WO2018161670A1 - 一种催化剂及合成气直接转化制乙烯的方法 - Google Patents

一种催化剂及合成气直接转化制乙烯的方法 Download PDF

Info

Publication number
WO2018161670A1
WO2018161670A1 PCT/CN2017/115536 CN2017115536W WO2018161670A1 WO 2018161670 A1 WO2018161670 A1 WO 2018161670A1 CN 2017115536 W CN2017115536 W CN 2017115536W WO 2018161670 A1 WO2018161670 A1 WO 2018161670A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
catalyst
mmol
synthesis gas
molecular sieve
Prior art date
Application number
PCT/CN2017/115536
Other languages
English (en)
French (fr)
Inventor
包信和
焦峰
潘秀莲
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Publication of WO2018161670A1 publication Critical patent/WO2018161670A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • C07C1/044Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof containing iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/04Ethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
    • C07C2529/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65 containing iron group metals, noble metals or copper
    • C07C2529/76Iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
    • C07C2529/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention belongs to the synthesis gas to produce low carbon olefins, in particular to a catalyst and a method for synthesizing gas into ethylene.
  • Ethylene is a very important basic chemical raw material and one of the largest chemical products in the world.
  • the ethylene industry is the core of the petrochemical industry and plays an important role in the national economy.
  • the lower olefin refers to an olefin having a carbon number of 4 or less.
  • Low-carbon olefins represented by ethylene and propylene are very important basic organic chemical raw materials.
  • China's ethylene industry has developed rapidly and has an important position in the world ethylene market.
  • the low-carbon olefins market has been in short supply for a long time.
  • the production of ethylene mainly uses naphtha, light diesel oil cracking petrochemical route or ethane cracking technology.
  • the conversion of coal, renewable materials, etc. into syngas, and the use of syngas as a raw material to produce olefins in one step provides an alternative to the production of ethylene by naphtha cracking technology.
  • the direct synthesis of low-carbon olefins by one-step synthesis gas is a process in which carbon monoxide and hydrogen are directly reacted by a Fischer-Tropsch synthesis reaction to produce a low-carbon olefin having a carbon number of 4 or less. The process does not need to be carried out like an indirect process. Syngas is further prepared from methanol or dimethyl ether to simplify the process and greatly reduce investment.
  • a high activity (CO conversion 90%) and selectivity (low carbon olefin selectivity 66%) can be obtained at a reaction pressure of 1.0 to 5.0 MPa and a reaction temperature of 300 to 400 ° C in a synthesis gas.
  • the Fe/activated carbon catalyst prepared by using the vacuum impregnation method to prepare manganese, copper, zinc silicon, potassium and the like as an auxiliary agent for the synthesis of low-carbon olefins in the synthesis gas, in the absence of raw material gas circulation Under the conditions, the CO conversion rate is 96%, and the selectivity of the low-carbon olefin in the hydrocarbon is 68%.
  • the catalyst reported above uses metal iron or iron carbide as the active component, and the reaction follows the chain growth reaction mechanism of the metal surface.
  • the selectivity of the product low olefin is low, especially the selectivity of a single product such as ethylene is less than 30%.
  • researcher Sun Yuhan and researcher Zhong Liangshu of Shanghai Institute of Advanced Studies reported a preferential exposure to [101] and [020] manganese-assisted cobalt-based catalysts, achieving a CO. conversion of 31.8% and a low carbon olefin of 60.8%.
  • Selective and 5% selectivity to methane is less than 20%.
  • the invention solves the problem: overcoming the deficiencies of the prior art, and providing a catalyst and a method for directly converting ethylene into ethylene, the catalyst of the invention can directly convert the synthesis gas into a low-carbon olefin, and the selectivity of the single product ethylene Can be as high as 75-80%.
  • the technical scheme of the invention is: a catalyst, which is compounded by mechanical mixing of component A and component B, the active component of component A is metal oxide, and component B is molecular sieve of MOR topology, and its characteristics are characterized.
  • the B component the B-acid content of the molecular sieve of the MOR topology is 8-mmol/g-0.6 mmol/g.
  • the B-acid content of the molecular sieve 8-membered ring cage of the MOR topology is preferably 0.1-0.6 mmol/g, more preferably 0.25-0.6 mmol/g.
  • the B acid is a protonic acid in the molecular sieve framework, and its characteristics and content can be determined by infrared spectroscopy or nuclear magnetic resonance.
  • the B acid sites in different channels correspond to different vibration wavenumber ranges in the infrared spectrum (according to the literature N. Cherkasov et al./Vibrational Spectroscopy 83 (2016) 170-179).
  • the weight ratio between the active ingredient and the B component in component A is between 0.1 and 20 times, and the weight ratio is preferably 0.3-8;
  • the metal oxide is composed of crystal grains having a size of 5-30 nm, and a large amount of oxygen holes exist in a distance from the surface of the crystal grains to a depth of 0.3 nm in the inner direction of the crystal grains, that is, the molar amount of oxygen atoms accounts for a theoretical stoichiometric ratio of oxygen moles.
  • the molar amount of the oxygen atom is from 80% to 10%, more preferably from 60% to 10%, most preferably from 50% to 10%, based on the theoretical stoichiometric oxygen molar content; the surface oxygen vacancy is defined as (1)
  • the molar amount of oxygen atoms is in the stoichiometric stoichiometric oxygen content, and the corresponding oxygen vacancy concentration is preferably from 20 to 90%, more preferably from 40 to 90%, most preferably from 50 to 90%.
  • a dispersant is further added to the component A, and the dispersant is one or two of Al 2 O 3 , SiO 2 , Cr 2 O 3 , ZrO 2 , TiO 2 , and Ga 2 O 3 , and the metal oxide is dispersed in the dispersion.
  • the dispersant is contained in the component A in an amount of 0.05 to 90% by weight, preferably 0.05 to 25% by weight, the balance being a metal oxide.
  • the MOR topology is an orthorhombic system having a one-dimensional channel structure with elliptical through-channels parallel to each other, comprising an 8-ring pocket and a 12-ring one-dimensional aperture; [ATLAS OF ZEOLIE FRAMEWORK TYPES, Ch. Baerlocher Et.al., 2007, Elsevier.].
