WO2019144955A1 - 一种含lf型b酸催化剂及合成气直接转化制乙烯的方法 - Google Patents

一种含lf型b酸催化剂及合成气直接转化制乙烯的方法 Download PDF

Info

Publication number
WO2019144955A1
WO2019144955A1 PCT/CN2019/073389 CN2019073389W WO2019144955A1 WO 2019144955 A1 WO2019144955 A1 WO 2019144955A1 CN 2019073389 W CN2019073389 W CN 2019073389W WO 2019144955 A1 WO2019144955 A1 WO 2019144955A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
catalyst
specific surface
surface area
selectivity
Prior art date
Application number
PCT/CN2019/073389
Other languages
English (en)
French (fr)
Inventor
潘秀莲
焦峰
包信和
陈羽翔
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to EP19743604.1A priority Critical patent/EP3744426A4/en
Priority to US16/963,030 priority patent/US11420911B2/en
Publication of WO2019144955A1 publication Critical patent/WO2019144955A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/18Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/185Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/20Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing iron group metals, noble metals or copper
    • B01J29/22Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/20Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing iron group metals, noble metals or copper
    • B01J29/24Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/26Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/0445Preparation; Activation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of rare earths
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/18Arsenic, antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/26Chromium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/32Manganese, technetium or rhenium
    • C07C2523/34Manganese
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/75Cobalt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • C07C2529/20Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing iron group metals, noble metals or copper
    • C07C2529/24Iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • C07C2529/26Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium

