WO2020125487A1 - 一种掺杂杂原子分子筛催化合成气高选择性制低碳烯烃的方法 - Google Patents

一种掺杂杂原子分子筛催化合成气高选择性制低碳烯烃的方法 Download PDF

Info

Publication number
WO2020125487A1
WO2020125487A1 PCT/CN2019/124234 CN2019124234W WO2020125487A1 WO 2020125487 A1 WO2020125487 A1 WO 2020125487A1 CN 2019124234 W CN2019124234 W CN 2019124234W WO 2020125487 A1 WO2020125487 A1 WO 2020125487A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
molecular sieve
heteroatom
catalyst
precursor
Prior art date
Application number
PCT/CN2019/124234
Other languages
English (en)
French (fr)
Inventor
焦峰
李�根
潘秀莲
包信和
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811575056.4A external-priority patent/CN111346672B/zh
Priority claimed from CN201811575060.0A external-priority patent/CN111346669B/zh
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to US17/286,903 priority Critical patent/US20210347711A1/en
Priority to EP19900221.3A priority patent/EP3900829A4/en
Publication of WO2020125487A1 publication Critical patent/WO2020125487A1/zh
Priority to ZA2021/02711A priority patent/ZA202102711B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • C07C1/044Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof containing iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/14Production of inert gas mixtures; Use of inert gases in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/18Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/83Aluminophosphates (APO compounds)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates (SAPO compounds)
    • B01J35/19
    • B01J35/613
    • B01J35/615
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/0445Preparation; Activation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of rare earths
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/18Arsenic, antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/26Chromium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/32Manganese, technetium or rhenium
    • C07C2523/34Manganese
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/75Cobalt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/82Phosphates
    • C07C2529/83Aluminophosphates (APO compounds)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/82Phosphates
    • C07C2529/84Aluminophosphates containing other elements, e.g. metals, boron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/82Phosphates
    • C07C2529/84Aluminophosphates containing other elements, e.g. metals, boron
    • C07C2529/85Silicoaluminophosphates (SAPO compounds)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention belongs to the field of preparing low-carbon olefins by synthesis gas, and in particular relates to a method for preparing low-carbon olefins by catalytically synthesizing synthetic gas doped with heteroatoms.
  • the lower olefin refers to an olefin having 4 or less carbon atoms.
  • Low-carbon olefins represented by ethylene and propylene are very important basic organic chemical raw materials. With the rapid growth of my country's economy, the low-carbon olefin market has been in short supply for a long time. At present, the production of low-carbon olefins mainly adopts the petrochemical route of cracking light hydrocarbons (ethane, naphtha, light diesel oil).
  • the one-step synthesis of low-carbon olefins by syngas is the process of directly producing low-carbon olefins with carbon atoms less than or equal to 4 through the Fischer-Tropsch synthesis reaction of carbon monoxide and hydrogen. This process does not need to be
  • the synthesis gas is further prepared by methanol or dimethyl ether to olefin, simplifying the process flow and greatly reducing investment.
  • Synthesis gas directly produces low-carbon olefins through Fischer-Tropsch synthesis, which has become one of the research hotspots in the development of Fischer-Tropsch synthesis catalysts.
  • a strong base K or Cs ion Agent at a reaction pressure of 1.0 to 5.0 MPa to synthesize low-carbon olefins and a reaction temperature of 300 to 400°C, a higher activity (CO conversion rate of 90%) and selectivity (low-carbon olefin selectivity of 66%) can be obtained .
  • the selectivity for olefins is 69%, while the selectivity for alkanes is 20%, the ratio of olefins is reduced to 3.5, and the selectivity for propylene butene is 40-50%.
  • the present invention provides a catalyst and a method and a catalyst for directly converting synthesis gas to produce low-carbon olefins.
  • An aspect of the present invention provides a catalyst comprising component I and component II, component I and component II are prepared separately and then mixed; the active component of component I is a metal oxide, component II Molecular sieve doped with heteroatoms;
  • the metal oxides are MnO x , MnaCr (1-a) O x , Mn a Al (1-a) O x , Mn a Zr (1-a) O x , Mn a In (1-a) O x , ZnO x , Zn a Cr (1-a) O x , Zn a Al (1-a) O x , Zn a Ga (1-a) O x , Zn a In (1-a) O x , CeO x , Co a Al (1-a) O x , Fe a Al (1-a) O x , GaO x , BiO x , InO x , In a Al b Mn (1-ab) O x , In a Ga b
  • Mn (1-ab) O x In a Ga b
  • Mn (1-ab) O x In a Ga b
  • Mn (1-ab) O x
  • the molecular sieve is a molecular sieve with CHA or AEI topology, and the skeleton atoms include Al-PO or Si-Al-PO; the hetero atoms are divalent metals Mg, Ca, Cr, Mn, Fe, Co, Ni, Cu, One or more of Zn, Sr, Zr, Mo, Cd, Ba, Ce, trivalent Ti, Ga, and tetravalent Ge; the heteroatom-doped molecular sieve is the heteroatom doped with the molecular sieve In the framework, the Al, P, or Si in the molecular sieve framework is replaced, the divalent metal and the trivalent metal usually replace the position of Al in the framework, and the tetravalent and higher valence metals replace the position of P or Si.
  • the MnO x, ZnO x, CeO x , GaO x, BiO x, InO x specific surface area is 1-100m 2 / g; specific surface area is preferably 50-100m 2 / g;
  • the specific surface area of x , Fe a Al (1-a) O x , In a Al b Mn (1-ab) O x , In a Ga b Mn (1-ab) O x is 5-150 m 2 /g, preferably The specific surface area is 50-150m 2 /g;
  • the ratio of the sum of the molar amount of the hetero atoms in the doped heteroatom molecular sieve to the P molar amount is 0.001-0.6; the ratio of the Si atom to P molar amount is 0.01-0.6.
  • the weight ratio of the active ingredient in the component I to the component II is 0.1-20, preferably 0.3-5.
  • a dispersant is further added to the component I, and the metal oxide is dispersed in the dispersant;
  • the dispersant is Al 2 O 3 , SiO 2 , Cr 2 O 3 , ZrO 2 , One or more of TiO 2 , Ga 2 O 3 , activated carbon, graphene, and carbon nanotubes; in the component I, the content of the dispersant is 0.05-90 wt%, and the rest are metal oxides.
  • the heteroatom-doped molecular sieve is prepared by in-situ hydrothermal growth method or by post-treatment method;
  • the in-situ hydrothermal growth method includes the following steps:
  • Al-P-O framework Dissolve a certain proportion of aluminum source and phosphorus source in water, stir evenly, add to the solution containing heteroatom precursor and template agent, and stir for 0.5-12h;
  • Si-Al-P-O framework dissolve a certain proportion of aluminum source, phosphorus source and silicon source in water, stir evenly, add a precursor containing a heteroatom and a template agent and stir for 0.5-12h;
  • step (1) Hydrothermal crystallization: the sol precursor obtained in step (1) is reacted and crystallized at 160-200°C for 4-7 days;
  • step (3) roast the product of step (3) at 550-600°C for 3-6h; the ratio of the heteroatom precursor heteroatom to the phosphorus source is 0-0.6;
  • the post-processing method is:
  • Al-PO framework configure a solution of a heteroatom precursor, immerse AlPO-18 or AlPO-34 molecular sieves in the precursor solution, dry, and finally bake at 550-600°C for 3-6h, load by dipping method, etc. Obtain a heteroatom precursor, and insert the heteroatom into the skeleton by roasting;
  • Si-Al-P-O framework configure a solution of a heteroatom precursor, immerse SAPO-18 or SAPO-34 molecular sieve in the precursor solution, dry, and finally calcine at 550-600°C for 3-6h.
