WO2017176074A1 - 용융 장력이 우수한 프로필렌-디엔 공중합체 수지 - Google Patents

용융 장력이 우수한 프로필렌-디엔 공중합체 수지 Download PDF

Info

Publication number
WO2017176074A1
WO2017176074A1 PCT/KR2017/003788 KR2017003788W WO2017176074A1 WO 2017176074 A1 WO2017176074 A1 WO 2017176074A1 KR 2017003788 W KR2017003788 W KR 2017003788W WO 2017176074 A1 WO2017176074 A1 WO 2017176074A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
propylene
aryl
formula
copolymer resin
Prior art date
Application number
PCT/KR2017/003788
Other languages
English (en)
French (fr)
Inventor
채병훈
우현율
이래하
민준근
정성원
홍연진
신은혜
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Priority to JP2018552047A priority Critical patent/JP7008032B2/ja
Priority to US16/091,658 priority patent/US10875951B2/en
Priority to CN201780027463.9A priority patent/CN109071713B/zh
Priority to EP17779374.2A priority patent/EP3441407B1/en
Publication of WO2017176074A1 publication Critical patent/WO2017176074A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/60Polymerisation by the diene synthesis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F232/00Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F232/02Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having no condensed rings
    • C08F232/06Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having no condensed rings having two or more carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/22Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having three or more carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/54Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with other compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/01Cp or analog bridged to a non-Cp X neutral donor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/11Melt tension or melt strength
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/12Melt flow index or melt flow ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/10Copolymer characterised by the proportions of the comonomers expressed as molar percentages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound

Definitions

  • the present invention relates to a propylene-diene copolymer resin, and more particularly, to a propylene-diene copolymer resin using a metallocene catalyst system having excellent melt tension.
  • Polypropylene and related polymeric resins are known to have low melt strength. However, these physical properties have been pointed out as a weak point in the main field of application, such as thermoforming and blow molding.
  • the limits of melt strength of polypropylene include excessive settling in sheet extrusion, high speed thinning of thermoformed part walls in the melt phase, low draw-down ratio in extrusion coating, poor bubble formation in extruded foam materials, and large-part It appears as relative fragility in blow molding.
  • polypropylene and related polymer resins having improved melt strength as well as commercially valuable processability are constantly being demanded commercially.
  • Olefin polymerization catalyst systems can be classified into Ziegler-Natta and metallocene catalyst systems, and these two highly active catalyst systems have been developed for their respective characteristics.
  • the Ziegler-Natta catalyst has been widely applied to existing commercial processes since the invention in the 1950s, but is characterized by a wide molecular weight distribution of the polymer resin because it is a multi-site catalyst in which several active species are mixed. There is a problem in that there is a limit in securing the desired physical properties because the distribution is not uniform.
  • the metallocene catalyst system is composed of a combination of a main catalyst composed mainly of a metallocene compound and a cocatalyst composed of an organometallic compound composed mainly of aluminum.
  • Such a catalyst system is a homogeneous complex catalyst and is a single site catalyst.
  • the polymer has a narrow molecular weight distribution and a homogeneous composition distribution of comonomers according to the characteristics of the single active site, and the stereoregularity, copolymerization characteristics, molecular weight, crystallinity, etc. of the polymer are changed according to the ligand structure modification of the catalyst and the change of polymerization conditions. It has the property to change.
  • the present invention has been made to solve the above problems, to provide a propylene-diene copolymer resin excellent in melt tension to have improved melt strength, high molecular weight and a wide molecular weight distribution using a specific metallocene catalyst system.
  • the present invention is a propylene-diene copolymer resin prepared, comprising: a polymerization step of a propylene and C4-C20 diene compound using a catalyst system,
  • the catalyst system may be a metallocene compound represented by Formula 1 below; And at least one cocatalyst compound selected from the group consisting of boron compounds represented by Formulas 2 to 4 and aluminum compounds represented by Formulas 5 to 9;
  • the propylene-diene copolymer resin has a melt index (230 ° C., 2.16 kg load) of 0.1 to 100 g / 10 min, and a melt tension (ARES (Advanced Rheometric Expansion System) Melt Strength) of 5 to 100 g.
  • FES Advanced Rheometric Expansion System
  • M is a transition metal
  • m is 2 and n is 0 when M is a tetravalent transition metal of Group 4 on the periodic table, and m is 0 and n when M is a divalent transition metal of Group 4 on the periodic table Is 1;
  • Cp is a cyclopentadienyl ring capable of bonding ⁇ 5 -with M, wherein the cyclopentadienyl ring is (C1-C20) alkyl, (C3-C20) cycloalkyl, (C6-C20) aryl, tri (C1) -C20) alkylsilyl, tri (C6-C20) arylsilyl, (C1-C20) alkyldi (C6-C20) arylsilyl, (C6-C20) aryldi (C1-C20) alkylsilyl and (C2-C20) May be further substituted with one or more selected from the group consisting of al
  • B is a boron atom
  • R 11 is phenyl, said phenyl being fluorine atom, (C1-C20) alkyl, (C1-C20) alkyl substituted by fluorine atom, (C1-C20) alkoxy and (C1-C20) substituted by fluorine atom May be further substituted with 3 to 5 substituents selected from alkoxy
  • R 12 is a (C5-C7) aromatic radical or a (C1-C20) alkyl (C6-C20) aryl radical, a (C6-C20) aryl (C1-C20) alkyl radical
  • Z is nitrogen or phosphorus atom
  • R 13 is (C1-C20) alkyl radical or anilinium radical substituted with two (C1-C10) alkyl with a nitrogen atom
  • r is an integer of 2 or 3;
  • R 14 is (C1-C20) alkyl; s and t are each independently an integer from 5 to 20; R 15 and R 16 are each independently (C 1 -C 20) alkyl; E is a hydrogen atom, a halogen atom or (C1-C20) alkyl; u is an integer from 1 to 3; R 17 is (C1-C20) alkyl or (C6-C20) aryl.
  • the content of the diene compound provides a propylene-diene copolymer resin, characterized in that prepared in 0.001 to 3 mol% relative to the propylene.
  • the diene compound provides a propylene-diene copolymer resin, characterized in that at least one selected from the group consisting of C4-C20 diene, or C5-C20 cyclodiene of straight chain or crushed.
  • the diene compound is 1,3-butadiene, 1,4-pentadiene, 2-methyl-1,3-butadiene, 1,4-hexadiene, 1,5-hexadiene, 1,5-heptadiene, 1 , 6-heptadiene, 1,6-octadiene, 1,7-octadiene, 1,7-nonadiene, 1,8-nonadiene, 1,8-decadiene, 1,9-decadiene, 1, 12-tetradecadiene, 1,13-tetradecadiene, 3-methyl-1,4-hexadiene, 3-methyl-1,5-hexadiene, 3-ethyl-1,4-hexadiene, 3-ethyl With -1,5-hexadiene, 3,3-dimethyl-1,4-hexadiene, 3,3-dimethyl-1,5-hexadiene, cyclopentadiene, cyclohexadiene, cyclohept
  • the propylene-diene copolymer resin provides a propylene-diene copolymer resin, characterized in that the gel content is 10% by weight or less.
  • propylene having improved melt strength, high molecular weight and wide molecular weight distribution compared to conventional homopolymer resins -Diene copolymer resin can be provided.
  • Polypropylene resin is widely used in various resin products because of its high softening temperature, high tensile strength, flexural strength, rigidity, and high transparency and surface gloss of molded products.
  • due to rapid melting at the softening temperature there were difficulties in foaming, thermoforming, extrusion coating, blow molding, and the like.
  • the present inventors used a specific metallocene catalyst system.
  • the present invention is a propylene-diene copolymer resin prepared by polymerizing propylene and diene compounds of C4-C20 using the following metallocene catalyst system, the melt index (230 °C, 2.16kg load) is 0.1 ⁇ 100g / 10min
  • the present invention discloses a propylene-diene copolymer resin having a melt tension (ARES (Advanced Rheometric Expansion System) Melt Strength) of 5 to 100 g.
  • ARES Advanced Rheometric Expansion System
  • Propylene-diene copolymer resin according to the present invention is a metallocene compound represented by the formula (1); And at least one cocatalyst compound selected from the group consisting of a boron compound represented by Formulas 2 to 4 and an aluminum compound represented by Formulas 5 to 9; and a propylene and diene compound of C4-C20 in the presence of a catalyst system comprising a It is prepared, including the step of.
  • M is a transition metal
  • m is 2 and n is 0 when M is a tetravalent transition metal of Group 4 on the periodic table, and m is 0 and n when M is a divalent transition metal of Group 4 on the periodic table Is 1;
  • Cp is a cyclopentadienyl ring capable of bonding ⁇ 5 -with M, wherein the cyclopentadienyl ring is (C1-C20) alkyl, (C3-C20) cycloalkyl, (C6-C20) aryl, tri (C1) -C20) alkylsilyl, tri (C6-C20) arylsilyl, (C1-C20) alkyldi (C6-C20) arylsilyl, (C6-C20) aryldi (C1-C20) alkylsilyl and (C2-C20) May be further substituted with one or more selected from the group consisting of al
  • B is a boron atom
  • R 11 is phenyl, said phenyl being fluorine atom, (C1-C20) alkyl, (C1-C20) alkyl substituted by fluorine atom, (C1-C20) alkoxy and (C1-C20) substituted by fluorine atom May be further substituted with 3 to 5 substituents selected from alkoxy
  • R 12 is a (C5-C7) aromatic radical or a (C1-C20) alkyl (C6-C20) aryl radical, a (C6-C20) aryl (C1-C20) alkyl radical
  • Z is nitrogen or phosphorus atom
  • R 13 is a (C1-C20) alkyl radical or an anninium radical substituted with two (C1-C10) alkyl with a nitrogen atom
  • r is an integer of 2 or 3.