Definitions

  • the invention belongs to the synthesis gas to produce low-carbon olefins, in particular to a method comprising the LF-type B acid catalyst and the direct conversion of synthesis gas to ethylene.
  • the lower olefin refers to an olefin having a carbon number of 4 or less.
  • Low-carbon olefins represented by ethylene and propylene are very important basic organic chemical raw materials. With the rapid growth of China's economy, the market for low-carbon olefins has been in short supply for a long time. At present, the production of low-carbon olefins mainly uses petrochemical routes for cracking light hydrocarbons (ethane, naphtha, light diesel oil). Due to the increasing shortage of global petroleum resources and long-term high crude oil prices, the development of low-carbon olefins industry relies solely on oil.
  • the tube cracking furnace process using light hydrocarbons as raw materials will encounter increasingly large raw material problems, and the low carbon olefin production process and raw materials must be diversified.
  • the use of syngas to produce olefins can broaden the source of raw materials and produce syngas from crude oil, natural gas, coal and renewable materials, providing an alternative to steam cracking technology based on high-cost raw materials such as naphtha.
  • the direct synthesis of low-carbon olefins by one-step synthesis gas is a process in which carbon monoxide and hydrogen are directly reacted by a Fischer-Tropsch synthesis reaction to produce a low-carbon olefin having a carbon number of 4 or less. The process does not need to be carried out like an indirect process. Syngas is further prepared from methanol or dimethyl ether to simplify the process and greatly reduce investment.
  • a high activity (CO conversion 90%) and selectivity (low carbon olefin selectivity 66%) can be obtained at a reaction pressure of 1.0 to 5.0 MPa and a reaction temperature of 300 to 400 ° C in a synthesis gas.
  • the Fe/activated carbon catalyst prepared by using the vacuum impregnation method to prepare manganese, copper, zinc silicon, potassium and the like as an auxiliary agent for the synthesis of low-carbon olefins in the synthesis gas, in the absence of raw material gas circulation Under the conditions, the CO conversion rate is 96%, and the selectivity of the low-carbon olefin in the hydrocarbon is 68%.
  • the invention solves the problem: the selectivity of ethylene in the synthesis gas conversion process is low, and at the same time, the hydrocarbons having a carbon chain length of more than 3 by-producer provide a catalyst and a method for directly converting ethylene into ethylene, and the invention is invented.
  • the catalyst catalyzes the direct conversion of synthesis gas to lower olefins, and the selectivity of the single product ethylene can be as high as 75-80%.
  • the technical scheme of the present invention is: a catalyst comprising component I and component II, component I and component II are compounded together by mechanical mixing, and active component of component I is metal oxide, group Subdivision II is a molecular sieve of MOR topology;
  • the metal oxide is MnO x , Mn a Cr (1-a) O x , Mn a Al (1-a) O x , Mn a Zr (1-a) O x , Mn a In (1-a ) O x , ZnO x , Zn a Cr (1-a) O x , Zn a Al (1-a) O x , Zn a Ga (1-a) O x , Zn a In (1-a) O x , CeO x , Co a Al (1-a) O x , Fe a Al (1-a) O x , GaO x , BiO x , InO x , In a Al b Mn (1-ab) O x , In a One or more of Ga b Mn (1-ab) O x ;
  • the specific surface area of the MnO x , ZnO x , CeO x , GaO x , BiO x , InO x is 1-100 m 2 /g; preferably the specific surface area is 50-100 m 2 /g;
  • the specific surface area of Fe a Al (1-a) O x , In a Al b Mn (1-ab) O x , and In a Ga b Mn (1-ab) O x is 5-150 m 2 /g.
  • the specific surface area is 50-150 m 2 /g;
  • the value of x ranges from 0.7 to 3.7, the range of a ranges from 0 to 1, and the range of a+b ranges from 0 to 1.
  • a, b, (1-a), (1-a-b), x represent only the relative proportions of the chemical compositions of the elements in the metal oxide, and all metal oxides having the same ratio are regarded as the same metal oxide.
  • the MOR molecular sieve in the component B contains LF-based B acid, and the content of the LF-based B acid ranges from 0.01 mmol/g to 0.6 mmol/g, preferably from 0.1 to 0.6 mmol/g, more preferably from 0.3 to 0.6 mmol/g. .
  • the B acid of the molecular sieve of the MOR structure can be divided into three types.
  • the LF, HT, TF, and LF types are the B acid in the eight-membered ring pocket on the side of the MOR main channel, and the three acids are fitted.
  • attribution to the literature N Cherkasov et al./Vibrational Spectroscopy 83 (2016) 170–179.
  • the mechanical mixing according to the present invention may be compounded by one or more of mechanical stirring, ball milling, shaker mixing, and mechanical grinding.
  • the MOR topology of the present invention is an orthorhombic system, a one-dimensional channel structure having elliptical through-channels parallel to each other, comprising 8-ring and 12-ring parallel one-dimensional through-channels, and 12-ring main channel sides There are 8 ring pocket connections; [ATLAS OF ZEOLIE FRAMEWORK TYPES, Ch. Baerlocher et. al., 2007, Elsevier.].
  • the weight ratio between the active ingredient in component I and component II is from 0.1 to 20, preferably from 0.3 to 8.
  • a dispersant is further added to the component I, and the metal oxide is dispersed in the dispersant, and the dispersant is Al 2 O 3 , SiO 2 , Cr 2 O 3 , ZrO 2 , TiO 2 , Ga 2 O. 3.
  • the metal oxide is dispersed in the dispersant, and the dispersant is Al 2 O 3 , SiO 2 , Cr 2 O 3 , ZrO 2 , TiO 2 , Ga 2 O. 3.
  • the dispersant is contained in an amount of 0.05 to 90% by weight, preferably 0.05 to 25% by weight, the balance being an active metal oxide.
  • the skeleton element composition of the molecular sieve having the MOR topology is Si-Al-O, Ga-Si-O, Ga-Si-Al-O, Ti-Si-O, Ti-Al-Si.
  • the invention also provides a method for directly converting synthesis gas into low-carbon olefin, wherein the synthesis gas is used as a reaction raw material, and the conversion reaction is carried out on a fixed bed or a moving bed, and the catalyst used is the above catalyst.
  • the synthesis gas has a pressure of 0.5-10 MPa, preferably 1-8 MPa; a reaction temperature of 300-600 ° C, preferably 300-450 ° C; a space velocity of 300-10000 h -1 , preferably 500 -9000h -1, more preferably 500-6000h -1; the synthesis gas is H 2 / CO mixed gas, H 2 / CO ratio of 0.2 to 3.5, preferably 0.3 to 2.5.
  • the method directly converts C2-4 olefins by one-step synthesis gas, with an ethylene selectivity of 75-80% and a by-product methane selectivity of ⁇ 15%.
  • MTO methanol-based low-carbon olefin technology
  • the ethylene single product in the product has high selectivity, can reach 75-80%, and has high space-time yield, which is beneficial to product separation.
  • Active component of component I in the catalyst The metal oxide has a high specific surface area, so that the metal oxide has more active sites on the surface, which is more favorable for the catalytic reaction.
  • component II in the catalyst is to convert the active gas phase intermediate produced by component I to a lower olefin by coupling with component I, which can be promoted by the action of component II on the equilibrium pull of the series reaction.
  • the activation conversion of the synthesis gas by the component I and the conversion rate on the other hand, the special pore structure of the molecular sieve in the component II used in the invention, in particular, the LF-based B acid is located in the side 8 annular pocket of the MOR.
  • the chemical environment and space environment are not conducive to the formation of molecules larger than 2 C atoms, thus greatly improving the selectivity of C2 in the product, having a unique shape selection effect, and obtaining more ethylene products with high selectivity.
  • component I or the component II described in the present invention does not at all achieve the function of the present invention, for example, the product of the component I alone has a very high selectivity for methane and a low conversion rate, and the group is used alone.
  • Sub-II can hardly activate the conversion synthesis gas, and only the combination of component I and component II can achieve efficient synthesis gas conversion and obtain excellent selectivity.
  • component I can activate the synthesis gas to form a specific active gas phase intermediate, and the intermediate diffuses into the pores of component II via the gas phase. Due to the molecular sieve of the MOR structure selected by the present invention, it has a special pore structure and acidity.
  • the active gas phase intermediate produced by component I is further activated to be converted to an olefin. Due to the special pore structure of component II, the product has a special selectivity.
  • the preparation process of the composite catalyst of the invention is simple and mild; and the reaction process has high product yield and selectivity, the selectivity of the C2-C4 low-carbon olefin can reach 80-90%, and the by-product methane selectivity is low. At 15%, it has a good application prospect.
  • the metal oxide of the present invention can be obtained by purchasing a commercially available metal oxide having a high specific surface area, or can be obtained by the following methods:
  • the atmosphere is an inert gas, a reducing gas or an oxidizing gas; the inert gas is one or more of N 2 , He and Ar; the reducing gas is one or two of H 2 and CO, and the reducing gas is also
  • the inert gas may be contained; the oxidizing gas may be one or more of O 2 , O 3 , and NO 2 , and the oxidizing gas may contain an inert gas.
  • the calcination temperature is 300-700 ° C and the time is 0.5 h-12 h.
  • the purpose of the calcination is to decompose the precipitated metal oxide precursor into high specific surface area oxide nanoparticles at a high temperature, and the oxide surface adsorbed species formed by decomposition can be cleaned by high temperature treatment of baking.
  • ZnO#4 in the table is a commercially available ZnO single crystal having a low specific surface area.
  • the preparation process is the same as the above ZnO#2, except that the precursor of Zn is replaced by the corresponding precursor of Mn, which may be one of manganese nitrate, manganese chloride and manganese acetate, here is manganese nitrate, corresponding
  • MnO the specific surface area was: 23 m 2 /g.
