WO2019144953A1 - 一种有机碱修饰的复合催化剂及一氧化碳加氢制乙烯的方法 - Google Patents

一种有机碱修饰的复合催化剂及一氧化碳加氢制乙烯的方法 Download PDF

Info

Publication number
WO2019144953A1
WO2019144953A1 PCT/CN2019/073387 CN2019073387W WO2019144953A1 WO 2019144953 A1 WO2019144953 A1 WO 2019144953A1 CN 2019073387 W CN2019073387 W CN 2019073387W WO 2019144953 A1 WO2019144953 A1 WO 2019144953A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
selectivity
catalyst
specific surface
surface area
Prior art date
Application number
PCT/CN2019/073387
Other languages
English (en)
French (fr)
Inventor
潘秀莲
焦峰
包信和
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to AU2019210781A priority Critical patent/AU2019210781B2/en
Priority to RU2020121777A priority patent/RU2749513C1/ru
Priority to US16/963,070 priority patent/US11365165B2/en
Priority to JP2020544508A priority patent/JP7007763B2/ja
Priority to CA3087611A priority patent/CA3087611C/en
Priority to EP19744559.6A priority patent/EP3744424A4/en
Publication of WO2019144953A1 publication Critical patent/WO2019144953A1/zh
Priority to ZA2021/01245A priority patent/ZA202101245B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/185Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/20Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing iron group metals, noble metals or copper
    • B01J29/22Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/20Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing iron group metals, noble metals or copper
    • B01J29/24Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/26Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J35/613
    • B01J35/615
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/0445Preparation; Activation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/14After treatment, characterised by the effect to be obtained to alter the inside of the molecular sieve channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/20After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/34Reaction with organic or organometallic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/04Ethylene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/06Propene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of rare earths
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/18Arsenic, antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/26Chromium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/32Manganese, technetium or rhenium
    • C07C2523/34Manganese
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/75Cobalt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • C07C2529/20Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing iron group metals, noble metals or copper
    • C07C2529/24Iron group metals or copper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention belongs to high-value chemicals such as hydrogenation of carbon monoxide to low-carbon olefins, and particularly relates to an organic base-modified composite catalyst and a method for hydrogenating carbon monoxide to ethylene.
  • Ethylene is a very important basic chemical raw material and one of the largest chemical products in the world.
  • the ethylene industry is the core of the petrochemical industry and plays an important role in the national economy.
  • the lower olefin refers to an olefin having a carbon number of 4 or less.
  • Low-carbon olefins represented by ethylene and propylene are very important basic organic chemical raw materials.
  • China's ethylene industry has developed rapidly and has an important position in the world ethylene market.
  • the low-carbon olefins market has been in short supply for a long time.
  • the production of ethylene mainly uses naphtha, light diesel oil cracking petrochemical route or ethane cracking technology.
  • a high activity (CO conversion 90%) and selectivity (low carbon olefin selectivity 66%) can be obtained at a reaction pressure of 1.0 to 5.0 MPa and a reaction temperature of 300 to 400 ° C in a synthesis gas.
  • the Fe/activated carbon catalyst prepared by using the vacuum impregnation method to prepare manganese, copper, zinc silicon, potassium and the like as an auxiliary agent for the synthesis of low-carbon olefins in the synthesis gas, in the absence of raw material gas circulation Under the conditions, the CO conversion rate is 96%, and the selectivity of the low-carbon olefin in the hydrocarbon is 68%.
  • the catalyst reported above uses metal iron or iron carbide as the active component, and the reaction follows the chain growth reaction mechanism of the metal surface.
  • the selectivity of the product low olefin is low, especially the selectivity of a single product such as ethylene is less than 30%.
  • researcher Sun Yuhan and researcher Zhong Liangshu of Shanghai Institute of Advanced Studies reported a preferential exposure to [101] and [020] manganese-assisted cobalt-based catalysts, achieving a CO. conversion of 31.8% and a low carbon olefin of 60.8%.
  • Selective and 5% selectivity to methane is less than 20%.
  • a bifunctional catalyst containing oxygen holes and MOR molecular sieves is used for the one-step olefin reaction of syngas to increase the selectivity of ethylene to 75-80%, but the number of carbon atoms in by-products exceeds 3 more hydrocarbons, affecting the application of this technology.
  • the invention further modulates the acidity of the MOR molecular sieve to further reduce the selectivity of the methane by-product to below 9%, and further reduces the selectivity of the hydrocarbon above C4.
  • the present invention solves the problem: overcoming the deficiencies of the prior art, providing a base-modified catalyst and a method for hydrogenating carbon monoxide to ethylene, the catalyst of the invention catalyzing the reaction of carbon monoxide and hydrogen to directly form a low-carbon olefin, and a C2-C3 olefin
  • the selectivity is as high as 78-87%
  • the selectivity of the single product ethylene can be as high as 75-82%
  • the methane selectivity is lower than 9%
  • the hydrocarbon selectivity of C4 and above is less than 10%.
  • the technical scheme of the present invention is: a catalyst comprising component I and components, component I and component II are compounded together by mechanical mixing, the active component of component I is metal oxide, and component II is MOR.
  • the molecular sieve of the topology, in the component II, the molecular sieve of the MOR topology is treated by a fatty amine modification, and the modification treatment is to disperse the fatty amine into the 12-ring channel of the molecular sieve of the MOR topology. Acid site.
  • the fatty amine is dimethylamine, trimethylamine, diethylamine, triethylamine, ethylenediamine, monopropylamine, dipropylamine, tripropylamine, isopropylamine, diisopropylamine, 1,2-dimethylpropylamine, 1 , 2-propanediamine, 2-propenylamine, cyclopropylamine, n-butylamine, di-n-butylamine, isobutylamine, sec-butylamine, 1,4-butanediamine, tert-butylamine, diisobutylamine hexylamine, 2 One or two or more of ethylhexylamine, hexamethylenediamine, and trioctylamine.
  • the mechanical mixing according to the present invention may be compounded by one or more of mechanical stirring, ball milling, shaker mixing, and mechanical grinding.
  • the molecular sieve of the MOR topology is treated by fatty amine modification, which can prevent the organic base molecules from entering the 8-ring channel, but selectively occupy the 12-ring B acid sites.
  • the MOR topology of the present invention is an orthorhombic system having a one-dimensional channel structure with elliptical through-channels parallel to each other, comprising an 8-ring pocket and a 12-ring one-dimensional aperture.
  • the fatty amine modification of the present invention refers to the use of a fatty amine molecule to occupy the B acid site in the 12-ring channel of the MOR molecular sieve, which may be completely occupied or partially occupied.
  • the B acid site in the occupied 12-ring channel is 50-100%.