  • R 14 is (C1-C20) alkyl; s and t are each independently an integer from 5 to 20; R 15 and R 16 are each independently (C 1 -C 20) alkyl; E is a hydrogen atom, a halogen atom or (C1-C20) alkyl; u is an integer from 1 to 3; R 17 is (C1-C20) alkyl or (C6-C20) aryl.
  • " alkyl " described in the present invention means a monovalent straight or pulverized saturated hydrocarbon radical composed solely of carbon and hydrogen atoms, examples of such alkyl radicals being methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t- Butyl, pentyl, hexyl, octyl, dodecyl, and the like.
  • cycloalkyl described in the present invention means a monovalent alicyclic alkyl radical composed of one ring, and examples of cycloalkyl include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, Cyclononyl, cyclodecyl, and the like, but are not limited to these.
  • alkenyl described herein also refers to a straight or branched chain hydrocarbon radical containing one or more carbon-carbon double bonds, including but not limited to ethenyl, propenyl, butenyl, pentenyl, and the like. It is not limited.
  • aryl described in the present invention is an organic radical derived from an aromatic hydrocarbon by one hydrogen removal, and includes a single or fused ring system. Specific examples include, but are not limited to, phenyl, naphthyl, biphenyl, anthryl, fluorenyl, phenanthryl, triphenylenyl, pyrenyl, peryleneyl, chrysenyl, naphthacenyl, fluoranthenyl, and the like.
  • alkoxy described in the present invention means an -O-alkyl radical, where 'alkyl' is as defined above.
  • alkoxy radicals include, but are not limited to, methoxy, ethoxy, isopropoxy, butoxy, isobutoxy, t-butoxy and the like.
  • aryloxy described in the present invention means an -O-aryl radical, where 'aryl' is as defined above.
  • aryloxy radicals include, but are not limited to, phenoxy, biphenoxy, naphthoxy and the like.
  • halogen described in the present invention means a fluorine, chlorine, bromine or iodine atom.
  • the metallocene compound includes a cyclopentadiene derivative ligand connected to each other by a bridging group of silicon or alkenylene, and an indenyl derivative ligand in which aryl is necessarily substituted at position 4, as represented by Chemical Formula 1 It has an ansa-metallocene structure.
  • the metallocene compound has an indene derivative ligand in which aryl is substituted at position 4, so that the catalytic activity and copolymerizability is superior to that of the metallocene compound having a ligand in which aryl is not substituted at position 4 of indene.
  • This enables the production of propylene-diene copolymer resins having high melt strength and molecular weight and uniform composition distribution.
  • the metallocene compound of Chemical Formula 1 may be preferably represented by the following Chemical Formula 10 or 11.
  • M 1 is a tetravalent Group 4 transition metal
  • M 2 is a divalent Group 4 transition metal
  • Cp, Ar, R 1 to R 4 , X 1 and X 2 are as defined in Formula 1 same.
  • Cp is a cyclopentadienyl ring with or without (C1-C20) alkyl substituted;
  • R 1 is (C1-C20) alkyl, (C6-C20) aryl (C1-C20) alkyl or halo (C1-C20) alkyl;
  • Ar is (C6-C20) aryl;
  • R 2 is hydrogen or (C6-C20) aryl;
  • Ar and R 2 may be connected to (C1-C7) alkylene, (C2-C7) alkenylene or (C4-C7) alkanediylene to form a fused ring, wherein the aryl of Ar and R 2 is halogen, ( At least one selected from the group consisting of
  • M 1 is tetravalent titanium, zirconium or hafnium
  • M 2 is divalent titanium, zirconium or hafnium
  • Cp is a cyclopentadienyl ring with or without (C1-C20) alkyl substituted
  • R 1 is (C1-C20) alkyl, (C6-C20) aryl (C1-C20) alkyl or halo (C1-C20) alkyl
  • Ar is (C6-C20) aryl
  • R 2 is hydrogen or (C6-C20) aryl
  • Ar and R 2 may be connected to (C1-C7) alkylene, (C2-C7) alkenylene or (C4-C7) alkanediylene to form a fused ring, wherein the aryl of Ar and R 2 is halogen, ( At least one selected from the group consisting of C1-C20) alkyl, halo (C1-
  • Cp is cyclopentadienyl, methylcyclopentadienyl, dimethylcyclopentadienyl, trimethylcyclopentadienyl, tetramethylcyclopentadienyl or butylcyclopentadienyl;
  • R 1 is methyl, ethyl, propyl, butyl, pentyl, hexyl, benzyl or trifluoromethyl;
  • Ar is phenyl, naphthyl, biphenyl or anthryl;
  • R 2 is hydrogen, phenyl, naphthyl, biphenyl or anthryl; Phenyl, naphthyl, biphenyl or anthryl of Ar and R 2 is fluoro, chloro, iodo, bromo, methyl, ethyl, propyl, butyl, pentyl, hexyl, trifluoromethyl, cyclopropyl, cyclopen
  • the metallocene compound may be selected from compounds having the following structure, but is not limited thereto.
  • Cp is cyclopentadienyl, methylcyclopentadienyl, dimethylcyclopentadienyl, diisopropylcyclopentadienyl, trimethylcyclopentadienyl or tetramethylcyclopentadienyl;
  • M 1 is tetravalent titanium, zirconium or hafnium;
  • X 1 is chloro, fluoro, bromo, methyl, ethyl, propyl, butyl, pentyl, methoxy, ethoxy, propoxy, butoxy or dimethylamino.
  • the metallocene compound of Formula 1 may act as a counterion having a weak binding force, that is, an anion while extracting a ligand in the metallocene compound to cationic the core metal to become an active catalyst component used in polypropylene polymerization.
  • cocatalyst compounds which are aluminum compounds or boron compounds, or mixtures thereof.
  • Boron compounds used as cocatalyst compounds in the present invention may include a boron compound known from U.S. Patent No. 5,198,401, and is specifically selected from compounds represented by the following Chemical Formulas 2 to 4.
  • B is a boron atom
  • R 11 is phenyl, said phenyl being fluorine atom, (C1-C20) alkyl, (C1-C20) alkyl substituted by fluorine atom, (C1-C20) alkoxy and (C1-C20) substituted by fluorine atom May be further substituted with 3 to 5 substituents selected from alkoxy
  • R 12 is a (C5-C7) aromatic radical or a (C1-C20) alkyl (C6-C20) aryl radical, a (C6-C20) aryl (C1-C20) alkyl radical
  • Z is nitrogen or phosphorus atom
  • R 13 is a (C1-C20) alkyl radical or an anninium radical substituted with two (C1-C10) alkyl with a nitrogen atom
  • r is an integer of 2 or 3.
  • Preferred examples of the boron-based cocatalyst compound include tris (pentafluorophenyl) borane, tris (2,3,5,6-tetrafluorophenyl) borane, tris (2,3,4,5-tetrafluoro Lophenyl) borane, tris (3,4,5-trifluorophenyl) borane, tris (2,3,4-trifluorophenyl) borane, phenylbis (pentafluorophenyl) borane, tri Phenylmethyllinium tetrakis (pentafluorophenyl) borate, triphenylmethyllinium tetrakis (2,3,5,6-tetrafluorophenyl) borate, triphenylmethyllinium tetrakis (2,3,4 , 5-tetrafluorophenyl) borate, triphenylmethyllinium tetrakis (3,4,5-trifluorophenyl)
  • ferrocenium tetrakis (pentafluorophenyl) borate 1,1'- dimethyl ferrocenium tetrakis (pentafluorophenyl) borate, tetrakis (pentafluorophenyl) borate, and triphenyl Triphenylmethylium tetrakis (pentafluorophenyl) borate, triphenylmethyllinium tetrakis (3,5-bistrifluoromethylphenyl) borate, triethylammonium tetrakis (pentafluoro Phenyl) borate, tripropylammonium tetrakis (pentafluorophenyl) borate, tri (n-butyl) ammonium tetrakis (pentafluorophenyl) borate, tri (n-butyl) ammonium tetrakis (3,
  • the aluminum compound used as a promoter compound is an aluminoxane compound of Formula 5 or 6, an organoaluminum compound of Formula 7, or an organoaluminum alkyloxide or organoaluminum aryloxide compound of Formula 8 or 9.
  • R 14 is (C1-C20) alkyl; s and t are each independently an integer from 5 to 20; R 15 and R 16 are each independently (C 1 -C 20) alkyl; E is a hydrogen atom, a halogen atom or (C1-C20) alkyl; u is an integer from 1 to 3; R 17 is (C1-C20) alkyl or (C6-C20) aryl.
  • the aluminum compound which may be used include methyl aluminoxane, modified methyl aluminoxane, and tetraisobutyl aluminoxane as aluminoxane compounds;
  • organoaluminum compounds include trialkylaluminums including trimethylaluminum, triethylaluminum, tripropylaluminum, triisobutylaluminum, trihexylaluminum and trioctylaluminum; Dialkylaluminum chlorides including dimethylaluminum chloride, diethylaluminum chloride, dipropylaluminum chloride, diisobutylaluminum chloride, and dihexylaluminum chloride; Alkylaluminum dichlorides including methylaluminum dichloride, ethylaluminum dichloride, propylaluminum dichloride, isobutylaluminum dichloride, and hexylaluminum
  • the ratio of the transition metal (M): aluminum atom (Al) of Formula 1 is 1:10 to 5,000 on a molar ratio basis. Preferably it is 1: 100-2,000.
  • a preferable range of the ratio between the metallocene compound and the cocatalyst compound of the formula (1) is based on the molar ratio ratio of central metal (M): boron atom (B): aluminum atom (Al) in a ratio of 1: 0.1. 200: 10-1,000, More preferably, it is 1: 1-20: 10-500. It is possible to produce a propylene-diene copolymer resin in the above ratio, and the range of the ratio will vary depending on the purity of the reaction.
