WO2017179319A1 - 固体撮像素子、電子機器、および、固体撮像素子の制御方法 - Google Patents
固体撮像素子、電子機器、および、固体撮像素子の制御方法 Download PDFInfo
- Publication number
- WO2017179319A1 WO2017179319A1 PCT/JP2017/007397 JP2017007397W WO2017179319A1 WO 2017179319 A1 WO2017179319 A1 WO 2017179319A1 JP 2017007397 W JP2017007397 W JP 2017007397W WO 2017179319 A1 WO2017179319 A1 WO 2017179319A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- voltage
- transistor
- node
- phase
- Prior art date
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 55
- 238000000034 method Methods 0.000 title claims description 13
- 230000003321 amplification Effects 0.000 claims abstract description 59
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 59
- 206010027146 Melanoderma Diseases 0.000 abstract description 9
- 230000000875 corresponding effect Effects 0.000 description 35
- 238000010586 diagram Methods 0.000 description 22
- 238000009792 diffusion process Methods 0.000 description 21
- 238000005516 engineering process Methods 0.000 description 21
- 230000004048 modification Effects 0.000 description 15
- 238000012986 modification Methods 0.000 description 15
- 239000003990 capacitor Substances 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000006870 function Effects 0.000 description 3
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 206010064127 Solar lentigo Diseases 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/60—Noise processing, e.g. detecting, correcting, reducing or removing noise
- H04N25/62—Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels
- H04N25/627—Detection or reduction of inverted contrast or eclipsing effects
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14609—Pixel-elements with integrated switching, control, storage or amplification elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14643—Photodiode arrays; MOS imagers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/50—Control of the SSIS exposure
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/60—Noise processing, e.g. detecting, correcting, reducing or removing noise
- H04N25/62—Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/60—Noise processing, e.g. detecting, correcting, reducing or removing noise
- H04N25/63—Noise processing, e.g. detecting, correcting, reducing or removing noise applied to dark current
- H04N25/633—Noise processing, e.g. detecting, correcting, reducing or removing noise applied to dark current by using optical black pixels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/60—Noise processing, e.g. detecting, correcting, reducing or removing noise
- H04N25/67—Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response
- H04N25/671—Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/60—Noise processing, e.g. detecting, correcting, reducing or removing noise
- H04N25/67—Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response
- H04N25/671—Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction
- H04N25/673—Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction by using reference sources
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/709—Circuitry for control of the power supply
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/71—Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
- H04N25/75—Circuitry for providing, modifying or processing image signals from the pixel array
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
- H04N25/77—Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
- H04N25/77—Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
- H04N25/778—Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising amplifiers shared between a plurality of pixels, i.e. at least one part of the amplifier must be on the sensor array itself
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
- H04N25/78—Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
Definitions
- the present technology relates to a solid-state imaging device, an electronic device, and a control method for the solid-state imaging device.
- the present invention relates to a differential amplification type solid-state imaging device, an electronic apparatus, and a control method for the solid-state imaging device.
- a solid-state image sensor that captures image data by photoelectrically converting light has been used in an imaging device or the like.
- a differential amplification type imaging device that amplifies a differential signal with a pair of transistors has been proposed (see, for example, Patent Document 1).
- this differential amplification type solid-state imaging device unit pixels from which pixel signals are read and dummy pixels from which signals are not read are arranged.
- a readout circuit in the solid-state imaging device reads out a pixel signal differentially amplified by a differential pair including an amplification transistor in a unit pixel and an amplification transistor in a dummy pixel, and performs CDS (Correlated Sampling) processing. .
- the CDS process is a process for reducing fixed pattern noise by reading signals from a pixel twice and obtaining a difference between the signal levels as pixel data.
- the signal level read for the first time is called a P-phase level, for example, and the signal level read for the second time is called a D-phase level.
- the readout circuit outputs the difference data between the P-phase level and the D-phase level as pixel data having a value corresponding to the exposure amount.
- a black spot phenomenon occurs in which the pixel data becomes a value close to “0” (black level) even though the light is incident.
- This sunspot phenomenon occurs because a very large amount of charge is generated in the photodiode by strong light and leaks to the floating diffusion layer, and the P phase level rises and the difference from the D phase level is almost eliminated. is there.
- the present technology has been created in view of such a situation, and aims to prevent the occurrence of a black spot phenomenon in a differential amplification type solid-state imaging device.
- the present technology has been made to solve the above-described problems.
- the first aspect of the present technology is to supply a signal current corresponding to one of a pair of differential input voltages from an output node to an in-phase node.
- a signal-side amplification transistor that generates an output voltage according to a signal current;
- a reference-side amplification transistor that supplies a reference current according to the other of the pair of differential input voltages to the common-mode node;
- a constant current source that controls the sum of the signal current and the reference current to be constant, and when the output voltage reaches a predetermined limit voltage, the output node and the common-mode node are connected to respond to the limit voltage.
- a solid-state imaging device including a bypass control unit that supplies the signal current having a value to the in-phase node, and a control method thereof. As a result, when the output voltage reaches a predetermined limit voltage, the output node and the in-phase node are connected.
- the first aspect further includes a signal processing unit that reads a signal from the effective pixel circuit out of the effective pixel circuit and the dummy pixel circuit and performs predetermined signal processing.
- the reference-side amplification transistor may be disposed in the dummy pixel circuit, which is disposed in the effective pixel circuit.
- the dummy pixel circuit may be shielded from light. Thereby, when the output voltage of the effective pixel circuit that is not shielded from light reaches a predetermined limit voltage, the output node and the common-mode node are connected.
- the dummy pixel circuit may be arranged adjacent to the effective pixel circuit without being shielded from light.
- the output node and the common-mode node are connected when the output voltage of the effective pixel circuit adjacent to the dummy pixel circuit reaches a predetermined limit voltage.
- the bypass control unit may include a bypass transistor having a source connected to the output node.
- the output node and the common-mode node are connected by the bypass transistor.
- the signal-side amplification transistor outputs a P-phase level as the output voltage after outputting a P-phase level as the output voltage
- the limiting voltage is A P-phase limiting voltage for limiting the P-phase level and a D-phase limiting voltage for limiting the D-phase level may be included. As a result, the P phase level and the D phase level are limited.
- the bypass control unit further includes first and second resistance elements connected in parallel to the bypass transistor, the gate and drain of the bypass transistor are short-circuited, and the first The resistance value of the resistor element may be a value corresponding to the P-phase limit voltage, and the resistance value of the second resistor element may be a value corresponding to the D-phase limit voltage.
- the bypass transistor includes first and second bypass transistors having different threshold voltages, the gates and drains of the first and second bypass transistors are short-circuited, and the first The threshold voltage of the bypass transistor may be a value corresponding to the P-phase limit voltage, and the threshold voltage of the second bypass transistor may be a value corresponding to the D-phase limit voltage.
- the P-phase level and the D-phase level are limited by the limiting voltage corresponding to the threshold voltage of the first and second bypass transistors.
- the bypass control unit further includes a selector that selects one of the first and second bias voltages different from the power supply voltage and supplies the selected bias voltage to the gate of the bypass transistor.
- the first bias voltage may be a value corresponding to the P-phase limit voltage
- the second bias voltage may be a value corresponding to the D-phase limit voltage. This brings about the effect that the P-phase level and the D-phase level are limited by the limiting voltage corresponding to the first and second bias voltages.
- a second aspect of the present technology includes a signal side amplification transistor that supplies a signal current corresponding to one of a pair of differential input voltages from an output node to an in-phase node to generate an output voltage corresponding to the signal current;
- a reference-side amplifying transistor that supplies a reference current corresponding to the other of the pair of differential input voltages to the common-mode node, and a constant current that controls the sum of the signal current and the reference current combined at the common-mode node to be constant
- the bypass control unit connects the output node and the common-mode node to supply the signal current having a value corresponding to the limit voltage to the common-mode node.
- an image processing unit that performs predetermined image processing on the image data generated from the output voltage signal. As a result, when the output voltage reaches a predetermined limit voltage, the output node and the in-phase node are connected, and the image processing is performed.
- the differential amplification type solid-state imaging device in the differential amplification type solid-state imaging device, it is possible to achieve an excellent effect that it is possible to prevent the occurrence of a black spot phenomenon.
- the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
- FIG. 3 is a timing chart illustrating an example of a driving operation of the pixel circuit according to the first embodiment of the present technology.
- 6 is a flowchart illustrating an example of the operation of the solid-state imaging element according to the first embodiment of the present technology.
- It is a circuit diagram showing an example of 1 composition of a differential amplifier circuit in the 1st modification of a 1st embodiment of this art.
- It is a circuit diagram showing an example of 1 composition of a differential amplifier circuit in the 2nd modification of a 1st embodiment of this art.
- 12 is a timing chart illustrating an example of a driving operation of a pixel circuit according to a second modification of the first embodiment of the present technology. It is a block diagram showing an example of 1 composition of a solid-state image sensing device in a 2nd embodiment of this art. It is a block diagram showing an example of 1 composition of a pixel array part in a 2nd embodiment of this art. It is a circuit diagram showing an example of 1 composition of a differential amplifier circuit in a 2nd embodiment of this art. 12 is a timing chart illustrating an example of a driving operation of an odd-numbered pixel circuit according to the second embodiment of the present technology. 12 is a timing chart illustrating an example of a driving operation of an even-numbered row pixel circuit according to the second embodiment of the present technology.
- First embodiment example of connecting an output node and an in-phase node
- Second embodiment an example in which an effective pixel and a dummy pixel are adjacent to each other and an output node and an in-phase node are connected
- FIG. 1 is a block diagram illustrating a configuration example of the electronic device 100 according to the first embodiment.
- the electronic device 100 is a device that captures image data, and includes an imaging lens 110, a solid-state imaging device 200, a digital signal processor 120, a frame memory 130, a recording device 140, a display device 150, a power supply circuit 160, an operation circuit 170, and a bus. 180.