  • the skeleton element composition of the molecular sieve having the MOR topology may be Si-Al-O, Ga-Si-O, Ga-Si-Al-O, Ti-Si-O, Ti-Al-Si-O, Ca-.
  • the molar ratio of (CaO + SiO2) to (Al2O3 + Ga2O3 + TiO2) is 4-110.
  • the metal oxide is prepared by immersing the metal oxide in the etchant solution by using one or more of etchants such as oleic acid, urotropine, ethylenediamine, ammonia, and hydrazine hydrate;
  • etchants such as oleic acid, urotropine, ethylenediamine, ammonia, and hydrazine hydrate
  • the suspension is heated at 100-150 ° C for 30-90 minutes, and then taken out by washing and filtered to obtain a metal oxide material having a large amount of surface oxygen holes; the filter is dried and reduced in an atmosphere, and the atmosphere is inert or inert.
  • a mixture of a gas and a reducing atmosphere the inert gas being one or more of N 2 , He and Ar, and the reducing atmosphere being one or more of H 2 and CO, and an inert gas and a reducing property in the mixed gas.
  • the volume ratio of the gas is from 100/10 to 0/100, the treatment is for 0.5 to
  • the method for obtaining more B-acid in the 8-ring cage is: ion exchange of MOR by multiple ammonium nitrate or ammonium chloride to ensure complete conversion of alkali metal ions in the 8-ring cage to B acid, and additionally by using The appropriate amount of pyridine selectively occupies the position of the 12-ring channel, and then aluminum nitrate is used to repair the aluminum in the 8-ring cage to obtain more B acid sites.
  • the mechanical mixing may be carried out by one or more of mechanical stirring, ball milling, shaker mixing, and mechanical grinding.
  • a method for directly converting ethylene into ethylene by using synthesis gas as a reaction raw material, and performing a conversion reaction on a fixed bed or a moving bed, and the catalyst used is the above catalyst.
  • the pressure of the synthesis gas is from 0.5 to 10 MPa, preferably from 1 to 8 MPa, more preferably from 2 to 8 MPa; the reaction temperature is from 300 to 600 ° C, preferably from 300 to 450 ° C; and the space velocity is from 300 to 10000 h -1 , preferably 500 - 9000h -1 , more preferably 500-6000h -1 .
  • the reaction synthesis gas has a H 2 /CO molar ratio of from 0.2 to 3.5, preferably from 0.3 to 2.5.
  • the bifunctional composite catalyst is used for one-step direct conversion of synthesis gas to ethylene or C2-C4 low-carbon olefins, wherein the selectivity of ethylene reaches 75-80%, and the selectivity of by-product methane is also low ( ⁇ 15%). .
  • the present invention is different from the conventional methanol-made low-carbon olefin technology (abbreviated as MTO), and realizes a direct conversion of synthesis gas to ethylene.
  • MTO methanol-made low-carbon olefin technology
  • the ethylene single product in the product of the invention has high selectivity, can reach 75-80%, and has high space-time yield, and the product is easy to be separated, and has a good application prospect.
  • the catalyst of the present invention is different from the aforementioned patent application 201610600945.6 in that the B acid content of the 8-membered ring cage of the component B in the catalyst of the present invention is 0.01 mmol/g-0.6 mmol/g, and the catalytic synthesis gas conversion is single.
  • the selectivity of the component ethylene is as high as 75-80%, and the catalyst in the aforementioned 201610600945.6 cannot satisfy the condition, so that the catalytic reaction results in a wide product with an ethylene selectivity of less than 75%.
  • the above suspension was heated, and then taken out by washing and filtered to obtain a nano-ZnO material having a large amount of surface oxygen holes.
  • the mass ratio of catalyst to etchant is 1:3.
  • the mass ratio of oleic acid to urotropine is 1:1, there is no solvent, the mass ratio of oleic acid-5wt% hydrazine hydrate is 95:5, no solvent; specific processing conditions include etchant, temperature, treatment time and atmosphere The types are shown in Table 1 below.
  • the product obtained above is subjected to centrifugation or filtration, washed with deionized water, dried or dried and reduced in an atmosphere, and the atmosphere is an inert gas or a mixture of an inert gas and a reducing atmosphere, and the inert gases are N 2 , He and Ar.
  • One or more of the reducing atmospheres are one or more of H 2 and CO, and the volume ratio of the inert gas to the reducing gas in the dry reducing mixture is 100/10 to 0/100, dry and
  • the temperature of the reduction treatment was 350 degrees Celsius and the time was 4 hours. That is, a ZnO material rich in oxygen vacancies on the surface is obtained.
  • Table 1 The specific samples and their preparation conditions are shown in Table 1 below.
  • the surface oxygen vacancy is defined as (1 - the molar amount of oxygen atoms accounts for the theoretical stoichiometric oxygen molar content).
  • the surface oxygen vacancies are in a range from a surface of the crystal grain to a depth of 0.3 nm in the inner direction of the crystal grain, and the molar amount of the oxygen atom accounts for a percentage of the theoretical stoichiometric oxygen content;
  • the MnO material having a polar surface is synthesized by etching: the preparation process is the same as (1) in the above (1) corresponding to the product of 0.480 g (12 mmol) of NaOH and (3), except that The precursor of Zn is replaced by a corresponding precursor of Mn, which may be one of manganese nitrate, manganese chloride and manganese acetate, here is nitrate Manganese acid.
  • the etching treatment process is the same as the preparation of the product ZnO 3 in (2) above, synthesizing a catalyst having a large amount of surface oxygen vacancies; the surface oxygen vacancy is 67%;
  • the etching treatment process is the same as the preparation of the product ZnO 3 in (2) above, synthesizing a catalyst having a large amount of surface oxygen vacancies; the surface oxygen vacancy is 56%;
  • Zinc nitrate, aluminum nitrate, chromium nitrate, manganese nitrate, zirconium nitrate are used as precursors, and urea is mixed with water at room temperature in the mixture; the mixture is aged, then taken out, washed, filtered and dried, and the obtained solid is in an air atmosphere.
  • the lower firing is performed to obtain a spinel oxide grown in the (110) crystal plane direction.
  • the sample is also subjected to an etching process to synthesize a catalyst having a large amount of surface oxygen vacancies; the etching treatment and the post-treatment process are as described in (2) and (3) above, and the sample has a large specific surface area and a large surface defect. It can be applied to catalytic synthesis gas conversion.
