WO2017210954A1 - 一种催化剂及合成气直接转化制芳烃的方法 - Google Patents

一种催化剂及合成气直接转化制芳烃的方法 Download PDF

Info

Publication number
WO2017210954A1
WO2017210954A1 PCT/CN2016/089725 CN2016089725W WO2017210954A1 WO 2017210954 A1 WO2017210954 A1 WO 2017210954A1 CN 2016089725 W CN2016089725 W CN 2016089725W WO 2017210954 A1 WO2017210954 A1 WO 2017210954A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
zsm
axis
metal oxide
synthesis gas
Prior art date
Application number
PCT/CN2016/089725
Other languages
English (en)
French (fr)
Inventor
潘秀莲
杨俊豪
焦峰
朱义峰
包信和
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to RU2018133164A priority Critical patent/RU2711415C1/ru
Priority to EP16904405.4A priority patent/EP3466911A4/en
Priority to JP2018549456A priority patent/JP7041069B2/ja
Priority to US16/081,748 priority patent/US10618855B2/en
Publication of WO2017210954A1 publication Critical patent/WO2017210954A1/zh
Priority to SA518392257A priority patent/SA518392257B1/ar

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/005Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/005Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/405Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/44Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/643Pore diameter less than 2 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/65150-500 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • B01J35/695Pore distribution polymodal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/20After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/26Chromium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/32Manganese, technetium or rhenium
    • C07C2523/34Manganese
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C07C2529/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing iron group metals, noble metals or copper
    • C07C2529/44Noble metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C07C2529/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention belongs to the synthesis gas to produce aromatic hydrocarbons, in particular to a catalyst and a method for directly converting synthesis gas into aromatic hydrocarbons.
  • Aromatic hydrocarbon refers to a hydrocarbon containing a benzene ring structure. It is one of the basic products and basic raw materials of petrochemical industry, mainly including benzene, toluene and xylene, ethylbenzene, etc. It is widely used in the production of chemical products such as chemical fiber, plastic and rubber. . In recent years, as global polyester production continues to expand, the demand for PTA (terephthalic acid) and PX (p-xylene) has increased rapidly.
  • One of the raw materials of aromatic hydrocarbons is petroleum.
  • the production of aromatic hydrocarbons from petroleum routes is mature, but limited by thermodynamic equilibrium, the PX content in aromatic hydrocarbon products is relatively low, and needs to be further treated and concentrated by processes such as adsorption separation or crystallization separation, resulting in loss of raw materials and energy consumption, resulting in PX cost of petroleum route production. Higher, it is difficult to obtain better economy.
  • Another source of aromatics is coal.
  • the PX process is produced by a combination of coal chemical processes (including coal gasification, coal coking, coal liquefaction, etc.) and petrochemical processes, such as methylation of toluene methanol.
  • coal chemical processes including coal gasification, coal coking, coal liquefaction, etc.
  • petrochemical processes such as methylation of toluene methanol.
  • Direct conversion of synthesis gas to aromatic hydrocarbons can be used to convert the low-carbon hydrocarbon intermediates produced by the synthesis gas in the Fischer-Tropsch reaction directly into aromatic hydrocarbons on the molecular sieve, indicating that increasing the Zn content is beneficial to An aromatic hydrocarbon product is formed to reduce the content of gaseous lower hydrocarbons.
  • the process has a low aromatic selectivity of only about 53% (Chinese Journal of Catalysis, 2002, 23, Vol. 4, 333-335); Fe-Pd/HZSM-5 can also be used as a catalyst for the preparation of aromatic hydrocarbons at a temperature of 340.
  • the Pd/SiO 2 +HZSM-5 or H-mordenite catalyst can be used to synthesize aromatic hydrocarbons through methanol, olefin and aromatic hydrocarbon routes.
  • the product yield and distribution control factors are discussed.
  • the same aromatic hydrocarbon selectivity is low, only about 50%, and the product Mainly tetramethylbenzenes and pentamethylbenzenes (Kaoru Fujimoto, Proceedings of the Pan Pacific Synthetic Fuel Conference, 1982). Therefore, the development of a process for the preparation of aromatic hydrocarbons from a synthesis gas with a high aromatic selectivity is particularly urgent in order to alleviate the shortage of domestic aromatics supply.
  • the present invention provides a method for directly converting a catalyst and a synthesis gas to an aromatic hydrocarbon.
  • a catalyst which is a composite catalyst A+B, which is compounded by a mixture of catalyst A and catalyst B.
  • the active component of catalyst A is an active metal oxide
  • catalyst B is a ZSM-5 molecular sieve or a metal modified ZSM-5.
  • One or more of the active metal oxides one or more of MnO, MnCr 2 O 4 , MnAl 2 O 4 , MnZrO 4 , ZnO, ZnCr 2 O 4 , and ZnAl 2 O 4 ;
  • the active metal oxide is one or more of MnO, MnCr 2 O 4 , MnAl 2 O 4 and MnZrO 4 .
  • the spacing between the geometric centers of the active metal oxide of catalyst A and the particles of catalyst B is between 5 nm and 4 mm, preferably between 5 nm and 1 mm, more preferably between 5 nm and 500 ⁇ m.
  • the weight ratio between the active ingredient in Catalyst A and Catalyst B is in the range of from 0.1 to 20 times, preferably from 0.3 to 5.
  • the catalyst A is further added with a dispersing agent which is one or two of Al 2 O 3 , Cr 2 O 3 , ZrO 2 and TiO 2 , and the active metal oxide is dispersed in the dispersing agent, and the dispersing agent is The content of the catalyst A is 0.05-90% by weight, and the balance is an active metal oxide;
  • the active metal oxide consists of crystal grains having a size of 5-30 nm. There is a large amount of oxygen vacancies in the distance from the surface of the crystal grains to a depth of 0.3 nm in the tight direction of the crystal grains. The molar amount of oxygen atoms accounts for the theoretical stoichiometric ratio of oxygen.
  • the molar amount of oxygen atoms is from 80% to 10%, more preferably from 60% to 10%, most preferably from 50% to 10%, based on the theoretical stoichiometric oxygen molar content, and the surface oxygen vacancy is defined as: % of oxygen atom mole percentage of theoretical stoichiometric oxygen mole amount, corresponding oxygen vacancy concentration is preferably 20-90%, more preferably 40-90%, most preferably 50-90%;
  • the preparation process of the active metal oxide is: immersing the metal oxide in the etchant solution by using one or more of etchants such as oleic acid, urotropine, ethylenediamine, ammonia water, and hydrazine hydrate.
  • etchants such as oleic acid, urotropine, ethylenediamine, ammonia water, and hydrazine hydrate.
  • the above suspension is heated at 100-150 ° C, preferably 120-140 ° C, for 30-90 minutes, and then taken out and washed and filtered to obtain an active metal oxide material having a large amount of surface oxygen holes; the filter is dried in an atmosphere.
  • the atmosphere is an inert gas or a mixture of an inert gas and a reducing atmosphere
  • the inert atmosphere gas is one or more of N 2 , He and Ar
  • the reducing atmosphere is one of H 2 or CO or
  • the volume ratio of the inert gas to the reducing gas in the mixed gas is 100/10-0/100
  • the treatment is 0.5-5 hours
  • the treatment temperature is 20-500 ° C, preferably 200-400 ° C.
  • the ZSM-5 has a silica-alumina molar ratio (SiO 2 /Al 2 O 3 ) of from 20 to 1,000, preferably from 150 to 800, more preferably from 300 to 800.
  • the ZSM-5 molecular sieve is macroscopically one or more of hexagonal prism flaky, ellipsoidal particles or chess piece shaped particles, which can be observed by scanning electron microscopy, which are formed by stacking ZSM-5 grains.
  • the ZSM-5 molecular sieve has a multi-stage pore structure including macropores, mesopores and micropores, and the specific surface area of the macropores and mesopores accounts for 5-25%, preferably 5-15%, of the total specific surface area, and the micropore ratio
  • the surface area accounts for 40-90%; preferably 40-70%;
  • the micropores are pores having a pore diameter of less than 2 nm, the mesopores are pores having a pore diameter of 2 nm to 50 nm, and the macropores are pores having a pore diameter distribution greater than 50 nm;
  • the ZSM-5 has a microporous structure in its pore structure, and the microporous structure is an ordered channel in the MFI configuration.
  • the micropores in the ZSM-5 molecular sieve are located inside the ZSM-5 grain; the mesopores and macropores are in the ZSM-5 grain. Stacked staggered stacked holes.
  • the sheet-like structure is a hexagonal prism sheet, the (010) plane is hexagonal, the six sides are equal or unequal, the axis perpendicular to the MFI structure (100) plane corresponds to the a-axis, and the axis perpendicular to the (010) plane is b.
  • the axis that is, the thickness of the catalyst B, the distance between the upper and lower hexagonal end faces, while being perpendicular to the a-axis and the b-axis, is the c-axis.