  • the preparation process is the same as the above ZnO#2, except that the precursor of Zn is replaced by the corresponding precursor of Ce, which may be one of cerium nitrate, cerium chloride and cerium acetate, which is cerium nitrate, corresponding thereto.
  • the product was defined as CeO 2 ; the specific surface area was: 92 m 2 /g.
  • the preparation process is the same as the above ZnO#2, except that the precursor of Zn is replaced by the corresponding precursor of Ga, which may be one of gallium nitrate, gallium chloride or gallium acetate, here is gallium nitrate, corresponding
  • the product was defined as Ga 2 O 3 ; the specific surface area was: 55 m 2 /g.
  • the preparation process is the same as that of the above ZnO #2, except that the precursor of Zn is replaced by the corresponding precursor of Bi, which may be one of cerium nitrate, cerium chloride or cerium acetate, here cerium nitrate.
  • the corresponding product was defined as Bi 2 O 3 ; the specific surface area was: 87 m 2 /g.
  • the preparation process is the same as the above ZnO#2, except that the precursor of Zn is replaced by the corresponding precursor of In, which may be one of indium nitrate, indium chloride and indium acetate, here is indium nitrate, corresponding
  • the product is defined as In 2 O 3 ; the specific surface area is: 52 m 2 /g
  • ammonium carbonate Using zinc nitrate, aluminum nitrate, chromium nitrate, manganese nitrate, zirconium nitrate, indium nitrate, cobalt nitrate, ferric nitrate as precursors, and ammonium carbonate, mixed with water at room temperature (in which ammonium carbonate is used as a precipitant, the ratio of feed is The ammonium carbonate is excessive or preferably the ratio of ammonium ion to metal ion is 1:1); the above mixture is aged, then taken out, washed, filtered and dried, and the obtained solid is calcined in an air atmosphere to obtain a metal oxide having a high specific surface area.
  • Table 2 The specific samples and their preparation conditions are shown in Table 2 below.
  • a Cr 2 O 3 , Al 2 O 3 or ZrO 2 dispersed metal oxide is prepared by a precipitation deposition method using a dispersant Cr 2 O 3 , Al 2 O 3 or ZrO 2 as a carrier.
  • a dispersant Cr 2 O 3 , Al 2 O 3 or ZrO 2 as a carrier.
  • commercial Cr 2 O 3 specifically surface area is about 5 m 2 /g
  • Al 2 O 3 specifically surface area of about 20 m 2 /g
  • ZrO 2 specific surface area of about 10 m 2 / g
  • sodium hydroxide precipitating agent are mixed at room temperature and the precipitate, the molar concentration of 0.067M Zn 2+, Zn 2+ and the mole fraction ratio of precipitant 1:8; then aged at 160 ° C for 24 hours to obtain Cr 2 O 3 , Al 2 O 3 or ZrO 2 as a carrier-dispersed ZnO (the content of the dispersant in the component I is 0.1 w
  • SiO 2 specific surface area of about 2 m 2 /g
  • Ga 2 O 3 specific surface area of about 10 m 2 /g
  • TiO 2 specific surface area of about 15 m 2 /g
  • the MnO oxide the content of the dispersant in the component I is 5 wt%, 30 wt%, 60 wt%, respectively
  • the product is defined as the dispersed oxide 4-6. It was a specific surface area: 97m 2 / g, 64m 2 / g, 56m 2 / g.
  • activated carbon having a specific surface area of about 1000 m 2 /g
  • graphene having a specific surface area of about 500 m 2 /g
  • carbon nanotubes having a specific surface area of about 300 m 2 /g
  • the oxide the content of the dispersant in the component I was 5% by weight, 30% by weight, 60% by weight in this order
  • the product was defined as the dispersed oxide 7-9. It was a specific surface area: 177m 2 / g, 245m 2 / g, 307m 2 / g.
  • the MOR topology is an orthorhombic system having a one-dimensional channel structure with elliptical through-channels parallel to each other, including 8-ring and 12-ring parallel one-dimensional through-channels, and 12-ring main channel sides 8 Ring pocket connected;
  • the LF type B acid content can be determined by, but not limited to, first measuring the B acid content in the MOR by using the solid nuclear magnetic H spectrum or NH3-TPD, and fitting the LF by the vacuum in situ infrared OH vibration peak signal.
  • the three peaks of HF and TF are calculated according to the relative proportion of the peak area, and the percentage of LF in all B acids is calculated, and the content of LF type B acid is calculated according to the product of all B acid content in MOR and the percentage of LF in all B acids.
  • the fitting and attribution of the three acids is based on the literature N. Cherkasov et al./Vibrational Spectroscopy 83 (2016) 170-179.
  • It can also be a self-prepared molecular sieve, here taking hydrothermal synthesis as an example.
  • Na-MOR was taken, mixed with a 1 mol/L ammonium chloride solution, stirred at 90 ° C for 3 hours, washed, dried, continuously performed twice, and calcined at 450 ° C for 6 hours to obtain a hydrogen-type mordenite.
  • the skeleton element composition of the molecular sieve having the MOR topology prepared according to the above process may be Si-Al-O, Ga-Si-O, Ga-Si-Al-O, Ti-Si-O, Ti-Al-Si-O. , one of Ca-Al-O, Ca-Si-Al-O; the O element of part of the skeleton is connected to H, and the corresponding product is defined as MOR1-8;
  • a mixing temperature of 20-100 ° C can be set, which can be carried out in an atmosphere or directly in the air, and the atmosphere is selected from any of the following gases:
  • the mechanical mixing may be compounded by one or more of mechanical stirring, ball milling, shaker mixing, and mechanical grinding, as follows:
  • Ball Milling Using the abrasive and the catalyst to tumbling at high speed in the grinding tank, the catalyst is strongly impacted and crushed to achieve the function of dispersing and mixing the component I and the component II.
  • the abrasive material can be stainless steel, agate, quartz. Size range: 5mm-15mm). Ratio to catalyst (mass ratio range: 20-100:1).
  • Shaker mixing method premixing component I and component II into a container; mixing of component I and component II by controlling reciprocating oscillation or circumferential oscillation of the shaker; adjusting the oscillation speed (range) : 1-70 rpm) and time (range: 5 min - 120 min) for uniform mixing.
  • a fixed bed reaction is exemplified, but the catalyst is also suitable for use in a moving bed reactor.
  • the device is equipped with a gas mass flow meter and an online product analysis chromatograph (the exhaust gas of the reactor is directly connected to the chromatographic quantitative valve for periodic real-time sampling analysis).
  • the selectivity of low-carbon olefins (one or more of ethylene propylene butene) in the product can reach 80-90%, and the conversion rate of raw materials is 10-60%; since the surface hydrogenation activity of the catalyst metal complex is not high, avoiding A large amount of methane is produced, and the selectivity of methane is low, wherein the selectivity of ethylene reaches 75-80%.
  • the catalyst used in Comparative Example 4 was to replace the molecular sieve of Catalyst A with the commercial product SAPO-34 available from Nankai University Catalyst Factory.
  • the MOR has a large orifice size of 6.5X7.0A, it also has a side pocket with 8 circular orifices.
  • the depth of the pocket is shallower than that of the SAPO34 pocket. Therefore, the main production of ethylene with two carbon atoms has other molecular sieves. It has the advantageous properties, and the acid of the LF site is mainly located in the 8-ring pocket, so it is essential for the formation of ethylene.
  • the catalyst used in Comparative Example 6 was basically the same as the sample of Catalyst C. The difference was that the MOR3 molecular sieve was ion exchanged with sodium nitrate, and the B acid of LF was replaced by Na. The solid NMR spectrum and the quantitative determination of LF acid by infrared were quantitatively determined. It is 0.005 mmol/g, while the acid content of HF and TF is still 0.6 mmol/g and 0.3 mmol/g, respectively.
  • the LF type B acid content can be determined by, but not limited to, first measuring the B acid content in the MOR by using the solid nuclear magnetic H spectrum or NH3-TPD, and fitting the LF by the vacuum in situ infrared OH vibration peak signal.
  • the three peaks of HF and TF are calculated according to the relative proportion of the peak area, and the percentage of LF in all B acids is calculated, and the content of LF type B acid is calculated according to the product of all B acid content in MOR and the percentage of LF in all B acids.
  • the fitting and attribution of the three acids is based on the literature N. Cherkasov et al./Vibrational Spectroscopy 83 (2016) 170-179.
  • the catalyst used in Comparative Example 7 was basically the same as the sample of Catalyst C. The difference was that the MOR3 molecular sieve was ion exchanged with sodium nitrate, and the LF acid content was determined by solid nuclear magnetic resonance spectroscopy and infrared quantitative determination of B acid of LF with Na. 0.001mmol/g, while the retained contents of HF and TF are 0.5mmol/g and 0.3mmol/g, respectively.
  • the results show that the LF acid in MOR is essential for the space-time yield of ethylene, when the acidity of LF is low. In the scope of the claims, the ethylene yield decreases sharply. When the acid of LF is almost completely replaced, the yield of ethylene is also reduced to a very low level, indicating the importance of LF acid for the direct production of ethylene from syngas.
  • the catalyst used in Comparative Example 8 was a sample in which only the component IZnO1 did not contain the component II, and the reaction conversion rate was very low, and the product was mainly mainly a by-product such as dimethyl ether or methane, and almost no ethylene was formed.
  • the catalyst used in Comparative Example 9 was a sample having only a component II molecular sieve and containing no component I, and the catalytic reaction was almost inactive.
  • Comparative Examples 8, 9 show that only the component I or the component II has an extremely poor reaction effect and does not have the excellent reaction properties described in the present invention at all.
  • Examples Z4 and Z5 are commercially available molecular sieves which exhibit excellent catalytic performance because their acid amount meets the requirements of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种用于合成气直接制备低碳烯烃的催化剂,由组分A和组分B以机械混合方式复合在一起,组分A的活性成份为金属氧化物,组分B为MOR结构的分子筛;组分A中的活性成份与组分B之间的重量比为0.1-20。一种利用该催化剂将合成气直接转化制乙烯的方法,在固定床或移动床上进行转化反应,反应过程具有很高的产品收率和选择性,低碳烯烃的选择性可以达到80-90%,其中乙烯时空收率高,选择性达到75-80%,同时副产物甲烷选择性极低(<15%)。

