WO2018214471A1 - 一种双功能催化剂及一氧化碳加氢制乙烯的方法 - Google Patents

一种双功能催化剂及一氧化碳加氢制乙烯的方法 Download PDF

Info

Publication number
WO2018214471A1
WO2018214471A1 PCT/CN2017/115389 CN2017115389W WO2018214471A1 WO 2018214471 A1 WO2018214471 A1 WO 2018214471A1 CN 2017115389 W CN2017115389 W CN 2017115389W WO 2018214471 A1 WO2018214471 A1 WO 2018214471A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
catalyst
selectivity
ethylene
carbon monoxide
Prior art date
Application number
PCT/CN2017/115389
Other languages
English (en)
French (fr)
Inventor
包信和
焦峰
潘秀莲
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Publication of WO2018214471A1 publication Critical patent/WO2018214471A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/005Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0254Nitrogen containing compounds on mineral substrates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/04Ethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention belongs to high-value chemicals such as hydrogenation of carbon monoxide to low-carbon olefins, and particularly relates to a bifunctional catalyst and a method for hydrogenating carbon monoxide to ethylene.
  • Ethylene is a very important basic chemical raw material and one of the largest chemical products in the world.
  • the ethylene industry is the core of the petrochemical industry and plays an important role in the national economy.
  • the lower olefin refers to an olefin having a carbon number of 4 or less.
  • Low-carbon olefins represented by ethylene and propylene are very important basic organic chemical raw materials.
  • China's ethylene industry has developed rapidly and has an important position in the world ethylene market.
  • the low-carbon olefins market has been in short supply for a long time.
  • the production of ethylene mainly uses naphtha, light diesel oil cracking petrochemical route or ethane cracking technology.
  • a high activity (CO conversion 90%) and selectivity (low carbon olefin selectivity 66%) can be obtained at a reaction pressure of 1.0 to 5.0 MPa and a reaction temperature of 300 to 400 ° C in a synthesis gas.
  • the Fe/activated carbon catalyst prepared by using the vacuum impregnation method to prepare manganese, copper, zinc silicon, potassium and the like as an auxiliary agent for the synthesis of low-carbon olefins in the synthesis gas, in the absence of raw material gas circulation Under the conditions, the CO conversion rate is 96%, and the selectivity of the low-carbon olefin in the hydrocarbon is 68%.
  • the catalyst reported above uses metal iron or iron carbide as the active component, and the reaction follows the chain growth reaction mechanism of the metal surface.
  • the selectivity of the product low olefin is low, especially the selectivity of a single product such as ethylene is less than 30%.
  • researcher Sun Yuhan and researcher Zhong Liangshu of Shanghai Institute of Advanced Studies reported a preferential exposure to [101] and [020] manganese-assisted cobalt-based catalysts, achieving a CO. conversion of 31.8% and a low carbon olefin of 60.8%.
  • Selective and 5% selectivity to methane is less than 20%.
  • a bifunctional catalyst containing oxygen holes and MOR molecular sieves is used for the one-step olefin reaction of syngas to increase the selectivity of ethylene to 75-80%, but the number of carbon atoms in by-products exceeds 3 more hydrocarbons, affecting the application of this technology.
  • the invention further modulates the acidity of the MOR molecular sieve to further reduce the selectivity of the methane by-product to below 9%, and further reduces the selectivity of the hydrocarbon above C4.
  • the invention solves the problem: overcoming the deficiencies of the prior art, and providing a bifunctional catalyst and a method for hydrogenating carbon monoxide to ethylene, the catalyst of the invention can catalyze the reaction of carbon monoxide and hydrogen to directly form a low carbon olefin, and the C2-C3 olefin
  • the selectivity is as high as 78-87%
  • the selectivity of the single product ethylene can be as high as 75-82%
  • the methane selectivity is lower than 9%
  • the hydrocarbon selectivity of C4 and above is less than 10%.
  • the technical scheme of the invention is: a catalyst, which is compounded by mechanical mixing of component A and component B, the active component of component A is metal oxide, and component B is molecular sieve of MOR topology, and its characteristics are characterized.
  • component B is molecular sieve of the MOR topology, and its characteristics are characterized.
  • the molecular sieve of the MOR topology is modified with a fatty amine.
  • the fatty amine is dimethylamine, trimethylamine, diethylamine, triethylamine, ethylenediamine, monopropylamine, dipropylamine, tripropylamine, isopropylamine, diisopropylamine, 1,2-dimethylpropylamine, 1 , 2-propanediamine, 2-propenylamine, cyclopropylamine, n-butylamine, di-n-butylamine, isobutylamine, sec-butylamine, 1,4-butanediamine, tert-butylamine, diisobutylamine hexylamine, 2 One or two or more of ethylhexylamine, hexamethylenediamine, and trioctylamine.
  • heterocyclic compound avoids the entry of an organic base molecule into the 8-ring channel, but selectively occupies the 12-ring B acid site.
  • the use of meta-position-substituted molecules can avoid the problem that the contact between the organic base and the B-acid is weak due to the steric hindrance effect, and the adsorption is not strong.
  • the weight ratio between the active ingredient and the B component in the component A is between 0.1 and 20 times, and the weight ratio is preferably 0.3 to 8; multi-component synergy enables the reaction to proceed efficiently, one of which is excessive or excessive Less will be bad for the reaction.
  • the metal oxide is composed of crystal grains having a size of 5-30 nm, and a large amount of oxygen holes exist in a distance from the surface of the crystal grains to a depth of 0.3 nm in the inner direction of the crystal grains, that is, the molar amount of oxygen atoms accounts for a theoretical stoichiometric ratio of oxygen moles.
  • the molar amount of the oxygen atom is from 80% to 10%, more preferably from 60% to 10%, most preferably from 50% to 10%, based on the theoretical stoichiometric oxygen molar content; the surface oxygen vacancy is defined as (1)
  • the molar amount of oxygen atoms is in the stoichiometric stoichiometric oxygen content, and the corresponding oxygen vacancy concentration is preferably from 20 to 90%, more preferably from 40 to 90%, most preferably from 50 to 90%.
  • a dispersant is further added to the component A, and the dispersant is one or two of Al 2 O 3 , SiO 2 , Cr 2 O 3 , ZrO 2 , TiO 2 , and Ga 2 O 3 , and the metal oxide is dispersed in the dispersion.
  • the dispersant is contained in the component A in an amount of 0.05 to 90% by weight, preferably 0.05 to 25% by weight, the balance being a metal oxide.