  • the b-axis has a thickness of 30-500 nm, the a-axis length is 500-1500 nm, and the c-axis length is 500-2000 nm, preferably the b-axis thickness is 30-200 nm.
  • the ellipsoidal ZSM-5 topography has a long axis and two short axes, each having a size of 500 nm to 10 ⁇ m, 500 nm to 5 ⁇ m, and 500 nm to 5 ⁇ m.
  • the shape of the ZSM-5 particles in the shape of the chess piece is similar to the shape of a Chinese chess piece or a Chinese drum.
  • the upper and lower end faces are plane, the end faces and the cross section are circular faces or elliptical faces, and the side wall faces are arc-shaped outward convex.
  • Lifting or not That is, the cross-sectional area is greater than or equal to the end face area
  • the b-axis that is, the upper and lower end faces are 30-500 nm
  • the a-axis length is 100-800 nm
  • the c-axis length is 500-800 nm
  • the b-axis thickness is 30-200 nm.
  • the metal modified ZSM-5 is one or two modified ZSM-5 of Zn, Ga, Sn, Mn, Ag, Zr, and the total content of the modified metal is 0.5-2 wt.%.
  • the mechanical mixing may be carried out by one or more of mechanical stirring, ball milling, shaker mixing, and mechanical grinding.
  • a method for directly converting synthesis gas into aromatic hydrocarbons wherein the synthesis gas is used as a reaction raw material, and the conversion reaction is carried out on a fixed bed or a moving bed, and the catalyst used is the above catalyst.
  • the syngas has a pressure of 0.1 to 6 MPa; a reaction temperature of 300 to 600 ° C, preferably a reaction temperature of more than 400 to 600 ° C, and a space velocity of 500 to 8000 h -1 .
  • the synthesis gas H 2 /CO ratio for the reaction is from 0.2 to 3.5, preferably from 0.3 to 2.
  • the bifunctional composite catalyst is used for one-step direct conversion of synthesis gas to aromatic hydrocarbons.
  • the selectivity of aromatic hydrocarbons in all hydrocarbon products is 50-85%, preferably 64-85%, and the by-product methane selectivity is ⁇ 15%. It is preferably ⁇ 10%, more preferably ⁇ 5%.
  • MTA methanol-based aromatics technology
  • the preparation process of the composite catalyst in the patent is mild and simple; and the reaction process has high product yield and selectivity, and the selectivity of the aromatic hydrocarbon can reach 50-85%, preferably 64-85%, and the by-product methane selection Very low ( ⁇ 15%), preferably ⁇ 10%, more preferably ⁇ 5%, with good application prospects.
  • the ZSM-5 in this patent has a nanostructured sheet or ellipsoidal shape or a chess piece shape, and the spacing between the catalysts A and B is favorable for timely diffusion and conversion of intermediate products, avoiding secondary reactions and side reactions, and can be improved.
  • Aromatic hydrocarbon selectivity is favorable for timely diffusion and conversion of intermediate products, avoiding secondary reactions and side reactions, and can be improved.
  • the above suspension was heated, and then taken out by washing and filtered to obtain a nano-ZnO material having a large amount of surface oxygen holes.
  • the mass ratio of catalyst to etchant is 1:3.
  • the mass ratio of oleic acid to urotropine is 1:1, no solvent;
  • the mass ratio of oleic acid to hydrazine hydrate is 95:5, no solvent;
  • the specific treatment conditions include temperature, treatment time and atmosphere type as shown in Table 1 below. .
  • the product obtained above is subjected to centrifugation or filtration, washed with deionized water, dried or dried and reduced in an atmosphere, and the atmosphere is an inert gas or a mixture of an inert gas and a reducing atmosphere, and the inert gases are N 2 , He and Ar.
  • One or more of the reducing atmospheres are one or two of H 2 and CO, and the volume ratio of the inert gas to the reducing gas in the dry reducing mixture is 100/10 to 0/100, drying and reducing.
  • the treatment temperature was 350 degrees Celsius and the time was 4 hours. That is, a ZnO material rich in oxygen vacancies on the surface is obtained.
  • the specific samples and their preparation conditions are shown in Table 1 below.
  • the surface oxygen vacancies are: 100% - the molar amount of oxygen atoms as a percentage of the theoretical stoichiometric oxygen molar amount.
  • the surface oxygen vacancies are in a range of a distance from the surface of the crystal grain to the inner diameter of the crystal grain of 0.3 nm, wherein the molar amount of oxygen atoms accounts for a percentage of the theoretical stoichiometric oxygen content; the surface oxygen vacancy is defined as: 100%-oxygen
  • the atomic molar amount is a percentage of the theoretical stoichiometric oxygen molar amount.
  • the etching process is the same as (2) in the above (1), drying or drying and reduction, as described in the preparation process of the products (3) in the above (1), ZnO 3, ZnO 5, ZnO 8 , and synthesizing a large amount of surface oxygen vacancies. Catalyst; surface oxygen vacancies 67%, 29%, 27%;
  • the corresponding nitrate, zinc nitrate, aluminum nitrate, chromium nitrate and manganese nitrate are selected as precursors, and the urea is mixed with water at room temperature; the mixture is aged, then taken out and washed, After filtration and drying, the obtained solid was calcined under an air atmosphere to obtain a spinel oxide grown in the (110) crystal plane direction.
  • the sample is also subjected to an etching process to synthesize a catalyst having a large amount of surface oxygen vacancies; the etching treatment and the post-treatment process are as described in (2) and (3) above, and the sample has a large specific surface area and a large surface defect. It can be applied to catalytic synthesis gas conversion.
  • the Cr 2 O 3 , Al 2 O 3 or ZrO 2 dispersed active metal oxide is prepared by a precipitation deposition method using Cr 2 O 3 , Al 2 O 3 or ZrO 2 as a carrier.
  • the commercial Cr 2 O 3 , Al 2 O 3 or ZrO 2 carrier is pre-dispersed in the bottom liquid, and then one of the precursors of Zn such as zinc acetate, zinc nitrate or zinc sulfate is used.
  • One kind or two or more kinds of raw materials are mixed and precipitated with one or two or more kinds of precipitating agents of sodium hydroxide, ammonium hydrogencarbonate, ammonium carbonate and sodium hydrogencarbonate at room temperature.
  • the molar concentration of Zn 2+ in the reaction solution is 0.067 M, and the molar ratio of Zn 2+ to the precipitant may be 1:8; then aged at 160 ° C At 24 hours, Cr 2 O 3 , Al 2 O 3 or ZrO 2 was obtained as a carrier-dispersed ZnO oxide, and the content of the dispersant in the catalyst A was 0.1 wt%, 10 wt%, and 90 wt%, respectively.
  • the etching process is the same as the preparation of the products ZnO 3, ZnO 5, and ZnO 8 in (2) above, and a catalyst having a large amount of surface oxygen vacancies is synthesized; the surface oxygen vacancies are 65%, 30%, 25%;
  • the process is as described in 3) above (a);
  • the corresponding product from top to bottom is defined as dispersed oxide 1-3;
  • Cr 2 O 3 , Al 2 O 3 or ZrO 2 can be obtained as a carrier-dispersed MnO oxide, wherein the content of the dispersant in the catalyst A is 5 wt%, 30 wt%, and 60 wt%, respectively.
  • the surface oxygen vacancies are 62%, 27%, 28%; the top to bottom corresponding product is defined as the dispersed oxide 4-6.
  • Sheet ZSM-5 was prepared according to the molar ratio of:
  • the Si source is selected from one or more of TEOS, silica sol, and silica; the aluminum source is selected from one or two of sodium metasilicate, Al(OH) 3 , AlOOH, and aluminum isopropoxide. More than
  • urea is preferentially adsorbed on the b-axis, the growth of crystal grains in the b-axis direction is suppressed; the crystal grains preferentially grow toward the a and c axes to form a sheet-like ZSM-5.
  • the specific preparation process dissolving aluminum source in water, adding silicon source, templating agent (tetrapropylammonium hydroxide TPAOH), finally adding urea, stirring, placing in hydrothermal kettle for hydrothermal reaction, washing with water, and finally roasting in air atmosphere 6
  • the templating agent was burned off, and the obtained ZSM-5 was in the form of a sheet having a thickness of 10 to 200 nm with mesopores and macropores in between.
  • the preparation process of the Zn, Ga, Sn, Mn, Ag, Zr modified flake ZSM-5 is as follows: the preparation process is the same as the product sheet 1 process in (1) above, except that the sheet ZSM is completed. -5 After preparing and burning off the templating agent, Zn(NO 3 ) 2 , Ga(NO 3 ) 3 , Sn(NO 3 ) 2 , Mn(NO 3 ) 2 , AgNO 3 , Zr(NO 3 ) are charged at a certain mass ratio. One of 2 was dissolved in deionized water, and the ZSM-5 was immersed in an equal volume for 3 hours, dried at 110 ° C, and calcined at 600 ° C for 6 hours in an air atmosphere.
  • the total content of the modified metal is 0.5 wt.%, 1 wt.%, 0.5 wt.%, 2 wt.%, 1 wt.%, 2 wt.%, respectively; the corresponding molecular sieve size and the silicon to aluminum ratio are the same as the sheet shape 1.
  • the corresponding product is defined as a sheet 5-10.
  • the grains spontaneously form the most thermodynamically stable spherical structure during nucleation and growth.
  • the grains are in a, b, c due to the effects of gravity and mass transfer caused by static crystallization.
  • the growth rates in the axial directions are inconsistent, thus forming an ellipsoidal shape.