  • AlPO-18 or AlPO-34, SAPO-18 or SAPO-34 may be a commercially available sample or a sample synthesized by a method reported in the literature.
  • the doped heteroatom molecular sieve obtained by the above two methods is significantly different from the ion-exchanged molecular sieve. It is expressed in the AEI molecular sieve with Al, P, O as the skeleton. Because the skeleton is electrically neutral, O does not have exchangeable H atoms. Therefore, it is difficult to incorporate heteroatoms by ion exchange; however, molecular sieves with Si-Al-PO as the framework usually replace the H on Si-OH-Al after ion exchange and are located outside the framework of the molecular sieve.
  • the molecular sieve obtained by ion exchange has hetero atoms located outside the molecular sieve skeleton, and the heteroatom-doped molecular sieve obtained in the present invention has its hetero atoms embedded in the molecular sieve skeleton, the catalyst The structure and reaction performance are obviously different from the ion exchange samples.
  • the aluminum source includes but is not limited to boehmite, aluminum hydroxide, aluminum nitrate, aluminum sulfate or aluminum isopropoxide;
  • the phosphorus source includes but is not limited to phosphoric acid;
  • the silicon source Including but not limited to silica sol, TEOS, white carbon black, quartz sand, silicate;
  • the heteroatom precursors include but not limited to metal nitrate, sulfate, acetate, halide or oxidation of the corresponding metal atom
  • the template is triethylamine (TEA), diisopropylethylamine (DIPEA), etc.
  • Another aspect of the present invention provides a method for producing low-carbon olefins by catalytic synthesis gas with high selectivity.
  • the synthesis gas is used as a reaction raw material to perform a conversion reaction on a fixed bed or a moving bed to prepare low-carbon olefins.
  • the catalyst used in the method is the above Catalyst.
  • the pressure of the synthesis gas is 0.5-10 MPa, preferably 1-8 MPa, more preferably 2-8 MPa;
  • the reaction temperature is 300-600°C, preferably 370-450°C;
  • the space velocity is 300-10000h -1 , preferably 500-9000h -1 , more preferably 1000-6000h-1;
  • the synthesis gas is H 2 /CO mixed gas, H 2 /CO molar ratio is 0.2-3.5, preferably 0.3- 2.5;
  • the synthesis gas may also contain CO 2 , wherein the volume concentration of CO 2 in the synthesis gas is 0.1-50%.
  • the method directly converts C 2-4 olefins by a one-step synthesis gas method.
  • the selectivity of C 2-4 olefins is 50-90%, and the selectivity of by-product methane is ⁇ 7%.
  • MTO methanol-to-low-carbon olefin technology
  • the preparation process of the composite catalyst in the present invention has simple conditions and mild conditions; by inserting heteroatoms into the framework of the molecular sieve of CHA or AEI structure, the activity and product selectivity of the reaction are effectively improved, and the selectivity of low-carbon olefins is improved while the reaction conversion rate is increased.
  • the reaction conversion rate can reach 10%-55%
  • the selectivity of propylene butene product in the product can be increased to 40-75%
  • the selectivity of C 2-4 low-carbon olefin can reach 50-90%.
  • the product can be separated without cryogenic cooling, which greatly reduces the energy consumption and cost of separation.
  • the selectivity of by-product methane is low ( ⁇ 7%), and the catalyst life is long, >700 hours, which has a good application prospect.
  • the specific surface area of the sample can be tested by nitrogen or argon physical adsorption.
  • the metal oxide described in the present invention can be obtained by purchasing a commercially available metal oxide with a high specific surface area, or by the following methods:
  • the atmosphere is inert gas, reducing gas or oxidizing gas; the inert gas is one or more of N 2 , He and Ar; the reducing gas is one or two of H 2 and CO, and the reducing gas is also It may contain an inert gas; the oxidizing gas is one or two or more of O 2 , O 3 , and NO 2 , and the oxidizing gas may also contain an inert gas.
  • the firing temperature is 300-700°C and the time is 0.5h-12h.
  • the purpose of calcination is to decompose the precipitated metal oxide precursor into oxide nanoparticles with high specific surface area at high temperature, and the high temperature treatment of the calcination can clean the oxide surface adsorbed species generated by decomposition.
  • ZnO#4 in the table is a commercially available ZnO single crystal with a low specific surface area.
  • the preparation process is the same as the above ZnO#2, the difference is that the precursor of Zn is replaced by the corresponding precursor of Mn, which can be one of manganese nitrate, manganese chloride and manganese acetate, in this case manganese nitrate, corresponding
  • MnO the specific surface area is: 23 m 2 /g.
  • the preparation process is the same as the above ZnO#2, the difference is that the Zn precursor is replaced by the corresponding precursor of Ce, which can be one of cerium nitrate, cerium chloride, and cerium acetate, in this case cerium nitrate, corresponding
  • the product is defined as CeO 2 ; the specific surface area is: 92 m 2 /g.
  • the preparation process is the same as the above ZnO#2, the difference is that the precursor of Zn is replaced by the corresponding precursor of Ga, which can be one of gallium nitrate, gallium chloride, gallium acetate, in this case gallium nitrate, corresponding
  • the product is defined as Ga 2 O 3 ; the specific surface area is: 55 m 2 /g.
  • the preparation process is the same as the above ZnO#2, except that the precursor of Zn is replaced by the corresponding precursor of Bi, which may be one of bismuth nitrate, bismuth chloride, and bismuth acetate, in this case bismuth nitrate.
  • the corresponding product is defined as Bi 2 O 3 ; the specific surface area is: 87 m 2 /g.
  • the preparation process is the same as the above ZnO#2, the difference is that the precursor of Zn is replaced by the corresponding precursor of In, which can be one of indium nitrate, indium chloride, and indium acetate, in this case indium nitrate, corresponding
  • the product is defined as In 2 O 3 ; the specific surface area is: 52m 2 /g
  • ammonium carbonate is used as a precipitant, the proportion of the feed is The excess of ammonium carbonate or preferably the ratio of ammonium ions to metal ions is 1:1); the above mixture is aged, then taken out, washed, filtered and dried, the resulting solid is roasted in an air atmosphere to obtain a metal oxide with a high specific surface
  • Table 2 The specific samples and preparation conditions are shown in Table 2 below.
  • the deposited precipitate was prepared Cr 2 O 3, Al 2 O 3 or ZrO 2 dispersed metal oxides.
  • commercial Cr 2 O 3 specific surface area about 5 m 2 /g
  • Al 2 O 3 specific surface area about 20 m 2 /g
  • ZrO 2 specific surface area about 10 m 2 / g
  • sodium hydroxide precipitating agent are mixed at room temperature and the precipitate, the molar concentration of 0.067M Zn 2+, Zn 2+ and the mole fraction ratio of precipitant 1:8; and then aged at 160 °C for 24 hours to obtain Cr 2 O 3 , Al 2 O 3 or ZrO 2 as a carrier dispersed ZnO (the content of dispersant in component I is 0.1wt%, 20wt% in order , 85wt
  • SiO 2 (specific surface area of about 2 m 2 /g), Ga 2 O 3 (specific surface area of about 10 m 2 /g) or TiO 2 (specific surface area of about 15 m 2 /g)
  • a carrier dispersion MnO oxide the content of dispersant in component I is 5wt%, 30wt%, 60wt% in order
  • the product is defined as dispersed oxide 4-6 in order. It was a specific surface area: 97m 2 / g, 64m 2 / g, 56m 2 / g.
  • activated carbon (specific surface area of about 1000m 2 /g), graphene (specific surface area of about 500m 2 /g) or carbon nanotubes (specific surface area of about 300m 2 /g) can be obtained as a carrier dispersed ZnO Oxide (the content of dispersant in component I is 5wt%, 30wt%, 60wt% in sequence), and the product is defined as dispersed oxide 7-9 in sequence. It was a specific surface area: 177m 2 / g, 245m 2 / g, 307m 2 / g.