  • the method for dispersing a fatty amine into the B acid site in the annular channel of the MOR molecular sieve 12 all known methods for achieving the purpose can meet the requirements, here the vacuum dehydration adsorption method is taken as an example, first in the vacuum The temperature of the molecular sieve is dehydrated and degassed at a temperature of 350-500 ° C, the pressure is 1 Pa-10 -5 Pa, and the time is 4 h-24 h, and the degassed molecular sieve is further exposed to an atmosphere of 10 Pa-100 kPa of a fatty amine or inert.
  • the adsorption temperature is controlled to be room temperature -300 ° C, and the inorganic amine-modified molecular sieve is obtained by purging with an inorganic gas at 200-330 ° C for 30 min to 12 h.
  • the metal oxide is MnO x , Mn a Cr (1-a) O x , Mn a Al (1-a) O x , Mn a Zr (1-a) O x , Mn a In (1-a ) O x , ZnO x , Zn a Cr (1-a) O x , Zn a Al (1-a) O x , Zn a Ga (1-a) O x , Zn a In (1-a) O x , CeO x , Co a Al (1-a) O x , Fe a Al (1-a) O x , GaO x , BiO x , InO x , In a Al b Mn (1-ab) O x , In a One or more of Ga b Mn (1-ab) O x ;
  • the specific surface area of the MnO x , ZnO x , CeO x , GaO x , BiO x , InO x is 1-100 m 2 /g; preferably the specific surface area is 50-100 m 2 /g;
  • the specific surface area of Fe a Al (1-a) O x , In a Al b Mn (1-ab) O x , and In a Ga b Mn (1-ab) O x is 5-150 m 2 /g.
  • the specific surface area is 50-150 m 2 /g;
  • the value of x ranges from 0.7 to 3.7, the range of a ranges from 0 to 1, and the range of a+b ranges from 0 to 1.
  • a, b, (1-a), (1-a-b), x represent only the relative proportions of the chemical compositions of the elements in the metal oxide, and all metal oxides having the same ratio are regarded as the same metal oxide.
  • the weight ratio of the active ingredient in component I to component II is 0.1-20 times, preferably 0.3-8; multi-component synergy can make the reaction work efficiently, and one of them is too much or too little to be detrimental to the reaction. .
  • a dispersing agent is further added to the component I, and the dispersing agent is one of Al 2 O 3 , SiO 2 , Cr 2 O 3 , ZrO 2 , TiO 2 , Ga 2 O 3 , activated carbon, graphene, and carbon nanotubes.
  • the metal oxide is dispersed in the dispersing agent in an amount of from 0.05 to 90% by weight, preferably from 0.05 to 25% by weight, based on the active metal oxide.
  • the skeleton element composition of the molecular sieve having the MOR topology may be Si-Al-O, Ga-Si-O, Ga-Si-Al-O, Ti-Si-O, Ti-Al-Si-O, Ca-.
  • the invention relates to a method for directly converting ethylene into ethylene, which comprises syngas as a reaction raw material, and the syngas may further contain a certain amount of carbon dioxide, and the conversion reaction is carried out in a fixed bed or a moving bed, and ethylene can be formed with high selectivity.
  • the catalyst is the above catalyst.
  • the pressure of the synthesis gas is from 0.5 to 10 MPa, preferably from 1 to 8 MPa, more preferably from 2 to 8 MPa; the reaction temperature is from 300 to 600 ° C, preferably from 300 to 450 ° C; and the space velocity is from 300 to 10000 h -1 , preferably 500 - 9000h -1, more preferably 500-6000h -1, a higher space-time yield can be obtained.
  • the reaction synthesis gas H 2 /CO molar ratio is 0.2-3.5, preferably 0.3-2.5, and a higher space-time yield can be obtained and the selective synthesis gas can also contain CO 2 , wherein the CO 2 is in the synthesis gas.
  • the volume concentration is 0.1-50%.
  • the above catalyst of the invention is used for one-step direct conversion of synthesis gas to ethylene or C2-C3 olefin, wherein the selectivity of C2-C3 olefin is as high as 78-87%, the selectivity of ethylene reaches 75-82%, and the by-product methane is also The selectivity is extremely low ( ⁇ 9%) and the selectivity for hydrocarbons above C4 and above is less than 10%.
  • the present invention is different from the conventional methanol-made low-carbon olefin technology (abbreviated as MTO), and realizes a direct conversion of synthesis gas to ethylene.
  • MTO methanol-made low-carbon olefin technology
  • the ethylene single product in the product of the invention has high selectivity, can reach 75-82%, and has high space-time yield (the olefin yield is as high as 1.33 mmol/hg), and the product is easy to be separated, and has a good application prospect.
  • the metal oxide in the catalyst has a high specific surface area, so that the metal oxide has more active sites on the surface, which is more favorable for the catalytic reaction.
  • component II in the catalyst The role of component II in the catalyst is to convert the active gas phase intermediate produced by component I to a lower olefin by coupling with component I, and the effect of component II on the equilibrium pull of the series reaction can be Promoting the activation and conversion of the synthesis gas by the component I to increase the conversion rate.
  • the special pore structure of the molecular sieve in the component II used in the invention has a unique shape selection effect, and can obtain more ethylene products with high selectivity. .
  • the function of the present invention can not be achieved at all by using the component I or the component II described in the present invention separately, for example, the product of the component I alone has a very high selectivity for methane and a low conversion rate, and is used alone.
  • Component II can hardly activate the conversion synthesis gas, and only component I and component II can be catalyzed to achieve efficient synthesis gas conversion and obtain excellent selectivity. This is because component I can activate the synthesis gas to form a specific active gas phase intermediate, and the intermediate diffuses into the pores of component II via the gas phase. Due to the molecular sieve of the MOR structure selected by the present invention, it has a special pore structure and acidity. The active gas phase intermediate produced by component I is further activated to be converted to an olefin. Due to the special pore structure of component II, the product has a special selectivity.
  • component II is modified with a fatty amine, and the selectivity of catalytic synthesis gas conversion to single component ethylene is as high as 75-82%, and methane is less than 9%, and hydrocarbons above C4 are greatly inhibited.
  • the selectivity of the class is less than 10%.
  • the specific surface area of the sample can be tested by means of physical adsorption of nitrogen or argon.
  • the metal oxide of the present invention can be obtained by purchasing a commercially available high specific surface area metal oxide, or can be obtained by the following methods:
  • the atmosphere is an inert gas, a reducing gas or an oxidizing gas; the inert gas is one or more of N 2 , He and Ar; the reducing gas is one or two of H 2 and CO, and the reducing gas is also
  • the inert gas may be contained; the oxidizing gas may be one or more of O 2 , O 3 , and NO 2 , and the oxidizing gas may contain an inert gas.
  • the calcination temperature is 300-700 ° C and the time is 0.5 h-12 h.
  • the purpose of the calcination is to decompose the precipitated metal oxide precursor into high specific surface area oxide nanoparticles at a high temperature, and the oxide surface adsorbed species formed by decomposition can be cleaned by high temperature treatment of baking.
  • ZnO#4 in the table is a commercially available ZnO single crystal having a low specific surface area.
  • the preparation process is the same as the above ZnO#2, except that the precursor of Zn is replaced by the corresponding precursor of Mn, which may be one of manganese nitrate, manganese chloride and manganese acetate, here is manganese nitrate, corresponding
  • MnO the specific surface area was: 23 m 2 /g.
  • the preparation process is the same as the above ZnO#2, except that the precursor of Zn is replaced by the corresponding precursor of Ce, which may be one of cerium nitrate, cerium chloride and cerium acetate, which is cerium nitrate, corresponding thereto.
  • the product was defined as CeO 2 ; the specific surface area was: 92 m 2 /g.
  • the preparation process is the same as the above ZnO#2, except that the precursor of Zn is replaced by the corresponding precursor of Ga, which may be one of gallium nitrate, gallium chloride or gallium acetate, here is gallium nitrate, corresponding