  • A contains the following components: NaOH + silica sol + H 2 O, and these components are homogenized;
  • Solution B contains the following ingredients: NaAlO 2 + H 2 O, and then stirred;
  • the preparation process of ellipsoidal ZSM-5 modified by metal Zn, Ga, Sn, Mn, Ag, Zr is as follows: the preparation process is the same as that of the product ellipsoid 1 in (2) above, except that the templateless ZSM is completed. -5 After preparing and burning off the templating agent, Zn(NO 3 ) 2 , Ga(NO 3 ) 3 , Sn(NO 3 ) 2 , Mn(NO 3 ) 2 , AgNO 3 , Zr(NO 3 ) are charged at a certain mass ratio.
  • One of 2 was dissolved in deionized water, and ZSM-5 was immersed in an equal volume for 4 hours, dried at 110 ° C, and calcined at 630 ° C for 4 hours in an air atmosphere.
  • the content of the modified metal is 0.5 wt.%, 1 wt.%, 0.5 wt.%, 2 wt.%, 1 wt.%, 2 wt.%; the corresponding molecular sieve size and the silicon to aluminum ratio are the same as those of the ellipsoid 1.
  • the corresponding product is defined as an ellipsoid 4-9.
  • Chess-shaped ZSM-5 was prepared according to the molar ratio of:
  • Si source selection one or two of TEOS and silica sol; aluminum source selection: one or more of sodium metaaluminate, Al(OH) 3 , AlOOH;
  • ZSM-5 was subjected to standing crystallization treatment under the condition that TPAOH was used as a template to obtain a chess piece-like ZSM-5 crystal grain.
  • TPAOH was used as a template to obtain a chess piece-like ZSM-5 crystal grain.
  • flaky nano-grains are first formed; due to the large ratio of H 2 O/SiO 2 , the concentration of templating agent around the grains is relatively low, so that the crystal grains have enough space to continue to grow into a chess piece.
  • the specific process adding TPAOH to the silicon source, adding a certain amount of H 2 O, preparing the A solution, stirring in a water bath at 80 ° C for 24 h; dissolving the aluminum source in the NaOH solution to prepare a B solution.
  • the B solution was added dropwise to the A solution, stirred for 3 hours, transferred to a stainless steel crystallization tank for 2 days, washed with water, and calcined at 560 ° C for 5 hours in an air atmosphere to burn off the templating agent.
  • the preparation process of the metal Zn, Ga, Sn, Mn, Ag, Zr modified chess piece-shaped ZSM-5 is as follows: the preparation process is the same as the product piece 1 in the above (3), and the difference is that the chess piece shape ZSM-5 is completed. After preparing and burning off the templating agent, Zn(NO 3 ) 2 , Ga(NO 3 ) 3 , Sn(NO 3 ) 2 , Mn(NO 3 ) 2 , AgNO 3 , Zr(NO 3 ) 2 are charged in a certain mass ratio.
  • the content of the modified metal is 0.5 wt.%, 1 wt.%, 0.5 wt.%, 2 wt.%, 1 wt.%, 2 wt.%; the corresponding molecular sieve size and the silicon to aluminum ratio are the same as those of the chess piece 1.
  • the corresponding product is defined as pieces 4-9.
  • the required proportion of the catalyst A and the catalyst B are added to the vessel, and the separation is achieved by one or more of the pressing force, the impact force, the cutting force, the friction force, and the like generated by the high-speed movement of the materials and/or the container.
  • the mechanical energy, thermal energy and chemical energy are converted by the modulation temperature and the carrier gas atmosphere to further adjust the interaction between different components.
  • a mixing temperature of 20-100 ° C can be set, which can be carried out in an atmosphere or directly in air.
  • the atmosphere is: a) nitrogen and/or inert gas, b) a mixture of hydrogen and nitrogen and/or inert gas.
  • the volume of hydrogen in the mixed gas is 5 to 50%
  • c) a mixture of CO and nitrogen and/or an inert gas wherein the volume of CO in the mixed gas is 5 to 20%
  • a mixture of inert gases wherein the volume of O 2 in the mixed gas is 5-20%
  • the inert gas is one or more of helium, argon, and helium.
  • Ball Milling Using the abrasive and the catalyst to tumbling at high speed in the grinding tank, the catalyst is strongly impacted and crushed to achieve the function of dispersing and mixing the catalysts A and B.
  • the abrasive material can be stainless steel, agate, quartz. Size range: 5mm-15mm).
  • the ratio of the catalyst to the catalyst (mass ratio range: 20-100:1) can adjust the particle size and relative distance of the catalyst.
  • Shaker mixing method premixing catalysts A and B and charging them into a container; mixing the catalysts A and B by controlling the reciprocating oscillation or circumferential oscillation of the shaker; by adjusting the oscillation speed (range: 1-70 rpm / And time (range: 5min-120min), achieve uniform mixing and adjust its relative distance.
  • a fixed bed reaction is exemplified, but the catalyst is also suitable for use in a moving bed reactor.
  • the device is equipped with a gas mass flow meter and an online product analysis chromatograph (the exhaust gas of the reactor is directly connected to the chromatographic quantitative valve for periodic real-time sampling analysis).
  • Changing the temperature, pressure, space velocity and the molar ratio of H 2 /CO in the syngas can change the reaction performance.
  • the selectivity of aromatic hydrocarbons including benzene, toluene, xylene, trimethylbenzene, etc.
  • the selectivity of aromatic hydrocarbons can reach 50-85%, CO conversion is 10-60%; due to the low hydrogenation activity of the catalyst metal complex surface
  • the mass production of methane is avoided, and the selectivity of methane is low, and the total selectivity of C 5+ long carbon chain hydrocarbons other than methane, C 2-4 hydrocarbons and aromatic hydrocarbons is 15 to 50%.
  • Table 7 lists the specific applications of the catalyst and its effect data.
  • the catalyst used in Comparative Example 1 is the catalyst component A metal ZnCo + ellipsoid 1, the molar ratio of ZnCo is 1:1, the mass ratio of ZnCo to ZSM-5 is 1:1, and the other parameters and mixing process are the same as catalyst C;
  • the catalyst used in Comparative Example 2 is a surface oxygen-free hole TiO 2 + flake 2, and the remaining parameters and mixing process are the same as Catalyst C;
  • the molecular sieve used in the catalyst used in Comparative Example 3 was a commercial microporous ZSM-5+ZnO 2 purchased from Nankai University Catalyst Factory, in which the ratio of silicon to aluminum was 30.
  • the distance between the metal oxide and the molecular sieve in the catalyst used in Comparative Example 4 was 5 mm, and the other parameters and the mixing process were the same as the catalyst C.
  • the metal oxide was located in the pores of the molecular sieve, and the two were in close contact with each other, and the other parameters were the same as the catalyst C.
  • the catalyst component B molecular sieve is ellipsoidal, but the particle size is 10-20 ⁇ m, and the other parameters and the mixing process are the same as the catalyst C;
  • the molecular sieve of the catalyst component B was in the form of a sheet, but the granular size was 5 ⁇ m, the thickness of the B-axis was 700 nm, and the other parameters and the mixing process were the same as the catalyst C.
  • the catalyst A was Zn 10 and the component B was the chess piece 1.
  • the plurality of parameters of the composite catalyst including the ratio of the catalyst component A to the catalyst component B, are preferably from 0.3 to 5, the number of oxygen vacancies is preferably from 40 to 90, the molecular sieve silica-alumina ratio is preferably from 150 to 800, and more preferably. 300-800, the b-axis thickness is preferably 30-200 nm, and the distance between A and B is preferably 5 nm-1 mm.
  • the catalyst group A has a higher number of oxygen vacancies
  • the catalyst component B molecular sieve has a shorter b-axis, a higher silicon to aluminum ratio, and the distance between A and B and both.
  • the above factors are all within the preferred range, so that the aromatics selectivity of the reaction product is high, >65%.
  • the number of surface oxygen vacancies in the catalyst component A is relatively high, and the catalyst B is a sheet-like one molecular sieve, and the silicon-aluminum ratio, the b-axis thickness, and the weight ratios of A and B are all within the preferred range.
  • the distance between A and B is too far, 2 mm, not in the preferred range, so the selectivity of the reactive aromatic hydrocarbon is relatively low, being 54.2%.
  • the high temperature activity of the Mn oxo-containing catalyst in the catalyst is significantly higher than that of the Zn-containing oxide solution, and the high temperature is Refers to greater than 400 to 600 ° C.
  • the use of the catalyst defined in claim 1 of the present application enables one-step direct synthesis of olefins into syngas, and the selectivity of hydrocarbons can reach 50-85%, while the selectivity of by-product methane is extremely low ⁇ 15%.
  • the properties of the catalyst and the reaction conditions satisfying a plurality of factors can achieve a selectivity of 60% or even 65% or more of the aromatic hydrocarbon even at high temperature conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明属于合成气制备芳烃,具体涉及一种催化剂及合成气直接转化制芳烃的方法,其以合成气为反应原料,在固定床或移动床上进行转化反应,所述催化剂为复合催化剂A+B,由催化剂A和催化剂B以机械混合方式复合在一起,催化剂A的活性成份为活性金属氧化物,催化剂B为ZSM-5分子筛或金属修饰的ZSM-5中的一种或二种以上;合成气的压力为0.1-6MPa,反应温度为300-600℃,空速为500-8000h-1。反应过程具有很高的产品收率和选择性,芳烃的选择性可以达到50-85%,同时副产物甲烷选择性低于15%,具有很好的应用前景。