  • the CHA and AEI topologies have eight-membered ring orifices and three-dimensional channels.
  • the raw material magnesium nitrate
  • Aluminum hydroxide aluminum hydroxide
  • phosphoric acid diisopropylethylamine (DIPEA)
  • DIPEA diisopropylethylamine
  • Component II Take a 100mL beaker, add an appropriate concentration of zirconium nitrate solution, stir while adding an appropriate amount of AlPO-18 molecular sieve, stir to dry at room temperature, dry, roast at 600 degrees for 3h to obtain Zr-AlPO; Ba-AlPO, Ce -AlPO molecular sieve method is the same as above, the precursor is changed to barium nitrate and cerium nitrate.
  • Component II' Take a 100mL beaker, add the appropriate concentration of zirconium nitrate solution, add the appropriate amount of SAPO-18 molecular sieve while stirring, stir to dry at room temperature, dry, roast at 600 degrees for 3h to obtain Zr-SAPO.
  • the preparation method of Ba-SAPO and Ce-SAPO molecular sieve is the same as above, and the metal source is changed to barium nitrate and cerium nitrate.
  • the mixing temperature can be set at 20-100°C, which can be carried out in an atmosphere or directly in the air.
  • the atmosphere is selected from any of the following gases:
  • a mixed gas of O 2 and nitrogen and/or inert gas wherein the volume of O 2 in the mixed gas is 5-20%, and the inert gas is one or two of helium, argon and neon the above.
  • Mechanical mixing can be compounded by one or more of mechanical stirring, ball milling, shaker mixing, and mechanical grinding, as follows:
  • the stirring rod In the stirring tank, the stirring rod is used to mix component I and component II/II'. By controlling the stirring time (5min-120min) and rate (30-300 revolutions/min), component I can be adjusted Degree of mixing with component II/II'.
  • Ball milling using abrasives and catalyst to roll at high speed in the grinding tank, which has a strong impact on the catalyst and rolling to achieve the function of dispersing and mixing component I and component II/II'.
  • the abrasive the material can be stainless steel, agate, quartz. Size range: 5mm-15mm).
  • Ratio with catalyst mass ratio range: 20-100:1).
  • Shaker mixing method pre-mix component I and component II/II', and put them in a container; realize the mixing of component I and component II/II' by controlling the reciprocating or circular oscillation of the shaker; By adjusting the oscillation speed (range: 1-70 rpm) and time (range: 5min-120min), uniform mixing is achieved.
  • the catalyst is also suitable for moving bed reactor.
  • the device is equipped with a gas mass flow meter and on-line product analysis chromatography (the tail gas of the reactor is directly connected to the quantitative valve of the chromatography for periodic real-time sampling and analysis).
  • Comparative Example 1 The catalyst component I is ZnO#4, and the component II is GeAPO.
  • the molecular sieve in the catalyst used in Comparative Example 4 was the commercial SAPO-34 purchased from Nankai University Catalyst Plant.
  • the temperature corresponding to the desorption peak of medium-strong acid on NH 3 -TPD was 390°C, and the amount of medium-strong acid sites was 0.6 mol/kg .
  • the catalyst used in Comparative Example 6 is a sample in which only component I, ZnO#1 does not contain molecular sieves, the reaction conversion rate is very low, and the products are mainly by-products such as dimethyl ether and methane, and almost no ethylene is generated.
  • the catalyst used in Comparative Example 7 is a sample with only component II divided into 1 molecular sieve and no component I, and the catalytic reaction has little activity.
  • the molecular sieve in the catalyst used in Comparative Example 8 is self-synthesized AlPO-18, and the remaining parameters and mixing process are the same as Catalyst A.
  • the conversion and selectivity of the reaction of Comparative Example 8 are very poor, far lower than the reaction performance of Catalyst A under the same conditions, indicating that the molecular sieve doped with heteroatoms can effectively improve the activity and selectivity of the reaction.
  • the molecular sieve in the catalyst used in Comparative Example 9 is Mg(NO 3 ) 2 ion-exchanged AlPO-18, and the remaining parameters and mixing process are the same as Catalyst A.
  • the molecular sieve of the catalyst used in Comparative Example 10 was Ca(NO 3) 2 ion-exchanged AlPO-34, and the remaining parameters and mixing process were the same as those of Catalyst B.
  • Comparative Examples 9 and 10 show that when the ion-exchanged samples of AlPO-18 and AlPO-34 are used as the catalyst component II, their reaction performance is significantly different from that of the doped heteroatom molecular sieve described in the present invention.
  • the AlPO molecular sieve framework is critical to the reactivity and selective modulation.
  • Comparative example 1'catalyst component I is ZnO#4, and component II' is GeSAPO.
  • the molecular sieve in the catalyst used in Comparative Example 4' was a commercial SAPO-34 purchased from the Catalyst Factory of Nankai University.
  • the temperature corresponding to the desorption peak of medium-strong acid on NH3-TPD was 390°C, and the amount of medium-strong acid sites was 0.6mol/kg .
  • the catalyst used in Comparative Example 6' is a sample with only component I, ZnO#1, which does not contain molecular sieves.
  • the reaction conversion rate is very low, and the products are mainly by-products such as dimethyl ether and methane. Almost no ethylene is produced.
  • the catalyst used in Comparative Example 7' was a sample with only component II' divided into 1 molecular sieve and no component I, and the catalytic reaction had little activity.
  • the comparative example 6', 7' has extremely poor reaction effect when there is only component I or component II' on the surface, and does not have the excellent reaction performance described in the present invention at all.
  • the molecular sieve in the catalyst used in Comparative Example 8' is self-synthesized SAPO-18, and the remaining parameters and mixing process are the same as catalyst A'.
  • the reaction of Comparative Example 8' had a high conversion rate but poor selectivity.
  • Catalyst A incorporating Mg effectively improved the selectivity of low-carbon olefins.
  • the molecular sieve in the catalyst used in Comparative Example 9' is Mg(NO 3 ) 2 ion-exchanged SAPO-18, and the remaining parameters and mixing process are the same as those of Catalyst A'.
  • the molecular sieve of the catalyst used in Comparative Example 10' is Ca(NO 3 ) 2 ion-exchanged SAPO-34, and the remaining parameters and mixing process are the same as those of Catalyst B'.
  • reaction results of the comparative examples 9'and 10' show that when the ion-exchanged SAPO-18 and SAPO-34 samples are used as the catalyst component II', the reaction performance is significantly different from that of the doped heteroatom molecular sieve described in the present invention. Both the rate and selectivity are significantly reduced.
  • the incorporation of heteroatoms into the framework of the SAPO molecular sieve is critical to the reactivity and selective modulation.
  • the molecular SAPO-34 sieve has a large amount of acid.
  • the amount of medium strong acid reaches 0.32mol/kg, so When the conversion rate is increased to 35%, the selectivity for olefins is 69%, while the selectivity for alkanes is 20%, the ratio of olefins is reduced to 3.5, and the selectivity for propylene butene is 40-50%.
  • the structure of the molecular sieve can be seen from the table above, including the topology of CHA&AEI and its acid strength and acid amount, the amount of heteroatom incorporation and whether it is doped into the framework, and the matching between the metal oxide and the molecular sieve is very important, direct Affect the conversion rate of carbon monoxide and the selectivity of propylene butene.