Description

一种含LF型B酸催化剂及合成气直接转化制乙烯的方法 技术领域
本发明属于合成气制备低碳烯烃,具体涉及一种含LF型B酸催化剂及合成气直接转化制乙烯的方法。
背景技术
低碳烯烃是指碳原子数小于或等于4的烯烃。以乙烯、丙烯为代表的低碳烯烃是非常重要的基本有机化工原料,随着我国经济的快速增长,长期以来,低碳烯烃市场供不应求。目前,低碳烯烃的生产主要采用轻烃(乙烷、石脑油、轻柴油)裂解的石油化工路线,由于全球石油资源的日渐缺乏和原油价格长期高位运行,发展低碳烯烃工业仅仅依靠石油轻烃为原料的管式裂解炉工艺会遇到越来越大的原料难题,低碳烯烃生产工艺和原料必须多元化。选用合成气制取烯烃工艺可拓宽原材料来源,将以原油、天然气、煤炭和可再生材料为原料生产合成气,为基于高成本原料如石脑油的蒸汽裂解技术方面提供替代方案。合成气一步法直接制取低碳烯烃就是一氧化碳和氢在催化剂作用下,通过费托合成反应直接制得碳原子数小于或等于4的低碳烯烃的过程,该工艺无需像间接法工艺那样从合成气经甲醇或二甲醚,进一步制备烯烃,简化工艺流程,大大减少投资。
合成气通过费托合成直接制取低碳烯烃,已成为费托合成催化剂开发的研究热点之一。中科院大连化学物理研究所公开的专利CN1083415A中,用MgO等IIA族碱金属氧化物或高硅沸石分子筛(或磷铝沸石)担载的铁-锰催化剂体系,以强碱K或Cs离子作助剂,在合成气制低碳烯烃反应压力为1.0~5.0MPa,反应温度300~400℃下,可获得较高的活性(CO转化率90%)和选择性(低碳烯烃选择性66%)。北京化工大学所申报的专利ZL03109585.2中,采用真空浸渍法制备锰、铜、锌硅、钾等为助剂的Fe/活性炭催化剂用于合成气制低碳烯烃反应,在无原料气循环的条件下,CO转化率96%,低碳烯烃在碳氢化合物中的选择性68%。2012年荷兰Utrecht大学de Jong教授团队采用SiC,碳纳米纤维等惰性载体负载的Fe以及Na、S等助剂修饰的Fe催化剂,取得了很好进展获得了61%的低碳烯烃选择性,但是转化率升高时,选择性降低。上述报道的催化剂是采用金属铁或者碳化铁为活性组分,反应遵循金属表面的链增长反应机理,产物低碳烯烃的选择性较低,尤其单种产物如乙烯的选择性低于30%。2016年,上海高等研究院孙予罕研究院及钟良枢研究员报道了一种择优暴露[101]及[020]锰助碳化钴基催化剂,实现了31.8%的CO转化率下,60.8%的低碳烯烃选择性,且甲烷选择性5%。但是乙烯单一选择性却低于20%。最近中国科学院大连化学物理研究所包信和院士和潘秀莲研究员报道了氧化铝负载的ZnCr 2O 4 氧化物与多级孔SAPO-34分子筛复合双功能催化剂(Jiao et al.,Science 351(2016)1065-1068),实现了CO转化率17%时,低碳烯烃80%的选择性,但乙烯的选择性低于30%。。
发明内容
本发明技术解决问题:合成气转化过程中乙烯的选择性较低,同时副产较多碳链长度超过3的烃类,提供了一种催化剂及合成气直接转化制乙烯的方法,所发明的催化剂可催化合成气直接转化生成低碳烯烃,并且单种产物乙烯的选择性可高达75-80%。
本发明的技术方案为:一种催化剂,所述催化剂包括组分Ⅰ和组分Ⅱ,组分Ⅰ和组分Ⅱ以机械混合方式复合在一起,组分Ⅰ的活性成份为金属氧化物,组分Ⅱ为MOR拓扑结构的分子筛;
所述的金属氧化物为MnO x、Mn aCr (1-a)O x、Mn aAl (1-a)O x、Mn aZr (1-a)O x、Mn aIn (1-a)O x、ZnO x、Zn aCr (1-a)O x、Zn aAl (1-a)O x、Zn aGa (1-a)O x、Zn aIn (1-a)O x、CeO x、Co aAl (1-a)O x、Fe aAl (1-a)O x、GaO x、BiO x、InO x、In aAl bMn (1-a-b)O x、In aGa bMn (1-a-b)O x中的一种或二种以上;
所述MnO x、ZnO x、CeO x、GaO x、BiO x、InO x的比表面积是1-100m 2/g;优选比表面积是50-100m 2/g;
所述Mn aCr (1-a)O x、Mn aAl (1-a)O x、Mn aZr (1-a)O x、Mn aIn (1-a)O x、Zn aCr (1-a)O x、Zn aAl (1-a)O x、Zn aGa (1-a)O x、Zn aIn (1-a)O x、Co aAl (1-a)O x、Fe aAl (1-a)O x、In aAl bMn (1-a-b)O x、In aGa bMn (1-a-b)O x的比表面积是5-150m 2/g。优选比表面积是50-150m 2/g;
所述x的取值范围是0.7~3.7,a的取值范围是0~1;a+b的取值范围是0~1;
本发明所述的a,b,(1-a),(1-a-b),x仅代表金属氧化物中元素化学组成的相对比例,凡是比例相同的金属氧化物视为同一种金属氧化物。
所述组分B中MOR分子筛含有LF类B酸,所述LF类B酸的含量范围是0.01mmol/g-0.6mmol/g,优选0.1-0.6mmol/g,更优选0.3-0.6mmol/g。
根据红外光谱的波数范围可以将MOR结构的分子筛的B酸分为三类,LF,HT,TF,LF类是位于MOR主孔道侧边八元环口袋中的B酸,三种酸的拟合及归属依据文献N.Cherkasov et al./Vibrational Spectroscopy 83(2016)170–179。
本发明所述机械混合可采用机械搅拌、球磨、摇床混合、机械研磨中的一种或二种以上进行复合。
本发明所述MOR拓扑结构是一种正交晶系,具有相互平行的椭圆形直通孔道的一维孔道结构,含有8圆环与12圆环平行一维直通孔道,12圆环主孔道侧边存在8圆环口袋连通;[ATLAS OF ZEOLIE FRAMEWORK TYPES,Ch.Baerlocher et.al.,2007,Elsevier.]。
作为优选的技术方案,组分Ⅰ中的活性成份与组分Ⅱ之间的重量比为0.1-20,优选为0.3-8。
作为优选的技术方案,组分Ⅰ中还添加有分散剂,金属氧化物分散于分散剂中,分散剂为Al 2O 3、SiO 2、Cr 2O 3、ZrO 2、TiO 2、Ga 2O 3、活性炭、石墨烯、碳纳米管中的一种或二种。
作为优选的技术方案,所述组分Ⅰ中,分散剂的含量在0.05-90wt%,优选0.05-25wt%,其余为活性金属氧化物。
作为优选的技术方案,所述具有MOR拓扑结构的分子筛的骨架元素组成为Si-Al-O、Ga-Si-O、Ga-Si-Al-O、Ti-Si-O、Ti-Al-Si-O、Ca-Al-O、Ca-Si-Al-O中的一种或二种以上。
本发明还提供一种合成气直接转化制低碳烯烃的方法,以合成气为反应原料,在固定床或移动床上进行转化反应,所采用的催化剂为上述的催化剂。
作为优选的技术方案,所述合成气的压力为0.5-10MPa,优选为1-8MPa;反应温度为300-600℃,优选为300-450℃;空速为300-10000h -1,优选为500-9000h -1,更优选为500-6000h -1;所述合成气为H 2/CO混合气,H 2/CO比例为0.2-3.5,优选为0.3-2.5。
作为优选的技术方案,所述方法以合成气一步法直接转化制C 2-4烯烃,乙烯选择性为75-80%,副产物甲烷选择性<15%。
本发明具有如下优点:
1.本技术与传统的甲醇制低碳烯烃技术(简称为MTO)不同,实现了一步直接将合成气转化制低碳烯烃。
2.产物中乙烯单一产物选择性高,可达到75-80%,且时空收率高,有利于产物分离。
3.催化剂中组分Ⅰ的活性组分金属氧化物具有较高的比表面积,因此金属氧化物表面上具有更多的活性位点,更有利于催化反应的进行。