  • the product was defined as Ga 2 O 3 ; the specific surface area was: 55 m 2 /g.
  • the preparation process is the same as that of the above ZnO #2, except that the precursor of Zn is replaced by the corresponding precursor of Bi, which may be one of cerium nitrate, cerium chloride or cerium acetate, here cerium nitrate.
  • the corresponding product was defined as Bi 2 O 3 ; the specific surface area was: 87 m 2 /g.
  • the preparation process is the same as the above ZnO#2, except that the precursor of Zn is replaced by the corresponding precursor of In, which may be one of indium nitrate, indium chloride and indium acetate, here is indium nitrate, corresponding
  • the product is defined as In 2 O 3 ; the specific surface area is: 52 m 2 /g
  • ammonium carbonate Using zinc nitrate, aluminum nitrate, chromium nitrate, manganese nitrate, zirconium nitrate, indium nitrate, cobalt nitrate, ferric nitrate as precursors, and ammonium carbonate, mixed with water at room temperature (in which ammonium carbonate is used as a precipitant, the ratio of feed is The ammonium carbonate is excessive or preferably the ratio of ammonium ion to metal ion is 1:1); the above mixture is aged, then taken out, washed, filtered and dried, and the obtained solid is calcined in an air atmosphere to obtain a metal oxide having a high specific surface area.
  • Table 2 The specific samples and their preparation conditions are shown in Table 2 below.
  • a Cr 2 O 3 , Al 2 O 3 or ZrO 2 dispersed metal oxide is prepared by a precipitation deposition method using a dispersant Cr 2 O 3 , Al 2 O 3 or ZrO 2 as a carrier.
  • a dispersant Cr 2 O 3 , Al 2 O 3 or ZrO 2 as a carrier.
  • commercial Cr 2 O 3 specifically surface area is about 5 m 2 /g
  • Al 2 O 3 specifically surface area of about 20 m 2 /g
  • ZrO 2 specific surface area of about 10 m 2 / g
  • sodium hydroxide precipitating agent are mixed at room temperature and the precipitate, the molar concentration of 0.067M Zn 2+, Zn 2+ and the mole fraction ratio of precipitant 1:8; then aged at 160 ° C for 24 hours to obtain Cr 2 O 3 , Al 2 O 3 or ZrO 2 as a carrier-dispersed ZnO (the content of the dispersant in the component I is 0.1 w
  • SiO 2 specific surface area of about 2 m 2 /g
  • Ga 2 O 3 specific surface area of about 10 m 2 /g
  • TiO 2 specific surface area of about 15 m 2 /g
  • the MnO oxide the content of the dispersant in the component I is 5 wt%, 30 wt%, 60 wt%, respectively
  • the product is defined as the dispersed oxide 4-6. It was a specific surface area: 97m 2 / g, 64m 2 / g, 56m 2 / g.
  • activated carbon having a specific surface area of about 1000 m 2 /g
  • graphene having a specific surface area of about 500 m 2 /g
  • carbon nanotubes having a specific surface area of about 300 m 2 /g
  • the oxide the content of the dispersant in the component I was 5% by weight, 30% by weight, 60% by weight in this order
  • the product was defined as the dispersed oxide 7-9. It was a specific surface area: 177m 2 / g, 245m 2 / g, 307m 2 / g.
  • the MOR topology is an orthorhombic system having a one-dimensional channel structure with elliptical through-channels parallel to each other, including 8-ring and 12-ring parallel one-dimensional through-channels, and 12-ring main channel sides 8 Ring pockets are connected.
  • the MOR molecular sieve of the present invention may be a commercially available molecular sieve directly purchased, or may be a self-synthesized molecular sieve.
  • the MOR molecular sieve produced by Nankai University Catalyst Factory was used as MOR1; at the same time, seven molecular sieves with MOR structure were prepared by hydrothermal synthesis.
  • Na-MOR was taken, mixed with a 1 mol/L ammonium chloride solution, stirred at 90 ° C for 3 hours, washed, dried, continuously carried out 4 times, and calcined at 450 degrees for 6 hours to obtain a hydrogen-type mordenite.
  • the skeleton element composition of the molecular sieve having the MOR topology prepared according to the above process may be Si-Al-O, Ga-Si-O, Ga-Si-Al-O, Ti-Si-O, Ti-Al-Si-O.
  • the prepared molecular sieve is subjected to dehydration and degassing treatment under vacuum, the temperature is 400 ° C, the pressure is 10 -4 Pa, and after 10 h, it is lowered to 300 ° C, and then 200 Pa of organic alkali gas is introduced into the vacuum chamber, and after 10 hours of equilibration. Desorbed at the same temperature for 1 h.
  • MOR1, MOR2, MOR3, MOR4, MOR5, MOR6, MOR7, MOR 8 are used sequentially: dimethylamine, trimethylamine, diethylamine, triethylamine, ethylenediamine, monopropylamine, dipropylamine, tripropylamine, isopropylamine , diisopropylamine, 1,2-dimethylpropylamine, 1,2-propylenediamine, 2-propenylamine, cyclopropylamine, n-butylamine, di-n-butylamine, isobutylamine, sec-butylamine, 1,4 After treatment with butyl diamine, tert-butylamine, diisobutylamine hexylamine, 2-ethylhexylamine, hexamethylenediamine and trioctylamine, MOR9, MOR10, MOR11, MOR12, MOR13, MOR14, MOR15, MOR16, MOR17 were obtained
  • a mixing temperature of 20-100 ° C can be set, which can be carried out in an atmosphere or directly in the air, and the atmosphere is selected from any of the following gases:
  • the mechanical mixing may be compounded by one or more of mechanical stirring, ball milling, shaker mixing, and mechanical grinding, as follows:
  • Ball Milling Using the abrasive and the catalyst to tumbling at high speed in the grinding tank, the catalyst is strongly impacted and crushed to achieve the function of dispersing and mixing the component I and the component II.
  • the abrasive material can be stainless steel, agate, quartz. Size range: 5mm-15mm). Ratio to catalyst (mass ratio range: 20-100:1).
  • Shaker mixing method premixing component I and component II into a container; mixing of component I and component II by controlling reciprocating oscillation or circumferential oscillation of the shaker; adjusting the oscillation speed (range) : 1-70 rpm) and time (range: 5 min - 120 min) for uniform mixing.
  • a fixed bed reaction is exemplified, but the catalyst is also suitable for use in a moving bed reactor.
  • the device is equipped with a gas mass flow meter and an online product analysis chromatograph (the exhaust gas of the reactor is directly connected to the chromatographic quantitative valve for periodic real-time sampling analysis).
  • the synthesis gas may also contain CO 2 , wherein the volume concentration of CO 2 in the synthesis gas is 0.1-50%.
  • the pressure of the synthesis gas is 0.5-10 MPa, the temperature is raised to a reaction temperature of 300-600 ° C, and the space velocity of the reaction raw material gas is adjusted to 300-10000 ml/g/h.
  • the product was analyzed by on-line chromatography.
  • Changing the temperature, pressure and airspeed can change the reaction performance.
  • the selectivity of ethylene propylene in the product is as high as 78-87%, and the conversion of raw materials is 10-60%. Due to the effective synergy between the molecular sieve and the oxide, the mass production of methane and C 4+ hydrocarbons is avoided.
  • the component I of the catalyst used in Comparative Example 10 was a metal ZnCo, and the ZnCo molar ratio was 1:1, and the remaining parameters and the mixing process were the same as the catalyst C.
  • the component I of the catalyst used in Comparative Example 11 was TiO 2 , and the remaining parameters and the mixing process were the same as Catalyst C.
  • the catalyst used in Comparative Example 12 was a sample in which only component I was ZnO #1 and did not contain MOR molecular sieve, and the reaction conversion rate was very low, and the product was mainly composed of dimethyl ether, methane and other by-products, and almost no ethylene was formed.
  • the catalyst used in Comparative Example 13 was a component II-only MOR9 molecular sieve, and did not contain the metal oxide of the component I as an active component, and the catalytic reaction was almost inactive.
  • Comparative Examples 12 and 13 show that only the component I or the component II has an extremely poor reaction effect and does not have the excellent reaction properties as described in the present invention.