  • the etching process is the same as that of the product ZnO 3 preparation process of (2) above, synthesizing a catalyst having a large amount of surface oxygen vacancies; surface oxygen vacancies 77%, 51%;
  • a Cr 2 O 3 , Al 2 O 3 or ZrO 2 dispersed metal oxide is prepared by a precipitation deposition method using Cr 2 O 3 , Al 2 O 3 or ZrO 2 as a carrier.
  • the commercial Cr 2 O 3 , Al 2 O 3 or ZrO 2 carrier is pre-dispersed in the bottom liquid, and then zinc nitrate is used as a raw material, and the sodium hydroxide precipitation agent is mixed and precipitated at room temperature.
  • the etching process is the same as the preparation of the product ZnO 3 in (2) above, and a catalyst having a large amount of surface oxygen vacancies is synthesized (the content of the dispersant in the A component is 0.2 wt%, 10 wt%, 90 wt%, respectively). ); surface The oxygen vacancies are 25%, 30%, and 65%; the post-treatment process is the same as described in (3) above;
  • the corresponding product from top to bottom is defined as dispersed oxide 1-3;
  • Cr 2 O 3 , Al 2 O 3 or ZrO 2 can be obtained as a carrier-dispersed MnO oxide (the content of the dispersant in the catalyst A is 7 wt%, 30 wt%, 60 wt%, respectively), and the surface oxygen vacancy 22%, 47%, 68%; the corresponding product from top to bottom is defined as the dispersed oxide 4-6.
  • the MOR topology is an orthorhombic system having a one-dimensional channel structure with elliptical through-channels parallel to each other, including 8-ring and 12-ring parallel one-dimensional through-channels, and 12-ring main channel sides 8 Ring pockets are connected.
  • Na-MOR was taken, mixed with a 1 mol/L ammonium chloride solution, stirred at 90 ° C for 3 hours, washed, dried, continuously carried out 4 times, and calcined at 450 degrees for 6 hours to obtain a hydrogen-type mordenite.
  • the prepared molecular sieve was treated by pyridine adsorption treatment at 100 Torr for 2 h, and treated in an inert gas at 100 ° C for 1 h, then using an aluminum nitrate solution (concentration: 1 M), stirring at room temperature for 8 h, stirring at 60 ° C for 2 h, and then centrifuging once, 140 After drying at °C, the air was calcined at 380 ° C for 1 h. The mixture was stirred with a 1 M ammonium nitrate solution at 80 ° C for 3 h. Centrifugal washing. Dry at 140 ° C. In the above process, titanium sulfate or gallium nitrate may be used instead of aluminum nitrate.
  • the skeleton element composition of the molecular sieve having the MOR topology prepared according to the above process may be Si-Al-O, Ga-Si-O, Ga-Si-Al-O, Ti-Si-O, Ti-Al-Si-O.
  • Adding the required proportion of the A component and the B component to the container, and utilizing one or more of the pressing force, the impact force, the cutting force, the friction force, etc. generated by the high speed movement of the material and/or the container The purpose of separation, crushing, mixing, etc., to achieve the conversion of mechanical energy, thermal energy and chemical energy through the modulation temperature and the carrier gas atmosphere, further adjust the interaction between different components.
  • a mixing temperature of 20-100 ° C can be set, which can be carried out in an atmosphere or directly in air.
  • the atmosphere is: a) nitrogen and/or inert gas, b) a mixture of hydrogen and nitrogen and/or inert gas.
  • the volume of hydrogen in the mixed gas is 5 to 50%
  • c) a mixture of CO and nitrogen and/or an inert gas wherein the volume of CO in the mixed gas is 5 to 20%
  • a mixture of inert gases wherein the volume of O 2 in the mixed gas is 5-20%
  • the inert gas is one or more of helium, argon, and helium.
  • Mechanical agitation In the agitation tank, mix the A component and the B component with a stir bar, and adjust the A component and the B group by controlling the stirring time (5 min-120 min) and the rate (30-300 rpm). The degree of mixing and relative distance of the points.
  • Ball Milling Using the abrasive and the catalyst to tumbling at high speed in the grinding tank, the catalyst is strongly impacted and crushed to achieve the function of dispersing and mixing the A component and the B component.
  • the abrasive material can be stainless steel, agate, quartz, size range: 5mm-15mm
  • the catalyst mass ratio range: 20-100:1
  • Shaker mixing method premixing component A and component B, and loading into container; mixing of component A and component B by controlling reciprocating oscillation or circumferential oscillation of shaker; adjusting oscillation speed (range) : 1-70 rpm) and time (range: 5 min - 120 min) to achieve uniform mixing and adjust the relative distance.
  • a fixed bed reaction is exemplified, but the catalyst is also suitable for use in a moving bed reactor.
  • the device is equipped with a gas mass flow meter and an online product analysis chromatograph (the exhaust gas of the reactor is directly connected to the chromatographic quantitative valve for periodic real-time sampling analysis).
  • the selectivity of low-carbon olefins (one or more of ethylene propylene butene) in the product can reach 80-90%, and the conversion rate of raw materials is 10-60%; since the surface hydrogenation activity of the catalyst metal complex is not high, avoiding A large amount of methane is produced, and the selectivity of methane is low, wherein the selectivity of ethylene reaches 75-80%.
  • the catalyst used in Comparative Example 3 was A component metal ZnCo+MOR3, ZnCo molar ratio was 1:1, ZnCo was equal to 1:1 mass ratio, and the remaining parameters and mixing process were the same as Catalyst C.
  • the catalyst used in Comparative Example 4 was a surface oxygen-free hole TiO 2 + MOR3, and the remaining parameters and mixing process were the same as Catalyst C.
  • the molecular sieve used in the catalyst used in Comparative Example 5 was commercially available from the Nankai University Catalyst Plant, SAPO-34.
  • the results of the reaction of Comparative Examples 5 and 6 indicate that the topological structure of MOR is crucial for the selective modulation of the product.
  • the pore structure of SAPO34 mainly produces more C3 products, the selectivity of ethylene is not high, and the pore structure of ZSM5 is suitable for the formation of C4 hydrocarbons. Hydrocarbons of even longer carbon chain.
  • the 8-membered ring structure of MOR is more suitable for the main production of ethylene, and has the advantageous properties not possessed by other structural molecular sieves.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