Description

一种催化剂及合成气直接转化制芳烃的方法 技术领域
本发明属于合成气制备芳烃,具体涉及一种催化剂及合成气直接转化制芳烃的方法。
背景技术
芳烃是指含有苯环结构的碳氢化合物,它是石油化工的基本产品和基础原料之一,主要包括苯、甲苯和二甲苯、乙苯等,广泛用于生产化纤、塑料和橡胶等化工产品。近几年,随着全球范围内聚酯生产持续扩大,带动PTA(对苯二甲酸)和PX(对二甲苯)的需求迅猛增加。
芳烃的原料之一是石油,有两条工艺路线:一是石脑油经过催化重整,芳烃抽提得到;二是将乙烯裂解汽油经过加氢、芳烃抽提得到低附加值的芳烃原料,再转化成为高附加值芳烃产品。从石油路线生产芳烃技术成熟,但受热力学平衡限制,芳烃产物中PX含量较低,需要经过吸附分离或结晶分离等工艺进一步处理提浓,造成原料损耗和能耗增加,使得石油路线生产PX成本较高,难以获得较好的经济性。芳烃另一原料来源是煤。通过煤化工工艺(包括煤气化、煤焦化、煤液化等)和石油化工工艺结合生产,如甲苯甲醇甲基化生产PX工艺。随着炼油工业的发展,以石油为原料的芳烃所占的比例逐步增加,国外约占98%以上,国内约占85%以上。近年来我国芳烃生产能力虽然有较大幅度增长,并达到一定规模,但仍不能满足实际市场需求。芳烃是我国石油化工行业主要产品,芳烃和乙烯同为石油化工两条产品链的龙头。2004年以前,由于国内苯下游产品生产能力较小,因此基本可以满足需求,并有部分出口。但近两年来我国苯下游产品生产能力增长较快,尤其是随着苯乙烯、苯酚、苯胺、环己酮等生产装置的大量建设,苯市场需求量大增。因此,我国由苯的出口国变成纯进口国,预计未来几年国内苯仍然无法满足下游市场需求。对中国而言,在“富煤、缺油、少气”的能源供给现状下,开发不依赖于石油资源的芳烃制备新工艺术具有重要意义。甲醇、二甲醚制芳烃或合成气直接制芳烃工艺开辟了由煤炭生产BTX的新工艺路线,可有效缓解中国芳烃供给不足与甲醇产能过剩的矛盾,具有良好的发展前景。
以甲醇或者二甲醚为原料,经催化转化制芳烃的工艺路线,已有人探索,且已经进行中试示范,但该工艺经过多个反应步骤,首先将合成气转化成为甲醇或者二甲醚等,然后经过所谓的MTA过程,将甲醇或二甲醚转化成为芳烃;该过程甲醇合成需要合成气中H2/CO比例为2/1,若合成气来自煤气化,其中H2/CO比通常为0.5-1,则必须通过高能耗、高水耗的水煤气变换过程将H2/CO比例调节为2/1;此外,该工艺容易受到甲醇市场波动的限制。由合成气直接转化制芳烃,也可以利用Fe/Mn0-ZnZSM-5催化剂使合成气在费-托反应中生成的低碳烃中间体直接在分子筛上转化为芳烃,指出增加Zn含量,有利于生成芳烃产物,减少气相低碳烃的含量。但是该过程的芳烃选择性低,只达到53%左右(Chinese Journal of Catalysis,2002,23,Vol.4,333-335);Fe-Pd/HZSM-5同样可以作为制备芳烃的催化剂,在温度为340℃,压力为8.62MPa,空速为3000h-1条件下,实现了75.7%的CO转化率,但液相产物中芳烃选择性只有32.0%(Energy Fuels,2014,28,2027-2034);也可以利用Pd/SiO2+HZSM-5或H-mordenite催化剂经过甲醇、烯烃、芳烃的路线合成芳烃,讨论了产品收率和分布控制因素,同样芳烃选择性低,只达到50%左右,并且产物以四甲基苯类和五甲基苯类为主(Kaoru Fujimoto,泛太平洋合成燃料会议论文集,1982)。因此,开发出一种芳烃选择性较高的合成气制备芳烃的工艺,以缓解国内芳烃供给不足这一需求尤为迫切。
发明内容
针对上述问题,本发明提供了一种催化剂及合成气直接转化制芳烃的方法。
本发明的技术方案为:
一种催化剂,为复合催化剂A+B,由催化剂A和催化剂B以机械混合方式复合在一起,催化剂A的活性成份为活性金属氧化物,催化剂B为ZSM-5分子筛或金属修饰的ZSM-5中的一种或二种以上;活性金属氧化物为MnO、MnCr2O4、MnAl2O4,MnZrO4、ZnO、ZnCr2O4、ZnAl2O4中的一种或二种以上;优选活性金属氧化物为MnO、MnCr2O4、MnAl2O4,MnZrO4中的一种或二种以上。
催化剂A的活性金属氧化物和催化剂B的颗粒的几何中心之间间距介于5nm-4mm之间,优选为5nm-1mm,更优选介于5nm-500μm之间。
催化剂A中的活性成份与催化剂B之间的重量比在0.1-20倍范围之间,优选为0.3-5。
所述催化剂A中还添加有分散剂,分散剂为Al2O3、Cr2O3、ZrO2、TiO2中的一种或二种,活性金属氧化物分散于分散剂中,分散剂于催化剂A中的含量在0.05-90wt%,其余为活性金属氧化物;
活性金属氧化物由大小为5-30nm的晶粒构成,从晶粒表面至晶粒内部紧密方向深度为0.3nm的距离范围内,存在大量氧空位,其中氧原子摩尔量占理论化学计量比氧摩尔含量的80%以下,优选氧原子摩尔量占理论化学计量比氧摩尔含量的80%-10%,更优选为60-10%,最优选为50-10%,表面氧空位定义为:100%-氧原子摩尔量占理论化学计量比氧摩尔量的百分数,对应的氧空位浓度优选为20-90%,更优选为40-90%,最优选为50-90%;
优选活性金属氧化物的制备过程是:采用油酸、乌洛托品、乙二胺、氨水、水合肼等刻蚀剂中的一种或二种以上,将金属氧化物浸泡于刻蚀剂溶液中;将上述悬浮物于100-150℃,优选120-140℃,加热30-90分钟,然后取出洗涤过滤,得到具有大量表面氧空穴的活性金属氧化物材料;将过滤物在气氛中干燥还原处理,气氛为惰性气体或者惰性气体与还原性气氛混合气,惰性气氛的气体为N2、He和Ar中的一种或二种以上,还原性气氛为H2或CO中的一种或二种,混合气中惰性气体与还原性气体的体积比为100/10-0/100,处理0.5-5小时,处理温度为20-500℃,优选为200-400℃。
所述ZSM-5的硅铝摩尔比(SiO2/Al2O3)是20-1000,优选150-800,更优选为300-800。
所述ZSM-5分子筛宏观上呈六棱柱薄片状、椭球状颗粒或棋子形状颗粒中的一种或两种以上,可由扫描电镜观察到,它们是由ZSM-5晶粒堆积而成。
所述ZSM-5分子筛具有多级孔结构,其包括大孔、介孔及微孔,大孔和介孔的比表面积占总比表面积的5-25%,优选5-15%,微孔比表面积占40-90%;优选40-70%;微孔为孔道直径小于2nm的孔道,介孔为孔道直径2nm-50nm的孔道,大孔为孔道直径分布大于50nm的孔道;
ZSM-5晶粒内具有微孔结构,其微孔结构为MFI构型有序孔道,ZSM-5分子筛的微孔位于ZSM-5晶粒内部;介孔与大孔是由ZSM-5晶粒堆积而成的无序堆积孔。
所述片状结构为六棱柱薄片,(010)面呈六边形,六条边相等或不等,垂直于MFI结构(100)面的轴对应a轴,垂直于(010)面的轴为b轴,即催化剂B的厚度,上下六边形端面距离,同时垂直于a轴和b轴的为c轴。b轴厚度为30-500nm,a轴长度为500-1500nm,c轴长度为500-2000nm,优选b轴厚度30-200nm。
所述椭球状ZSM-5形貌,具有一个长轴,和两个短轴,尺寸大小分别为500nm-10μm、500nm-5μm、500nm-5μm。
所述棋子形状的ZSM-5颗粒形貌,类似中国象棋棋子或中国鼓的形状,上下两端面为平面,两端面和横截面为圆形面或椭圆面,侧壁面呈圆弧状向外凸起或不向外凸起, 即横截面面积大于等于两端面面积,b轴即上下端面距离为30-500nm,a轴长度为100-800nm,c轴长度为500-800nm,优选b轴厚度30-200nm。
金属修饰的ZSM-5为Zn、Ga、Sn、Mn、Ag、Zr中的一种或两种修饰的ZSM-5,修饰金属的总含量为0.5-2wt.%。
所述机械混合可采用机械搅拌、球磨、摇床混合、机械研磨中的一种或二种以上进行复合。
一种合成气直接转化制芳烃的方法,其以合成气为反应原料,在固定床或移动床上进行转化反应,所采用的催化剂为上述的催化剂。
合成气的压力为0.1-6MPa;反应温度为300-600℃,优选反应温度为大于400至600℃,空速为500-8000h-1
所述反应用合成气H2/CO比例为0.2-3.5,优选为0.3-2。