- a digital camera, a mobile device including a camera module, or the like is assumed.
- the imaging lens 110 collects light and guides it to the solid-state imaging device 200.
- the solid-state imaging device 200 generates image data by photoelectrically converting light from the imaging lens 110 under the control of the digital signal processor 120.
- the solid-state imaging device 200 supplies image data to the digital signal processor 120 via the signal line 209.
- the digital signal processor 120 performs predetermined image processing on the image data.
- the digital signal processor 120 controls the solid-state image sensor 200 to generate image data in response to an operation such as pressing a shutter button.
- the digital signal processor 120 performs various image processing on the image data using the frame memory 130 as necessary. As the image processing, demosaic processing, white balance processing, composition processing, and the like are performed.
- the digital signal processor 120 supplies the image data after the image processing to the recording device 140 via the bus 180 for recording.
- the digital signal processor 120 causes the display device 150 to display image data in accordance with a user operation.
- the digital signal processor 120 is an example of an image processing unit described in the claims.
- the frame memory 130 holds image data (frames).
- the recording device 140 records image data.
- the display device 150 displays image data.
- the power supply circuit 160 supplies power to circuits in the electronic device 100.
- the operation circuit 170 generates an operation signal according to a user operation and supplies the operation signal to the digital signal processor 120.
- the bus 180 is a common path for exchanging signals among the digital signal processor 120, the frame memory 130, the recording device 140, the display device 150, the power supply circuit 160, and the operation circuit 170.
- FIG. 2 is a block diagram illustrating a configuration example of the solid-state imaging device 200 according to the first embodiment.
- the solid-state imaging device 200 includes a power supply unit 210, a vertical scanning circuit 230, a pixel array unit 240, a column signal processing unit 270, a horizontal scanning circuit 280, and a timing control unit 285.
- a plurality of pixel circuits are arranged in a two-dimensional lattice pattern.
- a set of pixel circuits arranged in a predetermined direction is hereinafter referred to as “row”, and a set of pixel circuits arranged in a direction perpendicular to the row is hereinafter referred to as “column”.
- the number of rows is M (M is an integer), and the number of columns is N (N is an integer).
- the power supply unit 210 supplies power to the pixel array unit 240.
- the vertical scanning circuit 230 selects and drives rows in order under the control of the timing control unit 285.
- the column signal processing unit 270 performs predetermined signal processing on the pixel signals from the pixel array unit 240. As signal processing, AD (Analog to Digital) conversion processing and CDS processing are performed. The column signal processing unit 270 holds the processed signal as pixel data and outputs it to the digital signal processor 120.
- the column signal processing unit 270 is an example of a signal processing unit described in the claims.
- the horizontal scanning circuit 280 controls the column signal processing unit 270 according to the control of the timing control unit 285, and sequentially outputs the pixel data in the row.
- the timing control unit 285 drives the vertical scanning circuit 230, the column signal processing unit 270, and the horizontal scanning circuit 280 under the control of the digital signal processor 120.
- the frame memory 130 is disposed outside the solid-state image sensor 200, but may be disposed inside the solid-state image sensor 200.
- each of the circuits in the solid-state imaging device 200 may be arranged on the same chip, or may be arranged in a distributed manner on a plurality of stacked chips.
- the power supply unit 210, the vertical scanning circuit 230, and the pixel array unit 240 are arranged on one of the two stacked chips, and the column signal processing unit 270, the horizontal scanning circuit 280, and the timing control unit are arranged on the other side. 285 is arranged.
- FIG. 3 is a block diagram illustrating a configuration example of the pixel array unit 240 according to the first embodiment.
- a plurality of pixel circuits are arranged in a two-dimensional lattice pattern. These pixel circuits are classified into effective pixel circuits 250 and dummy pixel circuits 260.
- the effective pixel circuit 250 is not shielded from light, and is a circuit from which a pixel signal is read out by the column signal processing unit 270.
- the dummy pixel circuit 260 is shielded from light and is a circuit from which a signal is not read out by the column signal processing unit 270.
- the effective pixel circuit 250 is arranged in the 1st to M ⁇ 1th rows, and the dummy pixel circuit 260 is arranged in the Mth row.
- the arrangement location of the dummy pixel circuit 260 is not limited to the Mth row.
- the dummy pixel circuit 260 may be arranged in the first row or the Nth column.
- the pixel circuit in the m-th (m is an integer from 1 to M) row is connected to a horizontal signal line group 239-m including three signal lines.
- the pixel circuits in the nth column (n is an integer from 1 to N) are connected to a vertical signal line group 219-n including five signal lines.
- FIG. 4 is a circuit diagram illustrating a configuration example of the differential amplifier circuit according to the first embodiment.
- the power supply unit 210 includes P-type transistors 211 and 212, a constant current source 213, and a bypass control unit 220 for each column.
- the bypass control unit 220 includes a bypass transistor 221, resistance elements 222 and 224, and switches 223 and 225.
- the effective pixel circuit 250 includes a transfer transistor 252, a photodiode 253, a reset transistor 254, a floating diffusion layer 255, a selection transistor 256, and an amplification transistor 257.
- the dummy pixel circuit 260 includes a transfer transistor 262, a photodiode 263, a reset transistor 264, a floating diffusion layer 265, a selection transistor 266, and an amplification transistor 267. 4 indicates the parasitic capacitance of the floating diffusion layers 255 and 265, and these are not provided as capacitive components.
- the photodiode 253 generates electric charges (for example, electrons) by photoelectrically converting light.
- the transfer transistor 252 transfers the charge generated by the photodiode 253 to the floating diffusion layer 255 according to the transfer signal TRG_S.
- the floating diffusion layer 255 accumulates electric charges and generates a voltage corresponding to the amount of electric charges.
- the reset transistor 254 sets the voltage of the floating diffusion layer 255 to an initial value in accordance with the reset signal RST_S.
- the selection transistor 256 opens and closes a path between the signal line VSL_S and the amplification transistor 257 in accordance with the selection signal SEL_S.
- the amplification transistor 257 amplifies the voltage of the floating diffusion layer 255.
- the amplification transistor 257 supplies a current corresponding to the voltage of the floating diffusion layer 255 as a signal current. An output voltage is generated by this signal current and is output from the signal line VSL_S.
- the amplification transistor 257 is an example of a signal side amplification transistor described in the claims.
- the drain of the reset transistor 254 is connected to the signal line VRD_S, and the drain of the selection transistor 256 is connected to the signal line VSL_S.
- each element in the dummy pixel circuit 260 is the same as that of the effective pixel circuit 250.
- the source of the amplification transistor 267 is connected to the signal line Vcom together with the source of the amplification transistor 257.
- the drain of the reset transistor 264 is connected to the signal line VRD_S to which the reset voltage V rst is applied, and the drain of the selection transistor 266 is connected to the signal line VSL_D.
- the transfer transistor, reset transistor, and selection transistor in the dummy pixel circuit 260 are controlled by the transfer signal TRG_D, the reset signal RST_D, and the selection signal SEL_D.
- the amplification transistor 267 is an example of a reference-side amplification transistor described in the claims.
- the gate of the P-type transistor 211 is connected to the gate of the P-type transistor 212.
- the source of the P-type transistor 211 is connected to its own gate and the signal line VSL_D, and the drain is connected to the power supply of the power supply voltage Vdd.
- the source of the P-type transistor 212 is connected to the signal line VSL_S, and the drain is connected to the power supply.
- a vertical signal line group 219-n including signal lines VRD_S, VSL_S, Vcom, VRD_D, and VSL_D is provided for each column.
- the constant current source 213 controls the current from the signal line Vcom to be constant.
- the constant current source 213 is realized by, for example, an N-type transistor in which a predetermined bias voltage Vbn is applied to the gate.
- the above-described current mirror circuit, amplification transistors 267 and 257, and constant current source 213 form a differential amplification circuit that amplifies a pair of differential input voltages.
- One of the pair of differential input voltages is input to the amplification transistor 257 and the other is input to the amplification transistor 267.
- an output voltage obtained by amplifying the differential input voltage is output to the column signal processing unit 270 via the signal line VSL_S on the drain side of the amplification transistor 257.
- Such a differential amplifier circuit generally has a higher amplification factor than a source follower circuit that does not perform differential amplification.
- the conversion efficiency of the pixel of the source follower circuit is 100 ⁇ V / e ⁇
- the output noise of the amplification transistor is 100 ⁇ Vrms (root mean square)
- the noise in AD conversion is 100 ⁇ Vrms.
- the total noise is 141 ⁇ Vrms
- the input conversion noise is 1.02e ⁇ rms.
- the pixel conversion efficiency of the differential amplifier circuit is 500 ⁇ V / e ⁇
- the output noise of the amplification transistor is 500 ⁇ Vrms
- the noise in AD conversion is 500 ⁇ Vrms.
- the total noise is 510 ⁇ Vrms and the input conversion noise is 1.02e ⁇ rms.
- the bypass transistor 221 is, for example, a P-type MOS transistor, and its gate and drain are short-circuited (so-called diode connection).
- the source of the bypass transistor 221 is connected to the signal line VSL_S.
- the bypass transistor 221 may be an N-type transistor.
- resistance elements 222 and 224 are commonly connected to the drain of the bypass transistor 221.
- the other end of the resistance element 222 is connected to the switch 223, and the other end of the resistance element 224 is connected to the switch 225.
- the resistance values of the resistance elements 222 and 224 are different.
- the resistance elements 222 and 224 are examples of the first and second resistance elements described in the claims.
- the switch 223 opens and closes a path between the resistance element 222 and the signal line Vcom in accordance with the switching signal SWP.
- the switch 225 opens and closes a path between the resistance element 224 and the signal line Vcom in accordance with the switching signal SWD.
