and the 3-position of the Ar 6 group.
  • the arylene groups of Ar 1 to Ar 6 may be different from each other, but are preferably the same.
  • Specific examples of the arylene group of Ar 1 to Ar 6 include a phenylene group and a biphenylene group. Of these, a phenylene group is preferable, and Ar 1 , Ar 2 , Ar 4 , and Ar 5 are preferably p-phenylene groups.
  • Ar 3 is a p-arylene group, preferably a p-phenylene group.
  • Ar 6 is an m-arylene group, preferably an m-phenylene group.
  • Examples of the substituent that the arylene group of Ar 1 to Ar 6 may have include an alkyl group having 1 to 20 carbon atoms such as a methyl group and an ethyl group, and 1 carbon atom such as a methoxy group and an ethoxy group. Examples thereof include up to 20 alkoxy groups.
  • the number of the substituents is not particularly limited.
  • the repeating unit (a-1) represented by the general formula (1) constituting the polyaryletherketone resin (A) is a repeating unit represented by the following structural formula (1A), and is the repeating unit represented by the following structural formula (1A).
  • the repeating unit (a-2) represented by) is preferably a repeating unit represented by the following structural formula (2A) from the viewpoints of mechanical properties, thermal stability, and melt moldability.
  • the lower limit of the unit molar ratio [(a-1) / (a-2)] of the repeating unit (a-1) and the repeating unit (a-2) in the polyaryletherketone resin (A) is 1 or more. Is preferable, 1.1 or more is more preferable, 1.2 or more is further preferable, 1.3 or more is particularly preferable, and 1.4 or more is particularly preferable.
  • the unit molar ratio is 1 or more, the glass transition temperature is unlikely to decrease, and it becomes easy to maintain excellent heat resistance.
  • the unit molar ratio [(a-1) / (a-2)] is preferably 5 or less, more preferably 4 or less, further preferably 3 or less, and 2 or less.
  • the unit molar ratio is 5 or less, the glass transition temperature and the crystal melting temperature do not become too high, so that the melt moldability is excellent, and the heat-sealing property when composited with the reinforcing fiber and the interlayer during three-dimensional molding are achieved. It has excellent adhesiveness and is preferable.
  • the polyetherimidesulfone resin (B) blended with the polyaryletherketone resin (A) has a repeating unit (b-2) represented by the general formula (4) described later.
  • the resin (B) if the unit molar ratio [(a-1) / (a-2)] is in the range of 1 or more and 2 or less, the polyaryletherketone resin (A) and the polyetherimidesulfone Since the resin (B) does not undergo phase separation and easily exhibits compatibility, it is excellent in secondary processability.
  • the total number (degree of polymerization) of the repeating unit (a-1) and the repeating unit (a-2) in the polyaryletherketone resin (A) is preferably 10 or more from the viewpoint of ensuring mechanical properties. More preferably, it is 20 or more.
  • the degree of polymerization is preferably 100 or less, more preferably 50 or less, from the viewpoint of melt moldability.
  • the polyaryl ether ketone resin (A) may have a repeating unit other than the repeating unit (a-1) and the repeating unit (a-2), but in that case, it is repeated as the polyaryl ether ketone resin (A).
  • the ratio of other repeating units to the total of is 20 mol% or less, especially 10 mol% or less.
  • the polyaryletherketone resin (A) does not contain other repeating units.
  • the glass transition temperature of the polyaryletherketone resin (A) is preferably 150 ° C. or higher, more preferably 153 ° C. or higher, still more preferably 155 ° C. or higher. When the glass transition temperature is at least the above lower limit value, a resin composition having sufficient heat resistance can be easily obtained.
  • the glass transition temperature of the polyaryletherketone resin (A) is preferably 200 ° C. or lower, more preferably 195 ° C. or lower, further preferably 190 ° C. or lower, and 185 ° C. or lower. Is particularly preferable, and 180 ° C. or lower is particularly preferable.
  • the melt moldability is excellent, heat fusion is easy at a low temperature when composited with reinforcing fibers, and layers are easily adhered when three-dimensional modeling is performed, which is preferable.
  • the crystallinity of the polyaryletherketone resin (A) differs depending on the unit molar ratio [(a-1) / (a-2)] of the repeating unit (a-1) and the repeating unit (a-2).
  • the unit molar ratio is generally 1.5. If it is more than 1.5, it indicates crystallinity, and if it is less than 1.5, it indicates amorphousness.
  • the polyaryletherketone resin (A) may be crystalline or amorphous.
  • the crystal melting temperature of the polyaryletherketone resin (A) is preferably 280 ° C. or higher, more preferably 285 ° C. or higher, further preferably 290 ° C. or higher, and 295 ° C. or higher. Is particularly preferable, and 300 ° C. or higher is particularly preferable.
  • the crystal melting temperature is at least the above lower limit, a resin composition having excellent heat resistance can be easily obtained.
  • the crystal melting temperature is preferably 400 ° C. or lower, more preferably 380 ° C. or lower, further preferably 360 ° C. or lower, particularly preferably 340 ° C. or lower, and 335 ° C. or lower. Is particularly preferred. When the crystal melting temperature is not more than the above upper limit, the melt moldability is excellent.
  • the calorific value for crystal melting of the polyaryletherketone resin (A) is preferably 60 J / g or less, more preferably 50 J / g or less, further preferably 40 J / g or less, and 30 J / g or less. Is particularly preferable, and 26 J / g or less is particularly preferable.
  • the amount of heat for melting the crystal is not more than the above upper limit, crystallization is suppressed, so that the molding shrinkage and deterioration of transparency due to crystallization can be suppressed, and the heat-sealing property when composited with the reinforcing fiber and the time of three-dimensional modeling are obtained. It also tends to have excellent interlayer adhesion.
  • the amount of heat of crystal melting is preferably 1 J / g or more, more preferably 2 J / g or more, further preferably 3 J / g or more, particularly preferably 4 J / g or more, and 5 J. It is particularly preferable that it is / g or more.
  • the amount of heat of crystal melting is equal to or higher than the above lower limit, heat resistance can be easily maintained.
  • the glass transition temperature in the present invention refers to the temperature at the peak of the peak of the loss tangent (tan ⁇ ) in the dynamic viscoelasticity measurement according to JIS K7244-4: 1999.
  • the crystal melting temperature and the amount of heat of crystal melting are measured in accordance with JIS K7121: 2012 and JIS K7122: 2012, respectively, when the temperature is raised in a temperature range of 25 to 400 ° C. and a heating rate of 10 ° C./min using a differential scanning calorimeter. It can be obtained from the DSC (Differential scanning colorimetry) curve detected in. The same applies to the following.
  • the polyaryletherketone resin (A) can be produced by a known production method (see, for example, Japanese Patent Application Laid-Open No. 61-195122, Japanese Patent Application Laid-Open No. 62-129313, US Pat. No. 4,175,175, etc.).
  • a commercially available product can also be used as the polyaryletherketone resin (A).
  • Commercially available products of the polyaryletherketone resin (A) include, for example, the commercially available products of the polyetherketone ketone resin include the "KEPSTAN” series manufactured by Arkema, the "KSTONE” series manufactured by Shandong KAISHENG NEW MATERIALS, and the "KSTONE” series manufactured by SOLVAY. The “NovaSpire” series can be mentioned.
  • Examples of commercially available polyetherketone resins include the "VICTREX HT” series manufactured by Victrex and the "G-PAEK” series manufactured by Garda Plastics.
  • the polyaryletherketone resin (A) may be used alone or in combination of two or more.
  • the resin (A') other than the polyaryletherketone resin (A) used in the three-dimensional modeling material of the present invention is It is a resin compatible with the polyaryletherketone resin (A).
  • the resin (A') examples include polyetherimide sulfone (PEIS) (polyetherimide sulfone resin (B)) and polyetherimide (PEI) (resin (C)).
  • PEIS polyetherimide sulfone
  • PEI polyetherimide sulfone resin
  • polyetherimide sulfone resin (B) The polyetherimide sulfone resin (B) used in the present invention is not particularly limited, and known ones can be adopted, but the repeating unit (b-1) represented by the following general formula (3) and / or the following general Those having a repeating unit (b-2) represented by the formula (4) are preferably mentioned.
  • Y 1 to Y 6 independently represent a hydrogen atom, an alkyl group, or an alkoxy group.
  • Ar 7 to Ar 10 each independently represent an arylene group having 6 to 24 carbon atoms which may have a substituent.
  • Y 7 to Y 12 independently represent a hydrogen atom, an alkyl group, or an alkoxy group.
  • Ar 11 to Ar 14 each independently represent an arylene group having 6 to 24 carbon atoms which may have a substituent.
  • the arylene groups of Ar 7 to Ar 10 may be different from each other, but are preferably the same.
  • Specific examples of the arylene group of Ar 7 to Ar 10 include a phenylene group and a biphenylene group. Of these, a phenylene group is preferable, and a p-phenylene group is preferable.
  • Examples of the substituent that the arylene group of Ar 7 to Ar 10 may have include an alkyl group having 1 to 20 carbon atoms such as a methyl group and an ethyl group, and 1 carbon atom such as a methoxy group and an ethoxy group. Examples thereof include up to 20 alkoxy groups.
  • the number of the substituents is not particularly limited.
  • the arylene groups of Ar 11 to Ar 14 may be different from each other, but are preferably the same.
  • Specific examples of the arylene group of Ar 11 to Ar 14 include a phenylene group and a biphenylene group. Of these, a phenylene group is preferable, and a p-phenylene group.
  • Examples of the substituent that the arylene group of Ar 11 to Ar 14 may have include an alkyl group having 1 to 20 carbon atoms such as a methyl group and an ethyl group, and 1 carbon atom such as a methoxy group and an ethoxy group. Examples thereof include up to 20 alkoxy groups.
  • the number of the substituents is not particularly limited.
  • (B-1) is preferably a repeating unit represented by the following structural formula (3A)
  • the repeating unit (b-2) represented by the above general formula (4) is the following structural formula (4A). It is preferably a repeating unit represented by.
  • the polyetherimide sulfone resin (B) contained in the resin composition of the present invention has a repeating unit (b-1) represented by the above general formula (3), preferably the above structural formula (3A).
  • the one having the repeating unit (b-2) represented by the above general formula (4), preferably the above structural formula (4A) can be used.
  • the former is typically obtained using 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] propane dianhydride and 4,4'-diaminodiphenyl sulfone as raw material monomers.
  • the latter is typically obtained using 2,2-bis [4- (2,3-dicarboxyphenoxy) phenyl] propane dianhydride and 4,4'-diaminodiphenyl sulfone as raw material monomers.
  • the polyetherimide sulfone resin (B) having the repeating unit (b-1) represented by the general formula (3) has a unit molar ratio of the polyaryletherketone resin (A) [(a-1) / (a). -2)], it does not phase-separate from the polyaryletherketone resin (A) over the entire composition, that is, it exhibits compatibility.
  • the polyetherimide sulfone resin (B) having the repeating unit (b-2) represented by the general formula (4) has a unit molar ratio of the polyaryletherketone resin (A) [(a-1) / When (a-2)] is 1 or more and 2 or less, compatibility is likely to be exhibited.
  • a resin composition having excellent secondary processability without phase separation or 3 A material for dimensional modeling can be obtained.
  • the total number (degree of polymerization) of the repeating unit (b-1) and / or the repeating unit (b-2) in the polyetherimide sulfone resin (B) is 10 or more because it has an excellent balance between heat resistance and moldability. It is preferably 20 or more, preferably 1000 or less, and more preferably 500 or less.
  • the polyetherimide sulfone resin (B) may have a repeating unit other than the repeating unit (b-1) and the repeating unit (b-2) as long as the effect of the present invention is not impaired.
  • the dianhydride of the raw material monomer may have a repeating unit derived from the following.
  • the other repeating units are mechanical properties, thermal stability, melt moldability, and poly. From the viewpoint of maintaining compatibility with the aryletherketone resin (A), 20 mol% or less, particularly 10 mol, with respect to the total of the repeating unit (b-1), the repeating unit (b-2) and the other repeating units. % Or less is preferable.
  • the glass transition temperature of the polyetherimide sulfone resin (B) is preferably 230 ° C. or higher, more preferably 240 ° C. or higher, further preferably 250 ° C. or higher, and preferably 255 ° C. or higher. It is particularly preferable, and it is particularly preferable that the temperature is 260 ° C. or higher. When the glass transition temperature is equal to or higher than the above lower limit, the heat resistance tends to be excellent.
  • the glass transition temperature of the polyetherimide sulfone resin (B) is preferably 310 ° C. or lower, more preferably 300 ° C. or lower, further preferably 295 ° C. or lower, and 290 ° C. or lower. Is particularly preferable, and 285 ° C. or lower is particularly preferable. When the glass transition temperature is not more than the above upper limit, the melt moldability tends to be excellent.
  • the heat of crystal fusion of the polyetherimide sulfone resin (B) is preferably 10 J / g or less, more preferably 5 J / g or less, still more preferably 0 J / g, that is, substantially amorphous. is there.
  • the amount of heat of crystal melting is not more than the above upper limit, crystallization of the resin composition of the present invention or the material for three-dimensional molding is suppressed, so that it is easy to suppress molding shrinkage and deterioration of transparency due to crystallization.
  • the polyetherimide sulfone resin (B) can be produced by a known production method.
  • a commercially available product can also be used as the polyetherimide sulfone resin (B).
  • Examples of commercially available products of the polyetherimide sulfone resin (B) include the "EXTEM” series manufactured by SABIC Innovative Plastics.
  • the polyetherimide sulfone resin (B) may be used alone or in combination of two or more.
  • the polyetherimide resin (C) used in the present invention has a repeating unit (c-1) represented by the following structural formula (5).
  • polyetherimide resin (C) used in the present invention has an imide group in the para position, as is clear from the repeating unit (c-1) represented by the structural formula (5).
  • the polyetherimide resin (C) a resin having a repeating unit (c-1) represented by the structural formula (5), particularly a resin consisting of only the repeating unit (c-1) is used.
  • the total number (degree of polymerization) of the repeating units (c-1) of the polyetherimide resin (C) is preferably 10 or more, more preferably 20 or more, because it is excellent in the balance between heat resistance and moldability. is there. Further, it is preferably 1000 or less, and more preferably 500 or less.
  • the polyetherimide resin (C) may have a repeating unit other than the repeating unit (c-1) as long as the effect of the present invention is not impaired.
  • it may have a repeating unit (c-2) represented by the structural formula (6), but in that case, the content ratio of the repeating unit (c-2) is impact resistance, heat resistance, and so on. From the viewpoint of chemical resistance, it is preferably 20 mol% or less, more preferably 10 mol% or less in all repeating units.
  • the glass transition temperature of the polyetherimide resin (C) is preferably 160 ° C. or higher, more preferably 180 ° C. or higher, and even more preferably 200 ° C. or higher.
  • the glass transition temperature is equal to or higher than the above lower limit, a resin composition or a three-dimensional modeling material having sufficient heat resistance can be obtained.
  • the upper limit of the glass transition temperature is preferably 250 ° C., more preferably 240 ° C., in order to exhibit heat-sealing properties at a lower temperature and ensure melt moldability.
  • the heat of crystal fusion of the polyetherimide resin (C) is preferably 10 J / g or less, more preferably 5 J / g or less, and further preferably 0 J / g, that is, substantially amorphous. ..
  • the amount of heat of crystal melting is not more than the above upper limit, the crystallinity of the resin composition of the present invention or the material for three-dimensional modeling can be reduced, so that the heat fusion property at the time of secondary processing tends to be excellent.
  • the polyetherimide resin (C) can be produced by a known production method (see, for example, US Pat. Nos. 3,803,085 and 3,905,942).
  • a commercially available product can also be used as the polyetherimide resin (C).
  • Examples of commercially available products of the polyetherimide resin (C) include the "Ultem” series manufactured by SABIC Innovative Plastics.
  • the polyetherimide resin (C) may be used alone or in combination of two or more.
  • the resin composition of the present invention contains a polyaryletherketone resin (A) and a resin (A') other than the polyaryletherketone resin (A), for example, a polyetherimide sulfone resin (B).
  • a resin composition having excellent melt moldability, heat resistance and mechanical properties can be obtained.
  • the polyetherimide sulfone resin (B) the heat resistance of the polyaryletherketone resin (A) can be further improved.
  • the polyetherimide sulfone resin (B) is used as an example of the resin (A') other than the polyaryletherketone resin (A) in the three-dimensional modeling material of the present invention together with the resin composition of the present invention.
  • the resin composition of the above is described.
  • the resin composition of the present invention can be read as “the material for three-dimensional modeling of the present invention”.
  • the resin composition of the present invention can be read as "the material for three-dimensional modeling of the present invention”.
  • polyetherimide sulfone resin (B) is changed to "resin (A')", “polyetherimide resin (C)”, “polyetherimide sulfone resin (B) and polyetherimide resin (C)". Can be replaced.
  • the polyaryletherketone resin (A) and the polyetherimidesulfone resin (B) are compatible with each other.
  • “compatible” means that the glass transition temperature derived from the polyaryletherketone resin (A) and the polyetherimidesulfone resin (B) is one in the dynamic viscoelasticity measurement, that is, poly.
  • the loss tangent (tan ⁇ ) derived from the aryletherketone resin (A) and the polyetherimidesulfone resin (B) has one peak, or the structure is observed with an electron microscope (for example, a magnification of 3,000 to 30,000 times). It means that the formation of periodic and dispersed structures cannot be confirmed.
  • it is important that the glass transition temperature is one.
  • Having one glass transition temperature means that all the resin components constituting the resin composition are completely compatible with each other and are not phase-separated. On the other hand, when it has two or more glass transition temperatures, it means that it is an incompatible system or a partially compatible system and is phase-separated.
  • the glass transition temperature of the resin composition can be evaluated by reading the peak of the loss tangent (tan ⁇ ) in the dynamic viscoelasticity measurement according to JIS K7244-4: 1999. That is, it can be said that if the peak of tan ⁇ is single, the glass transition temperature is single and the phase is not separated, and if there are multiple peaks of tan ⁇ , the glass transition temperature is also multiple and the phase is separated.
  • the secondary processability deteriorates because there are a plurality of glass transition temperatures. Specifically, at a processing temperature that matches a resin having a low glass transition temperature, the elastic modulus of the resin having a high glass transition temperature remains high, which causes problems such as difficulty in shaping. On the other hand, if the processing temperature is adjusted to a resin with a high glass transition temperature, the resin with a lower glass transition temperature will change its dimensions before reaching that temperature, causing problems such as wrinkles due to shrinkage and runout of thickness and wire diameter. Occurs.
  • the single peak may have a shoulder at its hem, and when two or more peaks derived from the polyaryletherketone resin (A) and the polyetherimidesulfone resin (B) are clearly observed. Except for, all are treated as compatible systems.
  • the obtained resin composition and the composition can be obtained.
  • the film and the material for three-dimensional modeling obtained by using the film have excellent heat resistance and secondary processability.
  • the content ratio of the polyaryl ether ketone resin (A) and the polyether imide sulfone resin (B) constituting the resin composition of the present invention is the total of the polyaryl ether ketone resin (A) and the polyether imide sulfone resin (B).
  • the resin composition of the present invention contains the polyaryletherketone resin (A) and the polyetherimide as long as the effects of the present invention are not impaired. It may contain a resin component other than the sulfone resin (B).
  • the content ratio of the other resin components is preferably 30% by mass or less, more preferably 20% by mass or less in the total resin components. It is more preferably 10% by mass or less.
  • the resin composition of the present invention contains reinforcing fibers such as carbon fibers, a heat stabilizer, an antioxidant, an ultraviolet absorber, a light stabilizer, an antibacterial / antifungal agent, and an antistatic agent, as long as the effects of the present invention are not impaired.
  • Various additives such as agents, lubricants, pigments and dyes may be contained.
  • the resin composition of the present invention may contain reinforcing fibers, and when the reinforcing fibers are contained, the content ratio of the reinforcing fibers is preferably 10% by mass or more, preferably 20% by mass or more in the resin composition. On the other hand, it is preferably 90% by mass or less, and more preferably 80% by mass or less.
  • the resin composition of the present invention is a polyaryletherketone resin (A) and a polyetherimide measured by reading the peak of the loss tangent (tan ⁇ ) of the dynamic viscoelasticity measurement according to JIS K7244-4: 1999.
  • the glass transition temperature derived from the sulfone resin (B) is preferably 180 ° C. or higher, more preferably 185 ° C. or higher, further preferably 190 ° C. or higher, and particularly preferably 195 ° C. or higher. It is particularly preferable that the temperature is 200 ° C. or higher.