  • the catalyst system proposed in the present invention is preferably applied to a solution polymerization process performed at a temperature above the melting point of the polymer resin because the metallocene compound and the cocatalyst compounds are present in a uniform form in the polymerization reactor.
  • it may be used in slurry polymerization or gas phase polymerization in the form of a heterogeneous catalyst composition obtained by supporting the metallocene compound and the cocatalyst compound on a porous metal oxide support. Therefore, when the catalyst system of the present invention is used together with an inorganic carrier or an organic polymer carrier, it is applicable to a slurry or a gas phase process. That is, the metallocene compound and the cocatalyst compound may be used in a form supported on an inorganic carrier or an organic polymer carrier.
  • the propylene-diene copolymer resin according to the present invention is prepared by polymerizing diene compounds of propylene and C4-C20 in the presence of the catalyst system.
  • the metallocene compound and the cocatalyst compound may be separately introduced into the reactor or mixed with each component in advance, and may be added to the reactor, and mixing conditions such as order of input, temperature or concentration are not particularly limited.
  • the diene compound may be selected from linear or tricyclic C4-C20 dienes, or C5-C20 cyclodienes, such as 1,3-butadiene, 1,4-pentadiene, 2-methyl-1,3-butadiene , 1,4-hexadiene, 1,5-hexadiene, 1,5-heptadiene, 1,6-heptadiene, 1,6-octadiene, 1,7-octadiene, 1,7-nonadiene, 1,8-nonadiene, 1,8-decadiene, 1,9-decadiene, 1,12-tetradecadiene, 1,13-tetradecadiene, 3-methyl-1,4-hexadiene, 3- Methyl-1,5-hexadiene, 3-ethyl-1,4-hexadiene, 3-ethyl-1,5-hexadiene, 3,3-dimethyl-1,4-hexadiene, 3,3-dimethyl- It
  • the content of the diene compound polymerized to produce the propylene-diene copolymer resin may be 0.001 to 3 mol%, preferably 0.01 to 1 mol%.
  • the catalytic activity may be reduced, or may exhibit undesirable thermal properties in terms of melt strength.
  • the polymerization may be carried out in a slurry phase, a liquid phase or a gas phase, and when the polymerization is performed in a liquid phase or a slurry, a solvent or a monomer itself may be used as a medium.
  • Preferred organic solvents which can be used for the polymerization are C3-C20 hydrocarbons, specific examples of which are butane, isobutane, pentane, hexane, heptane, octane, isooctane, nonane, decane, dodecane, cyclohexane, methylcyclohexane, Benzene, toluene, xylene and the like.
  • the polymerization can be carried out in a batch, semi-continuous or continuous reaction, the reaction at a temperature of 25 ⁇ 300 °C, preferably 50 ⁇ 250 °C and 1 ⁇ 100bar, preferably 5 ⁇ 50bar
  • the temperature and pressure conditions of the polymerization step may be determined in consideration of the efficiency of the polymerization reaction according to the type of the reaction to be applied and the type of the reactor.
  • the propylene-diene copolymer resin according to the present invention has a melt index (230 ° C., 2.16 kg load) of 0.1 to 100 g / 10 min, and a melt tension (ARES (Advanced Rheometric Expansion System) Melt Strength) measured according to the following method.
  • ⁇ 100g preferably the melt index is 0.5-30g / 10min, the melt tension may be 10-50g, more preferably the melt index is 0.5-10g / 10min, the melt tension may be 10-45g More preferably, the melt index may be 1 to 5 g / 10 min, and the melt tension may be 20 to 40 g.
  • the propylene-diene copolymer resin according to the present invention can realize improved melt strength by using the catalyst system, while reducing the gel content compared to the homopolymer resin prepared using the conventional Ziegler-Natta catalyst system.
  • the gel content may be 10% by weight or less, preferably 8% by weight or less, more preferably 7% by weight or less, and even more preferably 5% by weight or less.
  • the propylene-diene copolymer resin according to the present invention has two melt peaks in the range of 140 ° C or more and 135 ° C or less, has a weight average molecular weight of 100,000 to 500,000, and a molecular weight distribution (Mw / Mn) of 4 to 20, preferably having two melt peaks in the range of 140-154 ° C.
  • weight average molecular weight of 300,000-500,000 and in the range of 129-135 ° C., weight average molecular weight of 300,000-500,000, and molecular weight distribution (Mw / Mn) of 5-10 It may be, more preferably has two melting peaks in the range of 140 to 151 ° C and in the range of 132 to 135 ° C, the weight average molecular weight is 350,000 to 450,000, the molecular weight distribution (Mw / Mn) is 6-10 Can be.
  • Products such as plastic molded articles using the propylene-diene copolymer resin according to the present invention is not limited in the field of use, but preferably can be mainly used for interior and exterior materials of automobiles, and specifically, automotive interior foam film / sheet, cushioning material, It can also be used in automotive parts, thermoformed products, trays, sound insulation materials, insulation materials, large hollow, automotive parts.
  • the polymerization solvent n-hexane was used after passing through a tube filled with molecular sieve 5A and activated alumina and bubbling with high purity nitrogen to sufficiently remove moisture, oxygen and other catalyst poisons. All the polymerization was carried out injecting a metallocene compound after injecting the required amount of solvent, cocatalyst compound, each monomer to be polymerized in a high pressure reactor (Autoclave) completely blocked from the outside air.
  • MAO Metallaluminoxane, Methylaluminoxane
  • the polymerized polymer resin was analyzed according to the following method.
  • MI Melt Flow Index
  • Dupont DSC2910 was used in a nitrogen atmosphere at a rate of 10 °C / min was measured under 2 nd heating conditions.
  • PL210 GPC equipped with PL Mixed-BX2 + preCol was measured at 135 ° C. at a rate of 1.0 mL / min under 1,2,3-trichlorobenzene solvent and molecular weight was corrected using PL polystyrene standards.
  • the 20 mm, 10 mm and 7 mm thick specimens prepared by hot press melting or injection are fixed to the sample holder using a Rheometric measuring instrument (2KFRTN, TA Instrument), and then the sample holder is rotated about the axis. Melt tension was measured by the resistance value required.
  • the gel content of the polymer resin was measured in the following order.
  • Sample A sample is made of 20 ⁇ m film, cut into 2cm ⁇ 2cm size and weighed.
  • a 200 mesh stainless steel mesh is prepared in 3cm x 3cm size and weighed.
  • Xylene insoluble is measured by comparing the weight difference in 8) to the mesh weight in 3) and the sample weight in 1).
  • Metallocene compound tetramethylcyclopentadienyl dimethylsilyl 2-methyl-4- (4-t-butylphenyl) indenyl zirconium dichloride
  • Tetrahydrofuran (600 mL) and tetramethylcyclopentadiene (50 g) were added to a 2 L flask, and n-BuLi (2.5 M hexane solution) (170 mL) was slowly added dropwise at -10 ° C. under a nitrogen atmosphere, followed by 12 at room temperature. The reaction was stirred for an hour. After the temperature of the reaction solution was lowered to -10 ° C. again, dimethyl dichlorosilane (170 g) was added thereto, followed by stirring at room temperature for 12 hours, and the reaction was dried in vacuo. N-hexane (500 mL) was added thereto to dissolve the reactant, followed by filtration through a celite filter. The filtered solution was dried in vacuo to yield 70 g of dimethyl tetramethylcyclopentadienyl chlorosilane in the form of a yellow oil (yield: 80%).
  • Flask # 2 Tetramethylcyclopentadienyl dimethylsilyl 2-methyl-4- (4-t-butylphenyl) indenyl dilithium salt (40 g), toluene (40 mL) and ether (10 mL) were added to Flask # 1 and stirred.
  • Flask # 2 was prepared with a mixture of toluene (30 mL) and ZrCl 4 (20 g). The mixed solution of Flask # 2 was slowly added dropwise to Flask # 1 by cannular, followed by stirring at room temperature for 24 hours. After stirring, the mixture was vacuum dried, extracted with methylene chloride (500 mL), filtered through a celite filter, and the filtrate was vacuum dried.
  • a propylene-diene copolymer resin was prepared in the same manner as in Example 1 except that 5 ml of 1,5-hexadiene was used in Example 1.
  • a propylene-diene copolymer resin was prepared in the same manner as in Example 1, except that 1,7-octadiene was used instead of 1,5-hexadiene in Example 1.
  • a propylene-diene copolymer resin was prepared in the same manner as in Example 2, except that 1,7-octadiene was used instead of 1,5-hexadiene in Example 2.
  • a propylene polymer resin was prepared in the same manner as in Example 1, except that 1,5-hexadiene was not used in Example 1.
  • a propylene-diene copolymer resin was prepared in the same manner as in Example 1, except that 0.5 ml of 1,5-hexadiene was used in Example 1.
  • a propylene-diene copolymer resin was prepared in the same manner as in Example 1 except that 10 ml of 1,5-hexadiene was used in Example 1.
  • a propylene-diene copolymer resin was prepared in the same manner as in Example 3, except that 0.5 ml of 1,7-octadiene was used in Example 3.
  • a propylene-diene copolymer resin was prepared in the same manner as in Example 3, except that 10 ml of 1,7-octadiene was used in Example 3.
  • a propylene-diene copolymer resin was prepared in the same manner as in Example 2, except that a commercial Ziegler-Natta catalyst system (LC200, Lotte Chemical) was used as the catalyst system in Example 2.
  • LC200 Ziegler-Natta catalyst system
  • a propylene-diene copolymer resin was prepared in the same manner as in Example 4, except that a commercial Ziegler-Natta catalyst system was used as the catalyst system in Example 4.
  • a high melt polypropylene resin (HMSPP, SMS-514F, Lotte Chemical) prepared by peroxide decomposition was prepared using a post process.
  • a diene-modified propylene-diene copolymer resin was prepared in a polymerization process using a specific metallocene catalyst system according to the present invention, and a certain amount of diene compound was used.