所述的双功能复合催化剂用于合成气一步法直接转化制芳烃,芳烃在所有碳氢化合物产物中的选择性为50-85%,优选64-85%,同时副产物甲烷选择性<15%,优选为<10%,更优选为<5%。
本发明具有如下优点:
1.本技术与传统的甲醇制芳烃技术(简称为MTA)不同,实现了一步直接将合成气转化制芳烃。
2.专利中的复合催化剂的制备过程简单条件温和;且反应过程具有很高的产品收率和选择性,芳烃的选择性可以达到50-85%,优选64-85%,同时副产物甲烷选择性极低(<15%),优选为<10%,更优选为<5%,具有很好的应用前景。
3.本专利中的ZSM-5具有纳米结构的片状或椭球形或棋子形,以及催化剂A和B的间距,有利于中间产物的及时扩散和转化,避免二次反应和副反应,可提高芳烃选择性。
具体实施方式
下面通过实施例对本发明做进一步阐述,但是本发明的权利要求范围不受这些实施例的限制。同时,实施例只是给出了实现此目的的部分条件,但并不意味着必须满足这些条件才可以达到此目的。
实施例1
一、催化剂A的制备
(一)、刻蚀法合成具有极性表面的ZnO材料:
(1)称取0.446g(1.5mmol)Zn(NO3)2·6H2O,再称取0.480g(12mmol)NaOH加入上述容器中,再量取30ml去离子水加入到容器中,搅拌0.5h以上,使溶液混合均匀。升温至温度为160℃,反应时间为20h,沉淀分解成氧化锌;自然冷却至室温。反应液离心分离收集离心分离后的沉淀物,用去离子水洗涤2次获得ZnO氧化物;
(2)采用刻蚀剂,在常温下与ZnO氧化物超声混匀,ZnO氧化物浸泡于刻蚀剂溶液中,刻蚀剂与氧化锌形成络合或直接还原反应;
将上述悬浮物加热,然后取出洗涤过滤,得到具有大量表面氧空穴的纳米ZnO材料。
表1中:催化剂与刻蚀剂的质量比为1:3。油酸与乌洛托品的质量比为1:1,没有溶剂;油酸与水合肼的质量比为95:5,没有溶剂;具体处理条件包括温度,处理时间和气氛种类如下表1所示。
(3)干燥或干燥和还原:
上述获得的产物经过离心或者过滤,用去离子水清洗以后,在气氛中进行干燥或干燥和还原处理,气氛为惰性气体或者惰性气体与还原性气氛混合气,惰性气体为N2、He和Ar中的一种或二种以上,还原性气氛为H2、CO的一种或二种,干燥还原混合气中惰 性气体与还原性气体的体积比为100/10~0/100,干燥和还原处理的温度为350摄氏度,时间为4h。即得到表面富含氧空位的ZnO材料。具体样品及其制备条件如下表1。其中表面氧空位为:100%-氧原子摩尔量占理论化学计量比氧摩尔量的百分数。
表1 ZnO材料的制备及其参数性能
Figure PCTCN2016089725-appb-000001
所述表面氧空位为从晶粒表面至晶粒内部方向深度为0.3nm的距离范围内,其中氧原子摩尔量占理论化学计量比氧摩尔含量的百分数;表面氧空位定义为:100%-氧原子摩尔量占理论化学计量比氧摩尔量的百分数。
作为对比例,未经第(2)步刻蚀的表面无氧空位的ZnO 9,以及将Zn完全还原的金属Zn 10;
(二)、刻蚀法合成具有极性表面的MnO材料:制备过程同上述ZnO,不同之处在于将Zn的前驱体换成了Mn的对应的前驱体,为硝酸锰、氯化锰、醋酸锰中的一种(在此为硝酸锰)。
刻蚀处理过程同上述(一)中(2)、干燥或干燥和还原同上述(一)中(3)的产物ZnO 3、ZnO 5、ZnO 8制备过程所述,合成具有大量表面氧空位的催化剂;表面氧空位67%、29%、27%;
对应产物定义为MnO 1-3;
(三)、合成具有高比表面积、高表面能的纳米ZnCr2O4、ZnAl2O4、MnCr2O4、MnAl2O4,MnZrO4尖晶石:
根据尖晶石的化学组成,选取相应的硝酸盐,硝酸锌、硝酸铝、硝酸铬、硝酸锰为前驱体,与尿素在室温下于水中相互混合;将上述混合液陈化,然后取出洗涤、过滤和干燥,所得的固体在空气气氛下焙烧,获得沿(110)晶面方向生长的尖晶石氧化物。样品也经过刻蚀法处理,合成具有大量表面氧空位的催化剂;刻蚀处理和后处理过程同上述(一)中(2)和(3)所述,该样品具有大比表面积、表面缺陷多,可应用于催化合成气转化。
具体样品及其制备条件如下表2。同样,表面氧空位定义为:100%-氧原子摩尔量占理论化学计量比氧摩尔量的百分数。
表2 尖晶石材料的制备及其性能参数
Figure PCTCN2016089725-appb-000002
Figure PCTCN2016089725-appb-000003
(四)、Cr2O3、Al2O3或ZrO2分散的活性金属氧化物
以Cr2O3、Al2O3或ZrO2为载体,沉淀沉积法制备Cr2O3、Al2O3或ZrO2分散的活性金属氧化物。以分散ZnO氧化物的制备为例,将商业Cr2O3、Al2O3或ZrO2载体预先分散于底液中,然后采用醋酸锌、硝酸锌、硫酸锌等Zn的前驱体中的一种或二种以上为原料,与氢氧化钠、碳酸氢铵、碳酸铵、碳酸氢钠中的一种或二种以上沉淀剂在室温下混合沉淀。在此为硝酸锌,和氢氧化钠为例,反应液中Zn2+的摩尔浓度为0.067M,Zn2+与沉淀剂的摩尔份数比可为1:8;然后在160℃下陈化24小时,获得Cr2O3、Al2O3或ZrO2为载体分散的ZnO氧化物,分散剂于催化剂A中的含量依次为0.1wt%、10wt%、90wt%。
刻蚀过程同上述(一)中(2)的产物ZnO 3、ZnO 5、ZnO 8制备过程所述,合成具有大量表面氧空位的催化剂;表面氧空位65%、30%、25%;后处理过程同上述(一)中3)所述;
从上到下对应产物定义为分散氧化物1-3;
以同样的方法,可以获得Cr2O3、Al2O3或ZrO2为载体分散的MnO氧化物,其中分散剂于催化剂A中的含量依次为5wt%、30wt%、60wt%。表面氧空位62%、27%、28%;从上到下对应产物定义为分散氧化物4-6。
二、催化剂B(ZSM-5)的制备:
(一)片状ZSM-5
按照以下物质的摩尔比例,制备片状ZSM-5:
Si源选择为:TEOS、硅溶胶、白炭黑中的一种或二种以上;铝源选择为:偏铝酸钠、Al(OH)3、AlOOH、异丙醇铝中的一种或二种以上;
由于尿素优先在b轴吸附,抑制晶粒在b轴方向的生长;晶粒优先向a和c轴生长,形成片状的ZSM-5。
具体制备过程:水中溶解铝源,加入硅源,模板剂(四丙基氢氧化铵TPAOH)最后加入尿素搅匀,置于水热釜中进行水热反应,水洗,最后在空气气氛下焙烧6小时,烧除模板剂,得到的ZSM-5为片状,其厚度为10-200nm,其间存在介孔和大孔。
具体样品、制备条件及其性能参数如下表3。
表3 片状ZSM-5的制备及其性能参数
Figure PCTCN2016089725-appb-000004
Figure PCTCN2016089725-appb-000005
金属Zn、Ga、Sn、Mn、Ag、Zr修饰的片状ZSM-5的制备过程分别为:制备过程同上述(一)中产物片状1过程所述,不同之处在于:完成片状ZSM-5制备并烧除模板剂后,按一定质量比投入Zn(NO3)2、Ga(NO3)3、Sn(NO3)2、Mn(NO3)2、AgNO3、Zr(NO3)2的一种溶于去离子水中,对ZSM-5进行等体积浸渍3小时,110℃烘干后,在空气气氛下600℃焙烧6小时。修饰金属的总含量为分别为0.5wt.%、1wt.%、0.5wt.%、2wt.%、1wt.%、2wt.%;对应的分子筛尺寸和硅铝比与片状1相同。
对应产物定义为片状5-10。
(二)椭球状ZSM-5
由于无模板剂诱导生长,晶粒在成核与生长过程中,都自发形成热力学最稳定的球形结构;由于静置晶化所致的重力和传质影响,晶粒在a、b、c三个轴向上的生长速度不一致,因此形成椭球状。
具体过程如下:
首先配置两种溶液A和B。其中A含有如下成分:NaOH+硅溶胶+H2O,将这些组分搅匀;
B液含有如下成分:NaAlO2+H2O,然后搅匀;
之后,将B液逐滴加入A中,滴加速率为一分钟两滴,边滴加边搅匀。然后,移至水热釜内,进行水热反应,在无模板剂的条件下静置晶化处理,水洗,最后在空气气氛下600℃煅烧6小时,得到椭球形的ZSM-5,其间存在介孔及大孔。
具体样品及其制备条件如下表4。
表4 椭球ZSM-5的制备及其性能参数
Figure PCTCN2016089725-appb-000006
Figure PCTCN2016089725-appb-000007