  • the glass transition temperature is an index of heat resistance of a film or a three-dimensional model, and can also be used as an index of heat fusion property at the time of secondary processing, for example, when temporarily adhering to reinforcing fibers such as carbon fibers. .. If the glass transition temperature is equal to or higher than the above lower limit, the heat resistance and heat fusion property tend to be excellent. On the other hand, the glass transition temperature is preferably 260 ° C. or lower, more preferably 255 ° C. or lower, further preferably 250 ° C. or lower, particularly preferably 245 ° C. or lower, and 240 ° C. or lower. Is particularly preferred. If the glass transition temperature is not more than the above upper limit, the melt moldability tends to be excellent.
  • the resin composition of the present invention is DSC (Differential) detected when the temperature is raised in a temperature range of 25 to 400 ° C. and a heating rate of 10 ° C./min using a differential scanning calorimeter according to JIS K7121: 2012.
  • the crystal melting temperature at the top of the peak is preferably 280 ° C. or higher, more preferably 285 ° C. or higher, and further preferably 290 ° C. or higher. It is particularly preferably 295 ° C. or higher, and particularly preferably 300 ° C. or higher.
  • the heat resistance tends to be excellent.
  • the crystal melting temperature is preferably 370 ° C. or lower, more preferably 360 ° C. or lower, further preferably 350 ° C. or lower, particularly preferably 340 ° C. or lower, and 330 ° C. or lower. Is particularly preferred.
  • the melt moldability is excellent.
  • the resin composition of the present invention is DSC (Differential) detected when the temperature is raised in a temperature range of 25 to 400 ° C. and a heating rate of 10 ° C./min using a differential scanning calorimeter according to JIS K7122: 2012.
  • the amount of heat of crystal melting of the peak is preferably 25 J / g or less, more preferably 20 J / g or less, and preferably 15 J / g or less. More preferably, it is particularly preferably 10 J / g or less, and particularly preferably 5 J / g or less.
  • the amount of heat of crystal fusion is not more than the above upper limit, crystallization is suppressed, so that molding shrinkage and deterioration of transparency due to crystallization can be suppressed.
  • the lower limit of the amount of heat of crystal melting is not particularly limited, but if it is 1 J / g or more, the heat resistance tends to be excellent.
  • the resin composition of the present invention preferably has a melt viscosity of 100 Pa ⁇ s or more, preferably 200 Pa ⁇ s or more, at 360 ° C. and a shear rate of 1000 s- 1, as measured according to JIS K7199: 1999. It is more preferably 300 Pa ⁇ s or more, particularly preferably 400 Pa ⁇ s or more, and particularly preferably 500 Pa ⁇ s or more.
  • the melt viscosity is at least the above lower limit, stable ejection becomes easy, for example, when forming a film or spinning a filament of a three-dimensional modeling material.
  • the melt viscosity is preferably 1000 Pa ⁇ s or less, more preferably 950 Pa ⁇ s or less, further preferably 900 Pa ⁇ s or less, particularly preferably 850 Pa ⁇ s or less, and 800 Pa ⁇ s or less. It is particularly preferable that it is s or less.
  • the melt viscosity is not more than the above upper limit, the fluidity is excellent and the productivity tends to be improved.
  • the resin composition of the present invention has a ratio E'(Tg-) of tensile elastic modulus E'(Tg-20 ° C.) at a temperature 20 ° C. lower than the glass transition temperature and tensile elastic modulus E'(Tg + 20 ° C.) at a temperature 20 ° C. higher. 20 ° C.) / E'(Tg + 20 ° C.) is preferably in a specific range.
  • a large E'(Tg-20 ° C.) / E'(Tg + 20 ° C.) means that the change in elastic modulus before and after the glass transition temperature is large, and if this ratio is too large, for example, the present invention.
  • E'(Tg-20 ° C.) / E'(Tg + 20 ° C.) is not too large.
  • a small E'(Tg-20 ° C.) / E'(Tg + 20 ° C.) means that the change in elastic modulus before and after the glass transition temperature is small, and if this ratio is too small, for example.
  • E'(Tg-20 ° C.) / E'(Tg + 20 ° C.) is preferably 100 or more, more preferably 150 or more, further preferably 200 or more, and 250 or more. It is particularly preferable that there is, 300 or more is particularly preferable, and 350 or more is most preferable.
  • E'(Tg-20 ° C.) / E'(Tg + 20 ° C.) is in the above-mentioned specific range, the resin composition of the present invention has excellent secondary processability.
  • the tensile elastic modulus of the resin composition of the present invention is measured by the method described in the section of Examples described later according to JIS K7127: 1999.
  • the tensile elastic modulus of the resin composition of the present invention at a temperature 20 ° C. lower than the glass transition temperature is preferably 1000 MPa or more, particularly 1500 MPa or more.
  • the tensile elastic modulus is equal to or higher than the above lower limit, for example, when the film made of the resin composition of the present invention or the material for three-dimensional modeling is used alone, or when it is combined with other materials such as reinforcing fibers such as carbon fibers. Even in the case of the conversion, it becomes easy to develop sufficient rigidity.
  • the product if the product has sufficient rigidity, the product can be easily thinned, which can contribute to space saving and resource saving. Further, there is an advantage that the film can be handled more easily when the film is thinned.
  • the film or the material for three-dimensional modeling is oriented by the manufacturing method, for example, in the film obtained by extrusion molding, the tensile elastic modulus in the extrusion direction from the mold must be equal to or higher than the above lower limit. Is preferable.
  • the method for producing the resin composition of the present invention is not limited, and a known method for producing a thermoplastic resin composition can be widely adopted.
  • components such as the polyaryletherketone resin (A), the polyetherimidesulfone resin (B), and other additives to be blended as necessary are previously mixed using various mixers such as a tumbler and a Henschel mixer.
  • a method of melt-kneading with a mixer such as a Banbury mixer, a roll, a brabender, a single-screw kneading extruder, a twin-screw kneading extruder, or a kneader can be mentioned.
  • the melt-kneading method using a twin-screw kneading extruder is preferable from the viewpoint of dispersibility of each component.
  • the resin composition of the present invention can also be produced by melt-kneading.
  • the temperature of melt-kneading is not particularly limited, but is usually 320 ° C. or higher, preferably 330 ° C. or higher, and usually 400 ° C. or lower, preferably 380 ° C. or lower.
  • the resin composition of the present invention having one glass transition temperature derived from the polyaryletherketone resin (A) and the polyetherimidesulfone resin (B), for example, the following (1) to (5) ) And the like are preferably adopted.
  • polyaryletherketone resin (A) has a repeating unit represented by the structural formula (1A) and the structural formula (2A)
  • polyetherimidesulfone resin (B) has the structural formula (3A).
  • the repeating unit represented by the structural formula (4A) it is effective to use polyetherimide resin (C) or polybiphenyl ether sulfone (PPSU) as the other resin. is there.
  • L / D which is the ratio of the screw length L (mm) to the diameter D (mm) of the screw, is preferably 15 or more, more preferably 20 or more, preferably 50 or less, and more preferably 40 or less.
  • a method using a twin-screw extruder can be mentioned.
  • the screw configuration of the extruder a structure having a kneading unit, particularly a spiral kneading unit, is preferable in order to improve kneading property.
  • the kneading unit is preferably one or two places.
  • the resin temperature during melt-kneading is 320 ° C. or higher, more preferably 330 ° C. or higher, preferably 400 ° C. or lower, and more preferably 380 ° C. or lower at the outlet of the extruder.
  • the compatibility can be further improved by setting the resin temperature to 320 ° C. or higher.
  • the resin temperature is 400 ° C. or lower, discoloration of the resin composition and generation of burnt foreign matter can be easily suppressed, which is preferable.
  • the ratio Q / Ns of the discharge amount Q (kg / hr) and the screw rotation speed Ns (rpm) at the time of melt-kneading is preferably 0.1 or more, more preferably 0.2 or more, preferably 10 or less, and more. It is preferably 5 or less.
  • the polyaryletherketone resin (A) suppresses discoloration of the resin composition and generation of foreign substances due to the resin temperature becoming too high or the residence time becoming too long.
  • the polyetherimide sulfone resin (B) can be sufficiently compatible with each other.
  • a continuous kneading machine As the kneading machine, a continuous kneading machine is also preferably used.
  • a screw that is rotatably mounted in the cylinder of an extruder is provided with a plurality of rotary blades, and a fixed blade is inserted between the plurality of rotary blades. It is a kneading machine installed in the cylinder.
  • the screw rotates, the raw material that moves along the screw shaft is sent in a zigzag manner, such that the gap formed between the rotating blade and the fixed blade is sent from the center side to the outer peripheral side, and further from the outer peripheral side to the center side.
  • the shape of the blade is not particularly limited, and for example, a fan-shaped, chrysanthemum-shaped, or mortar-shaped blade can be used. Examples of such a continuous kneader include the "NES / KO series" manufactured by Chemical Engineering Co., Ltd.
  • melt viscosities of the polyaryletherketone resin (A) and the polyetherimidesulfone resin (B) are brought close to each other. Specifically, it is preferable that the difference in melt viscosity between the two at 360 ° C. and a shear rate of 1000 s -1 is 1000 Pa ⁇ s or less.
  • the melt viscosity can be controlled by the molecular weight and the branched structure.
  • the resin composition of the present invention can be molded and used by a general molding method, for example, extrusion molding, injection molding, blow molding, vacuum molding, pressure molding, press molding or the like.
  • the apparatus and processing conditions are not particularly limited, and a known method can be adopted.
  • the resin composition of the present invention is formed into a film by extrusion molding or the like.
  • the resin composition of the present invention is preferably used as pellets or filaments by extrusion molding or the like to obtain the material for three-dimensional modeling of the present invention.
  • the film made of the resin composition of the present invention includes a sheet.
  • a film is a thin flat product whose thickness is extremely small compared to its length and width and whose maximum thickness is arbitrarily limited, and is usually supplied in the form of a roll (Japanese Industrial Standards). JISK6900: 1994).
  • a sheet is a thin product according to the definition in JIS, and its thickness is generally small and flat for its length and width.
  • the film since the boundary between the sheet and the film is not clear, the film includes the sheet in the present invention. Therefore, the "film” may be a "sheet".
  • the method for producing the film is not particularly limited, and for example, it can be obtained as a non-stretched or stretched film. From the viewpoint of secondary processability, it is preferable to obtain it as a non-stretched film.
  • the non-stretched film is a film that is not actively stretched for the purpose of suppressing the orientation of the sheet, but here, a film having a draw ratio of less than 2 times on a stretch roll in extrusion molding or the like is also included.
  • the non-stretched film can be produced, for example, by melt-kneading each constituent material as described above, extrusion molding, and cooling.
  • a known kneader such as a single-screw or twin-screw extruder can be used for melt-kneading.
  • the melting temperature is appropriately adjusted according to the type and mixing ratio of the resin and the presence and type of additives, but is preferably 320 ° C. or higher from the viewpoint of productivity and suppression of cross-linking or decomposition of the resin. It is preferably 330 ° C. or higher. On the other hand, the melting temperature is preferably 400 ° C. or lower, more preferably 380 ° C. or lower.
  • the molding film can be formed, for example, by extrusion molding using a mold such as a T-die.
  • Cooling can be performed, for example, by bringing the film into contact with a chiller such as a cooled cast roll to quench it. As a result, the molded product is solidified and a non-stretched film is obtained.
  • the cooling temperature (cast roll temperature) is not limited as long as it is lower than the melting temperature, but is preferably 260 ° C. or lower, more preferably 250 ° C. or lower, still more preferably 240 ° C. or lower. It is particularly preferably 230 ° C. or lower, and particularly preferably 220 ° C. or lower.
  • the cooling temperature (cast roll temperature) is preferably 120 ° C. or higher, more preferably 130 ° C. or higher, further preferably 140 ° C. or higher, particularly preferably 150 ° C. or higher, 160. It is particularly preferable that the temperature is above ° C. As long as the cooling temperature is high, it is easy to obtain a film with a good appearance without wrinkles or sticking due to quenching.
  • the thickness of the film made of the resin composition of the present invention is not particularly limited, but it is preferably 1 ⁇ m or more, preferably 3 ⁇ m, from the viewpoints of film strength, handleability, film forming property, secondary processability, and the like. The above is more preferable, 6 ⁇ m or more is further preferable, 12 ⁇ m or more is particularly preferable, and 20 ⁇ m or more is particularly preferable. On the other hand, the thickness of the film is preferably 3 mm or less, more preferably 1 mm or less, further preferably 500 ⁇ m or less, particularly preferably 300 ⁇ m or less, and particularly preferably 100 ⁇ m or less.
  • the film made of the resin composition of the present invention may be a multilayer film in which other layers are laminated as long as the effects of the present invention are not impaired.
  • known methods such as coextrusion, extrusion laminating, thermal laminating, and dry laminating can be used.
  • a molded product such as the resin composition of the present invention or a film made of the resin composition of the present invention can also be used as a composite material, and is used, for example, as a matrix of fiber reinforced plastic which is a composite material with reinforcing fibers. You can also.
  • the fiber reinforced plastic is obtained as having excellent heat resistance and mechanical properties.
  • the type of reinforcing fiber is not particularly limited, but for example, inorganic fiber such as carbon fiber, glass fiber, boron fiber, alumina fiber, liquid crystal polymer fiber, polyethylene fiber, aramid fiber, polyparaphenylene benzoxazole fiber and the like.
  • inorganic fiber such as carbon fiber, glass fiber, boron fiber, alumina fiber, liquid crystal polymer fiber, polyethylene fiber, aramid fiber, polyparaphenylene benzoxazole fiber and the like.
  • metal fibers such as organic fibers, aluminum fibers, magnesium fibers, titanium fibers, SUS fibers and copper fibers.
  • carbon fiber is preferable from the viewpoint of rigidity and light weight.
  • the shape of the reinforcing fibers is also not particularly limited, and fiber bundles such as chopped strands and rovings, woven fabrics such as plain weave and twill weave, knitted fabrics, non-woven fabrics, fiber papers, and UD materials (unidirectional) materials are also used. ) And the like, it can be appropriately selected from the reinforcing fiber sheets as needed.
  • the method for combining the resin composition of the present invention with the reinforcing fiber is not particularly limited, and a conventionally known method can be adopted.
  • a conventionally known method can be adopted.
  • the polyaryletherketone resin (A) and the polyetherimidesulfone resin (B) are melt-kneaded, chopped strands of reinforcing fibers or the like are blended and composited, or a roving-like continuous reinforcing fiber of the present invention is used.
  • a composite material of the resin composition and the reinforcing fiber can be obtained.
  • the method of combining the film made of the resin composition of the present invention and the reinforcing fiber is not particularly limited, and a conventionally known method can be adopted.
  • a composite material in a prepreg state or a semi-preg state (a state in which voids are present) can be produced.
  • the film made of the resin composition of the present invention is superposed on one side or both sides of the above-mentioned reinforcing fiber sheet, and the film is melted by heating and pressurizing, and the reinforcing fiber sheet is impregnated with the resin component. It can be in a prepreg state or a semi-preg state. At this time, by adjusting the heating and pressurizing conditions, it is possible to select whether to use a prepreg or a semi-preg in a semi-impregnated state (temporarily bonded state).
  • a semipreg by omitting the pressurizing step and temporarily adhering a sheet made of the resin composition of the present invention to the reinforcing fiber sheet by heat fusion.
  • This semi-preg has an advantage that the time required for manufacturing can be shortened, which leads to a reduction in manufacturing cost, and because the semi-impregnated fiber is semi-impregnated, the reinforcing fibers can easily move with each other and have flexibility.
  • the semi-preg is typically one in which a thermoplastic resin film is temporarily adhered to both sides or one side of a reinforcing fiber sheet such as one direction of reinforcing fibers or a woven fabric by heat fusion.
  • a process such as a hot press or a belt press
  • a completely impregnated prepreg can be obtained, or a composite product can be directly obtained.
  • the resin film used when producing the semi-preg is required to have heat-sealing property with the reinforcing fiber sheet.
  • the resin composition of the present invention is excellent in heat-sealing property with reinforcing fibers, and can be particularly preferably used because it can be heat-sealed at a lower temperature while maintaining heat resistance.
  • the content ratio of the reinforcing fibers in the composite material thus obtained is preferably 20% by volume or more, more preferably 30% by volume or more, and further preferably 40% by volume or more.
  • the content ratio of the reinforcing fibers in the composite material is preferably 90% by volume or less, more preferably 80% by volume or less, and further preferably 70% by volume or less.
  • the resin composition of the present invention or a composite material obtained by combining a film made of the resin composition of the present invention with a reinforcing fiber is an aircraft, an automobile, a ship, or a railroad vehicle because of its heat resistance, light weight, mechanical strength, and the like. It is industrially useful as a constituent member of such a moving body.
  • the amount of heat of crystallization ( ⁇ Hc) measured at a cooling rate of 10 ° C./min in the differential scanning calorimetry of the resin composition is 5 to 40 J / g. Is important.
  • the amount of heat of crystallization ( ⁇ Hc) is within this range, it is preferable because it has an excellent balance between formability as a three-dimensional modeling material and heat resistance of a molded product formed using the same.
  • the lower limit of the calorific value ( ⁇ Hc) of the three-dimensional modeling material of the present invention is 5 J / g or more, preferably 10 J / g or more, and preferably 15 J / g or more. Is more preferable, and 18 J / g or more is more preferable.
  • the upper limit of the amount of heat of crystallization ( ⁇ Hc) of the three-dimensional modeling material of the present invention is 40 J / g or less, preferably 35 J / g, preferably 32 J / g. It is more preferably g or less, and particularly preferably 30 J / g or less.
  • the method for producing the three-dimensional modeling material is not particularly limited, and it can be obtained as, for example, a filament, pellets or powder. From the viewpoint of handleability, it is preferable to obtain it as a filament.
  • each constituent material can be melt-kneaded, extruded, pelletized so as to maintain a certain size and shape, and cooled.
  • a known kneader such as a single-screw or twin-screw extruder can be used for melt-kneading.
  • the ratio (L / D) of the screw length (L) of the extruder to the screw diameter (D) is not particularly limited, but the polyaryletherketone resin (A) and the polyether are not particularly limited.
  • a pulverization means for producing a powder for example, melt granulation in which the resin composition of the present invention melted near the melting point is made into a fibrous form and then cut, or a resin material composed of the resin composition of the present invention can be used. There is crushing that cuts or breaks by applying impact or shear. In order to improve the coatability of the powder in three-dimensional modeling, it is preferable that the shape of the powder is rounded, that is, the roundness is large. It is preferable to select a suitable pulverization method for the resin composition.
  • a stamp mill for example, a stamp mill, a ring mill, a stone mill, a mortar, a roller mill, a jet mill, a high-speed rotary mill, a hammer mill, a pin mill, a container-driven mill, a disc mill, a medium stirring mill and the like can be adopted. ..
  • the resin temperature during crushing is lowered by cooling the inside of the powder system using liquid nitrogen or the like, and the powder is broken by brittle fracture instead of ductile fracture.
  • the resin temperature during crushing is lowered by cooling the inside of the powder system using liquid nitrogen or the like, and the powder is broken by brittle fracture instead of ductile fracture.
  • the classification step after crushing examples include wind power classification, sieve classification, and the like.
  • the content of the resin composition of the present invention in the three-dimensional modeling material is preferably 50 to 100% by mass, preferably 80 to 100% by mass, from the viewpoint of the balance between formability and heat resistance and the adhesiveness between layers. It is more preferably%, particularly preferably 95 to 100% by mass, and particularly preferably composed of the resin composition of the present invention.
  • the three-dimensional modeling material of the present invention may contain components other than the resin composition composed of the polyaryletherketone resin (A) and the polyetherimidesulfone resin (B) to the extent that the effects of the present invention are not impaired.
  • Ingredients other than the resin composition include polymers other than the polyaryl ether ketone resin (A) and the polyetherimide sulfone resin (B), heat resistant agents, ultraviolet absorbers, light stabilizers, antioxidants, antistatic agents, and lubricants. , Slip agents, crystal nucleating agents, tackifiers, sealability improvers, antifogging agents, mold release agents, plasticizers, pigments, dyes, fragrances, flame retardants, organic particles, inorganic particles and reinforcing materials, etc. Can be mentioned.
  • the water content of the three-dimensional modeling material of the present invention is preferably 2.5% by mass or less.
  • the water content is more preferably 2.0% by mass or less, further preferably 1.5% by mass or less, and particularly preferably 1.0% by mass or less.