  • a specific metallocene catalyst system according to the present invention

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

특정 메탈로센 촉매계를 이용하여 개선된 용융 강도, 고분자량 및 넓은 분자량 분포를 갖는 용융 장력이 우수한 프로필렌-디엔 공중합체 수지가 개시된다. 본 발명은 메탈로센 촉매계를 이용하여 프로필렌 및 C4-C20의 디엔 화합물을 중합시켜 제조되는 프로필렌-디엔 공중합체 수지로서, 용융지수(230℃, 2.16kg 하중)가 0.1~100g/10min이고, 용융 장력(ARES(Advanced Rheometric Expansion System) Melt Strength)이 5~100g인 것을 특징으로 하는 프로필렌-디엔 공중합체 수지를 제공한다.

Description

용융 장력이 우수한 프로필렌-디엔 공중합체 수지
본 발명은 프로필렌-디엔 공중합체 수지에 관한 것으로, 보다 상세하게는 메탈로센 촉매계를 이용한 것으로 용융 장력이 우수한 프로필렌-디엔 공중합체 수지에 관한 것이다.
폴리프로필렌 및 관련된 중합체 수지들은 낮은 용융 강도를 갖는 것으로 알려져 있다. 하지만 이러한 물성은 열성형 및 취입 성형과 같은 주요 용도 분야에서 약점으로 지적되고 있다. 폴리프로필렌의 용융 강도의 한계는 시트 압출에서 과다한 침하, 용융상에서 열성형된 부품 벽의 고속 박막화, 압출 피복에서 낮은 인낙비(draw-down ratio), 압출 발포 물질에서 기포 형성 불량 및 큰-부품의 취입 성형에서의 상대적인 취약성으로서 나타난다. 따라서, 상업적으로 가치 있는 가공성 뿐만 아니라 개선된 용융 강도를 갖는 폴리프로필렌 및 관련된 중합체 수지는 상업적으로 끊임없이 요구되고 있다.
폴리프로필렌과 같은 중합체 수지의 용융 강도를 증가시키기 위한 연구가 지난 수십년간 수행되었으나, 그 성공은 제한적이었다. 대표적인 방법으로는 통상적인 지글러-나타형 촉매를 사용하여 중합체내에 불포화기를 도입시키기 위해 프로필렌을 α-ω-디엔과 공중합하는 방법이 있다. 하지만 이러한 가공법은 일반적으로 중합된 폴리프로필렌을 후공정을 이용하여 퍼옥사이드 분해를 통해 유사한 생성물을 수득하는 방법이기 때문에 후공정을 통한 제조 비용이 비싸고, 퍼옥사이드 분해 과정이 작업자에게 유해할 수 있으며, 미반응된 단량체 잔량에 의해 수지의 물성이 변화하는 등의 문제가 발생할 수 있다. 또한 과도하게 투입된 디엔류로 인해 수지 자체의 겔화가 발생하는 등의 문제가 있었다. 따라서, 개선된 용융 강도 및 우수한 가공성을 갖는 프로필렌 중합체 수지의 연구는 꾸준히 요구되어 왔다.
올레핀 중합 촉매계는 지글러 나타 및 메탈로센 촉매계로 분류할 수 있으며, 이 두 가지의 고활성 촉매계는 각각의 특징에 맞게 발전되어 왔다. 지글러 나타 촉매는 1950년대 발명된 이래 기존의 상업 프로세스에 널리 적용되어져 왔으나 활성종이 여러 개 혼재하는 다활성점 촉매(Multi Site Catalyst)이기 때문에 중합체 수지의 분자량 분포가 넓은 것이 특징이며, 공단량체의 조성 분포가 균일하지 않아 원하는 물성 확보에 한계가 있다는 문제점이 있다. 하지만 메탈로센 촉매계는 메탈로센 화합물이 주성분인 주촉매와 알루미늄이 주성분인 유기 금속 화합물인 조촉매의 조합으로 이루어지며, 이와 같은 촉매계는 균일계 착체 촉매로 단일활성점 촉매(Single Site Catalyst)이며, 단일활성점 특성에 따라 분자량 분포가 좁고 공단량체의 조성 분포가 균일한 고분자가 얻어지며, 촉매의 리간드 구조 변형 및 중합조건의 변경에 따라 고분자의 입체규칙도, 공중합 특성, 분자량, 결정화도 등을 변화시킬 수 있는 특성을 가지고 있다.
[선행특허문헌]
- 한국공개특허 제2015-0029368호(2015.03.18)
- 한국공개특허 제2014-0133343호(2014.11.19)
- 미국특허 제7226886호(2007.06.05)
- 유럽특허 제0416815호(1991.03.13)
- 유럽특허 제0420436호(1991.04.03)
- 유럽특허 제0842939호(1998.05.20)
본 발명은 상기 문제를 해결하기 위해 안출된 것으로, 특정 메탈로센 촉매계를 이용하여 개선된 용융 강도, 고분자량 및 넓은 분자량 분포를 갖도록 하는 용융 장력이 우수한 프로필렌-디엔 공중합체 수지를 제공하고자 한다.
상기 과제를 해결하기 위하여 본 발명은, 촉매계를 이용한 프로필렌 및 C4-C20의 디엔 화합물의 중합 단계;를 포함하여 제조되는 프로필렌-디엔 공중합체 수지로서,
상기 촉매계는 하기 화학식 1로 표시되는 메탈로센 화합물; 및 하기 화학식 2 내지 4로 표시되는 붕소 화합물 및 화학식 5 내지 9로 표시되는 알루미늄 화합물로 이루어진 군에서 선택되는 하나 이상의 조촉매 화합물;을 포함하고,
상기 프로필렌-디엔 공중합체 수지는 용융지수(230℃, 2.16kg 하중)가 0.1~100g/10min이고, 용융 장력(ARES(Advanced Rheometric Expansion System) Melt Strength)이 5~100g인 것을 특징으로 하는 프로필렌-디엔 공중합체 수지를 제공한다 :
[화학식 1]
Figure PCTKR2017003788-appb-I000001
[화학식 2]
B(R11)3
[화학식 3]
[R12]+[B(R11)4]-
[화학식 4]
[(R13)rZH]+[B(R11)4]-
[화학식 5]
-[Al(R14)-O]s-
[화학식 6]
(R14)2Al-[O(R14)]t-(R14)2
[화학식 7]
(R15)uAl(E)3-u
[화학식 8]
(R16)2AlOR17
[화학식 9]
R16Al(OR17)2
화학식 1에서, M은 전이금속이고, M이 주기율표 상 4족의 4가 전이금속인 경우 m은 2이고 n은 0이고, M이 주기율표 상 4족의 2가 전이금속인 경우 m은 0이고 n은 1이고; Cp는 M과 η5-결합할 수 있는 시클로펜타디에닐 고리이고, 상기 시클로펜타디에닐 고리는 (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C20)아릴, 트리(C1-C20)알킬실릴, 트리(C6-C20)아릴실릴, (C1-C20)알킬디(C6-C20)아릴실릴, (C6-C20)아릴디(C1-C20)알킬실릴 및 (C2-C20)알케닐로 이루어진 군으로부터 선택되는 하나 이상으로 더 치환될 수 있고; D는 SiR3R4 또는 (C2-C20)알케닐렌이고; R3 및 R4는 각각 독립적으로 수소, (C1-C20)알킬, (C3-C20)시클로알킬 또는 (C6-C20)아릴이거나, 상기 R3 및 R4는 (C4-C7)알킬렌으로 연결되어 고리를 형성할 수 있고; R1은 (C1-C20)알킬이고; Ar은 (C6-C20)아릴이고; R2는 수소, (C1-C20)알킬, (C3-C20)시클로알킬 또는 (C6-C20)아릴이고; 상기 Ar 및 R2는 (C1-C7)알킬렌, (C2-C7)알케닐렌 또는 (C4-C7)알칸디에닐렌으로 연결되어 융합고리를 형성할 수 있고; X1은 할로겐, (C1-C20)알킬, (C1-C20)알콕시, (C3-C20)시클로알킬, (C6-C20)아릴, (C6-C20)아릴옥시, -OSiRaRbRc, -SRd, -NReRf 또는 -PRgRh이고; Ra 내지 Rh는 서로 독립적으로 (C1-C20)알킬, (C6-C20)아릴 또는 (C3-C20)시클로알킬이고; X2는 중성의 공액 또는 비공액 (C4-C20)디엔이고; 상기 R1의 알킬, Ar의 아릴, R2, R3 및 R4의 알킬, 시클로알킬, 아릴은 서로 독립적으로 할로겐, (C1-C20)알킬, 할로(C1-C20)알킬, (C3-C20)시클로알킬, (C6-C20)아릴, (C1-C20)알콕시 및 (C6-C20)아릴옥시로 이루어진 군에서 선택된 하나 이상의 치환체로 더 치환될 수 있고;
화학식 2 내지 4에서, B는 붕소 원자이며; R11는 페닐이며, 상기 페닐은 불소 원자, (C1-C20)알킬, 불소 원자에 의해 치환된 (C1-C20)알킬, (C1-C20)알콕시 및 불소 원자에 의해 치환된 (C1-C20)알콕시로부터 선택된 3 내지 5 개의 치환기로 더 치환될 수 있으며; R12는 (C5-C7)방향족 라디칼 또는 (C1-C20)알킬(C6-C20)아릴 라디칼, (C6-C20)아릴(C1-C20)알킬 라디칼이며; Z는 질소 또는 인 원자이며; R13은 (C1-C20)알킬 라디칼 또는 질소원자와 함께 2개의 (C1-C10)알킬로 치환된 아닐리니움(Anilinium) 라디칼이며; r는 2 또는 3의 정수이며;
화학식 5 내지 9에서, R14는 (C1-C20)알킬이고; s 및 t는 각각 독립적으로 5 내지 20의 정수이고; R15 및 R16는 각각 독립적으로 (C1-C20)알킬이고; E는 수소 원자, 할로겐 원자 또는 (C1-C20)알킬이고; u는 1 내지 3의 정수이고; R17은 (C1-C20)알킬 또는 (C6-C20)아릴이다.