Abstract

一种含掺杂杂原子分子筛的催化剂及合成气直接转化制低碳烯烃的方法,所述催化剂为复合催化剂,由组分I和组分II以机械混合方式复合在一起,组分I的活性成份为金属氧化物,组分II为掺杂杂原子的分子筛,分子筛拓扑结构是CHA或AEI,骨架原子包括Al-P-O或者Si-Al-P-O,杂原子可以为二价金属Mg、Ca、Cr、Mn、Fe、Co、Ni、Cu、Zn、Sr、Zr、Mo、Cd、Ba、Ce,三价Ti、Ga,四价Ge中一种或两种以上;组分中I的活性成份与组分II之间的重量比在0.1-20倍范围之间。反应过程具有很高的低碳烯烃选择性,低碳烯烃包括乙烯、丙烯和丁烯的选择性之和可以达到50-90%,同时副产物甲烷选择性低于7%,具有很好的应用前景。

Description

一种掺杂杂原子分子筛催化合成气高选择性制低碳烯烃的方法 技术领域
本发明属于合成气制备低碳烯烃领域,具体涉及一种掺杂杂原子分子筛催化合成气高选择性制低碳烯烃的方法。
背景技术
低碳烯烃是指碳原子数小于或等于4的烯烃。以乙烯、丙烯为代表的低碳烯烃是非常重要的基本有机化工原料,随着我国经济的快速增长,长期以来,低碳烯烃市场供不应求。目前,低碳烯烃的生产主要采用轻烃(乙烷、石脑油、轻柴油)裂解的石油化工路线,由于全球石油资源的日渐缺乏和原油价格长期高位运行,发展低碳烯烃工业仅仅依靠石油轻烃为原料的管式裂解炉工艺会遇到越来越大的原料难题,低碳烯烃生产工艺和原料必须多元化。选用合成气制取烯烃工艺可拓宽原材料来源,将以原油、天然气、煤炭和可再生材料为原料生产合成气,为基于高成本原料如石脑油的蒸汽裂解技术方面提供替代方案。合成气一步法直接制取低碳烯烃就是一氧化碳和氢在催化剂作用下,通过费托合成反应直接制得碳原子数小于或等于4的低碳烯烃的过程,该工艺无需像间接法工艺那样从合成气经甲醇或二甲醚,进一步制备烯烃,简化工艺流程,大大减少投资。
合成气通过费托合成直接制取低碳烯烃,已成为费托合成催化剂开发的研究热点之一。中科院大连化学物理研究所公开的专利CN1083415A中,用MgO等IIA族碱金属氧化物或高硅沸石分子筛(或磷铝沸石)担载的铁-锰催化剂体系,以强碱K或Cs离子作助剂,在合成气制低碳烯烃反应压力为1.0~5.0MPa,反应温度300~400℃下,可获得较高的活性(CO转化率90%)和选择性(低碳烯烃选择性66%)。北京化工大学所申报的专利ZL03109585.2中,采用真空浸渍法制备锰、铜、锌硅、钾等为助剂的Fe/活性炭催化剂用于合成气制低碳烯烃反应,在无原料气循环的条件下,CO转化率96%,低碳烯烃在碳氢化合物中的选择性68%。最近,荷兰Utrecht大学de Jong教授团队采用SiC,碳纳米纤维等惰性载体负载的Fe以及Na、S等助剂修饰的Fe催化剂,取得了很好进展获得了61%的低碳烯烃选择性,但是转化率升高时,选择性降低。在合成气直接制烯烃的过程中,由于原料CO与H2是气态,而目标产物中的乙烯沸点低,一般需要深冷分离,如果能够高选择性的获得含三个碳原子和四个碳原子的烯烃即丙烯和丁烯C3-C4烯烃产物,则不需要进行深冷分离,大大降低了分离的能耗与成本,具有重大的应用价值。上述报道中催化剂是采用金属铁或者碳化铁为活性组分,反应遵循金属表面的链增长反应机理,产物低碳烯烃选择性低,而其中C3-C4烯烃的选择性更低。
最近中国科学院大连化学物理研究所报道了ZnCr2O4氧化物与多级孔SAPO-34分子筛复合双功能催化剂(Jiao et al.,Science 351(2016)1065-1068),实现了CO转化率17%时,低碳烯烃80%的选择性,其中低碳烷烃选择性为14%,烯烃与烷烃的比例(烯烷比)达到5.7。当转化率升高到35%,烯烃的选择性为69%,而烷烃的选择性为20%,烯烷比降为3.5,丙烯丁烯选择性为40-50%。
发明内容
针对上述问题,本发明提供了一种催化剂及合成气直接转化制低碳烯烃的催化剂及方法。
本发明的技术方案为:
本发明一方面提供一种催化剂,所述催化剂包含组分Ⅰ和组分Ⅱ,组分Ⅰ和组分Ⅱ分别制备,然后混合;所述组分I的活性成份为金属氧化物,组分II为掺杂杂原子的分子筛;
所述的金属氧化物为MnO x、MnaCr (1-a)O x、Mn aAl (1-a)O x、Mn aZr (1-a)O x、Mn aIn (1-a)O x、ZnO x、Zn aCr (1-a)O x、Zn aAl (1-a)O x、Zn aGa (1-a)O x、Zn aIn (1-a)O x、CeO x、Co aAl (1-a)O x、Fe aAl (1-a)O x、GaO x、BiO x、InO x、In aAl bMn (1-a-b)O x、In aGa bMn (1-a-b)O x中的一种或二种以上;所述x的取值范围是0.7~3.7,a的取值范围是0~1;a+b的取值范围是0~1;
所述的分子筛为CHA或AEI拓扑结构的分子筛,骨架原子包括Al-P-O或者Si-Al-P-O;所述杂原子为二价金属Mg、Ca、Cr、Mn、Fe、Co、Ni、Cu、Zn、Sr、Zr、Mo、Cd、Ba、Ce,三价Ti、Ga,四价Ge中一种或两种以上;所述掺杂杂原子的分子筛为所述杂原子掺杂于所述分子筛骨架中,取代分子筛骨架中的Al或P或Si,二价金属和三价金属通常取代骨架中Al的位置,而四价及以上价态金属取代P或Si的位置。
基于以上技术方案,优选的,所述MnO x、ZnO x、CeO x、GaO x、BiO x、InO x的比表面积是1-100m 2/g;优选比表面积是50-100m 2/g;
所述MnaCr (1-a)O x、Mn aAl (1-a)O x、Mn aZr (1-a)O x、Mn aIn (1-a)O x、ZnO x、Zn aCr (1-a)O x、Zn aAl (1-a)O x、Zn aGa (1-a)O x、Zn aIn (1-a)O x、Co aAl (1-a)O x、Fe aAl (1-a)O x、In aAl bMn (1-a-b)O x、In aGa bMn (1-a-b)O x的比表面积是5-150m 2/g,优选比表面积是50-150m 2/g;
基于以上技术方案,优选的,所述掺杂杂原子分子筛中杂原子的摩尔量之和与P摩尔量比值是0.001-0.6;Si原子与P摩尔量比值是0.01-0.6。
基于以上技术方案,优选的,所述组分Ⅰ中的活性成份与组分Ⅱ的重量比为0.1-20,优选为0.3-5。
基于以上技术方案,优选的,所述组分Ⅰ中还添加有分散剂,金属氧化物分散于分散剂中;所述分散剂为Al 2O 3、SiO 2、Cr 2O 3、ZrO 2、TiO 2、Ga 2O 3、活性炭、石墨烯、碳纳米管中的一种或二种以上;所述组分Ⅰ中,分散剂的含量在0.05-90wt%,其余为金属氧化物。
基于以上技术方案,优选的,所述掺杂杂原子的分子筛通过原位水热生长的方法或通过后处理的方法制备;所述原位水热生长的方法包括如下步骤:
(1)溶胶前驱体制备:
Al-P-O骨架:将一定比例的铝源、磷源溶于水中,搅拌均匀后加入含有杂原子前驱体和模板剂的溶液中,搅拌0.5-12h;
Si-Al-P-O骨架:将一定比例的铝源、磷源和硅源溶于水中,搅拌均匀后,加入含有杂原子前驱体和模板剂搅拌0.5-12h;
(2)水热晶化:将步骤(1)得到的溶胶前驱体于160-200℃反应晶化4-7天;
(3)分离洗涤:将晶化反应后的产物离心、洗涤;
(4)干燥焙烧:将步骤(3)的产物于550-600℃下焙烧3-6h;所述杂原子前驱体杂原子与磷源的比例为0-0.6;
所述后处理的方法为:
Al-P-O骨架:配置杂原子前驱体的溶液,将AlPO-18或AlPO-34分子筛浸渍于所述前驱体溶液中,烘干,最后于550-600℃焙烧3-6h,通过浸渍法等负载得到杂原子前驱体,通过焙烧的方式将杂原子嵌入骨架中;
Si-Al-P-O骨架:配置杂原子前驱体的溶液,将SAPO-18或SAPO-34分子筛浸渍于所述前驱体溶液中,烘干,最后于550-600℃焙烧3-6h。
所述的AlPO-18或AlPO-34,SAPO-18或SAPO-34既可以是市售的样品,也可以是通过文献报道的方法合成的样品。
上述两个方法得到的掺杂杂原子分子筛与离子交换的分子筛具有明显不同,表现在以Al、P、O为骨架的AEI分子筛由于骨架表现为电中性,O上不具有可交换的H原子,因而难以通过离子交换的方式掺入杂原子;而以Si-Al-P-O为骨架的分子筛,通常离子交换后其杂原子取代Si-OH-Al上的H,位于分子筛骨架外。无论以Al-P-O为骨架还是以Si-Al-P-O为骨架,通常离子交换得到的分子筛其杂原子位于分子筛骨架外,而本发明所得掺杂杂原子分子筛其杂原子嵌入到分子筛骨架中,催化剂结构和反应性能均与离子交换样品有明显区别。
基于以上技术方案,优选的,所述铝源包括但不限于薄水铝石、氢氧化铝、硝酸铝、硫酸铝或异丙醇铝;所述磷源包括但不限于磷酸;所述硅源包括但不限于硅溶胶、TEOS、白炭黑、石英砂、硅酸盐;所述杂原子前驱体包括但不限于为相应金属原子的金属硝酸盐、硫酸盐、乙酸盐、卤化物或氧化物;所述模板剂为三乙胺(TEA)、二异丙基乙胺(DIPEA)等。