  • the water content may be 0.3% by mass or more, or 0.6% by mass or more. Within this range, foaming and smoke generation during extrusion are small, and the dimensions and mechanical strength of the obtained modeled object are stable, which is preferable.
  • the water content of the three-dimensional modeling material is measured by the Karl Fischer method.
  • the three-dimensional modeling material of the present invention uses a packaging material (aluminum bag, thin-film deposition film, glass container, etc.) that is dried after production and has moisture-proof properties in the same manner as the three-dimensional modeling filament described later. It is preferable to store it.
  • a packaging material aluminum bag, thin-film deposition film, glass container, etc.
  • the filament for three-dimensional modeling of the present invention contains a polyaryletherketone resin (A) in which the ratio of the number of ether groups to the ketone group is less than 2, and a resin (A') other than the polyaryletherketone resin (A). Manufactured using 3D modeling materials.
  • the method for producing the three-dimensional molding filament of the present invention is not particularly limited, but a method for molding the above-mentioned three-dimensional molding material by a known molding method such as extrusion molding or production of a resin composition is usually performed. Sometimes, there is a method of using the filament as it is.
  • the temperature condition thereof is appropriately adjusted depending on the flow characteristics, molding processability, etc. of the resin composition used, but is usually 300 to 400 ° C., preferably 320 to 380. °C.
  • the diameter of the three-dimensional molding filament of the present invention depends on the specifications of the system used for molding the resin molded product by the fused deposition modeling method, but is usually 1.0 mm or more, preferably 1.5 mm or more, more preferably 1. It is 1.6 mm or more, particularly preferably 1.7 mm or more, while the upper limit is usually 5.0 mm or less, preferably 4.0 mm or less, more preferably 3.5 mm or less, and particularly preferably 3.0 mm or less.
  • the accuracy of the filament diameter is within ⁇ 5% with respect to an arbitrary measurement point of the filament from the viewpoint of stability of raw material supply.
  • the three-dimensional modeling filament of the present invention preferably has a standard deviation of diameter of 0.07 mm or less, and particularly preferably 0.06 mm or less.
  • the three-dimensional modeling filament of the present invention preferably has a roundness of 0.93 or more, and particularly preferably 0.95 or more.
  • the upper limit of roundness is 1.0.
  • the roundness of the three-dimensional modeling filament is measured by the following method.
  • the major axis and the minor axis are measured at a plurality of filaments at predetermined intervals, for example, at intervals of 3 cm, and a caliper is used to determine the minor axis / major axis ratio at each measurement point.
  • the average of the minor axis / major axis ratios at multiple measured points is taken as the roundness. The closer the ratio is to 1.0, the closer the cross-sectional shape of the filament is to a perfect circle.
  • the filament for three-dimensional molding has a small standard deviation in diameter and a high roundness, uneven ejection during molding is suppressed, and a molded body having excellent appearance, surface texture, etc. can be stably manufactured. be able to.
  • a three-dimensional modeling filament satisfying such standard deviation and roundness can be relatively easily manufactured.
  • the three-dimensional modeling filament of the present invention is hermetically packaged as a winding body wound around a bobbin, or the winding body may be referred to as a three-dimensional modeling cartridge (hereinafter, simply referred to as a "cartridge"). It is preferable that it is stored in) from the viewpoints of long-term storage, stable feeding, protection from environmental factors such as moisture, and prevention of twisting.
  • the cartridge include a wound body wound around a bobbin and a structure in which a moisture-proof material or a moisture-absorbing material is used inside and at least an orifice portion for feeding out a three-dimensional modeling filament is sealed.
  • a winding body in which a three-dimensional molding filament is wound around a bobbin, or a cartridge containing the winding body is installed in or around a three-dimensional printer, and the three-dimensional modeling filament is always three-dimensionally removed from the cartridge during molding. Continues to be installed in printers.
  • the molded product of the present invention made of the material for three-dimensional molding of the present invention can be obtained by molding with a three-dimensional printer using the filament for three-dimensional molding of the present invention.
  • the molding method using a three-dimensional printer include a fused deposition modeling method (ME method), a powder sintering method, an inkjet method, and a stereolithography method (SLA method).
  • the filament for three-dimensional modeling of the present invention can be suitably used in the Fused Deposition Modeling method and the powder sintering method, and is particularly preferably used in the Fused Deposition Modeling method.
  • the case of the Fused Deposition Modeling method will be described as an example.
  • a three-dimensional printer generally has a chamber, and in the chamber, a heatable base, an extrusion head installed in a gantry structure, a heating melter, a filament guide, a raw material supply unit such as a filament cartridge installation unit, etc. I have.
  • the extrusion head and the heating / melting device are integrated.
  • the base is a platform for constructing a target three-dimensional object, support material, etc., and by heating and keeping warm, adhesiveness with the laminate can be obtained, and the obtained molded body can be used as a desired three-dimensional object to improve dimensional stability. It is preferable that the specifications are such that they can be used. Further, in order to improve the adhesiveness with the laminate, an adhesive glue may be applied on the substrate, or a sheet or the like having good adhesiveness with the laminate may be attached.
  • Examples of the sheet having good adhesiveness to the laminate include a sheet having fine irregularities on the surface such as an inorganic fiber sheet, and a sheet made of the same type of resin as the laminate.
  • the extrusion head and the substrate are usually at least one movable in the Z-axis direction perpendicular to the XY plane.
  • the three-dimensional modeling filament is unwound from the raw material supply unit, fed to the extrusion head by a pair of opposing rollers or gears, heated and melted by the extrusion head, and extruded from the tip nozzle.
  • the extrusion head moves its position and supplies the raw material onto the substrate for stacking and deposition.
  • the laminated deposit can be taken out from the substrate, and if necessary, the support material or the like can be peeled off, or the excess portion can be cut off to obtain a molded product as a desired three-dimensional object.
  • the means for continuously supplying the raw material to the extrusion head is a method of feeding out filaments or fibers, a method of supplying powder or liquid from a tank or the like via a quantitative feeder, and plasticizing pellets or granules with an extruder or the like.
  • An example is an example of a method of extruding and supplying the converted product.
  • the method of feeding and supplying the filament that is, the method of feeding and supplying the above-mentioned three-dimensional modeling filament of the present invention is the most preferable.
  • a three-dimensional modeling material used in the present invention which contains a polyaryletherketone resin (A) in which the ratio of the number of ether groups to the ketone group is less than 2, and a resin (A') other than the polyaryletherketone resin (A).
  • the temperature for obtaining fluidity suitable for extrusion is usually about 300 to 400 ° C., and in the method for producing a molded product of the present invention, the temperature of the heat extrusion head is usually 450 ° C. or lower, preferably 350 to 350 ° C.
  • the molded product can be stably produced at 400 ° C. and the base temperature is usually 200 ° C. or lower.
  • the temperature (discharge temperature) of the molten resin discharged from the extrusion head is preferably 350 ° C. or higher, more preferably 370 ° C. or higher, and preferably 420 ° C. or lower, preferably 400 ° C. or lower. More preferably, it is more preferably 380 ° C. or lower.
  • the temperature of the molten resin is at least the above lower limit value, it is preferable for extruding the resin having high heat resistance, and it is possible to discharge the molten resin at a high speed, which tends to improve the molding efficiency, which is preferable.
  • the temperature of the molten resin is equal to or lower than the above upper limit, it is easy to prevent problems such as thermal decomposition, burning, yellowing, smoking, odor, and stickiness of the resin, and the molten resin generally called stringing is thinly stretched. It is also preferable from the viewpoint of preventing the broken pieces and the lumps of excess resin called lumps from adhering to the modeled object and deteriorating the appearance.
  • the molten resin discharged from the extrusion head is preferably discharged in the form of a strand having a diameter of 0.01 to 1.0 mm, more preferably 0.02 to 0.5 mm in diameter. It is preferable that the molten resin is discharged in such a shape because the reproducibility of the CAD model tends to be good.
  • the filament for three-dimensional modeling of the present invention has good adhesiveness between the strand of the molten resin discharged earlier and the strand discharged on the strand. Further, since the filament for three-dimensional molding of the present invention has a high roundness of diameter, uneven ejection during molding is suppressed, and a molded body having excellent appearance, surface texture and the like can be stably manufactured.
  • the filament for three-dimensional molding of the present invention has a small standard deviation in diameter, a high roundness, an appropriate crystallization rate, and a high breaking strain, so that stringing is suppressed, and the appearance and surface texture are improved. It is possible to stably produce a molded product having excellent properties such as.
  • the resin When forming a molded product while laminating the strand-shaped molten resin discharged from the extrusion head by a three-dimensional printer, the resin may adhere to the nozzle portion of the extrusion head, and the adhered resin is colored by heat. It may become a black foreign substance (black spot or black streak). When such a foreign substance is mixed in the molded product, not only the appearance is deteriorated but also the molded product is easily damaged.
  • the filament for three-dimensional molding of the present invention has excellent heat resistance, and even if resin adheres to the nozzle portion, coloring due to heat is unlikely to occur. Therefore, a molded product having an excellent appearance can be stably produced.
  • the molded product of the present invention may promote or complete crystallization by heat treatment after molding, depending on the intended use.
  • the molded product of the present invention is also excellent in surface appearance, heat resistance and durability.
  • the use of the molded body of the present invention is not particularly limited, but stationery; toys; covers for mobile phones and smartphones; parts such as grips; school teaching materials, home appliances, repair parts for OA equipment, automobiles, motorcycles, etc. , Bicycles and other parts; materials for electrical and electronic equipment, agricultural materials, horticultural materials, fishery materials, civil engineering / building materials, medical supplies, etc. can be suitably used.
  • Example 2 A film was prepared in the same manner as in Example 1 except that the mixing ratio of (A) -1 and (B) -1 was 60:40 and the temperature of the cast roll was 190 ° C.
  • Example 3 A film was prepared in the same manner as in Example 1 except that the mixing ratio of (A) -1 and (B) -1 was 40:60 and the temperature of the cast roll was 210 ° C.
  • Example 4 A film was prepared in the same manner as in Example 1 except that the mixing ratio of (A) -1 and (B) -1 was 20:80 and the temperature of the cast roll was 230 ° C.
  • Example 5 A film was prepared in the same manner as in Example 1 except that (A) -2 was used instead of (A) -1 and the mixing ratio of (A) -2 and (B) -1 was 80:20. did.
  • Example 6 Examples except that (A) -2 was used instead of (A) -1, the mixing ratio of (A) -2 and (B) -1 was 60:40, and the temperature of the cast roll was 190 ° C. A film was prepared in the same manner as in 1.
  • Example 7 Examples except that (A) -2 was used instead of (A) -1, the mixing ratio of (A) -2 and (B) -1 was 40:60, and the temperature of the cast roll was 210 ° C. A film was prepared in the same manner as in 1.
  • Example 8 Examples except that (A) -2 was used instead of (A) -1, the mixing ratio of (A) -2 and (B) -1 was 20:80, and the temperature of the cast roll was 230 ° C. A film was prepared in the same manner as in 1.
  • Example 9 A film was prepared in the same manner as in Example 1 except that (B) -2 was used instead of (B) -1 and the mixing ratio of (A) -1 and (B) -2 was 80:20. did.
  • Example 10 Examples except that (B) -2 was used instead of (B) -1, the mixing ratio of (A) -1 and (B) -2 was 60:40, and the temperature of the cast roll was 190 ° C. A film was prepared in the same manner as in 1.
  • Example 11 Examples except that (B) -2 was used instead of (B) -1, the mixing ratio of (A) -1 and (B) -2 was 40:60, and the temperature of the cast roll was 210 ° C. A film was prepared in the same manner as in 1.
  • Example 12 Examples except that (B) -2 was used instead of (B) -1, the mixing ratio of (A) -1 and (B) -2 was 20:80, and the temperature of the cast roll was 230 ° C. A film was prepared in the same manner as in 1.
  • Example 6 A film was prepared in the same manner as in Example 1 except that (A) -1 and (B) -1 were not used, only (A) -2 was used, and the temperature of the cast roll was set to 160 ° C.
  • ⁇ Crystal melting temperature> For the films having a thickness of 100 ⁇ m produced in Examples and Comparative Examples, a temperature range of 25 to 400 ° C. and a heating rate were used in accordance with JIS K7121: 2012 using a differential scanning calorimeter “Pyris1 DSC (manufactured by PerkinElmer)”. For the DSC (Differential scanning calorimetry) curve detected when the temperature was raised at 10 ° C./min, the crystal melting temperature was determined from the peak top temperature of the heat absorption peak corresponding to crystal melting.
  • ⁇ Crystal melting heat> For the films having a thickness of 100 ⁇ m produced in Examples and Comparative Examples, a differential scanning calorimeter “Pyris1 DSC (manufactured by PerkinElmer)” was used in accordance with JIS K7122: 2012, in a temperature range of 25 to 400 ° C., and a heating rate. For the DSC (Differential scanning calorimetry) curve detected when the temperature was raised at 10 ° C./min, the amount of heat of crystal melting was determined from the area of the heat absorption peak corresponding to crystal melting.
  • DSC Different scanning calorimetry
  • ⁇ Glass transition temperature> For the films having a thickness of 100 ⁇ m produced in Examples and Comparative Examples, a temperature range of 20 to 20 to 100 ⁇ m was used in accordance with JIS K7244-4: 1999 using a viscoelastic spectrometer "DVA-200 (manufactured by IT Measurement Control Co., Ltd.)". The temperature was raised at 400 ° C. and a heating rate of 3 ° C./min, and the glass transition temperature was determined from the peak top temperature of the peak of the loss tangent (tan ⁇ ).
  • ⁇ Melting viscosity> The films having a thickness of 100 ⁇ m produced in Examples and Comparative Examples were melted at 360 ° C. and a shear rate of 1000 s-1 using a capillary rheometer “Capillary Rheometer 1D (manufactured by Toyo Seiki Seisakusho Co., Ltd.)” according to JIS K7199: 1999. The viscosity was measured.
  • ⁇ Tensile modulus at 20 ° C before and after the glass transition temperature> For the films having a thickness of 100 ⁇ m produced in Examples and Comparative Examples, a viscoelastic spectrometer "DVA-200 (manufactured by IT Measurement Control Co., Ltd.)" was used in accordance with JIS K7244-4: 1999, and the temperature range was 20 to 400. The measurement was carried out by raising the temperature at ° C. and a heating rate of 3 ° C./min.
  • Tables 2 and 3 below summarize the evaluation and measurement results of Examples 1 to 12 and Comparative Examples 1 to 8.
  • the "-" in the evaluation result column of Tables 2 and 3 indicates that the endothermic peak corresponding to crystal melting was not observed in the measurement.
  • Example 14 Filaments were prepared in the same manner as in Example 13 except that the mixing ratio of (A) -2 and (B) -1 was 60:40.
  • Example 15 (A) -3 is used instead of (A) -2, (C) -1 is used instead of (B) -1, and the mixing ratio of (A) -3 and (C) -1 is 60.
  • a filament was prepared in the same manner as in Example 13 except that the temperature was 40 and the kneading and extrusion temperatures were 380 ° C.
  • ⁇ Crystal dissolution temperature (Tm)> Using a differential scanning calorimeter manufactured by PerkinElmer Co., Ltd., trade name "Pyris1 DSC", a sample of about 10 mg was heated from 25 ° C. to 400 ° C. at a heating rate of 10 ° C./min according to JIS K7121. Crystal dissolution temperature (Tm) from each thermogram measured when the temperature was maintained for 1 minute, the temperature was lowered to 25 ° C. at a cooling rate of 10 ° C./min, and the temperature was raised to 400 ° C. at a heating rate of 10 ° C./min again. (° C.) (reheating process) was determined.
  • ⁇ Crystallization heat ( ⁇ Hc)> Using a differential scanning calorimeter manufactured by PerkinElmer Co., Ltd., trade name "Pyris1 DSC", a sample of about 10 mg was heated from 25 ° C. to 400 ° C. at a heating rate of 10 ° C./min according to JIS K7122. After holding at the temperature for 1 minute, the calorific value of crystallization ( ⁇ Hc) (temperature lowering process) was determined from the thermogram measured when the temperature was lowered to 25 ° C. at a cooling rate of 10 ° C./min.
  • ⁇ Glass transition temperature (Tg)> The filaments produced in Examples and Comparative Examples were sheeted by a heat transfer press. For this sheet, in accordance with JIS K7244-4: 1999, using a viscoelastic spectrometer "DVA-200 (manufactured by IT Measurement Control Co., Ltd.)", a temperature range of 20 to 400 ° C. and a heating rate of 3 ° C./min. The temperature was raised, and the glass transition temperature (Tg) was determined from the peak top temperature of the peak of the loss tangent (tan ⁇ ).
  • ⁇ Warp during modeling> As an evaluation sample, a dumbbell-shaped sample having a sample length of 75 mm, a width of 10 mm, and a thickness of 5 mm was used, and a 3D printer (manufactured by MINIFactory, product name: miniFactory Ultra) was used with the sample thickness direction as the Z-axis direction (stacking direction). I modeled it. At that time, a PEI sheet is attached to the modeling table, and modeling is performed under the modeling conditions of the modeling table temperature of 155 ° C., the chamber temperature of 155 ° C., the following nozzle temperature, modeling speed of 30 mm / s, and internal filling rate of 100% for each example. It was. (Nozzle temperature) Examples 13 and 14 and Comparative Example 11: 375 ° C. Example 15 and Comparative Example 9, 10: 400 ° C.
  • the distance between the four corners of the sample and the horizontal plane was measured when the sample was removed from the modeling table and placed on the horizontal plane, and the average value of the obtained values was taken as the amount of warpage. From this amount of warpage, the warp at the time of modeling was evaluated according to the following criteria. A: The amount of warpage was 1 mm or less. B: The amount of warpage was more than 1 mm and 2 mm or less. C: The amount of warpage exceeds 2 mm. Alternatively, the molding could not be completed because a large warp or a filament clogging occurred in the nozzle during the molding.
  • a PEI sheet is attached to the modeling table, and modeling is performed under the modeling conditions of the modeling table temperature of 155 ° C., the chamber temperature of 155 ° C., the following nozzle temperature, modeling speed of 30 mm / s, and internal filling rate of 100% for each example. It was. (Nozzle temperature) Examples 13 and 14 and Comparative Example 11: 375 ° C. Example 15 and Comparative Example 9, 10: 400 ° C.
  • the obtained evaluation sample I was subjected to a tensile test at an initial interchuck distance of 45 mm, a speed of 50 mm / min, and 23 ° C., and the tensile strength was measured. Separately, the tensile strength was measured in the same manner for the evaluation sample II in which each filament was electrically pressed at 380 ° C.
  • the ratio of the tensile strength of the evaluation sample I to the tensile strength of the evaluation sample II was calculated, and the interlayer adhesiveness was evaluated based on the following criteria from this ratio.
  • B The ratio of tensile strength is 25% or more and less than 30%.
  • C The ratio of tensile strength was less than 25%, or modeling was not completed and evaluation was not possible.
  • ⁇ Heat resistance> As an evaluation sample, a dumbbell piece formed in the above interlayer adhesion test was used. One piece of dumbbell was heated in an oven at 180 ° C. for 1 hour. After that, the tilted distance of the sample was measured, and the amount of deformation from before modeling was investigated. From this amount of change, the heat resistance of the modeled object was evaluated according to the following criteria. A: The amount of change is less than 2 mm. B: The amount of change is 2 mm or more and less than 10 mm. C: The amount of change was 10 mm or more, or the modeling was not completed and evaluation was not possible.
  • ⁇ Chemical resistance> As an evaluation sample, a dumbbell piece formed in the above interlayer adhesion test was used. One dumbbell piece was immersed in acetone at room temperature for 5 hours, and the rate of change in weight before and after immersion was measured. From this weight change rate, the chemical resistance of the modeled object was evaluated according to the following criteria. A: Weight change rate is less than 0.2%. B: Weight change rate is 0.2% or more and less than 0.4%. C: The weight change rate was 0.4% or more, or the modeling was not completed and the evaluation could not be performed.
  • the polyaryletherketone resin (A) in which the ratio of the number of ether groups to the ketone groups is less than 2 is the polyaryletherketone resin (A) -2 or (A).
  • Examples 13 to 15 containing -3 and the polyetherimidesulfone resin (B) -1 or the polyetherimide resin (C) -1 as the resin (A') compatible with the polyetherimide resin (C) -1 in a specific combination are described in Examples 13 to 15. It has only one high glass transition temperature, and is excellent in all of formability, interlayer adhesion, heat resistance, and chemical resistance.
  • Comparative Example 10 in which the polyaryletherketone resin (A) -4 and the polyetherimidesulfone resin (B) -1 were combined, two glass transition temperatures were observed due to the phase separation, and the filament was prepared. Poor wire diameter stability and formability. Comparative Example 11 using only the polyaryletherketone resin (A) -2 is inferior in heat resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

