WO2020125488A1 - 一种催化剂及合成气直接转化制低芳烃液体燃料的方法 - Google Patents

一种催化剂及合成气直接转化制低芳烃液体燃料的方法 Download PDF

Info

Publication number
WO2020125488A1
WO2020125488A1 PCT/CN2019/124235 CN2019124235W WO2020125488A1 WO 2020125488 A1 WO2020125488 A1 WO 2020125488A1 CN 2019124235 W CN2019124235 W CN 2019124235W WO 2020125488 A1 WO2020125488 A1 WO 2020125488A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
molecular sieve
catalyst
selectivity
liquid fuel
Prior art date
Application number
PCT/CN2019/124235
Other languages
English (en)
French (fr)
Inventor
焦峰
李娜
潘秀莲
包信和
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to US17/287,084 priority Critical patent/US11999910B2/en
Priority to JP2021532838A priority patent/JP7205943B2/ja
Priority to EP19900222.1A priority patent/EP3901119A4/en
Publication of WO2020125488A1 publication Critical patent/WO2020125488A1/zh
Priority to ZA2021/02456A priority patent/ZA202102456B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/334Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing molecular sieve catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/703MRE-type, e.g. ZSM-48
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7042TON-type, e.g. Theta-1, ISI-1, KZ-2, NU-10 or ZSM-22
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7046MTT-type, e.g. ZSM-23, KZ-1, ISI-4 or EU-13
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/708MRE-type, e.g. ZSM-48
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/7092TON-type, e.g. Theta-1, ISI-1, KZ-2, NU-10 or ZSM-22
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/7096MTT-type, e.g. ZSM-23, KZ-1, ISI-4 or EU-13
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/7261MRE-type, e.g. ZSM-48
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/7284TON-type, e.g. Theta-1, ISI-1, KZ-2, NU-10 or ZSM-22
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/7292MTT-type, e.g. ZSM-23, KZ-1, ISI-4 or EU-13
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7661MRE-type, e.g. ZSM-48
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7684TON-type, e.g. Theta-1, ISI-1, KZ-2, NU-10 or ZSM-22
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7692MTT-type, e.g. ZSM-23, KZ-1, ISI-4 or EU-13
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/7861MRE-type, e.g. ZSM-48
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/7884TON-type, e.g. Theta-1, ISI-1, KZ-2, NU-10 or ZSM-22
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/7892MTT-type, e.g. ZSM-23, KZ-1, ISI-4 or EU-13
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4012Pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/30Aromatics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the invention belongs to the preparation of liquid fuel by syngas, and in particular relates to a catalyst and a method for directly synthesizing syngas to prepare liquid fuel.
  • Coal is used as a raw material to obtain syngas (that is, a mixture of CO and H 2 ) after gasification.
  • the synthesis gas is converted into methanol.
  • the technical route for methanol to make gasoline through dimethyl ether is mature. And into industrialization, this route provides an important new route for liquid fuels such as coal and natural gas.
  • direct conversion of synthesis gas can be achieved without going through the direct route of methanol synthesis and methanol dehydration to dimethyl ether, not only can the process flow be simplified, but unit operations can also be reduced, reducing investment and energy consumption.
  • the traditional Fischer-Tropsch route can realize the direct conversion of synthesis gas to prepare liquid fuel.
  • oxide + molecular sieve to form a dual-function catalyst can separate CO activation and CC coupling on two active centers to break the limitation of product selectivity in traditional Fischer-Tropsch and may obtain high gasoline selectivity.
  • some molecular sieves suitable for synthetic gasoline fractions such as the most commonly used ZSM-5 molecular sieve, are prone to generate aromatic hydrocarbons, resulting in too high aromatic hydrocarbon content in the produced gasoline, which is not conducive to environmental protection. Therefore, there is an urgent need to develop a catalyst suitable for the production of liquid fuels with a high gasoline selectivity and low selectivity for aromatics in gasoline, and a highly active syngas-to-gasoline fraction (C 5 -C 11 ).
  • the present invention provides a catalyst and a method for directly converting synthetic gas into liquid fuel.
  • One aspect of the present invention provides a dual-functional composite catalyst, the catalyst includes component I and component II, the component I and component II are compounded together by mechanical mixing, and the active component of component I is metal oxidation
  • the component II is one or more than one of two-dimensional molecular sieve with a TON or AEL or MTT or MRE topology, or a metal-modified TON or AEL or MTT or MRE topology.
  • the metal oxides mentioned are MnO x , MnCr y O (x+1.5y) , MnAl y O (x+1.5y) , MnZr y O (x+2y) , MnIn y O (x+1.5y) , ZnO, ZnCr y O (1+1.5y) , ZnAl y O (1+1.5y) , ZnGa y O (1+1.5y) , ZnIn y O (2+1.5y) , CeO 2 , CoAl y O (1+1.5 y) , FeAl y O (1+1.5y) , Ga 2 O 3 , Bi 2 O 3 , In 2 O 3 , In y Al z MnO (x+1.5y+1.5z) , In y Ga z MnO (x +1.5y+1.5z) one or more than two; the value range of x is 1 to 3.5, the value range of y is 0.1-10; the value range of z
  • the specific surface area of the MnO x , ZnO, CeO 2 , Ga 2 O 3 , Bi 2 O 3 , In 2 O 3 is 1-100m 2 /g;
  • the molecular sieve of the one-dimensional ten-membered ring channel is a molecular sieve of TON or AEL or MTT or MRE topology.
  • the TON or AEL or MTT or MRE molecular sieve has a one-dimensional ten-membered ring channel.
  • the molecular sieve having a TON or AEL or MTT or MRE topology structure contains a one-dimensional ten-membered ring channel structure, and its skeleton element composition may be Si-O, Si-Al-O, Si-Al -PO, Al-PO, Ga-PO, Ga-Si-Al-O, Zn-Al-PO, Mg-Al-PO, Co-Al-PO, one or more, the type of molecular sieve is preferably One or more of SAPO-11, ZSM-22, ZSM-23, or ZSM-48.
  • the AEL molecular sieve has the characteristics of medium strong acid, the amount of medium strong acid sites is 0.05-0.5mol/kg; preferably 0.05-0.4mol/kg, more preferably 0.05-0.3mol/kg;
  • the TON molecular sieve has the characteristics of medium strong acid, and the amount of medium strong acid sites is 0.005-0.6 mol/kg; preferably 0.005-0.4 mol/kg, more preferably 0.005-0.2 mol/kg.
  • the molecular sieve in the component II may be synthesized by itself or may be a commercial product, which needs to meet the scope defined by the present invention.
  • the acid strength is defined by the NH 3 -TPD peak and includes three kinds of acidity: weak acid, medium strong acid, and strong acid;
  • the molecular sieve may be synthesized in the laboratory or commercially purchased and meet the requirements of the present invention.
  • the 13 C-NMR chemical shift is in the range of 210-220 ppm.
  • the weight ratio between the active ingredient in component I and component II is 0.1-20, preferably 0.3-5.
  • a dispersant is further added to the component I, and the metal oxide is dispersed in the dispersant; the dispersant is Al 2 O 3 , SiO 2 , Cr 2 O 3, ZrO 2 , One or more of TiO 2 , Ga 2 O 3 , activated carbon, graphene, and carbon nanotubes.
  • the content of the dispersant is 0.05-90 wt%, and the rest are metal oxides.
  • the element O of the molecular sieve framework of component II may be connected or not connected with H; and the H may be ion exchanged by Na, Mg, K, Mn, Ag, Mo, One or two or more of Cr, Fe, Co, Ca, Pt, Pd, Ti, Zn, Ga, Ba, and Ge are all or partially substituted, and the total metal to oxygen molar ratio after substitution is 0.0002 to 0.02.
  • Another aspect of the present invention provides a method for directly converting synthetic gas into liquid fuel, which uses synthetic gas as a reaction raw material to perform a conversion reaction on a fixed bed or a moving bed.