4.催化剂中组分Ⅱ的作用一方面是通过与组分I进行耦合,将组分I产生的活泼气相中间体进一步转化获得低碳烯烃,由于组分II对串联反应平衡拉动的作用可以促进组分I对合成气的活化转化进而提高转化率,另一方面本发明使用的组分II中分子筛特殊的孔道结构,特别是LF类B酸位于MOR的侧边8圆环口袋中,其所处的化学环境和空间环境不利于大于2个C原子的分子的生成,因而大大提高了产物中C2的选择性,具有独特的择型效应,可以高选择性的获得更多的乙烯产物。
5.单独分别使用本发明中所述的组分I或组分Ⅱ完全不能实现本发明的功能,例如单独使用组分I产物中甲烷选择性非常高,且转化率很低,而单独使用 组分Ⅱ几乎不能活化转化合成气,只有组分I与组分Ⅱ协同催化才能实现高效的合成气转化,并获得优异的选择性。这是由于组分I可以活化合成气生成特定的活泼气相中间体,中间体经由气相扩散到组分Ⅱ的孔道内,由于本发明选择的MOR结构的分子筛,具有特殊的孔道结构和酸性可以有效的将组分I产生的活泼气相中间体进一步活化转化为烯烃。由于组分Ⅱ的特殊孔道结构使得产物具有特殊的选择性。
6.本发明复合催化剂的制备过程简单条件温和;且反应过程具有很高的产品收率和选择性,C2-C4低碳烯烃的选择性可以达到80-90%,同时副产物甲烷选择性低于15%,具有很好的应用前景。
具体实施方式
下面通过实施例对本发明做进一步阐述,但是本发明的权利要求范围不受这些实施例的限制。同时,实施例只是给出了实现此目的的部分条件,但并不意味着必须满足这些条件才可以达到此目的。
本发明所述的金属氧化物可以通过购买市售的高比表面积的金属氧化物获得,也可以通过下述几种方法获得:
一、催化剂组分Ⅰ的制备
(一)、沉淀法合成具有高比表面的ZnO材料:
(1)分别称取3份、每份0.446g(1.5mmol)Zn(NO 3) 2·6H 2O于3个容器中,再分别称取0.300g(7.5mmol)、0.480g(12mmol)、0.720g(18mmol)NaOH依次加入上述3个容器中,再各量取30ml去离子水加入到3个容器中,70℃搅拌0.5h以上使溶液混合均匀,自然冷却至室温。反应液离心分离收集离心分离后的沉淀物,用去离子水洗涤2次获得ZnO金属氧化物前驱体;
(2)焙烧:上述获得的产物在空气中烘干以后,在气氛中进行焙烧处理,即得到高比表面的ZnO材料。气氛为惰性气体、还原性气体或者氧化性气体;惰性气体为N 2、He和Ar中的一种或二种以上;还原性气体为H 2、CO的一种或二种,还原气中也可以含有惰性气体;氧化性气体是O 2、O 3、NO 2中的一种或两种以上,氧化气体中也可以含有惰性气体。焙烧温度为300-700℃,时间为0.5h-12h。
焙烧的目的是为了将沉淀后的金属氧化物前驱体在高温下分解为高比表面积的氧化物纳米粒子,并且通过焙烧的高温处理可以将分解生成的氧化物表面吸附物种处理干净。
具体样品及其制备条件如下表1,作为对比例,表中ZnO#4是市售低比表面积的ZnO单晶。
表1 ZnO材料的制备及其参数性能
Figure PCTCN2019073389-appb-000001
(二)共沉淀法合成具有高比表面积的MnO材料:
制备过程同上述ZnO#2,不同之处在于将Zn的前驱体换成了Mn的对应的前驱体,可为硝酸锰、氯化锰、醋酸锰中的一种,在此为硝酸锰,对应产物定义为MnO;比表面积是:23m 2/g。
(三)共沉淀法合成具有高比表面积的CeO 2材料:
制备过程同上述ZnO#2,不同之处在于将Zn的前驱体换成了Ce的对应的前驱体,可为硝酸铈、氯化铈、醋酸铈中的一种,在此为硝酸铈,对应产物定义为CeO 2;比表面积是:92m 2/g。
(四)共沉淀法合成具有高比表面积的Ga 2O 3材料:
制备过程同上述ZnO#2,不同之处在于将Zn的前驱体换成了Ga的对应的前驱体,可为硝酸镓、氯化镓、醋酸镓中的一种,在此为硝酸镓,对应产物定义为Ga 2O 3;比表面积是:55m 2/g。
(五)共沉淀法合成具有高比表面积的Bi 2O 3材料:
制备过程同上述ZnO#2,不同之处在于将Zn的前驱体换成了Bi的对应的前驱体,可为硝酸铋、氯化铋、醋酸铋中的一种,在此为硝酸铋。对应产物定义为Bi 2O 3;比表面积分别是:87m 2/g。
(六)共沉淀法合成具有高比表面积的In 2O 3材料:
制备过程同上述ZnO#2,不同之处在于将Zn的前驱体换成了In的对应的前驱体,可为硝酸铟、氯化铟、醋酸铟中的一种,在此为硝酸铟,对应产物定义为In 2O 3;比表面积是:52m 2/g
(七)沉淀法合成具有高比表面积的Mn aCr (1-a)O x、Mn aAl (1-a)O x、Mn aZr (1-a)O x、Mn aIn (1-a)O x、Zn aCr (1-a)O x、Zn aAl (1-a)O x、Zn aGa (1-a)O x、Zn aIn (1-a)O x、Co aAl (1-a)O x、Fe aAl (1-a)O x、In aAl bMn (1-a-b)O x、In aGa bMn (1-a-b)O x
采用硝酸锌、硝酸铝、硝酸铬、硝酸锰、硝酸锆、硝酸铟、硝酸钴、硝酸铁为前驱体,与碳酸铵,在室温下于水中相互混合(其中碳酸铵作为沉淀剂,投料比例为碳酸铵过量或者优选铵离子与金属离子的比例为1:1);将上述混合液陈化,然后取出洗涤、过滤和干燥,所得的固体在空气气氛下焙烧,获得高比表面的金 属氧化物,具体样品及其制备条件如下表2。
表2高比表面积金属氧化物的制备及其性能参数
Figure PCTCN2019073389-appb-000002
(八)、分散剂Cr 2O 3、Al 2O 3或ZrO 2分散的金属氧化物
以分散剂Cr 2O 3、Al 2O 3或ZrO 2为载体,沉淀沉积法制备Cr 2O 3、Al 2O 3或ZrO 2分散的金属氧化物。以分散ZnO的制备为例,将商业Cr 2O 3(比表面积约为5m 2/g)、Al 2O 3(比表面积约为20m 2/g)或ZrO 2(比表面积约为10m 2/g)作为载体预先分散于水中,然后采用硝酸锌为原料,与氢氧化钠沉淀剂在室温下混合沉淀,Zn 2+的摩尔浓度为0.067M,Zn 2+与沉淀剂的摩尔份数比为1:8;然后在160℃下陈化24小时,获得Cr 2O 3、Al 2O 3或ZrO 2为载体分散的ZnO(分散剂于组分Ⅰ中的含量依次为0.1wt%、20wt%、85wt%)。得到的样品在空气下500℃焙烧1h,产物依次定义为分散氧化物1-3,其比表面积依次为:148m 2/g,115m 2/g,127m 2/g。
以同样的方法,可以获得SiO 2(比表面积约为2m 2/g)、Ga 2O 3(比表面积约 为10m 2/g)或TiO 2(比表面积约为15m 2/g)为载体分散的MnO氧化物(分散剂于组分Ⅰ中的含量依次为5wt%、30wt%、60wt%),产物依次定义为分散氧化物4-6。其比表面积依次为:97m 2/g,64m 2/g,56m 2/g。
以同样的方法,可以获得活性炭(比表面积约为1000m 2/g)、石墨烯(比表面积约为500m 2/g)或碳纳米管(比表面积约为300m 2/g)为载体分散的ZnO氧化物(分散剂于组分Ⅰ中的含量依次为5wt%、30wt%、60wt%),产物依次定义为分散氧化物7-9。其比表面积依次为:177m 2/g,245m 2/g,307m 2/g。
二、组分Ⅱ(MOR拓扑结构的分子筛)的制备:
所述MOR拓扑结构是一种正交晶系,具有相互平行的椭圆形直通孔道的一维孔道结构,含有8圆环与12圆环平行一维直通孔道,12圆环主孔道侧边存在8圆环口袋连通;
LF类B酸含量的测定可以是但不限于:先使用固体核磁H谱或NH3-TPD定量测出MOR中所有B酸含量,再通过真空原位红外的OH振动峰信号,拟合出LF,HF,TF三个峰,根据峰面积相对比例计算出LF在所有B酸中的百分数,进而根据MOR中所有B酸含量与LF在所有B酸中的百分数乘积计算出LF类B酸的含量。三种酸的拟合及归属依据文献N.Cherkasov et al./Vibrational Spectroscopy 83(2016)170–179。