또한 상기 중합 단계에서, 상기 디엔 화합물의 함량은 상기 프로필렌 대비 0.001~3몰%로 준비된 것을 특징으로 하는 프로필렌-디엔 공중합체 수지를 제공한다.
또한 상기 디엔 화합물은 직쇄 또는 분쇄의 C4-C20의 디엔, 또는 C5-C20의 시클로디엔으로 이루어진 군에서 하나 이상 선택된 것을 특징으로 하는 프로필렌-디엔 공중합체 수지를 제공한다.
또한 상기 디엔 화합물은 1,3-부타디엔, 1,4-펜타디엔, 2-메틸-1,3-부타디엔, 1,4-헥사디엔, 1,5-헥사디엔, 1,5-헵타디엔, 1,6-헵타디엔, 1,6-옥타디엔, 1,7-옥타디엔, 1,7-노나디엔, 1,8-노나디엔, 1,8-데카디엔, 1,9-데카디엔, 1,12-테트라데카디엔, 1,13-테트라데카디엔, 3-메틸-1,4-헥사디엔, 3-메틸-1,5-헥사디엔, 3-에틸-1,4-헥사디엔, 3-에틸-1,5-헥사디엔, 3,3-디메틸-1,4-헥사디엔, 3,3-디메틸-1,5-헥사디엔, 시클로펜타디엔, 시클로헥사디엔, 시클로헵타디엔 및 시클로옥타디엔으로 이루어진 군에서 하나 이상 선택된 것을 특징으로 하는 프로필렌-디엔 공중합체 수지를 제공한다.
또한 상기 프로필렌-디엔 공중합체 수지는 겔 함량이 10중량% 이하인 것을 특징으로 하는 프로필렌-디엔 공중합체 수지를 제공한다.
본 발명에 따르면, 특정 메탈로센 촉매계를 이용하여 중합 과정에서 디엔 개질된 프로필렌-디엔 공중합체 수지를 제공함으로써, 종래 동종 공중합체 수지에 비해 개선된 용융 강도, 고분자량 및 넓은 분자량 분포를 갖는 프로필렌-디엔 공중합체 수지를 제공할 수 있다.
또한 종래 후공정에 의해 생성된 장쇄 분지 수지에 비해 공정 비용이 저렴하면서도 우수한 물성을 갖는 프로필렌-디엔 공중합체 수지를 제공할 수 있다.
이하에서는 본 발명의 바람직한 실시예를 상세하게 설명한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐리게 할 수 있다고 판단되는 경우 그 상세한 설명을 생략하기로 한다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.
폴리프로필렌 수지는 연화온도가 높고, 인장강도, 굴곡강도, 강성 등이 높으며, 성형품의 투명성 및 표면광택도가 높기 때문에 각종 수지 제품에 널리 사용되고 있다. 하지만 연화온도에서의 급격한 용융현상으로 인해 포밍(foaming), 열성형, 압출 코팅, 블로우 성형 등에는 어려움이 있었으므로, 이를 극복하기 위한 연구를 거듭한 결과, 본 발명자들은 특정 메탈로센 촉매계를 이용하여 중합 과정에서 디엔 개질된 프로필렌-디엔 공중합체 수지를 제공함으로써, 종래 동종 공중합체 수지에 비해 개선된 용융 강도, 고분자량 및 넓은 분자량 분포를 갖는 프로필렌-디엔 공중합체 수지를 제공할 수 있음을 알아내고 본 발명에 이르게 되었다.
따라서 본 발명은 하기 메탈로센 촉매계를 이용하여 프로필렌 및 C4-C20의 디엔 화합물을 중합시켜 제조되는 프로필렌-디엔 공중합체 수지로서, 용융지수(230℃, 2.16kg 하중)가 0.1~100g/10min이고, 용융 장력(ARES(Advanced Rheometric Expansion System) Melt Strength)이 5~100g인 것을 특징으로 하는 프로필렌-디엔 공중합체 수지를 개시한다.
본 발명에 따른 프로필렌-디엔 공중합체 수지는 하기 화학식 1로 표시되는 메탈로센 화합물; 및 하기 화학식 2 내지 4로 표시되는 붕소 화합물 및 화학식 5 내지 9로 표시되는 알루미늄 화합물로 이루어진 군에서 선택되는 하나 이상의 조촉매 화합물;을 포함하는 촉매계 존재 하에서, 프로필렌 및 C4-C20의 디엔 화합물을 중합시키는 단계를 포함하여 제조된다.
[화학식 1]
Figure PCTKR2017003788-appb-I000002
화학식 1에서, M은 전이금속이고, M이 주기율표 상 4족의 4가 전이금속인 경우 m은 2이고 n은 0이고, M이 주기율표 상 4족의 2가 전이금속인 경우 m은 0이고 n은 1이고; Cp는 M과 η5-결합할 수 있는 시클로펜타디에닐 고리이고, 상기 시클로펜타디에닐 고리는 (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C20)아릴, 트리(C1-C20)알킬실릴, 트리(C6-C20)아릴실릴, (C1-C20)알킬디(C6-C20)아릴실릴, (C6-C20)아릴디(C1-C20)알킬실릴 및 (C2-C20)알케닐로 이루어진 군으로부터 선택되는 하나 이상으로 더 치환될 수 있고; D는 SiR3R4 또는 (C2-C20)알케닐렌이고; R3 및 R4는 각각 독립적으로 수소, (C1-C20)알킬, (C3-C20)시클로알킬 또는 (C6-C20)아릴이거나, 상기 R3 및 R4는 (C4-C7)알킬렌으로 연결되어 고리를 형성할 수 있고; R1은 (C1-C20)알킬이고; Ar은 (C6-C20)아릴이고; R2는 수소, (C1-C20)알킬, (C3-C20)시클로알킬 또는 (C6-C20)아릴이고; 상기 Ar 및 R2는 (C1-C7)알킬렌, (C2-C7)알케닐렌 또는 (C4-C7)알칸디에닐렌으로 연결되어 융합고리를 형성할 수 있고; X1은 할로겐, (C1-C20)알킬, (C1-C20)알콕시, (C3-C20)시클로알킬, (C6-C20)아릴, (C6-C20)아릴옥시, -OSiRaRbRc, -SRd, -NReRf 또는 -PRgRh이고; Ra 내지 Rh는 서로 독립적으로 (C1-C20)알킬, (C6-C20)아릴 또는 (C3-C20)시클로알킬이고; X2는 중성의 공액 또는 비공액 (C4-C20)디엔이고; 상기 R1의 알킬, Ar의 아릴, R2, R3 및 R4의 알킬, 시클로알킬, 아릴은 서로 독립적으로 할로겐, (C1-C20)알킬, 할로(C1-C20)알킬, (C3-C20)시클로알킬, (C6-C20)아릴, (C1-C20)알콕시 및 (C6-C20)아릴옥시로 이루어진 군에서 선택된 하나 이상의 치환체로 더 치환될 수 있다.
[화학식 2]
B(R11)3
[화학식 3]
[R12]+[B(R11)4]-
[화학식 4]
[(R13)rZH]+[B(R11)4]-
화학식 2 내지 4에서, B는 붕소 원자이며; R11는 페닐이며, 상기 페닐은 불소 원자, (C1-C20)알킬, 불소 원자에 의해 치환된 (C1-C20)알킬, (C1-C20)알콕시 및 불소 원자에 의해 치환된 (C1-C20)알콕시로부터 선택된 3 내지 5 개의 치환기로 더 치환될 수 있으며; R12는 (C5-C7)방향족 라디칼 또는 (C1-C20)알킬(C6-C20)아릴 라디칼, (C6-C20)아릴(C1-C20)알킬 라디칼이며; Z는 질소 또는 인 원자이며; R13은 (C1-C20)알킬 라디칼 또는 질소원자와 함께 2개의 (C1-C10)알킬로 치환된 아닐리니움(Anilinium) 라디칼이고; r는 2 또는 3의 정수이다.
[화학식 5]
-[Al(R14)-O]s-
[화학식 6]
(R14)2Al-[O(R14)]t-(R14)2
[화학식 7]
(R15)uAl(E)3-u
[화학식 8]
(R16)2AlOR17
[화학식 9]
R16Al(OR17)2
화학식 5 내지 9에서, R14는 (C1-C20)알킬이고; s 및 t는 각각 독립적으로 5 내지 20의 정수이고; R15 및 R16는 각각 독립적으로 (C1-C20)알킬이고; E는 수소 원자, 할로겐 원자 또는 (C1-C20)알킬이고; u는 1 내지 3의 정수이고; R17은 (C1-C20)알킬 또는 (C6-C20)아릴이다.
본 발명에 기재된 용어 「알킬」은 탄소 및 수소 원자만으로 구성된 1가의 직쇄 또는 분쇄 포화 탄화수소 라디칼을 의미하는 것으로, 이러한 알킬 라디칼의 예는 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, t-부틸, 펜틸, 헥실, 옥틸, 도데실 등을 포함하지만 이에 한정되지는 않는다.
또한 본 발명에 기재된 용어 「시클로알킬」는 하나의 고리로 구성된 1가의 지환족 알킬 라디칼을 의미하는 것으로, 시클로알킬의 예는 시클로프로필, 시클로부틸, 시클로펜틸, 시클로헥실, 시클로헵틸, 시클로옥틸, 시클로노닐, 시클로데실 등을 포함하지만 이에 한정되지는 않는다.