  • the catalyst used is the above-mentioned dual-functional composite catalyst;
  • the pressure of the synthesis gas is 0.5-10 MPa, preferably 1-8 MPa; the reaction temperature is 300-600°C, preferably 350-450°C; and the space velocity is 300-12000h -1 , preferably It is 1000-9000h -1 , more preferably 3000-9000h -1 ; the synthesis gas is H 2 /CO mixed gas, and the H 2 /CO ratio is 0.2-3.5, preferably 0.3-2.5.
  • the dual-functional composite catalyst is used for direct conversion of synthesis gas into liquid fuel, wherein the selectivity of liquid fuel can reach 50-80%, preferably 65-80%, C 5-
  • the aromatic hydrocarbon selectivity in C 11 is less than 40%, preferably less than 30%, while the by-product methane selectivity is less than 15%, preferably less than 10%.
  • This technology is different from the traditional Fischer-Tropsch synthetic liquid fuel. It realizes one-step direct conversion of synthesis gas into liquid fuel, and at the same time greatly reduces the selectivity of aromatic hydrocarbons in liquid fuel.
  • the liquid fuel in the product has high selectivity, which can reach 50-80%, and the product can be separated without cryogenic cooling, which greatly reduces the energy consumption and cost of separation.
  • the active component metal oxide of component I in the catalyst has a higher specific surface area, so the metal oxide surface has more active sites, which is more conducive to the progress of the catalytic reaction.
  • component II in the catalyst is to further convert the active gas-phase intermediate produced by component I to obtain liquid fuel by coupling with component I.
  • the effect of component II on the balanced pull of the series reaction can promote the group The activation and conversion of synthesis gas by fraction I further improves the conversion rate.
  • the special one-dimensional ten-membered ring channel structure of molecular sieve in component II used in the present invention has a unique type selection effect and can obtain more with high selectivity. Liquid fuel products, while greatly reducing the content of aromatic hydrocarbons in liquid fuel.
  • the use of the I component or the II component described in the present invention alone cannot achieve the function of the present invention, for example, the methane selectivity in the product of the I component alone is very high, and the conversion rate is very low, while the II is used alone
  • the components can hardly activate and convert the synthesis gas, and only the synergistic catalysis of the I component and the II component can realize efficient syngas conversion and obtain excellent selectivity. This is because the I component can activate the synthesis gas to generate a specific active gas-phase intermediate, and the intermediate diffuses into the pores of the II component through the gas phase.
  • the molecular sieve of the TON or AEL or MTT or MRE topology selected by the present invention has a special
  • the one-dimensional ten-membered ring channel structure and acidity can effectively activate the active gas-phase intermediate produced by the I component into liquid fuel, while maintaining low aromatic selectivity ( ⁇ 40%).
  • the molecular sieve is different from the one-dimensional eight-membered ring and twelve-membered ring, two-dimensional and three-dimensional ten-membered ring molecular sieve, the one-dimensional eight-membered ring products are mainly short carbon chain hydrocarbons (C 2 -C 4 ); one-dimensional Although the product obtained from the 12-membered ring molecular sieve is relatively high, the content of aromatics in the product is higher than that of the one-dimensional ten-membered ring; although the two-dimensional ten-membered ring and the three-dimensional ten-membered ring molecular sieve can produce more high carbon Product, but the high selectivity of aromatics in the long chain is not conducive to environmental protection requirements. Therefore, the special channel structure of the II component makes the product have special selectivity.
  • the preparation process of the composite catalyst in the patent is simple and the conditions are mild; and the reaction process has a high product yield and selectivity.
  • the selectivity of C 5 -C 11 liquid fuel can reach 50-80%, while C 5-
  • the selectivity of aromatics in C 11 is less than 40%, and the selectivity of by-product methane is low ( ⁇ 15%).
  • the specific surface area of the sample can be tested by nitrogen or argon physical adsorption.
  • the metal oxide described in the present invention can be obtained by purchasing a commercially available metal oxide with a high specific surface area, or by the following methods:
  • the atmosphere is inert gas, reducing gas or oxidizing gas; the inert gas is one or more of N 2 , He and Ar; the reducing gas is one or two of H 2 and CO, in the reducing gas It may also contain an inert gas; the oxidizing gas is one or two or more of O 2 , O 3 , and NO 2 , and the oxidizing gas may also contain an inert gas.
  • the firing temperature is 300-700°C and the time is 0.5h-12h.
  • the purpose of calcination is to decompose the precipitated metal oxide precursor into oxide nanoparticles with high specific surface area at high temperature, and the high temperature treatment of the calcination can clean the oxide surface adsorbed species generated by decomposition.
  • ZnO 4 in the table is a commercially available ZnO single crystal with a low specific surface area.
  • the preparation process is the same as the above ZnO 2 except that the precursor of Zn is replaced by the corresponding precursor of Ce, which can be one of cerium nitrate, cerium chloride and cerium acetate, in this case cerium nitrate, the corresponding product Defined as CeO 2 ; the specific surface area is: 92 m 2 /g.
  • the preparation process is the same as the above ZnO 2, the difference is that the Zn precursor is replaced by the corresponding precursor of Ga, which can be one of gallium nitrate, gallium chloride, gallium acetate, in this case gallium nitrate, the corresponding product Defined as Ga 2 O 3 ; specific surface area is: 55 m 2 /g.
  • the Zn precursor is replaced by the corresponding precursor of Ga, which can be one of gallium nitrate, gallium chloride, gallium acetate, in this case gallium nitrate, the corresponding product Defined as Ga 2 O 3 ; specific surface area is: 55 m 2 /g.
  • the preparation process is the same as the above ZnO 2 except that the precursor of Zn is replaced by the corresponding precursor of Bi, which may be one of bismuth nitrate, bismuth chloride and bismuth acetate, in this case bismuth nitrate.
  • the corresponding product is defined as Bi 2 O 3 ; the specific surface area is: 87 m 2 /g.
  • the preparation process is the same as the above ZnO 2 except that the precursor of Zn is replaced by the corresponding precursor of In, which can be one of indium nitrate, indium chloride, and indium acetate, in this case indium nitrate, the corresponding product Defined as In 2 O 3 ; the specific surface area is: 52m 2 /g.
  • the precursor of Zn is replaced by the corresponding precursor of In, which can be one of indium nitrate, indium chloride, and indium acetate, in this case indium nitrate, the corresponding product Defined as In 2 O 3 ; the specific surface area is: 52m 2 /g.
  • the deposited precipitate was prepared Cr 2 O 3, Al 2 O 3 or ZrO 2 dispersed metal oxides.
  • dispersed ZnO commercial Cr 2 O 3 (specific surface area about 5 m 2 /g), Al 2 O 3 (specific surface area about 20 m 2 /g) or ZrO 2 (specific surface area about 10 m 2 / g) previously dispersed in water as a carrier, and zinc nitrate as raw materials
  • mixing the precipitate with a precipitating agent is sodium carbonate at room temperature, the molar concentration of 0.067M Zn 2+, Zn 2+ and the ratio of the mole fraction of the precipitant is 1 : 8; and then aged at 160°C for 24 hours to obtain Cr 2 O 3 , Al 2 O 3 or ZrO 2 as the carrier dispersed ZnO (the content of the dispersant in component I is 0.1wt%, 20wt%, 85w