Abstract

一种有机碱修饰的复合催化剂及一氧化碳加氢制乙烯的方法,其以一氧化碳和氢气混合气为反应原料,在固定床或移动床上进行转化反应,所述催化剂为复合催化剂,由组分I和组分II以机械混合方式复合在一起,组分I的活性成份为金属氧化物,组分II为有机碱改性的MOR结构的分子筛,有机碱为脂肪胺。反应过程具有很高的产品收率和选择性,C2-C3烯烃选择性高达78-87%,其中4个C原子以上的烃类产物选择性低于10%,副产物甲烷选择性极低(<9%),同时乙烯选择性达到75-82%。

Description

一种有机碱修饰的复合催化剂及一氧化碳加氢制乙烯的方法 技术领域
本发明属于一氧化碳加氢制低碳烯烃等高值化学品,具体涉及一种有机碱修饰的复合催化剂及一氧化碳加氢制乙烯的方法。
背景技术
乙烯是非常重要的基本化工原料,是世界上产量最大的化学产品之一,乙烯工业是石油化工产业的核心,在国民经济中占有重要的地位。低碳烯烃是指碳原子数小于或等于4的烯烃。以乙烯、丙烯为代表的低碳烯烃是非常重要的基本有机化工原料,随着我国经济的快速增长,我国乙烯行业发展迅猛,在世界乙烯市场占有重要的地位。长期以来,低碳烯烃市场供不应求。目前,乙烯的生产主要采用石脑油、轻柴油裂解的石油化工路线或者乙烷裂解的技术,由于我国石油长期依赖进口,我国的能源安全存在较大风险,急需开发出不依赖石油的乙烯生产技术。将煤炭、天然气、生物质和其他可再生材料等转化为一氧化碳和氢气的混合气即合成气,合成气中一氧化碳和氢气的比例随原材料不同而不同;再以这些合成气为原料,通过调节一氧化碳和氢气的比例到合适的值之后,使一氧化碳和氢在合适的催化剂作用下,通过费托合成反应直接制得碳原子数小于或等于4的低碳烯烃的过程,这样可以一步生产烯烃,该路线为石脑油裂解技术生产乙烯提供了一条替代方案。该工艺无需像间接法工艺那样从合成气经甲醇或二甲醚,进一步制备烯烃,简化工艺流程,大大减少投资。
通过费托合成直接制取低碳烯烃,一直是合成气直接生产烯烃的研究热点之一。中科院大连化学物理研究所公开的专利CN1083415A中,用MgO等IIA族碱金属氧化物或高硅沸石分子筛(或磷铝沸石)担载的铁-锰催化剂体系,以强碱K或Cs离子作助剂,在合成气制低碳烯烃反应压力为1.0~5.0MPa,反应温度300~400℃下,可获得较高的活性(CO转化率90%)和选择性(低碳烯烃选择性66%)。北京化工大学所申报的专利ZL03109585.2中,采用真空浸渍法制备锰、铜、锌硅、钾等为助剂的Fe/活性炭催化剂用于合成气制低碳烯烃反应,在无原料气循环的条件下,CO转化率96%,低碳烯烃在碳氢化合物中的选择性68%。上述报道的催化剂是采用金属铁或者碳化铁为活性组分,反应遵循金属表面的链增长反应机理,产物低碳烯烃的选择性较低,尤其单种产物如乙烯的选择性低于30%。2016年,上海高等研究院孙予罕研究员及钟良枢研究员报道了一种择优暴露[101]及[020]锰助碳化钴基催化剂,实现了31.8%的CO转化率下,60.8%的低碳烯烃选择性,且甲烷选择性5%。但是乙烯单一选择性却低于20%。中国科 学院大连化学物理研究所包信和院士和潘秀莲研究员报道了氧化铝负载的ZnCr 2O 4氧化物与多级孔SAPO-34分子筛复合双功能催化剂(Jiao et al.,Science 351(2016)1065-1068),实现了CO转化率17%时,低碳烯烃80%的选择性,但乙烯的选择性低于30%。在他们申请的专利201710129620.9中,使用含有氧空穴与MOR分子筛复合的双功能催化剂用于合成气一步制烯烃反应,将乙烯的选择性提高至75-80%,但副产物中碳原子数超过3的烃类较多,影响了该技术的应用。而本发明进一步通过调变MOR分子筛的酸性特点,使甲烷副产物的选择性进一步降低至9%以下,且C4以上的烃类选择性也进一步降低。
发明内容
本发明技术解决问题:克服现有技术的不足,提供一种碱修饰的催化剂及一氧化碳加氢制乙烯的方法,所发明的催化剂可催化一氧化碳和氢气反应直接生成低碳烯烃,并且C2-C3烯烃的选择性高达78-87%,单种产物乙烯的选择性可高达75-82%,甲烷选择性低于9%,C4及以上烃类选择性低于10%。
本发明的技术方案为:一种催化剂,包括组分I和组分,组分I和组分II以机械混合方式复合在一起,组分I的活性成份为金属氧化物,组分II为MOR拓扑结构的分子筛,II组分中,所述MOR拓扑结构的分子筛经脂肪胺改性处理,所述改性处理是将脂肪胺分散到所述MOR拓扑结构的分子筛的12圆环孔道内的B酸位点。
所述脂肪胺是二甲胺、三甲胺、二乙胺、三乙胺、乙二胺、一丙胺、二丙胺、三丙胺、异丙胺、二异丙胺、1,2-二甲基丙胺、1,2-丙二胺、2-丙烯胺、环丙胺、正丁胺、二正丁胺、异丁胺、仲丁胺、1,4-丁二胺、叔丁胺、二异丁胺己胺、2-乙基己胺、己二胺、三辛胺中的一种或两种以上。
本发明所述机械混合可采用机械搅拌、球磨、摇床混合、机械研磨中的一种或二种以上进行复合。
所述MOR拓扑结构的分子筛经脂肪胺改性处理,可以避免有机碱分子进入8圆环孔道,而是选择性的占据12圆环的B酸位点。
本发明所述所述MOR拓扑结构是一种正交晶系,具有相互平行的椭圆形直通孔道的一维孔道结构,含有8圆环口袋与12圆环一维孔道。
本发明所述脂肪胺改性是指利用脂肪胺分子,占据MOR分子筛12圆环孔道内的B酸位点,可以是完全占据也可以是部分占据。被占据的12圆环孔道中的B酸位点是50-100%。
所述将脂肪胺分散到所述MOR分子筛12圆环孔道内的B酸位点的方法,所有公知的可以实现该目的的方法均可以满足要求,这里以真空脱水吸附法为例,先在真空线 上控制温度对分子筛样品进行脱水脱气处理温度350-500℃,压力1Pa-10 -5Pa,时间4h-24h,进一步对脱气的分子筛暴露在10Pa-100kPa的脂肪胺的气氛中或惰性气体稀释的有机碱的气氛中,控制吸附温度是室温-300℃,并用无机气体在200-330℃进行吹扫30min-12h后得到脂肪胺改性的分子筛。
所述的金属氧化物为MnO x、Mn aCr (1-a)O x、Mn aAl (1-a)O x、Mn aZr (1-a)O x、Mn aIn (1-a)O x、ZnO x、Zn aCr (1-a)O x、Zn aAl (1-a)O x、Zn aGa (1-a)O x、Zn aIn (1-a)O x、CeO x、Co aAl (1-a)O x、Fe aAl (1-a)O x、GaO x、BiO x、InO x、In aAl bMn (1-a-b)O x、In aGa bMn (1-a-b)O x中的一种或二种以上;
所述MnO x、ZnO x、CeO x、GaO x、BiO x、InO x的比表面积是1-100m 2/g;优选比表面积是50-100m 2/g;
所述Mn aCr (1-a)O x、Mn aAl (1-a)O x、Mn aZr (1-a)O x、Mn aIn (1-a)O x、Zn aCr (1-a)O x、Zn aAl (1-a)O x、Zn aGa (1-a)O x、Zn aIn (1-a)O x、Co aAl (1-a)O x、Fe aAl (1-a)O x、In aAl bMn (1-a-b)O x、In aGa bMn (1-a-b)O x的比表面积是5-150m 2/g。优选比表面积是50-150m 2/g;
所述x的取值范围是0.7~3.7,a的取值范围是0~1;a+b的取值范围是0~1;
本发明所述的a,b,(1-a),(1-a-b),x仅代表金属氧化物中元素化学组成的相对比例,凡是比例相同的金属氧化物视为同一种金属氧化物。
组分I中的活性成份与组分II的重量比为0.1-20倍,优选为0.3-8;多组分协同才能使得反应有效进行,其中一种过多或过少都会不利于反应的进行。
所述组分I中还添加有分散剂,分散剂为Al 2O 3、SiO 2、Cr 2O 3、ZrO 2、TiO 2、Ga 2O 3、活性炭、石墨烯、碳纳米管中的一种或二种以上,金属氧化物分散于分散剂中,分散剂于I组分中的含量在0.05-90wt%,优选0.05-25wt%,其余为活性金属氧化物。