耐熱性、溶融成形性、二次加工性に優れる樹脂組成物を提供する。ポリアリールエーテルケトン樹脂(A)とポリエーテルイミドスルホン樹脂(B)とを含む樹脂組成物であり、該ポリアリールエーテルケトン樹脂(A)と該ポリエーテルイミドスルホン樹脂(B)とが相溶している樹脂組成物。ポリアリールエーテルケトン樹脂(A)は、好ましくは下記式(1A)で表される繰り返し単位(a-1)と下記式(2A)で表される繰り返し単位(a-2)を有するポリエーテルケトンケトン樹脂であり、ガラス転移温度が1つである樹脂組成物。

Description

樹脂組成物、フィルム、複合材料、移動体及び3次元造形用材料
 本発明は、電気・電子機器や自動車、航空機等における絶縁フィルムやプリント基板、スペーサー、筐体、表面材、包装材等に適用することができる、スーパーエンジニアリングプラスチックによる樹脂組成物に関する。本発明はまた、この樹脂組成物を用いたフィルム、複合材料、移動体、3次元造形用材料、3次元造形用フィラメント、及び成形体に関する。
 近年、電気・電子機器や自動車、航空機等の用途におけるフィルムや3次元造形用材料として、耐熱性や機械特性、耐薬品性、耐久性に優れていることから、ポリエーテルイミドスルホン(PEI)やポリエーテルサルホン(PES)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトン(PEK)、ポリエーテルケトンケトン(PEKK)、ポリエーテルケトンエーテルケトンケトン(PEKEKK)等に代表されるスーパーエンジニアリングプラスチックが広く採用されるようになってきている。
 中でもポリエーテルケトンケトンは、一次構造によってガラス転移温度や結晶融解温度をコントロールできることから、耐熱性と溶融成形性を両立できる材料として、主にスピーカー振動板や繊維強化材料のマトリックス材としての使用が期待されている。ポリエーテルケトンケトンは、ガラス繊維や炭素繊維との接着性に優れることから、繊維強化材料のマトリックス樹脂として使用した場合に優れた機械特性を発現することができる。
 ポリエーテルケトンケトンには、更に過酷な環境下での使用にも耐えられる耐熱性の向上が求められていた。
 特許文献1には、ポリアリールエーテルケトン類に対してポリエーテルイミドスルホンをブレンドした多成分系相分離ポリマーブレンドについて開示ブレンド系は、ポリアリールエーテルケトン類の耐熱性を向上できる旨の記載がある。
特表2009-508997号公報
 本発明者らは、本発明の検討の過程において、特許文献1のポリアリールエーテルケトンとポリエーテルイミドスルホンのブレンド物は相分離しており、それぞれの成分のガラス転移温度で軟化するため、二次加工性に劣ることを見出した。
 なお、特許文献1には、ポリアリールエーテルケトン類としてポリエーテルケトンケトンを用いてよい旨の記載があるが、当該樹脂を構成する繰り返し単位、特にテレフタル酸に由来する繰り返し単位とイソフタル酸に由来する繰り返し単位の好ましい比率については何ら記載が無い。
 同様に、特許文献1には、ポリエーテルイミドスルホンについても、使用できるモノマー成分が多数列挙されているが、ポリエーテルケトンケトンとの組み合わせにおいて優れた性能を発揮できる構造については、何ら記載が無い。
 従って、本発明は、高い耐熱性並びに優れた溶融成形性及び二次加工性を有する樹脂組成物を提供することを目的とする。
 本発明では、ポリアリールエーテルケトン樹脂(A)とポリエーテルイミドスルホン樹脂(B)を組み合わせて両者を相溶させる。これにより、耐熱性と溶融成形性に優れるポリアリールエーテルケトン樹脂(A)の耐熱性を更に向上させた上で、両者が相溶することで二次加工性にも優れた樹脂組成物を提供する。
 本発明はまた、ケトン基に対するエーテル基の数の比率が2未満であるポリアリールエーテルケトン樹脂(A)と、このポリアリールエーテルケトン樹脂(A)以外の樹脂(A’)を含み、示差走査熱測定における結晶化熱量(ΔHc)が5J/g以上40J/g以下であり、かつ、ポリアリールエーテルケトン樹脂(A)と樹脂(A)以外の樹脂(A’)とが相溶していることで、耐熱性並びに造形性に優れた3次元造形用材料を提供する。
 ポリアリールエーテルケトン樹脂(A)と樹脂(A)以外の樹脂(A’)とが相溶することで二次加工性に優れたものとなり、形状や大きさの均一性に優れる3次元造形用材料を得ることができる。さらには、外観および引張強度等の機械物性等に優れた3次元造形物を得ることができる。
 本発明は、以下の[1]~[26]を提供するものである。
[1] ポリアリールエーテルケトン樹脂(A)とポリエーテルイミドスルホン樹脂(B)とを含む樹脂組成物であり、該ポリアリールエーテルケトン樹脂(A)と該ポリエーテルイミドスルホン樹脂(B)とが相溶している樹脂組成物。
[2] 前記ポリアリールエーテルケトン樹脂(A)がポリエーテルケトンケトン樹脂である、[1]に記載の樹脂組成物。
[3] 前記ポリアリールエーテルケトン樹脂(A)が、下記一般式(1)で表される繰り返し単位(a-1)及び/又は下記一般式(2)で表される繰り返し単位(a-2)を有するものである、[1]又は[2]に記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000007
 一般式(1),(2)において、Ar~Arは、それぞれ独立に、置換基を有していてもよい炭素原子数6~24のアリーレン基を表す。一般式(1)中の(1,4)Arは、ケトン基がAr基の1位と4位に結合している。一般式(2)中の(1,3)Arは、ケトン基がAr基の1位と3位に結合している。
[4] 前記ポリアリールエーテルケトン樹脂(A)が、前記一般式(1)で表される繰り返し単位(a-1)及び前記一般式(2)で表される繰り返し単位(a-2)を有するものであり、該繰り返し単位(a-1)と該繰り返し単位(a-2)の単位モル比[(a-1)/(a-2)]が1以上5以下である、[3]に記載の樹脂組成物。
[5] 前記一般式(1)で表される繰り返し単位(a-1)が下記構造式(1A)で表される繰り返し単位であり、前記一般式(2)で表される繰り返し単位(a-2)が下記構造式(2A)で表される繰り返し単位である、[3]又は[4]に記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000008
[6] 前記ポリエーテルイミドスルホン樹脂(B)が、下記一般式(3)で表される繰り返し単位(b-1)を有するものである、[1]~[5]のいずれかに記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000009
 一般式(3)において、Y~Yは、それぞれ独立に、水素原子、アルキル基、又はアルコキシ基を表す。Ar~Ar10は、それぞれ独立に、置換基を有していてもよい炭素原子数6~24のアリーレン基を表す。Xは、直接結合、あるいは、二価の脂肪族炭化水素基、-O-、-SO-、-S-、又は-C(=O)-を表す。
[7] 前記一般式(3)で表される繰り返し単位(b-1)が下記構造式(3A)で表される繰り返し単位である、[6]に記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000010
[8] 前記ポリアリールエーテルケトン樹脂(A)を構成する繰り返し単位(a-1)と繰り返し単位(a-2)の単位モル比[(a-1)/(a-2)]が1以上2以下であって、前記ポリエーテルイミドスルホン樹脂(B)が下記一般式(4)で表される繰り返し単位(b-2)を有するものである、[4]~[7]のいずれかに記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000011
 一般式(4)において、Y~Y12は、それぞれ独立に、水素原子、アルキル基、又はアルコキシ基を表す。Ar11~Ar14は、それぞれ独立に、置換基を有していてもよい炭素原子数6~24のアリーレン基を表す。Xは、直接結合、あるいは、二価の脂肪族炭化水素基、-O-、-SO-、-S-、又は-C(=O)-を表す。
[9] 前記一般式(4)で表される繰り返し単位(b-2)が下記構造式(4A)で表される繰り返し単位である、[8]に記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000012
[10] 前記ポリアリールエーテルケトン樹脂(A)と前記ポリエーテルイミドスルホン樹脂(B)の合計100質量%中の含有割合がポリアリールエーテルケトン樹脂(A):ポリエーテルイミドスルホン樹脂(B)=90:10~10:90(質量%)の範囲である、[1]~[9]のいずれかに記載の樹脂組成物。
[11] 前記ポリアリールエーテルケトン樹脂(A)と前記ポリエーテルイミドスルホン樹脂(B)に由来するガラス転移温度が1つである、[1]~[10]のいずれかに記載の樹脂組成物。
[12] 前記ガラス転移温度が180℃以上260℃以下である、[11]に記載の樹脂組成物。
[13] 前記ガラス転移温度より20℃低い温度における引張弾性率E’(Tg-20℃)と20℃高い温度における引張弾性率E’(Tg+20℃)との比E’(Tg-20℃)/E’(Tg+20℃)が100以上1000以下である、[11]又は[12]に記載の樹脂組成物。
[14] 360℃、せん断速度1000s-1における溶融粘度が100Pa・s以上1000Pa・s以下である、[1]~[13]のいずれかに記載の樹脂組成物。
[15] [1]~[14]のいずれかに記載の樹脂組成物からなるフィルム。
[16] [1]~[14]のいずれかに記載の樹脂組成物又は[15]に記載のフィルムを、強化繊維と複合させてなる複合材料。
[17] プリプレグ又はセミプレグである、[16]に記載の複合材料。
[18] [16]又は[17]に記載の複合材料を含む、航空機、自動車、船舶又は鉄道車両である移動体。
[19] [1]~[14]のいずれかに記載の樹脂組成物からなる3次元造形用材料。
[20] ケトン基に対するエーテル基の数の比率が2未満であるポリアリールエーテルケトン樹脂(A)と、該ポリアリールエーテルケトン樹脂(A)以外の樹脂(A’)を含み、示差走査熱測定における結晶化熱量(ΔHc)が5J/g以上40J/g以下であり、かつ、該ポリアリールエーテルケトン樹脂(A)と該樹脂(A)以外の樹脂(A’)とが相溶している3次元造形用材料。
[21] 前記樹脂(A’)がポリエーテルイミドスルホン(PEIS)(樹脂(B))またはポリエーテルイミド(PEI)(樹脂(C))の少なくとも一種である[20]に記載の3次元造形用材料。
[22] [19]~[21]のいずれかに記載の3次元造形用材料からなる3次元造形用フィラメント。
[23] フィラメント径が1.0mm以上5.0mm以下である、[22]に記載の3次元造形用フィラメント。
[24] [22]又は[23]に記載の3次元造形用フィラメントの巻回体。
[25] [22]又は[23]に記載の3次元造形用フィラメントを容器に収納した3次元造形用カートリッジ。
[26] [19]~[21]のいずれかに記載の3次元造形用材料からなる成形体。
 本発明によれば、高い耐熱性並びに優れた溶融成形性及び二次加工性を兼ね備えた樹脂組成物と、これを用いたフィルム、複合材料、移動体、3次元造形用材料、3次元造形用フィラメント、及び成形体を提供することができる。
 本発明の樹脂組成物が効果を奏する理由については、未だ明らかでないが、以下のとおり推察される。
 すなわち、ポリエーテルケトンケトン樹脂とポリエーテルイミドスルホン樹脂を特定の組み合わせで混錬することで、ポリエーテルケトンケトン樹脂単体よりも高いガラス転移温度を1つだけ有し、溶融粘度も低下するため、高い耐熱性並びに優れた溶融成形性及び二次加工性を兼ね備えた樹脂組成物となるものであると推察される。
 また、本発明の3次元造形用材料が効果を奏する理由については、未だ明らかでないが、以下のとおり推察される。
 すなわち、化学的に安定なエーテル基と高耐熱性を付与するケトン基の比率が3次元造形において最適なポリエーテルケトンケトン樹脂を使用し、かつ、ポリエーテルケトンケトン樹脂の結晶性を低減させることにより、3次元造形時における造形物の結晶化収縮が低減するため、高い耐熱性並びに優れた溶融成形性及び二次加工性を兼ね備えた樹脂組成物となるものであると推察される。
 以下、本発明について詳細に説明する。
 本発明の樹脂組成物は、ポリアリールエーテルケトン樹脂(A)とポリエーテルイミドスルホン樹脂(B)とを含み、ポリアリールエーテルケトン樹脂(A)とポリエーテルイミドスルホン樹脂(B)とが相溶していることを特徴とする。
 本発明の3次元造形用材料は、ケトン基に対するエーテル基の数の比率が2未満であるポリアリールエーテルケトン樹脂(A)とポリアリールエーテルケトン樹脂(A)以外の樹脂(A’)を含み、示差走査熱測定における結晶化熱量(ΔHc)が5J/g以上40J/g以下であり、かつ、ポリアリールエーテルケトン樹脂(A)と樹脂(A)以外の樹脂(A’)とが相溶していることを特徴とする。
[ポリアリールエーテルケトン樹脂(A)]
 本発明で用いられるポリアリールエーテルケトン樹脂(A)は、少なくともアリール基、エーテル基及びケトン基を構造単位として有する樹脂であればよい。
 ポリアリールエーテルケトン樹脂(A)としては、例えば、ポリエーテルケトンケトン(PEKK)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンエーテルケトンケトン(PEKEKK)、ポリアリールエーテルケトンエーテルケトンケトン(PAEKEKK)、ポリアリールエーテルケトン(PAEK)、ポリアリールエーテルエーテルケトン(PAEEK)、ポリエーテルエーテルケトンケトン(PEEKK)、ポリアリールエーテルケトンケトン(PAEKK)、ポリアリールエーテルエーテルケトンケトン(PAEEKK)等が挙げられる。
 これらの中でも、機械特性や熱安定性、溶融成形性に優れることから、ポリエーテルケトンケトン樹脂、ポリエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトンエーテルケトンケトン樹脂、ポリエーテルエーテルケトンケトン樹脂が好ましく、ポリエーテルケトンケトン樹脂やポリエーテルケトン樹脂であることがより好ましく、特に熱安定性、溶融成形性に優れることからポリエーテルケトンケトン樹脂が好ましく、下記一般式(1)で表される繰り返し単位(a-1)及び/又は下記一般式(2)で表される繰り返し単位(a-2)を有するポリエーテルケトンケトン樹脂であることが好ましく、下記一般式(1)で表される繰り返し単位(a-1)及び下記一般式(2)で表される繰り返し単位(a-2)を有するポリエーテルケトンケトン樹脂であることがより好ましい。これら繰り返し単位(a-1),(a-2)はいずれも1つのエーテル基と2つのケトン基を有するものが、とりわけ好ましい。
 本発明の3次元造形用材料においては、上記ポリアリールエーテルケトン樹脂(A)の中でも、ケトン基に対するエーテル基の数の比率が2未満であるポリアリールエーテルケトン樹脂を用いる。3次元造形は、製膜や射出成形時よりも成形加工時の加熱時間が長く、成形品内部にも空隙ができやすいことから、3次元造形用材料に使用するポリアリールエーテルケトン樹脂のエーテル基とケトン基の比率を最適化することで、耐熱性及び耐薬品性に優れる造形物を得ることが可能となる。
Figure JPOXMLDOC01-appb-C000013
 一般式(1),(2)において、Ar~Arはそれぞれ独立に、置換基を有していてもよい炭素原子数6~24のアリーレン基を表す。一般式(1)中の(1,4)Arは、ケトン基がAr基の1位と4位に結合している。一般式(2)中の(1,3)Arは、ケトン基がAr基の1位と3位に結合している。
 前記一般式(1),(2)において、Ar~Arのアリーレン基は互いに異なるものであってもよいが、同一であることが好ましい。Ar~Arのアリーレン基としては具体的にはフェニレン基、ビフェニレン基等が挙げられる。これらのうちフェニレン基が好ましく、Ar,Ar,Ar,Arはp-フェニレン基であることが好ましい。Arはp-アリーレン基、好ましくはp-フェニレン基である。Arはm-アリーレン基、好ましくはm-フェニレン基である。
 Ar~Arのアリーレン基が有していてもよい置換基としては、例えば、メチル基、エチル基等の炭素原子数1~20のアルキル基、メトキシ基、エトキシ基等の炭素原子数1~20のアルコキシ基等が挙げられる。Ar~Arが置換基を有する場合、その置換基の数には特に制限はない。
 ポリアリールエーテルケトン樹脂(A)を構成する前記一般式(1)で表される繰り返し単位(a-1)は、下記構造式(1A)で表される繰り返し単位であり、前記一般式(2)で表される繰り返し単位(a-2)は下記構造式(2A)で表される繰り返し単位であることが、機械特性、熱安定性、溶融成形性の観点から好ましい。
Figure JPOXMLDOC01-appb-C000014
 ポリアリールエーテルケトン樹脂(A)中の繰り返し単位(a-1)と繰り返し単位(a-2)の単位モル比[(a-1)/(a-2)]の下限は1以上であることが好ましく、1.1以上であることがより好ましく、1.2以上であることが更に好ましく、1.3以上であることが特に好ましく、1.4以上であることがとりわけ好ましい。前記単位モル比が1以上であれば、ガラス転移温度が低下しにくく、優れた耐熱性を維持しやすくなる。一方、該単位モル比[(a-1)/(a-2)]は5以下であることが好ましく、4以下であることがより好ましく、3以下であることが更に好ましく、2以下であることが特に好ましく、1.7以下であることがとりわけ好ましく、1.5以下が最も好ましい。前記単位モル比が5以下であれば、ガラス転移温度や結晶融解温度が高くなり過ぎないため、溶融成形性に優れ、また強化繊維と複合する際の熱融着性および3次元造形時の層間接着性にも優れ好ましい。
 詳しくは後述するが、ポリアリールエーテルケトン樹脂(A)とブレンドするポリエーテルイミドスルホン樹脂(B)が後述の一般式(4)で表される繰り返し単位(b-2)を有するポリエーテルイミドスルホン樹脂(B)である場合、前記単位モル比[(a-1)/(a-2)]が1以上、2以下の範囲であれば、ポリアリールエーテルケトン樹脂(A)とポリエーテルイミドスルホン樹脂(B)が相分離せず、相溶性を示しやすいため、二次加工性に優れる。
 ポリアリールエーテルケトン樹脂(A)中の繰り返し単位(a-1)と繰り返し単位(a-2)の合計数(重合度)は、機械特性の確保の観点から、10以上であることが好ましく、より好ましくは20以上である。この重合度は溶融成形性の観点から100以下であることが好ましく、より好ましくは50以下である。
 ポリアリールエーテルケトン樹脂(A)は繰り返し単位(a-1)と繰り返し単位(a-2)以外の繰り返し単位を有していてもよいが、その場合、ポリアリールエーテルケトン樹脂(A)として繰り返し単位(a-1)と繰り返し単位(a-2)とを有することによる前述の効果を確実に得る上で、繰り返し単位(a-1)と繰り返し単位(a-2)とその他の繰り返し単位との合計に対するその他の繰り返し単位の割合は20モル%以下、特に10モル%以下である。ポリアリールエーテルケトン樹脂(A)はその他の繰り返し単位を含まないことが最も好ましい。
 ポリアリールエーテルケトン樹脂(A)のガラス転移温度は、150℃以上であることが好ましく、より好ましくは153℃以上、更に好ましくは155℃以上である。ガラス転移温度が上記下限値以上であれば、十分な耐熱性を有する樹脂組成物が得られやすい。一方、ポリアリールエーテルケトン樹脂(A)のガラス転移温度は200℃以下であることが好ましく、195℃以下であることがより好ましく、190℃以下であることが更に好ましく、185℃以下であることが特に好ましく、180℃以下であることがとりわけ好ましい。ガラス転移温度が上記上限値以下であれば、溶融成形性に優れ、強化繊維と複合する場合は低温で熱融着しやすく、また3次元造形を行う場合は層間が接着しやすく好ましい。
 ポリアリールエーテルケトン樹脂(A)は、繰り返し単位(a-1)と繰り返し単位(a-2)の単位モル比[(a-1)/(a-2)]によって結晶性が異なる。例えば、ポリアリールエーテルケトン樹脂(A)が前記構造式(1A)で表される繰り返し単位と前記構造式(2A)で表される繰り返し単位を有する樹脂の場合、一般に単位モル比が1.5以上であれば結晶性を示し、1.5未満であれば非晶性を示す。本発明においては、ポリアリールエーテルケトン樹脂(A)は結晶性でもよいし、非晶性でもよい。結晶性の場合、ポリアリールエーテルケトン樹脂(A)の結晶融解温度は280℃以上であることが好ましく、285℃以上であることがより好ましく、290℃以上であることが更に好ましく、295℃以上であることが特に好ましく、300℃以上であることがとりわけ好ましい。結晶融解温度が上記下限以上であれば、耐熱性に優れる樹脂組成物が得られやすい。一方、結晶融解温度は400℃以下であることが好ましく、380℃以下であることがより好ましく、360℃以下であることが更に好ましく、340℃以下であることが特に好ましく、335℃以下であることがとりわけ好ましい。結晶融解温度が上記上限以下であれば、溶融成形性に優れる。
 ポリアリールエーテルケトン樹脂(A)の結晶融解熱量は、60J/g以下であることが好ましく、50J/g以下であることがより好ましく、40J/g以下であることが更に好ましく、30J/g以下であることが特に好ましく、26J/g以下であることがとりわけ好ましい。結晶融解熱量が上記上限以下であれば、結晶化が抑えられるため、結晶化による成形収縮や透明性の悪化を抑制でき、また、強化繊維と複合する際の熱融着性および3次元造形時の層間接着性にも優れる傾向がある。一方、結晶融解熱量は1J/g以上であることが好ましく、2J/g以上であることがより好ましく、3J/g以上であることが更に好ましく、4J/g以上であることが特に好ましく、5J/g以上であることがとりわけ好ましい。結晶融解熱量が上記下限以上であれば、耐熱性を維持しやすい。
 本発明におけるガラス転移温度は、JIS K7244-4:1999に準じた動的粘弾性測定における損失正接(tanδ)のピークのピークトップの温度をいう。
 結晶融解温度及び結晶融解熱量はそれぞれ、JIS K7121:2012及びJIS K7122:2012に準じて、示差走査熱量計を用いて、温度範囲25~400℃、加熱速度10℃/分で昇温させた際に検出されたDSC(Differentialscanning calorimetry)曲線から求められる。
 以下においても同様である。
 ポリアリールエーテルケトン樹脂(A)は、公知の製法により製造することができる(例えば、特開昭61-195122号公報、特開昭62-129313号公報、米国特許第4175175号公報等参照)。
 また、ポリアリールエーテルケトン樹脂(A)としては市販品を用いることもできる。ポリアリールエーテルケトン樹脂(A)の市販品としては、例えば、ポリエーテルケトンケトン樹脂の市販品としては、Arkema社製「KEPSTAN」シリーズ、SHANDONG KAISHENG NEW MATERIALS社製「KSTONE」シリーズ、SOLVAY社製「NovaSpire」シリーズが挙げられる。ポリエーテルケトン樹脂の市販品としては、ビクトレックス社製「VICTREX HT」シリーズ、ガルダプラスチック社製「G-PAEK」シリーズが挙げられる。
 ポリアリールエーテルケトン樹脂(A)は、1種を単独で用いても、2種以上を併用してもよい。
[ポリアリールエーテルケトン樹脂(A)以外の樹脂(A’)]
 本発明の3次元造形用材料に用いる、ポリアリールエーテルケトン樹脂(A)以外の樹脂(A’)は、
ポリアリールエーテルケトン系樹脂(A)と相溶する樹脂である。
 樹脂(A’)として採用できるものとしては、例えば、ポリエーテルイミドスルホン(PEIS)(ポリエーテルイミドスルホン樹脂(B))ポリエーテルイミド(PEI)(樹脂(C))などが挙げられる。特に、樹脂(A’)としてポリエーテルイミドスルホン(PEIS)(ポリエーテルイミドスルホン樹脂(B))を用いることで、より優れた耐熱性を得ることができ、好ましい。
[ポリエーテルイミドスルホン樹脂(B)]
 本発明で用いられるポリエーテルイミドスルホン樹脂(B)としては、特に限定はなく公知のものを採用できるが、下記一般式(3)で表される繰り返し単位(b-1)及び/又は下記一般式(4)で表される繰り返し単位(b-2)を有するものが好ましく挙げられる。
Figure JPOXMLDOC01-appb-C000015
 一般式(3)において、Y~Yは、それぞれ独立に、水素原子、アルキル基、又はアルコキシ基を表す。Ar~Ar10は、それぞれ独立に、置換基を有していてもよい炭素原子数6~24のアリーレン基を表す。Xは、直接結合、あるいは、二価の脂肪族炭化水素基、-O-、-SO-、-S-、又は-C(=O)-を表す。
Figure JPOXMLDOC01-appb-C000016