  • the MOR topology is an orthorhombic system having a one-dimensional channel structure with elliptical through-channels parallel to each other, comprising an 8-ring pocket and a 12-ring one-dimensional aperture.
  • the skeleton element composition of the molecular sieve having the MOR topology may be Si-Al-O, Ga-Si-O, Ga-Si-Al-O, Ti-Si-O, Ti-Al-Si-O, Ca-.
  • the molar ratio of (CaO+SiO2) to (Al2O3+Ga2O3+TiO2) is 4-110;
  • the metal oxide is prepared by immersing the metal oxide in the etchant solution by using one or more of etchants such as oleic acid, urotropine, ethylenediamine, ammonia, and hydrazine hydrate;
  • etchants such as oleic acid, urotropine, ethylenediamine, ammonia, and hydrazine hydrate
  • the suspension is heated at 100-150 ° C for 30-90 minutes, and then taken out by washing and filtered to obtain a metal oxide material having a large amount of surface oxygen holes; the filter is dried and reduced in an atmosphere, and the atmosphere is inert or inert.
  • a mixture of a gas and a reducing atmosphere the inert gas being one or more of N 2 , He and Ar, and the reducing atmosphere being one or more of H 2 and CO, and an inert gas and a reducing property in the mixed gas.
  • the volume ratio of the gas is from 100/10 to 0/100, the treatment is for 0.5 to
  • the method for modifying the fatty amine is to first control the temperature on the vacuum line to dehydrate and degas the molecular sieve sample at a temperature of 350-500 ° C, a pressure of 1 Pa-10 -5 Pa, and a time of 4 h to 24 h, further degassing.
  • the molecular sieve is exposed to an atmosphere of an organic base of 10 Pa to 100 kPa or an atmosphere of an organic base diluted with an inert gas, and the adsorption temperature is controlled to be room temperature -300 ° C, and is purged with an inorganic gas at 200-330 ° C for 30 min to 12 h to obtain an organic base. Modified molecular sieves.
  • the mechanical mixing may be carried out by one or more of mechanical stirring, ball milling, shaker mixing, and mechanical grinding.
  • the invention relates to a method for directly converting ethylene into a mixture of carbon and hydrogen, which comprises using a mixed gas of carbon monoxide and hydrogen as a reaction raw material, and the synthesis gas may further contain a certain amount of carbon dioxide, and the conversion reaction can be carried out in a fixed bed or a moving bed, which can be high. Ethylene is selectively produced, and the catalyst used is the above catalyst.
  • the pressure of the mixed gas is from 0.5 to 10 MPa, preferably from 1 to 8 MPa, more preferably from 2 to 8 MPa; the reaction temperature is from 300 to 600 ° C, preferably from 300 to 450 ° C; and the space velocity is from 300 to 10000 h -1 , preferably 500 - 9000h -1, more preferably 500-6000h -1, a higher space-time yield can be obtained.
  • the reaction mixture gas H 2 /CO molar ratio is 0.2-3.5, preferably 0.3-2.5, and a higher space-time yield can be obtained and the selective gas mixture can also contain CO 2 , wherein the CO 2 is in the syngas.
  • the volume concentration in the range is 0.1-50%.
  • the bifunctional composite catalyst is used for one-step direct conversion of synthesis gas to ethylene or C2-C3 olefins, wherein the selectivity of C2-C3 olefins is as high as 78-87%, and the selectivity of ethylene reaches 75-82%.
  • the by-product methane selectivity is extremely low ( ⁇ 9%), and the C4 and above hydrocarbon selectivity is less than 10%.
  • the present invention is different from the conventional methanol-made low-carbon olefin technology (abbreviated as MTO), and realizes a direct conversion of synthesis gas to ethylene.
  • MTO methanol-made low-carbon olefin technology
  • the ethylene single product in the product of the invention has high selectivity, can reach 75-82%, and has high space-time yield (the olefin yield is as high as 1.33 mmol/hg), and the product is easy to be separated, and has a good application prospect.
  • the catalyst of the present invention is different from the aforementioned patent applications 201610600945.6 and 201710129620.9 in that the component B in the catalyst of the present invention is modified with a fatty amine, and the selectivity of catalytic synthesis gas conversion to obtain a single component ethylene is as high as 75-82%. And the methane is less than 9%, and the selectivity of the hydrocarbons above C4 is greatly suppressed to less than 10%, and the catalytic reaction of the catalysts in the above-mentioned 201610600945.6 and 201710129620.9 is a wide product, and there are many hydrocarbons of methane and C4 or more. This condition cannot be met.
  • the above suspension was heated, and then taken out by washing and filtered to obtain a nano-ZnO material having a large amount of surface oxygen holes.
  • the mass ratio of catalyst to etchant is 1:3.
  • the mass ratio of oleic acid to urotropine is 1:1, there is no solvent, the mass ratio of oleic acid-5wt% hydrazine hydrate is 95:5, no solvent; specific processing conditions include etchant, temperature, treatment time and atmosphere The types are shown in Table 1 below.
  • the product obtained above is subjected to centrifugation or filtration, washed with deionized water, dried or dried and reduced in an atmosphere, and the atmosphere is an inert gas or a mixture of an inert gas and a reducing atmosphere, and the inert gases are N 2 , He and Ar.
  • One or more of the reducing atmospheres are one or more of H 2 and CO, and the volume ratio of the inert gas to the reducing gas in the dry reducing mixture is 100/10 to 0/100, dry and
  • the temperature of the reduction treatment was 350 degrees Celsius and the time was 4 hours. That is, a ZnO material rich in oxygen vacancies on the surface is obtained.
  • Table 1 The specific samples and their preparation conditions are shown in Table 1 below.
  • the surface oxygen vacancy is defined as (1 - the molar amount of oxygen atoms accounts for the theoretical stoichiometric oxygen molar content).
  • the surface oxygen vacancies are in a range from a surface of the crystal grain to a depth of 0.3 nm in the inner direction of the crystal grain, and the molar amount of the oxygen atom accounts for a percentage of the theoretical stoichiometric oxygen content;
  • the MnO material having a polar surface is synthesized by etching: the preparation process is the same as (1) in the above (1) corresponding to the product of 0.480 g (12 mmol) of NaOH and (3), except that The precursor of Zn is replaced by a corresponding precursor of Mn, which may be one of manganese nitrate, manganese chloride, and manganese acetate, here manganese nitrate.
  • the etching treatment process is the same as the preparation of the product ZnO 3 in (2) above, synthesizing a catalyst having a large amount of surface oxygen vacancies; the surface oxygen vacancy is 67%;
  • the etching treatment process is the same as the preparation of the product ZnO 3 in (2) above, synthesizing a catalyst having a large amount of surface oxygen vacancies; the surface oxygen vacancy is 56%;