  • SiO 2 (specific surface area of about 2 m 2 /g), Ga 2 O 3 (specific surface area of about 10 m 2 /g) or TiO 2 (specific surface area of about 15 m 2 /g)
  • a carrier dispersion MnO oxide the content of dispersant in component I is 5wt%, 30wt%, 60wt% in order
  • the product is defined as dispersed oxide 4-6 in order. It was a specific surface area: 97m 2 / g, 64m 2 / g, 56m 2 / g.
  • activated carbon (specific surface area is about 1000m 2 /g), graphene (specific surface area is about 500m 2 /g) and carbon nanotubes (specific surface area is about 300m 2 /g) can be obtained as the carrier dispersed ZnO Oxide (the content of dispersant in component I is 5wt%, 30wt%, 60wt% in sequence), and the product is defined as dispersed oxide 7-9 in sequence. It was a specific surface area: 177m 2 / g, 245m 2 / g, 307m 2 / g.
  • component II molecular sieve with TON or AEL or MTT or MRE topology
  • the molecular sieve with TON or AEL or MTT or MRE topology has one-dimensional ten-membered ring channels.
  • the medium-strong acid described in the present invention can be tested by solid nuclear magnetic H spectrum, NH 3 -TPD, infrared, chemical titration and other methods. But the acid test method is not limited to the above test method.
  • the molecular sieve described in the present invention may be a molecular sieve with a TON or AEL or MTT or MRE topology whose acid density meets the requirements of the present invention, or a molecular sieve synthesized by itself.
  • the molecular sieve prepared by hydrothermal synthesis is used as an example .
  • PMBr 2 was used as a template, 0.15g of aluminum nitrate was dissolved in 17.93g of water, 0.64g of 50wt% sodium hydroxide was added, and then 1.24g of template was added. Finally, 4.96g of TEOS (tetraethyl orthosilicate) was added and stirred for 2h, transferred to a 45ml hydrothermal kettle, and rotated and crystallized at 160°C for 7 days at 37rpm. After the product is quenched, it is centrifugally washed, dried and roasted. Similarly, after ion exchange with 1M ammonium nitrate solution at 70°C for 2h, the product was obtained by centrifugal washing, drying and roasting.
  • TEOS tetraethyl orthosilicate
  • the skeleton element composition of the molecular sieve with TON or AEL or MTT or MRE topology may be Si-O, Si-Al-O, Si-Al-PO, Al-PO, Ga-PO, Ga-Si-Al- One or more of O, Zn-Al-PO, Mg-Al-PO, Co-Al-PO; the O element of part of the framework is connected to H, and the corresponding products are sequentially defined as points 1-6;
  • the mixing temperature can be set to 20-100°C, which can be carried out in an atmosphere or directly in the air.
  • the atmosphere is selected from any of the following gases:
  • a mixed gas of O 2 and nitrogen and/or inert gas wherein the volume of O 2 in the mixed gas is 5-20%, and the inert gas is one or two of helium, argon and neon the above.
  • Mechanical mixing can be compounded by one or more of mechanical stirring, ball milling, shaker mixing, and mechanical grinding, as follows:
  • Ball milling using abrasives and catalyst to roll over in the grinding tank at high speed, which has a strong impact on the catalyst, rolling, to achieve the role of dispersing and mixing component I and component II.
  • abrasive material can be stainless steel, agate, quartz. Size range: 5mm-15mm
  • the ratio of the catalyst mass ratio range: 20-100:1
  • Shaker mixing method pre-mix component I and component II, and put them in a container; realize the mixing of component I and component II by controlling the reciprocating or circular oscillation of the shaker; by adjusting the oscillation speed (range : 1-70 rpm) and time (range: 5min-120min) to achieve uniform mixing and adjust its relative distance.
  • Mechanical grinding method pre-mix component I and component II, and put them into a container; under a certain pressure (range: 5kg-20kg), relative motion is carried out with the mixed catalyst through a research tool (rate range: 30-300 rpm) to achieve the function of adjusting the catalyst particle size, relative distance and achieving uniform mixing.
  • the catalyst is also suitable for moving bed reactor.
  • the device is equipped with a gas mass flow meter and on-line product analysis chromatography (the tail gas of the reactor is directly connected to the quantitative valve of the chromatography for periodic real-time sampling and analysis).
  • the catalyst component A is ZnO3
  • the component B is a commercially available MOR from Shentan Company, which has a coexisting channel of a one-dimensional eight-membered ring and a twelve-membered ring.
  • the molecular sieve in the catalyst used in Comparative Example 2 is a commercially available commercial product ZSM-12, which has a one-dimensional twelve-membered ring straight-through channel.
  • the molecular sieve in the catalyst used in Comparative Example 3 is a commercially available commercial SAPO-34, which has three-dimensional crossing channels and an eight-membered ring orifice diameter.
  • the molecular sieve in the catalyst used in Comparative Example 4 is a commercially available commercial product ZSM-5, which has a three-dimensional ten-membered ring topology.
  • the molecular sieve in the catalyst used in Comparative Example 5 is a commercially available commercial product ZSM-35, which has a topological structure in which two-dimensional eight-membered rings and ten-membered rings coexist.
  • the molecular sieve in the catalyst used in Comparative Example 6 is a commercially available commercial MCM-22, which has a two-dimensional ten-membered ring topology.
  • the molecular sieve in the catalyst used in Comparative Example 7 is a commercially available commercial product ZSM-11, which has a three-dimensional ten-membered ring topology.
  • Comparative Examples 1-7 show that molecular sieves with different topologies have obvious modulation of product selectivity.
  • ZSM-12 with a one-dimensional twelve-membered ring has relatively high gasoline selectivity, the aromatic hydrocarbon content in gasoline is higher (>40%).
  • the SAPO-34 with a two-dimensional eight-membered ring and a ten-membered ring coexisting ZSM-35 and a three-dimensional eight-membered ring channel structure is not conducive to the formation of hydrocarbons with C 5 or more, and is suitable for the production of short-carbon hydrocarbon products.
  • MCM-22 with two-dimensional ten-membered rings and ZSM-5 and ZSM-11 molecular sieves with three-dimensional ten-membered ring channels are suitable for generating gasoline fractions, the aromatic selectivity in gasoline is high (>50%). Only one-dimensional ten-membered ring channels of TON or AEL or MTT or MRE type molecular sieve are suitable for the production of gasoline with low aromatic content.
  • the catalyst component I is ZnO4, the specific surface area is low ( ⁇ 1m 2 /g), the component II is 1, the CO conversion rate is low, and the reaction activity is low, so the specific surface area of the oxide is too small is not conducive to The progress of the reaction.
  • the catalyst used in Comparative Example 9 is a molecular sieve sample with only component I, ZnO1, and does not contain TON or AEL or MTT or MRE topology.
  • the reaction conversion rate is very low, and the products are mainly by-products such as dimethyl ether and methane. Almost no liquid fuel is generated.
  • the catalyst used in Comparative Example 10 was a molecular sieve with only component II and no sample containing component I, and the catalytic reaction was almost inactive.
  • Comparative examples 9 and 10 show that the reaction effect is extremely poor when only component I or component II is present, and they do not have the excellent reaction performance described in the present invention at all.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