또한 본 발명에 기재된 용어 「알케닐」은 하나 이상의 탄소-탄소 이중 결합을 함유하는 직쇄 또는 분지쇄의 탄화수소 라디칼을 의미하는 것으로, 에테닐, 프로페닐, 부테닐, 펜테닐 등을 포함하지만, 이에 한정되지는 않는다.
또한 본 발명에 기재된 용어 「아릴」은 하나의 수소 제거에 의해서 방향족 탄화수소로부터 유도된 유기 라디칼로, 단일 또는 융합고리계를 포함한다. 구체적인 예로 페닐, 나프틸, 비페닐, 안트릴, 플루오레닐, 페난트릴, 트라이페닐레닐, 피렌일, 페릴렌일, 크라이세닐, 나프타세닐, 플루오란텐일 등을 포함하지만, 이에 한정되지 않는다.
또한 본 발명에 기재된 용어 「알콕시」는 -O-알킬 라디칼을 의미하는 것으로, 여기서 '알킬'은 상기 정의한 바와 같다. 이러한 알콕시 라디칼의 예는 메톡시, 에톡시, 이소프로폭시, 부톡시, 이소부톡시, t-부톡시 등을 포함하지만 이에 한정되지는 않는다.
또한 본 발명에 기재된 용어 「아릴옥시」는 -O-아릴 라디칼을 의미하는 것으로, 여기서 '아릴'은 상기 정의한 바와 같다. 이러한 아릴옥시 라디칼의 예는 페녹시, 바이페녹시, 나프톡시 등을 포함하지만 이에 한정되지는 않는다.
또한 본 발명에 기재된 용어 「할로겐」은 불소, 염소, 브롬 또는 요오드 원자를 의미한다.
본 발명에서 상기 메탈로센 화합물은 화학식 1로 표시되는 것과 같이, 실리콘 또는 알케닐렌의 브릿지 그룹에 의해 서로 연결된 시클로펜타디엔 유도체 리간드와 4번 위치에 반드시 아릴이 치환된 인데닐 유도체 리간드를 포함하는 안사-메탈로센(ansa-metallocene) 구조를 갖는다.
이와 같이, 상기 메탈로센 화합물은 4번 위치에 아릴이 치환된 인덴 유도체 리간드를 가지고 있어 인덴의 4번 위치에 아릴이 치환되지 않은 리간드를 갖는 메탈로센 화합물에 비해 보다 우수한 촉매 활성 및 공중합성으로 높은 용융 강도 및 분자량과 균일한 조성 분포를 갖는 프로필렌-디엔 공중합체 수지의 제조를 가능케 한다.
본 발명의 일 실시예에 있어서, 화학식 1의 메탈로센 화합물은 바람직하게는 하기 화학식 10 또는 11로 표시될 수 있다.
[화학식 10]
Figure PCTKR2017003788-appb-I000003
[화학식 11]
Figure PCTKR2017003788-appb-I000004
화학식 10 및 11에서, M1은 4가의 4족 전이금속이고, M2는 2가의 4족 전이금속이고, Cp, Ar, R1 내지 R4, X1 및 X2는 화학식 1에서의 정의와 동일하다.
본 발명의 일 실시예에 있어서, 화학식 1에서, M이 4가의 티타늄, 지르코늄 또는 하프늄인 경우 m은 2이고 n은 0이고, M이 2가의 티타늄, 지르코늄 또는 하프늄인 경우 m은 0이고 n은 1이고; Cp는 (C1-C20)알킬이 치환되거나 치환되지 않은 시클로펜타디에닐 고리이고; R1은 (C1-C20)알킬, (C6-C20)아릴(C1-C20)알킬 또는 할로(C1-C20)알킬이고; Ar은 (C6-C20)아릴이고; R2는 수소 또는 (C6-C20)아릴이고; Ar 및 R2는 (C1-C7)알킬렌, (C2-C7)알케닐렌 또는 (C4-C7)알칸디에닐렌으로 연결되어 융합고리를 형성할 수 있으며, Ar 및 R2의 아릴은 할로겐, (C1-C20)알킬, 할로(C1-C20)알킬, (C3-C20)시클로알킬, (C6-C20)아릴, (C1-C20)알콕시 및 (C6-C20)아릴옥시로 이루어진 군에서 선택된 하나 이상의 치환체로 더 치환될 수 있고; R3 및 R4는 (C1-C20)알킬, (C6-C20)아릴(C1-C20)알킬, 할로(C1-C20)알킬, (C6-C20)아릴 또는 (C1-C20)알킬(C6-C20)아릴이고, R3 및 R4는 (C4-C7)알킬렌으로 연결되어 고리를 형성할 수 있고; X1은 할로겐, (C1-C20)알킬, (C1-C20)알콕시 또는 디(C1-C20)알킬아미노이고; X2는 중성의 공액 1,3-(C4-C20)디엔일 수 있다.
본 발명의 일 실시예에 있어서, 화학식 10 및 11에서, M1은 4가의 티타늄, 지르코늄 또는 하프늄이고; M2는 2가의 티타늄, 지르코늄 또는 하프늄이고; Cp는 (C1-C20)알킬이 치환되거나 치환되지 않은 시클로펜타디에닐 고리이고; R1은 (C1-C20)알킬, (C6-C20)아릴(C1-C20)알킬 또는 할로(C1-C20)알킬이고; Ar은 (C6-C20)아릴이고; R2는 수소 또는 (C6-C20)아릴이고; Ar 및 R2는 (C1-C7)알킬렌, (C2-C7)알케닐렌 또는 (C4-C7)알칸디에닐렌으로 연결되어 융합고리를 형성할 수 있으며, Ar 및 R2의 아릴은 할로겐, (C1-C20)알킬, 할로(C1-C20)알킬, (C3-C20)시클로알킬, (C6-C20)아릴, (C1-C20)알콕시 및 (C6-C20)아릴옥시로 이루어진 군에서 선택된 하나 이상의 치환체로 더 치환될 수 있고; R3 및 R4는 (C1-C20)알킬, (C6-C20)아릴(C1-C20)알킬, 할로(C1-C20)알킬, (C6-C20)아릴 또는 (C1-C20)알킬(C6-C20)아릴이고, R3 및 R4는 (C4-C7)알킬렌으로 연결되어 고리를 형성할 수 있고; X1은 할로겐, (C1-C20)알킬, (C1-C20)알콕시 또는 디(C1-C20)알킬아미노이고; X2는 중성의 공액 1,3-(C4-C20)디엔일 수 있다.
본 발명의 일 실시예에 있어서, 상기 Cp는 시클로펜타디에닐, 메틸시클로펜타디에닐, 디메틸시클로펜타디에닐, 트리메틸시클로펜타디에닐, 테트라메틸시클로펜타디에닐 또는 부틸시클로펜타디에닐이고; R1은 메틸, 에틸, 프로필, 부틸, 펜틸, 헥실, 벤질 또는 트리플루오로메틸이고; Ar은 페닐, 나프틸, 바이페닐 또는 안트릴이고; R2는 수소, 페닐, 나프틸, 바이페닐 또는 안트릴이고; 상기 Ar 및 R2의 페닐, 나프틸, 바이페닐 또는 안트릴은 플루오로, 클로로, 아이오도, 브로모, 메틸, 에틸, 프로필, 부틸, 펜틸, 헥실, 트리플루오로메틸, 시클로프로필, 시클로펜틸, 시클로헥실, 페닐, 나프틸, 메톡시, 에톡시, 프로폭시, 부톡시, 펜틸옥시, 헥실옥시 및 페녹시로 이루어진 군으로부터 선택되는 하나 이상의 치환체로 더 치환될 수 있고; 상기 Ar과 R2는 메틸렌, 에테닐렌 또는 1,3-부탄디에닐렌으로 연결되어 융합고리를 형성할 수 있으며, R3 및 R4는 메틸, 에틸, 프로필, 부틸, 펜틸, 헥실, 벤질, 트리플루오로메틸, 페닐, 나프틸, 바이페닐, 안트릴 또는 톨릴이고, 상기 R3 과 R4는 부틸렌 또는 펜틸렌으로 연결되어 고리를 형성할 수 있고; X1은 플루오로, 클로로, 아이오도, 브로모, 메틸, 에틸, 프로필, 부틸, 펜틸, 헥실, 메톡시, 에톡시, 프로폭시, 부톡시, 펜틸옥시, 헥실옥시, 디메틸아미노, 디에틸아미노, 디프로필아미노, 디부틸아미노, 부틸프로필아미노, 디헥실아미노, 디옥틸아미노 또는 메틸에틸아미노이고; X2는 1,3-부타디엔, 1,3-펜타디엔, 1,3-헥사디엔, 1,3-헵타디엔 또는 1,3-옥타디엔일 수 있다.
본 발명의 일 실시예에 있어서, 상기 메탈로센 화합물은 하기 구조의 화합물들로부터 선택될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2017003788-appb-I000005
Figure PCTKR2017003788-appb-I000006
Figure PCTKR2017003788-appb-I000007
Figure PCTKR2017003788-appb-I000008
Figure PCTKR2017003788-appb-I000009
상기 구조에서, Cp는 시클로펜타디에닐, 메틸시클로펜타디에닐, 디메틸시클로펜타티에닐, 디이소프로필시클로펜타디에닐, 트리메틸시클로펜타디에닐 또는 테트라메틸시클로펜타디에닐이고; M1은 4가의 티타늄, 지르코늄 또는 하프늄이고; X1은 클로로, 플루오로, 브로모, 메틸, 에틸, 프로필, 부틸, 펜틸, 메톡시, 에톡시, 프로폭시, 부톡시 또는 디메틸아미노이다.
한편, 화학식 1의 메탈로센 화합물은 폴리프로필렌 중합에 사용되는 활성촉매 성분이 되기 위하여, 메탈로센 화합물 중의 리간드를 추출하여 중심 금속을 양이온화 시키면서 약한 결합력을 가진 반대이온, 즉 음이온으로 작용할 수 있는 알루미늄 화합물 또는 붕소 화합물, 또는 이들의 혼합물인 조촉매 화합물과 함께 작용한다.