所述具有MOR拓扑结构的分子筛的骨架元素组成可以是Si-Al-O、Ga-Si-O、Ga-Si-Al-O、Ti-Si-O、Ti-Al-Si-O、Ca-Al-O、Ca-Si-Al-O中的一种或二种以上。
一种合成气直接转化制乙烯的方法,涉及以合成气为反应原料,合成气中还可以含有一定量的二氧化碳,在固定床或移动床上进行转化反应,可以高选择性地生成乙烯,所采用的催化剂为上述的催化剂。
合成气的压力为0.5-10MPa,优选为1-8MPa,更优选为2-8MPa;反应温度为300-600℃,优选为300-450℃;空速为300-10000h -1,优选为500-9000h -1,更优选为500-6000h -1,可以获得更高的时空收率。
所述反应用合成气H 2/CO摩尔比为0.2-3.5,优选为0.3-2.5,可以获得更高的时空收率和选择性合成气中还可以含有CO 2,其中CO 2在合成气中的体积浓度为0.1-50%。
本发明上述催化剂用于合成气一步法直接转化制乙烯或者C2-C3的烯烃,其中C2-C3烯烃的选择性高达78-87%,乙烯选择性达到75-82%,同还时副产物甲烷选择性极低(<9%),C4及以上烃类选择性低于10%。
本发明具有如下优点:
(1)本发明与传统的甲醇制低碳烯烃技术(简称为MTO)不同,实现了一步直接将合成气转化制乙烯。
(2)本发明产物中乙烯单一产物选择性高,可达到75-82%,且时空收率高(烯烃收率高至1.33mmol/hg),产物易于分离,具有很好的应用前景。
(3)催化剂中金属氧化物具有较高的比表面积,因此金属氧化物表面上具有更多的活性位点,更有利于催化反应的进行。
(4)催化剂中组分Ⅱ的作用一方面是通过与组分I进行耦合,将组分I产生的活泼气相中间体进一步转化获得低碳烯烃,由于组分II对串联反应平衡拉动的作用可以促进组分I对合成气的活化转化进而提高转化率,另一方面本发明使用的组分II中分子筛特殊的孔道结构,具有独特的择型效应,可以高选择性的获得更多的乙烯产物。
(5)单独分别使用本发明中所述的组分I或组分II完全不能实现本发明的功能,例如单独使用组分I产物中甲烷选择性非常高,且转化率很低,而单独使用组分II几乎不能活化转化合成气,只有组分I与组分II协同催化才能实现高效的合成气转化,并获得优异的选择性。这是由于组分I可以活化合成气生成特定的活泼气相中间体,中间体经由气相扩散到组分II的孔道内,由于本发明选择的MOR结构的分子筛,具有特殊的孔道结构和酸性可以有效的将组分I产生的活泼气相中间体进一步活化转化为烯烃。由于组分II的特殊孔道结构使得产物具有特殊的选择性。
(6)本发明催化剂中组份II使用脂肪胺进行改性,催化合成气转化得到单一组份乙烯的选择性高达75-82%,且甲烷低于9%,并且大大抑制了C4以上的烃类的选择性低于10%。
具体实施方式
下面通过实施例对本发明做进一步阐述,但是本发明的权利要求范围不受这些实施例的限制。同时,实施例只是给出了实现此目的的部分条件,但并不意味着必须满足这些条件才可以达到此目的。
实施例1
一、组分I的制备
下面通过实施例对本发明做进一步阐述,但是本发明的权利要求范围不受这些实施 例的限制。同时,实施例只是给出了实现此目的的部分条件,但并不意味着必须满足这些条件才可以达到此目的。
样品的比表面积可以通过氮气或氩气物理吸附的方法进行测试。
本发明所述的金属氧化物可以通过购买市购的高比表面积的金属氧化物获得,也可以通过下述几种方法获得:
一、催化剂组分Ⅰ的制备
(一)、沉淀法合成具有高比表面的ZnO材料:
(1)分别称取3份、每份0.446g(1.5mmol)Zn(NO 3) 2·6H 2O于3个容器中,再分别称取0.300g(7.5mmol)、0.480g(12mmol)、0.720g(18mmol)NaOH依次加入上述3个容器中,再各量取30ml去离子水加入到3个容器中,70℃搅拌0.5h以上使溶液混合均匀,自然冷却至室温。反应液离心分离收集离心分离后的沉淀物,用去离子水洗涤2次获得ZnO金属氧化物前驱体;
(2)焙烧:上述获得的产物在空气中烘干以后,在气氛中进行焙烧处理,即得到高比表面的ZnO材料。气氛为惰性气体、还原性气体或者氧化性气体;惰性气体为N 2、He和Ar中的一种或二种以上;还原性气体为H 2、CO的一种或二种,还原气中也可以含有惰性气体;氧化性气体是O 2、O 3、NO 2中的一种或两种以上,氧化气体中也可以含有惰性气体。焙烧温度为300-700℃,时间为0.5h-12h。
焙烧的目的是为了将沉淀后的金属氧化物前驱体在高温下分解为高比表面积的氧化物纳米粒子,并且通过焙烧的高温处理可以将分解生成的氧化物表面吸附物种处理干净。
具体样品及其制备条件如下表1,作为对比例,表中ZnO#4是市售低比表面积的ZnO单晶。
表1 ZnO材料的制备及其参数性能
Figure PCTCN2019073387-appb-000001
(二)共沉淀法合成具有高比表面积的MnO材料:
制备过程同上述ZnO#2,不同之处在于将Zn的前驱体换成了Mn的对应的前驱体,可为硝酸锰、氯化锰、醋酸锰中的一种,在此为硝酸锰,对应产物定义为MnO;比表面积是:23m 2/g。
(三)共沉淀法合成具有高比表面积的CeO 2材料:
制备过程同上述ZnO#2,不同之处在于将Zn的前驱体换成了Ce的对应的前驱体,可为硝酸铈、氯化铈、醋酸铈中的一种,在此为硝酸铈,对应产物定义为CeO 2;比表面积是:92m 2/g。
(四)共沉淀法合成具有高比表面积的Ga 2O 3材料:
制备过程同上述ZnO#2,不同之处在于将Zn的前驱体换成了Ga的对应的前驱体,可为硝酸镓、氯化镓、醋酸镓中的一种,在此为硝酸镓,对应产物定义为Ga 2O 3;比表面积是:55m 2/g。
(五)共沉淀法合成具有高比表面积的Bi 2O 3材料:
制备过程同上述ZnO#2,不同之处在于将Zn的前驱体换成了Bi的对应的前驱体,可为硝酸铋、氯化铋、醋酸铋中的一种,在此为硝酸铋。对应产物定义为Bi 2O 3;比表面积分别是:87m 2/g。
(六)共沉淀法合成具有高比表面积的In 2O 3材料:
制备过程同上述ZnO#2,不同之处在于将Zn的前驱体换成了In的对应的前驱体,可为硝酸铟、氯化铟、醋酸铟中的一种,在此为硝酸铟,对应产物定义为In 2O 3;比表面积是:52m 2/g
(七)沉淀法合成具有高比表面积的Mn aCr (1-a)O x、Mn aAl (1-a)O x、Mn aZr (1-a)O x、Mn aIn (1-a)O x、Zn aCr (1-a)O x、Zn aAl (1-a)O x、Zn aGa (1-a)O x、Zn aIn (1-a)O x、Co aAl (1-a)O x、Fe aAl (1-a)O x、In aAl bMn (1-a-b)O x、In aGa bMn (1-a-b)O x
采用硝酸锌、硝酸铝、硝酸铬、硝酸锰、硝酸锆、硝酸铟、硝酸钴、硝酸铁为前驱体,与碳酸铵,在室温下于水中相互混合(其中碳酸铵作为沉淀剂,投料比例为碳酸铵过量或者优选铵离子与金属离子的比例为1:1);将上述混合液陈化,然后取出洗涤、过滤和干燥,所得的固体在空气气氛下焙烧,获得高比表面的金属氧化物,具体样品及其制备条件如下表2。
表2 高比表面积金属氧化物的制备及其性能参数
Figure PCTCN2019073387-appb-000002
Figure PCTCN2019073387-appb-000003
(八)、分散剂Cr 2O 3、Al 2O 3或ZrO 2分散的金属氧化物
以分散剂Cr 2O 3、Al 2O 3或ZrO 2为载体,沉淀沉积法制备Cr 2O 3、Al 2O 3或ZrO 2分散的金属氧化物。以分散ZnO的制备为例,将商业Cr 2O 3(比表面积约为5m 2/g)、Al 2O 3(比表面积约为20m 2/g)或ZrO 2(比表面积约为10m 2/g)作为载体预先分散于水中,然后采用硝酸锌为原料,与氢氧化钠沉淀剂在室温下混合沉淀,Zn 2+的摩尔浓度为0.067M,Zn 2+与沉淀剂的摩尔份数比为1:8;然后在160℃下陈化24小时,获得Cr 2O 3、Al 2O 3或ZrO 2为载体分散的ZnO(分散剂于组分Ⅰ中的含量依次为0.1wt%、20wt%、85wt%)。得到的样品在空气下500℃焙烧1h,产物依次定义为分散氧化物1-3,其比表面积依次为:148m 2/g,115m 2/g,127m 2/g。