- the vertical scanning circuit 230 selects one of the rows of the effective pixel circuits 250 and the row of the dummy pixel circuits 260 at the same time, and is driven by the reset signal, the transfer signal, and the selection signal.
- a pair of the effective pixel circuit 250 in the selected row and the dummy pixel circuit 260 in the same column as the circuit operates as a differential amplifier circuit, and generates a pixel signal. Details of the function of the bypass control unit 220 will be described later.
- FIG. 5 is a block diagram illustrating a configuration example of the column signal processing unit 270 according to the first embodiment.
- the column signal processing unit 270 includes a ramp signal generation circuit 271, N capacitors 272, N capacitors 273, N comparators 274, N counters 275, and a data holding unit 276.
- One capacitor 272, one capacitor 273, one comparator 274, and one counter 275 are provided for each column.
- the ramp signal generation circuit 271 generates a ramp signal whose level increases at a constant speed under the control of the timing control unit 285.
- the capacitor 272 holds a ramp signal.
- the capacitor 273 holds the pixel signal from the corresponding column. With these capacitors, an auto-zero function is realized.
- the comparator 274 compares the ramp signal with the pixel signal in the corresponding column.
- the comparator 274 supplies the comparison result to the counter 275 of the corresponding column.
- the counter 275 counts the count value based on the comparison result of the comparator 274.
- a clock signal CLK and reset signals RSTp and RSTd are input to the counter 275 by the timing control unit 285.
- the counter 275 sets the count value to an initial value.
- the counter 275 increments the count value in synchronization with the clock signal CLK until the level of the ramp signal exceeds the level of the pixel signal. Thereby, the P phase level is measured.
- the counter 275 When the reset signal RSTd is input, the counter 275 inverts the sign of the count value. Thereafter, the counter 275 increments the count value in synchronization with the clock signal CLK until the level of the ramp signal exceeds the level of the pixel signal. Thereby, the difference between the P phase level and the D phase level is measured.
- the counter 275 outputs the difference data to the data holding unit 276 as pixel data.
- the process for obtaining the difference between the P-phase level and the D-phase level is called a CDS process. Analog CDS processing is executed by the capacitors 272 and 273, and digital CDS processing is executed by the counter 275.
- the data holding unit 276 holds N pixel data.
- the data holding unit 276 sequentially outputs the held pixel data according to the control of the horizontal scanning circuit 280.
- FIG. 6 is a diagram illustrating an example of a current flowing through the differential amplifier circuit before the limitation in the first embodiment.
- the vertical scanning circuit 230 controls the switch 223 to be closed by the switching signal SWP and controls the switch 225 to be opened by the switching signal SWD.
- the voltage of the node on the source side of the P-type transistor 212 is output to the column signal processing unit 270 as the output voltage Vo of the differential amplifier circuit.
- This node is hereinafter referred to as an output node 501.
- an in-phase voltage is generated at the node on the amplification transistor side of the constant current source 213.
- This node is hereinafter referred to as an in-phase node 502.
- To the gate of the amplifying transistor 267 is supplied with one in which V IN_R of the differential input voltage, to the gate of the amplifying transistor 257 is the other of the input differential input voltage V In_s is input.
- the input voltage V in_r is a voltage of the floating diffusion layer of the dummy pixel circuit 260
- the input voltage V in_s is a voltage of the floating diffusion layer of the effective pixel circuit 250.
- the vertical scanning circuit 230 controls the selection transistor 256 in the selected row and the selection transistor 266 in the dummy pixel 260 to be turned on. The vertical scanning circuit 230 then turns on the reset transistors 264 and 254 to initialize the input voltages V in_r and V in_s .
- the P-type transistor 211 in the current mirror circuit supplies a reference current Ir, and the P-type transistor 212 supplies a signal current Is close to the reference current Ir.
- Ir I + ⁇ I Formula 1
- Is I ⁇ I Equation 2
- the reference current Ir and the signal current Is merge at the in-phase node 502, and the sum is controlled to be constant by the constant current source 213.
- I const in Equation 3 is 2I.
- the reference current Ir and the signal current Is are equal. For example, if I const is 20 microamperes ( ⁇ A), the reference current Ir and the signal current Is are both 10 microamperes ( ⁇ A).
- the dummy pixel circuit 260 is shielded from light while the effective pixel circuit 250 is not shielded from light, electric charges are generated by the photodiode 253 in the effective pixel circuit 250.
- the vertical scanning circuit 230 turns off the transfer transistor 252 in the effective pixel circuit 250. For this reason, normally, the charge of the photodiode 253 is not transferred to the floating diffusion layer, and the input voltage Vin_s remains at the initial value.
- V clip_p Vc + Rp ⁇ Is ′ +
- Vc in the above equation is a common voltage of the common-mode node 502, and its unit is, for example, volts (V).
- Rp is the resistance value of the resistance element 222, and the unit is, for example, ohm ( ⁇ ).
- Is ′ is a signal current corresponding to V clip — p , and its unit is, for example, ampere (A).
- V th is a threshold voltage of the bypass transistor 221, and its unit is, for example, volts (V).
- bypass transistor 221 When the bypass transistor 221 is in the off state (P-phase level is less than the limit voltage V clip — p ), no current flows through the bypass controller 220, and the signal current Is is output from the output node 501 through the amplification transistor 257 to the in-phase node. It flows to 502.
- FIG. 7 is a diagram illustrating an example of a current flowing through the limited differential amplifier circuit according to the first embodiment.
- the output voltage Vo reaches the limit voltage V clip_p
- the gate-source voltage of the bypass transistor 221 exceeds the threshold voltage, and the bypass transistor 221 transitions to the on state.
- the output node 501 and the in-phase node 502 are connected (bypassed) via the bypass transistor 221, and the signal current Is ′ flows through the bypass control unit 220.
- the vertical scanning circuit 230 opens the switch 223 and closes the switch 225.
- the D phase level is fixed to the limit voltage V clip_d shown in the following equation.
- the limiting voltages V clip_p and V clip_d are preferably equal to or lower than the upper limit voltage at which the amplification transistor operates in the saturation region.
- V clip_d Vc + Rd ⁇ Is ′ +
- Rp and Rd have different values, the D phase level is clipped to a value different from the P phase level.
- a configuration in which the bypass control unit 220 is not provided is assumed as a comparative example. Also in this comparative example, when very strong light is incident, a large amount of charge is generated in the photodiode 253 and may exceed the potential of the transfer transistor 252 and leak to the floating diffusion layer. As a result, the output voltage Vo (P phase level) increases.
- the P-phase level is not limited in the comparative example without the bypass control unit 220, the P-phase level can rise to a value close to the power supply voltage Vdd.
- a D-phase level is generated next to the P-phase level, but a D-phase level having a value close to the power supply voltage Vdd is similarly generated under high illuminance.
- the difference between them becomes close to “0” in the CDS process, and black level pixel data is output even though strong light is incident. That is, a black spot phenomenon occurs.
- the bypass control unit 220 bypasses the output node and the in-phase node to limit the P-phase level to the limit voltage V clip_p or less. And D phase level are not comparable. Thereby, a black spot phenomenon can be eliminated.
- the amplitude of the output voltage Vo may become very large when strong light is incident.
- the amplification transistor 257 may be in an operation range (a linear region or a cutoff region) other than the saturation region. In this case, a settling time is required for the amplification transistor 257 to return to the saturation region before the next reading.
- the frame rate is reduced by the amount of time for this stabilization.
- the solid-state imaging device 200 is limited to the upper limit voltage in the saturation region, the amplitude of the output voltage Vo can be suppressed and the amplification transistor 257 can be operated in the saturation region. As a result, the settling time becomes unnecessary, and the frame rate can be improved accordingly.
- the solid-state imaging device 200 restricts both the D-phase level and the P-phase level. However, when the P-phase level can be restricted by an overflow gate or the like, the P-phase level may not be restricted. . When the P-phase level is not limited, the P-phase side resistance element 224 and the switch 225 are not required.
- FIG. 8 is a timing chart illustrating an example of the driving operation of the pixel circuit according to the first embodiment of the present technology.
- the timing control unit 285 resets the count value CNT of the counter 275 to an initial value before exposure.
- the vertical scanning circuit 230 sets the selection signal SEL_S and the selection signal SEL_D of the selected row to a high level, and the reset signal RST_S and RST_S of the row for a predetermined pulse period from the exposure start timing Tr of the row. Set RST_D to high level.
- the vertical scanning circuit 230 controls the P-phase side switch 223 to be closed by setting the switching signal SWP to a high level. As a result, the P-phase level is limited to the limit voltage V clip_p or less.
- the ramp signal rises over a period from the timing Tps to Tpe after the timing Tr, and the counter 275 counts the count value CNT p of the P-phase level. That is, the P phase level is read by the column signal processing unit 270.
- the output voltage Vo (P-phase level) of the signal line VSL_S may continue to rise after reset.
- the bypass control unit 220 since the P-phase level is not limited, it may reach a value close to the power supply voltage Vdd.
- the thick dotted line in FIG. 8 is an example of the fluctuation of the output voltage Vo of this comparative example. If the bypass control unit 220 is provided, the P phase level is limited as shown by the solid line in FIG.
- the vertical scanning circuit 230 sets the transfer signal TRG_S to the high level over the pulse period at the timing Tswd when the exposure period has elapsed from the resetting of the floating diffusion layer. As a result, charges are transferred to the floating diffusion layer, and output of the D phase level is started. Further, the vertical scanning circuit 230 controls the D-phase side switch 225 to be closed by setting the switching signal SWP to the low level and the switching signal SWD to the high level. As a result, the D-phase level is limited to the limit voltage V clip_d or less. In addition, the timing control unit 285 inverts the sign of the count value of the counter 275 to ⁇ CNT p .