 一般式(4)において、Y~Y12は、それぞれ独立に、水素原子、アルキル基、又はアルコキシ基を表す。Ar11~Ar14は、それぞれ独立に、置換基を有していてもよい炭素原子数6~24のアリーレン基を表す。Xは、直接結合、あるいは、二価の脂肪族炭化水素基、-O-、-SO-、-S-、又は-C(=O)-を表す。)
 上記一般式(3)において、Ar~Ar10のアリーレン基は互いに異なるものであってもよいが、同一であることが好ましい。Ar~Ar10のアリーレン基としては、具体的にはフェニレン基、ビフェニレン基等が挙げられる。これらのうちフェニレン基が好ましく、p-フェニレン基が好ましい。
 Ar~Ar10のアリーレン基が有していてもよい置換基としては、例えば、メチル基、エチル基等の炭素原子数1~20のアルキル基、メトキシ基、エトキシ基等の炭素原子数1~20のアルコキシ基等が挙げられる。Ar~Ar10が置換基を有する場合、その置換基の数には特に制限はない。
 上記一般式(4)において、Ar11~Ar14のアリーレン基は互いに異なるものであってもよいが、同一であることが好ましい。Ar11~Ar14のアリーレン基としては、具体的にはフェニレン基、ビフェニレン基等が挙げられる。これらのうちフェニレン基が好ましく、p-フェニレン基。
 Ar11~Ar14のアリーレン基が有していてもよい置換基としては、例えば、メチル基、エチル基等の炭素原子数1~20のアルキル基、メトキシ基、エトキシ基等の炭素原子数1~20のアルコキシ基等が挙げられる。Ar11~Ar14が置換基を有する場合、その置換基の数には特に制限はない。
 機械特性、熱安定性、溶融成形性、ポリアリールエーテルケトン樹脂(A)との相溶性の観点から、ポリエーテルイミドスルホン樹脂(B)に含まれる上記一般式(3)で表される繰り返し単位(b-1)は、下記構造式(3A)で表される繰り返し単位であることが好ましく、上記一般式(4)で表される繰り返し単位(b-2)は、下記構造式(4A)で表される繰り返し単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 一般的に、ポリエーテルイミドスルホン樹脂は、結合様式の違いによって構造が分類される。本発明の樹脂組成物に含まれるポリエーテルイミドスルホン樹脂(B)としては、上記一般式(3)、好ましくは上記構造式(3A)で表される繰り返し単位(b-1)を有するものと、上記一般式(4)、好ましくは上記構造式(4A)で表される繰り返し単位(b-2)を有するものを使用することができる。前者は代表的には原料モノマーとして2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物と4,4’-ジアミノジフェニルスルホンを用いて得られる。後者は代表的には原料モノマーとして2,2-ビス[4-(2,3-ジカルボキシフェノキシ)フェニル]プロパン二無水物と4,4’-ジアミノジフェニルスルホンを用いて得られる。
 前記一般式(3)で表される繰り返し単位(b-1)を有するポリエーテルイミドスルホン樹脂(B)は、ポリアリールエーテルケトン樹脂(A)の単位モル比[(a-1)/(a-2)]によらず、全組成に渡ってポリアリールエーテルケトン樹脂(A)と相分離しない、すなわち相溶性を示す。一方、前記一般式(4)で表される繰り返し単位(b-2)を有するポリエーテルイミドスルホン樹脂(B)は、ポリアリールエーテルケトン樹脂(A)の単位モル比[(a-1)/(a-2)]が1以上、2以下である場合に相溶性を示しやすい。本発明においては、最適な構造のポリアリールエーテルケトン樹脂(A)とポリエーテルイミドスルホン樹脂(B)を選択して用いることで、相分離せず、二次加工性に優れる樹脂組成物又は3次元造形用材料が得られる。
 ポリエーテルイミドスルホン樹脂(B)中の繰り返し単位(b-1)及び/又は繰り返し単位(b-2)の合計数(重合度)は、耐熱性と成形性のバランスに優れることから、10以上であることが好ましく、より好ましくは20以上であり、1000以下であることが好ましく、より好ましくは500以下である。
 ポリエーテルイミドスルホン樹脂(B)は、本発明の効果を損なわない範囲で、前記繰り返し単位(b-1)及び繰り返し単位(b-2)以外の繰り返し単位を有していてもよい。例えば、原料モノマーの二無水物として、以下のものに由来する繰り返し単位を有するものであってもよい。4-(2,3-ジカルボキシフェノキシ)-4’-(3,4-ジカルボキシフェノキシ)ジフェニル-2,2-プロパン二無水物、4-(2,3-ジカルボキシフェノキシ)-4’-(3,4-ジカルボキシフェノキシ)ジフェニルエーテル二無水物、4-(2,3-ジカルボキシフェノキシ)-4’-(3,4-ジカルボキシフェノキシ)ジフェニルスルフィド二無水物、4-(2,3-ジカルボキシフェノキシ)-4’-(3,4-ジカルボキシフェノキシ)ベンゾフェノン二無水物、4-(2,3-ジカルボキシフェノキシ)-4’-(3,4-ジカルボキシフェノキシ)ジフェニルスルホン二無水物、1,3-ビス(2,3-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(2,3-ジカルボキシフェノキシ)ベンゼン二無水物、1,3-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1、4-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、シクロブタンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物、シクロヘキサン-1,2,5,6-テトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、5-(2,5-ジオキソテトラヒドロフラル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸二無水物、1,3,3a,5-ジオキソ-3-フラニル)-ナフト[1,2,-c]-フラン-1,3-ジオン、3,5,6-トリカルボキシノルボルナン-2-酢酸二無水物、2,3,4,5-テトラヒドロフランテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、(2,3,6,7-ナフタル酸二無水物などの)ナフタル酸二無水物、3,3’,4,4’-ビフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ジメチルジフェニルシランテトラカルボン酸二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルフィド二無水物、4、4’-ビス(3、4-ジカルボキシフェノキシ)ジフェニルスルホン二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルプロパン二無水物、3,3’,4,4’-パーフルオロピリジンジフタル酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、ビス(フタル酸)フェニルスルフィンオキサイド二無水物、p-フェニレン-ビス(トリフェニルフタル酸)二無水物、m-フェニレン-ビス(トリフェニルフタル酸)二無水物、ビス(トリフェニルフタル酸)-4,4’-ジフェニルエーテル二無水物、ビス(トリフェニルフタル酸)-4,4’-ジフェニルメタン二無水物、2,2’-ビス-(3,4-ジカルボキシフェニル)ヘキサフルオロ-プロパン二無水物、4,4’-オキシジフタル酸無水物、ピロメリット酸二無水物、3,3’,4、4’-ジフェニルスルホンテトラカルボン酸二無水物、4’4’-ビスフェノールA二無水、ヒドロキノンジフタル酸無水物、エチレングリコールビストリメリット酸無水物、6,6’-ビス(3,4-ジカルボキシフェノキシ)-2,2’,3、3’-テトラヒドロ-3,3,3’,3’-テトラメチル-1,1’-スピロビ[1H-インデン]二無水物、7,7’-ビス(3,4-ジカルボキシフェノキシ)-3,3’,4,4’-テトラヒドロ-4,4,4’,4’-テトラメチル-2,2’-スピロビ[2H-1-ベンゾピラン]二無水物、1,1’-ビス[1-(3,4-ジカルボキシフェノキシ)-2-メチル-4-フェニル]シクロヘキサン二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルフィドテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルフォキシドテトラカルボン酸二無水物、4,4’-オキシジフタル酸無水物、3,3’-ベンゾフェノンテトラカルボン酸二無水物、4,4’-カルボニルジフタル酸無水物、3,3’,4,4’-ジフェニルメタンテトラカルボン酸二無水物、2,2-ビス(4-(3,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(4-(3,3-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、(3,3’,4,4’-ジフェニル)フェニルホスフィンテトラカルボン酸二無水物、(3,3’,4,4’-ジフェニル)フェニルホスフィンオキシドテトラカルボン酸二無水物、2,2’-ジクロロ-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’-ジメチル3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’-ジシアノ-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’-ジブロモ-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’-ジヨード-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’-ジトリフルオロメチル-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’-ビス(1-メチル-4-フェニル)-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’-ビス(1-トリフルオロメチル-2-フェニル-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’-ビス(1-トリフルオロメチル-3-フェニル)-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’-ビス(1-トリフルオロメチル-4-フェニル)-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’-ビス(1-フェニル-4-フェニル)-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’-ビス(1,3-トリフルオロメチル-4-フェニル)-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、および5,5’-[[1,1’-ビフェニル]-4,4’-ジイルビス(オキシ)]ビス[1,3-イソベンゾフランジオン]およびそれらの全ての異性体、及び上記の少なくとも1つを含む混合物およびブレンドからなる群から選ばれる二無水物。
 ポリエーテルイミドスルホン樹脂(B)が繰り返し単位(b-1),(b-2)以外のその他の繰り返し単位を有する場合、その他の繰り返し単位は、機械特性、熱安定性、溶融成形性、ポリアリールエーテルケトン樹脂(A)との相溶性を維持する観点から、繰り返し単位(b-1)と繰り返し単位(b-2)とその他の繰り返し単位の合計に対して20モル%以下、特に10モル%以下であることが好ましい。
 ポリエーテルイミドスルホン樹脂(B)のガラス転移温度は、230℃以上であることが好ましく、240℃以上であることがより好ましく、250℃以上であることが更に好ましく、255℃以上であることが特に好ましく、260℃以上であることがとりわけ好ましい。ガラス転移温度が上記下限以上であれば、耐熱性に優れる傾向となる。一方、ポリエーテルイミドスルホン樹脂(B)のガラス転移温度は310℃以下であることが好ましく、300℃以下であることがより好ましく、295℃以下であることが更に好ましく、290℃以下であることが特に好ましく、285℃以下であることがとりわけ好ましい。ガラス転移温度が上記上限以下であれば、溶融成形性に優れる傾向となる。
 ポリエーテルイミドスルホン樹脂(B)の結晶融解熱量は、10J/g以下であることが好ましく、より好ましくは5J/g以下であり、更に好ましくは0J/g、すなわち、実質的に非晶性である。結晶融解熱量が上記上限以下であれば、本発明の樹脂組成物又は3次元造形用材料の結晶化が抑えられるため、結晶化による成形収縮や透明性の悪化を抑制しやすい。
 ポリエーテルイミドスルホン樹脂(B)は、公知の製法により製造することができる。
 ポリエーテルイミドスルホン樹脂(B)としては市販品を用いることもできる。ポリエーテルイミドスルホン樹脂(B)の市販品としては、例えば、SABIC Innovative Plastics社製「EXTEM」シリーズが挙げられる。
 ポリエーテルイミドスルホン樹脂(B)は、1種を単独で用いても、2種以上を併用してもよい。
[ポリエーテルイミド樹脂(C)]
 本発明で用いられるポリエーテルイミド樹脂(C)は、下記構造式(5)で表される繰り返し単位(c-1)を有するものである。
Figure JPOXMLDOC01-appb-C000019
 一般的に、ポリエーテルイミド樹脂は、結合様式の違い、すなわち、メタ結合とパラ結合の違いによって構造が分類される。本発明で用いられるポリエーテルイミド樹脂(C)は、構造式(5)で表される繰り返し単位(c-1)からも明らかなように、イミド基の結合位置がパラ位にある。
 一方、下記構造式(6)で表される繰り返し単位(c-2)を有するイミド基の結合位置がメタ位のものも存在する。
Figure JPOXMLDOC01-appb-C000020
 本発明では、ポリエーテルイミド樹脂(C)として、構造式(5)で表される繰り返し単位(c-1)を有する樹脂、特に繰り返し単位(c-1)のみからなる樹脂を使用することにより、剛性や耐熱性、耐薬品性を向上できる上に、良好な耐衝撃性、特に低温での高い耐衝撃性を発揮することができる。
 ポリエーテルイミド樹脂(C)の繰り返し単位(c-1)の合計数(重合度)は、耐熱性と成形性のバランスに優れることから、10以上であることが好ましく、より好ましくは20以上である。また、1000以下であることが好ましく、より好ましくは500以下である。
 ポリエーテルイミド樹脂(C)は、本発明の効果を損なわない範囲で、前記繰り返し単位(c-1)以外の繰り返し単位を有していてもよい。例えば、前記構造式(6)で表される繰り返し単位(c-2)を有していてもよいが、その場合の繰り返し単位(c-2)の含有割合は、耐衝撃性、耐熱性、耐薬品性の点から、全繰り返し単位中の20モル%以下であることが好ましく、より好ましくは10モル%以下である。
 ポリエーテルイミド樹脂(C)のガラス転移温度は、160℃以上であることが好ましく、より好ましくは180℃以上、さらに好ましくは200℃以上である。ガラス転移温度が上記下限以上であれば、十分な耐熱性を有する樹脂組成物又は3次元造形用材料が得られる。一方、ガラス転移温度の上限は、より低温で熱融着性を発現し、かつ溶融成形性を担保するために250℃であることが好ましく、より好ましくは240℃である。
 ポリエーテルイミド樹脂(C)の結晶融解熱量は、10J/g以下であることが好ましく、より好ましくは5J/g以下であり、さらに好ましくは0J/g、すなわち、実質的に非晶性である。結晶融解熱量が上記上限以下であれば、本発明の樹脂組成物又は3次元造形用材料の結晶性を低減できるため、二次加工時の熱融着性に優れやすくなる。
 ポリエーテルイミド樹脂(C)は、公知の製法により製造することができる(例えば、米国特許第3,803,085号、同3,905,942号参照)。
 ポリエーテルイミド樹脂(C)は市販品を用いることもできる。ポリエーテルイミド樹脂(C)の市販品としては、例えば、SABIC Innovative Plastics社製「Ultem」シリーズが挙げられる。
 ポリエーテルイミド樹脂(C)は、1種単独で用いても、2種以上を併用してもよい。
[樹脂組成物・3次元造形用材料]
本発明の樹脂組成物は、ポリアリールエーテルケトン樹脂(A)とポリアリールエーテルケトン樹脂(A)以外の樹脂(A’)、例えばポリエーテルイミドスルホン樹脂(B)とを含む。ポリアリールエーテルケトン樹脂(A)を含むことで、溶融成形性、耐熱性や機械特性に優れた樹脂組成物が得られる。また、ポリエーテルイミドスルホン樹脂(B)を含むことで、ポリアリールエーテルケトン樹脂(A)の耐熱性を更に向上させることができる。
 以下、本発明の樹脂組成物と共に、本発明の3次元造形用材料において、ポリアリールエーテルケトン樹脂(A)以外の樹脂(A’)の一例としてポリエーテルイミドスルホン樹脂(B)を用いた際の樹脂組成物について記述する。
以下の説明において、「本発明の樹脂組成物」は「本発明の3次元造形用材料」と読み換えることができる。
 以下の説明において、「本発明の樹脂組成物」は「本発明の3次元造形用材料」と読み換えることができる。また、「ポリエーテルイミドスルホン樹脂(B)」は「樹脂(A’)」、「ポリエーテルイミド樹脂(C)」、「ポリエーテルイミドスルホン樹脂(B)及びポリエーテルイミド樹脂(C)」に置き換えることができる。
 本発明の樹脂組成物は、ポリアリールエーテルケトン樹脂(A)とポリエーテルイミドスルホン樹脂(B)とが相溶していることが重要である。ここで、相溶しているとは、動的粘弾性測定において、ポリアリールエーテルケトン樹脂(A)とポリエーテルイミドスルホン樹脂(B)由来のガラス転移温度が1つであること、即ち、ポリアリールエーテルケトン樹脂(A)及びポリエーテルイミドスルホン樹脂(B)由来の損失正接(tanδ)のピークが1つであるか、或いは電子顕微鏡での観察(例えば拡大率3000~3万倍)で構造周期や分散構造の形成が確認できないことをいう。特に、ガラス転移温度が1つであることが重要である。
 ガラス転移温度を1つ有するということは、すなわち樹脂組成物を構成する樹脂成分が全て完全に相溶しており、相分離していないことを意味する。一方、ガラス転移温度を2つ以上有する場合は、非相溶系あるいは部分相溶系であり、相分離していることを意味する。樹脂組成物のガラス転移温度は、JIS K7244-4:1999に準じて、動的粘弾性測定における損失正接(tanδ)のピークを読むことで評価できる。すなわち、tanδのピークが単一であればガラス転移温度が単一であり相分離していない、tanδのピークが複数あればガラス転移温度も複数あり相分離しているといえる。
 樹脂組成物を構成する樹脂成分が相分離している場合、ガラス転移温度が複数存在するため、二次加工性が悪くなる。具体的には、ガラス転移温度が低い樹脂に合わせた加工温度では、ガラス転移温度が高い樹脂の弾性率が高いままのため、賦型しにくくなる等のトラブルが生じる。一方、加工温度をガラス転移温度が高い樹脂に合わせると、その温度に到達する前にガラス転移温度が低い方の樹脂が寸法変化を生じるため、収縮によるシワ、厚みや線径の振れ等のトラブルが生じる。なお、当該単一のピークはその裾にショルダーを有していてもよく、ポリアリールエーテルケトン樹脂(A)とポリエーテルイミドスルホン樹脂(B)由来のピークが明らかに2つ以上観察される場合を除いて、全て相溶系として取り扱う。
 本発明の樹脂組成物を構成するポリアリールエーテルケトン樹脂(A)及びポリエーテルイミドスルホン樹脂(B)は完全相溶系であり、相分離していないため、得られる樹脂組成物及び該組成物を用いて得られるフィルムや3次元造形用材料は優れた耐熱性と二次加工性を有する。
 本発明の樹脂組成物を構成するポリアリールエーテルケトン樹脂(A)とポリエーテルイミドスルホン樹脂(B)の含有割合は、ポリアリールエーテルケトン樹脂(A)とポリエーテルイミドスルホン樹脂(B)の合計100質量%中、ポリアリールエーテルケトン樹脂(A):ポリエーテルイミドスルホン樹脂(B)=90:10~10:90(質量%)の範囲であることが好ましく、ポリアリールエーテルケトン樹脂(A):ポリエーテルイミドスルホン樹脂(B)=80:20~20:80(質量%)の範囲であることがより好ましく、ポリアリールエーテルケトン樹脂(A):ポリエーテルイミドスルホン樹脂(B)=75:25~25:75(質量%)の範囲であることが更に好ましく、ポリアリールエーテルケトン樹脂(A):ポリエーテルイミドスルホン樹脂(B)=70:30~30:70(質量%)の範囲であることが特に好ましい。ポリアリールエーテルケトン樹脂(A)とポリエーテルイミドスルホン樹脂(B)の含有割合がかかる範囲であれば、耐熱性と溶融成形性を両立することが容易となる。
[他の成分]
 本発明の樹脂組成物は、ポリアリールエーテルケトン樹脂(A)及びポリエーテルイミドスルホン樹脂(B)以外に、本発明の効果を損なわない範囲で、ポリアリールエーテルケトン樹脂(A)及びポリエーテルイミドスルホン樹脂(B)以外の樹脂成分を含んでいてもよい。本発明の樹脂組成物が他の樹脂成分を含む場合、他の樹脂成分の含有割合は、全樹脂成分中の30質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることが更に好ましい。
 本発明の樹脂組成物には、本発明の効果を損なわない範囲で、炭素繊維等の強化繊維、熱安定剤、酸化防止剤、紫外線吸収剤、光安定剤、抗菌・防かび剤、帯電防止剤、滑剤、顔料、染料等の各種添加剤が含まれていてもよい。中でも、本発明の樹脂組成物は強化繊維を含んでいてもよく、強化繊維を含む場合、強化繊維の含有割合は、樹脂組成物中の10質量%以上であることが好ましく、20質量%以上であることがより好ましく、一方、90質量%以下であることが好ましく、80質量%以下であることがより好ましい。
[ガラス転移温度]
 本発明の樹脂組成物は、JIS K7244-4:1999に準じて、動的粘弾性測定の損失正接(tanδ)のピークを読むことで測定されるポリアリールエーテルケトン樹脂(A)及びポリエーテルイミドスルホン樹脂(B)由来のガラス転移温度が180℃以上であることが好ましく、185℃以上であることがより好ましく、190℃以上であることが更に好ましく、195℃以上であることが特に好ましく、200℃以上であることがとりわけ好ましい。ガラス転移温度はフィルムや3次元造形物の耐熱性の指標であり、また、二次加工時等、例えば炭素繊維等の強化繊維と仮接着させる際の熱融着性の指標とすることもできる。ガラス転移温度が上記下限以上であれば耐熱性や熱融着性に優れる傾向となる。一方、ガラス転移温度は260℃以下であることが好ましく、255℃以下であることがより好ましく、250℃以下であることが更に好ましく、245℃以下であることが特に好ましく、240℃以下であることがとりわけ好ましい。ガラス転移温度が上記上限以下であれば溶融成形性に優れる傾向となる。
[結晶融解温度]
 本発明の樹脂組成物は、JIS K7121:2012に準じて、示差走査熱量計を用いて、温度範囲25~400℃、加熱速度10℃/分で昇温させた際に検出されるDSC(Differential scanning calorimetry)曲線から求められる結晶融解ピークを有する場合、そのピークトップの結晶融解温度が280℃以上であることが好ましく、285℃以上であることがより好ましく、290℃以上であることが更に好ましく、295℃以上であることが特に好ましく、300℃以上であることがとりわけ好ましい。結晶融解温度が上記下限以上であれば、耐熱性に優れる傾向となる。一方、結晶融解温度は370℃以下であることが好ましく、360℃以下であることがより好ましく、350℃以下であることが更に好ましく、340℃以下であることが特に好ましく、330℃以下であることがとりわけ好ましい。結晶融解温度が上記上限以下であれば、溶融成形性に優れる。
[結晶融解熱量]
 本発明の樹脂組成物は、JIS K7122:2012に準じて、示差走査熱量計を用いて、温度範囲25~400℃、加熱速度10℃/分で昇温させた際に検出されたDSC(Differential scanning calorimetry)曲線から求められる結晶融解ピークを有する場合、そのピークの結晶融解熱量が25J/g以下であることが好ましく、20J/g以下であることがより好ましく、15J/g以下であることが更に好ましく、10J/g以下であることが特に好ましく、5J/g以下であることがとりわけ好ましい。結晶融解熱量が上記上限以下であれば、結晶化が抑えられるため、結晶化による成形収縮や透明性の悪化を抑制できる。一方、結晶融解熱量の下限については特に制限は無いが、1J/g以上であれば、耐熱性に優れる傾向となる。
[溶融粘度]