본 발명에서 조촉매 화합물로 사용되는 붕소 화합물은 미국특허 제5,198,401호에 공지된 붕소 화합물을 들 수 있으며, 구체적으로 하기 화학식 2 내지 4로 표시되는 화합물 중에서 선택된다.
[화학식 2]
B(R11)3
[화학식 3]
[R12]+[B(R11)4]-
[화학식 4]
[(R13)rZH]+[B(R11)4]-
화학식 2 내지 4에서, B는 붕소 원자이며; R11는 페닐이며, 상기 페닐은 불소 원자, (C1-C20)알킬, 불소 원자에 의해 치환된 (C1-C20)알킬, (C1-C20)알콕시 및 불소 원자에 의해 치환된 (C1-C20)알콕시로부터 선택된 3 내지 5 개의 치환기로 더 치환될 수 있으며; R12는 (C5-C7)방향족 라디칼 또는 (C1-C20)알킬(C6-C20)아릴 라디칼, (C6-C20)아릴(C1-C20)알킬 라디칼이며; Z는 질소 또는 인 원자이며; R13은 (C1-C20)알킬 라디칼 또는 질소원자와 함께 2개의 (C1-C10)알킬로 치환된 아닐리니움(Anilinium) 라디칼이고; r는 2 또는 3의 정수이다.
상기 붕소계 조촉매 화합물의 바람직한 예로는 트리스(펜타플루오로페닐)보레인, 트리스(2,3,5,6-테트라플루오로페닐)보레인, 트리스(2,3,4,5-테트라플루오로페닐)보레인, 트리스(3,4,5-트리플루오로페닐)보레인, 트리스(2,3,4-트리플루오로페닐)보레인, 페닐비스(펜타플루오로페닐)보레인, 트리페닐메틸리니움 테트라키스(펜타플루오로페닐)보레이트, 트리페닐메틸리니움 테트라키스(2,3,5,6-테트라플루오로페닐)보레이트, 트리페닐메틸리니움 테트라키스(2,3,4,5-테트라플루오로페닐)보레이트, 트리페닐메틸리니움 테트라키스(3,4,5-트리플루오로페닐)보레이트, 트리페닐메틸리니움 테트라키스(2,2,4-트리플루오로페닐)보레이트, 트리페닐메틸리니움 페닐비스(펜타플루오로페닐)보레이트 또는 트리페닐메틸리니움 테트라키스(3,5-비스트리플루오로메틸페닐)보레이트를 들 수 있다. 또한 그것들의 특정 배합예로는 페로세늄 테트라키스(펜타플루오로페닐)보레이트, 1,1'-디메틸페로세늄 테트라키스(펜타플루오로페닐)보레이트, 테트라키스(펜타플루오로페닐)보레이트, 트리페닐메틸리니움 테트라키스(펜타플루오로페닐)보레이트(triphenylmethylium tetrakis(pentafluorophenyl)borate), 트리페닐메틸리니움 테트라키스(3,5-비스트리플루오로메틸페닐)보레이트, 트리에틸암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리프로필암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리(n-부틸)암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리(n-부틸)암모늄 테트라키스(3,5-비스트리플루오로메틸페닐)보레이트, N,N-디메틸아닐리니움 테트라키스(펜타플루오로페닐)보레이트, N,N-디에틸아닐리니움 테트라키스(펜타플루오로페닐)보레이트, N,N-2,4,6-펜타메틸아닐리니움 테트라키스(펜타플루오로페닐)보레이트, N,N-디메틸아닐리니움 테트라키스(3,5-비스트리플루오로메틸페닐)보레이트, 디이소프로필암모늄 테트라키스(펜타플루오로페닐)보레이트, 디시클로헥실암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리페닐포스포늄 테트라키스(펜타플루오로페닐)보레이트, 트리(메틸페닐)포스포늄 테트라키스(펜타플루오로페닐)보레이트, 또는 트리(디메틸페닐)포스포늄 테트라키스(펜타플루오로페닐)보레이트가 포함되고, 이 중 가장 바람직한 것은 N,N-디메틸아닐리니움 테트라키스(펜타플루오르페닐)보레이트, 트리페닐메틸리니움 테트라키스(펜타플루오르페닐)보레이트 또는 트리스(펜타플루오르)보레인이다.
또한, 조촉매 화합물로 사용되는 알루미늄 화합물은, 화학식 5 또는 6의 알루미녹산 화합물, 화학식 7의 유기알루미늄 화합물, 또는 화학식 8 또는 9의 유기알루미늄 알킬옥사이드 또는 유기알루미늄 아릴옥사이드 화합물이다.
[화학식 5]
-[Al(R14)-O]s-
[화학식 6]
(R14)2Al-[O(R14)]t-(R14)2
[화학식 7]
(R15)uAl(E)3-u
[화학식 8]
(R16)2AlOR17
[화학식 9]
R16Al(OR17)2
화학식 5 내지 9에서, R14는 (C1-C20)알킬이고; s 및 t는 각각 독립적으로 5 내지 20의 정수이고; R15 및 R16는 각각 독립적으로 (C1-C20)알킬이고; E는 수소 원자, 할로겐 원자 또는 (C1-C20)알킬이고; u는 1 내지 3의 정수이고; R17은 (C1-C20)알킬 또는 (C6-C20)아릴이다.
상기 알루미늄 화합물로 사용할 수 있는 구체적인 예로, 알루미녹산 화합물로서 메틸알루미녹산, 개량(modified) 메틸알루미녹산, 테트라이소부틸알루미녹산이 있고; 유기알루미늄 화합물의 예로서 트리메틸알루미늄, 트리에틸알루미늄, 트리프로필알루미늄, 트리이소부틸알루미늄, 트리헥실알루미늄 및 트리옥틸알루미늄을 포함하는 트리알킬알루미늄; 디메틸알루미늄클로라이드, 디에틸알루미늄클로라이드, 디프로필알루미늄 클로라이드, 디이소부틸알루미늄클로라이드, 및 디헥실알루미늄클로라이드를 포함하는 디알킬알루미늄클로라이드; 메틸알루미늄디클로라이드, 에틸알루미늄디클로라이드, 프로필알루미늄디클로라이드, 이소부틸알루미늄디클로라이드, 및 헥실알루미늄디클로라이드를 포함하는 알킬알루미늄디클로라이드; 디메틸알루미늄하이드라이드, 디에틸알루미늄하이드라이드, 디프로필알루미늄하이드라이드, 디이소부틸알루미늄하이드라이드 및 디헥실알루미늄하이드라이드를 포함하는 디알킬알루미늄하이드라이드를 들 수 있으며, 바람직하게는 알루미녹산 화합물, 트리알킬알루미늄 또는 이들의 혼합물, 보다 바람직하게는 메틸알루미녹산, 개량(modified) 메틸알루미녹산, 트리에틸알루미늄, 트리이소부틸알루미늄 또는 이들의 혼합물이다.
본 발명에 따른 촉매계에서, 상기 알루미늄 화합물, 특히 알루미녹산 화합물을 조촉매 화합물로 사용하는 경우 화학식 1의 전이금속(M):알루미늄 원자(Al)의 비가 몰비 기준으로 1:10~5,000이고, 보다 바람직하게는 1:100~2,000이다. 또한 본 발명에 따른 촉매계에서, 화학식 1의 메탈로센 화합물과 조촉매 화합물 간의 비율의 바람직한 범위는 몰비 기준으로 중심금속(M):붕소 원자(B):알루미늄 원자(Al)의 비가 1 : 0.1~200 : 10~1,000이고, 보다 바람직하게는 1 : 1~20 : 10~500이다. 상기 비율로 프로필렌-디엔 공중합체 수지의 제조가 가능하며, 반응의 순도에 따라 비율의 범위가 달라지게 된다.
본 발명에서 제시된 촉매계는 메탈로센 화합물 및 조촉매 화합물들이 중합반응기 내에서 균일한 형태로 존재하기 때문에 해당 중합체 수지의 용융점 이상의 온도에서 실시하는 용액중합 공정에 적용되는 것이 바람직하다. 그러나 미국특허 제4,752,597호에 개시된 바와 같이 다공성 금속 옥사이드 지지체에 상기 메탈로센 화합물 및 조촉매 화합물을 지지시켜 얻어지는 비균일촉매 조성물의 형태로 슬러리 중합이나 기상 중합 공정에 이용될 수도 있다. 따라서, 본 발명의 상기 촉매계를 무기계 담체 또는 유기 고분자 담체와 함께 사용하면 슬러리 또는 기상 공정에도 적용 가능하다. 즉, 상기 메탈로센 화합물과 조촉매 화합물은 무기계 담체 또는 유기 고분자 담체에 담지된 형태로도 이용될 수 있다.
본 발명에 따른 프로필렌-디엔 공중합체 수지는 상기 촉매계의 존재 하에서 프로필렌 및 C4-C20의 디엔 화합물을 중합시켜 제조된다. 이때 메탈로센 화합물과 조촉매 화합물은 별도로 반응기 내에 투입되거나 또는 각 성분을 미리 혼합하여 반응기에 투입할 수 있으며, 투입 순서, 온도 또는 농도 등의 혼합조건은 별도의 제한이 없다.