一种催化剂及合成气直接转化制低芳烃液体燃料的方法,其以合成气为反应原料,在固定床或移动床上进行转化反应,所述催化剂为复合催化剂,由组分Ⅰ和组分Ⅱ以机械混合方式复合在一起,组分I的活性成份为金属氧化物,组分II为具有一维十元环孔道的分子筛中的一种或二种以上;组分Ⅰ中的活性成分与组分Ⅱ中活性成分的重量比在0.1-20倍范围之间。反应过程具有很高的产品收率和选择性,由C 5-C 11组成的液体燃料选择性可以达到50-80%,C 5-C 11中芳烃选择性低于40%,同时副产物甲烷选择性低于15%,具有很好的应用前景。

Description

一种催化剂及合成气直接转化制低芳烃液体燃料的方法 技术领域
本发明属于合成气制备液体燃料,具体涉及一种催化剂及合成气直接转化制液体燃料的方法。
背景技术
随着经济的发展和生活水平的提高,液体燃料和化学品的需求量也逐年急剧上升。目前汽油生产主要由重石脑油的催化重整得到。随着全球石油资源日渐消耗和居高不下的原油价格,尤其对石油资源匮乏的我国而言,每年超过近60%的石油消耗量依赖进口,寻求一种可以替代的工艺路线,开发利用由煤、生物质等非油基碳资源制备液体燃料的方法,具有重要的社会意义和战略意义。
我国煤炭资源丰富,以煤炭为原料,经过气化得到合成气(即CO和H 2的混合气),将合成气转化成甲醇,甲醇再经二甲醚制取汽油的简介技术路线已经成熟,并步入工业化,该路线为煤、天然气等碳资源制液体燃料提供了一条重要的新路线。然而,若能实现合成气直接转化,而不经过甲醇合成和甲醇脱水制二甲醚的直接路线,不仅可以简化工艺流程,而且可以减少单元操作,降低投资和能耗。传统的费托路径可以实现合成气直接转化制备液体燃料,然而受其反应机理的限制,CO和H 2分子在催化剂表面发生解离吸附,生成表面C原子和O原子,C原子和O原子与吸附在催化剂表面的氢发生反应,形成亚甲基(CH 2)中间体,同时放出水分子。亚甲基中间体通过迁移插入反应,在催化剂表面进行自由聚合,生成含不同碳原子数(从一到三十,有时甚至到上百个碳原子)的烃类产物。整个反应烃类产物碳原子数分布广,目标产物的选择性低,如汽油的选择性低于50%。使用氧化物+分子筛组成双功能催化剂可以将CO活化与C-C偶联分开在两个活性中心上进行从而打破传统费托中产物选择性的限制,可能获得高汽油选择性。但是一些适合合成汽油馏分的分子筛,例如最为常用的ZSM-5分子筛,容易生成芳烃,导致生产的汽油中芳烃含量过高,不利于环保。因此迫切需要开发适用于生成高汽油选择性,同时汽油中芳烃选择性较低的,高活性的合成气制汽油馏分(C 5-C 11)液体燃料的催化剂。
发明内容
针对上述问题,本发明提供了一种催化剂及合成气直接转化制液体燃料的方法。
本发明的技术方案为:
本发明一方面提供一种双功能复合催化剂,所述催化剂包括组分Ⅰ和组分Ⅱ,所述组分Ⅰ和组分Ⅱ以机械混合方式复合在一起,组分Ⅰ的活性成份为金属氧化物,组分II为具有TON或AEL或MTT或MRE拓扑结构的一维十元环孔道的分子筛或金属修饰的TON或AEL或MTT或MRE拓扑结构的分子筛中的一种或二种以上;所述的金属氧化物为MnO x、MnCr yO (x+1.5y)、MnAl yO (x+1.5y)、MnZr yO (x+2y)、MnIn yO (x+1.5y)、ZnO、ZnCr yO (1+1.5y)、ZnAl yO (1+1.5y)、ZnGa yO (1+1.5y)、ZnIn yO (2+1.5y)、CeO 2、CoAl yO (1+1.5y)、FeAl yO (1+1.5y)、Ga 2O 3、Bi 2O 3、In 2O 3、In yAl zMnO (x+1.5y+1.5z)、In yGa zMnO (x+1.5y+1.5z)中的一种或二种以上;所述x的取值范围是1~3.5,y的取值范围是0.1-10;z的取值范围是0.1-10;
所述MnO x、ZnO、CeO 2、Ga 2O 3、Bi 2O 3、In 2O 3的比表面积是1-100m 2/g;
所述MnCr yO (x+1.5y)、MnAl yO (x+1.5y)、MnZr yO (x+2y)、MnIn yO (x+1.5y)、ZnCr yO (1+1.5y)、ZnAl yO (1+1.5y)、ZnGa yO (1+1.5y)、ZnIn yO (2+1.5y)、CoAl yO (1+1.5y)、FeAl yO (1+1.5y)、In yAl zMnO (x+1.5y+1.5z)、In yGa zMnO (x+1.5y+1.5z)的比表面积是5-150m 2/g。
所述一维十元环孔道的分子筛为TON或AEL或MTT或MRE拓扑结构的分子筛,TON或AEL或MTT或MRE分子筛具有一维十元环孔道。
基于以上技术方案,优选的,所述具有TON或AEL或MTT或MRE拓扑结构的分子筛含一维十元环孔道结构,其骨架元素组成可以是Si-O、Si-Al-O、Si-Al-P-O、Al-P-O、Ga-P-O、Ga-Si-Al-O、Zn-Al-P-O、Mg-Al-P-O、Co-Al-P-O中的一种或二种以上,该类型分子筛优选为SAPO-11或ZSM-22或ZSM-23或ZSM-48中的一种或二种以上。
基于以上技术方案,优选的,所述AEL分子筛具有中强酸特点,中强酸位点的量是0.05-0.5mol/kg;优选为0.05-0.4mol/kg,更优选为0.05-0.3mol/kg;所述TON分子筛具有中强酸特点,中强酸位点的量是0.005-0.6mol/kg;优选为0.005-0.4mol/kg,更优选为0.005-0.2mol/kg。
所述组分II中的分子筛可以是自行合成的,也可以是商业产品,需要满足本发明限定的范围。
所述酸强度以NH 3-TPD峰来定义,包含弱酸、中强酸、强酸三种酸性;
该NH 3-TPD是根据NH 3的脱附峰位置,所述脱附峰的位置是指在标准测试条件下,在样品质量w与载气流速f比值(w/f)=100g·h/L,10℃/min升温速度的测试条件下,TCD记录脱附NH 3的热导信号,绘制脱附曲线,根据曲线峰位置顶点将所述无机固体分为三种酸性强度;弱酸是指NH 3脱附温度小于275℃的酸性位;中强酸是NH 3脱附温度在275-500℃的酸性位;强酸是NH 3脱附温度大于500℃的酸性位。所述分子筛可以 是实验室合成的也可以是商业购买且满足本发明要求的。
用丙酮作为探针分子, 13C-NMR化学位移位于210-220ppm范围。
基于以上技术方案,优选的,组分Ⅰ中的活性成份与组分Ⅱ之间的重量比为0.1-20,优选为0.3-5。
基于以上技术方案,优选的,所述组分Ⅰ中还添加有分散剂,金属氧化物分散于分散剂中;所述分散剂为Al 2O 3、SiO 2、Cr 2O 3、ZrO 2、TiO 2、Ga 2O 3、活性炭、石墨烯、碳纳米管中的一种或二种以上。
基于以上技术方案,优选的,所述组分Ⅰ中,分散剂的含量在0.05-90wt%,其余为金属氧化物。
基于以上技术方案,优选的,所述组分II的分子筛骨架的O元素上可以连接或不连接H;且所述H可以通过离子交换的方式被Na、Mg、K、Mn、Ag、Mo、Cr、Fe、Co、Ca、Pt、Pd、Ti、Zn、Ga、Ba、Ge中的一种或两种以上全部或部分取代,取代后总的金属与氧的摩尔比是0.0002-0.02。
本发明另一方面提供一种合成气直接转化制液体燃料的方法,其以合成气为反应原料,在固定床或移动床上进行转化反应,所采用的催化剂上述双功能复合的催化剂;
基于以上技术方案,优选的,所述合成气的压力为0.5-10MPa,优选为1-8MPa;反应温度为300-600℃,优选为350-450℃;空速为300-12000h -1,优选为1000-9000h -1,更优选为3000-9000h -1;所述合成气为H 2/CO混合气,H 2/CO比例为0.2-3.5,优选为0.3-2.5。
基于以上技术方案,优选的,所述的双功能复合催化剂用于合成气一步法直接转化制液体燃料,其中液体燃料的选择性可达50-80%,优选为65-80%,C 5-C 11中芳烃选择性低于40%,优选为低于30%,同时副产物甲烷选择性低于15%,优选为低于10%。
本发明具有如下优点:
1、本技术与传统的费托合成制液体燃料不同,实现了一步直接将合成气高效转化为液体燃料,同时大幅度降低了液体燃料中芳烃的选择性。
2、产物中液体燃料选择性高,可达到50-80%,产物不需深冷便可分离,大大降低了分离的能耗与成本。
3、催化剂中组分Ⅰ的活性成分金属氧化物具有较高的比表面积,因此金属氧化物表面上具有更多的活性位点,更有利于催化反应的进行。
4、催化剂中组分Ⅱ的作用一方面是通过与组分I进行耦合,将组分I产生的活泼气相中间体进一步转化获得液体燃料,由于组分II对串联反应平衡拉动的作用可以促进组分I对合成气的活化转化进而提高转化率,另一方面本发明使用的组分II中分子筛特殊的一维十元环孔道结构,具有独特的择型效应,可以高选择性的获得更多的液体燃料产物,同时大大降低液体燃料中芳烃含量。