  • Zinc nitrate, aluminum nitrate, chromium nitrate, manganese nitrate, zirconium nitrate are used as precursors, and urea is mixed with water at room temperature in the mixture; the mixture is aged, then taken out, washed, filtered and dried, and the obtained solid is in an air atmosphere.
  • the lower firing is performed to obtain a spinel oxide grown in the (110) crystal plane direction.
  • the sample is also subjected to an etching process to synthesize a catalyst having a large amount of surface oxygen vacancies; the etching treatment and the post-treatment process are as described in (2) and (3) above, and the sample has a large specific surface area and a large surface defect. It can be applied to catalytic synthesis gas conversion.
  • the etching process is the same as that of the product ZnO 3 preparation process of (2) above, synthesizing a catalyst having a large amount of surface oxygen vacancies; surface oxygen vacancies 77%, 51%;
  • a Cr 2 O 3 , Al 2 O 3 or ZrO 2 dispersed metal oxide is prepared by a precipitation deposition method using Cr 2 O 3 , Al 2 O 3 or ZrO 2 as a carrier.
  • the commercial Cr 2 O 3 , Al 2 O 3 or ZrO 2 carrier is pre-dispersed in the bottom liquid, and then zinc nitrate is used as a raw material, and the sodium hydroxide precipitation agent is mixed and precipitated at room temperature.
  • the etching process is the same as the preparation of the product ZnO 3 in (2) above, and a catalyst having a large amount of surface oxygen vacancies is synthesized (the content of the dispersant in the A component is 0.2 wt%, 10 wt%, 90 wt%, respectively). ); surface oxygen vacancies 25%, 30%, 65%; post-treatment process as described in (3) above (3);
  • the corresponding product from top to bottom is defined as dispersed oxide 1-3;
  • Cr 2 O 3 , Al 2 O 3 or ZrO 2 can be obtained as a carrier-dispersed MnO oxide (the content of the dispersant in the catalyst A is 7 wt%, 30 wt%, 60 wt%, respectively), and the surface oxygen vacancy 22%, 47%, 68%; the corresponding product from top to bottom is defined as the dispersed oxide 4-6.
  • the MOR topology is an orthorhombic system having a one-dimensional channel structure with elliptical through-channels parallel to each other, including 8-ring and 12-ring parallel one-dimensional through-channels, and 12-ring main channel sides 8 Ring pockets are connected.
  • Na-MOR was taken, mixed with a 1 mol/L ammonium chloride solution, stirred at 90 ° C for 3 hours, washed, dried, continuously carried out 4 times, and calcined at 450 degrees for 6 hours to obtain a hydrogen-type mordenite.
  • the skeleton element composition of the molecular sieve having the MOR topology prepared according to the above process may be Si-Al-O, Ga-Si-O, Ga-Si-Al-O, Ti-Si-O, Ti-Al-Si-O.
  • the prepared molecular sieve is subjected to dehydration and degassing treatment under vacuum, the temperature is 400 ° C, the pressure is 10 -4 Pa, and after 10 h, it is lowered to 300 ° C, and then 200 Pa of organic alkali gas is introduced into the vacuum chamber, and after 10 hours of equilibration. Desorbed at the same temperature for 1 h.
  • MOR1, MOR2, MOR3, MOR4, MOR5, MOR6, MOR7, MOR 8 are used sequentially: dimethylamine, trimethylamine, diethylamine, triethylamine, ethylenediamine, monopropylamine, dipropylamine, tripropylamine, isopropylamine , diisopropylamine, 1,2-dimethylpropylamine, 1,2-propylenediamine, 2-propenylamine, cyclopropylamine, n-butylamine, di-n-butylamine, isobutylamine, sec-butylamine, 1,4 After treatment with butyl diamine, tert-butylamine, diisobutylamine hexylamine, 2-ethylhexylamine, hexamethylenediamine and trioctylamine, MOR9, MOR10, MOR11, MOR12, MOR13, MOR14, MOR15, MOR16, MOR17 were obtained
  • Adding the required proportion of the A component and the B component to the container, and utilizing one or more of the pressing force, the impact force, the cutting force, the friction force, etc. generated by the high speed movement of the material and/or the container The purpose of separation, crushing, mixing, etc., to achieve the conversion of mechanical energy, thermal energy and chemical energy through the modulation temperature and the carrier gas atmosphere, further adjust the interaction between different components.
  • a mixing temperature of 20-100 ° C can be set, which can be carried out in an atmosphere or directly in air.
  • the atmosphere is: a) nitrogen and/or inert gas, b) a mixture of hydrogen and nitrogen and/or inert gas.
  • the volume of hydrogen in the mixed gas is 5 to 50%
  • c) a mixture of CO and nitrogen and/or an inert gas wherein the volume of CO in the mixed gas is 5 to 20%
  • a mixture of inert gases wherein the volume of O 2 in the mixed gas is 5-20%
  • the inert gas is one or more of helium, argon, and helium.
  • Mechanical agitation In the agitation tank, mix the A component and the B component with a stir bar, and adjust the A component and the B group by controlling the stirring time (5 min-120 min) and the rate (30-300 rpm). The degree of mixing and relative distance of the points.
  • Ball Milling Using the abrasive and the catalyst to tumbling at high speed in the grinding tank, the catalyst is strongly impacted and crushed to achieve the function of dispersing and mixing the A component and the B component.
  • the abrasive material can be stainless steel, agate, quartz, size range: 5mm-15mm
  • the catalyst mass ratio range: 20-100:1
  • Shaker mixing method premixing component A and component B, and loading into container; mixing of component A and component B by controlling reciprocating oscillation or circumferential oscillation of shaker; adjusting oscillation speed (range) : 1-70 rpm) and time (range: 5 min - 120 min) to achieve uniform mixing and adjust the relative distance.
  • a fixed bed reaction is exemplified, but the catalyst is also suitable for use in a moving bed reactor.
  • the device is equipped with a gas mass flow meter and an online product analysis chromatograph (the exhaust gas of the reactor is directly connected to the chromatographic quantitative valve for periodic real-time sampling analysis).
  • Changing the temperature, pressure and airspeed can change the reaction performance.
  • the selectivity of ethylene propylene in the product is as high as 78-87%, and the conversion of raw materials is 10-60%. Due to the effective synergy between the molecular sieve and the oxide, the mass production of methane and C 4+ hydrocarbons is avoided.
  • the catalyst used in Comparative Example 3 was A component metal ZnCo+MOR26, ZnCo molar ratio was 1:1, ZnCo was equal to 1:1 mass ratio, and the remaining parameters and mixing process were the same as Catalyst C.
  • the catalyst used in Comparative Example 4 was surface oxygen-free hole TiO 2 + MOR27, and the remaining parameters and mixing process were the same as Catalyst C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种双功能催化剂及一氧化碳加氢制乙烯的方法,以一氧化碳和氢气混合气为原料,在固定床或移动床上进行转化反应,所述催化剂为复合催化剂,由A组分和B组分混合在一起,A组分的活性成份为金属氧化物,B组分为脂肪胺改性的MOR结构的分子筛;A组分中的活性成份与B组分之间的重量比在0.1-20范围之间,优选为0.3-8。反应过程具有很高的产品收率和选择性,C2-C3烯烃选择性高达78-87%,其中4个C原子以上的烃类产物选择性低于10%,副产物甲烷选择性低于9%,乙烯选择性达到75-82%,具有很好的应用前景。