以同样的方法,可以获得SiO 2(比表面积约为2m 2/g)、Ga 2O 3(比表面积约为10m 2/g)或TiO 2(比表面积约为15m 2/g)为载体分散的MnO氧化物(分散剂于组分Ⅰ中的含量依次为5wt%、30wt%、60wt%),产物依次定义为分散氧化物4-6。其比表面积依次为:97m 2/g,64m 2/g,56m 2/g。
以同样的方法,可以获得活性炭(比表面积约为1000m 2/g)、石墨烯(比表面积约为500m 2/g)或碳纳米管(比表面积约为300m 2/g)为载体分散的ZnO氧化物(分散剂于组分Ⅰ中的含量依次为5wt%、30wt%、60wt%),产物依次定义为分散氧化物7-9。其比表面积依次为:177m 2/g,245m 2/g,307m 2/g。
二、II组分(MOR拓扑结构的分子筛)的制备
所述MOR拓扑结构是一种正交晶系,具有相互平行的椭圆形直通孔道的一维孔道结构,含有8圆环与12圆环平行一维直通孔道,12圆环主孔道侧边存在8圆环口袋连通。
本发明所述的MOR分子筛可以是直接购买的商品分子筛,也可以是自行合成的分子筛。这里使用南开大学催化剂厂生产的MOR分子筛作为MOR1;同时也自行通过水热合成法为例制备了7个具有MOR结构的分子筛;
具体制备过程为:
按照n(SiO 2)/n(Al 2O 3)=15,n(Na 2O)/n(SiO 2)=0.2,n(H 2O)/n(SiO 2)=26.
将硫酸铝与氢氧化钠溶液混合,然后加入硅溶胶,搅拌1h得到均一相的初始凝胶,然后将其转移到高压合成釜中,180℃静态晶化24h后骤冷、洗涤、干燥,即得到丝光沸石样品,标记为Na-MOR。
取Na-MOR,将其与1mol/L的氯化铵溶液混合,在90℃下搅拌3h,洗涤,烘干,连续进行4次,450度焙烧6h,得到氢型丝光沸石。
按上述过程制备的具有MOR拓扑结构的分子筛的骨架元素组成可以是Si-Al-O、Ga-Si-O、Ga-Si-Al-O、Ti-Si-O、Ti-Al-Si-O、Ca-Al-O、Ca-Si-Al-O中的一种;
部分骨架的O元素上连接H,对应产物依次定义为MOR1-8;
表3 具有MOR拓扑结构的分子筛的制备及其性能参数
Figure PCTCN2019073387-appb-000004
Figure PCTCN2019073387-appb-000005
将制备好的分子筛,取适量于真空下进行脱水脱气处理,温度400℃,压力10 -4Pa,10h之后降至300℃后,向真空腔体内通入200Pa的有机碱气体,平衡10h后在相同温度下脱附1h。
将MOR1,MOR2,MOR3,MOR4,MOR5,MOR6,MOR7,MOR 8依次使用:二甲胺、三甲胺、二乙胺、三乙胺、乙二胺、一丙胺、二丙胺、三丙胺、异丙胺、二异丙胺、1,2-二甲基丙胺、1,2-丙二胺、2-丙烯胺、环丙胺、正丁胺、二正丁胺、异丁胺、仲丁胺、1,4-丁二胺、叔丁胺、二异丁胺己胺、2-乙基己胺、己二胺、三辛胺处理后,分别得到MOR9,MOR10,MOR11,MOR12,MOR13,MOR14,MOR15,MOR16,MOR17,MOR18,MOR19,MOR20,MOR21,MOR22,MOR23,MOR24,MOR25,MOR26,MOR27,MOR28,MOR29,MOR30,MOR31,MOR32。
三、催化剂的制备
将所需比例的组分Ⅰ和组分Ⅱ加入容器中,利用这些物料和/或容器的高速运动产生的挤压力、撞击力、裁剪力、摩擦力等中的一种或两种以上作用实现分离、破碎、混匀等目的,通过调变温度与载气气氛实现机械能、热能与化学能的转换,进一步调节不同组分间的相互作用。
机械混合过程中,可以设置混合温度20-100℃,可以在气氛中或者直接在空气中进行,气氛选自以下任意的气体:
a)氮气和/或惰性气体;
b)氢气与氮气和/或惰性气体的混合气,其中氢气于混合气中的体积为5~50%;
c)CO与氮气和/或惰性气体的混合气,其中CO于混合气中的体积为5~20%;
d)O 2与氮气和/或惰性气体的混合气,其中O 2于混合气中的体积为5-20%,所述惰性气体为氦气、氩气、氖气中的一种或两种以上。
机械混合可采用机械搅拌、球磨、摇床混合、机械研磨中的一种或二种以上进行复合,具体如下:
机械搅拌:在搅拌槽中,采用搅拌棒将组分Ⅰ和组分Ⅱ进行混合,通过控制搅拌时间(5min-120min)和速率(30-300转/min),可以调节组分Ⅰ和组分Ⅱ的混合程度。
球磨:利用磨料与催化剂在研磨罐内高速翻滚,对催化剂产生强烈冲击、碾压,达到分散、混合组分Ⅰ和组分Ⅱ的作用。通过控制磨料(材质可以是不锈钢、玛瑙、石英。尺寸范围:5mm-15mm)。与催化剂的比例(质量比范围:20-100:1)。
摇床混合法:将组分Ⅰ和组分Ⅱ预混合,并装入容器中;通过控制摇床的往复振荡或圆周振荡,实现组分Ⅰ和组分Ⅱ的混合;通过调节振荡速度(范围:1-70转/分)和时间(范围:5min-120min),实现均匀混合。
机械研磨法:将组分Ⅰ和组分Ⅱ预混合,并装入容器中;在一定的压力(范围:5公斤-20公斤)下,通过研具与混合的催化剂进行相对运动(速率范围:30-300转/min),实现均匀混合的作用。
具体的催化剂制备及其参数特征如表4所示。
表4 催化剂的制备及其参数特征
Figure PCTCN2019073387-appb-000006
Figure PCTCN2019073387-appb-000007
Figure PCTCN2019073387-appb-000008
Figure PCTCN2019073387-appb-000009
催化反应实例
以固定床反应为例,但是催化剂也适用于移动床反应器。该装置配备气体质量流量计、在线产物分析色谱(反应器的尾气直接与色谱的定量阀连接,进行周期实时采样分析)。
将上述本发明的催化剂2g,置于固定床反应器中,使用Ar置换反应器中的空气,然后再在H 2气氛中升温至300℃,切换合成气(H 2/CO摩尔比=0.2-3.5),合成气中还可以含有CO 2,其中CO 2在合成气中的体积浓度为0.1-50%。,合成气的压力为0.5-10MPa,升温至反应温度300-600℃,调节反应原料气的空速至300-10000ml/g/h。产物由在线色谱检测分析。
改变温度、压力和空速,可以改变反应性能。乙烯丙烯在产物中的选择性高达78-87%,原料转化率10-60%;由于分子筛与氧化物有效的协同,避免了甲烷和C 4+烃类的大量生成。
表5 催化剂的应用及其效果
Figure PCTCN2019073387-appb-000010
Figure PCTCN2019073387-appb-000011
Figure PCTCN2019073387-appb-000012
对比例2-9的反应结果表明,MOR使用脂肪胺进行后处理对催化性能调控作用明显,相比不使用脂肪胺进行调控的催化剂,调控后的催化剂明显降低了甲烷及C4以上烃类的选择性,同时提高了低碳烯烃和乙烯选择性。
对比例10采用的催化剂的组分I为金属ZnCo,ZnCo摩尔比1:1,其余参数及混合过程等均同催化剂C。
对比例11采用的催化剂的组分I为TiO 2,其余参数及混合过程等均同催化剂C。
对比例12采用的催化剂是仅有组分I为ZnO#1不含有MOR分子筛的样品,反应转化率很低,且产物主要以二甲醚,甲烷等副产物为主,几乎没有乙烯生成。
对比例13采用的催化剂是仅有组分II的MOR9分子筛,不含有组分I的作为活性成份的金属氧化物,催化反应几乎没有活性。
对比例12,13表明只有组分I或组分II时反应效果极其差,完全不具备本发明所述的优异反应性能。
提供以上实施例仅仅是为了描述本发明的目的,而并非要限制本发明的范围。本发明的范围由所附权利要求限定。不脱离本发明的精神和原理而做出的各种等同替换和修改,均应涵盖在本发明的范围之内。