本发明组分Ⅱ分子筛可以是购买的商品化产品(选择其中符合LF类B酸的含量范围是0.01mmol/g-0.6mmol/g的分子筛),例如南开大学催化剂厂的商品丝光沸石;或申昙催化剂公司的商品MOR-SAR=15;
也可以是自行制备的分子筛,这里以水热合成为例。
1)具体制备过程为:
按照n(SiO2)/n(Al2O3)=15,n(Na2O)/n(SiO2)=0.2,n(H2O)/n(SiO2)=26。
将硫酸铝与氢氧化钠溶液混合,然后加入硅溶胶,搅拌1h得到均一相的初始凝胶,然后将其转移到高压合成釜中,180℃静态晶化24h后骤冷、洗涤、干燥,即得到丝光沸石样品,标记为Na-MOR。
取Na-MOR,将其与1mol/L的氯化铵溶液混合,在90℃下搅拌3h,洗涤,烘干,连续进行2次,450℃焙烧6h,得到氢型丝光沸石。
按上述过程制备的具有MOR拓扑结构的分子筛的骨架元素组成可以是Si-Al-O、Ga-Si-O、Ga-Si-Al-O、Ti-Si-O、Ti-Al-Si-O、Ca-Al-O、Ca-Si-Al-O中的一种;部分骨架的O元素上连接H,对应产物依次定义为MOR1-8;
表3具有MOR拓扑结构的分子筛的制备及其性能参数
Figure PCTCN2019073389-appb-000003
Figure PCTCN2019073389-appb-000004
三、催化剂的制备
将所需比例的组分Ⅰ和组分Ⅱ加入容器中,利用这些物料和/或容器的高速运动产生的挤压力、撞击力、裁剪力、摩擦力等中的一种或两种以上作用实现分离、破碎、混匀等目的,通过调变温度与载气气氛实现机械能、热能与化学能的转换,进一步调节不同组分间的相互作用。
机械混合过程中,可以设置混合温度20-100℃,可以在气氛中或者直接在空气中进行,气氛选自以下任意的气体:
a)氮气和/或惰性气体;
b)氢气与氮气和/或惰性气体的混合气,其中氢气于混合气中的体积为5~50%;
c)CO与氮气和/或惰性气体的混合气,其中CO于混合气中的体积为5~20%;
d)O 2与氮气和/或惰性气体的混合气,其中O 2于混合气中的体积为5-20%,所述惰性气体为氦气、氩气、氖气中的一种或两种以上。
机械混合可采用机械搅拌、球磨、摇床混合、机械研磨中的一种或二种以上进行复合,具体如下:
机械搅拌:在搅拌槽中,采用搅拌棒将组分Ⅰ和组分Ⅱ进行混合,通过控制搅拌时间(5min-120min)和速率(30-300转/min),可以调节组分Ⅰ和组分Ⅱ的混合程度。
球磨:利用磨料与催化剂在研磨罐内高速翻滚,对催化剂产生强烈冲击、碾压,达到分散、混合组分Ⅰ和组分Ⅱ的作用。通过控制磨料(材质可以是不锈钢、玛瑙、石英。尺寸范围:5mm-15mm)。与催化剂的比例(质量比范围:20-100:1)。
摇床混合法:将组分Ⅰ和组分Ⅱ预混合,并装入容器中;通过控制摇床的往复振荡或圆周振荡,实现组分Ⅰ和组分Ⅱ的混合;通过调节振荡速度(范围:1-70转/分)和时间(范围:5min-120min),实现均匀混合。
机械研磨法:将组分Ⅰ和组分Ⅱ预混合,并装入容器中;在一定的压力(范围:5公斤-20公斤)下,通过研具与混合的催化剂进行相对运动(速率范围:30-300转/min),实现均匀混合的作用。
具体的催化剂制备及其参数特征如表4所示。
表4催化剂的制备及其参数特征
Figure PCTCN2019073389-appb-000005
Figure PCTCN2019073389-appb-000006
Figure PCTCN2019073389-appb-000007
Figure PCTCN2019073389-appb-000008
催化反应实例
以固定床反应为例,但是催化剂也适用于移动床反应器。该装置配备气体质量流量计、在线产物分析色谱(反应器的尾气直接与色谱的定量阀连接,进行周期实时采样分析)。
将上述本发明的催化剂2g,置于固定床反应器中,使用Ar置换反应器中的空气,然后再在H2气氛中升温至300℃,切换合成气(H 2/CO摩尔比=0.2-3.5),合成气的压力为0.5-10MPa,升温至反应温度300-600℃,调节反应原料气的空 速至500-10000ml/g/h。产物由在线色谱检测分析。
改变温度、压力和空速,可以改变反应性能。低碳烯烃(乙烯丙烯丁烯的一种或二种以上)在产物中的选择性可达80~90%,原料转化率10-60%;由于催化剂金属复合物表面加氢活性不高,避免了甲烷的大量生成,甲烷选择性低,其中乙烯的选择性达到75-80%。
表5催化剂的应用及其效果
Figure PCTCN2019073389-appb-000009
Figure PCTCN2019073389-appb-000010
对比例4采用的催化剂是将催化剂A的分子筛替换为购自南开大学催化剂厂的商品SAPO-34。
对比例5采用的催化剂是将催化A的分子筛替换为购自南开大学催化剂厂的商品ZSM-5,全微孔结构,Si/Al=30。
对比例4和5的反应结果表明,MOR的拓扑结构对产物选择性的调变至关重要,SAPO34具有孔口尺寸3.8A,适合C2-C4烃类,但是C3产物较多,乙烯选择性不高,而ZSM5孔口尺寸更大5.6A,产物主要是C4烃类甚至更长碳链的烃类。
MOR虽然孔口尺寸很大达到6.5X7.0A,但同时含有8圆环孔口的侧边口袋,口袋深度与SAPO34口袋比浅,所以主产两个碳原子的乙烯,具有其他结构分子筛所不具有的优势特性,而LF位点的酸主要落位于8圆环口袋中,所以对于乙烯的生成至关重要。
对比例6使用催化剂与催化剂C样品基本一致,不同之处在于,使用硝酸钠对MOR3分子筛进行离子交换,将LF的B酸用Na部分取代通过固体核磁共振氢谱以及红外定量测出LF酸含量是0.005mmol/g,而HF、TF的酸仍有保留含量分别是0.6mmol/g及0.3mmol/g,
LF类B酸含量的测定可以是但不限于:先使用固体核磁H谱或NH3-TPD定量测出MOR中所有B酸含量,再通过真空原位红外的OH振动峰信号,拟合出LF,HF,TF三个峰,根据峰面积相对比例计算出LF在所有B酸中的百分数,进而根据MOR中所有B酸含量与LF在所有B酸中的百分数乘积计算出LF类B酸的含量。三种酸的拟合及归属依据文献N.Cherkasov et al./Vibrational Spectroscopy 83(2016)170–179。
对比例7使用催化剂与催化剂C样品基本一致,不同之处在于,使用硝酸钠对MOR3分子筛进行离子交换,将LF的B酸用Na取代通过固体核磁共振氢谱以及红外定量测出LF酸含量是0.001mmol/g,而HF、TF的酸仍有保留含量分别是0.5mmol/g及0.3mmol/g,反应结果表明,MOR中LF酸对乙烯的时空收率至关重要,当LF的酸低于权利要求的范围时,乙烯产率急剧下降,当LF的酸几乎被完全取代后,乙烯的收率也相应降至极低,说明了LF酸对合成气直接制乙烯的重要性。
对比例8采用的催化剂是仅有组分ⅠZnO1不含有组分Ⅱ的样品,反应转化率很低,且产物主要以二甲醚,甲烷等副产物为主,几乎没有乙烯生成。
对比例9采用的催化剂是仅有组分Ⅱ分子筛,不含有组分Ⅰ的样品,催化反应几乎没有活性。
对比例8,9表明只有组分Ⅰ或组分Ⅱ时反应效果极其差,完全不具备本发明所述的优异反应性能。
实施例Z4,Z5是可以购买到的商品分子筛因为其酸量符合本发明的要求,所以表现出了优异的催化性能。
对比例10,采用的催化剂是将催化A的分子筛替换为购自申昙催化剂公司的商品MOR-SAR=5。由于该分子筛中LF酸量低于0.01mmol/g,不能很好的转化金属氧化物上产生的气相中间体,导致甲烷大量的生成不能满足本发明要求。因此选择合适的商品分子筛至关重要。
由上表可以看出分子筛的结构,包括MOR的拓扑结构,以及金属氧化物和分子筛之间的匹配至关重要,直接影响低碳烯烃和其中乙烯的选择性。