本发明另一方面提供一种催化合成气高选择性制低碳烯烃的方法,以合成气为反应原料,在固定床或移动床上进行转化反应制备低碳烯烃,所述方法采用的催化剂为上述的催化剂。
基于以上技术方案,优选的,所述合成气的压力为0.5-10MPa,优选为1-8MPa,更优选为2-8MPa;反应温度为300-600℃,优选为370-450℃;空速为300-10000h -1,优选为500-9000h -1,更优选为1000-6000h-1;所述合成气为H 2/CO混合气,H 2/CO摩尔比为0.2-3.5,优选为0.3-2.5;所述合成气中还可以含有CO 2,其中CO 2在合成气中的体积浓度为0.1-50%。
基于以上技术方案,优选的,所述方法以合成气一步法直接转化制C 2-4烯烃,C 2-4烯烃的选择性为50-90%,副产物甲烷选择性<7%。
有益效果
本技术与传统的甲醇制低碳烯烃技术(简称为MTO)不同,实现了一步直接将合成气转化制低碳烯烃。
本发明中的复合催化剂的制备过程简单条件温和;通过将杂原子嵌入CHA或AEI结构分子筛骨架,有效提高了反应的活性和产物选择性,反应转化率提高的同时,提高低碳烯烃的选择性,反应转化率可达10%-55%,产物中丙烯丁烯产物选择性提高,可达到40-75%,C 2-4低碳烯烃的选择性可以达到50-90%。产物不需深冷便可分离,大大降低了分离的能耗与成本。同时副产物甲烷选择性低(<7%),而且催化剂寿命长,>700小时,具有很好的应用前景。
具体实施方式
下面通过实施例对本发明做进一步阐述,但是本发明的权利要求范围不受这些实施例的限制。同时,实施例只是给出了实现此目的的部分条件,但并不意味着必须满足这些条件才可以达到此目的。
样品的比表面积可以通过氮气或氩气物理吸附的方法进行测试。
本发明所述的金属氧化物可以通过购买市售的高比表面积的金属氧化物获得,也可 以通过下述几种方法获得:
一、催化剂组分Ⅰ的制备
(一)、沉淀法合成具有高比表面的ZnO材料:
(1)分别称取3份、每份0.446g(1.5mmol)Zn(NO 3) 2·6H 2O于3个容器中,再分别称取0.300g(7.5mmol)、0.480g(12mmol)、0.720g(18mmol)NaOH依次加入上述3个容器中,再各量取30ml去离子水加入到3个容器中,70℃搅拌0.5h以上使溶液混合均匀,自然冷却至室温。反应液离心分离收集离心分离后的沉淀物,用去离子水洗涤2次获得ZnO金属氧化物前驱体;
(2)焙烧:上述获得的产物在空气中烘干以后,在气氛中进行焙烧处理,即得到高比表面的ZnO材料。气氛为惰性气体、还原性气体或者氧化性气体;惰性气体为N 2、He和Ar中的一种或二种以上;还原性气体为H 2、CO的一种或二种,还原气中也可以含有惰性气体;氧化性气体是O 2、O 3、NO 2中的一种或两种以上,氧化气体中也可以含有惰性气体。焙烧温度为300-700℃,时间为0.5h-12h。
焙烧的目的是为了将沉淀后的金属氧化物前驱体在高温下分解为高比表面积的氧化物纳米粒子,并且通过焙烧的高温处理可以将分解生成的氧化物表面吸附物种处理干净。
具体样品及其制备条件如下表1,作为对比例,表中ZnO#4是市售低比表面积的ZnO单晶。
表1 ZnO材料的制备及其参数性能
Figure PCTCN2019124234-appb-000001
(二)共沉淀法合成具有高比表面积的MnO材料:
制备过程同上述ZnO#2,不同之处在于将Zn的前驱体换成了Mn的对应的前驱体,可为硝酸锰、氯化锰、醋酸锰中的一种,在此为硝酸锰,对应产物定义为MnO;比表面积是:23m 2/g。
(三)共沉淀法合成具有高比表面积的CeO 2材料:
制备过程同上述ZnO#2,不同之处在于将Zn的前驱体换成了Ce的对应的前驱体,可为硝酸铈、氯化铈、醋酸铈中的一种,在此为硝酸铈,对应产物定义为CeO 2;比表面积是:92m 2/g。
(四)共沉淀法合成具有高比表面积的Ga 2O 3材料:
制备过程同上述ZnO#2,不同之处在于将Zn的前驱体换成了Ga的对应的前驱体,可为硝酸镓、氯化镓、醋酸镓中的一种,在此为硝酸镓,对应产物定义为Ga 2O 3;比表面积是:55m 2/g。
(五)共沉淀法合成具有高比表面积的Bi 2O 3材料:
制备过程同上述ZnO#2,不同之处在于将Zn的前驱体换成了Bi的对应的前驱体,可为硝酸铋、氯化铋、醋酸铋中的一种,在此为硝酸铋。对应产物定义为Bi 2O 3;比表面积分别是:87m 2/g。
(六)共沉淀法合成具有高比表面积的In 2O 3材料:
制备过程同上述ZnO#2,不同之处在于将Zn的前驱体换成了In的对应的前驱体,可为硝酸铟、氯化铟、醋酸铟中的一种,在此为硝酸铟,对应产物定义为In 2O 3;比表面积是:52m 2/g
(七)沉淀法合成具有高比表面积的Mn aCr (1-a)O x、Mn aAl (1-a)O x、Mn aZr (1-a)O x、Mn aIn (1-a)O x、Zn aCr (1-a)O x、Zn aAl (1-a)O x、Zn aGa (1-a)O x、Zn aIn (1-a)O x、Co aAl (1-a)O x、Fe aAl (1-a)O x、In aAl bMn (1-a-b)O x、In aGa bMn (1-a-b)O x
采用硝酸锌、硝酸铝、硝酸铬、硝酸锰、硝酸锆、硝酸铟、硝酸钴、硝酸铁为前驱体,与碳酸铵,在室温下于水中相互混合(其中碳酸铵作为沉淀剂,投料比例为碳酸铵过量或者优选铵离子与金属离子的比例为1:1);将上述混合液陈化,然后取出洗涤、过滤和干燥,所得的固体在空气气氛下焙烧,获得高比表面的金属氧化物,具体样品及其制备条件如下表2。
表2 高比表面积金属氧化物的制备及其性能参数
Figure PCTCN2019124234-appb-000002
Figure PCTCN2019124234-appb-000003
(八)、分散剂Cr 2O 3、Al 2O 3或ZrO 2分散的金属氧化物
以分散剂Cr 2O 3、Al 2O 3或ZrO 2为载体,沉淀沉积法制备Cr 2O 3、Al 2O 3或ZrO 2分散的金属氧化物。以分散ZnO的制备为例,将商业Cr 2O 3(比表面积约为5m 2/g)、Al 2O 3(比表面积约为20m 2/g)或ZrO 2(比表面积约为10m 2/g)作为载体预先分散于水中,然后采用硝酸锌为原料,与氢氧化钠沉淀剂在室温下混合沉淀,Zn 2+的摩尔浓度为0.067M,Zn 2+与沉淀剂的摩尔份数比为1:8;然后在160℃下陈化24小时,获得Cr 2O 3、Al 2O 3或ZrO 2为载体分散的ZnO(分散剂于组分Ⅰ中的含量依次为0.1wt%、20wt%、85wt%)。得到的样品在空气下500℃焙烧1h,产物依次定义为分散氧化物1-3,其比表面积依次为:148m 2/g,115m 2/g,127m 2/g。
以同样的方法,可以获得SiO 2(比表面积约为2m 2/g)、Ga 2O 3(比表面积约为10m 2/g)或TiO 2(比表面积约为15m 2/g)为载体分散的MnO氧化物(分散剂于组分Ⅰ中的含量依次为5wt%、30wt%、60wt%),产物依次定义为分散氧化物4-6。其比表面积依次为:97m 2/g,64m 2/g,56m 2/g。
以同样的方法,可以获得活性炭(比表面积约为1000m 2/g)、石墨烯(比表面积约为500m 2/g)或碳纳米管(比表面积约为300m 2/g)为载体分散的ZnO氧化物(分散剂于组分Ⅰ中的含量依次为5wt%、30wt%、60wt%),产物依次定义为分散氧化物7-9。其比表面积依次为:177m 2/g,245m 2/g,307m 2/g。
二、组分II的制备
所述CHA和AEI拓扑结构具有八元环孔口,三维孔道。
(一)通过水热合成法制备的分子筛
具体制备过程为:
组分Ⅱ:以MgAPO为例,按氧化物MgO:Al 2O 3:P 2O 5:R:H 2O=0.3:0.9:1:1.8:45(摩尔比)称取原料:硝酸镁;氢氧化铝;磷酸;二异丙基乙胺(DIPEA);去离子水,在30℃下搅拌老化2h后转移到水热釜中,180℃下晶化120h。降至室温,反复离心洗涤使得洗涤结束时上清液pH是7,沉淀物于110℃下烘干17h后,在600℃空气中焙烧3h得到掺杂Mg原子分子筛。
表3 具有CHA或AEI拓扑结构的掺杂杂原子分子筛的制备及其性能参数
Figure PCTCN2019124234-appb-000004
组分Ⅱ’:以MgSAPO为例,按氧化物SiO 2:MgO:Al 2O 3:P 2O 5:R:H 2O=0.1:0.3:0.9:1:1.8:45(摩尔比)称取原料:硅溶胶;硝酸镁;氢氧化铝;磷酸;二异丙基乙胺(DIPEA);去离子水,其余条件同组分Ⅱ的制备。
表4 具有AEI拓扑结构的掺杂杂原子分子筛的制备及其性能参数
Figure PCTCN2019124234-appb-000005