5、单独分别使用本发明中所述的I组分或II组分完全不能实现本发明的功能,例如单独使用I组分产物中甲烷选择性非常高,且转化率很低,而单独使用II组分几乎不能活化转化合成气,只有I组分与II组分协同催化才能实现高效的合成气转化,并获得优异的选择性。这是由于I组分可以活化合成气生成特定的活泼气相中间体,中间体经由气相扩散到II组分的孔道内,由于本发明选择的TON或AEL或MTT或MRE拓扑结构的分子筛,具有特殊的一维十元环孔道结构和酸性,可以有效的将I组分产生的活泼气相中间体进一步活化转化为液体燃料,同时保持较低的芳烃选择性(<40%)。该分子筛有别于一维八元环与十二元环、二维和三维十元环分子筛,一维八元环产物主要以短碳链烃类(C 2-C 4)为主;一维十二元环分子筛得到的产物中,虽然长碳链产物相对高,但是产物中芳烃含量比一维十元环高;二维十元环与三维十元环分子筛虽可以产生较多的高碳产物,但是长链中芳烃选择性高,不利于环保要求。因此II组分的特殊孔道结构使得产物具有特殊的选择性。
6、专利中的复合催化剂的制备过程简单、条件温和;且反应过程具有很高的产品收率和选择性,C 5-C 11液体燃料的选择性可以达到50-80%,同时C 5-C 11中芳烃选择性低于40%,副产物甲烷选择性低(<15%)。
具体实施方式
下面通过实施例对本发明做进一步阐述,但是本发明的权利要求范围不受这些实施例的限制。同时,实施例只是给出了实现此目的的部分条件,但并不意味着必须满足这些条件才可以达到此目的。
样品的比表面积可以通过氮气或氩气物理吸附的方法进行测试。
本发明所述的金属氧化物可以通过购买市售的高比表面积的金属氧化物获得,也可以通过下述几种方法获得:
一、催化剂组分Ⅰ的制备
(一)、沉淀法合成具有高比表面的ZnO材料:
(1)分别称取3份、每份0.446g(1.5mmol)Zn(NO 3) 2·6H 2O于3个容器中,再分 别称取0.795g(7.5mmol)、1.272g(12mmol)、1.908g(18mmol)的NaCO 3依次加入上述3个容器中,再各量取30ml去离子水加入到3个容器中,70℃搅拌0.5h以上使溶液混合均匀,自然冷却至室温。反应液离心分离,收集离心分离后的沉淀物,用去离子水洗涤2次获得ZnO金属氧化物前驱体;
(2)焙烧:上述获得的产物在空气中烘干以后,在气氛中进行焙烧处理,即得到高比表面的ZnO材料。气氛为惰性气体、还原性气体或者氧化性气体;惰性气体为N 2、He和Ar中的一种或二种以上;还原性气体为H 2、CO中的一种或二种,还原气中也可以含有惰性气体;氧化性气体是O 2、O 3、NO 2中的一种或两种以上,氧化气体中也可以含有惰性气体。焙烧温度为300-700℃,时间为0.5h-12h。
焙烧的目的是为了将沉淀后的金属氧化物前驱体在高温下分解为高比表面积的氧化物纳米粒子,并且通过焙烧的高温处理可以将分解生成的氧化物表面吸附物种处理干净。
具体样品及其制备条件如下表1,作为对比例,表中ZnO 4是市售低比表面积的ZnO单晶。
表1 ZnO材料的制备及其参数性能
Figure PCTCN2019124235-appb-000001
(二)共沉淀法合成具有高比表面积的MnO x材料:
制备过程同上述ZnO 2,不同之处在于将Zn的前驱体换成了Mn的对应的前驱体,可为硝酸锰、氯化锰、醋酸锰中的一种,在此为硝酸锰,对应产物定义为MnO x;x=1;比表面积是:43m 2/g。
(三)共沉淀法合成具有高比表面积的CeO 2材料:
制备过程同上述ZnO 2,不同之处在于将Zn的前驱体换成了Ce的对应的前驱体,可为硝酸铈、氯化铈、醋酸铈中的一种,在此为硝酸铈,对应产物定义为CeO 2;比表面积是:92m 2/g。
(四)共沉淀法合成具有高比表面积的Ga 2O 3材料:
制备过程同上述ZnO 2,不同之处在于将Zn的前驱体换成了Ga的对应的前驱体,可为硝酸镓、氯化镓、醋酸镓中的一种,在此为硝酸镓,对应产物定义为Ga 2O 3;比表面积是:55m 2/g。
(五)共沉淀法合成具有高比表面积的Bi 2O 3材料:
制备过程同上述ZnO 2,不同之处在于将Zn的前驱体换成了Bi的对应的前驱体,可为硝酸铋、氯化铋、醋酸铋中的一种,在此为硝酸铋。对应产物定义为Bi 2O 3;比表面积分别是:87m 2/g。
(六)共沉淀法合成具有高比表面积的In 2O 3材料:
制备过程同上述ZnO 2,不同之处在于将Zn的前驱体换成了In的对应的前驱体,可为硝酸铟、氯化铟、醋酸铟中的一种,在此为硝酸铟,对应产物定义为In 2O 3;比表面积是:52m 2/g。
(七)沉淀法合成具有高比表面积的MnCr yO (x+1.5y)、MnAl yO (x+1.5y)、MnZr yO (x+2y)、MnIn yO (x+1.5y)、ZnCr yO (1+1.5y)、ZnAl yO (1+1.5y)、ZnGa yO (1+1.5y)、ZnIn yO (2+1.5y)、CoAl yO (1+1.5y)、FeAl yO (1+1.5y)、In yAl zMnO (x+1.5y+1.5z)、In yGa zMnO (x+1.5y+1.5z)
采用硝酸锌、硝酸铝、硝酸铬、硝酸锰、硝酸锆、硝酸镓、硝酸铟、硝酸钴、硝酸铁为前驱体,与碳酸铵,在室温下于水中相互混合(其中碳酸铵作为沉淀剂,投料比例为碳酸铵过量或者优选铵离子与金属离子的比例为1:1);将上述混合液陈化,然后取出洗涤、过滤和干燥,所得的固体在空气气氛下焙烧,获得高比表面的金属氧化物,具体样品及其制备条件如下表2。
表2 高比表面积金属氧化物的制备及其性能参数
Figure PCTCN2019124235-appb-000002
Figure PCTCN2019124235-appb-000003
(八)、分散剂Cr 2O 3、Al 2O 3或ZrO 2分散的金属氧化物
以分散剂Cr 2O 3、Al 2O 3或ZrO 2为载体,沉淀沉积法制备Cr 2O 3、Al 2O 3或ZrO 2分散的金属氧化物。以分散ZnO的制备为例,将商业Cr 2O 3(比表面积约为5m 2/g)、Al 2O 3(比表面积约为20m 2/g)或ZrO 2(比表面积约为10m 2/g)作为载体预先分散于水中,然后采用硝酸锌为原料,与碳酸钠沉淀剂在室温下混合沉淀,Zn 2+的摩尔浓度为0.067M,Zn 2+与沉淀剂的摩尔份数比为1:8;然后在160℃下陈化24小时,获得Cr 2O 3、Al 2O 3或ZrO 2为载体分散的ZnO(分散剂于组分Ⅰ中的含量依次为0.1wt%、20wt%、85wt%)。得到的样品在空气下500℃焙烧1h,产物依次定义为分散氧化物1-3,其比表面积依次为:148m 2/g,115m 2/g,127m 2/g。
以同样的方法,可以获得SiO 2(比表面积约为2m 2/g)、Ga 2O 3(比表面积约为10m 2/g)或TiO 2(比表面积约为15m 2/g)为载体分散的MnO氧化物(分散剂于组分Ⅰ中的含量依次为5wt%、30wt%、60wt%),产物依次定义为分散氧化物4-6。其比表面积依次为:97m 2/g,64m 2/g,56m 2/g。
以同样的方法,可以获得活性炭(比表面积约为1000m 2/g)、石墨烯(比表面积约 为500m 2/g)和碳纳米管(比表面积约为300m 2/g)为载体分散的ZnO氧化物(分散剂于组分Ⅰ中的含量依次为5wt%、30wt%、60wt%),产物依次定义为分散氧化物7-9。其比表面积依次为:177m 2/g,245m 2/g,307m 2/g。
二、组分II(TON或AEL或MTT或MRE拓扑结构的分子筛)的制备
所述TON或AEL或MTT或MRE拓扑结构的分子筛具有一维十元环孔道。
本发明所描述的中强酸可以通过固体核磁的H谱,NH 3-TPD,红外,化学滴定等方式进行测试。但酸性的测试方法不限于上述测试方法。
本发明所述的分子筛可以是商品的酸密度符合本发明要求的具有TON或AEL或MTT或MRE拓扑结构的分子筛,也可以是自行合成的分子筛,这里以通过水热合成法制备的分子筛为例。
1)具有AEL拓扑结构的分子筛,具体制备过程为:
按氧化物SiO 2:Al 2O 3:H 3PO 4:R:H 2O=4:10:10:9:300(质量比)称取原料:硅溶胶30%(质量浓度);异丙醇铝;磷酸;DPA与或DIPA(R);去离子水,室温混合后加入模板剂0.5倍摩尔量的助剂HF,在30℃下搅拌老化,2h后转移到水热釜中,200℃下晶化24h。水浴骤冷到室温,反复离心洗涤使得洗涤结束时上清液pH是7,沉淀物于110℃下烘干17h后,在600℃空气中焙烧3h得到多级孔结构的硅磷铝无机固体酸。
2)具有TON拓扑结构的分子筛,具体制备过程为:
按氧化物SiO 2:Al 2O 3:K 2O:R:H 2O=70:1:7.5:25:500(质量比)称取原料:硅溶胶30%(质量浓度);硫酸铝;氢氧化钾;HDA(R);去离子水,室温混合后加入模板剂0.5倍摩尔量的助剂HF,在30℃下搅拌老化,2h后转移到水热釜中,180℃下晶化48h。水浴骤冷到室温,反复离心洗涤使得洗涤结束时上清液pH是7,沉淀物于110℃下烘干17h后,在600℃空气中焙烧3h得到多级孔结构的分子筛。
3)具有MTT拓扑结构的分子筛,具体制备过程为:
0.4g硫酸铝溶于60.75g水中,0.26gNaOH与2.4g吡啶加入后加入4.5g白炭黑。搅拌2h后转移到四氟乙烯内衬的水热釜中160℃,3天晶化。产物离心洗涤烘干焙烧后,1M硝酸铵溶液70℃2h离子交换后,再次离心洗涤烘干焙烧得到产物。