一种将合成气直接转化制乙烯的催化剂,所述催化剂为复合催化剂,由A组分和B组分以机械混合方式复合在一起,A组分的活性成份为金属氧化物,B组分为MOR结构的分子筛,该MOR拓扑结构的分子筛八元环笼内B酸含量为0.01mmol/g-0.6mmol/g;以及使用该催化剂将合成气直接转化制乙烯的方法。

Description

一种催化剂及合成气直接转化制乙烯的方法 技术领域
本发明属于合成气制备低碳烯烃,具体涉及一种催化剂及合成气转化制乙烯的方法。
背景技术
乙烯是非常重要的基本化工原料,是世界上产量最大的化学产品之一,乙烯工业是石油化工产业的核心,在国民经济中占有重要的地位。低碳烯烃是指碳原子数小于或等于4的烯烃。以乙烯、丙烯为代表的低碳烯烃是非常重要的基本有机化工原料,随着我国经济的快速增长,我国乙烯行业发展迅猛,在世界乙烯市场占有重要的地位。长期以来,低碳烯烃市场供不应求。目前,乙烯的生产主要采用石脑油、轻柴油裂解的石油化工路线或者乙烷裂解的技术,由于我国石油长期依赖进口,我国的能源安全存在较大风险,急需开发出不依赖石油的乙烯生产技术。将煤炭、可再生材料等转化为合成气,再以合成气为原料一步生产烯烃的路线为石脑油裂解技术生产乙烯提供了一条替代方案。合成气一步法直接制取低碳烯烃就是一氧化碳和氢在催化剂作用下,通过费托合成反应直接制得碳原子数小于或等于4的低碳烯烃的过程,该工艺无需像间接法工艺那样从合成气经甲醇或二甲醚,进一步制备烯烃,简化工艺流程,大大减少投资。
合成气通过费托合成直接制取低碳烯烃,一直是合成气直接生产烯烃的研究热点之一。中科院大连化学物理研究所公开的专利CN1083415A中,用MgO等IIA族碱金属氧化物或高硅沸石分子筛(或磷铝沸石)担载的铁-锰催化剂体系,以强碱K或Cs离子作助剂,在合成气制低碳烯烃反应压力为1.0~5.0MPa,反应温度300~400℃下,可获得较高的活性(CO转化率90%)和选择性(低碳烯烃选择性66%)。北京化工大学所申报的专利ZL03109585.2中,采用真空浸渍法制备锰、铜、锌硅、钾等为助剂的Fe/活性炭催化剂用于合成气制低碳烯烃反应,在无原料气循环的条件下,CO转化率96%,低碳烯烃在碳氢化合物中的选择性68%。上述报道的催化剂是采用金属铁或者碳化铁为活性组分,反应遵循金属表面的链增长反应机理,产物低碳烯烃的选择性较低,尤其单种产物如乙烯的选择性低于30%。2016年,上海高等研究院孙予罕研究员及钟良枢研究员报道了一种择优暴露[101]及[020]锰助碳化钴基催化剂,实现了31.8%的CO转化率下,60.8%的低碳烯烃选择性,且甲烷选择性5%。但是乙烯单一选择性却低于20%。中国科学院大连化学物理研究所包信和院士和潘秀莲研究员报道了氧化铝负载的ZnCr2O4氧化物与多级孔SAPO-34分子筛复合双功能催化剂(Jiao et al.,Science 351(2016)1065-1068),实现了CO转化率17%时,低碳烯烃80%的选择性,但乙烯的选择性低于30%。在他们申请的专利 201610600945.6中,使用含有氧空穴与MOR分子筛复合的双功能催化剂用于合成气一步制烯烃反应,将乙烯的选择性提高至30-75%,但副产物中碳原子数超过3的烃类较多,影响了该技术的应用。
发明内容
本发明技术解决问题:克服现有技术的不足,提供一种催化剂及合成气直接转化制乙烯的方法,所发明的催化剂可催化合成气直接转化生成低碳烯烃,并且单种产物乙烯的选择性可高达75-80%。
本发明的技术方案为:一种催化剂,由A组分和B组分以机械混合方式复合在一起,A组分的活性成份为金属氧化物,B组分为MOR拓扑结构的分子筛,其特征在于:B组分中,所述MOR拓扑结构的分子筛8元环笼内B酸含量为0.01mmol/g-0.6mmol/g。
所述MOR拓扑结构的分子筛8元环笼内B酸含量优选0.1-0.6mmol/g,更优选0.25-0.6mmol/g。所述B酸为分子筛骨架中质子酸,其特征和含量可由红外光谱或者核磁共振方法确定。不同孔道内B酸位在红外光谱中对应着不同振动波数范围(依据文献N.Cherkasov et al./Vibrational Spectroscopy 83(2016)170–179)。
A组分中的活性成份与B组分之间的重量比在0.1-20倍范围之间,重量比优选为0.3-8;
金属氧化物由大小为5-30nm的晶粒构成,从晶粒表面至晶粒内部方向深度为0.3nm的距离范围内,存在大量氧空穴,即氧原子摩尔量占理论化学计量比氧摩尔含量的80%以下,优选氧原子摩尔量占理论化学计量比氧摩尔含量的80%-10%,更优选为60-10%,最优选为50-10%;表面氧空位定义为(1-氧原子摩尔量占理论化学计量比氧摩尔含量),对应的氧空位浓度优选为20-90%,更优选为40-90%,最优选为50-90%。
A组分中还添加有分散剂,分散剂为Al2O3、SiO2、Cr2O3、ZrO2、TiO2、Ga2O3中的一种或二种,金属氧化物分散于分散剂中,分散剂于A组分中的含量在0.05-90wt%,优选0.05-25wt%,其余为金属氧化物。
所述MOR拓扑结构是一种正交晶系,具有相互平行的椭圆形直通孔道的一维孔道结构,含有8圆环口袋与12圆环一维孔道;[ATLAS OF ZEOLIE FRAMEWORK TYPES,Ch.Baerlocher et.al.,2007,Elsevier.]。
所述具有MOR拓扑结构的分子筛的骨架元素组成可以是Si-Al-O、Ga-Si-O、Ga-Si-Al-O、Ti-Si-O、Ti-Al-Si-O、Ca-Al-O、Ca-Si-Al-O中的一种或二种以上。
(CaO+SiO2)与(Al2O3+Ga2O3+TiO2)的摩尔比是4-110。
金属氧化物的制备过程是:采用油酸、乌洛托品、乙二胺、氨水、水合肼等刻蚀剂中的一种或二种以上,将金属氧化物浸泡于刻蚀剂溶液中;将上述悬浮物于100-150℃下加热30-90分钟,然后取出洗涤过滤,得到具有大量表面氧空穴的金属氧化物材料;将过滤物在气氛中干燥还原处理,气氛为惰性气体或者惰性气体与还原性气氛混合气,惰性气体为N2、He和Ar中的一种或二种以上,还原性气氛为H2、CO的一种或二种以上,混合气中惰性气体与还原性气体的体积比为100/10~0/100,处理0.5-5小时,处理温度为20-350℃。
所述获得更多8圆环笼内B酸的方法是:多次硝酸铵或氯化铵对MOR进行离子交换,保证8圆环笼内的碱金属离子完全转换为B酸,另外通过先使用适量吡啶选择性占据12圆环孔道位置,再使用硝酸铝,对8圆环笼内进行补铝处理,获得更多B酸位。
所述机械混合可采用机械搅拌、球磨、摇床混合、机械研磨中的一种或二种以上进行复合。
一种合成气直接转化制乙烯的方法,涉及以合成气为反应原料,在固定床或移动床上进行转化反应,所采用的催化剂为上述的催化剂。