Claims (8)

  1. 一种催化剂,其特征在于:所述催化剂包括组分Ⅰ和组分Ⅱ,组分Ⅰ和组分Ⅱ以机械混合方式复合在一起,组分Ⅰ的活性成份为金属氧化物,组分Ⅱ为MOR拓扑结构的分子筛;
    所述的金属氧化物为MnO x、Mn aCr (1-a)O x、Mn aAl (1-a)O x、Mn aZr (1-a)O x、Mn aIn (1-a)O x、ZnO x、Zn aCr (1-a)O x、Zn aAl (1-a)O x、Zn aGa (1-a)O x、Zn aIn (1-a)O x、CeO x、Co aAl (1-a)O x、Fe aAl (1-a)O x、GaO x、BiO x、InO x、In aAl bMn (1-a-b)O x、In aGa bMn (1-a-b)O x中的一种或二种以上;
    所述MnO x、ZnO x、CeO x、GaO x、BiO x、InO x的比表面积是1-100m 2/g;优选比表面积是50-100m 2/g;
    所述Mn aCr (1-a)O x、Mn aAl (1-a)O x、Mn aZr (1-a)O x、Mn aIn (1-a)O x、Zn aCr (1-a)O x、Zn aAl (1-a)O x、Zn aGa (1-a)O x、Zn aIn (1-a)O x、Co aAl (1-a)O x、Fe aAl (1-a)O x、In aAl bMn (1-a-b)O x、In aGa bMn (1-a-b)O x的比表面积是5-150m 2/g。优选比表面积是50-150m 2/g;
    所述x的取值范围是0.7~3.7,a的取值范围是0~1;a+b的取值范围是0~1;
    所述组分B中MOR分子筛含有LF类B酸,所述LF类B酸的含量范围是0.01mmol/g-0.6mmol/g,优选0.1-0.6mmol/g,更优选0.3-0.6mmol/g。
  2. 按照权利要求1所述的催化剂,其特征在于:组分Ⅰ中的活性成份与组分Ⅱ之间的重量比为0.1-20,优选为0.3-8。
  3. 按照权利要求1所述的催化剂,其特征在于:所述组分Ⅰ中还添加有分散剂,所述金属氧化物分散于分散剂中,分散剂为Al 2O 3、SiO 2、Cr 2O 3、ZrO 2、TiO 2、Ga 2O 3、活性炭、石墨烯、碳纳米管中的一种或二种以上。
  4. 按照权利要求1所述的催化剂,其特征在于:所述组分Ⅰ中,所述分散剂的含量在0.05-90wt%,优选0.05-25wt%,其余为所述金属氧化物。
  5. 按照权利要求1所述的催化剂,其特征在于:所述MOR拓扑结构分子筛的骨架元素组成为Si-Al-O、Ga-Si-O、Ga-Si-Al-O、Ti-Si-O、Ti-Al-Si-O、Ca-Al-O、Ca-Si-Al-O中的一种或二种以上。
  6. 一种合成气直接转化制低碳烯烃的方法,其特征在于:所述方法以合成气为反应原料,在固定床或移动床上进行转化反应,所采用的催化剂为权利要求1-5任一项所述的催化剂。
  7. 按照权利要求6所述的方法,其特征在于:所述合成气的压力为0.5-10MPa,优选为1-8MPa;反应温度为300-600℃,优选为300-450℃;空速为300-10000h -1,优选为500-9000h -1,更优选为500-6000h -1;所述合成气为H 2/CO混合气,H 2/CO比例为0.2-3.5,优选为0.3-2.5。
  8. 按照权利要求6所述的方法,其特征在于:所述方法以合成气一步法直接转化制C 2-4烯烃,乙烯选择性为75-80%,副产物甲烷选择性<15%。
PCT/CN2019/073389 2018-01-26 2019-01-28 一种含lf型b酸催化剂及合成气直接转化制乙烯的方法 WO2019144955A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19743604.1A EP3744426A4 (en) 2018-01-26 2019-01-28 CATALYST CONTAINING LF TYPE B ACID AND PROCESS FOR DIRECT CONVERSION OF SYNTHESIS GAS TO ETHYLENE
US16/963,030 US11420911B2 (en) 2018-01-26 2019-01-28 Catalyst containing LF-type B acid and method for preparing ethylene using direct conversion of syngas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810081164.XA CN109939668B (zh) 2018-01-26 2018-01-26 一种含lf型b酸催化剂及合成气直接转化制乙烯的方法
CN201810081164.X 2018-01-26

Publications (1)

Publication Number Publication Date
WO2019144955A1 true WO2019144955A1 (zh) 2019-08-01

Family

ID=67006436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073389 WO2019144955A1 (zh) 2018-01-26 2019-01-28 一种含lf型b酸催化剂及合成气直接转化制乙烯的方法

Country Status (4)