4)具有MRE拓扑结构的分子筛,具体制备过程为:
PMBr 2作为模板剂,0.15g硝酸铝溶于17.93g水中,加入0.64g 50wt%氢氧化钠,再加入1.24g模板剂。最后加入4.96g TEOS(原硅酸四乙酯)搅拌2h,转入45ml水热釜中,160℃7天37rpm旋转晶化。产物骤冷后离心洗涤干燥焙烧。同样用1M硝酸铵溶 液70℃2h离子交换后,再次离心洗涤烘干焙烧得到产物。
所述具有TON或AEL或MTT或MRE拓扑结构的分子筛的骨架元素组成可以是Si-O、Si-Al-O、Si-Al-P-O、Al-P-O、Ga-P-O、Ga-Si-Al-O、Zn-Al-P-O、Mg-Al-P-O、Co-Al-P-O中的一种或二种以上;部分骨架的O元素上连接H,对应产物依次定义为分1-6;
表3 具有TON或AEL或MTT或MRE拓扑结构的分子筛的制备及其性能参数
Figure PCTCN2019124235-appb-000004
2)将上述产物1-6骨架的O元素上连接的H通过离子交换的方式被如下金属离子 部分取代:Na、Mg、K、Mn、Ag、Mo、Cr、Fe、Co、Ca、Pt、Pd、Ti、Zn、Ga、Ba、Ge制备过程为:
按照SiO 2:Al 2O 3:H 3PO 4:R:H 2O=4:16:32:55:150,其中R为模板剂。
将硫酸铝与氢氧化钠溶液混合,然后加入硅溶胶,磷酸,DPA与或DIPA(R);去离子水,搅拌1h得到均一相的初始凝胶,然后将其转移到高压合成釜中,190℃静态晶化48h后骤冷、洗涤、干燥,即得到具有AEL拓扑结构的分子筛样品。
按照SiO 2:Al 2O 3:K 2O:R:H 2O=70:1:7.5:25:500,其中R为模板剂。
将硫酸铝与氢氧化钾溶液混合,然后加入硅溶胶,HDA(R);去离子水,搅拌1h得到均一相的初始凝胶,然后将其转移到高压合成釜中,190℃静态晶化48h后骤冷、洗涤、干燥,即得到具有TON拓扑结构的分子筛样品。
按照SiO 2:Al 2O 3:Na 2O:R:H 2O=9:1:0.5:5:130,其中R为模板剂。
将硫酸铝溶于水中,然后加入NaOH、吡啶(R)与白炭黑,搅拌2h后转移到四氟乙烯内衬的水热釜中160℃,3天晶化。产物离心洗涤烘干焙烧后即得到具有MTT拓扑结构的分子筛样品产物。
按照SiO 2:Al 2O 3:Na 2O:R:H 2O=25:1:1.5:6:90,其中R为模板剂。
将硝酸铝与氢氧化钠溶液混合,然后加入TEOS,PMBr 2(R);去离子水,搅拌2h后将其转移到高压合成釜中,160℃静态晶化84h后骤冷、洗涤、干燥,即得到具有MRE拓扑结构的分子筛样品。
取上述样品,按照固液质量比为1:30的比例将其与0.5mol/L的待交换的金属离子硝酸盐溶液混合,在80℃下搅拌6h,洗涤,烘干,连续进行2次,550度焙烧3h,得到金属离子交换的TON或AEL或MTT或MRE。对应产物依次定义为分7-23。
表4 具有TON或AEL或MTT或MRE拓扑结构的分子筛的制备及其性能参数
Figure PCTCN2019124235-appb-000005
Figure PCTCN2019124235-appb-000006
3)其他元素组成的分子筛
Figure PCTCN2019124235-appb-000007
Figure PCTCN2019124235-appb-000008
三、催化剂的制备
将所需比例的组分Ⅰ和组分Ⅱ加入容器中,利用这些物料和/或容器的高速运动产生的挤压力、撞击力、裁剪力、摩擦力等中的一种或两种以上作用实现分离、破碎、混匀等目的,通过调变温度与载气气氛实现机械能、热能与化学能的转换,进一步调节不同组分间的相互作用。
机械混合过程中,可以设置混合温度为20-100℃,可以在气氛中或者直接在空气中进行,气氛选自以下任意的气体:
a)氮气和/或惰性气体;
b)氢气与氮气和/或惰性气体的混合气,其中氢气于混合气中的体积为5~50%;
c)CO与氮气和/或惰性气体的混合气,其中CO于混合气中的体积为5~20%;
d)O 2与氮气和/或惰性气体的混合气,其中O 2于混合气中的体积为5-20%,所述惰性气体为氦气、氩气、氖气中的一种或两种以上。
机械混合可采用机械搅拌、球磨、摇床混合、机械研磨中的一种或二种以上进行复合,具体如下:
机械搅拌:在搅拌槽中,采用搅拌棒将组分Ⅰ和组分Ⅱ进行混合,通过控制搅拌时间(5min-120min)和速率(30-300转/min),可以调节组分Ⅰ和组分Ⅱ的混合程度和相对距离。
球磨:利用磨料与催化剂在研磨罐内高速翻滚,对催化剂产生强烈冲击、碾压,达到分散、混合组分Ⅰ和组分Ⅱ的作用。通过控制磨料(材质可以是不锈钢、玛瑙、石英。尺寸范围:5mm-15mm)与催化剂的比例(质量比范围:20-100:1),可以调节催化剂的粒度及相对距离。
摇床混合法:将组分Ⅰ和组分Ⅱ预混合,并装入容器中;通过控制摇床的往复振荡或圆周振荡,实现组分Ⅰ和组分Ⅱ的混合;通过调节振荡速度(范围:1-70转/分)和时间(范围:5min-120min),实现均匀混合并调节其相对距离。
机械研磨法:将组分Ⅰ和组分Ⅱ预混合,并装入容器中;在一定的压力(范围:5公斤-20公斤)下,通过研具与混合的催化剂进行相对运动(速率范围:30-300转/min),达到调节催化剂粒度、相对距离和实现均匀混合的作用。
具体的催化剂制备及其参数特征如表6所示。
表6 催化剂的制备及其参数特征
Figure PCTCN2019124235-appb-000009
Figure PCTCN2019124235-appb-000010
Figure PCTCN2019124235-appb-000011
Figure PCTCN2019124235-appb-000012
催化反应实例
以固定床反应为例,但是催化剂也适用于移动床反应器。该装置配备气体质量流量计、在线产物分析色谱(反应器的尾气直接与色谱的定量阀连接,进行周期实时采样分析)。
将上述本发明的催化剂2g,置于固定床反应器中,使用Ar置换反应器中的空气,然后再在H 2气氛中升温至300℃,切换合成气(H 2/CO摩尔比=0.2-3.5),合成气的压力为0.5-10MPa,升温至反应温度300-600℃,调节反应原料气的空速至300-12000ml/g/h。产物由在线色谱检测分析。
改变温度、压力和空速和合成气中H 2/CO的摩尔比,可以改变反应性能。其中由C 5-C 11组成的液体燃料选择性可以达到50-80%;由于催化剂金属复合物表面加氢活性不高,避免了甲烷的大量生成,甲烷选择性低。表7列出了催化剂的具体应用及其效果数据。
表7 催化剂的具体应用及其效果数据
Figure PCTCN2019124235-appb-000013
Figure PCTCN2019124235-appb-000014
Figure PCTCN2019124235-appb-000015
对比例1催化剂组份A为ZnO3,组份B为申覃公司市售MOR,其具有一维八元环与十二元环共存孔道。
对比例2采用的催化剂中分子筛为市售的商品ZSM-12,其具有一维十二元环直通孔道。
对比例3采用的催化剂中分子筛为市售的商品SAPO-34,其具有三维交叉孔道、八元环孔口直径。
对比例4采用的催化剂中分子筛为市售的商品ZSM-5,其具有三维十元环拓扑结构。
对比例5采用的催化剂中分子筛为市售的商品ZSM-35,其具有二维八元环与十元环共存的拓扑结构。
对比例6采用的催化剂中分子筛为市售的商品MCM-22,其具有二维十元环拓扑结构。
对比例7采用的催化剂中分子筛为市售的商品ZSM-11,其具有三维十元环拓扑结构。
对比例1-7的反应结果表明,不同拓扑结构的分子筛对产物选择性调变明显。具有一维八元环与十二元环共存的市售MOR分子筛,产物主要以短碳链烃类(C 2-C 4)为主,长链产物选择性相对较低。具有一维十二元环的ZSM-12虽然产物中汽油选择性也相对较高,但是汽油中芳烃含量较高(>40%)。具有二维八元环与十元环共存的ZSM-35与三维八元环孔道结构的SAPO-34不利于C 5以上烃类的生成,适合生成短碳链烃类的产品。而具有二维十元环的MCM-22以及三维十元环孔道的ZSM-5以及ZSM-11分子筛 虽然适合生成汽油馏分,但是汽油中芳烃选择性高(>50%)。只有一维十元环孔道的TON或AEL或MTT或MRE类型的拓扑结构的分子筛适合低芳烃含量的汽油的生成。
对比例8催化剂组分I为ZnO4,比表面积较低(<1m 2/g),组分II为分1,CO转化率较低,反应活性较低,因此氧化物的比表面积太小不利于反应的进行。
对比例9采用的催化剂是仅有组分I ZnO1,不含有TON或AEL或MTT或MRE拓扑结构的分子筛样品,反应转化率很低,且产物主要以二甲醚,甲烷等副产物为主,几乎没有液体燃料生成。
对比例10采用的催化剂是仅有组分II分子筛,不含有组分I的样品,催化反应几乎没有活性。
对比例9、10表明只有组分I或组分II时反应效果极其差,完全不具备本发明所述的优异反应性能。
由上表可以看出分子筛的结构,包括TON&AEL&MTT&MRE的拓扑结构及其酸强度和酸量,以及金属氧化物和分子筛之间的匹配至关重要,直接影响一氧化碳的转化率和液体燃料的选择性。