- the potential difference between the limit voltage V Clip_p the limit voltage V Clip_d is set to exceed the full code of the pixel data.
- the potential difference is set to exceed a level corresponding to “4095”.
- the ramp signal rises over a period from timing Tds to timing Tde after timing Tswd, and the counter 275 counts the difference value CNT d ⁇ p between the P phase level and the D phase level.
- the difference data is read as pixel data.
- the D-phase level is not limited, and thus the D-phase level also rises to a value close to the power supply voltage Vdd. Then, the difference between the P-phase level and the D-phase level is almost “0”, and pixel data close to the black level is output. That is, a black spot phenomenon occurs.
- the solid-state imaging device 200 limits the P-phase level by the bypass control unit 220, it can suppress the black spot phenomenon. Further, since the P-phase level and the D-phase level are limited to be equal to or lower than the upper limit voltage of the saturation operation region, the amplitude of the output voltage Vo can be suppressed and the amplification transistor 257 can be operated in the saturation region. As a result, the settling time becomes unnecessary, and the frame rate can be improved accordingly.
- FIG. 9 is a flowchart showing an example of the operation of the solid-state imaging device 200 according to the first embodiment. This operation is started, for example, when an operation (such as pressing a shutter button) for capturing image data is performed.
- an operation such as pressing a shutter button
- the vertical scanning circuit 230 selects one of the unselected rows (step S901), and resets the voltage of the floating diffusion layer in that row (step S902). Then, the differential amplifier circuit outputs the P-phase level limited to the limit voltage V clip_p or less (step S903), and outputs the D-phase level limited to the limit voltage V clip_d or less after the exposure period has elapsed (step S904). .
- the column signal processing unit 270 outputs the difference between the P phase level and the D phase level as pixel data (step S905).
- the vertical scanning circuit 230 determines whether or not the selected row is the last row (step S906). When it is not the last row (step S906: No), the vertical scanning circuit 230 repeatedly executes step S901 and subsequent steps. On the other hand, when it is the last row (step S906: Yes), the vertical scanning circuit 230 ends the imaging process. Note that when imaging a plurality of pieces of image data, the processing in steps S901 to S906 is repeatedly executed until the imaging is completed.
- the bypass control unit 220 connects the output node and the in-phase node to flow a signal current, and thus strong light is emitted. Even when it is incident, the P-phase level can be limited to a voltage lower than the limit voltage. As a result, it is possible to prevent the occurrence of a black spot phenomenon in which the P-phase level and the D-phase level are close to each other and the pixel data of the difference between them becomes “0” (black level).
- the bypass control unit 220 limits the output voltage Vo with two different limiting voltages using the two resistance elements (222 and 224). However, the output voltage can be limited by two limiting voltages without providing these resistance elements.
- the bypass control unit 220 according to the first modification of the first embodiment is different from the first embodiment in that the bypass control unit 220 is not provided with a resistance element and is limited by two limiting voltages. Different.
- FIG. 10 is a circuit diagram showing a configuration example of the differential amplifier circuit according to the first modification of the first embodiment.
- the bypass control unit 220 according to the first modification is different from the first embodiment in that a bypass transistor 226 is provided instead of the resistance elements 222 and 224.
- the bypass transistor 226 is, for example, a P-type MOS transistor, its gate and drain are short-circuited, and its source is connected to the signal line VSL_S. Further, the threshold voltage of the bypass transistor 226 is different from the threshold voltage of the bypass transistor 221.
- the bypass transistors 221 and 226 are examples of the first and second bypass transistors described in the claims. Further, the bypass transistor 226 may be an N-type transistor.
- the switch 223 is connected to the drain of the bypass transistor 221, and the switch 225 is connected to the drain of the bypass transistor 226.
- V clip_p Vc +
- V clip_d Vc +
- bypass transistors 221 and 226 having different threshold voltages limit the threshold voltage, two limiting voltages can be provided without providing a resistance element.
- the restriction by can be realized.
- the bypass control unit 220 limits the output voltage Vo with two different limiting voltages using the two resistance elements (222 and 224). However, the output voltage can be limited by two limiting voltages without providing these resistance elements.
- the bypass control unit 220 according to the second modification of the first embodiment is different from the first embodiment in that the limitation by the two limiting voltages is realized without providing the bypass control unit 220 with a resistance element. Different.
- FIG. 11 is a circuit diagram showing a configuration example of the differential amplifier circuit according to the second modification of the first embodiment.
- the bypass control unit 220 according to the second modification is different from the first embodiment in that a selector 227 is provided instead of the switch 223, the switch 225, and the resistance elements 222 and 224.
- the selector 227 selects any one of the power supply voltage Vdd, the bias voltage Vbp, and the bias voltage Vbd according to the selection signal VSEL and outputs the selected voltage to the gate of the bypass transistor 221.
- the bias voltage Vbp and the bias voltage Vbd are different from each other.
- the bias voltage Vbp and the bias voltage Vbd are both set to a value between the power supply voltage Vdd and the common voltage Vc. These bias voltages are preferably higher than the common voltage Vc. By making the bias voltage higher than the common voltage Vc, the amplification transistor 257 can be operated in the saturation operation region.
- the vertical scanning circuit 230 outputs the bias voltage Vbp during the P-phase level reading period and the bias voltage Vbd during the D-phase level reading period in response to the selection signal VSEL. Further, the vertical scanning circuit 230 outputs the power supply voltage Vdd during the periods other than those periods.
- V clip_p and V clip_d are expressed by the following equations.
- V clip_p Vc + Vbp ⁇
- V clip_d Vc + Vbd ⁇
- FIG. 12 is a timing chart showing an example of the driving operation of the pixel circuit in the second modification of the first embodiment.
- the alternate long and short dash line in the figure indicates the fluctuation of the voltage output from the selector 227.
- the vertical scanning circuit 230 changes the voltage output from the selector 227 from the power supply voltage Vdd to the bias voltage Vbp by the selection signal VSEL at the timing Tswp before reading the P-phase level.
- the vertical scanning circuit 230 changes the voltage output from the selector 227 to the bias voltage Vbd by the selection signal VSEL at the timing Tswd before the D-phase level reading.
- the bypass control unit 220 limits the output voltage with two different limiting voltages by applying two different bias voltages.
- the limitation by the two limiting voltages can be realized without providing a resistance element.
- the dummy pixel circuit 260 is arranged only in the Mth row, but in this arrangement, the distance between the effective pixel circuit 250 other than the M ⁇ 1th row and the dummy pixel circuit 260 is set. I will leave.
- the variation in the characteristics of the elements in the differential amplifier circuit in which the effective pixel circuit 250 and the dummy pixel circuit 260 are not adjacent to each other is larger than that in the case where the effective pixel circuit 250 and the dummy pixel circuit 260 are adjacent to each other. It can be a noise source in data. For this reason, it is desirable to dispose the dummy pixel circuit 260 at a position adjacent to the effective pixel circuit 250 from the viewpoint of reducing noise.
- the solid-state imaging device 200 according to the second embodiment is different from the first embodiment in that a dummy pixel circuit and an effective pixel circuit are arranged adjacent to each other.
- FIG. 13 is a block diagram illustrating a configuration example of the solid-state imaging device 200 according to the second embodiment.
- the solid-state imaging device 200 according to the second embodiment is different from the first embodiment in that a signal switching unit 290 is further provided.
- FIG. 14 is a block diagram illustrating a configuration example of the pixel array unit 240 according to the second embodiment.
- odd-numbered row pixel circuits 251 are arranged in odd-numbered rows
- even-numbered row pixel circuits 261 are arranged in even-numbered rows. None of these pixel circuits are shielded from light.
- the odd row pixel circuit 251 is an effective pixel circuit from which a signal is read out by the column signal processing unit 270.
- the even-row pixel circuit 261 is a dummy pixel circuit from which no signal is read.
- the effective pixel and the dummy pixel are alternately arranged for each row, the configuration is not limited to this configuration as long as the effective pixel and the dummy pixel are adjacent to each other.
- effective pixels may be arranged in 4k and 4k + 3 (k is an integer) rows, and dummy pixels may be arranged in 4k + 1 and 4k + 2 rows.
- FIG. 15 is a circuit diagram illustrating a configuration example of the differential amplifier circuit according to the second embodiment.
- the power supply unit 210 according to the second embodiment is different from the first embodiment in that it further includes a differential input limiting unit 300.
- the differential input limiting unit 300 limits the output voltage of the signal line VSL_E on the even-numbered row pixel circuit 261 (dummy pixel) side to a limit voltage or less.
- the dummy-side output voltage (in other words, one of the pair of differential output voltages) is, for example, equal to or lower than a voltage comparable to the limit voltage V clip_p for the P-phase level of the other (Vo) of the pair of differential output voltages.
- the differential input limiting unit 300 includes a P-type transistor 301, a resistance element 302, and a switch 303.
- the P-type transistor is diode-connected, and is inserted between the source of the P-type transistor 211 and the resistance element 302.
- the switch 303 opens and closes the path between the resistance element 302 and the constant current source 213 according to the switching signal SWR.
- the signal switching unit 290 includes switches 291, 292, 293, and 294.
- the switch 291 switches the connection destination of the drain of the selection transistor 266 to either the P-type transistor 211 or the P-type transistor 212 according to the selection signal SWR.
- the switch 292 switches the connection destination of the drain of the selection transistor 256 to either the P-type transistor 211 or the P-type transistor 212 in accordance with the selection signal SWR.
- the switch 293 switches the connection destination of the drain of the reset transistor 264 to either the power source of the reset voltage V rst or the P-type transistor 212 according to the selection signal SWR.
- Switch 294 in accordance with selection signals SWR, it is intended to switch the connection destination of the drain of the reset transistor 254 to either the power supply and the P-type transistor 212 of the reset voltage V rst.