金属Zn、Ga、Sn、Mn、Ag、Zr修饰的椭球形ZSM-5的制备过程分别为:制备过程同上述(二)中产物椭球1所述,不同之处在于:完成无模板剂ZSM-5制备并烧除模板剂后,按一定质量比投入Zn(NO3)2、Ga(NO3)3、Sn(NO3)2、Mn(NO3)2、AgNO3、Zr(NO3)2的一种溶于去离子水中,对ZSM-5进行等体积浸渍4小时,110℃烘干后,在空气气氛下630℃焙烧4小时。修饰金属的含量为0.5wt.%、1wt.%、0.5wt.%、2wt.%、1wt.%、2wt.%;对应的分子筛尺寸和硅铝比与椭球1相同。
对应产物定义为椭球4-9。
(三)棋子形状ZSM-5
按照以下物质的摩尔比例,制备棋子形的ZSM-5:
Si源选择:TEOS、硅溶胶中的一种或二种;铝源选择:偏铝酸钠、Al(OH)3、AlOOH中的一种或二种以上;
ZSM-5在TPAOH为模板剂的条件下静置晶化处理,获得棋子状ZSM-5晶粒。在晶粒生长前期,首先形成片状纳米晶粒;由于H2O/SiO2比例较大,晶粒周围的模板剂浓度相对较低,使得晶粒有足够的空间继续生长为棋子状。
具体过程:将TPAOH加入到硅源中,再加入一定量的H2O,配制成A溶液,在80℃水浴锅中下搅拌24h;将铝源溶于NaOH溶液中,配制成B溶液。将B溶液逐滴加入到A溶液中,搅拌3小时,移至不锈钢晶化釜晶化2天,水洗后在空气气氛下560℃煅烧5小时烧除模板剂。
具体样品及其制备条件如下表5所示。
表5 棋子形状ZSM-5的制备及其性能参数
Figure PCTCN2016089725-appb-000008
金属Zn、Ga、Sn、Mn、Ag、Zr修饰的棋子形ZSM-5的制备过程分别为:制备过程同上述(三)中产物棋子1所述,不同之处在于:完成棋子形ZSM-5制备并烧除模板剂后,按一定质量比投入Zn(NO3)2、Ga(NO3)3、Sn(NO3)2、Mn(NO3)2、AgNO3、Zr(NO3)2的一种溶于去离子水中,对ZSM-5进行等体积浸渍4小时,110℃烘干后,在空气气氛下500℃焙烧4小时。修饰金属的含量为0.5wt.%、1wt.%、0.5wt.%、2wt.%、1wt.%、2wt.%;对应的分子筛尺寸和硅铝比与棋子1相同。
对应产物定义为棋子4-9。
三、催化剂的制备
将所需比例的催化剂A和催化剂B加入容器中,利用这些物料和/或容器的高速运动产生的挤压力、撞击力、裁剪力、摩擦力等中的一种或两种以上作用实现分离、破碎、混匀等目的,通过调变温度与载气气氛实现机械能、热能与化学能的转换,进一步调节不同组分间的相互作用。
机械混合过程中,可以设置混合温度20-100℃,可以在气氛中或者直接在空气中进行,气氛为:a)氮气和/或惰性气体,b)氢气与氮气和/或惰性气体的混合气,其中氢气于混合气中的体积为5~50%,c)CO与氮气和/或惰性气体的混合气,其中CO于混合气中的体积为5~20%,d)O2与氮气和/或惰性气体的混合气,其中O2于混合气中的体积为5-20%,所述惰性气体为氦气、氩气、氖气中的一种或两种以上。
机械搅拌:在搅拌槽中,采用搅拌棒将催化剂A和B进行混合,通过控制搅拌时间(5min-120min)和速率(30-300转/min),可以调节催化剂A和B的混合程度和相对距离。
球磨:利用磨料与催化剂在研磨罐内高速翻滚,对催化剂产生强烈冲击、碾压,达到分散、混合催化剂A和B的作用。通过控制磨料(材质可以是不锈钢、玛瑙、石英。尺寸范围:5mm-15mm)。与催化剂的比例(质量比范围:20-100:1),可以调节催化剂的粒度及相对距离。
摇床混合法:将催化剂A和B预混合,并装入容器中;通过控制摇床的往复振荡或圆周振荡,实现催化剂A和B的混合;通过调节振荡速度(范围:1-70转/分)和时间(范围:5min-120min),实现均匀混合并调节其相对距离。
机械研磨法:将催化剂A和B预混合,并装入容器中;在一定的压力(范围:5公斤-20公斤)下,研具与混合的催化剂进行相对运动(速率范围:30-300转/min),达到调节催化剂粒度、相对距离和实现均匀混合的作用。
具体样品、制备条件及其性质参数特征如表6所示。
表6 催化剂的制备及其性质参数特征
Figure PCTCN2016089725-appb-000009
Figure PCTCN2016089725-appb-000010
Figure PCTCN2016089725-appb-000011
Figure PCTCN2016089725-appb-000012
催化反应实例
以固定床反应为例,但是催化剂也适用于移动床反应器。该装置配备气体质量流量计、在线产物分析色谱(反应器的尾气直接与色谱的定量阀连接,进行周期实时采样分析)。
将上述本发明的催化剂2g,置于固定床反应器中,使用Ar置换反应器中的空气,然后再在H2气氛中升温至300℃,切换合成气(H2/CO摩尔比=0.2-3.5),合成气的压力为0.1-6MPa,升温至反应温度300-600℃,调节反应原料气的空速至500-8000ml/g/h。产物由在线色谱检测分析。
改变温度、压力、空速和合成气中H2/CO的摩尔比,可以改变反应性能。其中芳烃(包括苯、甲苯、二甲苯、三甲苯等)在所有碳氢化合物中的选择性可达50~85%,CO转化率10-60%;由于催化剂金属复合物表面加氢活性不高,避免了甲烷的大量生成,甲烷选择性低,其中甲烷、C2-4烃和芳烃以外的C5+长碳链碳氢化合物的总选择性为15~50%。
表7列出了催化剂的具体应用及其效果数据。
表7 催化剂的具体应用及其效果数据
Figure PCTCN2016089725-appb-000013
Figure PCTCN2016089725-appb-000014
Figure PCTCN2016089725-appb-000015
对比例1采用的催化剂为催化剂组分A金属ZnCo+椭球1,ZnCo摩尔比1:1,ZnCo与ZSM-5质量比1:1,其余参数及混合过程等均同催化剂C;
对比例2采用的催化剂为表面无氧空穴TiO2+片状2,其余参数及混合过程等均同催化剂C;
对比例3采用的催化剂中分子筛为购自南开大学催化剂厂的商品微孔ZSM-5+ZnO 2,其中硅铝比为30。
对比例4采用的催化剂中金属氧化物与分子筛之间的距离为5mm,其余参数及混合过程等均同催化剂C。
对比例5采用的催化剂中金属氧化物位于分子筛孔道内,两者密切接触,其余参数等均同催化剂C。
对比例6采用的催化剂中催化剂组分B分子筛为椭球形,但颗粒尺寸为10-20μm,其余参数及混合过程等均同催化剂C;
对比例7采用的催化剂中催化剂组分B分子筛为片状形,但颗粒状尺寸为5μm,B轴厚度为700nm,其余参数及混合过程等均同催化剂C。
对比例8中催化剂A为ZnO 9,组份B为片状1。
对比例9中催化剂A为Zn 10,组份B为棋子1。
由上表可以看出复合催化剂的多项参数,包括催化剂组份A与催化剂组份B的比例优选为0.3-5、氧空位数目优选40-90、分子筛硅铝比优选150-800且更优选300-800、b轴厚度优选30-200nm、A、B之间的距离优选5nm-1mm,多个参数同时满足时,才能实现较高的转化率和芳烃选择性。
举例说明如下:
表7的I、J、R和P1催化剂,催化剂组份A的氧空位数目较高,催化剂组份B分子筛的b轴较短,硅铝比高,并且A、B之间的距离和两者重量比合适,上述因素均在优选范围内,因此反应产物芳烃选择性均较高,>65%。
作为对比,表7的Q催化剂,催化剂组份A表面氧空位数目较高,催化剂B为片状1分子筛,其硅铝比、b轴厚度,以及A、B的重量比均在优选范围之内,但是A和B之间的距离太远,为2mm,不在优选范围内,因此反应芳烃选择性相对较低,为54.2%。
而且,由实施例S1-S7的比较可见,当其它条件满足权利要求中限定的优选条件,催化剂中含Mn氧代物的技术方案高温活性明显高于含Zn氧化物的技术方案的活性,高温是指大于400至600℃。
由此可见,使用本申请权利要求1限定的催化剂能够实现合成气一步法直接合成制烯烃,且烃的选择性可以达到50-85%,同时副产物甲烷选择性极低<15%,且当催化剂的各项性质和反应条件满足多个因素的优选时能实现芳烃60%,甚至65%或更高的选择性,甚至即使在高温条件下也是如此。