合成气的压力为0.5-10MPa,优选为1-8MPa,更优选为2-8MPa;反应温度为300-600℃,优选为300-450℃;空速为300-10000h-1,优选为500-9000h-1,更优选为500-6000h-1
所述反应用合成气H2/CO摩尔比为0.2-3.5,优选为0.3-2.5。
所述的双功能复合催化剂用于合成气一步法直接转化制乙烯或者C2-C4的低碳烯烃,其中乙烯选择性达到75-80%,同还时副产物甲烷选择性低(<15%)。
本发明的有益效果:
(1)本发明与传统的甲醇制低碳烯烃技术(简称为MTO)不同,实现了一步直接将合成气转化制乙烯。
(2)本发明产物中乙烯单一产物选择性高,可达到75-80%,且时空收率高,产物易于分离,具有很好的应用前景。
(3)本发明催化剂与前述的专利申请201610600945.6不同之处在于,本发明催化剂中组份B的8元环笼内B酸含量为0.01mmol/g-0.6mmol/g,催化合成气转化得到单一组份乙烯的选择性高达75-80%,而前述201610600945.6中催化剂不能满足该条件,因此其催化反应结果是产物较宽,乙烯选择性低于75%。
具体实施方式
下面通过实施例对本发明做进一步阐述,但是本发明的权利要求范围不受这些实施例的限制。同时,实施例只是给出了实现此目的的部分条件,但并不意味着必须满足这些条件才可以达到此目的。
实施例1
一、A组分的制备
(一)刻蚀法合成具有极性表面的ZnO材料:
(1)分别称取4份、每份0.446g(1.5mmol)Zn(NO3)2·6H2O于4个容器中,再分别称取0.300g(7.5mmol)、0.480g(12mmol)、0.720g(18mmol)、1.200g(30mmol)NaOH依次加入上述4个容器中,再各量取30ml去离子水加入到4个容器中,搅拌0.5h以上使溶液混合均匀。升温至温度为160℃,反应时间为20h,沉淀分解成氧化锌;自然冷却至室温。反应液离心分离收集离心分离后的沉淀物,用去离子水洗涤2次获得ZnO氧化物;
取其中0.480g(12mmol)NaOH用量的产物进行下述处理:
(2)采用油酸、乌洛托品、乙二胺、氨水、水合肼等刻蚀剂,在常温下与ZnO氧化物超声混匀,ZnO氧化物浸泡于刻蚀剂溶液中,刻蚀剂与氧化锌形成络合或直接还原反应;
将上述悬浮物加热,然后取出洗涤过滤,得到具有大量表面氧空穴的纳米ZnO材料。
表1中:催化剂与刻蚀剂的质量比为1:3。油酸与乌洛托品的质量比为1:1,没有溶剂,油酸-5wt%水合肼的质量比为95:5,没有溶剂;具体处理条件包括刻蚀剂、温度、处理时间和气氛种类如下表1所示。
(3)干燥或干燥和还原
上述获得的产物经过离心或者过滤,用去离子水清洗以后,在气氛中进行干燥或干燥和还原处理,气氛为惰性气体或者惰性气体与还原性气氛混合气,惰性气体为N2、He和Ar中的一种或二种以上,还原性气氛为H2、CO的一种或二种以上,干燥还原混合气中惰性气体与还原性气体的体积比为100/10~0/100,干燥和还原处理的温度为350摄氏度,时间为4h。即得到表面富含氧空位的ZnO材料。具体样品及其制备条件如下表1。其中表面氧空位定义为(1-氧原子摩尔量占理论化学计量比氧摩尔含量)。
表1 ZnO材料的制备及其参数性能
Figure PCTCN2017115536-appb-000001
所述表面氧空位为从晶粒表面至晶粒内部方向深度为0.3nm的距离范围内,氧原子摩尔量占理论化学计量比氧摩尔含量的百分数;
作为对比例,未经第(2)步刻蚀的表面无氧空位的ZnO 4,以及将Zn完全还原的金属Zn 5;
(二)、刻蚀法合成具有极性表面的MnO材料:制备过程同上述(一)中的(1)对应于0.480g(12mmol)NaOH用量的产物和(3)所述,不同之处在于将Zn的前驱体换成了Mn的对应的前驱体,可为硝酸锰、氯化锰、醋酸锰中的一种,在此为硝 酸锰。
刻蚀处理过程同上述(一)中(2)的产物ZnO 3制备过程所述,合成具有大量表面氧空位的催化剂;表面氧空位67%;
对应产物定义为MnO 1;
(三)刻蚀法合成具有极性表面的CeO2材料:制备过程同上述(一)中的(1)对应于0.480g(12mmol)NaOH用量的产物和(3)所述,不同之处在于将Zn的前驱体换成了Ce的对应的前驱体,可为硝酸铈、氯化铈、醋酸铈中的一种,在此为硝酸铈。
刻蚀处理过程同上述(一)中(2)的产物ZnO 3制备过程所述,合成具有大量表面氧空位的催化剂;表面氧空位56%;
对应产物定义为CeO 1;
(四)合成具有高比表面积、高表面能的纳米ZnCr2O4、ZnAl2O4、MnCr2O4、MnAl2O4,MnZrO4尖晶石:
采用硝酸锌、硝酸铝、硝酸铬、硝酸锰、硝酸锆为前驱体,与尿素在室温下于水中相互混合;将上述混合液陈化,然后取出洗涤、过滤和干燥,所得的固体在空气气氛下焙烧,获得沿(110)晶面方向生长的尖晶石氧化物。样品也经过刻蚀法处理,合成具有大量表面氧空位的催化剂;刻蚀处理和后处理过程同上述(一)中(2)和(3)所述,该样品具有大比表面积、表面缺陷多,可应用于催化合成气转化。
具体样品及其制备条件如下表2。同样,表面氧空位定义为(1-氧原子摩尔量占理论化学计量比氧摩尔含量)。
表2 尖晶石材料的制备及其性能参数
Figure PCTCN2017115536-appb-000002
Figure PCTCN2017115536-appb-000003
(五)合成具有高比表面积、高表面能的纳米FeAl2O4、CoAl2O4尖晶石:制备过程同上述(四)中的(2)所述,不同之处在于将Zn的前驱体换成了Fe或Co的对应的前驱体,可为硝酸铁、氯化铁、柠檬酸铁中的一种或者硝酸钴、氯化钴、醋酸钴中的一种,在此为硝酸铁、硝酸钴。
刻蚀处理过程同上述(一)中(2)的产物ZnO 3制备过程所述,合成具有大量表面氧空位的催化剂;表面氧空位77%、51%;
对应产物定义为尖晶石6、尖晶石7;
(六)Cr2O3、Al2O3或ZrO2分散的金属氧化物
以Cr2O3、Al2O3或ZrO2为载体,沉淀沉积法制备Cr2O3、Al2O3或ZrO2分散的金属氧化物。以分散ZnO氧化物的制备为例,将商业Cr2O3、Al2O3或ZrO2载体预先分散于底液中,然后采用硝酸锌为原料,与氢氧化钠沉淀剂在室温下混合沉淀,Zn2+的摩尔浓度为0.1M,Zn2+与沉淀剂的摩尔份数比为1:6;然后在120℃下陈化24小时,获得Cr2O3、Al2O3或ZrO2为载体分散的ZnO氧化物。
刻蚀过程同上述(一)中(2)的产物ZnO 3制备过程所述,合成具有大量表面氧空位的催化剂(分散剂于A组分中的含量依次为0.2wt%、10wt%、90wt%);表面 氧空位25%、30%、65%;后处理过程同上述(一)中(3)所述;