- the vertical scanning circuit 230 controls the switch 303 to be closed by a selection signal SWR, controls the connection destination of the selection transistor 266 to the P-type transistor 211, and sets the connection destination of the selection transistor 256 to the P-type.
- the transistor 212 is controlled.
- the vertical scanning circuit 230 controls the connection destination of the reset transistor 264 to the reset voltage V rst and controls the connection destination of the reset transistor 254 to the P-type transistor 212 when driving an odd-numbered row.
- the connection configuration of the differential amplifier circuit is the same as that of the first embodiment.
- the vertical scanning circuit 230 controls the switch 303 to be in an open state by the selection signal SWR, controls the connection destination of the selection transistor 266 to the P-type transistor 212, and determines the connection destination of the selection transistor 256.
- the P-type transistor 211 is controlled.
- the vertical scanning circuit 230 controls the connection destination of the reset transistor 264 to the P-type transistor 212 and drives the connection destination of the reset transistor 254 to the reset voltage V rst when driving even-numbered rows. By this control, the connection destinations of the selection transistors and reset transistors in the odd rows and the connection destinations of the selection transistors and reset transistors in the even rows are switched.
- odd-numbered pixel circuit 251 is controlled by the transfer signal TRG_O, the reset signal RST_O and the selection signal SEL_O
- even-numbered pixel circuit 261 is controlled by the transfer signal TRG_E, the reset signal RST_E and the selection signal SEL_E.
- FIG. 16 is a timing chart showing an example of the driving operation of the odd-numbered pixel circuit 251 according to the second embodiment.
- the vertical scanning circuit 230 sets the switching signal SWR to a low level so that the connection configuration of the differential amplifier circuit is the same as in the first embodiment, and the switch 303 is closed.
- the level of the signal line VSL_E of the dummy pixel (even number row) is limited to be equal to or lower than the limit voltage with respect to the P phase level of the effective pixel (odd number row).
- the reason for limiting the voltage of the dummy signal line VSL_E is that the dummy pixels are not shielded from light. As described above, the dummy pixels are not shielded from light because it is difficult to shield only the dummy pixels in the configuration in which the dummy pixels and the effective pixels are alternately arranged.
- the transmission timing of the odd-numbered transfer signal TRG_O, the reset signal RST_O, and the selection signal SEL_O is the same as that of the effective pixel of the first embodiment.
- the transmission timings of the transfer signal TRG_O, the reset signal RST_O, and the selection signal SEL_O in an even number of rows are the same as the dummy pixels in the first embodiment.
- FIG. 17 is a timing chart showing an example of the driving operation of the even-numbered pixel circuit 261 in the second embodiment.
- the vertical scanning circuit 230 switches the connection destination of the selection transistor and the reset transistor by setting the switching signal SWR to a high level.
- the vertical scanning circuit 230 sets only the odd-numbered transfer signal TRG_E to the high level over the pulse period from the transfer timing Tswd immediately before the D-phase level reading.
- the effective pixels and the dummy pixels are alternately arranged adjacent to each other, and therefore, compared with the first embodiment in which there are effective pixels that are not adjacent to the dummy pixels.
- variation in element characteristics can be reduced and noise can be reduced.
- this technique can also take the following structures.
- a signal side amplification transistor that supplies a signal current corresponding to one of a pair of differential input voltages from an output node to an in-phase node to generate an output voltage corresponding to the signal current;
- a reference-side amplification transistor that supplies a reference current according to the other of the pair of differential input voltages to the common-mode node;
- a constant current source that controls the sum of the signal current and the reference current that merge at the common-mode node to be constant;
- a bypass control unit that connects the output node and the common-mode node when the output voltage reaches a predetermined limit voltage and supplies the signal current having a value corresponding to the limit voltage to the common-mode node;
- a solid-state imaging device that connects the output node and the common-mode node when the output voltage reaches a predetermined limit voltage and supplies the signal current having a value corresponding to the limit voltage to the common-mode node.
- the solid-state imaging device according to any one of (1) to (4), wherein the bypass control unit includes a bypass transistor having a source connected to the output node. (6) The signal side amplification transistor outputs a P phase level as the output voltage after outputting a P phase level as the output voltage,
- the solid-state imaging device according to (5), wherein the limiting voltage includes a P-phase limiting voltage that limits the P-phase level and a D-phase limiting voltage that limits the D-phase level.
- the bypass control unit further includes first and second resistance elements connected in parallel to the bypass transistor, The gate and drain of the bypass transistor are short-circuited, (6)
- the resistance value of the first resistance element is a value according to the P-phase limit voltage
- the resistance value of the second resistance element is a value according to the D-phase limit voltage.
- the bypass transistor includes first and second bypass transistors having different threshold voltages, The gates and drains of the first and second bypass transistors are short-circuited; (6)
- the threshold voltage of the first bypass transistor is a value according to the P-phase limit voltage
- the threshold voltage of the second bypass transistor is a value according to the D-phase limit voltage.
- the bypass controller further includes a selector that selects one of the first and second bias voltages different from the power supply voltage and supplies the selected one to the gate of the bypass transistor,
- the solid-state imaging device according to (6) wherein the first bias voltage is a value corresponding to the P-phase limit voltage, and the second bias voltage is a value corresponding to the D-phase limit voltage.
- a signal side amplification transistor that supplies a signal current corresponding to one of the pair of differential input voltages from the output node to the common-mode node to generate an output voltage corresponding to the signal current;