Claims (9)

  1. 一种催化剂,其特征在于:包括组分I和组分II,组分I和组分II以机械混合方式复合在一起,组分I的活性成份为金属氧化物,组分II为MOR拓扑结构的分子筛,II组分中,所述MOR拓扑结构的分子筛经脂肪胺改性处理;
    所述改性处理是将脂肪胺分散到所述MOR拓扑结构的分子筛的12圆环孔道内的B酸位点。
  2. 根据权利要求1所述的催化剂,其特征在于:所述脂肪胺是二甲胺、三甲胺、二乙胺、三乙胺、乙二胺、一丙胺、二丙胺、三丙胺、异丙胺、二异丙胺、1,2-二甲基丙胺、1,2-丙二胺、2-丙烯胺、环丙胺、正丁胺、二正丁胺、异丁胺、仲丁胺、1,4-丁二胺、叔丁胺、二异丁胺己胺、2-乙基己胺、己二胺、三辛胺中的一种或两种以上。
  3. 根据权利要求1所述的催化剂,其特征在于:
    所述的金属氧化物为MnO x、Mn aCr (1-a)O x、Mn aAl (1-a)O x、Mn aZr (1-a)O x、Mn aIn (1-a)O x、ZnO x、Zn aCr (1-a)O x、Zn aAl (1-a)O x、Zn aGa (1-a)O x、Zn aIn (1-a)O x、CeO x、Co aAl (1-a)O x、Fe aAl (1-a)O x、GaO x、BiO x、InO x、In aAl bMn (1-a-b)O x、In aGa bMn (1-a-b)O x中的一种或二种以上;
    所述MnO x、ZnO x、CeO x、GaO x、BiO x、InO x的比表面积是1-100m 2/g;优选比表面积是50-100m 2/g;
    所述Mn aCr (1-a)O x、Mn aAl (1-a)O x、Mn aZr (1-a)O x、Mn aIn (1-a)O x、Zn aCr (1-a)O x、Zn aAl (1-a)O x、Zn aGa (1-a)O x、Zn aIn (1-a)O x、Co aAl (1-a)O x、Fe aAl (1-a)O x、In aAl bMn (1-a-b)O x、In aGa bMn (1-a-b)O x的比表面积是5-150m 2/g。优选比表面积是50-150m 2/g;
    所述x的取值范围是0.7~3.7,a的取值范围是0~1;a+b的取值范围是0~1;
  4. 根据权利要求1所述的催化剂,其特征在于:所述组分I中的活性成份与组分II的重量比为0.1-20,优选为0.3-8。
  5. 按照权利要求1所述的催化剂,其特征在于:所述组分I中还添加有分散剂,分散剂为Al 2O 3、SiO 2、Cr 2O 3、ZrO 2、TiO 2、Ga 2O 3、活性炭、石墨烯、碳纳米管中的一种或二种以上,金属氧化物分散于分散剂中,分散剂于I组分中的含量在0.05-90wt%,优选0.05-25wt%,其余为活性金属氧化物。
  6. 按照权利要求1-5任一项所述的催化剂,其特征在于:所述MOR拓扑结构分子筛的骨架元素组成是Si-Al-O、Ga-Si-O、Ga-Si-Al-O、Ti-Si-O、Ti-Al-Si-O、Ca-Al-O、Ca-Si-Al-O中的一种或二种以上。
  7. 一种合成气反应高选择性制乙烯的方法,其特征在于:以合成气为反应原料,在固定床或移动床上进行转化反应,得到乙烯为主的低碳烯烃产物,所采用的催化剂为权利要求1-6任一所述的催化剂。
  8. 根据权利要求7所述的方法,其特征在于:所述合成气的压力为0.5-10MPa,优选为1-8MPa,更优选为2-8MPa;反应温度为300-600℃,优选为300-450℃;空速为300-10000h -1,优选为500-9000h -1,更优选为500-6000h -1。所述合成气为H 2/CO混合气,H 2/CO摩尔比为0.2-3.5,优选为0.3-2.5;所述合成气中还可以含有CO 2,其中CO 2在合成气中的体积浓度为0.1-50%。
  9. 按照权利要求7所述的方法,其特征在于:所述方法以合成气一步法直接转化制C 2-4烯烃,乙烯选择性为75-82%,副产物甲烷选择性<9%,4个C原子以上的烃类产物选择性低于10%。
PCT/CN2019/073387 2018-01-26 2019-01-28 一种有机碱修饰的复合催化剂及一氧化碳加氢制乙烯的方法 WO2019144953A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2019210781A AU2019210781B2 (en) 2018-01-26 2019-01-28 Organic base modified composite catalyst and method for preparing ethylene by means of hydrogenation of carbon monoxide
RU2020121777A RU2749513C1 (ru) 2018-01-26 2019-01-28 Смешанный катализатор, модифицированный органическим основанием, и способ получения этилена путем гидрирования монооксида углерода
US16/963,070 US11365165B2 (en) 2018-01-26 2019-01-28 Organic base modified composite catalyst and method for producing ethylene by hydrogenation of carbon monoxide
JP2020544508A JP7007763B2 (ja) 2018-01-26 2019-01-28 有機アルカリで修飾された複合触媒及び一酸化炭素の水素化によるエチレンの製造方法
CA3087611A CA3087611C (en) 2018-01-26 2019-01-28 Organic base modified composite catalyst and method for producing ethylene by hydrogenation of carbon monoxide
EP19744559.6A EP3744424A4 (en) 2018-01-26 2019-01-28 COMPOSITE CATALYST MODIFIED WITH ORGANIC BASE AND PROCESS FOR PRODUCING ETHYLENE BY HYDROGENATION OF CARBON MONOXIDE
ZA2021/01245A ZA202101245B (en) 2018-01-26 2021-02-24 Organic base modified composite catalyst and method for preparing ethylene by means of hydrogenation of carbon monoxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810079670.5A CN109939722B (zh) 2018-01-26 2018-01-26 一种有机碱修饰的复合催化剂及一氧化碳加氢制乙烯的方法
CN201810079670.5 2018-01-26

Publications (1)