Figure PCTCN2019124234-appb-000006
(二)浸渍法合成Zr-AlPO、Ba-AlPO、Ce-AlPO分子筛
组分Ⅱ:取100mL烧杯,加入适当浓度的硝酸锆溶液,搅拌同时加入适量AlPO-18分子筛,室温下搅拌至搅干,烘干,600度焙烧3h,得到Zr-AlPO;Ba-AlPO、Ce-AlPO分子筛方法同上,前驱体换为硝酸钡、硝酸铈。
组分Ⅱ’:取100mL烧杯,加入适当浓度的硝酸锆溶液,搅拌同时加入适量SAPO-18分子筛,室温下搅拌至搅干,烘干,600度焙烧3h,得到Zr-SAPO。Ba-SAPO、Ce-SAPO分子筛制备方法同上,金属源换为硝酸钡、硝酸铈。
三、催化剂的制备
将所需比例的组分Ⅰ和组分Ⅱ/Ⅱ’加入容器中,利用这些物料和/或容器的高速运动产生的挤压力、撞击力、裁剪力、摩擦力等中的一种或两种以上作用实现分离、破碎、混匀等目的,通过调变温度与载气气氛实现机械能、热能与化学能的转换,进一步调节不同组分间的相互作用。
机械混合过程中,可以设置混合温度20-100℃,可以在气氛中或者直接在空气中进行,气氛选自以下任意的气体:
a)氮气和/或惰性气体;
b)氢气与氮气和/或惰性气体的混合气,其中氢气于混合气中的体积为5~50%;
c)CO与氮气和/或惰性气体的混合气,其中CO于混合气中的体积为5~20%;
d)O 2与氮气和/或惰性气体的混合气,其中O 2于混合气中的体积为5-20%,所述惰性气体为氦气、氩气、氖气中的一种或两种以上。
机械混合可采用机械搅拌、球磨、摇床混合、机械研磨中的一种或二种以上进行复合,具体如下:
机械搅拌:在搅拌槽中,采用搅拌棒将组分Ⅰ和组分Ⅱ/Ⅱ’进行混合,通过控制搅拌时间(5min-120min)和速率(30-300转/min),可以调节组分Ⅰ和组分Ⅱ/Ⅱ’的混合程度。
球磨:利用磨料与催化剂在研磨罐内高速翻滚,对催化剂产生强烈冲击、碾压,达到分散、混合组分Ⅰ和组分Ⅱ/Ⅱ’的作用。通过控制磨料(材质可以是不锈钢、玛瑙、石英。尺寸范围:5mm-15mm)。与催化剂的比例(质量比范围:20-100:1)。
摇床混合法:将组分Ⅰ和组分Ⅱ/Ⅱ’预混合,并装入容器中;通过控制摇床的往复振荡或圆周振荡,实现组分Ⅰ和组分Ⅱ/Ⅱ’的混合;通过调节振荡速度(范围:1-70转/分)和时间(范围:5min-120min),实现均匀混合。
机械研磨法:将组分Ⅰ和组分Ⅱ/Ⅱ’预混合,并装入容器中;在一定的压力(范围:5公斤-20公斤)下,通过研具与混合的催化剂进行相对运动(速率范围:30-300转/min),实现均匀混合的作用。
具体的催化剂制备及其参数特征如表5(组分I与组分II)和表6(组分I与组分II’)所示。
表5 催化剂(组分I与组分II)的制备及其参数特征
Figure PCTCN2019124234-appb-000007
Figure PCTCN2019124234-appb-000008
Figure PCTCN2019124234-appb-000009
Figure PCTCN2019124234-appb-000010
表6 催化剂(组分I与组分II’)的制备及其参数特征
Figure PCTCN2019124234-appb-000011
Figure PCTCN2019124234-appb-000012
Figure PCTCN2019124234-appb-000013
Figure PCTCN2019124234-appb-000014
催化反应实例
以固定床反应为例,但是催化剂也适用于移动床反应器。该装置配备气体质量流量计、在线产物分析色谱(反应器的尾气直接与色谱的定量阀连接,进行周期实时采样分析)。
将上述本发明的催化剂2g,置于固定床反应器中,使用Ar置换反应器中的空气,然后再在H 2气氛中升温至300℃,切换合成气(H 2/CO摩尔比=0.2-3.5),合成气的压力为0.5-10MPa,升温至反应温度300-600℃,调节反应原料气的空速至300-12000ml/g/h。产物由在线色谱检测分析。
改变温度、压力和空速和合成气中H 2/CO的摩尔比,可以改变反应性能。其中丙烯与丁烯选择性之和达到30-75%,低碳烯烃(乙烯、丙烯、丁烯选择性之和可以达到50-90%;由于催化剂金属复合物表面加氢活性不高,避免了甲烷的大量生成,甲烷选择性低。表7(组分I与组分II)和表8(组分I与组分II’)分别列出了催化剂的具体应用及其效果数据。
表7 催化剂(组分I与组分II)的具体应用及其效果数据
Figure PCTCN2019124234-appb-000015
Figure PCTCN2019124234-appb-000016
Figure PCTCN2019124234-appb-000017
对比例1催化剂组份Ⅰ为ZnO#4,组份Ⅱ为GeAPO。
对比例4采用的催化剂中分子筛为购自南开大学催化剂厂的商品SAPO-34,其NH 3-TPD上中强酸脱附峰对应的温度在390℃,中强酸位点的量是0.6mol/kg。
对比例5采用的催化剂中分子筛为购自南开大学催化剂厂的商品ZSM-5,全微孔结构,Si/Al=30。
对比例4和5的反应结果表明,CHA或AEI的拓扑结构及其酸强度对产物选择性的调变至关重要。
对比例6采用的催化剂是仅有组分I ZnO#1不含有分子筛的样品,反应转化率很低,且产物主要以二甲醚,甲烷等副产物为主,几乎没有乙烯生成。
对比例7采用的催化剂是仅有组分II分1分子筛,不含有组分I的样品,催化反应几乎没有活性。
对比例6,7表面只有组分I或组分II时反应效果极其差,完全不具备本发明所述的优异反应性能。
对比例8采用的催化剂中分子筛为自合成AlPO-18,其余参数及混合过程等均同催化剂A。对比例8的反应的转化率和选择性很差,远低于催化剂A在相同条件下的反应性能,表明掺杂杂原子后的分子筛能有效提高反应的活性和选择性。
对比例9采用的催化剂中分子筛为Mg(NO 3) 2离子交换过的AlPO-18,其余参数及混合过程等均同催化剂A。
对比例10采用的催化剂中分子筛为Ca(NO 3)2离子交换过的AlPO-34,其余参数及混合过程等均同催化剂B。
对比例9和10的反应结果表明,通过离子交换的AlPO-18及AlPO-34样品作为催化剂组分II时,其反应性能与本发明所述掺杂杂原子分子筛有明显差距,杂原子掺入AlPO分子筛骨架内对反应活性和选择性调变至关重要。
表8 催化剂(组分I与组分II’)的具体应用及其效果数据
Figure PCTCN2019124234-appb-000018
Figure PCTCN2019124234-appb-000019
Figure PCTCN2019124234-appb-000020
对比例1’催化剂组份Ⅰ为ZnO#4,组份Ⅱ’为GeSAPO。
对比例4’采用的催化剂中分子筛为购自南开大学催化剂厂的商品SAPO-34,其NH3-TPD上中强酸脱附峰对应的温度在390℃,中强酸位点的量是0.6mol/kg。
对比例5’采用的催化剂中分子筛为购自南开大学催化剂厂的商品ZSM-5,全微孔结构,Si/Al=30。
对比例4’和5’的反应结果表明,CHA或AEI的拓扑结构及其酸强度对产物选择性的调变至关重要。
对比例6’采用的催化剂是仅有组分I ZnO#1不含有分子筛的样品,反应转化率很低,且产物主要以二甲醚,甲烷等副产物为主,几乎没有乙烯生成。
对比例7’采用的催化剂是仅有组分II’分1分子筛,不含有组分I的样品,催化反应几乎没有活性。
对比例6’,7’表面只有组分I或组分II’时反应效果极其差,完全不具备本发明所述的优异反应性能。
对比例8’采用的催化剂中分子筛为自合成SAPO-18,其余参数及混合过程等均同催化剂A’。对比例8’的反应的转化率较高但选择性较差,在其基础上掺入Mg的催化剂A有效提高了低碳烯烃选择性。
对比例9’采用的催化剂中分子筛为Mg(NO 3) 2离子交换过的SAPO-18,其余参数及混合过程等均同催化剂A’。
对比例10’采用的催化剂中分子筛为Ca(NO 3) 2离子交换过的SAPO-34,其余参数及混合过程等均同催化剂B’。
对比例9’和10’的反应结果表明,通过离子交换的SAPO-18及SAPO-34样品作为催化剂组分II’时,其反应性能与本发明所述掺杂杂原子分子筛有明显差距,转化率和 选择性均有明显降低。杂原子掺入SAPO分子筛骨架内对反应活性和选择性调变至关重要。
文献(Jiao et al.,Science 351(2016)1065-1068)对比技术中,所使用的分子SAPO-34筛酸量较大,根据NH3-TPD测试,中强酸酸量达到0.32mol/kg,因此当转化率升高到35%,烯烃的选择性为69%,而烷烃的选择性为20%,烯烷比降为3.5,丙烯丁烯选择性为40-50%。
由上表可以看出分子筛的结构,包括CHA&AEI的拓扑结构及其酸强度和酸量,杂原子掺入量及是否掺杂入骨架,以及金属氧化物和分子筛之间的匹配至关重要,直接影响一氧化碳的转化率和丙烯丁烯的选择性。