Description

一种双功能催化剂及一氧化碳加氢制乙烯的方法 技术领域
本发明属于一氧化碳加氢制低碳烯烃等高值化学品,具体涉及一种双功能催化剂及一氧化碳加氢制乙烯的方法。
背景技术
乙烯是非常重要的基本化工原料,是世界上产量最大的化学产品之一,乙烯工业是石油化工产业的核心,在国民经济中占有重要的地位。低碳烯烃是指碳原子数小于或等于4的烯烃。以乙烯、丙烯为代表的低碳烯烃是非常重要的基本有机化工原料,随着我国经济的快速增长,我国乙烯行业发展迅猛,在世界乙烯市场占有重要的地位。长期以来,低碳烯烃市场供不应求。目前,乙烯的生产主要采用石脑油、轻柴油裂解的石油化工路线或者乙烷裂解的技术,由于我国石油长期依赖进口,我国的能源安全存在较大风险,急需开发出不依赖石油的乙烯生产技术。将煤炭、天然气、生物质和其他可再生材料等转化为一氧化碳和氢气的混合气即合成气,合成气中一氧化碳和氢气的比例随原材料不同而不同;再以这些合成气为原料,通过调节一氧化碳和氢气的比例到合适的值之后,使一氧化碳和氢在合适的催化剂作用下,通过费托合成反应直接制得碳原子数小于或等于4的低碳烯烃的过程,这样可以一步生产烯烃,该路线为石脑油裂解技术生产乙烯提供了一条替代方案。该工艺无需像间接法工艺那样从合成气经甲醇或二甲醚,进一步制备烯烃,简化工艺流程,大大减少投资。
通过费托合成直接制取低碳烯烃,一直是合成气直接生产烯烃的研究热点之一。中科院大连化学物理研究所公开的专利CN1083415A中,用MgO等IIA族碱金属氧化物或高硅沸石分子筛(或磷铝沸石)担载的铁-锰催化剂体系,以强碱K或Cs离子作助剂,在合成气制低碳烯烃反应压力为1.0~5.0MPa,反应温度300~400℃下,可获得较高的活性(CO转化率90%)和选择性(低碳烯烃选择性66%)。北京化工大学所申报的专利ZL03109585.2中,采用真空浸渍法制备锰、铜、锌硅、钾等为助剂的Fe/活性炭催化剂用于合成气制低碳烯烃反应,在无原料气循环的条件下,CO转化率96%,低碳烯烃在碳氢化合物中的选择性68%。上述报道的催化剂是采用金属铁或者碳化铁为活性组分,反应遵循金属表面的链增长反应机理,产物低碳烯烃的选择性较低,尤其单种产物如乙烯的选择性低于30%。2016年,上海高等研究院孙予罕研究员及钟良枢研究员报道了一种择优暴露[101]及[020]锰助碳化钴基催化剂,实现了31.8%的CO转化率下,60.8%的低碳烯烃选择性,且甲烷选择性5%。但 是乙烯单一选择性却低于20%。中国科学院大连化学物理研究所包信和院士和潘秀莲研究员报道了氧化铝负载的ZnCr 2O 4氧化物与多级孔SAPO-34分子筛复合双功能催化剂(Jiao et al.,Science 351(2016)1065-1068),实现了CO转化率17%时,低碳烯烃80%的选择性,但乙烯的选择性低于30%。在他们申请的专利201710129620.9中,使用含有氧空穴与MOR分子筛复合的双功能催化剂用于合成气一步制烯烃反应,将乙烯的选择性提高至75-80%,但副产物中碳原子数超过3的烃类较多,影响了该技术的应用。而本发明进一步通过调变MOR分子筛的酸性特点,使甲烷副产物的选择性进一步降低至9%以下,且C4以上的烃类选择性也进一步降低。
发明内容
本发明技术解决问题:克服现有技术的不足,提供一种双功能催化剂及一氧化碳加氢制乙烯的方法,所发明的催化剂可催化一氧化碳和氢气反应直接生成低碳烯烃,并且C2-C3烯烃的选择性高达78-87%,单种产物乙烯的选择性可高达75-82%,甲烷选择性低于9%,C4及以上烃类选择性低于10%。
本发明的技术方案为:一种催化剂,由A组分和B组分以机械混合方式复合在一起,A组分的活性成份为金属氧化物,B组分为MOR拓扑结构的分子筛,其特征在于:B组分中,所述MOR拓扑结构的分子筛使用脂肪胺进行改性。
所述脂肪胺是二甲胺、三甲胺、二乙胺、三乙胺、乙二胺、一丙胺、二丙胺、三丙胺、异丙胺、二异丙胺、1,2-二甲基丙胺、1,2-丙二胺、2-丙烯胺、环丙胺、正丁胺、二正丁胺、异丁胺、仲丁胺、1,4-丁二胺、叔丁胺、二异丁胺己胺、2-乙基己胺、己二胺、三辛胺中的一种或两种以上。
使用杂环化合物可以避免有机碱分子进入8圆环孔道,而是选择性的占据12圆环的B酸位点。而使用间位对位取代的分子可以避免空间位阻效应导致的有机碱与B酸接触较弱,吸附不牢的问题。
A组分中的活性成份与B组分之间的重量比在0.1-20倍范围之间,重量比优选为0.3-8;多组分协同才能使得反应有效进行,其中一种过多或过少都会不利于反应的进行。
金属氧化物由大小为5-30nm的晶粒构成,从晶粒表面至晶粒内部方向深度为0.3nm的距离范围内,存在大量氧空穴,即氧原子摩尔量占理论化学计量比氧摩尔含量的80%以下,优选氧原子摩尔量占理论化学计量比氧摩尔含量的80%-10%,更优 选为60-10%,最优选为50-10%;表面氧空位定义为(1-氧原子摩尔量占理论化学计量比氧摩尔含量),对应的氧空位浓度优选为20-90%,更优选为40-90%,最优选为50-90%。
A组分中还添加有分散剂,分散剂为Al 2O 3、SiO 2、Cr 2O 3、ZrO 2、TiO 2、Ga 2O 3中的一种或二种,金属氧化物分散于分散剂中,分散剂于A组分中的含量在0.05-90wt%,优选0.05-25wt%,其余为金属氧化物。
所述MOR拓扑结构是一种正交晶系,具有相互平行的椭圆形直通孔道的一维孔道结构,含有8圆环口袋与12圆环一维孔道。
所述具有MOR拓扑结构的分子筛的骨架元素组成可以是Si-Al-O、Ga-Si-O、Ga-Si-Al-O、Ti-Si-O、Ti-Al-Si-O、Ca-Al-O、Ca-Si-Al-O中的一种或二种以上。
(CaO+SiO2)与(Al2O3+Ga2O3+TiO2)的摩尔比是4-110;
金属氧化物的制备过程是:采用油酸、乌洛托品、乙二胺、氨水、水合肼等刻蚀剂中的一种或二种以上,将金属氧化物浸泡于刻蚀剂溶液中;将上述悬浮物于100-150℃下加热30-90分钟,然后取出洗涤过滤,得到具有大量表面氧空穴的金属氧化物材料;将过滤物在气氛中干燥还原处理,气氛为惰性气体或者惰性气体与还原性气氛混合气,惰性气体为N 2、He和Ar中的一种或二种以上,还原性气氛为H 2、CO的一种或二种以上,混合气中惰性气体与还原性气体的体积比为100/10~0/100,处理0.5-5小时,处理温度为20-350℃。
所述脂肪胺进行改性的方法是,先在真空线上控制温度对分子筛样品进行脱水脱气处理温度350-500℃,压力1Pa-10 -5Pa,时间4h-24h,进一步对脱气的分子筛暴露在10Pa-100kPa的有机碱的气氛中或惰性气体稀释的有机碱的气氛中,控制吸附温度是室温-300℃,并用无机气体在200-330℃进行吹扫30min-12h后得到有机碱改性的分子筛。
所述机械混合可采用机械搅拌、球磨、摇床混合、机械研磨中的一种或二种以上进行复合。