Publication Number Publication Date
WO2019144953A1 true WO2019144953A1 (zh) 2019-08-01

Family

ID=67006008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073387 WO2019144953A1 (zh) 2018-01-26 2019-01-28 一种有机碱修饰的复合催化剂及一氧化碳加氢制乙烯的方法

Country Status (10)

Country Link
US (1) US11365165B2 (zh)
EP (1) EP3744424A4 (zh)
JP (1) JP7007763B2 (zh)
CN (1) CN109939722B (zh)
AU (1) AU2019210781B2 (zh)
CA (1) CA3087611C (zh)
RU (1) RU2749513C1 (zh)
SA (1) SA520412485B1 (zh)
WO (1) WO2019144953A1 (zh)
ZA (1) ZA202101245B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112961699B (zh) * 2019-12-14 2022-06-03 中国科学院大连化学物理研究所 一种合成气与混合c4共进料一步法制备液体燃料的方法
CN115463685B (zh) * 2022-10-27 2023-01-31 淄博恒亿化工科技有限公司 合成硝基芳香族化合物用复合分子筛催化剂的制备方法及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1083415A (zh) 1992-09-03 1994-03-09 中国科学院大连化学物理研究所 合成气制低碳烯烃含铁锰催化剂及合成反应
CN101722034A (zh) * 2008-10-28 2010-06-09 中国石油化工股份有限公司 丝光沸石/zsm-5核壳型分子筛材料的制备方法
CN105688872A (zh) * 2016-04-29 2016-06-22 广东电网有限责任公司电力科学研究院 一种胺功能化吸附剂及其制备方法
CN106311317A (zh) * 2015-07-02 2017-01-11 中国科学院大连化学物理研究所 一种催化剂及由合成气一步法直接制备低碳烯烃的方法
CN106345514A (zh) * 2016-07-29 2017-01-25 厦门大学 一种合成气一步转化制低碳烯烃的催化剂及其制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6064992A (ja) * 1983-09-19 1985-04-13 Agency Of Ind Science & Technol 三核酢酸鉄−セピオライト複合体およびそれを触媒とする低級オレフインの製造法
CA2477432A1 (en) * 2002-02-28 2003-09-12 Exxonmobil Chemical Patents Inc. Catalyst compositions comprising molecular sieves, their preparation and use in conversion processes
US7320782B1 (en) * 2004-06-14 2008-01-22 Uop Llc Process for preparing a layered molecular sieve composition
US20080033218A1 (en) * 2006-08-03 2008-02-07 Lattner James R Alcohol and olefin production from syngas
US8377173B2 (en) * 2007-11-08 2013-02-19 The University Of Akron Amine absorber for carbon dioxide capture and processes for making and using the same
US8058204B2 (en) 2008-10-24 2011-11-15 GM Global Technology Operations LLC Method for generating a shell of noble metal overlaid on a core of non-noble metal, and catalysts made thereby
CN101745403B (zh) * 2008-12-18 2012-09-12 中国石油化工股份有限公司 一种由合成气制备甲醇、二甲醚和低碳烯烃的方法
US20120263534A1 (en) * 2011-04-13 2012-10-18 Portco Automation, Llc Automatic leveling boat lift motor controller
US8785706B2 (en) * 2011-05-22 2014-07-22 Fina Technology, Inc. Addition of a base to enhance product yield in alkylation reactions
SG11201403019YA (en) * 2011-12-22 2014-07-30 Uop Llc Aromatic transformation using uzm-39 aluminosilicate zeolite
US11498062B2 (en) * 2016-09-30 2022-11-15 Regents Of The University Of Minnesota Phosphorus-containing solid catalysts and reactions catalyzed thereby, including synthesis of p-xylene
CN106732752B (zh) * 2016-12-16 2019-07-19 中国海洋石油集团有限公司 一种c5、c6烷烃异构化催化剂的制备方法
CN108927132B (zh) * 2017-05-26 2020-11-24 中国科学院大连化学物理研究所 一种双功能催化剂及一氧化碳加氢制乙烯的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1083415A (zh) 1992-09-03 1994-03-09 中国科学院大连化学物理研究所 合成气制低碳烯烃含铁锰催化剂及合成反应
CN101722034A (zh) * 2008-10-28 2010-06-09 中国石油化工股份有限公司 丝光沸石/zsm-5核壳型分子筛材料的制备方法
CN106311317A (zh) * 2015-07-02 2017-01-11 中国科学院大连化学物理研究所 一种催化剂及由合成气一步法直接制备低碳烯烃的方法
CN105688872A (zh) * 2016-04-29 2016-06-22 广东电网有限责任公司电力科学研究院 一种胺功能化吸附剂及其制备方法
CN106345514A (zh) * 2016-07-29 2017-01-25 厦门大学 一种合成气一步转化制低碳烯烃的催化剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIAO ET AL., SCIENCE, vol. 351, 2016, pages 1065 - 1068
See also references of EP3744424A4

Also Published As

Publication number Publication date
EP3744424A1 (en) 2020-12-02
CN109939722A (zh) 2019-06-28
US20200346992A1 (en) 2020-11-05
JP7007763B2 (ja) 2022-02-10
CA3087611C (en) 2023-06-13
RU2749513C1 (ru) 2021-06-11
SA520412485B1 (ar) 2023-02-05
AU2019210781A1 (en) 2020-08-06
ZA202101245B (en) 2022-07-27
US11365165B2 (en) 2022-06-21
EP3744424A4 (en) 2021-11-03
CN109939722B (zh) 2021-05-25
AU2019210781B2 (en) 2021-08-12
CA3087611A1 (en) 2019-08-01
JP2021516147A (ja) 2021-07-01

Similar Documents

Publication Publication Date Title
AU2019211888B2 (en) Catalyst and method for directly converting synthesis gas into low-carbon olefin
CN107661774B (zh) 一种催化剂及合成气直接转化制低碳烯烃的方法
WO2019144952A1 (zh) 一种负载催化剂及合成气直接转化制低碳烯烃的方法
CN108970600B (zh) 一种催化剂及合成气直接转化制低碳烯烃的方法
CN111346672B (zh) 一种掺杂杂原子分子筛催化合成气高选择性制低碳烯烃的方法
CN108940355B (zh) 一种碱修饰的催化剂及一氧化碳加氢反应制乙烯的方法
WO2020125487A1 (zh) 一种掺杂杂原子分子筛催化合成气高选择性制低碳烯烃的方法
WO2019144951A1 (zh) 一种催化剂及合成气直接转化制乙烯的方法
WO2018214471A1 (zh) 一种双功能催化剂及一氧化碳加氢制乙烯的方法
WO2019144953A1 (zh) 一种有机碱修饰的复合催化剂及一氧化碳加氢制乙烯的方法
CN108568311B (zh) 一种催化剂及合成气直接转化制乙烯的方法
CN111346669B (zh) 一种掺杂杂原子分子筛催化合成气高选择性制低碳烯烃的方法
US11420911B2 (en) Catalyst containing LF-type B acid and method for preparing ethylene using direct conversion of syngas
WO2019144954A1 (zh) 一种碱修饰的复合催化剂及一氧化碳加氢反应制乙烯的方法
CN110152716B (zh) 一种选择性脱去MOR12圆环Al的催化剂及一氧化碳加氢反应制乙烯的方法
CN112973659B (zh) 一种含sapo-17分子筛的双功能催化剂及在合成气制低碳烯烃反应中的应用
RU2778293C1 (ru) Каталитический высокоселективный способ получения олефинов с низким числом атомов углерода с применением легированного гетероатомами молекулярного сита и синтез-газа
CN112844448B (zh) 一种催化合成气与甲苯直接转化制乙苯的催化剂及其应用
CN115703074A (zh) 一种含MnGaOx的双功能催化剂及其在一氧化碳高温加氢制低碳烯烃中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19744559

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3087611

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019210781

Country of ref document: AU

Date of ref document: 20190128

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020544508

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019744559

Country of ref document: EP

Effective date: 20200826