Claims (10)

  1. 一种催化剂,其特征在于:所述催化剂包含组分Ⅰ和组分Ⅱ,所述组分I的活性成份为金属氧化物,组分II为掺杂杂原子的分子筛;
    所述的金属氧化物为MnO x、Mn aCr (1-a)O x、Mn aAl (1-a)O x、Mn aZr (1-a)O x、Mn aIn (1-a)O x、ZnO x、Zn aCr (1-a)O x、Zn aAl (1-a)O x、Zn aGa (1-a)O x、Zn aIn (1-a)O x、CeO x、Co aAl (1-a)O x、Fe aAl (1-a)O x、GaO x、BiO x、InO x、In aAl bMn (1-a-b)O x、In aGa bMn (1-a-b)O x中的一种或二种以上;所述x的取值范围是0.7~3.7,a的取值范围是0~1;a+b的取值范围是0~1;
    所述的分子筛为CHA或AEI拓扑结构的分子筛,骨架原子包括Al-P-O或者Si-Al-P-O;所述杂原子为二价金属Mg、Ca、Cr、Mn、Fe、Co、Ni、Cu、Zn、Sr、Zr、Mo、Cd、Ba、Ce,三价Ti、Ga,四价Ge中一种或两种以上;所述掺杂杂原子的分子筛为所述杂原子掺杂于所述分子筛骨架中,取代分子筛骨架中的Al、P或Si。
  2. 根据权利要求1所述的催化剂,其特征在于:所述MnO x、ZnO x、CeO x、GaO x、BiO x、InO x的比表面积是1-100m 2/g;优选比表面积是50-100m 2/g;
    所述MnaCr (1-a)O x、Mn aAl (1-a)O x、Mn aZr (1-a)O x、Mn aIn (1-a)O x、ZnO x、Zn aCr (1-a)O x、Zn aAl (1-a)O x、Zn aGa (1-a)O x、Zn aIn (1-a)O x、Co aAl (1-a)O x、Fe aAl (1-a)O x、In aAl bMn (1-a-b)O x、In aGa bMn (1-a-b)O x的比表面积是5-150m 2/g,优选比表面积是50-150m 2/g。
  3. 根据权利要求1所述的催化剂,其特征在于:所述掺杂杂原子分子筛中杂原子的摩尔量之和与P摩尔量比值是0.001-0.6。
  4. 根据权利要1所述的催化剂,其特征在于:所述组分Ⅰ中的活性成份与组分Ⅱ的重量比为0.1-20,优选为0.3-5。
  5. 根据权利要求1所述的催化剂,其特征在于:所述组分Ⅰ中还添加有分散剂,金属氧化物分散于分散剂中;所述分散剂为Al 2O 3、SiO 2、Cr 2O 3、ZrO 2、TiO 2、Ga 2O 3、活性炭、石墨烯、碳纳米管中的一种或二种以上;所述组分Ⅰ中,分散剂的含量在0.05-90wt%,其余为金属氧化物。
  6. 根据权利要求1所述的催化剂,其特征在于:所述掺杂杂原子的分子筛通过原位水热生长的方法或通过后处理的方法制备;所述原位水热生长的方法包括如下步骤:
    (1)溶胶前驱体制备:
    Al-P-O骨架:将一定比例的铝源、磷源溶于水中,搅拌均匀,然后加入含有杂原子前驱体和模板剂,搅拌0.5-12h;
    Si-Al-P-O骨架:将一定比例的铝源、磷源和硅源溶于水中,搅拌均匀后,加入含有杂原子前驱体和模板剂搅拌0.5-12h;
    (2)水热晶化:将步骤(1)得到的溶胶前驱体于160-200℃下反应晶化4-7天;
    (3)分离洗涤:将晶化反应后的产物离心、洗涤、烘干;
    (4)干燥焙烧:将步骤(3)的产物于550-600℃下焙烧3-6h;所述杂原子前驱体中的杂原子与磷源的摩尔比为0-0.6;
    所述后处理的方法为:
    Al-P-O骨架:配置杂原子前驱体的溶液,将AlPO-18或AlPO-34分子筛浸渍于所述前驱体溶液中,烘干,最后于550-600℃焙烧3-6h;
    Si-Al-P-O骨架:配置杂原子前驱体的溶液,将SAPO-18或SAPO-34分子筛浸渍于所述前驱体溶液中,烘干,最后于550-600℃焙烧3-6h。
  7. 根据权利要求6所述的催化剂,其特征在于,所述铝源为薄水铝石、氢氧化铝、硝酸铝、硫酸铝或异丙醇铝;所述磷源为磷酸;所述硅源为硅溶胶、TEOS、白炭黑、石英砂、硅酸盐;所述杂原子前驱体为相应金属原子的金属硝酸盐、硫酸盐、乙酸盐、卤化物或氧化物;所述模板剂为三乙胺(TEA)、二异丙基乙胺(DIPEA)。
  8. 一种催化合成气高选择性制低碳烯烃的方法,其特征在于:以合成气为反应原料,在固定床或移动床上进行转化反应制备低碳烯烃,所述方法采用的催化剂为权利要求1所述的催化剂。
  9. 根据权利要求1所述的方法,其特征在于:所述合成气的压力为0.5-10MPa,优选为1-8MPa,更优选为2-8MPa;反应温度为300-600℃,优选为370-450℃;空速为300-10000h -1,优选为500-9000h -1,更优选为1000-6000h-1;所述合成气为H 2/CO混合气,H 2/CO摩尔比为0.2-3.5,优选为0.3-2.5;所述合成气中还可以含有CO 2,CO 2在合成气中的体积浓度为0.1-50%。
  10. 根据权利要求9所述的方法,其特征在于,所述方法以合成气一步法直接转化制C 2-4烯烃,C 2-4烯烃的选择性为50-90%,副产物甲烷选择性<7%。
PCT/CN2019/124234 2018-12-21 2019-12-10 一种掺杂杂原子分子筛催化合成气高选择性制低碳烯烃的方法 WO2020125487A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/286,903 US20210347711A1 (en) 2018-12-21 2019-12-10 Method for preparing light olefin through catalytic syngas with high selectivity by heteroatom-doped zeolite
EP19900221.3A EP3900829A4 (en) 2018-12-21 2019-12-10 PROCESS FOR THE PRODUCTION OF LOW-CARBON OLEFINS WITH HIGH SELECTIVITY FROM SYNTHESIS GAS CATALYSED BY A HETEROATOME-DOPED MOLECULAR SIEVE
ZA2021/02711A ZA202102711B (en) 2018-12-21 2021-04-22 Method for the preparation of low-carbon olefin in high selectivity from synthesis gas catalyzed by heteroatom-doped molecular sieve

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811575056.4 2018-12-21
CN201811575060.0 2018-12-21
CN201811575056.4A CN111346672B (zh) 2018-12-21 2018-12-21 一种掺杂杂原子分子筛催化合成气高选择性制低碳烯烃的方法
CN201811575060.0A CN111346669B (zh) 2018-12-21 2018-12-21 一种掺杂杂原子分子筛催化合成气高选择性制低碳烯烃的方法