一种一氧化碳和氢气的混合气直接转化制乙烯的方法,涉及以一氧化碳和氢气的混合气为反应原料,合成气中还可以含有一定量的二氧化碳,在固定床或移动床上进行转化反应,可以高选择性地生成乙烯,所采用的催化剂为上述的催化剂。
混合气的压力为0.5-10MPa,优选为1-8MPa,更优选为2-8MPa;反应温度为300-600℃,优选为300-450℃;空速为300-10000h -1,优选为500-9000h -1,更优选为500-6000h -1,可以获得更高的时空收率。
所述反应用混合气气H 2/CO摩尔比为0.2-3.5,优选为0.3-2.5,可以获得更高的时空收率和选择性混合气中还可以含有CO 2,其中CO 2在合成气中的体积浓度为0.1-50%。
所述的双功能复合催化剂用于合成气一步法直接转化制乙烯或者C2-C3的烯烃,其中C2-C3烯烃的选择性高达78-87%,乙烯选择性达到75-82%,同还时副产物甲烷选择性极低(<9%),C4及以上烃类选择性低于10%。
本发明的有益效果:
(1)本发明与传统的甲醇制低碳烯烃技术(简称为MTO)不同,实现了一步直接将合成气转化制乙烯。
(2)本发明产物中乙烯单一产物选择性高,可达到75-82%,且时空收率高(烯烃收率高至1.33mmol/hg),产物易于分离,具有很好的应用前景。
(3)本发明催化剂与前述的专利申请201610600945.6及201710129620.9不同之处在于,本发明催化剂中组份B使用脂肪胺进行改性,催化合成气转化得到单一组份乙烯的选择性高达75-82%,且甲烷低于9%,并且大大抑制了C4以上的烃类的选择性低于10%,而前述201610600945.6以及201710129620.9中催化剂其催化反应结果是产物较宽,甲烷与C4以上烃类较多,不能满足该条件。
具体实施方式
下面通过实施例对本发明做进一步阐述,但是本发明的权利要求范围不受这些实施例的限制。同时,实施例只是给出了实现此目的的部分条件,但并不意味着必须满足这些条件才可以达到此目的。
实施例1
一、A组分的制备
(一)刻蚀法合成具有极性表面的ZnO材料:
(1)分别称取4份、每份0.446g(1.5mmol)Zn(NO 3)2·6H 2O于4个容器中,再分别称取0.300g(7.5mmol)、0.480g(12mmol)、0.720g(18mmol)、1.200g(30mmol) NaOH依次加入上述4个容器中,再各量取30ml去离子水加入到4个容器中,搅拌0.5h以上使溶液混合均匀。升温至温度为160℃,反应时间为20h,沉淀分解成氧化锌;自然冷却至室温。反应液离心分离收集离心分离后的沉淀物,用去离子水洗涤2次获得ZnO氧化物;
取其中0.480g(12mmol)NaOH用量的产物进行下述处理:
(2)采用油酸、乌洛托品、乙二胺、氨水、水合肼等刻蚀剂,在常温下与ZnO氧化物超声混匀,ZnO氧化物浸泡于刻蚀剂溶液中,刻蚀剂与氧化锌形成络合或直接还原反应;
将上述悬浮物加热,然后取出洗涤过滤,得到具有大量表面氧空穴的纳米ZnO材料。
表1中:催化剂与刻蚀剂的质量比为1:3。油酸与乌洛托品的质量比为1:1,没有溶剂,油酸-5wt%水合肼的质量比为95:5,没有溶剂;具体处理条件包括刻蚀剂、温度、处理时间和气氛种类如下表1所示。
(3)干燥或干燥和还原
上述获得的产物经过离心或者过滤,用去离子水清洗以后,在气氛中进行干燥或干燥和还原处理,气氛为惰性气体或者惰性气体与还原性气氛混合气,惰性气体为N 2、He和Ar中的一种或二种以上,还原性气氛为H 2、CO的一种或二种以上,干燥还原混合气中惰性气体与还原性气体的体积比为100/10~0/100,干燥和还原处理的温度为350摄氏度,时间为4h。即得到表面富含氧空位的ZnO材料。具体样品及其制备条件如下表1。其中表面氧空位定义为(1-氧原子摩尔量占理论化学计量比氧摩尔含量)。
表1 ZnO材料的制备及其参数性能
Figure PCTCN2017115389-appb-000001
Figure PCTCN2017115389-appb-000002
所述表面氧空位为从晶粒表面至晶粒内部方向深度为0.3nm的距离范围内,氧原子摩尔量占理论化学计量比氧摩尔含量的百分数;
作为对比例,未经第(2)步刻蚀的表面无氧空位的ZnO 4,以及将Zn完全还原的金属Zn 5;
(二)、刻蚀法合成具有极性表面的MnO材料:制备过程同上述(一)中的(1)对应于0.480g(12mmol)NaOH用量的产物和(3)所述,不同之处在于将Zn的前驱体换成了Mn的对应的前驱体,可为硝酸锰、氯化锰、醋酸锰中的一种,在此为硝酸锰。
刻蚀处理过程同上述(一)中(2)的产物ZnO 3制备过程所述,合成具有大量表面氧空位的催化剂;表面氧空位67%;
对应产物定义为MnO 1;
(三)刻蚀法合成具有极性表面的CeO 2材料:制备过程同上述(一)中的(1)对应于0.480g(12mmol)NaOH用量的产物和(3)所述,不同之处在于将Zn的前驱体换成了Ce的对应的前驱体,可为硝酸铈、氯化铈、醋酸铈中的一种,在此为硝酸铈。
刻蚀处理过程同上述(一)中(2)的产物ZnO 3制备过程所述,合成具有大量表面氧空位的催化剂;表面氧空位56%;
对应产物定义为CeO 1;
(四)合成具有高比表面积、高表面能的纳米ZnCr 2O 4、ZnAl 2O 4、MnCr 2O 4、MnAl 2O 4,MnZrO 4尖晶石:
采用硝酸锌、硝酸铝、硝酸铬、硝酸锰、硝酸锆为前驱体,与尿素在室温下于水中相互混合;将上述混合液陈化,然后取出洗涤、过滤和干燥,所得的固体在空气气氛下焙烧,获得沿(110)晶面方向生长的尖晶石氧化物。样品也经过刻蚀法处理,合成具有大量表面氧空位的催化剂;刻蚀处理和后处理过程同上述(一)中(2)和(3) 所述,该样品具有大比表面积、表面缺陷多,可应用于催化合成气转化。
具体样品及其制备条件如下表2。同样,表面氧空位定义为(1-氧原子摩尔量占理论化学计量比氧摩尔含量)。
表2 尖晶石材料的制备及其性能参数
Figure PCTCN2017115389-appb-000003
(五)合成具有高比表面积、高表面能的纳米FeAl 2O 4、CoAl 2O 4尖晶石:制备过程同上述(四)中的(2)所述,不同之处在于将Zn的前驱体换成了Fe或Co的对应的前驱体,可为硝酸铁、氯化铁、柠檬酸铁中的一种或者硝酸钴、氯化钴、醋酸钴中的一种,在此为硝酸铁、硝酸钴。
刻蚀处理过程同上述(一)中(2)的产物ZnO 3制备过程所述,合成具有大量表面氧空位的催化剂;表面氧空位77%、51%;
对应产物定义为尖晶石6、尖晶石7;
(六)Cr 2O 3、Al 2O 3或ZrO 2分散的金属氧化物
以Cr 2O 3、Al 2O 3或ZrO 2为载体,沉淀沉积法制备Cr 2O 3、Al 2O 3或ZrO 2分散的金属氧化物。以分散ZnO氧化物的制备为例,将商业Cr 2O 3、Al 2O 3或ZrO 2载体预先分散于底液中,然后采用硝酸锌为原料,与氢氧化钠沉淀剂在室温下混合沉淀,Zn 2+的摩尔浓度为0.1M,Zn 2+与沉淀剂的摩尔份数比为1:6;然后在120℃下陈化24小时,获得Cr 2O 3、Al 2O 3或ZrO 2为载体分散的ZnO氧化物。