Country Link
US (1) US11420911B2 (zh)
EP (1) EP3744426A4 (zh)
CN (1) CN109939668B (zh)
WO (1) WO2019144955A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112844448B (zh) * 2019-11-28 2023-07-04 中国科学院大连化学物理研究所 一种催化合成气与甲苯直接转化制乙苯的催化剂及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1083415A (zh) 1992-09-03 1994-03-09 中国科学院大连化学物理研究所 合成气制低碳烯烃含铁锰催化剂及合成反应
US7208442B2 (en) * 2002-02-28 2007-04-24 Exxonmobil Chemical Patents Inc. Molecular sieve compositions, catalyst thereof, their making and use in conversion processes
CN101199940A (zh) * 2007-12-25 2008-06-18 辽宁石油化工大学 一种负载金属氧化物的hzsm-5与mapo系列双结构分子筛合成方法
CN103193580A (zh) * 2013-04-07 2013-07-10 浙江大学 用负载型催化剂实现合成气一步法制备低碳烯烃的方法
CN103331171A (zh) * 2013-07-08 2013-10-02 华东理工大学 一种用于合成气制取低碳烯烃的催化剂的制备方法及应用
CN104888838A (zh) * 2015-06-03 2015-09-09 中国科学院山西煤炭化学研究所 一种核壳型合成气直接制低碳烯烃的催化剂及制法和应用
CN106345514A (zh) * 2016-07-29 2017-01-25 厦门大学 一种合成气一步转化制低碳烯烃的催化剂及其制备方法
CN107661774A (zh) * 2016-07-27 2018-02-06 中国科学院大连化学物理研究所 一种催化剂及合成气直接转化制低碳烯烃的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7712952A (en) * 1977-11-24 1979-05-28 Shell Int Research Ethylene prodn. from carbon mon:oxide and hydrogen - by catalytic reaction of the feed stream and pyrolysis of the gaseous reaction prod.
CN1036131C (zh) * 1991-06-22 1997-10-15 中国科学院大连化学物理研究所 一种由合成气直接制取低碳烯烃方法
US20080033218A1 (en) * 2006-08-03 2008-02-07 Lattner James R Alcohol and olefin production from syngas
EP2098287A1 (en) * 2008-03-03 2009-09-09 ExxonMobil Chemical Patents Inc. Method of formulating a molecular sieve catalyst composition by controlling component addition
US8058204B2 (en) * 2008-10-24 2011-11-15 GM Global Technology Operations LLC Method for generating a shell of noble metal overlaid on a core of non-noble metal, and catalysts made thereby
CN101745403B (zh) * 2008-12-18 2012-09-12 中国石油化工股份有限公司 一种由合成气制备甲醇、二甲醚和低碳烯烃的方法
CN104909975A (zh) * 2014-03-10 2015-09-16 中国科学院大连化学物理研究所 一种微孔分子筛择形甲烷无氧直接制乙烯的方法及催化剂
KR101731165B1 (ko) * 2015-05-07 2017-04-27 롯데케미칼 주식회사 에탄올 탈수 촉매 및 이를 이용한 에틸렌 제조방법
WO2017000427A1 (zh) * 2015-07-02 2017-01-05 中国科学院大连化学物理研究所 一种催化剂及由合成气一步法直接制备低碳烯烃的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1083415A (zh) 1992-09-03 1994-03-09 中国科学院大连化学物理研究所 合成气制低碳烯烃含铁锰催化剂及合成反应
US7208442B2 (en) * 2002-02-28 2007-04-24 Exxonmobil Chemical Patents Inc. Molecular sieve compositions, catalyst thereof, their making and use in conversion processes
CN101199940A (zh) * 2007-12-25 2008-06-18 辽宁石油化工大学 一种负载金属氧化物的hzsm-5与mapo系列双结构分子筛合成方法
CN103193580A (zh) * 2013-04-07 2013-07-10 浙江大学 用负载型催化剂实现合成气一步法制备低碳烯烃的方法
CN103331171A (zh) * 2013-07-08 2013-10-02 华东理工大学 一种用于合成气制取低碳烯烃的催化剂的制备方法及应用
CN104888838A (zh) * 2015-06-03 2015-09-09 中国科学院山西煤炭化学研究所 一种核壳型合成气直接制低碳烯烃的催化剂及制法和应用
CN107661774A (zh) * 2016-07-27 2018-02-06 中国科学院大连化学物理研究所 一种催化剂及合成气直接转化制低碳烯烃的方法
CN106345514A (zh) * 2016-07-29 2017-01-25 厦门大学 一种合成气一步转化制低碳烯烃的催化剂及其制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CH. BAERLOCHER: "ATLAS OF ZEOLIE FRAMEWORK TYPES", 2007, ELSEVIER
JIAO ET AL., SCIENCE, vol. 351, 2016, pages 1065 - 1068
N. CHERKASOV ET AL., VIBRATIONAL SPECTROSCOPY, vol. 83, 2016, pages 170 - 179
N. CHERKASOVETAL., VIBRATIONALSPECTROSCOPY, vol. 83, 2016, pages 170 - 179
See also references of EP3744426A4

Also Published As

Publication number Publication date
EP3744426A4 (en) 2021-11-03
CN109939668B (zh) 2020-05-22
US20200346993A1 (en) 2020-11-05
US11420911B2 (en) 2022-08-23
EP3744426A1 (en) 2020-12-02
CN109939668A (zh) 2019-06-28

Similar Documents

Publication Publication Date Title
AU2019211888B2 (en) Catalyst and method for directly converting synthesis gas into low-carbon olefin
US10960387B2 (en) Catalyst and method for direct conversion of syngas to light olefins
CN109939728B (zh) 一种负载催化剂及合成气直接转化制低碳烯烃的方法
CN107661774B (zh) 一种催化剂及合成气直接转化制低碳烯烃的方法
CN108970600B (zh) 一种催化剂及合成气直接转化制低碳烯烃的方法
CN111346672B (zh) 一种掺杂杂原子分子筛催化合成气高选择性制低碳烯烃的方法
CN107774302B (zh) 一种催化剂及合成气直接转化制液体燃料联产低碳烯烃的方法
WO2019144951A1 (zh) 一种催化剂及合成气直接转化制乙烯的方法
WO2020125487A1 (zh) 一种掺杂杂原子分子筛催化合成气高选择性制低碳烯烃的方法
WO2018219364A1 (zh) 一种催化剂及合成气直接转化制液体燃料联产低碳烯烃的方法
CN108568311B (zh) 一种催化剂及合成气直接转化制乙烯的方法
WO2019144953A1 (zh) 一种有机碱修饰的复合催化剂及一氧化碳加氢制乙烯的方法
WO2019144955A1 (zh) 一种含lf型b酸催化剂及合成气直接转化制乙烯的方法
CN111686789B (zh) 一种Na原子修饰的MOR基催化剂及合成气直接转化制液体燃料的方法
CN111346669B (zh) 一种掺杂杂原子分子筛催化合成气高选择性制低碳烯烃的方法
CN109939669B (zh) 一种碱修饰的复合催化剂及一氧化碳加氢反应制乙烯的方法
CN112973659B (zh) 一种含sapo-17分子筛的双功能催化剂及在合成气制低碳烯烃反应中的应用
CN112973781B (zh) 一种催化剂及合成气直接转化制c2和c3烯烃的方法
CN110152716B (zh) 一种选择性脱去MOR12圆环Al的催化剂及一氧化碳加氢反应制乙烯的方法
WO2020125488A1 (zh) 一种催化剂及合成气直接转化制低芳烃液体燃料的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19743604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019743604

Country of ref document: EP

Effective date: 20200826