Publications (1)

Publication Number Publication Date
WO2020125487A1 true WO2020125487A1 (zh) 2020-06-25

Family

ID=71101065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124234 WO2020125487A1 (zh) 2018-12-21 2019-12-10 一种掺杂杂原子分子筛催化合成气高选择性制低碳烯烃的方法

Country Status (4)

Country Link
US (1) US20210347711A1 (zh)
EP (1) EP3900829A4 (zh)
WO (1) WO2020125487A1 (zh)
ZA (1) ZA202102711B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111905801A (zh) * 2020-08-17 2020-11-10 鲁雪 一种可见光催化剂及其制备方法和应用
CN112138713A (zh) * 2019-06-28 2020-12-29 中国石油化工股份有限公司 一种催化裂解助剂及其制备方法和应用
CN112156784A (zh) * 2020-09-21 2021-01-01 宁夏大学 一种层状复合材料及其制备方法和应用
CN112960680A (zh) * 2021-04-09 2021-06-15 陕西延长石油(集团)有限责任公司 一种提升zsm-5分子筛水热稳定性的改性方法
CN113209962A (zh) * 2021-05-21 2021-08-06 华南理工大学 一种常温催化降解果蔬中催熟剂乙烯的催化剂及其制备与应用
CN114797956A (zh) * 2022-05-09 2022-07-29 华东理工大学 复合催化剂及其制备方法、应用及重质芳烃的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1083415A (zh) 1992-09-03 1994-03-09 中国科学院大连化学物理研究所 合成气制低碳烯烃含铁锰催化剂及合成反应
WO2009051353A2 (en) * 2007-10-15 2009-04-23 Korea Research Institute Of Chemical Technology Method of direct synthesis of light hydrocarbons from natural gas
CN107661773A (zh) * 2016-07-29 2018-02-06 中国科学院大连化学物理研究所 一种催化剂及合成气直接转化制液体燃料联产低碳烯烃的方法
CN107661774A (zh) * 2016-07-27 2018-02-06 中国科学院大连化学物理研究所 一种催化剂及合成气直接转化制低碳烯烃的方法
CN108144643A (zh) * 2016-12-05 2018-06-12 中国科学院大连化学物理研究所 一种催化剂及合成气直接转化制低碳烯烃的方法
CN108568313A (zh) * 2017-03-07 2018-09-25 中国科学院大连化学物理研究所 一种催化剂及一氧化碳加氢直接转化制低碳烯烃的方法
CN108970600A (zh) * 2017-06-02 2018-12-11 中国科学院大连化学物理研究所 一种催化剂及合成气直接转化制低碳烯烃的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT3368499T (pt) * 2015-10-30 2019-10-08 Dow Global Technologies Llc Processo para converter gás de síntese para olefinas em um catalisador de óxido de crônio bifuncional/oxido de zincosapo- 34
CN107774302B (zh) * 2016-08-26 2020-08-14 中国科学院大连化学物理研究所 一种催化剂及合成气直接转化制液体燃料联产低碳烯烃的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1083415A (zh) 1992-09-03 1994-03-09 中国科学院大连化学物理研究所 合成气制低碳烯烃含铁锰催化剂及合成反应
WO2009051353A2 (en) * 2007-10-15 2009-04-23 Korea Research Institute Of Chemical Technology Method of direct synthesis of light hydrocarbons from natural gas
CN107661774A (zh) * 2016-07-27 2018-02-06 中国科学院大连化学物理研究所 一种催化剂及合成气直接转化制低碳烯烃的方法
CN107661773A (zh) * 2016-07-29 2018-02-06 中国科学院大连化学物理研究所 一种催化剂及合成气直接转化制液体燃料联产低碳烯烃的方法
CN108144643A (zh) * 2016-12-05 2018-06-12 中国科学院大连化学物理研究所 一种催化剂及合成气直接转化制低碳烯烃的方法
CN108568313A (zh) * 2017-03-07 2018-09-25 中国科学院大连化学物理研究所 一种催化剂及一氧化碳加氢直接转化制低碳烯烃的方法
CN108970600A (zh) * 2017-06-02 2018-12-11 中国科学院大连化学物理研究所 一种催化剂及合成气直接转化制低碳烯烃的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIAO ET AL., SCIENCE, vol. 351, 2016, pages 1065 - 1068
See also references of EP3900829A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112138713A (zh) * 2019-06-28 2020-12-29 中国石油化工股份有限公司 一种催化裂解助剂及其制备方法和应用
CN112138713B (zh) * 2019-06-28 2022-01-04 中国石油化工股份有限公司 一种催化裂解助剂及其制备方法和应用
CN111905801A (zh) * 2020-08-17 2020-11-10 鲁雪 一种可见光催化剂及其制备方法和应用
CN112156784A (zh) * 2020-09-21 2021-01-01 宁夏大学 一种层状复合材料及其制备方法和应用
CN112960680A (zh) * 2021-04-09 2021-06-15 陕西延长石油(集团)有限责任公司 一种提升zsm-5分子筛水热稳定性的改性方法
CN112960680B (zh) * 2021-04-09 2022-09-30 陕西延长石油(集团)有限责任公司 一种提升zsm-5分子筛水热稳定性的改性方法
CN113209962A (zh) * 2021-05-21 2021-08-06 华南理工大学 一种常温催化降解果蔬中催熟剂乙烯的催化剂及其制备与应用
CN113209962B (zh) * 2021-05-21 2022-12-13 华南理工大学 一种常温催化降解果蔬中催熟剂乙烯的催化剂及其制备与应用
CN114797956A (zh) * 2022-05-09 2022-07-29 华东理工大学 复合催化剂及其制备方法、应用及重质芳烃的制备方法
CN114797956B (zh) * 2022-05-09 2023-11-07 华东理工大学 复合催化剂的制备方法及重质芳烃的制备方法

Also Published As

Publication number Publication date
EP3900829A4 (en) 2022-03-09
ZA202102711B (en) 2022-07-27
EP3900829A1 (en) 2021-10-27
US20210347711A1 (en) 2021-11-11

Similar Documents

Publication Publication Date Title
CN109939667B (zh) 一种催化剂及合成气直接转化制低碳烯烃的方法
US10960387B2 (en) Catalyst and method for direct conversion of syngas to light olefins
CN109939728B (zh) 一种负载催化剂及合成气直接转化制低碳烯烃的方法
CN111346672B (zh) 一种掺杂杂原子分子筛催化合成气高选择性制低碳烯烃的方法
WO2020125487A1 (zh) 一种掺杂杂原子分子筛催化合成气高选择性制低碳烯烃的方法
CN107661774B (zh) 一种催化剂及合成气直接转化制低碳烯烃的方法
WO2018219365A1 (zh) 一种催化剂及合成气直接转化制低碳烯烃的方法
WO2019144951A1 (zh) 一种催化剂及合成气直接转化制乙烯的方法
WO2018219364A1 (zh) 一种催化剂及合成气直接转化制液体燃料联产低碳烯烃的方法
CN109939722B (zh) 一种有机碱修饰的复合催化剂及一氧化碳加氢制乙烯的方法
CN111346669B (zh) 一种掺杂杂原子分子筛催化合成气高选择性制低碳烯烃的方法
CN111686789B (zh) 一种Na原子修饰的MOR基催化剂及合成气直接转化制液体燃料的方法
CN109939668B (zh) 一种含lf型b酸催化剂及合成气直接转化制乙烯的方法
CN112973779A (zh) 一种zsm-22分子筛的后处理方法及其在合成气一步法制液体燃料中的应用
CN112973659B (zh) 一种含sapo-17分子筛的双功能催化剂及在合成气制低碳烯烃反应中的应用
RU2778293C1 (ru) Каталитический высокоселективный способ получения олефинов с низким числом атомов углерода с применением легированного гетероатомами молекулярного сита и синтез-газа
CN110152716B (zh) 一种选择性脱去MOR12圆环Al的催化剂及一氧化碳加氢反应制乙烯的方法
CN112973781B (zh) 一种催化剂及合成气直接转化制c2和c3烯烃的方法
CN112973775B (zh) 一种含mcm-22分子筛的催化剂及其在合成气一步法制液体燃料中的应用
CN109939669B (zh) 一种碱修饰的复合催化剂及一氧化碳加氢反应制乙烯的方法
WO2020125488A1 (zh) 一种催化剂及合成气直接转化制低芳烃液体燃料的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19900221

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019900221

Country of ref document: EP

Effective date: 20210721

WWE Wipo information: entry into national phase

Ref document number: 521421990

Country of ref document: SA