刻蚀过程同上述(一)中(2)的产物ZnO 3制备过程所述,合成具有大量表面 氧空位的催化剂(分散剂于A组分中的含量依次为0.2wt%、10wt%、90wt%);表面氧空位25%、30%、65%;后处理过程同上述(一)中(3)所述;
从上到下对应产物定义为分散氧化物1-3;
以同样的方法,可以获得Cr 2O 3、Al 2O 3或ZrO 2为载体分散的MnO氧化物(分散剂于催化剂A中的含量依次为7wt%、30wt%、60wt%),表面氧空位22%、47%、68%;从上到下对应产物定义为分散氧化物4-6。
二、B组分(MOR拓扑结构的分子筛)的制备
所述MOR拓扑结构是一种正交晶系,具有相互平行的椭圆形直通孔道的一维孔道结构,含有8圆环与12圆环平行一维直通孔道,12圆环主孔道侧边存在8圆环口袋连通。
具体制备过程为:
按照n(SiO 2)/n(Al 2O 3)=15,n(Na 2O)/n(SiO 2)=0.2,n(H 2O)/n(SiO 2)=26.
将硫酸铝与氢氧化钠溶液混合,然后加入硅溶胶,搅拌1h得到均一相的初始凝胶,然后将其转移到高压合成釜中,180℃静态晶化24h后骤冷、洗涤、干燥,即得到丝光沸石样品,标记为Na-MOR。
取Na-MOR,将其与1mol/L的氯化铵溶液混合,在90℃下搅拌3h,洗涤,烘干,连续进行4次,450度焙烧6h,得到氢型丝光沸石。
按上述过程制备的具有MOR拓扑结构的分子筛的骨架元素组成可以是Si-Al-O、Ga-Si-O、Ga-Si-Al-O、Ti-Si-O、Ti-Al-Si-O、Ca-Al-O、Ca-Si-Al-O中的一种;
部分骨架的O元素上连接H,对应产物依次定义为MOR1-8;
表3 具有MOR拓扑结构的分子筛的制备及其性能参数
Figure PCTCN2017115389-appb-000004
Figure PCTCN2017115389-appb-000005
将制备好的分子筛,取适量于真空下进行脱水脱气处理,温度400℃,压力10 -4Pa,10h之后降至300℃后,向真空腔体内通入200Pa的有机碱气体,平衡10h后在相同温度下脱附1h。
将MOR1,MOR2,MOR3,MOR4,MOR5,MOR6,MOR7,MOR 8依次使用:二甲胺、三甲胺、二乙胺、三乙胺、乙二胺、一丙胺、二丙胺、三丙胺、异丙胺、二异丙胺、1,2-二甲基丙胺、1,2-丙二胺、2-丙烯胺、环丙胺、正丁胺、二正丁胺、异丁胺、仲丁胺、1,4-丁二胺、叔丁胺、二异丁胺己胺、2-乙基己胺、己二胺、三辛胺处理后,分别得到MOR9,MOR10,MOR11,MOR12,MOR13,MOR14,MOR15,MOR16,MOR17,MOR18,MOR19,MOR20,MOR21,MOR22,MOR23,MOR24,MOR25,MOR26,MOR27,MOR28,MOR29,MOR30,MOR31,MOR32。
三、催化剂的制备
将所需比例的A组分和B组分加入容器中,利用这些物料和/或容器的高速运动产生的挤压力、撞击力、裁剪力、摩擦力等中的一种或两种以上作用实现分离、破碎、混匀等目的,通过调变温度与载气气氛实现机械能、热能与化学能的转换,进一步调节不同组分间的相互作用。
机械混合过程中,可以设置混合温度20-100℃,可以在气氛中或者直接在空气中进行,气氛为:a)氮气和/或惰性气体,b)氢气与氮气和/或惰性气体的混合气,其中氢气于混合气中的体积为5~50%,c)CO与氮气和/或惰性气体的混合气,其中CO于混合气中的体积为5~20%,d)O 2与氮气和/或惰性气体的混合气,其中O 2于混合气中的体积为5-20%,所述惰性气体为氦气、氩气、氖气中的一种或两种以上。
机械搅拌:在搅拌槽中,采用搅拌棒将A组分和B组分进行混合,通过控制搅拌时间(5min-120min)和速率(30-300转/min),可以调节A组分和B组分的混合程度和相对距离。
球磨:利用磨料与催化剂在研磨罐内高速翻滚,对催化剂产生强烈冲击、碾压,达到分散、混合A组分和B组分的作用。通过控制磨料(材质可以是不锈钢、玛瑙、石英。尺寸范围:5mm-15mm)与催化剂的比例(质量比范围:20-100:1),可以调节催化剂的粒度及相对距离。
摇床混合法:将A组分和B组分预混合,并装入容器中;通过控制摇床的往复振荡或圆周振荡,实现A组分和B组分的混合;通过调节振荡速度(范围:1-70转/分)和时间(范围:5min-120min),实现均匀混合并调节其相对距离。
机械研磨法:将A组分和B组分预混合,并装入容器中;在一定的压力(范围:5公斤-20公斤)下,通过研具与混合的催化剂进行相对运动(速率范围:30-300转/min),达到调节催化剂粒度、相对距离和实现均匀混合的作用。
具体的催化剂制备及其参数特征如表4所示。
表4 催化剂的制备及其参数特征
Figure PCTCN2017115389-appb-000006
Figure PCTCN2017115389-appb-000007
Figure PCTCN2017115389-appb-000008
Figure PCTCN2017115389-appb-000009
催化反应实例
以固定床反应为例,但是催化剂也适用于移动床反应器。该装置配备气体质量流量计、在线产物分析色谱(反应器的尾气直接与色谱的定量阀连接,进行周期实时采样分析)。
将上述本发明的催化剂2g,置于固定床反应器中,使用Ar置换反应器中的空气,然后再在H 2气氛中升温至300℃,切换合成气(H 2/CO摩尔比=0.2-3.5),合成气的压力为0.5-10MPa,升温至反应温度300-600℃,调节反应原料气的空速至500-8000ml/g/h。产物由在线色谱检测分析。
改变温度、压力和空速,可以改变反应性能。乙烯丙烯在产物中的选择性高达78-87%,原料转化率10-60%;由于分子筛与氧化物有效的协同,避免了甲烷和C 4+烃类的大量生成。
表5 催化剂的应用及其效果
Figure PCTCN2017115389-appb-000010
Figure PCTCN2017115389-appb-000011
Figure PCTCN2017115389-appb-000012
对比例3采用的催化剂为A组分金属ZnCo+MOR26,ZnCo摩尔比1:1,ZnCo与分1质量比1:1,其余参数及混合过程等均同催化剂C。
对比例4采用的催化剂为表面无氧空穴TiO 2+MOR27,其余参数及混合过程等均同催化剂C。
对比例5和6的反应结果表明,MOR使用脂肪胺进行后处理对催化性能调控作用明显,相比不使用脂肪胺进行调控的催化剂,调控后的催化剂明显降低了甲烷及C4以上烃类的选择性,同时提高了低碳烯烃和乙烯选择性。
提供以上实施例仅仅是为了描述本发明的目的,而并非要限制本发明的范围。本发明的范围由所附权利要求限定。不脱离本发明的精神和原理而做出的各种等同替换和修改,均应涵盖在本发明的范围之内。