 本発明の樹脂組成物は、JIS K7199:1999に準じて測定される、360℃、せん断速度1000s-1における溶融粘度が100Pa・s以上であることが好ましく、200Pa・s以上であることがより好ましく、300Pa・s以上であることが更に好ましく、400Pa・s以上であることが特に好ましく、500Pa・s以上であることがとりわけ好ましい。溶融粘度が上記下限以上であれば、例えばフィルムを製膜する際や3次元造形用材料のフィラメントを紡糸する際に安定して吐出することが容易となる。一方、溶融粘度は1000Pa・s以下であることが好ましく、950Pa・s以下であることがより好ましく、900Pa・s以下であることが更に好ましく、850Pa・s以下であることが特に好ましく、800Pa・s以下であることがとりわけ好ましい。溶融粘度が上記上限以下であれば、流動性に優れ、生産性の向上に繋がりやすい傾向となる。
[ガラス転移温度前後20℃における引張弾性率比]
 本発明の樹脂組成物は、ガラス転移温度より20℃低い温度における引張弾性率E’(Tg-20℃)と20℃高い温度における引張弾性率E’(Tg+20℃)の比E’(Tg-20℃)/E’(Tg+20℃)が特定の範囲にあることが好ましい。E’(Tg-20℃)/E’(Tg+20℃)が大きいということは、すなわちガラス転移温度前後での弾性率変化が大きいことを意味しており、この比が大きすぎると、例えば本発明の樹脂組成物を用いたフィルムからなるスピーカー振動板を賦型する際や3次元造形を行う際、本発明の樹脂組成物を用いたフィルムを炭素繊維に含浸して複合材料を得る際等に、寸法変化が大きすぎてシワや歪み等の不良の原因となり場合がある。従って、E’(Tg-20℃)/E’(Tg+20℃)は大きすぎないことが好ましい。具体的には1000以下であることが好ましく、900以下であることがより好ましく、800以下であることが更に好ましく、700以下であることが特に好ましく、600以下であることがとりわけ好ましく、500以下が最も好ましい。一方、E’(Tg-20℃)/E’(Tg+20℃)が小さいということは、すなわちガラス転移温度前後での弾性率変化が小さいことを意味しており、この比が小さすぎると、例えば本発明の樹脂組成物を用いたフィルムからなるスピーカー振動板を賦型する際や3次元造形を行う際、本発明の樹脂組成物を用いたフィルムを炭素繊維に含浸して複合材料を得る際等に、十分に樹脂を変形ないし流動させるために温度を大幅に上げる必要があるため、安全性や経済性の観点から好ましくない。この観点から、E’(Tg-20℃)/E’(Tg+20℃)は、100以上であることが好ましく、150以上であることがより好ましく、200以上であることが更に好ましく、250以上であることが特に好ましく、300以上であることがとりわけ好ましく、350以上が最も好ましい。
 E’(Tg-20℃)/E’(Tg+20℃)が上記特定の範囲にあることで、本発明の樹脂組成物は二次加工性に優れるものとなる。
 本発明の樹脂組成物の引張弾性率は、JIS K7127:1999に準じて後掲の実施例の項に記載の方法で測定される。
 本発明の樹脂組成物のガラス転移温度よりも20℃低い温度における引張弾性率は、1000MPa以上、特に1500MPa以上であることが好ましい。引張弾性率が上記下限以上であれば、例えば、本発明の樹脂組成物からなるフィルムや3次元造形用材料を単独で用いる場合において、あるいは炭素繊維等の強化繊維を始めとする他材料と複合化する場合においても、十分な剛性を発現することが容易となる。特に、十分な剛性を有していると、製品を薄肉化しやすくなるため、省スペース化及び省資源化に寄与し得る。さらに、薄膜化した際のフィルム取扱い性にもより優れるという利点もある。なお、製造方法によりフィルムや3次元造形用材料に配向性が生じる場合、例えば、押出成形により得られたフィルム等においては、金型からの押出方向における引張弾性率が、上記下限以上であることが好ましい。
[樹脂組成物の製造方法]
 本発明の樹脂組成物を製造する方法に制限はなく、公知の熱可塑性樹脂組成物の製造方法を広く採用できる。例えば、ポリアリールエーテルケトン樹脂(A)、ポリエーテルイミドスルホン樹脂(B)及び必要に応じて配合されるその他の添加剤等の成分を、例えばタンブラーやヘンシェルミキサー等の各種混合機を用いて予め混合した後、バンバリーミキサー、ロール、ブラベンダー、単軸混練押出機、二軸混練押出機、ニーダー等の混合機で溶融混練する方法が挙げられる。中でも、各成分の分散性の点から、二軸混練押出機による溶融混練法が好ましい。
 また、例えば、一部の成分(例えば、必要に応じて配合される添加剤成分)を予め混合し押出機に供給して溶融混練することで得られるマスターバッチを再度残りの成分と混合し、溶融混練することによって本発明の樹脂組成物を製造することもできる。
 溶融混練の温度は特に制限されないが、通常320℃以上、好ましくは330℃以上であり、通常400℃以下、好ましくは380℃以下である。
 ポリアリールエーテルケトン樹脂(A)とポリエーテルイミドスルホン樹脂(B)由来のガラス転移温度が1つである本発明の樹脂組成物を製造するためには、例えば、以下の(1)~(5)の方法等を採用することが好ましい。
(1) ポリアリールエーテルケトン樹脂(A)とポリエーテルイミドスルホン樹脂(B)について適切な組み合わせで選択する。例えば、前述の通りポリエーテルイミドスルホン樹脂(B)と相溶するようにポリアリールエーテルケトン樹脂(A)における繰り返し単位(a-1)と繰り返し単位(a-2)の単位モル比[(a-1)/(a-2)]を制御する。
(2) ポリアリールエーテルケトン樹脂(A)とポリエーテルイミドスルホン樹脂(B)の双方に相溶する他の樹脂、例えば、イミド基やスルホニル基を有する樹脂を混合する。特に、ポリアリールエーテルケトン樹脂(A)が前記構造式(1A)及び前記構造式(2A)で表される繰り返し単位を有するものであり、ポリエーテルイミドスルホン樹脂(B)が前記構造式(3A)又は前記構造式(4A)で表される繰り返し単位を有するものである場合は、該他の樹脂としてポリエーテルイミド樹脂(C)、ポリビフェニルエーテルスルホン(PPSU)を使用することが効果的である。
(3) ポリアリールエーテルケトン樹脂(A)とポリエーテルイミドスルホン樹脂(B)とを、単軸又は二軸押出機、特に相溶性がよくない樹脂の組み合わせの場合は、二軸押出機を用いて十分に混練する。中でも、スクリューの長さL(mm)と同スクリューの直径D(mm)の比であるL/Dが好ましくは15以上、より好ましくは20以上、好ましくは50以下、より好ましくは40以下である二軸押出機を用いる方法が挙げられる。かかる比を15以上とすることにより、ポリアリールエーテルケトン樹脂(A)とポリエーテルイミドスルホン樹脂(B)との相溶性をより向上させることが容易となる。かかる比を50以下とすることにより、樹脂滞留時間が長くなったり樹脂温度が高くなりすぎたりすることによって、熱劣化に伴う変色、アウトガス、ゲル状異物等の発生を抑制しやすい傾向となる。押出機のスクリュー構成としては、ニーディングユニット、特にらせん状のニーディングユニットを有している構造が、混練性向上のため好ましい。ニーディングユニットとしては1か所又は2か所が好ましい。
 溶融混練時の樹脂温度は、押出機の出口における樹脂温度で320℃以上、より好ましくは330℃以上、好ましくは400℃以下、より好ましくは380℃以下である。樹脂温度を320℃以上とすることにより相溶性をより向上させることができる。この樹脂温度は400℃以下であれば樹脂組成物の変色ややけ異物の発生を抑制しやすいため好ましい。
 溶融混練時の吐出量Q(kg/hr)とスクリュー回転数Ns(rpm)との比Q/Nsは好ましくは0.1以上、より好ましくは0.2以上であり、好ましくは10以下、より好ましくは5以下である。この値を上記範囲とすることより、樹脂温度が高くなりすぎたり、滞留時間が長くなりすぎたりすることによる樹脂組成物の変色や異物の発生を抑制しつつ、ポリアリールエーテルケトン樹脂(A)とポリエーテルイミドスルホン樹脂(B)とを十分に相溶させることが容易となる。
 混練機としては、連続捏和機も好ましく用いられる。連続捏和機とは、押出機のシリンダー内に回転自在に取り付けられたスクリューに複数個の回転ブレードが設けられ、さらに、それら複数個の回転ブレードの間に挿入された状態で、固定ブレードがシリンダー内に設けられている混練機である。スクリューが回転するとスクリュー軸に沿って移動する原材料が、回転ブレードと固定ブレードとの間に形成された隙間を、中心側から外周側に、さらに外周側から中心側に送り込まれるというようにジグザグに通過して捏和されるため、圧縮、剪断、置換の3つの作用を効率よく原材料に与えることができ、単軸や二軸押出機よりも効果的に各成分の分散性を向上させることができる。ブレードの形状は特に制限はないが、例えば、扇形、菊形及び臼目形等のブレードを使用することができる。このような連続捏和機としては、例えば、ケミカルエンヂニアリング社製の「NES・KOシリーズ」等が挙げられる。
(4) ポリアリールエーテルケトン樹脂(A)とポリエーテルイミドスルホン樹脂(B)の溶融粘度を近付ける。具体的には、360℃、せん断速度1000s-1における両者の溶融粘度の差が1000Pa・s以下であることが好ましい。溶融粘度は、分子量や分岐構造により制御することができる。
(5) 相溶化剤を混合して、相溶性を高める。
[樹脂組成物の成形方法]
 本発明の樹脂組成物は、一般の成形法、例えば、押出成形、射出成形、ブロー成形、真空成形、圧空成形、プレス成形等によって成形して使用することができる。それぞれの成形方法において、装置および加工条件は特に限定されず、公知の方法を採用することができる。特に、後述の複合材料とする際の加工性の観点から、本発明の樹脂組成物を押出成形等でフィルムとすることが好ましい。
 また、本発明の樹脂組成物を好ましくは押出成形等でペレットやフィラメントとすることで本発明の3次元造形用材料とすることができる。
 本発明の樹脂組成物からなるフィルムは、シートを包含するものとする。一般的にフィルムとは、長さ及び幅に比べて厚みが極めて小さく、最大厚みが任意に限定されている薄い平らな製品で、通常、ロールの形で供給されるものをいう(日本工業規格JISK6900:1994)。一般的にシートとは、JISにおける定義上、薄く、一般にその厚みが長さと幅のわりには小さく平らな製品をいう。しかし、シートとフィルムの境界は定かでないため、本発明においては、フィルムはシートを包含するものとする。よって、「フィルム」は「シート」であってもよい。
[フィルムの製造方法]
 本発明の樹脂組成物をフィルムとして使用する場合、フィルムの製造方法は特に限定されず、例えば、無延伸又は延伸フィルムとして得ることができる。二次加工性の観点から、無延伸フィルムとして得ることが好ましい。無延伸フィルムとは、シートの配向を抑制する目的で、積極的に延伸しないフィルムであるが、ここでは、押出成形等において延伸ロールでの延伸倍率が2倍未満であるフィルムも含むものとする。
 無延伸フィルムは、例えば、上述したように各構成材料を溶融混練した後、押出成形し、冷却することにより製造することができる。溶融混練には、単軸又は二軸押出機等の公知の混練機を用いることができる。溶融温度は、樹脂の種類や混合比率、添加剤の有無や種類に応じて適宜調整されるが、生産性や樹脂の架橋または分解を抑制する観点から、320℃以上であることが好ましく、より好ましくは330℃以上である。一方、溶融温度は、400℃以下であることが好ましく、より好ましくは380℃以下である。成形フィルムは、例えば、Tダイ等の金型を用いた押出成形により行うことができる。
 冷却は、例えば、冷却されたキャストロール等の冷却機にフィルムを接触させて急冷することにより行うことができる。これにより、成形品が固化し、無延伸フィルムが得られる。冷却温度(キャストロール温度)は、溶融温度よりも低温であれば限定されないが、260℃以下であることが好ましく、250℃以下であることがより好ましく、240℃以下であることが更に好ましく、230℃以下であることが特に好ましく、220℃以下であることがとりわけ好ましい。一方、冷却温度(キャストロール温度)は120℃以上であることが好ましく、130℃以上であることがより好ましく、140℃以上であることが更に好ましく、150℃以上であることが特に好ましく、160℃以上であることがとりわけ好ましい。冷却温度がかかる範囲であれば、急冷によるシワや貼り付き等の無い、外観良好なフィルムが得られやすい。
 本発明の樹脂組成物からなるフィルムの厚みには特に制限はないが、フィルムの強度、ハンドリング性、製膜性、二次加工性等の観点から、1μm以上の厚みとすることが好ましく、3μm以上であることがより好ましく、6μm以上であることが更に好ましく、12μm以上であることが特に好ましく、20μm以上であることがとりわけ好ましい。一方、フィルムの厚みは3mm以下であることが好ましく、1mm以下であることがより好ましく、500μm以下であることが更に好ましく、300μm以下であることが特に好ましく、100μm以下であることがとりわけ好ましい。
 本発明の樹脂組成物からなるフィルムは、本発明の効果を損なわない範囲で、他の層を積層させた多層フィルムとすることもできる。多層化の方法は、例えば、共押出、押出ラミネート、熱ラミネート、ドライラミネート等の公知の方法を用いることができる。
[用途・使用態様]
 本発明の樹脂組成物又は本発明の樹脂組成物よりなるフィルム等の成形体は、複合材料に用いることも可能であり、例えば、強化繊維との複合材料である繊維強化プラスチックのマトリックスとして用いることもできる。前記繊維強化プラスチックは、優れた耐熱性や機械特性を備えたものとして得られる。
 強化繊維の種類は、特に限定されるものでないが、例えば、炭素繊維、ガラス繊維、ボロン繊維、アルミナ繊維等の無機繊維、液晶ポリマー繊維、ポリエチレン繊維、アラミド繊維、ポリパラフェニレンベンズオキサゾール繊維等の有機繊維、アルミニウム繊維、マグネシウム繊維、チタン繊維、SUS繊維、銅繊維等の金属繊維などが挙げられる。これらの中でも、剛性、軽量性の観点から、炭素繊維が好ましい。
 強化繊維の形状も、特に限定されるものではなく、チョップドストランド、ロービング等の繊維束や、平織、綾織等の織物、編物、不織布、繊維ペーパー、UD材(単一方向性(uni directional)材)等の強化繊維シートのうちから、必要に応じて適宜選択することができる。
 本発明の樹脂組成物と強化繊維との複合化の方法は特に制限はなく、従来公知の方法を採用することができる。例えば、ポリアリールエーテルケトン樹脂(A)とポリエーテルイミドスルホン樹脂(B)の溶融混練の際に、強化繊維のチョップドストランド等を配合して複合化したり、ロービング状の連続強化繊維に本発明の樹脂組成物を含浸したりすることにより、樹脂組成物と強化繊維との複合材料を得ることができる。
 本発明の樹脂組成物からなるフィルムと強化繊維を複合化させる方法も特に制限はなく、従来公知の方法を採用することができる。例えば、強化繊維束や強化繊維シート中に本発明の樹脂組成物を含浸又は半含浸させることで、プリプレグ状態又はセミプレグ状態(空隙部が存在する状態)の複合材料を製造することができる。
 具体的には、前述の強化繊維シートの片面又は両面に本発明の樹脂組成物からなるフィルムを重ね合わせて加熱・加圧することによりフィルムを溶融させ、強化繊維シート中に樹脂成分を含浸させてプリプレグ状態又はセミプレグ状態とすることができる。この際、加熱、加圧の条件を調整することによりプリプレグとするか、半含浸状態(仮接着状態)のセミプレグとするかを選択することができる。また、加圧工程を省略して、強化繊維シートに本発明の樹脂組成物からなるシートを熱融着により仮接着させることによっても、セミプレグとすることも可能である。このセミプレグは、製造にかかる時間を短縮でき製造コストの低減に繋がるとともに、半含浸であるため、内部において強化繊維同士が動きやすく柔軟性を有するという利点がある。
 近年、繊維強化プラスチックの前駆体(中間体)として、セミプレグが注目されている。セミプレグとしては、前述したように、強化繊維の一方向あるいは織物状等の強化繊維シートの両面あるいは片面に熱可塑性樹脂製フィルムを熱融着によって仮接着させたものが代表的である。セミプレグを最終的に熱プレスやベルトプレス等の工程に供することにより、完全含浸したプリプレグを得たり、直接的に複合製品を得たりすることができる。セミプレグ作製時に使用する樹脂フィルムには、強化繊維シートとの熱融着性が求められる。本発明の樹脂組成物は強化繊維との熱融着性に優れており、耐熱性を維持したまま、より低温で熱融着が可能である点で、特に好適に使用できる。
 このようにして得られる複合材料中の強化繊維の含有割合は、20体積%以上であることが好ましく、30体積%以上であることがより好ましく、40体積%以上であることが更に好ましい。一方、複合材料中の強化繊維の含有割合は90体積%以下であることが好ましく、80体積%以下であることがより好ましく、70体積%以下であることが更に好ましい。
 本発明の樹脂組成物又は本発明の樹脂組成物からなるフィルムを強化繊維と複合させてなる複合材料は、その耐熱性、軽量性、機械的強度等から、航空機、自動車、船舶、又は鉄道車両といった移動体の構成部材として工業的に有用である。
[3次元造形用材料の結晶化熱量]
 本発明の樹脂組成物を3次元造形用材料として使用する場合、前記樹脂組成物の示差走査熱量測定における冷却速度10℃/分で測定される結晶化熱量(ΔHc)は、5~40J/gであることが重要である。結晶化熱量(ΔHc)が該範囲であれば、3次元造形用材料としての造形性や、それを用いて造形された成形体の耐熱性などのバランスに優れるため好ましい。耐熱性の観点から、本発明の3次元造形用材料の結晶化熱量(ΔHc)の下限は、5J/g以上であって、10J/g以上であることが好ましく、15J/g以上であることがより好ましく、18J/g以上であることがより好ましい。一方、造形性(反り抑制)の観点から、本発明の3次元造形用材料の結晶化熱量(ΔHc)の上限は、40J/g以下であって、35J/gであることが好ましく、32J/g以下であることがより好ましく、30J/g以下であることが特に好ましい。
[3次元造形用材料の製造方法]
 本発明の樹脂組成物を3次元造形用材料として使用する場合、3次元造形用材料の製造方法は特に限定されず、例えば、フィラメント、ペレット又は粉末として得ることができる。取扱性の観点から、フィラメントとして得ることが好ましい。
 ペレットの場合、例えば、上述したように各構成材料を溶融混練した後、押出成形し、一定の寸法および形状を保つようにペレタイズし、冷却することにより製造することができる。溶融混練には、単軸又は二軸押出機等の公知の混練機を用いることができる。押出機を用いる場合には、押出機のスクリューの長さ(L)とスクリューの口径(D)の比(L/D)は、特に制限されないが、ポリアリールエーテルケトン樹脂(A)とポリエーテルイミドスルホン樹脂(B)相互の分散性の観点から、20~80が好ましく、25~70が好ましく、30~60がさらに好ましく、35~50が特に好ましい。押出機としては二軸押出機が好ましい。
 粉末を製造するための粉末化手段としては、例えば、融点付近で溶融させた本発明の樹脂組成物を繊維状にした後切断する溶融造粒や、本発明の樹脂組成物よりなる樹脂材料に衝撃やせん断を加えることにより切断または破壊する粉砕がある。3次元造形における粉末の塗布性向上のため、粉末の形状は丸みを帯びていること、即ち円形度が大きいことが好ましいことから、このような好適形状の粉末が得られるように、本発明の樹脂組成物に対して好適な粉砕方式を選択することが好ましい。
 粉砕手段としては、例えばスタンプミル、リングミル、石臼、乳鉢、ローラーミル、ジェットミル、高速回転ミル、ハンマーミル、ピンミル、容器駆動型ミル、ディスクミル、媒体撹拌ミル等の手段を採用することができる。
 また、粉砕時のせん断発熱による樹脂材料の延伸を防ぐことを目的に、液体窒素などを使用して粉末系内を冷却することにより粉砕時の樹脂温度を下げ、延性破壊でなく脆性破壊により粉末を作製する手法がある。
 粉砕された粉末の中から延伸された粉末を除去して円形度を拡大する観点から、粉砕後に分級工程を行うことが好ましい。この場合、分級方法としては、風力分級、篩分級等が挙げられる。
 3次元造形用材料における本発明の樹脂組成物の含有量は、造形性や耐熱性のバランスや、層間の接着性などの観点から、50~100質量%であることが好ましく、80~100質量%であることがより好ましく、95~100質量%であることが特に好ましく、本発明の樹脂組成物からなることがとりわけ好ましい。
 本発明の3次元造形用材料は、本発明の効果を損なわない程度にポリアリールエーテルケトン樹脂(A)とポリエーテルイミドスルホン樹脂(B)からなる樹脂組成物以外の成分を含んでもよい。樹脂組成物以外の成分としては、ポリアリールエーテルケトン樹脂(A)やポリエーテルイミドスルホン樹脂(B)以外のポリマー、耐熱剤、紫外線吸収剤、光安定剤、酸化防止剤、帯電防止剤、滑剤、スリップ剤、結晶核剤、粘着性付与剤、シール性改良剤、防曇剤、離型剤、可塑剤、顔料、染料、香料、難燃剤、有機系粒子、無機系粒子および補強材等が挙げられる。
 本発明の3次元造形用材料の含水率は、2.5質量%以下であることが好ましい。該含水率は、2.0質量%以下がより好ましく、1.5質量%以下がさらに好ましく、1.0質量%以下が特に好ましい。該含水率は、0.3質量%以上でもよく、0.6質量%以上でもよい。該範囲であれば、押出時に発泡や発煙が少なく、また、得られる造形物の寸法や機械強度等が安定するため好ましい。3次元造形用材料の含水率は、カールフィッシャー法で測定される。
 このことから、本発明の3次元造形用材料は、後述する3次元造形用フィラメントも同様に、製造後、乾燥され、防湿性を有する包材(アルミ袋、蒸着フィルム、ガラス容器など)を用いて保管することが好ましい。
[3次元造形用フィラメント]
 本発明の3次元造形用フィラメントは、ケトン基に対するエーテル基の数の比率が2未満であるポリアリールエーテルケトン樹脂(A)とポリアリールエーテルケトン樹脂(A)以外の樹脂(A’)を含む3次元造形用材料を用いて製造される。
 本発明の3次元造形用フィラメントの製造方法は特に制限されるものではないが、上述の3次元造形用材料を、通常、押出成形等の公知の成形方法により成形する方法や樹脂組成物の製造時にそのままフィラメントとする方法等が挙げられる。本発明の3次元造形用フィラメントを押出成形により得る場合、その温度条件は、用いる樹脂組成物の流動特性や成形加工性等によって適宜調整されるが、通常300~400℃、好ましくは320~380℃である。
[3次元造形用フィラメントの物性等]
 本発明の3次元造形用フィラメントの直径は、熱溶解積層法による樹脂成形体の成形に使用するシステムの仕様に依存するが、通常1.0mm以上、好ましくは1.5mm以上、より好ましくは1.6mm以上、特に好ましくは1.7mm以上であり、一方、上限は通常5.0mm以下、好ましくは4.0mm以下、より好ましくは3.5mm以下、特に好ましくは3.0mm以下である。
 フィラメント径の精度は、フィラメントの任意の測定点に対して±5%以内の誤差に収めることが原料供給の安定性の観点から好ましい。特に、本発明の3次元造形用フィラメントは、径の標準偏差が0.07mm以下であることが好ましく、0.06mm以下であることが特に好ましい。
 本発明の3次元造形用フィラメントは、真円度が0.93以上であることが好ましく、0.95以上であることが特に好ましい。真円度の上限は1.0である。
 3次元造形用フィラメントの真円度は以下の方法により測定される。
<真円度>
 フィラメントを所定の間隔、例えば3cm間隔にて複数個所、ノギスにて長径と短径を計測し、それぞれの測定点における短径/長径の比率を求める。測定した複数個所における短径/長径の比率の平均を真円度とする。比率が1.0に近いほどフィラメントの断面形状が真円に近い。
 このように、径の標準偏差が小さく、真円度が高い3次元造形用フィラメントであれば、成形時の吐出ムラが抑制され、外観や表面性状等に優れた成形体を安定して製造することができる。
 本発明の3次元造形用材料を用いることで、このような標準偏差及び真円度を満たす3次元造形用フィラメントを比較的容易に製造することができる。
[3次元造形用フィラメントの巻回体及び3次元造形用カートリッジ]
 本発明の3次元造形用フィラメントを用いて3次元造形により成形体を製造するにあたり、3次元造形用フィラメントを安定に保存すること、及び、3次元造形に3次元造形用フィラメントを安定供給することが求められる。そのために、本発明の3次元造形用フィラメントは、ボビンに巻きとった巻回体として密閉包装されている、又は、巻回体が3次元造形用カートリッジ(以下、単に「カートリッジ」と称することがある。)に収納されていることが、長期保存、安定した繰り出し、湿気等の環境要因からの保護、捩れ防止等の観点から好ましい。カートリッジとしては、ボビンに巻き取った巻回体の他、内部に防湿材または吸湿材を使用し、少なくとも3次元造形用フィラメントを繰り出すオリフィス部以外が密閉されている構造のものが挙げられる。