Claims (12)

  1. 一种催化剂,其特征在于:所述催化剂为复合催化剂A+B,由催化剂A和催化剂B以机械混合方式复合在一起,催化剂A的活性成份为活性金属氧化物,催化剂B为ZSM-5分子筛或金属修饰的ZSM-5中的一种或二种以上;活性金属氧化物为MnO、MnCr2O4、MnAl2O4,MnZrO4、ZnO、ZnCr2O4、ZnAl2O4中的一种或二种以上;优选活性金属氧化物为MnO、MnCr2O4、MnAl2O4,MnZrO4中的一种或二种以上。
  2. 按照权利要求1所述的催化剂,其特征在于:催化剂A的活性金属氧化物和催化剂B的颗粒的几何中心之间间距介于5nm-4mm之间,优选为5nm-1mm,更优选介于5nm-500μm之间。
  3. 按照权利要求1或2所述的催化剂,其特征在于:催化剂A中的活性成份与催化剂B之间的重量比在0.1-20倍范围之间,优选为0.3-5。
  4. 按照权利要求1所述的催化剂,其特征在于:所述催化剂A中还添加有分散剂,分散剂为Al2O3、Cr2O3、ZrO2、TiO2中的一种或二种,活性金属氧化物分散于分散剂中,分散剂于催化剂A中的含量在0.05-90wt%,其余为活性金属氧化物。
  5. 按照权利要求1或4所述的催化剂,其特征在于:活性金属氧化物由大小为5-30nm的晶粒构成,从晶粒表面至晶粒内部方向深度为0.3nm的距离范围内,存在大量氧空位,其中氧原子摩尔量占理论化学计量比氧摩尔含量的80%以下,优选氧原子摩尔量占理论化学计量比氧摩尔含量的80%-10%,更优选为60-10%,最优选为50-10%,对应的氧空位浓度优选为20-90%,更优选为40-90%,最优选为50-90%。
  6. 按照权利要求5所述的催化剂,其特征在于:
    优选活性金属氧化物的制备过程是:采用油酸、乌洛托品、乙二胺、氨水、水合肼等刻蚀剂中的一种或或二种以上,将金属氧化物浸泡于刻蚀剂溶液中;将上述悬浮物于100-150℃下加热30-90分钟,然后取出洗涤过滤,得到具有大量表面氧空穴的活性金属氧化物材料;将过滤物在气氛中干燥还原处理,气氛为惰性气体或者惰性气体与还原性气氛混合气,惰性气氛选择的气体为N2、He和Ar中的一种或二种以上,还原性气氛为H2或CO中的一种或二种,混合气中惰性气体与还原性气体的体积比为100/10-0/100,处理0.5-5小时,处理温度为20-500℃,优选为200-400℃。
  7. 按照权利要求1所述的催化剂,其特征在于:
    所述ZSM-5的硅铝比是20-1000,优选150-800,更优选为300-800;
    所述ZSM-5分子筛宏观上呈六棱柱薄片状、椭球状颗粒或棋子形状颗粒中的一种或两种以上,由ZSM-5晶粒堆积而成;
    所述ZSM-5分子筛具有多级孔结构,其包括大孔、介孔及微孔,大孔和介孔的比表面积占总比表面积的5-25%,优选5-15%,微孔比表面积占40-90%;优选40-70%;微孔为孔 道直径小于2nm的孔道,介孔为孔道直径2nm-50nm的孔道,大孔为孔道直径分布大于50nm的孔道;
    ZSM-5晶粒内具有微孔结构,其微孔结构为MFI构型有序孔道,ZSM-5分子筛的微孔位于ZSM-5晶粒内部;介孔与大孔是由ZSM-5晶粒堆积而成的无序堆积孔。
  8. 按照权利要求7所述的催化剂,其特征在于:
    所述片状结构为六棱柱薄片,(010)面呈六边形,六条边相等或不等,垂直于MFI结构(100)面的轴对应a轴,垂直于(010)面的轴为b轴,即上下六边形端面距离,同时垂直于a轴和b轴的为c轴,b轴厚度为30-500nm,a轴长度为500-1500nm,c轴长度为500-2000nm,优选b轴厚度30-200nm;
    所述椭球状ZSM-5形貌,具有一个长轴,和两个短轴,尺寸大小分别为500nm-10μm、500nm-5μm、500nm-5μm;
    所述棋子形状的ZSM-5颗粒形貌,类似中国象棋棋子或中国鼓的形状,上下两端面为平面,两端面和横截面为圆形面或椭圆面,侧壁面呈圆弧状向外凸起或不向外凸起,即横截面面积大于等于两端面面积,b轴厚度,即其上下端面距离为30-500nm,a轴长度为100-800nm,c轴长度为500-800nm,优选b轴厚度30-200nm。
  9. 按照权利要求1所述的催化剂,其特征在于:
    金属修饰的ZSM-5为Zn、Ga、Sn、Mn、Ag、Zr中的一种或两种修饰的ZSM-5,修饰金属的总含量为0.5-2wt.%。
  10. 一种合成气直接转化制芳烃的方法,其特征在于:其以合成气为反应原料,在固定床或移动床上进行转化反应,所采用的催化剂为权利要求1-9任一所述的催化剂。
  11. 按照权利要求10所述的方法,其特征在于:合成气的压力为0.1-6MPa;反应温度为300-600℃,优选反应温度为大于400至600℃,空速为500-8000h-1
  12. 按照权利要求10或11所述的方法,其特征在于:所述反应用合成气H2/CO比例为0.2-3.5,优选为0.3-2。
PCT/CN2016/089725 2016-06-07 2016-07-12 一种催化剂及合成气直接转化制芳烃的方法 WO2017210954A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU2018133164A RU2711415C1 (ru) 2016-06-07 2016-07-12 Катализатор и способ синтеза ароматических углеводородов путем прямой конверсии синтез-газа
EP16904405.4A EP3466911A4 (en) 2016-06-07 2016-07-12 CATALYST AND METHOD FOR PRODUCING AROMATIC HYDROCARBONS BY DIRECTLY CONVERSING SYNTHESIS GAS
JP2018549456A JP7041069B2 (ja) 2016-06-07 2016-07-12 合成ガスを直接変換することによって芳香族炭化水素を製造するための触媒及び方法
US16/081,748 US10618855B2 (en) 2016-06-07 2016-07-12 Catalyst and method for synthesis of aromatic hydrocarbons through direct conversion of synthesis gas
SA518392257A SA518392257B1 (ar) 2016-06-07 2018-08-22 محفز وطريقة لتخليق الهيدروكربونات العطرية من خلال التحويل المباشر لغاز التخليق

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610397763.3 2016-06-07
CN201610397763.3A CN107469857B (zh) 2016-06-07 2016-06-07 一种催化剂及合成气直接转化制芳烃的方法

Publications (1)

Publication Number Publication Date
WO2017210954A1 true WO2017210954A1 (zh) 2017-12-14

Family

ID=60578341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/089725 WO2017210954A1 (zh) 2016-06-07 2016-07-12 一种催化剂及合成气直接转化制芳烃的方法

Country Status (7)

Country Link
US (1) US10618855B2 (zh)
EP (1) EP3466911A4 (zh)
JP (1) JP7041069B2 (zh)
CN (1) CN107469857B (zh)
RU (1) RU2711415C1 (zh)
SA (1) SA518392257B1 (zh)
WO (1) WO2017210954A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200050013A (ko) * 2018-10-30 2020-05-11 한국화학연구원 단환 방향족 화합물의 합성용 촉매 및 이를 이용한 단환 방향족 화합물의 합성방법
JP2022512467A (ja) * 2018-12-21 2022-02-04 中国科学院大▲連▼化学物理研究所 触媒及び合成ガスの直接転化による低級アレーン液体燃料の製造方法
CN115646538A (zh) * 2022-11-08 2023-01-31 中国矿业大学 一种封装双金属构筑b轴向ZSM-5分子筛及其催化MTA反应的应用