Claims (10)

  1. 一种催化剂,由A组分和B组分构成,A组分和B组分以机械混合方式复合在一起,A组分的活性成份为金属氧化物,B组分为MOR拓扑结构的分子筛,其特征在于:B组分中,所述MOR拓扑结构的分子筛使用脂肪胺进行改性。
  2. 根据权利要求1所述的催化剂,其特征在于:所述脂肪胺是二甲胺、三甲胺、二乙胺、三乙胺、乙二胺、一丙胺、二丙胺、三丙胺、异丙胺、二异丙胺、1,2-二甲基丙胺、1,2-丙二胺、2-丙烯胺、环丙胺、正丁胺、二正丁胺、异丁胺、仲丁胺、1,4-丁二胺、叔丁胺、二异丁胺己胺、2-乙基己胺、己二胺、三辛胺中的一种或两种以上。
  3. 根据权利要求1所述的催化剂,其特征在于:所述A组分的活性成份中,金属氧化物为MnO、MnCr 2O 4、MnAl 2O 4、MnZrO 4、ZnO、ZnCr 2O 4、ZnAl 2O 4、CeO 2、CoAl 2O 4、FeAl 2O 4中的一种或二种以上;优选为MnO、MnCr 2O 4、MnAl 2O 4、MnZrO 4、ZnAl 2O 4、CeO 2、CoAl 2O 4、FeAl 2O 4中的一种或二种以上;更优选为MnO、MnCr 2O 4、MnAl 2O 4,MnZrO 4、CeO 2、CoAl 2O 4、FeAl 2O 4中的一种或二种以上。
  4. 根据权利要求1所述的催化剂,其特征在于:所述A组分中的活性成份与B组分之间的重量比为0.1-20,重量比优选为0.3-8。
  5. 根据权利要求1-4任一项所述的催化剂,其特征在于:所述金属氧化物从晶粒表面至晶粒内部方向深度为0.3nm的距离范围内存在表面氧空位,所述表面氧空位百分含量为20%以上,优选为20-90%,更优选为40-90%,最优选为50-90%。
  6. 根据权利要求1-5任一项所述的催化剂,其特征在于:所述A组分中还添加有分散剂,所述分散剂为Al 2O 3、SiO 2、Cr 2O 3、ZrO 2、TiO 2、Ga 2O 3中的一种或二种以上,金属氧化物分散于所述分散剂中,所述分散剂于A组分中的含量在0.05-90wt%,优选0.05-25wt%,其余为金属氧化物。
  7. 按照权利要求1-6任一项所述的催化剂,其特征在于:所述MOR拓扑结构分子筛的骨架元素组成是Si-Al-O、Ga-Si-O、Ga-Si-Al-O、Ti-Si-O、Ti-Al-Si-O、Ca-Al-O、Ca-Si-Al-O中的一种或二种以上。
  8. 一种一氧化碳加氢制乙烯的方法,其特征在于:以一氧化碳和氢气混合气为反应原料,在固定床或移动床上进行转化反应,得到乙烯为主的低碳烯烃产物,所采用的催化剂为权利要求1-7任一所述的催化剂。
  9. 根据权利要求8所述的方法,其特征在于:所述混合气气的压力为0.5-10MPa,优选为1-8MPa,更优选为2-8MPa;反应温度为300-600℃,优选为300-400℃;空速为300-10000h -1,优选为500-9000h -1,更优选为500-6000h -1
  10. 根据权利要求8或9所述的方法,其特征在于:所述混合气为含有H 2和CO的混合气,H 2/CO摩尔比为0.2-3.5,优选为0.3-2.5;所述混合气中还可以含有CO 2,其中CO 2在混合气中的体积浓度为0.1-50%。
PCT/CN2017/115389 2017-05-26 2017-12-11 一种双功能催化剂及一氧化碳加氢制乙烯的方法 WO2018214471A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710382250.XA CN108927132B (zh) 2017-05-26 2017-05-26 一种双功能催化剂及一氧化碳加氢制乙烯的方法
CN201710382250.X 2017-05-26