Claims (10)

  1. 一种催化剂,其特征在于:所述催化剂包括组分Ⅰ和组分Ⅱ,所述组分Ⅰ和组分Ⅱ以机械混合方式复合在一起,组分Ⅰ的活性成份为金属氧化物,组分II为一维(1D)十元环孔道的分子筛;所述的金属氧化物为MnO x、MnCr yO (x+1.5y)、MnAl yO (x+1.5y)、MnZr yO (x+2y)、MnIn yO (x+1.5y)、ZnO、ZnCr yO (1+1.5y)、ZnAl yO (1+1.5y)、ZnGa yO (1+1.5y)、ZnIn yO (2+1.5y)、CeO 2、CoAl yO (1+1.5y)、FeAl yO (1+1.5y)、Ga 2O 3、Bi 2O 3、In 2O 3、In yAl zMnO (x+1.5y+1.5z)、In yGa zMnO (x+1.5y+1.5z)中的一种或二种以上;所述x的取值范围是1~3.5,y的取值范围是0.1-10;z的取值范围是0.1-10;
    所述MnO x、ZnO、CeO 2、Ga 2O 3、Bi 2O 3、In 2O 3的比表面积是1-100m 2/g;
    所述MnCr yO (x+1.5y)、MnAl yO (x+1.5y)、MnZr yO (x+2y)、MnIn yO (x+1.5y)、ZnCr yO (1+1.5y)、ZnAl yO (1+1.5y)、ZnGa yO (1+1.5y)、ZnIn yO (2+1.5y)、CoAl yO (1+1.5y)、FeAl yO (1+1.5y)、In yAl zMnO (x+1.5y+1.5z)、In yGa zMnO (x+1.5y+1.5z)的比表面积是5-150m 2/g。
  2. 根据权利要求1所述的催化剂,其特征在于,所述一维十元环孔道的分子筛为具有TON或AEL或MTT或MRE拓扑结构的分子筛;所述分子筛的骨架元素组成为Si-O、Si-Al-O、Si-Al-P-O、Al-P-O、Ga-P-O、Ga-Si-Al-O、Zn-Al-P-O、Mg-Al-P-O、Co-Al-P-O中的一种或二种以上;所述一维十元环孔道的分子筛优选为SAPO-11、ZSM-22、ZSM-23或ZSM-48中至少一种。
  3. 根据权利要求1所述的催化剂,其特征在于:组分Ⅰ中的活性成份与组分Ⅱ之间的重量比为0.1-20,优选为0.3-5。
  4. 根据权利要求1所述的催化剂,其特征在于:所述组分Ⅰ中还添加有分散剂,金属氧化物分散于分散剂中;所述分散剂为Al 2O 3、SiO 2、Cr 2O 3、ZrO 2、TiO 2、Ga 2O 3、活性炭、石墨烯、碳纳米管中的一种或二种以上。
  5. 根据权利要求2所述的催化剂,其特征在于:所述AEL拓扑结构的分子筛具有中强酸特点,中强酸位点的量是0.05-0.5mol/kg;优选为0.05-0.4mol/kg,更优选为0.05-0.3mol/kg;所述TON、MTT和MRE拓扑结构的分子筛具有中强酸特点,中强酸位点的量是0.005-0.6mol/kg;优选为0.005-0.4mol/kg,更优选为0.005-0.2mol/kg;
    其中,中强酸对应NH 3-TPD脱附峰的峰顶对应的温度范围为200-500℃;用丙酮作为探针分子, 13C-NMR化学位移位于210-220ppm范围。
  6. 按照权利要求2所述的催化剂,其特征在于:分子筛骨架的O元素上可以连接或不连接H;且所述H可以通过离子交换的方式被Na、Mg、K、Mn、Ag、Mo、Cr、 Fe、Co、Ca、Pt、Pd、Ti、Zn、Ga、Ba、Ge中的一种或两种以上全部或部分取代,取代后总的金属与氧的摩尔比是0.0002-0.02。
  7. 根据权利要求4所述的催化剂,其特征在于:所述组分Ⅰ中,分散剂的含量为0.05-90wt%,其余为金属氧化物。
  8. 一种合成气直接转化制液体燃料的方法,其特征在于:以合成气为反应原料,在固定床或移动床上进行转化反应,所采用的催化剂为权利要求1-7任一所述的催化剂。
  9. 根据权利要求8所述的方法,其特征在于:所述合成气的压力为0.5-10MPa,优选为1-8MPa;反应温度为300-600℃,优选为320-450℃;空速为300-12000h -1,优选为1000-9000h -1,更优选为3000-9000h -1;所述合成气为H 2/CO混合气,H 2/CO比例为0.2-3.5,优选为0.3-2.5。
  10. 根据权利要求8所述的方法,其特征在于:所述方法以合成气为反应原料一步法直接转化制液体燃料,其中液体燃料的选择性可达50-80%,C 5-C 11中芳烃选择性低于40%,同时副产物甲烷选择性低于15%。
PCT/CN2019/124235 2018-12-21 2019-12-10 一种催化剂及合成气直接转化制低芳烃液体燃料的方法 WO2020125488A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/287,084 US11999910B2 (en) 2018-12-21 2019-12-10 Catalyst and method for preparing low aromatic hydrocarbon liquid fuel through direct conversion of syngas
JP2021532838A JP7205943B2 (ja) 2018-12-21 2019-12-10 触媒及び合成ガスの直接転化による低級アレーン液体燃料の製造方法
EP19900222.1A EP3901119A4 (en) 2018-12-21 2019-12-10 CATALYST AND PROCESS FOR THE PRODUCTION OF LOW AROMATIC HYDROCARBON LIQUID FUEL BY DIRECT CONVERSION OF SYNTHETIC GAS
ZA2021/02456A ZA202102456B (en) 2018-12-21 2021-04-14 Catalyst and method for preparing low aromatic hydrocarbon liquid fuel by direct conversion of synthesis gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811575053.0 2018-12-21
CN201811575053.0A CN111346671B (zh) 2018-12-21 2018-12-21 一种催化剂及合成气直接转化制低芳烃液体燃料的方法