 通常、3次元造形用フィラメントをボビンに巻きとった巻回体、又は、巻回体を含むカートリッジは3次元プリンタ内又は周囲に設置され、成形中は常にカートリッジから3次元造形用フィラメントが3次元プリンタに導入され続ける。
[3次元造形用材料からなる成形体]
 本発明の3次元造形用材料からなる本発明の成形体(以下、単に「成形体」と称する)は、本発明の3次元造形用フィラメントを用い、3次元プリンタにより成形することにより得ることができる。3次元プリンタによる成形方法としては熱溶解積層法(ME法)、粉末焼結方式、インクジェット方式、光造形方式(SLA法)などが挙げられる。本発明の3次元造形用フィラメントは、これらの中でも熱溶解積層法や粉末焼結方式に好適に用いることができ、熱溶解積層法に用いることが特に好ましい。以下、熱溶解積層法の場合を例示して説明する。
 3次元プリンタは一般に、チャンバーを有しており、該チャンバー内に、加熱可能な基盤、ガントリー構造に設置された押出ヘッド、加熱溶融器、フィラメントのガイド、フィラメントカートリッジ設置部等の原料供給部を備えている。3次元プリンタの中には押出ヘッドと加熱溶融器とが一体化されているものもある。
 押出ヘッドはガントリー構造に設置されることにより、基盤のX-Y平面上に任意に移動させることができる。基盤は目的の3次元物体や支持材等を構築するプラットフォームであり、加熱保温することで積層物との接着性を得たり、得られる成形体を所望の3次元物体として寸法安定性を改善したりできる仕様であることが好ましい。また、積層物との接着性を向上させるため、基盤上に粘着性のある糊を塗布したり、積層物との接着性が良好なシート等を貼りつけたりしてもよい。ここで積層物との接着性が良好なシートとしては、無機繊維のシートなど表面に細かな凹凸を有するシートや、積層物と同種の樹脂からなるシートなどが挙げられる。押出ヘッドと基盤とは、通常、少なくとも一方がX-Y平面に垂直なZ軸方向に可動となっている。
 3次元造形用フィラメントは原料供給部から繰り出され、対向する1組のローラー又はギアーにより押出ヘッドへ送り込まれ、押出ヘッドにて加熱溶融され、先端ノズルより押し出される。CADモデルを基にして発信される信号により、押出ヘッドはその位置を移動しながら原料を基盤上に供給して積層堆積させていく。この工程が完了した後、基盤から積層堆積物を取り出し、必要に応じて支持材等を剥離したり、余分な部分を切除したりして所望の3次元物体として成形体を得ることができる。
 押出ヘッドへ連続的に原料を供給する手段は、フィラメント又はファイバーを繰り出て供給する方法、粉体又は液体をタンク等から定量フィーダを介して供給する方法、ペレット又は顆粒を押出機等で可塑化したものを押し出して供給する方法等が例示できる。これらの中でも、工程の簡便さと供給安定性の観点から、フィラメントを繰り出して供給する方法、即ち、前述の本発明の3次元造形用フィラメントを繰り出して供給する方法が最も好ましい。
 3次元プリンタにフィラメントを供給する場合、ニップロールやギアロール等の駆動ロールにフィラメントを係合させて、引き取りながら押出ヘッドへ供給することが一般的である。ここでフィラメントと駆動ロールとの係合による把持をより強固にすることで原料供給を安定化させるために、フィラメントの表面に微小凹凸形状を転写させておいたり、係合部との摩擦抵抗を大きくするための無機添加剤、展着剤、粘着剤、ゴム等を配合したりすることも好ましい。フィラメントに太さムラがある場合、フィラメントと駆動ロールとの係合による把持が行えず、駆動ロールが空転してフィラメントを押出ヘッドに供給出来なくなる場合がある。
 本発明で用いる、ケトン基に対するエーテル基の数の比率が2未満であるポリアリールエーテルケトン樹脂(A)とポリアリールエーテルケトン樹脂(A)以外の樹脂(A’)を含む3次元造形用材料は、押出に適当な流動性を得るための温度が、通常300~400℃程度であり、本発明の成形体の製造方法においては、加熱押出ヘッドの温度を通常450℃以下、好ましくは350~400℃とし、また、基盤温度を通常200℃以下として安定的に成形体を製造することができる。
 押出ヘッドから吐出される溶融樹脂の温度(吐出温度)は350℃以上であることが好ましく、370℃以上であることがより好ましく、一方、420℃以下であることが好ましく、400℃以下であることがより好ましく、380℃以下であることが更に好ましい。溶融樹脂の温度が上記下限値以上であると、耐熱性の高い樹脂を押し出す上で好ましく、また、高速で吐出することが可能となり、造形効率が向上する傾向にあるため好ましい。一方、溶融樹脂の温度が上記上限値以下であると、樹脂の熱分解や焼け、黄変、発煙、臭い、べたつきといった不具合の発生を防ぎやすく、また一般に、糸引きと呼ばれる溶融樹脂が細く伸ばされた破片や、ダマと呼ばれる余分な樹脂が塊状になったものが造形物に付着し、外観を悪化させることを防ぐ観点からも好ましい。
 押出ヘッドから吐出される溶融樹脂は、好ましくは直径0.01~1.0mm、より好ましくは直径0.02~0.5mmのストランド状で吐出される。溶融樹脂がこのような形状で吐出されると、CADモデルの再現性が良好となる傾向にあるために好ましい。
 3次元造形用フィラメントを用いて3次元プリンタにより成形体を製造するにあたり、押出ヘッドから吐出させたストランド状の溶融樹脂を積層しながら成形体を作る際に、先に吐出させた溶融樹脂のストランドと、その上に吐出させたストランドとの接着性が十分でないことや吐出ムラによって、得られる成形体の表面に、凹凸部(スジ等)が生じることがある。成形体の表面にこのような凹凸部が存在すると、外観の悪化だけでなく、成形体が破損しやすい等の問題が生じることがある。
 本発明の3次元造形用フィラメントは、先に吐出させた溶融樹脂のストランドと、その上に吐出させたストランドとの接着性が良好である。また本発明の3次元造形用フィラメントは、径の真円度が高いため成形時の吐出ムラが抑制され、外観や表面性状等に優れた成形体を安定して製造することができる。
 3次元プリンタによって押出ヘッドから吐出させたストランド状の溶融樹脂を積層しながら成形体を作る際に、溶融樹脂の吐出を止めた上で次工程の積層箇所にノズルを移動する工程がある。この時、溶融樹脂が途切れずに細い樹脂繊維が生じ、糸を引いたように成形体表面に残ることがある。上記の様な糸引きが発生すると成形体の外観が悪化する等の問題が生じることがある。
 本発明の3次元造形用フィラメントは、径の標準偏差が小さく、真円度が高いことに加え、適度な結晶化速度と、高い破断ひずみを有することから糸引きが抑制され、外観や表面性状等に優れた成形体を安定して製造することができる。
 3次元プリンタによって押出ヘッドから吐出させたストランド状の溶融樹脂を積層しながら成形体を作る際に、押し出しヘッドのノズル部に樹脂が付着することがあり、さらに付着した樹脂が熱によって着色し、黒い異物(黒点や黒条)となることがある。そして、このような異物が成形体中に混入することで、外観の悪化だけでなく、成形物が破損しやすい等の問題が生じることがある。
 本発明の3次元造形用フィラメントは、耐熱性に優れ、ノズル部に樹脂が付着しても熱による着色が生じにくいことから、優れた外観の成形体を安定して製造することができる。
 本発明の成形体は、使用する用途などに応じて、造形後、熱処理により結晶化を促進あるいは完了させてもよい。
[成形体の用途]
 本発明の成形体は、表面外観や耐熱性および耐久性などにも優れたものである。
 本発明の成形体の用途については特に制限されるものではないが、文房具;玩具;携帯電話やスマートフォン等のカバー;グリップ等の部品;学校教材、家電製品、OA機器の補修部品、自動車、オートバイ、自転車等の各種パーツ;電機・電子機器用資材、農業用資材、園芸用資材、漁業用資材、土木・建築用資材、医療用品等の用途に好適に用いることができる。
 以下、本発明を実施例により詳細に説明するが、本発明はこれにより限定されるものではない。
〔使用原料〕
 以下の実施例及び比較例で用いた原料は下記表1に示す通りである。
 表1中、ポリアリールエーテルケトン樹脂(A)のケトン基に対するエーテル基の数の比率を「官能基比率[エーテル基/ケトン基]」と記載する。
Figure JPOXMLDOC01-appb-T000021
〔フィルムの製造に関する実施例及び比較例〕
[フィルムの製造]
 フィルムの製造に関する実施例及び比較例においては、上記表1に示す原料を、下記表2、3に示す混合割合で用いて、以下の通り、フィルムを製造した。
<実施例1>
 (A)-1及び(B)-1を80:20の質量割合でドライブレンドした。この樹脂混合物を、シリンダー径40mmの単軸押出機にて360℃で混練した後、Tダイを用いてフィルム状に押出成形した。得られた成形品を170℃のキャストロールにて急冷し、厚み100μmのフィルムを作製した。
<実施例2>
 (A)-1及び(B)-1の混合割合を60:40とし、キャストロールの温度を190℃とした以外は実施例1と同様の方法でフィルムを作製した。
<実施例3>         
 (A)-1及び(B)-1の混合割合を40:60とし、キャストロールの温度を210℃とした以外は実施例1と同様の方法でフィルムを作製した。
<実施例4>
 (A)-1及び(B)-1の混合割合を20:80とし、キャストロールの温度を230℃とした以外は実施例1と同様の方法でフィルムを作製した。
<実施例5>
 (A)-1に代えて(A)-2を使用し、(A)-2及び(B)-1の混合割合を80:20とした以外は実施例1と同様の方法でフィルムを作製した。
<実施例6>
 (A)-1に代えて(A)-2を使用し、(A)-2及び(B)-1の混合割合を60:40とし、キャストロールの温度を190℃とした以外は実施例1と同様の方法でフィルムを作製した。
<実施例7>
 (A)-1に代えて(A)-2を使用し、(A)-2及び(B)-1の混合割合を40:60とし、キャストロールの温度を210℃とした以外は実施例1と同様の方法でフィルムを作製した。
<実施例8>
 (A)-1に代えて(A)-2を使用し、(A)-2及び(B)-1の混合割合を20:80とし、キャストロールの温度を230℃とした以外は実施例1と同様の方法でフィルムを作製した。
<実施例9>
(B)-1に代えて(B)-2を使用し、(A)-1及び(B)-2の混合割合を80:20とした以外は実施例1と同様の方法でフィルムを作製した。
<実施例10>
 (B)-1に代えて(B)-2を使用し、(A)-1及び(B)-2の混合割合を60:40とし、キャストロールの温度を190℃とした以外は実施例1と同様の方法でフィルムを作製した。
<実施例11>
 (B)-1に代えて(B)-2を使用し、(A)-1及び(B)-2の混合割合を40:60とし、キャストロールの温度を210℃とした以外は実施例1と同様の方法でフィルムを作製した。
<実施例12>
 (B)-1に代えて(B)-2を使用し、(A)-1及び(B)-2の混合割合を20:80とし、キャストロールの温度を230℃とした以外は実施例1と同様の方法でフィルムを作製した。
<比較例1>
 (A)-1に代えて(A)-2を、(B)-1に代えて(B)-2をそれぞれ使用し、(A)-2及び(B)-2の混合割合を80:20とした以外は実施例1と同様の方法でフィルムを作製した。
<比較例2>
 (A)-1に代えて(A)-2を、(B)-1に代えて(B)-2をそれぞれ使用し、(A)-2及び(B)-2の混合割合を60:40とした以外は実施例1と同様の方法でフィルムを作製した。
<比較例3>
 (A)-1に代えて(A)-2を、(B)-1に代えて(B)-2をそれぞれ使用し、(A)-2及び(B)-2の混合割合を40:60とした以外は実施例1と同様の方法でフィルムを作製した。
<比較例4>
 (A)-1に代えて(A)-2を、(B)-1に代えて(B)-2をそれぞれ使用し、(A)-2及び(B)-2の混合割合を20:80とした以外は実施例1と同様の方法でフィルムを作製した。
<比較例5>
 (B)-1を使用せず(A)-1のみを使用し、キャストロールの温度を160℃とした以外は実施例1と同様の方法でフィルムを作製した。
<比較例6>
 (A)-1、(B)-1を使用せず、(A)-2のみを使用し、キャストロールの温度を160℃とした以外は実施例1と同様の方法でフィルムを作製した。
<比較例7>
 (A)-1を使用せず(B)-1のみを使用し、キャストロールの温度を240℃とした以外は実施例1と同様の方法でフィルムを作製した。
<比較例8>
 (A)-1、(B)-1を使用せず、(B)-2のみを使用し、キャストロールの温度を260℃とした以外は実施例1と同様の方法でフィルムを作製した。
[フィルムの評価]
 上記実施例及び比較例で製造した各フィルムについて、以下のようにして各種項目についての評価測定を行った。ここで、フィルムの「縦」とは、Tダイからフィルム状の成形品が押し出されてくる方向を指し、また、フィルム面内でこれに直交する方向を「横」とする。
<結晶融解温度>
 実施例及び比較例で作製した厚み100μmのフィルムについて、JIS K7121:2012に準じて、示差走査熱量計「Pyris1 DSC(パーキンエルマー社製」)」を用いて、温度範囲25~400℃、加熱速度10℃/分で昇温させた際に検出されたDSC(Differential scanning calorimetry)曲線について、結晶融解に対応する吸熱ピークのピークトップ温度から結晶融解温度を求めた。
<結晶融解熱量>
 実施例及び比較例で作製した厚み100μmのフィルムについて、JIS K7122:2012に準じて、示差走査熱量計「Pyris1 DSC(パーキンエルマー社製」)」を用いて、温度範囲25~400℃、加熱速度10℃/分で昇温させた際に検出されたDSC(Differential scanning calorimetry)曲線について、結晶融解に対応する吸熱ピークの面積から結晶融解熱量を求めた。
<ガラス転移温度>
 実施例及び比較例で作製した厚み100μmのフィルムについて、JIS K7244-4:1999に準じて、粘弾性スペクトロメーター「DVA-200(アイティー計測制御株式会社製)」を用いて、温度範囲20~400℃、加熱速度3℃/minで昇温させ、損失正接(tanδ)のピークのピークトップ温度からガラス転移温度を求めた。
<溶融粘度>
 実施例及び比較例で作製した厚み100μmのフィルムについて、JIS K7199:1999に準じて、キャピラリーレオメーター「キャピログラフ1D(東洋精機製作所社製)」を用いて、360℃、せん断速度1000s-1における溶融粘度を測定した。
<ガラス転移温度前後20℃における引張弾性率>
 実施例及び比較例で作製した厚み100μmのフィルムについて、JIS K7244-4:1999に準じて、粘弾性スペクトロメーター「DVA-200(アイティー計測制御株式会社製)」を用い、温度範囲20~400℃、加熱速度3℃/minで昇温させて測定を行った。上記ガラス転移温度の測定で得られたガラス転移温度の測定値Tgよりも20℃低い温度(Tg-20℃)及びガラス転移温度の測定値Tgよりも20℃高い温度(Tg+20℃)において貯蔵弾性率を測定し、得られた弾性率値を引張弾性率E’(Tg-20℃)、引張弾性率E’(Tg+20℃)とし、その比E’(Tg-20℃)/E’(Tg+20℃)を算出した。
 下記表2、3に、実施例1~12及び比較例1~8における評価測定結果をまとめて示す。なお、表2,3の評価結果の欄の「-」は、測定において結晶融解に対応する吸熱ピークが見られなかったことを示す。
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
[考察]
 表2、3に示した結果からわかるように、ポリエーテルケトンケトン樹脂(A)-1,(A)-2とポリエーテルイミドスルホン樹脂(B)-1,(B)-2を特定の組み合わせで含有する実施例1~12は、高いガラス転移温度を1つだけ有しており、溶融粘度も低いため、耐熱性、溶融成形性、二次加工性のいずれにも優れている。
 一方、ポリエーテルケトンケトン樹脂(A)-2とポリエーテルイミドスルホン樹脂(B)-2を組み合わせた比較例1~4では、相分離しているためガラス転移温度が2つ見られ、二次加工性に劣る。
 比較例5及び6では、ポリエーテルケトンケトン樹脂(A)-1,(A)-2のみを使用しているため、ポリエーテルイミドスルホン樹脂(B)-1,(B)-2を含む実施例と比較してガラス転移温度が低く、耐熱性に劣る。
 比較例7及び8では、ポリエーテルイミドスルホン樹脂(B)-1,(B)-2のみを使用しているため、ポリエーテルケトンケトン樹脂(A)-1,(A)-2を含む実施例と比較して溶融粘度が高く、溶融成形性に劣る。
〔3次元造形用フィラメントの製造に関する実施例及び比較例〕
[3次元造形用フィラメントの製造]
 3次元造形用フィラメントの製造に関する実施例及び比較例においては、前掲の表1に示す原料を、下記表4に示す混合割合で用いて、以下の通り、3次元造形用フィラメントを製造した。
<実施例13>
 (A)-2及び(B)-1を80:20の質量割合でドライブレンドした。この樹脂混合物を、同方向二軸混練機を用いて360℃で混練し、樹脂組成物を製造した。得られた樹脂組成物を、単軸押出機にて直径2.5mmのノズルから溶融温度360℃にて押出後、冷却することで、直径1.75mmのフィラメントを作製した。
<実施例14>
 (A)-2及び(B)-1の混合割合を60:40とした以外は実施例13と同様の方法でフィラメントを作製した。
<実施例15>
 (A)-2に代えて(A)-3を使用し、(B)-1に代えて(C)-1を使用し、(A)-3及び(C)-1の混合割合を60:40とし、混練および押出温度を380℃とした以外は実施例13と同様の方法でフィラメントを作製した。
<比較例9>
 (A)-2に代えて(A)-4を使用し、(B)-1に代えて(C)-1を使用し、(A)-4及び(C)-1の混合割合を60:40とした以外は実施例13と同様の方法でフィラメントを作製した。
<比較例10>
 (A)-2に代えて(A)-4を使用し、(A)-4及び(B)-1の混合割合を60:40とした以外は実施例13と同様の方法でフィラメントを作製した。
<比較例11>
 (B)-1を使用せず(A)-2のみを使用した以外は実施例13と同様の方法でフィラメントを作製した。
[フィラメントの評価]
 上記実施例及び比較例で製造した各フィラメントについて、以下のようにして各種項目についての評価測定を行った。
<結晶溶解温度(Tm)>
 (株)パーキンエルマー製の示差走査熱量計、商品名「Pyris1 DSC」を用いて、JIS K7121に準じて、試料約10mgを加熱速度10℃/分で25℃から400℃まで昇温し、該温度で1分間保持した後、冷却速度10℃/分で25℃まで降温し、再度、加熱速度10℃/分で400℃まで昇温した時に測定された各サーモグラムから結晶溶解温度(Tm)(℃)(再昇温過程)を求めた。
<結晶化熱量(ΔHc)>
 (株)パーキンエルマー製の示差走査熱量計、商品名「Pyris1 DSC」を用いて、JIS K7122に準じて、試料約10mgを加熱速度10℃/分で25℃から400℃まで昇温し、該温度で1分間保持した後、冷却速度10℃/分で25℃まで降温した時に測定されたサーモグラムから結晶化熱量(ΔHc)(降温過程)を求めた。
<ガラス転移温度(Tg)>
 実施例及び比較例で作製したフィラメントを伝熱プレスによりシート化した。このシートについて、JIS K7244-4:1999に準じて、粘弾性スペクトロメーター「DVA-200(アイティー計測制御株式会社製)」を用いて、温度範囲20~400℃、加熱速度3℃/minで昇温させ、損失正接(tanδ)のピークのピークトップ温度からガラス転移温度(Tg)を求めた。
<造形時反り>
 評価用サンプルとして、サンプル長さ75mm、幅10mm、厚み5mmのダンベル状サンプルを、サンプルの厚さ方向をZ軸方向(積層方向)として、3Dプリンタ(MINIFACTORY製、商品名:miniFactory Ultra)を用いて造形した。その際、造形テーブルにPEIシートを貼り、造形テーブル温度155℃、チャンバー温度155℃、各例毎に以下のノズル温度、造形速度30mm/s、内部充填率100%の造形条件にて造形を行った。
(ノズル温度)
 実施例13、14及び比較例11:375℃
 実施例15及び比較例9、10:400℃
 評価用サンプル製造後に、造形テーブルから取り外して、水平面に置いた際のサンプルの四隅と水平面との距離を測定し、得られた値の平均値を反り量とした。この反り量から、以下の基準で造形時の反りを評価した。
 A:反り量が1mm以下であった。
 B:反り量が1mmを超え2mm以下であった。
 C:反り量が2mmを超える。あるいは、造形途中に大きな反りもしくはノズルにフィラメント詰まりが発生したため、造形が完了できなかった。
<層間接着性>
 JIS K 7161に準拠して、引張強度を測定することにより評価した。
 評価用サンプルIとして、サンプル長さ75mm、幅10mm、厚み5mmのダンベル状サンプルを、サンプルの長さ方向をZ軸方向(積層方向)として、3Dプリンタ(MINIFACTORY製、商品名:miniFactory Ultra)を用いて造形した。その際、造形テーブルにPEIシートを貼り、造形テーブル温度155℃、チャンバー温度155℃、各例毎に以下のノズル温度、造形速度30mm/s、内部充填率100%の造形条件にて造形を行った。
(ノズル温度)
 実施例13、14及び比較例11:375℃
 実施例15及び比較例9、10:400℃
 得られた評価用サンプルIにて、初期のチャック間距離45mm、速度50mm/min、23℃で引張試験を行い、引張強度を測定した。
 別に、各フィラメントを380℃で電熱プレスした評価用サンプルIIについて同様に引張強度を測定した。
 評価用サンプルIIの引張強度に対する評価用サンプルIの引張強度の比率を算出し、この比率から、以下の基準で層間接着性を評価した。
  A:引張強度の比率が30%以上。
  B:引張強度の比率が25%以上30%未満。
  C:引張強度の比率が25%未満、もしくは造形が完了せず評価ができなかった。
<耐熱性>
 評価サンプルとして、上記層間接着性試験で造形したダンベル片を用いた。ダンベル片1つを、180℃のオーブンで1時間加熱した。その後、サンプルの傾いた距離を測定し、造形前からの変形量を調査した。この変化量から、以下の基準で造形物の耐熱性を評価した。
 A:変化量が2mm未満。
 B:変化量が2mm以上10mm未満。
 C:変化量が10mm以上、もしくは造形が完了せず評価ができなかった。
<耐薬品性>
 評価サンプルとして、上記層間接着性試験で造形したダンベル片を用いた。ダンベル片1つを、常温下にてアセトン中に5時間浸漬させ、浸漬前後の重量変化率を測定した。この重量変化率から、以下の基準で造形物の耐薬品性を評価した。
 A:重量変化率が0.2%未満。
 B:重量変化率が0.2%以上0.4%未満。
 C:重量変化率が0.4%以上、もしくは造形が完了せず評価ができなかった。
<総合評価>
 上記の反り評価、層間接着性評価、耐熱性評価及び耐薬品性評価について、以下の基準により評価した。
 S:反り評価、層間接着性評価、耐熱性評価及び耐薬品性評価について、全てが「A」。
 A:反り評価、層間接着性評価、耐熱性評価及び耐薬品性評価について、いずれか一つが「B」で残りが「A」。
 B:反り評価、層間接着性評価、耐熱性評価及び耐薬品性評価について、いずれか一つ以上が「C」、もしくはいずれか二つ以上が「B」。
 下記表4に、実施例13~15及び比較例9~11における評価測定結果をまとめて示す。
Figure JPOXMLDOC01-appb-T000024
[考察]
 表4に示した結果からわかるように、ケトン基に対するエーテル基の数の比率が2未満であるポリアリールエーテルケトン樹脂(A)として、ポリアリールエーテルケトン樹脂(A)-2、又は(A)-3と、これと相溶する樹脂(A’)として、ポリエーテルイミドスルホン樹脂(B)-1又はポリエーテルイミド樹脂(C)-1を特定の組み合わせで含有する実施例13~15は、高いガラス転移温度を1つだけ有しており、造形性、層間接着性、耐熱性、耐薬品性のいずれにも優れている。
 一方、ポリアリールエーテルケトン樹脂(A)-4とポリエーテルイミド樹脂(C)-1を組み合わせた比較例9では、ポリアリールエーテルケトン樹脂(A)-4のケトン基に対するエーテル基の数の比率が2であるため、造形物の耐薬品性に劣る。
 また、ポリアリールエーテルケトン樹脂(A)-4とポリエーテルイミドスルホン樹脂(B)-1を組み合わせた比較例10では、相分離しているためガラス転移温度が2つ見られ、フィラメント作製時の線径安定性及び造形性に劣る。
 ポリアリールエーテルケトン樹脂(A)-2のみを用いた比較例11は、耐熱性に劣る。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2019年10月1日付で出願された日本特許出願2019-181196に基づいており、その全体が引用により援用される。