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11332417B2 (en) * 2017-06-30 2022-05-17 Huadian Coal Industry Group Co., Ltd. System and method for preparing aromatics by using syngas
CN109939728B (zh) * 2018-01-26 2020-08-14 中国科学院大连化学物理研究所 一种负载催化剂及合成气直接转化制低碳烯烃的方法
CN109939723B (zh) * 2018-01-26 2021-06-01 中国科学院大连化学物理研究所 一种催化剂及合成气直接转化制乙烯的方法
CN110385141B (zh) * 2018-04-20 2021-05-04 武汉大学 一种用于合成气直接制取芳烃的复合催化剂及其制备方法
CN110496639B (zh) * 2018-05-17 2022-05-27 中国科学院大连化学物理研究所 一种芳烃合成用催化剂及其制备方法和应用
CN110496640B (zh) * 2018-05-17 2022-09-06 中国科学院大连化学物理研究所 一种对二甲苯合成用催化剂及其制备方法和应用
CN109384245A (zh) * 2018-11-30 2019-02-26 中国科学院大连化学物理研究所 一种大孔-微孔复合Silicalite-1分子筛片及其合成方法
CN111346666B (zh) * 2018-12-21 2023-02-03 中国科学院大连化学物理研究所 一种催化剂及合成气直接转化制高芳烃含量的液体燃料的方法
US11331658B2 (en) * 2019-03-27 2022-05-17 Exxonmobil Chemical Patents Inc. Transalkylation start-up processes for supported precious metal catalyst
CN110201709A (zh) * 2019-06-17 2019-09-06 华东理工大学 合成气直接制高值芳烃的复合催化剂及制备方法与应用
CN112108179A (zh) * 2019-06-21 2020-12-22 中国科学院大连化学物理研究所 一种合成气直接转化制芳烃的催化剂及其制备和应用
CN112691697A (zh) * 2019-10-23 2021-04-23 中国石油化工股份有限公司 合成气转化耦合催化剂及其用途
CN112774724B (zh) * 2019-11-04 2022-04-19 中国科学院大连化学物理研究所 一种催化剂及其制备方法和应用
CN110694677A (zh) * 2019-11-11 2020-01-17 湘潭大学 一种甲醇择形芳构化高效合成对二甲苯的催化剂
CN111729672A (zh) * 2019-12-11 2020-10-02 中国科学院深圳先进技术研究院 一种全分解水表面修饰的二氧化钼催化剂及其制备方法和用途
CN111377432B (zh) * 2020-03-24 2021-07-20 中国科学院化学研究所 一种煤溶剂热处理制备层状纳米碳材料的方法
CN111420701B (zh) * 2020-04-08 2023-05-26 中国科学院上海高等研究院 一种合成气制取芳烃的催化剂及其应用
CN111514928B (zh) * 2020-04-29 2022-09-20 陕西延长石油(集团)有限责任公司 一种合成气与苯一步法制备乙苯的催化剂及方法
CN114433196B (zh) * 2020-10-20 2023-07-04 中国石油化工股份有限公司 整体式催化剂、制备方法及其在合成气转化反应中的应用
CN114588902A (zh) * 2020-12-04 2022-06-07 中国科学院大连化学物理研究所 一种合成气转化制芳烃的催化剂、制备方法及其应用
CN114733560B (zh) * 2021-01-07 2024-04-02 国家能源投资集团有限责任公司 复合催化剂及其制备方法和应用、合成气一步法制芳烃的方法
CN115055175B (zh) * 2022-06-16 2023-05-16 南京大学 一种醇解pet的缺陷态氧化锌纳米片催化剂的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0051326B1 (en) * 1980-10-30 1984-07-04 Shell Internationale Researchmaatschappij B.V. Process for the preparation of hydrocarbons
RU2089533C1 (ru) * 1994-07-04 1997-09-10 Конструкторско-технологический институт каталитических и адсорбционных процессов на цеолитах "Цеосит" СО РАН Способ получения углеводородов бензиновых фракций
CN105566047A (zh) * 2014-10-13 2016-05-11 中国科学院大连化学物理研究所 金属掺杂分子筛催化转化甲烷无氧直接制乙烯的方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4096163A (en) * 1975-04-08 1978-06-20 Mobil Oil Corporation Conversion of synthesis gas to hydrocarbon mixtures
US4180516A (en) * 1977-08-18 1979-12-25 Mobil Oil Corporation Conversion of synthesis gas to aromatic hydrocarbons
JPS5845109A (ja) * 1981-09-09 1983-03-16 Res Assoc Petroleum Alternat Dev<Rapad> 結晶性アルミノシリケートゼオライトの製造法
AU562665B2 (en) * 1982-05-04 1987-06-18 Cosmo Oil Company Ltd Crystalline metal silicates
CN1040993C (zh) * 1991-08-05 1998-12-02 中国石油化工总公司 抗锌流失的烃类芳构化含锌沸石催化剂的制备方法
US5865988A (en) 1995-07-07 1999-02-02 Mobil Oil Corporation Hydrocarbon upgrading process
JP3905948B2 (ja) * 1996-04-18 2007-04-18 山陽石油化学株式会社 高シリカゼオライト系触媒
AU7710598A (en) * 1997-07-15 1999-02-10 Phillips Petroleum Company High stability zeolite catalyst composition and hydrocarbon conversion process
US6459006B1 (en) 1999-05-14 2002-10-01 Exxonmobil Chemical Patents Inc. Selective methylation to para-xylene using fuel syngas
CN1100124C (zh) * 2000-08-30 2003-01-29 中国石油化工股份有限公司 轻烃芳构化催化剂及其制法
JP2004321924A (ja) 2003-04-24 2004-11-18 Toyota Central Res & Dev Lab Inc 水性ガスシフト反応用触媒
EP1479662B1 (en) 2003-05-17 2008-10-22 Haldor Topsoe A/S Process for conversion of oxygenates to hydrocarbons and composition of use therein
JP2007508140A (ja) 2003-10-14 2007-04-05 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 亜鉛を含有するクロム酸化物組成物、それらの調製、ならびにそれらの触媒および触媒前駆体としての使用
RU2333033C1 (ru) * 2007-05-29 2008-09-10 Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук Катализатор, способ его приготовления и способ получения ароматических углеводородов
FR2920755B1 (fr) 2007-09-07 2009-11-13 Inst Francais Du Petrole Materiau amorphe a porosite hierarchisee et comprenant du silicium
CN101422743B (zh) * 2008-11-27 2010-09-01 中国科学院山西煤炭化学研究所 一种由合成气直接合成芳烃的催化剂及制法和应用
US7943673B2 (en) * 2008-12-10 2011-05-17 Chevron U.S.A. Inc. Process for conversion of synthesis gas to hydrocarbons using a zeolite-methanol catalyst system
DE102009055987B4 (de) * 2009-11-20 2018-10-18 Schott Ag Spinell-Optokeramiken
JP5517681B2 (ja) 2010-03-09 2014-06-11 Jx日鉱日石エネルギー株式会社 芳香族化合物の製造方法
US20110257452A1 (en) * 2010-04-20 2011-10-20 Fina Technology, Inc. Regenerable Composite Catalysts for Hydrocarbon Aromatization
KR101345097B1 (ko) * 2010-08-11 2013-12-26 고려대학교 산학협력단 신규 산화망간 나노입자 및 이를 포함하는 조영제
CN103508828A (zh) * 2012-06-30 2014-01-15 中国科学院大连化学物理研究所 一种合成气制乙烷和丙烷的方法
CN104117383B (zh) * 2013-04-23 2016-12-28 上海碧科清洁能源技术有限公司 一种锰改性的zsm‑5分子筛催化剂及其制备方法和应用
CN104557369B (zh) * 2013-10-28 2017-08-11 中国石油化工股份有限公司 甲醇芳构化的方法
US9809758B2 (en) * 2014-07-24 2017-11-07 Exxonmobil Chemical Patents Inc. Production of xylenes from syngas
RU2568117C1 (ru) * 2014-12-12 2015-11-10 Открытое акционерное общество "Газпромнефть - Московский НПЗ" (ОАО "Газпромнефть - МНПЗ") Способ приготовления катализатора ароматизации легких парафинов

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0051326B1 (en) * 1980-10-30 1984-07-04 Shell Internationale Researchmaatschappij B.V. Process for the preparation of hydrocarbons
RU2089533C1 (ru) * 1994-07-04 1997-09-10 Конструкторско-технологический институт каталитических и адсорбционных процессов на цеолитах "Цеосит" СО РАН Способ получения углеводородов бензиновых фракций
CN105566047A (zh) * 2014-10-13 2016-05-11 中国科学院大连化学物理研究所 金属掺杂分子筛催化转化甲烷无氧直接制乙烯的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3466911A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200050013A (ko) * 2018-10-30 2020-05-11 한국화학연구원 단환 방향족 화합물의 합성용 촉매 및 이를 이용한 단환 방향족 화합물의 합성방법
KR102162250B1 (ko) * 2018-10-30 2020-10-06 한국화학연구원 단환 방향족 화합물의 합성용 촉매 및 이를 이용한 단환 방향족 화합물의 합성방법
JP2022512467A (ja) * 2018-12-21 2022-02-04 中国科学院大▲連▼化学物理研究所 触媒及び合成ガスの直接転化による低級アレーン液体燃料の製造方法
JP7205943B2 (ja) 2018-12-21 2023-01-17 中国科学院大▲連▼化学物理研究所 触媒及び合成ガスの直接転化による低級アレーン液体燃料の製造方法
CN115646538A (zh) * 2022-11-08 2023-01-31 中国矿业大学 一种封装双金属构筑b轴向ZSM-5分子筛及其催化MTA反应的应用
CN115646538B (zh) * 2022-11-08 2024-04-16 中国矿业大学 一种封装双金属构筑b轴向ZSM-5分子筛及其催化MTA反应的应用

Also Published As

Publication number Publication date
US20190031575A1 (en) 2019-01-31
RU2711415C1 (ru) 2020-01-17
US10618855B2 (en) 2020-04-14
SA518392257B1 (ar) 2021-11-30
CN107469857B (zh) 2020-12-01
CN107469857A (zh) 2017-12-15
EP3466911A1 (en) 2019-04-10
EP3466911A4 (en) 2020-01-22
JP2019513541A (ja) 2019-05-30
JP7041069B2 (ja) 2022-03-23

Similar Documents

Publication Publication Date Title
WO2017210954A1 (zh) 一种催化剂及合成气直接转化制芳烃的方法
US10960387B2 (en) Catalyst and method for direct conversion of syngas to light olefins
US11084026B2 (en) Catalyst and method for preparing light olefins by direct conversion of syngas
CN107661774B (zh) 一种催化剂及合成气直接转化制低碳烯烃的方法
JP2018520862A (ja) 一段階法によって合成ガスから軽質オレフィンを直接調製する触媒及び方法
CN108970638B (zh) 一种催化剂与合成气直接转化制液体燃料联产低碳烯烃的方法
WO2019144952A1 (zh) 一种负载催化剂及合成气直接转化制低碳烯烃的方法
CN107774302A (zh) 一种催化剂及合成气直接转化制液体燃料联产低碳烯烃的方法
CN110743611B (zh) 一种纳米复合催化剂及其制备方法和应用
US11097253B2 (en) Catalyst and method for preparing liquid fuel and light olefins by direct conversion of syngas
CN107661773B (zh) 一种催化剂及合成气直接转化制液体燃料联产低碳烯烃的方法
CN108970637B (zh) 一种催化剂及合成气直接转化制液体燃料联产低碳烯烃的方法
WO2018161670A1 (zh) 一种催化剂及合成气直接转化制乙烯的方法
CN111346666B (zh) 一种催化剂及合成气直接转化制高芳烃含量的液体燃料的方法
CN112973779A (zh) 一种zsm-22分子筛的后处理方法及其在合成气一步法制液体燃料中的应用
CN112295597B (zh) 一种催化合成气直接转化制富含btx的芳烃的催化剂及其应用
CN112973775B (zh) 一种含mcm-22分子筛的催化剂及其在合成气一步法制液体燃料中的应用
JP7205943B2 (ja) 触媒及び合成ガスの直接転化による低級アレーン液体燃料の製造方法
CN116174028A (zh) 一种sapo-11分子筛复合催化剂及其在合成气直接转化制汽油中的应用
CN112844448A (zh) 一种催化合成气与甲苯直接转化制乙苯的催化剂及其应用

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018549456

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16904405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016904405

Country of ref document: EP

Effective date: 20190107