Publications (1)

Publication Number Publication Date
WO2020125488A1 true WO2020125488A1 (zh) 2020-06-25

Family

ID=71101053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124235 WO2020125488A1 (zh) 2018-12-21 2019-12-10 一种催化剂及合成气直接转化制低芳烃液体燃料的方法

Country Status (7)

Country Link
US (1) US11999910B2 (zh)
EP (1) EP3901119A4 (zh)
JP (1) JP7205943B2 (zh)
CN (1) CN111346671B (zh)
SA (1) SA521421986B1 (zh)
WO (1) WO2020125488A1 (zh)
ZA (1) ZA202102456B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12030036B2 (en) 2018-12-28 2024-07-09 Dow Global Technologies Llc Methods for producing C2 to C5 paraffins using a hybrid catalyst comprising gallium metal oxide

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1260823A (zh) * 1997-06-18 2000-07-19 埃克森化学专利公司 用改性的分子筛将合成气转化成低碳烯烃的方法
US20070244000A1 (en) * 2006-04-13 2007-10-18 Michel Molinier Producing olefin product from syngas
CN101903086A (zh) * 2007-11-19 2010-12-01 国际壳牌研究有限公司 用于制备烯烃类产物的方法
CN106947511A (zh) * 2017-03-07 2017-07-14 北京神雾环境能源科技集团股份有限公司 费托合成制备液体烃类的方法和制备催化剂的方法
CN107774303A (zh) * 2016-08-30 2018-03-09 中国石油化工股份有限公司 多孔金属/分子筛复合催化剂、其制备方法及在合成气制备低碳烯烃中的用途
CN107971026A (zh) * 2016-10-21 2018-05-01 中国石油化工股份有限公司 用于制低碳烯烃的组合催化剂
CN108262055A (zh) * 2016-12-30 2018-07-10 中国科学院上海高等研究院 一种用于二氧化碳一步加氢制备烃类的催化剂及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6472441B1 (en) 2000-07-24 2002-10-29 Chevron U.S.A. Inc. Methods for optimizing Fischer-Tropsch synthesis of hydrocarbons in the distillate fuel and/or lube base oil ranges
EP2336272A1 (en) * 2009-12-15 2011-06-22 Total Petrochemicals Research Feluy Debottlenecking of a steam cracker unit to enhance propylene production.
CN102211034B (zh) * 2011-04-02 2013-08-28 万华实业集团有限公司 由合成气高选择性制备高品质汽油馏分的催化剂及其制备方法
CN107469857B (zh) 2016-06-07 2020-12-01 中国科学院大连化学物理研究所 一种催化剂及合成气直接转化制芳烃的方法
CN107661773B (zh) * 2016-07-29 2020-08-04 中国科学院大连化学物理研究所 一种催化剂及合成气直接转化制液体燃料联产低碳烯烃的方法
CN107774302B (zh) * 2016-08-26 2020-08-14 中国科学院大连化学物理研究所 一种催化剂及合成气直接转化制液体燃料联产低碳烯烃的方法
CN108144642B (zh) * 2016-12-04 2019-11-08 中国科学院大连化学物理研究所 一种油脂加氢制烃类燃料催化剂及制备和应用
CN108970638B (zh) * 2017-06-02 2021-01-19 中国科学院大连化学物理研究所 一种催化剂与合成气直接转化制液体燃料联产低碳烯烃的方法
CN108970637B (zh) * 2017-06-02 2021-01-19 中国科学院大连化学物理研究所 一种催化剂及合成气直接转化制液体燃料联产低碳烯烃的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1260823A (zh) * 1997-06-18 2000-07-19 埃克森化学专利公司 用改性的分子筛将合成气转化成低碳烯烃的方法
US20070244000A1 (en) * 2006-04-13 2007-10-18 Michel Molinier Producing olefin product from syngas
CN101903086A (zh) * 2007-11-19 2010-12-01 国际壳牌研究有限公司 用于制备烯烃类产物的方法
CN107774303A (zh) * 2016-08-30 2018-03-09 中国石油化工股份有限公司 多孔金属/分子筛复合催化剂、其制备方法及在合成气制备低碳烯烃中的用途
CN107971026A (zh) * 2016-10-21 2018-05-01 中国石油化工股份有限公司 用于制低碳烯烃的组合催化剂
CN108262055A (zh) * 2016-12-30 2018-07-10 中国科学院上海高等研究院 一种用于二氧化碳一步加氢制备烃类的催化剂及其制备方法
CN106947511A (zh) * 2017-03-07 2017-07-14 北京神雾环境能源科技集团股份有限公司 费托合成制备液体烃类的方法和制备催化剂的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3901119A4 *

Also Published As

Publication number Publication date
CN111346671B (zh) 2023-03-24
EP3901119A1 (en) 2021-10-27
US20210380888A1 (en) 2021-12-09
JP2022512467A (ja) 2022-02-04
ZA202102456B (en) 2022-02-23
JP7205943B2 (ja) 2023-01-17
CN111346671A (zh) 2020-06-30
US11999910B2 (en) 2024-06-04
SA521421986B1 (ar) 2024-08-22
EP3901119A4 (en) 2022-10-12

Similar Documents

Publication Publication Date Title
CA3087607C (en) Catalyst and method for preparing light olefin using direct conversion of syngas
CN107661774B (zh) 一种催化剂及合成气直接转化制低碳烯烃的方法
CN108970638B (zh) 一种催化剂与合成气直接转化制液体燃料联产低碳烯烃的方法
CN107774302B (zh) 一种催化剂及合成气直接转化制液体燃料联产低碳烯烃的方法
WO2020125487A1 (zh) 一种掺杂杂原子分子筛催化合成气高选择性制低碳烯烃的方法
CN107661773B (zh) 一种催化剂及合成气直接转化制液体燃料联产低碳烯烃的方法
US11097253B2 (en) Catalyst and method for preparing liquid fuel and light olefins by direct conversion of syngas
WO2019144951A1 (zh) 一种催化剂及合成气直接转化制乙烯的方法
CN111346666B (zh) 一种催化剂及合成气直接转化制高芳烃含量的液体燃料的方法
WO2018161670A1 (zh) 一种催化剂及合成气直接转化制乙烯的方法
CN112973779A (zh) 一种zsm-22分子筛的后处理方法及其在合成气一步法制液体燃料中的应用
WO2020125488A1 (zh) 一种催化剂及合成气直接转化制低芳烃液体燃料的方法
CN111686789B (zh) 一种Na原子修饰的MOR基催化剂及合成气直接转化制液体燃料的方法
CN112295597B (zh) 一种催化合成气直接转化制富含btx的芳烃的催化剂及其应用
CN109939669B (zh) 一种碱修饰的复合催化剂及一氧化碳加氢反应制乙烯的方法
CN109939668B (zh) 一种含lf型b酸催化剂及合成气直接转化制乙烯的方法
CN112973775B (zh) 一种含mcm-22分子筛的催化剂及其在合成气一步法制液体燃料中的应用
CN112844448B (zh) 一种催化合成气与甲苯直接转化制乙苯的催化剂及其应用
RU2772383C1 (ru) Катализатор и способ получения жидкого топлива с низким содержанием ароматических углеводородов путем прямой конверсии синтез-газа
CN112961699B (zh) 一种合成气与混合c4共进料一步法制备液体燃料的方法
CN112973659B (zh) 一种含sapo-17分子筛的双功能催化剂及在合成气制低碳烯烃反应中的应用
CN110152716B (zh) 一种选择性脱去MOR12圆环Al的催化剂及一氧化碳加氢反应制乙烯的方法
CN116174026A (zh) 一种合成气直接转化制液体燃料的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19900222

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021532838

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019900222

Country of ref document: EP

Effective date: 20210721

WWE Wipo information: entry into national phase

Ref document number: 521421986

Country of ref document: SA

WWE Wipo information: entry into national phase

Ref document number: 521421986

Country of ref document: SA