从上到下对应产物定义为分散氧化物1-3;
以同样的方法,可以获得Cr2O3、Al2O3或ZrO2为载体分散的MnO氧化物(分散剂于催化剂A中的含量依次为7wt%、30wt%、60wt%),表面氧空位22%、47%、68%;从上到下对应产物定义为分散氧化物4-6。
二、B组分(MOR拓扑结构的分子筛)的制备
所述MOR拓扑结构是一种正交晶系,具有相互平行的椭圆形直通孔道的一维孔道结构,含有8圆环与12圆环平行一维直通孔道,12圆环主孔道侧边存在8圆环口袋连通。
具体制备过程为:
按照n(SiO2)/n(Al2O3)=15,n(Na2O)/n(SiO2)=0.2,n(H2O)/n(SiO2)=26.
将硫酸铝与氢氧化钠溶液混合,然后加入硅溶胶,搅拌1h得到均一相的初始凝胶,然后将其转移到高压合成釜中,180℃静态晶化24h后骤冷、洗涤、干燥,即得到丝光沸石样品,标记为Na-MOR。
取Na-MOR,将其与1mol/L的氯化铵溶液混合,在90℃下搅拌3h,洗涤,烘干,连续进行4次,450度焙烧6h,得到氢型丝光沸石。
将制备好的分子筛,在100Torr的吡啶吸附处理2h,在惰性气体中100℃中处理1h后,使用硝酸铝溶液(浓度:1M),室温搅拌8h,60℃搅拌2h,后离心1次,140℃烘干后380℃空气焙烧1h。再使用1M硝酸铵溶液,80℃搅拌3h。离心洗涤。后140℃烘干。上述的过程中,也可以使用硫酸钛或硝酸镓代替硝酸铝。
按上述过程制备的具有MOR拓扑结构的分子筛的骨架元素组成可以是Si-Al-O、Ga-Si-O、Ga-Si-Al-O、Ti-Si-O、Ti-Al-Si-O、Ca-Al-O、Ca-Si-Al-O中的一种;
部分骨架的O元素上连接H,对应产物依次定义为MOR1-8;
表3 具有MOR拓扑结构的分子筛的制备及其性能参数
Figure PCTCN2017115536-appb-000004
Figure PCTCN2017115536-appb-000005
Figure PCTCN2017115536-appb-000006
三、催化剂的制备
将所需比例的A组分和B组分加入容器中,利用这些物料和/或容器的高速运动产生的挤压力、撞击力、裁剪力、摩擦力等中的一种或两种以上作用实现分离、破碎、混匀等目的,通过调变温度与载气气氛实现机械能、热能与化学能的转换,进一步调节不同组分间的相互作用。
机械混合过程中,可以设置混合温度20-100℃,可以在气氛中或者直接在空气中进行,气氛为:a)氮气和/或惰性气体,b)氢气与氮气和/或惰性气体的混合气,其中氢气于混合气中的体积为5~50%,c)CO与氮气和/或惰性气体的混合气,其中CO于混合气中的体积为5~20%,d)O2与氮气和/或惰性气体的混合气,其中O2于混合气中的体积为5-20%,所述惰性气体为氦气、氩气、氖气中的一种或两种以上。
机械搅拌:在搅拌槽中,采用搅拌棒将A组分和B组分进行混合,通过控制搅拌时间(5min-120min)和速率(30-300转/min),可以调节A组分和B组分的混合程度和相对距离。
球磨:利用磨料与催化剂在研磨罐内高速翻滚,对催化剂产生强烈冲击、碾压,达到分散、混合A组分和B组分的作用。通过控制磨料(材质可以是不锈钢、玛瑙、石英。尺寸范围:5mm-15mm)与催化剂的比例(质量比范围:20-100:1),可以调节催化剂的粒度及相对距离。
摇床混合法:将A组分和B组分预混合,并装入容器中;通过控制摇床的往复振荡或圆周振荡,实现A组分和B组分的混合;通过调节振荡速度(范围:1-70转/分)和时间(范围:5min-120min),实现均匀混合并调节其相对距离。
机械研磨法:将A组分和B组分预混合,并装入容器中;在一定的压力(范围:5公斤-20公斤)下,通过研具与混合的催化剂进行相对运动(速率范围:30-300转 /min),达到调节催化剂粒度、相对距离和实现均匀混合的作用。
具体的催化剂制备及其参数特征如表6所示。
表4催化剂的制备及其参数特征
Figure PCTCN2017115536-appb-000007
Figure PCTCN2017115536-appb-000008
Figure PCTCN2017115536-appb-000009
催化反应实例
以固定床反应为例,但是催化剂也适用于移动床反应器。该装置配备气体质量流量计、在线产物分析色谱(反应器的尾气直接与色谱的定量阀连接,进行周期实时采样分析)。
将上述本发明的催化剂2g,置于固定床反应器中,使用Ar置换反应器中的空气,然后再在H2气氛中升温至300℃,切换合成气(H2/CO摩尔比=0.2-3.5),合成气的 压力为0.5-10MPa,升温至反应温度300-600℃,调节反应原料气的空速至500-8000ml/g/h。产物由在线色谱检测分析。
改变温度、压力和空速,可以改变反应性能。低碳烯烃(乙烯丙烯丁烯的一种或二种以上)在产物中的选择性可达80~90%,原料转化率10-60%;由于催化剂金属复合物表面加氢活性不高,避免了甲烷的大量生成,甲烷选择性低,其中乙烯的选择性达到75-80%。
表5催化剂的应用及其效果
Figure PCTCN2017115536-appb-000010
Figure PCTCN2017115536-appb-000011
Figure PCTCN2017115536-appb-000012
对比例3采用的催化剂为A组分金属ZnCo+MOR3,ZnCo摩尔比1:1,ZnCo与分1质量比1:1,其余参数及混合过程等均同催化剂C。
对比例4采用的催化剂为表面无氧空穴TiO2+MOR3,其余参数及混合过程等均同催化剂C。
对比例5采用的催化剂中分子筛为购自南开大学催化剂厂的商品SAPO-34。
对比例6采用的催化剂中分子筛为购自南开大学催化剂厂的商品ZSM-5,全微孔结构,Si/Al=30。
对比例5和6的反应结果表明,MOR的拓扑结构对产物选择性的调变至关重要,SAPO34的孔结构主要生成C3产物较多,乙烯选择性不高,而ZSM5孔结构适合生成C4烃类甚至更长碳链的烃类。相比之下,MOR的8元环结构更适合主产乙烯,具有其他结构分子筛所不具有的优势特性。
由上表可以看出MOR分子筛的8元环中的LF类B酸中心的含量明显影响乙烯的选择性。对应催化剂实施结果C、D、J、K、Q、R、S、T、Z4、Z5、Z7、Z8、Z9表现出优势的乙烯选择性及时空收率,因为它们同时满足最优的氧空穴及8元环笼内 酸的含量,且二者质量比符合要求。其他样品,不能同时满足上述要求,所以得不到高的时空收率及选择性,说明了这种双功能催化剂中两种组分的含量及匹配关系对性能非常重要。
提供以上实施例仅仅是为了描述本发明的目的,而并非要限制本发明的范围。本发明的范围由所附权利要求限定。不脱离本发明的精神和原理而做出的各种等同替换和修改,均应涵盖在本发明的范围之内。