- a reference-side amplification transistor that supplies a reference current according to the other of the pair of differential input voltages to the common-mode node;
- a constant current source that controls the sum of the signal current and the reference current that merge at the common-mode node to be constant;
- a bypass controller that connects the output node and the common-mode node when the output voltage reaches a predetermined limit voltage, and supplies the signal current having a value corresponding to the limit voltage to the common-mode node;
- An electronic apparatus comprising: an image processing unit that performs predetermined image processing on image data generated from the output voltage signal.
- a signal-side amplification transistor that supplies a signal current corresponding to one of a pair of differential input voltages from an output node to an in-phase node to generate an output voltage corresponding to the signal current, and the pair of differential input voltages
- a differential amplifier circuit comprising: a reference side amplifying transistor that supplies a reference current according to the other to the common-mode node; and a constant current source that controls a sum of the signal current and the reference current that merge at the common-mode node to be constant Output voltage generating step for generating the output voltage,
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Geophysics And Detection Of Objects (AREA)
- Eye Examination Apparatus (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
Description
1.第1の実施の形態(出力ノードと同相ノードとを接続する例)
2.第2の実施の形態(有効画素とダミー画素とを隣接させて出力ノードと同相ノードとを接続する例)
[電子機器の構成例]
図1は、第1の実施の形態における電子機器100の一構成例を示すブロック図である。この電子機器100は、画像データを撮像する機器であり、撮像レンズ110、固体撮像素子200、デジタルシグナルプロセッサ120、フレームメモリ130、記録装置140、表示装置150、電源回路160、操作回路170およびバス180を備える。電子機器100としては、デジタルカメラや、カメラモジュールを備えるモバイル機器などが想定される。
図2は、第1の実施の形態における固体撮像素子200の一構成例を示すブロック図である。この固体撮像素子200は、電源供給部210、垂直走査回路230、画素アレイ部240、カラム信号処理部270、水平走査回路280およびタイミング制御部285を備える。
図3は、第1の実施の形態における画素アレイ部240の一構成例を示すブロック図である。この画素アレイ部240には複数の画素回路が二次元格子状に配列される。これらの画素回路は、有効画素回路250とダミー画素回路260とに分類される。有効画素回路250は、遮光されておらず、カラム信号処理部270により画素信号が読み出される回路である。一方、ダミー画素回路260は遮光されており、カラム信号処理部270により信号が読み出されない回路である。
図4は、第1の実施の形態における差動増幅回路の一構成例を示す回路図である。電源供給部210は、P型トランジスタ211および212と、定電流源213と、バイパス制御部220とを列ごとに備える。バイパス制御部220は、バイパストランジスタ221と、抵抗素子222および224と、スイッチ223および225とを備える。
図5は、第1の実施の形態におけるカラム信号処理部270の一構成例を示すブロック図である。このカラム信号処理部270は、ランプ信号生成回路271と、N個のコンデンサ272と、N個のコンデンサ273と、N個のコンパレータ274と、N個のカウンタ275とデータ保持部276とを備える。コンデンサ272およびコンデンサ273と、コンパレータ274とカウンタ275とは、列ごとに1つずつ設けられる。
Ir=I+ΔI ・・・式1
Is=I-ΔI ・・・式2
Iconst=Is+Ir ・・・式3
Vclip_p=Vc+Rp×Is'+|Vth|
上式におけるVcは、同相ノード502のコモン電圧であり、単位は例えば、ボルト(V)である。Rpは、抵抗素子222の抵抗値であり、単位は例えば、オーム(Ω)である。Is'は、Vclip_pに対応する信号電流であり、単位は例えば、アンペア(A)である。Vthは、バイパストランジスタ221の閾値電圧であり、単位は例えば、ボルト(V)である。
Vclip_d=Vc+Rd×Is'+|Vth|
上式におけるRdは、抵抗素子224の抵抗値であり、単位は例えば、オーム(Ω)である。前述したように、RpおよびRdは異なる値であるため、D相レベルは、P相レベルと異なる値にクリップされる。
図8は、本技術の第1の実施の形態における画素回路の駆動動作の一例を示すタイミングチャートである。タイミング制御部285は、露光前にカウンタ275の計数値CNTを初期値にリセットする。また、垂直走査回路230は、選択した行の選択信号SEL_Sと、選択信号SEL_Dとをハイレベルにし、その行の露光開始のタイミングTrから所定のパルス期間に亘って、その行のリセット信号RST_SおよびRST_Dをハイレベルにする。
上述の第1の実施の形態では、バイパス制御部220は、2つの抵抗素子(222および224)により、出力電圧Voを互いに異なる2つの制限電圧で制限していた。しかし、これらの抵抗素子を設けずに、2つの制限電圧で出力電圧を制限することもできる。この第1の実施の形態の第1の変形例のバイパス制御部220は、バイパス制御部220に抵抗素子を設けずに、2つの制限電圧による制限を実現した点において第1の実施の形態と異なる。
Vclip_p=Vc+|Vthp|
Vclip_d=Vc+|Vthd|
上述の第1の実施の形態では、バイパス制御部220は、2つの抵抗素子(222および224)により、出力電圧Voを互いに異なる2つの制限電圧で制限していた。しかし、これらの抵抗素子を設けずに、2つの制限電圧で出力電圧を制限することもできる。この第1の実施の形態の第2の変形例のバイパス制御部220は、バイパス制御部220に抵抗素子を設けずに、2つの制限電圧による制限を実現した点において第1の実施の形態と異なる。
Vclip_p=Vc+Vbp-|Vth|
Vclip_d=Vc+Vbd-|Vth|
上述の第1の実施の形態では、ダミー画素回路260をM行目にのみ配置していたが、この配置では、M-1行目以外の有効画素回路250とダミー画素回路260との距離が離れてしまう。有効画素回路250とダミー画素回路260とが隣接していない差動増幅回路内の素子の特性のばらつきは、有効画素回路250とダミー画素回路260とが隣接する場合と比較して大きくなり、画像データにおいてノイズ源となりうる。このため、ノイズを低減する観点から、ダミー画素回路260を有効画素回路250に隣接する位置に配置することが望ましい。この第2の実施の形態の固体撮像素子200は、ダミー画素回路と有効画素回路とを隣接して配置した点において第1の実施の形態と異なる。
(1)一対の差動入力電圧の一方に応じた信号電流を出力ノードから同相ノードに供給して前記信号電流に応じた出力電圧を生成する信号側増幅トランジスタと、
前記一対の差動入力電圧の他方に応じた参照電流を前記同相ノードに供給する参照側増幅トランジスタと、
前記同相ノードで合流する前記信号電流および前記参照電流の和を一定に制御する定電流源と、
前記出力電圧が所定の制限電圧に達した場合には前記出力ノードと前記同相ノードとを接続して前記制限電圧に応じた値の前記信号電流を前記同相ノードに供給するバイパス制御部と
を具備する固体撮像素子。
(2)有効画素回路およびダミー画素回路のうち前記有効画素回路からの信号を読み出して所定の信号処理を行う信号処理部をさらに具備し、
前記信号側増幅トランジスタは、前記有効画素回路に配置され、前記参照側増幅トランジスタは、前記ダミー画素回路に配置される
前記(1)記載の固体撮像素子。
(3)前記ダミー画素回路は、遮光される
前記(2)記載の固体撮像素子。
(4)前記ダミー画素回路は、遮光されず、前記有効画素回路に隣接して配置される
前記(2)記載の固体撮像素子。
(5)前記バイパス制御部は、前記出力ノードにソースが接続されたバイパストランジスタを備える
前記(1)から(4)のいずれかに記載の固体撮像素子。
(6)前記信号側増幅トランジスタは、P相レベルを前記出力電圧として出力した後に前記P相レベルと異なるD相レベルを前記出力電圧として出力し、
前記制限電圧は、前記P相レベルを制限するP相制限電圧と前記D相レベルを制限するD相制限電圧とを含む
前記(5)記載の固体撮像素子。
(7)前記バイパス制御部は、前記バイパストランジスタに並列に接続された第1および第2の抵抗素子をさらに備え、
前記バイパストランジスタのゲートおよびドレインは短絡され、
前記第1の抵抗素子の抵抗値は、前記P相制限電圧に応じた値であり、前記第2の抵抗素子の抵抗値は、前記D相制限電圧に応じた値である
前記(6)記載の固体撮像素子。
(8) 前記バイパストランジスタは、閾値電圧の異なる第1および第2のバイパストランジスタを含み、
前記第1および第2のバイパストランジスタのゲートおよびドレインは短絡され、
前記第1のバイパストランジスタの閾値電圧は、前記P相制限電圧に応じた値であり、前記第2のバイパストランジスタの閾値電圧は、前記D相制限電圧に応じた値である
前記(6)記載の固体撮像素子。
(9)前記バイパス制御部は、電源電圧と互いに異なる第1および第2のバイアス電圧とのいずれかを選択して前記バイパストランジスタのゲートに供給するセレクタをさらに備え、
前記第1のバイアス電圧は、前記P相制限電圧に応じた値であり、前記第2のバイアス電圧は、前記D相制限電圧に応じた値である
前記(6)記載の固体撮像素子。
(10)一対の差動入力電圧の一方に応じた信号電流を出力ノードから同相ノードに供給して前記信号電流に応じた出力電圧を生成する信号側増幅トランジスタと、
前記一対の差動入力電圧の他方に応じた参照電流を前記同相ノードに供給する参照側増幅トランジスタと、
前記同相ノードで合流する前記信号電流および前記参照電流の和を一定に制御する定電流源と、
前記出力電圧が所定の制限電圧に達した場合には前記出力ノードと前記同相ノードとを接続して前記制限電圧に応じた値の前記信号電流を前記同相ノードに供給するバイパス制御部と、
前記出力電圧の信号から生成された画像データに対して所定の画像処理を行う画像処理部と
を具備する電子機器。
(11)一対の差動入力電圧の一方に応じた信号電流を出力ノードから同相ノードに供給して前記信号電流に応じた出力電圧を生成する信号側増幅トランジスタと、前記一対の差動入力電圧の他方に応じた参照電流を前記同相ノードに供給する参照側増幅トランジスタと、前記同相ノードで合流する前記信号電流および前記参照電流の和を一定に制御する定電流源とを備える差動増幅回路が、前記出力電圧を生成する出力電圧生成ステップと、
前記出力電圧が所定の制限電圧に達した場合には前記出力ノードと前記同相ノードとを接続して前記制限電圧に応じた値の前記信号電流を前記同相ノードに供給するバイパス制御ステップと
を具備する固体撮像素子の制御方法。
110 撮像レンズ
120 デジタルシグナルプロセッサ
130 フレームメモリ
140 記録装置
150 表示装置
160 電源回路
170 操作回路
180 バス
200 固体撮像素子
210 電源供給部
211、212、301 P型トランジスタ
213 定電流源
220 バイパス制御部
221、226 バイパストランジスタ
222、224、302 抵抗素子
223、225、291、292、293、294、303 スイッチ
227 セレクタ
230 垂直走査回路
240 画素アレイ部
250 有効画素回路
251 奇数行画素回路
252、262 転送トランジスタ
253、263 フォトダイオード
254、264 リセットトランジスタ
255、265 浮遊拡散層
256、266 選択トランジスタ
257、267 増幅トランジスタ
260 ダミー画素回路
261 偶数行画素回路
270 カラム信号処理部
271 ランプ信号生成回路
272、273 コンデンサ
274 コンパレータ
275 カウンタ
276 データ保持部
280 水平走査回路
285 タイミング制御部
290 信号切替え部
300 差動入力制限部
Claims (11)
- 一対の差動入力電圧の一方に応じた信号電流を出力ノードから同相ノードに供給して前記信号電流に応じた出力電圧を生成する信号側増幅トランジスタと、
前記一対の差動入力電圧の他方に応じた参照電流を前記同相ノードに供給する参照側増幅トランジスタと、
前記同相ノードで合流する前記信号電流および前記参照電流の和を一定に制御する定電流源と、
前記出力電圧が所定の制限電圧に達した場合には前記出力ノードと前記同相ノードとを接続して前記制限電圧に応じた値の前記信号電流を前記同相ノードに供給するバイパス制御部と
を具備する固体撮像素子。 - 有効画素回路およびダミー画素回路のうち前記有効画素回路からの信号を読み出して所定の信号処理を行う信号処理部をさらに具備し、
前記信号側増幅トランジスタは、前記有効画素回路に配置され、前記参照側増幅トランジスタは、前記ダミー画素回路に配置される
請求項1記載の固体撮像素子。 - 前記ダミー画素回路は、遮光される
請求項2記載の固体撮像素子。 - 前記ダミー画素回路は、遮光されず、前記有効画素回路に隣接して配置される
請求項2記載の固体撮像素子。 - 前記バイパス制御部は、前記出力ノードにソースが接続されたバイパストランジスタを備える