Publications (1)

Publication Number Publication Date
WO2018214471A1 true WO2018214471A1 (zh) 2018-11-29

Family

ID=64395237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115389 WO2018214471A1 (zh) 2017-05-26 2017-12-11 一种双功能催化剂及一氧化碳加氢制乙烯的方法

Country Status (2)

Country Link
CN (1) CN108927132B (zh)
WO (1) WO2018214471A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109939722B (zh) * 2018-01-26 2021-05-25 中国科学院大连化学物理研究所 一种有机碱修饰的复合催化剂及一氧化碳加氢制乙烯的方法
CN112138712B (zh) * 2019-06-28 2022-01-04 中国石油化工股份有限公司 一种催化裂解催化剂及其制备方法及烃油催化裂解的方法
CN111346665B (zh) * 2018-12-21 2022-10-18 中国科学院大连化学物理研究所 一种mor基双功能催化剂及合成气直接转化制乙烯的方法
CN112044450B (zh) * 2020-07-17 2021-06-15 昆明理工大学 一种酸碱双功能生物质碳基催化剂及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101215239A (zh) * 2008-01-16 2008-07-09 西安近代化学研究所 乙二胺和胺乙基哌嗪的联合制备方法
CN101239866A (zh) * 2007-02-07 2008-08-13 中国石油化工股份有限公司 含氧化合物生产乙烯、丙烯的方法
US20090023968A1 (en) * 2007-07-18 2009-01-22 China Petroleum & Chemical Corporation Catalyst and process for producing light aromatic hydrocarbons and light alkanes from hydrocarbonaceous feedstock
CN101613274A (zh) * 2008-06-25 2009-12-30 中国科学院大连化学物理研究所 一种二甲醚羰基化制备乙酸甲酯的方法
CN101722034A (zh) * 2008-10-28 2010-06-09 中国石油化工股份有限公司 丝光沸石/zsm-5核壳型分子筛材料的制备方法
CN107661774A (zh) * 2016-07-27 2018-02-06 中国科学院大连化学物理研究所 一种催化剂及合成气直接转化制低碳烯烃的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7678955B2 (en) * 2005-10-13 2010-03-16 Exxonmobil Chemical Patents Inc Porous composite materials having micro and meso/macroporosity
WO2011159459A1 (en) * 2010-06-14 2011-12-22 Dow Global Technologies Llc Conversion of methylamine to olefin or mixture of olefins
CN103801355B (zh) * 2012-11-13 2016-01-20 中国石油化工股份有限公司 一种含分子筛的加氢催化剂的制法
CN105536858B (zh) * 2015-12-15 2018-02-06 陕西延长石油(集团)有限责任公司 一种催化剂的制备方法及一种一乙醇胺的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101239866A (zh) * 2007-02-07 2008-08-13 中国石油化工股份有限公司 含氧化合物生产乙烯、丙烯的方法
US20090023968A1 (en) * 2007-07-18 2009-01-22 China Petroleum & Chemical Corporation Catalyst and process for producing light aromatic hydrocarbons and light alkanes from hydrocarbonaceous feedstock
CN101215239A (zh) * 2008-01-16 2008-07-09 西安近代化学研究所 乙二胺和胺乙基哌嗪的联合制备方法
CN101613274A (zh) * 2008-06-25 2009-12-30 中国科学院大连化学物理研究所 一种二甲醚羰基化制备乙酸甲酯的方法
CN101722034A (zh) * 2008-10-28 2010-06-09 中国石油化工股份有限公司 丝光沸石/zsm-5核壳型分子筛材料的制备方法
CN107661774A (zh) * 2016-07-27 2018-02-06 中国科学院大连化学物理研究所 一种催化剂及合成气直接转化制低碳烯烃的方法

Also Published As

Publication number Publication date
CN108927132B (zh) 2020-11-24
CN108927132A (zh) 2018-12-04

Similar Documents

Publication Publication Date Title
JP6778821B2 (ja) 触媒及び合成ガスの直接変換による低級オレフィンの製造方法
CN107661774B (zh) 一种催化剂及合成气直接转化制低碳烯烃的方法
CN108568313B (zh) 一种催化剂及一氧化碳加氢直接转化制低碳烯烃的方法
RU2758849C1 (ru) Катализатор и способ прямой конверсии синтез-газа для получения малоуглеродистых олефинов
CN108970600B (zh) 一种催化剂及合成气直接转化制低碳烯烃的方法
WO2018214476A1 (zh) 一种碱修饰的催化剂及一氧化碳加氢反应制乙烯的方法
WO2018214471A1 (zh) 一种双功能催化剂及一氧化碳加氢制乙烯的方法
WO2019144952A1 (zh) 一种负载催化剂及合成气直接转化制低碳烯烃的方法
CN111346672B (zh) 一种掺杂杂原子分子筛催化合成气高选择性制低碳烯烃的方法
EP3900829A1 (en) Method for the preparation of low-carbon olefin in high selectivity from synthesis gas catalyzed by heteroatom-doped molecular sieve
WO2019144951A1 (zh) 一种催化剂及合成气直接转化制乙烯的方法
WO2018161670A1 (zh) 一种催化剂及合成气直接转化制乙烯的方法
WO2018219364A1 (zh) 一种催化剂及合成气直接转化制液体燃料联产低碳烯烃的方法
WO2019144953A1 (zh) 一种有机碱修饰的复合催化剂及一氧化碳加氢制乙烯的方法
WO2019144955A1 (zh) 一种含lf型b酸催化剂及合成气直接转化制乙烯的方法
CN115703074B (zh) 一种含MnGaOx的双功能催化剂及其在一氧化碳高温加氢制低碳烯烃中的应用
RU2778293C1 (ru) Каталитический высокоселективный способ получения олефинов с низким числом атомов углерода с применением легированного гетероатомами молекулярного сита и синтез-газа
WO2019144954A1 (zh) 一种碱修饰的复合催化剂及一氧化碳加氢反应制乙烯的方法
CN110152716B (zh) 一种选择性脱去MOR12圆环Al的催化剂及一氧化碳加氢反应制乙烯的方法
CN115703074A (zh) 一种含MnGaOx的双功能催化剂及其在一氧化碳高温加氢制低碳烯烃中的应用
WO2020125488A1 (zh) 一种催化剂及合成气直接转化制低芳烃液体燃料的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911386

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17911386

Country of ref document: EP

Kind code of ref document: A1