Claims (10)

  1. 一种催化剂,由A组分和B组分构成,A组分和B组分以机械混合方式复合在一起,A组分的活性成份为金属氧化物,B组分为MOR拓扑结构的分子筛,其特征在于:B组分中,所述MOR拓扑结构的分子筛八元环笼内的B酸含量为0.01mmol/g-0.6mmol/g。
  2. 根据权利要求1所述的催化剂,其特征在于:所述MOR拓扑结构的分子筛八元环笼内B酸含量优选0.1-0.6mmol/g,更优选0.25-0.6mmol/g。
  3. 根据权利要求1所述的催化剂,其特征在于:所述A组分的活性成份中,金属氧化物为MnO、MnCr2O4、MnAl2O4、MnZrO4、ZnO、ZnCr2O4、ZnAl2O4、CeO2、CoAl2O4、FeAl2O4中的一种或二种以上;优选为MnO、MnCr2O4、MnAl2O4、MnZrO4、ZnAl2O4、CeO2、CoAl2O4、FeAl2O4中的一种或二种以上;更优选为MnO、MnCr2O4、MnAl2O4,MnZrO4、CeO2、CoAl2O4、FeAl2O4中的一种或二种以上。
  4. 根据权利要求1所述的催化剂,其特征在于:所述A组分中的活性成份与B组分之间的重量比为0.1-20,重量比优选为0.3-8。
  5. 根据权利要求1-4任一项所述的催化剂,其特征在于:所述金属氧化物从晶粒表面至晶粒内部方向深度为0.3nm的距离范围内,表面氧空位为20%以上,优选为20-90%,更优选为40-90%,最优选为50-90%。
  6. 根据权利要求1-4任一项所述的催化剂,其特征在于:所述A组分中还添加有分散剂,分散剂为Al2O3、SiO2、Cr2O3、ZrO2、TiO2、Ga2O3中的一种或二种以上,金属氧化物分散于分散剂中,分散剂于A组分中的含量在0.05-90wt%,优选0.05-25wt%,其余为金属氧化物。
  7. 根据权利要求1-4任一项所述的催化剂,其特征在于:所述MOR拓扑结构分子筛的骨架元素组成是Si-Al-O、Ga-Si-O、Ga-Si-Al-O、Ti-Si-O、Ti-Al-Si-O、Ca-Al-O、Ca-Si-Al-O中的一种或二种以上;
  8. 一种合成气直接转化制乙烯的方法,其特征在于:以合成气为反应原料,在固定床或移动床上进行转化反应,所采用的催化剂为权利要求1-7任一所述的催化剂。
  9. 根据权利要求8所述的方法,其特征在于:所述合成气的压力为0.5-10MPa,优选为1-8MPa,更优选为2-8MPa;反应温度为300-600℃,优选为300-450℃;空速为300-10000h-1,优选为500-9000h-1,更优选为500-6000h-1
  10. 根据权利要求8所述的方法,其特征在于:所述合成气为H2/CO混合气,H2/CO摩尔比为0.2-3.5,优选为0.3-2.5。
PCT/CN2017/115536 2017-03-07 2017-12-12 一种催化剂及合成气直接转化制乙烯的方法 WO2018161670A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710129620.9A CN108568311B (zh) 2017-03-07 2017-03-07 一种催化剂及合成气直接转化制乙烯的方法
CN201710129620.9 2017-03-07