請求項1記載の固体撮像素子。 - 前記信号側増幅トランジスタは、P相レベルを前記出力電圧として出力した後に前記P相レベルと異なるD相レベルを前記出力電圧として出力し、
前記制限電圧は、前記P相レベルを制限するP相制限電圧と前記D相レベルを制限するD相制限電圧とを含む
請求項5記載の固体撮像素子。 - 前記バイパス制御部は、前記バイパストランジスタに並列に接続された第1および第2の抵抗素子をさらに備え、
前記バイパストランジスタのゲートおよびドレインは短絡され、
前記第1の抵抗素子の抵抗値は、前記P相制限電圧に応じた値であり、前記第2の抵抗素子の抵抗値は、前記D相制限電圧に応じた値である
請求項6記載の固体撮像素子。 - 前記バイパストランジスタは、閾値電圧の異なる第1および第2のバイパストランジスタを含み、
前記第1および第2のバイパストランジスタのゲートおよびドレインは短絡され、
前記第1のバイパストランジスタの閾値電圧は、前記P相制限電圧に応じた値であり、前記第2のバイパストランジスタの閾値電圧は、前記D相制限電圧に応じた値である
請求項6記載の固体撮像素子。 - 前記バイパス制御部は、電源電圧と互いに異なる第1および第2のバイアス電圧とのいずれかを選択して前記バイパストランジスタのゲートに供給するセレクタをさらに備え、
前記第1のバイアス電圧は、前記P相制限電圧に応じた値であり、前記第2のバイアス電圧は、前記D相制限電圧に応じた値である
請求項6記載の固体撮像素子。 - 一対の差動入力電圧の一方に応じた信号電流を出力ノードから同相ノードに供給して前記信号電流に応じた出力電圧を生成する信号側増幅トランジスタと、
前記一対の差動入力電圧の他方に応じた参照電流を前記同相ノードに供給する参照側増幅トランジスタと、
前記同相ノードで合流する前記信号電流および前記参照電流の和を一定に制御する定電流源と、
前記出力電圧が所定の制限電圧に達した場合には前記出力ノードと前記同相ノードとを接続して前記制限電圧に応じた値の前記信号電流を前記同相ノードに供給するバイパス制御部と、
前記出力電圧の信号から生成された画像データに対して所定の画像処理を行う画像処理部と
を具備する電子機器。 - 一対の差動入力電圧の一方に応じた信号電流を出力ノードから同相ノードに供給して前記信号電流に応じた出力電圧を生成する信号側増幅トランジスタと、前記一対の差動入力電圧の他方に応じた参照電流を前記同相ノードに供給する参照側増幅トランジスタと、前記同相ノードで合流する前記信号電流および前記参照電流の和を一定に制御する定電流源とを備える差動増幅回路が、前記出力電圧を生成する出力電圧生成ステップと、
前記出力電圧が所定の制限電圧に達した場合には前記出力ノードと前記同相ノードとを接続して前記制限電圧に応じた値の前記信号電流を前記同相ノードに供給するバイパス制御ステップと
を具備する固体撮像素子の制御方法。
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110551020.8A CN113382188B (zh) | 2016-04-15 | 2017-02-27 | 光检测装置 |
US15/738,614 US10477125B2 (en) | 2016-04-15 | 2017-02-27 | Solid-state image sensor, electronic apparatus, and control method of solid-state image sensor |
CN201780001823.8A CN107683603B (zh) | 2016-04-15 | 2017-02-27 | 固态摄像元件、电子设备和固态摄像元件的控制方法 |
EP21151025.0A EP3846449A1 (en) | 2016-04-15 | 2017-02-27 | Solid-state image sensor, electronic apparatus, and control method of solid-state image sensor |
JP2017555619A JP6904257B2 (ja) | 2016-04-15 | 2017-02-27 | 固体撮像素子、電子機器、および、固体撮像素子の制御方法 |
KR1020177033653A KR102649389B1 (ko) | 2016-04-15 | 2017-02-27 | 고체 촬상 소자, 전자 기기, 및, 고체 촬상 소자의 제어 방법 |
EP17782137.8A EP3445042B1 (en) | 2016-04-15 | 2017-02-27 | Solid-state imaging element, electronic device and control method for solid-state imaging element |
US15/873,337 US10348986B2 (en) | 2016-04-15 | 2018-01-17 | Solid-state image sensor, electronic apparatus, and control method of solid-state image sensor |
US16/559,956 US10645318B2 (en) | 2016-04-15 | 2019-09-04 | Solid-state image sensor, electronic apparatus, and control method of solid-state image sensor |
US16/831,642 US10972689B2 (en) | 2016-04-15 | 2020-03-26 | Solid-state image sensor, electronic apparatus, and control method of solid-state image sensor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-081956 | 2016-04-15 | ||
JP2016081956 | 2016-04-15 |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/738,614 A-371-Of-International US10477125B2 (en) | 2016-04-15 | 2017-02-27 | Solid-state image sensor, electronic apparatus, and control method of solid-state image sensor |
US15/873,337 Continuation US10348986B2 (en) | 2016-04-15 | 2018-01-17 | Solid-state image sensor, electronic apparatus, and control method of solid-state image sensor |
US16/559,956 Continuation US10645318B2 (en) | 2016-04-15 | 2019-09-04 | Solid-state image sensor, electronic apparatus, and control method of solid-state image sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017179319A1 true WO2017179319A1 (ja) | 2017-10-19 |
Family
ID=60041623
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/007397 WO2017179319A1 (ja) | 2016-04-15 | 2017-02-27 | 固体撮像素子、電子機器、および、固体撮像素子の制御方法 |
Country Status (7)
Country | Link |
---|---|
US (4) | US10477125B2 (ja) |
EP (2) | EP3445042B1 (ja) |
JP (2) | JP6904257B2 (ja) |
KR (1) | KR102649389B1 (ja) |
CN (2) | CN113382188B (ja) |
TW (2) | TWI771962B (ja) |
WO (1) | WO2017179319A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020003646A1 (ja) * | 2018-06-27 | 2020-01-02 | ソニーセミコンダクタソリューションズ株式会社 | 固体撮像素子、撮像装置、および、固体撮像素子の制御方法 |
JP2020043541A (ja) * | 2018-09-13 | 2020-03-19 | 株式会社東芝 | 固体撮像素子 |
US20200260032A1 (en) * | 2018-05-02 | 2020-08-13 | Sony Semiconductor Solution Corporation | Solid-state image pickup element and image pickup apparatus |
WO2020235169A1 (en) | 2019-05-17 | 2020-11-26 | Sony Semiconductor Solutions Corporation | Solid-state imaging apparatus and electronic device |
EP3780581A4 (en) * | 2018-04-04 | 2021-05-05 | Sony Semiconductor Solutions Corporation | SEMICONDUCTOR IMAGING DEVICE |
WO2021106478A1 (ja) * | 2019-11-29 | 2021-06-03 | ソニーセミコンダクタソリューションズ株式会社 | 撮像装置及び電子機器 |
JP2022064801A (ja) * | 2020-10-14 | 2022-04-26 | 鴻海精密工業股▲ふん▼有限公司 | 画像センサー及び電子デバイス |
WO2023032252A1 (ja) * | 2021-08-30 | 2023-03-09 | ソニーセミコンダクタソリューションズ株式会社 | 固体撮像素子 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017169484A1 (ja) | 2016-03-30 | 2017-10-05 | 株式会社ニコン | 撮像素子、撮像装置および半導体メモリ |
JP6904257B2 (ja) | 2016-04-15 | 2021-07-14 | ソニーグループ株式会社 | 固体撮像素子、電子機器、および、固体撮像素子の制御方法 |
JP6991704B2 (ja) * | 2016-10-26 | 2022-01-12 | ソニーセミコンダクタソリューションズ株式会社 | 固体撮像素子およびその制御方法、並びに電子機器 |
JP2018082295A (ja) * | 2016-11-16 | 2018-05-24 | キヤノン株式会社 | 撮像装置及び撮像システム |
JP2019186804A (ja) * | 2018-04-13 | 2019-10-24 | ソニーセミコンダクタソリューションズ株式会社 | 固体撮像素子、撮像装置および固体撮像素子の制御方法 |
US11128307B2 (en) * | 2018-10-30 | 2021-09-21 | Omnivision Technologies, Inc. | Circuit and method for control of counter start time |
TWI728504B (zh) * | 2018-11-13 | 2021-05-21 | 日商索尼半導體解決方案公司 | 固體攝像元件、固體攝像裝置及電子機器 |
TWI837280B (zh) * | 2019-03-29 | 2024-04-01 | 日商索尼半導體解決方案公司 | 光檢測裝置及電子機器 |
US11570424B2 (en) | 2019-06-24 | 2023-01-31 | Infineon Technologies Ag | Time-of-flight image sensor resolution enhancement and increased data robustness using a binning module |
US11683604B1 (en) * | 2022-02-23 | 2023-06-20 | Omnivision Technologies, Inc. | Circuit and method for image artifact reduction in high-density, highpixel-count, image sensor with phase detection autofocus |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006238283A (ja) * | 2005-02-28 | 2006-09-07 | Matsushita Electric Ind Co Ltd | Mos型固体撮像装置 |
JP2007104240A (ja) * | 2005-10-04 | 2007-04-19 | Sony Corp | 固体撮像装置、固体撮像装置の駆動方法および撮像装置 |
JP2007195033A (ja) * | 2006-01-20 | 2007-08-02 | Olympus Corp | 固体撮像装置 |
JP2008283557A (ja) * | 2007-05-11 | 2008-11-20 | Sony Corp | 固体撮像装置、撮像装置 |
JP2010093698A (ja) * | 2008-10-10 | 2010-04-22 | Panasonic Corp | 固体撮像装置及び撮像装置 |
JP2010141848A (ja) * | 2008-12-15 | 2010-06-24 | Canon Inc | 光電変換装置、撮像システム、及び光電変換装置の駆動方法 |
WO2012144181A1 (ja) * | 2011-04-22 | 2012-10-26 | パナソニック株式会社 | 固体撮像装置及びその駆動方法 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4252247B2 (ja) * | 2002-02-28 | 2009-04-08 | 富士通マイクロエレクトロニクス株式会社 | 感度を上げることができるcmosイメージセンサ |
JP2005101870A (ja) * | 2003-09-24 | 2005-04-14 | Sanyo Electric Co Ltd | 信号調整回路 |
JP4144535B2 (ja) * | 2004-03-03 | 2008-09-03 | ソニー株式会社 | 固体撮像装置、画素信号読出方法 |
US7483067B2 (en) * | 2005-04-15 | 2009-01-27 | Micron Technology, Inc. | Column-parallel sigma-delta analog-to-digital conversion for imagers |