Claims (26)

  1.  ポリアリールエーテルケトン樹脂(A)とポリエーテルイミドスルホン樹脂(B)とを含む樹脂組成物であり、該ポリアリールエーテルケトン樹脂(A)と該ポリエーテルイミドスルホン樹脂(B)とが相溶している樹脂組成物。
  2.  前記ポリアリールエーテルケトン樹脂(A)がポリエーテルケトンケトン樹脂である、請求項1に記載の樹脂組成物。
  3.  前記ポリアリールエーテルケトン樹脂(A)が、下記一般式(1)で表される繰り返し単位(a-1)及び/又は下記一般式(2)で表される繰り返し単位(a-2)を有するものである、請求項1又は2に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
     一般式(1),(2)において、Ar~Arは、それぞれ独立に、置換基を有していてもよい炭素原子数6~24のアリーレン基を表す。一般式(1)中の(1,4)Arは、ケトン基がAr基の1位と4位に結合している。一般式(2)中の(1,3)Arは、ケトン基がAr基の1位と3位に結合している。
  4.  前記ポリアリールエーテルケトン樹脂(A)が、前記一般式(1)で表される繰り返し単位(a-1)及び前記一般式(2)で表される繰り返し単位(a-2)を有するものであり、該繰り返し単位(a-1)と該繰り返し単位(a-2)の単位モル比[(a-1)/(a-2)]が1以上5以下である、請求項3に記載の樹脂組成物。
  5.  前記一般式(1)で表される繰り返し単位(a-1)が下記構造式(1A)で表される繰り返し単位であり、前記一般式(2)で表される繰り返し単位(a-2)が下記構造式(2A)で表される繰り返し単位である、請求項3又は4に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
  6.  前記ポリエーテルイミドスルホン樹脂(B)が、下記一般式(3)で表される繰り返し単位(b-1)を有するものである、請求項1~5のいずれか1項に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
     一般式(3)において、Y~Yは、それぞれ独立に、水素原子、アルキル基、又はアルコキシ基を表す。Ar~Ar10は、それぞれ独立に、置換基を有していてもよい炭素原子数6~24のアリーレン基を表す。Xは、直接結合、あるいは、二価の脂肪族炭化水素基、-O-、-SO-、-S-、又は-C(=O)-を表す。
  7.  前記一般式(3)で表される繰り返し単位(b-1)が下記構造式(3A)で表される繰り返し単位である、請求項6に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004
  8.  前記ポリアリールエーテルケトン樹脂(A)を構成する繰り返し単位(a-1)と繰り返し単位(a-2)の単位モル比[(a-1)/(a-2)]が1以上2以下であって、前記ポリエーテルイミドスルホン樹脂(B)が下記一般式(4)で表される繰り返し単位(b-2)を有するものである、請求項4~7のいずれか1項に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000005
     一般式(4)において、Y~Y12は、それぞれ独立に、水素原子、アルキル基、又はアルコキシ基を表す。Ar11~Ar14は、それぞれ独立に、置換基を有していてもよい炭素原子数6~24のアリーレン基を表す。Xは、直接結合、あるいは、二価の脂肪族炭化水素基、-O-、-SO-、-S-、又は-C(=O)-を表す。
  9.  前記一般式(4)で表される繰り返し単位(b-2)が下記構造式(4A)で表される繰り返し単位である、請求項8に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000006
  10.  前記ポリアリールエーテルケトン樹脂(A)と前記ポリエーテルイミドスルホン樹脂(B)の合計100質量%中の含有割合がポリアリールエーテルケトン樹脂(A):ポリエーテルイミドスルホン樹脂(B)=90:10~10:90(質量%)の範囲である、請求項1~9のいずれか1項に記載の樹脂組成物。
  11.  前記ポリアリールエーテルケトン樹脂(A)と前記ポリエーテルイミドスルホン樹脂(B)に由来するガラス転移温度が1つである、請求項1~10のいずれか1項に記載の樹脂組成物。
  12.  前記ガラス転移温度が180℃以上260℃以下である、請求項11に記載の樹脂組成物。
  13.  前記ガラス転移温度より20℃低い温度における引張弾性率E’(Tg-20℃)と20℃高い温度における引張弾性率E’(Tg+20℃)との比E’(Tg-20℃)/E’(Tg+20℃)が100以上1000以下である、請求項11又は12に記載の樹脂組成物。
  14.  360℃、せん断速度1000s-1における溶融粘度が100Pa・s以上1000Pa・s以下である、請求項1~13のいずれか1項に記載の樹脂組成物。
  15.  請求項1~14のいずれか1項に記載の樹脂組成物からなるフィルム。
  16.  請求項1~14のいずれか1項に記載の樹脂組成物又は請求項15に記載のフィルムを、強化繊維と複合させてなる複合材料。
  17.  プリプレグ又はセミプレグである、請求項16に記載の複合材料。
  18.  請求項16又は17に記載の複合材料を含む、航空機、自動車、船舶又は鉄道車両である移動体。
  19.  請求項1~14のいずれか1項に記載の樹脂組成物からなる3次元造形用材料。
  20.  ケトン基に対するエーテル基の数の比率が2未満であるポリアリールエーテルケトン樹脂(A)と、該ポリアリールエーテルケトン樹脂(A)以外の樹脂(A’)を含み、
     示差走査熱測定における結晶化熱量(ΔHc)が5J/g以上40J/g以下であり、かつ、該ポリアリールエーテルケトン樹脂(A)と該樹脂(A)以外の樹脂(A’)とが相溶している3次元造形用材料。
  21.  前記樹脂(A’)がポリエーテルイミドスルホン(PEIS)(樹脂(B))またはポリエーテルイミド(PEI)(樹脂(C))の少なくとも一種である請求項20に記載の3次元造形用材料。
  22.  請求項19~21のいずれか1項に記載の3次元造形用材料からなる3次元造形用フィラメント。
  23.  フィラメント径が1.0mm以上5.0mm以下である、請求項22に記載の3次元造形用フィラメント。
  24.  請求項22又は23に記載の3次元造形用フィラメントの巻回体。
  25.  請求項22又は23に記載の3次元造形用フィラメントを容器に収納した3次元造形用カートリッジ。
  26.  請求項19~21のいずれか1項に記載の3次元造形用材料からなる成形体。
PCT/JP2020/037149 2019-10-01 2020-09-30 樹脂組成物、フィルム、複合材料、移動体及び3次元造形用材料 WO2021066011A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080067300.5A CN114466897A (zh) 2019-10-01 2020-09-30 树脂组合物、膜、复合材料、移动体和三维造型用材料
EP20870718.2A EP4039747B1 (en) 2019-10-01 2020-09-30 Resin composition, film, composite material, movable body, and material for three-dimensional shaping use
JP2021551374A JPWO2021066011A1 (ja) 2019-10-01 2020-09-30
US17/708,156 US20220220303A1 (en) 2019-10-01 2022-03-30 Resin composition, film, composite material, moving body, and three-dimensional printing material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-181196 2019-10-01
JP2019181196 2019-10-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/708,156 Continuation US20220220303A1 (en) 2019-10-01 2022-03-30 Resin composition, film, composite material, moving body, and three-dimensional printing material

Publications (1)

Publication Number Publication Date
WO2021066011A1 true WO2021066011A1 (ja) 2021-04-08

Family

ID=75338311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037149 WO2021066011A1 (ja) 2019-10-01 2020-09-30 樹脂組成物、フィルム、複合材料、移動体及び3次元造形用材料

Country Status (5)

Country Link
US (1) US20220220303A1 (ja)
EP (1) EP4039747B1 (ja)
JP (1) JPWO2021066011A1 (ja)
CN (1) CN114466897A (ja)
WO (1) WO2021066011A1 (ja)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3803085A (en) 1972-12-29 1974-04-09 Gen Electric Method for making polyetherimides
US3905942A (en) 1973-06-22 1975-09-16 Gen Electric Method for making polyetherimides and products produced thereby
US4175175A (en) 1963-07-16 1979-11-20 Union Carbide Corporation Polyarylene polyethers
JPS61195122A (ja) 1985-02-22 1986-08-29 イー・アイ・デユポン・デ・ニモアス・アンド・カンパニー 交互又はブロックコポリエーテルケトン及びその製造方法
JPS62129313A (ja) 1985-11-25 1987-06-11 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− 分枝鎖コポリエ−テルケトン
JP2004182832A (ja) * 2002-12-02 2004-07-02 Sumitomo Bakelite Co Ltd 芳香族系樹脂組成物、耐熱性シート及びフレキシブル回路基板補強用シート
JP2006341596A (ja) * 2005-05-12 2006-12-21 Mitsubishi Plastics Ind Ltd 耐熱性樹脂板
JP2009508997A (ja) * 2005-09-16 2009-03-05 ゼネラル・エレクトリック・カンパニイ 改良ポリアリールエーテルケトンポリマブレンド
JP2010510377A (ja) * 2006-11-22 2010-04-02 サビック・イノベーティブ・プラスチックス・アイピー・ベスローテン・フェンノートシャップ ポリマーブレンド組成物の製造方法
US20100159224A1 (en) * 2008-12-19 2010-06-24 Sabic Innovative Plastics Ip B.V. Moisture resistant polyimide compositions
US20110104417A1 (en) * 2009-10-29 2011-05-05 Polymics, Ltd. High temperature polymer blends of poly(aryl ether ketone phthalazinone)
JP2015049269A (ja) * 2013-08-30 2015-03-16 キヤノン株式会社 定着フィルム及びそれを備えた定着装置
US20170362386A1 (en) * 2014-12-31 2017-12-21 Sabic Global Technologies B.V. Polyetherimide compositions, articles made therefrom, and method of manufacture thereof
JP2019181196A (ja) 2018-04-04 2019-10-24 大東電機工業株式会社 マッサージ機

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070066741A1 (en) * 2005-09-16 2007-03-22 Donovan Michael S High glass transition temperature thermoplastic articles
EP2142600B1 (en) * 2007-04-23 2014-07-23 Solvay Specialty Polymers USA, LLC. Thermoplastic polymer mixtures, and applications thereof

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4175175A (en) 1963-07-16 1979-11-20 Union Carbide Corporation Polyarylene polyethers
US3803085A (en) 1972-12-29 1974-04-09 Gen Electric Method for making polyetherimides
US3905942A (en) 1973-06-22 1975-09-16 Gen Electric Method for making polyetherimides and products produced thereby
JPS61195122A (ja) 1985-02-22 1986-08-29 イー・アイ・デユポン・デ・ニモアス・アンド・カンパニー 交互又はブロックコポリエーテルケトン及びその製造方法
JPS62129313A (ja) 1985-11-25 1987-06-11 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− 分枝鎖コポリエ−テルケトン
JP2004182832A (ja) * 2002-12-02 2004-07-02 Sumitomo Bakelite Co Ltd 芳香族系樹脂組成物、耐熱性シート及びフレキシブル回路基板補強用シート
JP2006341596A (ja) * 2005-05-12 2006-12-21 Mitsubishi Plastics Ind Ltd 耐熱性樹脂板
JP2009508997A (ja) * 2005-09-16 2009-03-05 ゼネラル・エレクトリック・カンパニイ 改良ポリアリールエーテルケトンポリマブレンド
JP2009508998A (ja) * 2005-09-16 2009-03-05 ゼネラル・エレクトリック・カンパニイ ポリアリールエーテルケトン類とポリエーテルイミドスルホン類とのブレンド品
JP2010510377A (ja) * 2006-11-22 2010-04-02 サビック・イノベーティブ・プラスチックス・アイピー・ベスローテン・フェンノートシャップ ポリマーブレンド組成物の製造方法
US20100159224A1 (en) * 2008-12-19 2010-06-24 Sabic Innovative Plastics Ip B.V. Moisture resistant polyimide compositions
US20110104417A1 (en) * 2009-10-29 2011-05-05 Polymics, Ltd. High temperature polymer blends of poly(aryl ether ketone phthalazinone)
JP2015049269A (ja) * 2013-08-30 2015-03-16 キヤノン株式会社 定着フィルム及びそれを備えた定着装置
US20170362386A1 (en) * 2014-12-31 2017-12-21 Sabic Global Technologies B.V. Polyetherimide compositions, articles made therefrom, and method of manufacture thereof
JP2019181196A (ja) 2018-04-04 2019-10-24 大東電機工業株式会社 マッサージ機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4039747A4

Also Published As

Publication number Publication date
JPWO2021066011A1 (ja) 2021-04-08
EP4039747A1 (en) 2022-08-10
CN114466897A (zh) 2022-05-10
EP4039747C0 (en) 2024-04-24
US20220220303A1 (en) 2022-07-14
EP4039747B1 (en) 2024-04-24
EP4039747A4 (en) 2023-02-08

Similar Documents

Publication Publication Date Title
WO2020196839A1 (ja) 3次元造形用フィラメント、巻回体、及び3次元プリンター用カートリッジ
KR20180091822A (ko) 적층 가공 방법에서 층간 접착을 개선하기 위한 접착 촉진 층
WO2020196617A1 (ja) 樹脂組成物、硬化成形物、繊維強化プラスチック成形用材料、繊維強化プラスチック、繊維強化プラスチック積層成形体及びその製造方法
JP7184079B2 (ja) ポリアミド系3次元プリンタ用材料
JP2019529154A (ja) スラッギング(弛み)抵抗性が改善した熱成形用多層シート
CN115943075A (zh) 用于制造三维物体的增材制造方法
GB2344785A (en) Conductive laminated sheet
JP2008088207A (ja) ポリトリメチレンテレフタレート樹脂組成物発泡シート及びその製造方法
JP7207409B2 (ja) 3次元プリンタ用材料
WO2021066011A1 (ja) 樹脂組成物、フィルム、複合材料、移動体及び3次元造形用材料
EP3421543B1 (en) Film
JP2008088209A (ja) ポリエステル樹脂組成物発泡シート及びその製造方法
WO2022138954A1 (ja) 3次元造形用フィラメント
JP2020021626A (ja) 絶縁フィルム
JP2015214611A (ja) ポリ乳酸系樹脂を含むフィルム
US20220267593A1 (en) Filament for three-dimensional printing
TW202132425A (zh) 纖維強化樹脂成形材料、纖維強化樹脂成形品及纖維強化樹脂成形品之製造方法
JP7434992B2 (ja) 樹脂組成物及びフィルム
JP2012052058A (ja) 樹脂組成物及び成形体
CN114040840A (zh) 包含聚芳基醚酮的组合物的增材制造工艺
JP6988594B2 (ja) 樹脂組成物、フィルム及び複合材料
JP2008201978A (ja) フィルム状成型体およびその製法
JP2005053993A (ja) 熱可塑性ポリエステル系樹脂シート及びその製造方法
WO2018077967A1 (en) Fluoropolymer laminate for thermoforming into vehicles body panels
WO2017100397A1 (en) Additive manufacturing articles useful in aircraft

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20870718

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021551374

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020870718

Country of ref document: EP

Effective date: 20220502