Publications (1)

Publication Number Publication Date
WO2018161670A1 true WO2018161670A1 (zh) 2018-09-13

Family

ID=63448364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115536 WO2018161670A1 (zh) 2017-03-07 2017-12-12 一种催化剂及合成气直接转化制乙烯的方法

Country Status (2)

Country Link
CN (1) CN108568311B (zh)
WO (1) WO2018161670A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111346665B (zh) * 2018-12-21 2022-10-18 中国科学院大连化学物理研究所 一种mor基双功能催化剂及合成气直接转化制乙烯的方法
CN111760586A (zh) * 2019-04-02 2020-10-13 中国科学院大连化学物理研究所 一种含杂原子的lf型b酸催化剂及合成气直接转化制乙烯的方法
CN112191278B (zh) * 2020-10-27 2023-04-07 正大能源材料(大连)有限公司 一种用于合成气直接制低碳烯烃的双功能催化剂及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1067878A (zh) * 1991-06-22 1993-01-13 中国科学院大连化学物理研究所 一种由合成气直接制取低碳烯烃反应
CN101219384A (zh) * 2007-01-08 2008-07-16 北京化工大学 一种用于合成气一步转化为低碳烯烃反应的催化剂
CN103193580A (zh) * 2013-04-07 2013-07-10 浙江大学 用负载型催化剂实现合成气一步法制备低碳烯烃的方法
CN103521253A (zh) * 2012-07-03 2014-01-22 中国石油化工股份有限公司 合成气一步法制低碳烯烃的催化剂及制备方法
CN106345514A (zh) * 2016-07-29 2017-01-25 厦门大学 一种合成气一步转化制低碳烯烃的催化剂及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005518930A (ja) * 2002-02-28 2005-06-30 エクソンモービル・ケミカル・パテンツ・インク 分子篩組成物、それらの触媒、それらの製造、及び変換法における使用
US7678955B2 (en) * 2005-10-13 2010-03-16 Exxonmobil Chemical Patents Inc Porous composite materials having micro and meso/macroporosity
CN102234212B (zh) * 2010-04-20 2014-02-05 中国石油化工股份有限公司 合成气直接转化为低碳烯烃的方法
CN102125869B (zh) * 2010-12-20 2012-12-26 中国石油大学(北京) 一种乙烷选择氧化制乙醛用催化剂及其制备方法
CN106215972B (zh) * 2016-07-29 2018-09-04 厦门大学 一种合成气一步转化制芳烃的催化剂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1067878A (zh) * 1991-06-22 1993-01-13 中国科学院大连化学物理研究所 一种由合成气直接制取低碳烯烃反应
CN101219384A (zh) * 2007-01-08 2008-07-16 北京化工大学 一种用于合成气一步转化为低碳烯烃反应的催化剂
CN103521253A (zh) * 2012-07-03 2014-01-22 中国石油化工股份有限公司 合成气一步法制低碳烯烃的催化剂及制备方法
CN103193580A (zh) * 2013-04-07 2013-07-10 浙江大学 用负载型催化剂实现合成气一步法制备低碳烯烃的方法
CN106345514A (zh) * 2016-07-29 2017-01-25 厦门大学 一种合成气一步转化制低碳烯烃的催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GOUNDER, R. ET AL.: "Catalytic Consequences of Spatial Constraints and Acid Site Location for Monomolecular Alkane Activation on Zeolites", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 131, no. 5, 15 January 2009 (2009-01-15), pages 1964 - 1967, XP055539946, ISSN: 0002-7863 *

Also Published As

Publication number Publication date
CN108568311B (zh) 2021-03-23
CN108568311A (zh) 2018-09-25

Similar Documents

Publication Publication Date Title
CN107661774B (zh) 一种催化剂及合成气直接转化制低碳烯烃的方法
JP6778821B2 (ja) 触媒及び合成ガスの直接変換による低級オレフィンの製造方法
CN108568313B (zh) 一种催化剂及一氧化碳加氢直接转化制低碳烯烃的方法
CN108970600B (zh) 一种催化剂及合成气直接转化制低碳烯烃的方法
RU2758849C1 (ru) Катализатор и способ прямой конверсии синтез-газа для получения малоуглеродистых олефинов
JP2019513541A (ja) 合成ガスを直接変換することによって芳香族炭化水素を製造するための触媒及び方法
WO2019144952A1 (zh) 一种负载催化剂及合成气直接转化制低碳烯烃的方法
WO2018214476A1 (zh) 一种碱修饰的催化剂及一氧化碳加氢反应制乙烯的方法
CN107774302B (zh) 一种催化剂及合成气直接转化制液体燃料联产低碳烯烃的方法
WO2020125487A1 (zh) 一种掺杂杂原子分子筛催化合成气高选择性制低碳烯烃的方法
WO2018214471A1 (zh) 一种双功能催化剂及一氧化碳加氢制乙烯的方法
WO2019144951A1 (zh) 一种催化剂及合成气直接转化制乙烯的方法
WO2018161670A1 (zh) 一种催化剂及合成气直接转化制乙烯的方法
WO2018219364A1 (zh) 一种催化剂及合成气直接转化制液体燃料联产低碳烯烃的方法
WO2019144953A1 (zh) 一种有机碱修饰的复合催化剂及一氧化碳加氢制乙烯的方法
WO2019144955A1 (zh) 一种含lf型b酸催化剂及合成气直接转化制乙烯的方法
CN109939669B (zh) 一种碱修饰的复合催化剂及一氧化碳加氢反应制乙烯的方法
CN112973659B (zh) 一种含sapo-17分子筛的双功能催化剂及在合成气制低碳烯烃反应中的应用
WO2020125488A1 (zh) 一种催化剂及合成气直接转化制低芳烃液体燃料的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17899797

Country of ref document: EP

Kind code of ref document: A1