JP4194633B2 (ja) * | 2006-08-08 | 2008-12-10 | キヤノン株式会社 | 撮像装置及び撮像システム |
JP5074808B2 (ja) * | 2007-04-11 | 2012-11-14 | キヤノン株式会社 | 光電変換装置及び撮像システム |
JP4935486B2 (ja) * | 2007-04-23 | 2012-05-23 | ソニー株式会社 | 固体撮像装置、固体撮像装置の駆動方法、固体撮像装置の信号処理方法および撮像装置 |
JP4617372B2 (ja) * | 2008-08-29 | 2011-01-26 | キヤノン株式会社 | 撮像装置及び撮像システム |
JP5517503B2 (ja) * | 2009-06-24 | 2014-06-11 | キヤノン株式会社 | 固体撮像装置 |
JP2011229120A (ja) * | 2010-03-30 | 2011-11-10 | Sony Corp | 固体撮像装置、固体撮像装置の信号処理方法、及び、電子機器 |
JP2011239068A (ja) * | 2010-05-07 | 2011-11-24 | Toshiba Corp | 固体撮像装置 |
JP6150457B2 (ja) * | 2011-05-12 | 2017-06-21 | キヤノン株式会社 | 固体撮像装置、固体撮像装置の駆動方法、固体撮像システム |
JP2014239266A (ja) * | 2011-09-29 | 2014-12-18 | パナソニック株式会社 | 固体撮像装置およびその駆動方法 |
JP6029286B2 (ja) * | 2012-02-17 | 2016-11-24 | キヤノン株式会社 | 光電変換装置および撮像システム |
JP6319946B2 (ja) * | 2013-04-18 | 2018-05-09 | キヤノン株式会社 | 固体撮像装置及び撮像システム |
KR102105619B1 (ko) * | 2013-10-30 | 2020-04-28 | 에스케이하이닉스 주식회사 | 입력 공통모드 전압 샘플링 기반의 차동 증폭기 및 그를 이용한 비교기 |
JP6541347B2 (ja) * | 2014-03-27 | 2019-07-10 | キヤノン株式会社 | 固体撮像装置および撮像システム |
JP6385190B2 (ja) * | 2014-08-04 | 2018-09-05 | キヤノン株式会社 | 光電変換装置の駆動方法、光電変換装置、および撮像システム |
JP6546457B2 (ja) * | 2015-06-19 | 2019-07-17 | ブリルニクス インク | 固体撮像装置およびその駆動方法、電子機器 |
JP6904257B2 (ja) | 2016-04-15 | 2021-07-14 | ソニーグループ株式会社 | 固体撮像素子、電子機器、および、固体撮像素子の制御方法 |
-
2017
- 2017-02-27 JP JP2017555619A patent/JP6904257B2/ja active Active
- 2017-02-27 US US15/738,614 patent/US10477125B2/en active Active
- 2017-02-27 CN CN202110551020.8A patent/CN113382188B/zh active Active
- 2017-02-27 EP EP17782137.8A patent/EP3445042B1/en active Active
- 2017-02-27 KR KR1020177033653A patent/KR102649389B1/ko active IP Right Grant
- 2017-02-27 EP EP21151025.0A patent/EP3846449A1/en active Pending
- 2017-02-27 WO PCT/JP2017/007397 patent/WO2017179319A1/ja active Application Filing
- 2017-02-27 CN CN201780001823.8A patent/CN107683603B/zh active Active
- 2017-03-14 TW TW110110767A patent/TWI771962B/zh active
- 2017-03-14 TW TW106108251A patent/TWI726070B/zh active
-
2018
- 2018-01-17 US US15/873,337 patent/US10348986B2/en active Active
-
2019
- 2019-09-04 US US16/559,956 patent/US10645318B2/en active Active
-
2020
- 2020-03-26 US US16/831,642 patent/US10972689B2/en active Active
-
2021
- 2021-06-18 JP JP2021101386A patent/JP2021141621A/ja active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006238283A (ja) * | 2005-02-28 | 2006-09-07 | Matsushita Electric Ind Co Ltd | Mos型固体撮像装置 |
JP2007104240A (ja) * | 2005-10-04 | 2007-04-19 | Sony Corp | 固体撮像装置、固体撮像装置の駆動方法および撮像装置 |
JP2007195033A (ja) * | 2006-01-20 | 2007-08-02 | Olympus Corp | 固体撮像装置 |
JP2008283557A (ja) * | 2007-05-11 | 2008-11-20 | Sony Corp | 固体撮像装置、撮像装置 |
JP2010093698A (ja) * | 2008-10-10 | 2010-04-22 | Panasonic Corp | 固体撮像装置及び撮像装置 |
JP2010141848A (ja) * | 2008-12-15 | 2010-06-24 | Canon Inc | 光電変換装置、撮像システム、及び光電変換装置の駆動方法 |
WO2012144181A1 (ja) * | 2011-04-22 | 2012-10-26 | パナソニック株式会社 | 固体撮像装置及びその駆動方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3445042A4 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230041457A1 (en) * | 2018-04-04 | 2023-02-09 | Sony Semiconductor Solutions Corporation | Solid-state imaging device |
EP3780581A4 (en) * | 2018-04-04 | 2021-05-05 | Sony Semiconductor Solutions Corporation | SEMICONDUCTOR IMAGING DEVICE |
US11553148B2 (en) | 2018-04-04 | 2023-01-10 | Sony Semiconductor Solutions Corporation | Solid-state imaging device |
US20200260032A1 (en) * | 2018-05-02 | 2020-08-13 | Sony Semiconductor Solution Corporation | Solid-state image pickup element and image pickup apparatus |
US11483507B2 (en) * | 2018-05-02 | 2022-10-25 | Sony Semiconductor Solution Corporation | Solid-state image pickup element and image pickup apparatus |
WO2020003646A1 (ja) * | 2018-06-27 | 2020-01-02 | ソニーセミコンダクタソリューションズ株式会社 | 固体撮像素子、撮像装置、および、固体撮像素子の制御方法 |
US11451725B2 (en) | 2018-06-27 | 2022-09-20 | Sony Semiconductor Solutions Corporation | Solid-state imaging element, imaging apparatus, and method for controlling solid-state imaging element |
JP7005459B2 (ja) | 2018-09-13 | 2022-01-21 | 株式会社東芝 | 固体撮像素子 |
JP2020043541A (ja) * | 2018-09-13 | 2020-03-19 | 株式会社東芝 | 固体撮像素子 |
DE112020002407T5 (de) | 2019-05-17 | 2022-02-03 | Sony Semiconductor Solutions Corporation | Festkörper-bildgebungseinrichtung und elektronische vorrichtung |
WO2020235169A1 (en) | 2019-05-17 | 2020-11-26 | Sony Semiconductor Solutions Corporation | Solid-state imaging apparatus and electronic device |
US12052522B2 (en) | 2019-05-17 | 2024-07-30 | Sony Semiconductor Solutions Corporation | Solid-state imaging apparatus and electronic device |
WO2021106478A1 (ja) * | 2019-11-29 | 2021-06-03 | ソニーセミコンダクタソリューションズ株式会社 | 撮像装置及び電子機器 |
JP2022064801A (ja) * | 2020-10-14 | 2022-04-26 | 鴻海精密工業股▲ふん▼有限公司 | 画像センサー及び電子デバイス |
US11523073B2 (en) | 2020-10-14 | 2022-12-06 | Hon Hai Precision Industry Co., Ltd. | Image sensor with noise cancellation feature and electronic device with same |
JP7164579B2 (ja) | 2020-10-14 | 2022-11-01 | 鴻海精密工業股▲ふん▼有限公司 | 画像センサー及び電子デバイス |
WO2023032252A1 (ja) * | 2021-08-30 | 2023-03-09 | ソニーセミコンダクタソリューションズ株式会社 | 固体撮像素子 |
Also Published As
Publication number | Publication date |
---|---|
JP2021141621A (ja) | 2021-09-16 |
JPWO2017179319A1 (ja) | 2019-02-21 |
TWI726070B (zh) | 2021-05-01 |
CN107683603A (zh) | 2018-02-09 |
US10645318B2 (en) | 2020-05-05 |
KR102649389B1 (ko) | 2024-03-20 |
US10477125B2 (en) | 2019-11-12 |
EP3445042B1 (en) | 2021-03-31 |
CN113382188B (zh) | 2024-08-16 |
US20180184023A1 (en) | 2018-06-28 |
CN107683603B (zh) | 2021-05-14 |
US10348986B2 (en) | 2019-07-09 |
US10972689B2 (en) | 2021-04-06 |
TW201739042A (zh) | 2017-11-01 |
EP3445042A4 (en) | 2019-09-18 |
US20190394413A1 (en) | 2019-12-26 |
TWI771962B (zh) | 2022-07-21 |
US20180146154A1 (en) | 2018-05-24 |
CN113382188A (zh) | 2021-09-10 |
EP3445042A1 (en) | 2019-02-20 |
TW202127650A (zh) | 2021-07-16 |
EP3846449A1 (en) | 2021-07-07 |
KR20180134277A (ko) | 2018-12-18 |
US20200228735A1 (en) | 2020-07-16 |
JP6904257B2 (ja) | 2021-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017179319A1 (ja) | 固体撮像素子、電子機器、および、固体撮像素子の制御方法 | |
US11758305B2 (en) | Comparator, ad converter, solid-state imaging device, electronic apparatus, and method of controlling comparator | |
US20190246056A1 (en) | Imaging apparatus, imaging system, imaging apparatus driving method, and imaging system driving method | |
JP5330520B2 (ja) | アナログ・デジタル変換器、イメージセンサシステム、カメラ装置 | |
WO2016013412A1 (ja) | 固体撮像素子、撮像制御方法、信号処理方法、及び、電子機器 | |
US9497398B2 (en) | Solid-state imaging device and camera for reducing random row noise | |
JP2011239068A (ja) | 固体撮像装置 | |
JP2010148008A (ja) | 固体撮像装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2017555619 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20177033653 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15738614 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17782137 Country of ref document: EP Kind code of ref document: A1 |