상기 디엔 화합물은 직쇄 또는 분쇄의 C4-C20의 디엔, 또는 C5-C20의 시클로디엔으로부터 선택될 수 있으며, 예컨대 1,3-부타디엔, 1,4-펜타디엔, 2-메틸-1,3-부타디엔, 1,4-헥사디엔, 1,5-헥사디엔, 1,5-헵타디엔, 1,6-헵타디엔, 1,6-옥타디엔, 1,7-옥타디엔, 1,7-노나디엔, 1,8-노나디엔, 1,8-데카디엔, 1,9-데카디엔, 1,12-테트라데카디엔, 1,13-테트라데카디엔, 3-메틸-1,4-헥사디엔, 3-메틸-1,5-헥사디엔, 3-에틸-1,4-헥사디엔, 3-에틸-1,5-헥사디엔, 3,3-디메틸-1,4-헥사디엔, 3,3-디메틸-1,5-헥사디엔, 시클로펜타디엔, 시클로헥사디엔, 시클로헵타디엔 및 시클로옥타디엔으로부터 선택되는 단독 또는 둘 이상의 혼합물일 수 있다.
이때, 상기 프로필렌-디엔 공중합체 수지 제조에 중합되는 상기 디엔 화합물의 함량은 0.001~3몰%일 수 있으며, 바람직하게는 0.01~1몰%일 수 있다. 상기 함량을 벗어날 경우 촉매 활성이 저하되거나, 용융 강도 면에서 바람직하지 않은 열적 특성을 나타낼 수 있다.
상기 중합은 슬러리상, 액상 또는 기상에서 수행될 수 있으며, 액상 또는 슬러리 상에서 중합이 수행되는 경우 용매 또는 단량체 자체를 매질로 사용할 수 있다.
상기 중합에 사용될 수 있는 바람직한 유기용매는 C3-C20의 탄화수소이며, 그 구체적인 예로는 부탄, 이소부탄, 펜탄, 헥산, 헵탄, 옥탄, 이소옥탄, 노난, 데칸, 도데칸, 시클로헥산, 메틸시클로헥산, 벤젠, 톨루엔, 크실렌 등을 들 수 있다.
또한, 상기 중합은 배치식, 반연속식 또는 연속식 반응으로 수행될 수 있고, 25~300℃, 바람직하게는 50~250℃의 온도 및 1~100bar, 바람직하게는 5~50bar의 압력 하에서 반응시켜 수행될 수 있으나, 상기 중합 단계의 온도 및 압력 조건은 적용하고자 하는 반응의 종류 및 반응기의 종류에 따라 중합 반응의 효율을 고려하여 결정될 수 있다.
본 발명에 따른 프로필렌-디엔 공중합체 수지는 용융지수(230℃, 2.16kg 하중)가 0.1~100g/10min이고, 하기 방법에 따라 측정된 용융 장력(ARES(Advanced Rheometric Expansion System) Melt Strength)이 5~100g이고, 바람직하게는 용융지수가 0.5~30g/10min이고, 용융 장력이 10~50g 일 수 있고, 더욱 바람직하게는 용융지수가 0.5~10g/10min이고, 용융 장력이 10~45g 일 수 있고, 더욱 더 바람직하게는 용융지수가 1~5g/10min이고, 용융 장력이 20~40g 일 수 있다. 여기서, 본 발명에 따른 프로필렌-디엔 공중합체 수지는 상기 촉매계를 이용함에 따라 개선된 용융 강도를 구현하는 한편, 종래 지글러 나타 촉매계를 이용하여 제조된 동종 공중합체 수지에 비해 겔 함량을 저감시킬 수 있으며, 상기 겔 함량은 10중량% 이하일 수 있고, 바람직하게는 8중량% 이하일 수 있고, 더욱 바람직하게는 7중량% 이하일 수 있고, 더욱 더 바람직하게는 5중량% 이하일 수 있다.
또한, 본 발명에 따른 프로필렌-디엔 공중합체 수지는 140℃ 이상 및 135℃ 이하의 범위에 있는 2개의 용융 피크를 갖고, 중량평균 분자량이 100,000~500,000이고, 분자량 분포(Mw/Mn)가 4~20일 수 있고, 바람직하게는 140~154℃의 범위 및 129~135℃의 범위에 있는 2개의 용융 피크를 갖고, 중량평균 분자량이 300,000~500,000이고, 분자량 분포(Mw/Mn)가 5~10일 수 있고, 더욱 바람직하게는 140~151℃의 범위 및 132~135℃의 범위에 있는 2개의 용융 피크를 갖고, 중량평균 분자량이 350,000~450,000이고, 분자량 분포(Mw/Mn)가 6~10일 수 있다.
본 발명에 따른 프로필렌-디엔 공중합체 수지를 이용한 플라스틱 성형품 등의 제품은 그 이용되는 분야에 제한이 없지만, 바람직하게는 자동차 내외장재에 주로 이용될 수 있고, 구체적으로 자동차 내장재 발포 필름/시트, 완충재, 자동차 부품, 열성형 제품, 트레이, 차음재, 단열재, 대형 중공, 자동차 부품에 이용될 수도 있다.
이하, 본 발명에 따른 구체적인 실시예를 들어 설명한다.
별도로 언급되는 경우를 제외하고 모든 리간드 및 촉매 합성 실험은 질소 분위기 하에서 표준 슐렝크(Schlenk) 또는 글로브박스 기술을 사용하여 수행되었으며, 모든 반응에 사용되는 유기용매는 나트륨 금속과 벤조페논 하에서 환류시켜 수분을 제거하여 사용 직전 증류하여 사용하였다. 합성된 리간드 및 촉매의 1H-NMR 분석은 상온에서 Bruker 300 MHz을 사용하여 수행하였다.
중합용매인 n-헥산은 분자체 5A와 활성알루미나가 충진된 관을 통과시키고 고순도의 질소로 버블링시켜 수분, 산소 및 기타 촉매독 물질을 충분히 제거시킨 후 사용하였다. 모든 중합은 외부 공기와 완전히 차단된 고압 반응기(Autoclave) 내에서 필요량의 용매, 조촉매 화합물, 각 중합하고자 하는 단량체 등을 주입한 후에 메탈로센 화합물을 넣고 진행하였다. MAO(메틸알루미녹산, Methylaluminoxane)로는 Albemarle사의 10% 톨루엔 용액(10 wt% MAO solution in toluene)을 구매하여 사용하였다. 중합된 중합체 수지는 하기 방법에 따라 분석되었다.
(1) 용융흐름지수(MI)
ASTM D 2839에 의거하여 230℃에서 2.16kg의 하중으로 측정하였다.
(2) 융용점(Tm) 분석
Dupont DSC2910을 이용하여 질소분위기 하에서 10℃/min의 속도로 2nd 가열 조건에서 측정하였다.
(3) 중량평균 분자량(Mw) 및 분자량 분포(Mw/Mn)
PL Mixed-BX2+preCol이 장착된 PL210 GPC를 이용하여 135℃에서 1.0mL/min의 속도로 1,2,3-트리클로로벤젠 용매 하에서 측정하였으며, PL 폴리스티렌 표준물질을 사용하여 분자량을 보정하였다.
(4) 용융 장력(ARES(Advanced Rheometric Expansion System) Melt Strength)
핫프레스 용융 또는 사출을 통해 제작된 가로 20mm, 세로 10mm 및 두께 7mm의 시편을 Rheometric 측정 장비(2KFRTN, TA Instrument사)를 이용하여 샘플 거치대에 고정시킨 후 샘플 거치대가 축을 중심으로 회전할 때 시편에 걸리는 저항값으로 용융 장력을 측정하였다.
(5) 겔 함량
중합체 수지의 겔 함량을 하기 순서로 측정하였다.
1) 시료 샘플을 20㎛ 필름으로 제작한 뒤 2cm × 2cm 규격으로 절단하고 무게를 측정한다.
2) 1L 용기(rbf Reflux)에 자일렌(Xylene) 500㎖를 넣는다.
3) 200메쉬(Mesh)의 스테인레스 강 메쉬(stainless steel mesh)를 3cm × 3cm 규격으로 준비하고 무게를 측정한다.
4) 준비된 메쉬에 1)에서 준비한 샘플을 넣고 밀봉한다.
5) 2)에서 준비한 용기에 4)에서 준비한 샘플을 넣고 12시간 동안 자일렌 환류(xylene refluxing)를 시행한다.
6) 환류 장치 제거 후 샘플을 꺼내 질소가 나오는 튜브를 사용하여 메쉬 표면에 붙어있는 자일렌 가용(xylene soluble) 부분을 제거한다.
7) 메쉬를 140℃의 진공 오븐에 넣고 8시간 건조한다.
8) 건조된 메쉬의 무게를 측정한다.
9) 3)에서의 메쉬 무게와 1)에서의 샘플 무게에서 8)에서의 무게 차이를 비교하여 자일렌 불용물(xylene insoluble)을 측정한다.
메탈로센 화합물(테트라메틸시클로펜타디에닐 디메틸실릴 2-메틸-4-(4-t-부틸페닐)인데닐 지르코늄 디클로라이드(Tetramethylcyclopentadienyl dimethylsilyl 2-methyl-4-(4-tert-butylphenyl)indenyl Zr dichloride) 합성
1) 디메틸 테트라메틸시클로펜타디에닐 클로로실란(Dimethyl tetramethylcyclopentadienyl chlorosilane)의 합성
2ℓ 플라스크에 테트라히드로퓨란(600㎖)과 테트라메틸시클로펜타디엔(50g)을 넣고, 질소 분위기 하 -10℃에서 n-BuLi(2.5M hexane 용액)(170㎖)를 천천히 적가한 후 상온에서 12시간 동안 교반하여 반응시켰다. 상기 반응용액의 온도를 다시 -10℃로 내린 다음, 디메틸 디클로로실란(170g)을 첨가한 후 상온에서 12시간 동안 교반하여 반응시킨 다음, 반응물을 진공 건조하였다. 여기에 n-헥산 (500㎖)를 투입하여 반응물을 녹인 후 셀라이트 필터로 여과한 다음, 여과된 용액을 진공 건조하여 노란색 오일 형태의 디메틸 테트라메틸시클로펜타디에닐 클로로실란 70g을 얻었다(수율: 80%).
1H-NMR(300 MHz, CDCl3) δ 0.235(s, 6H), 1.81(s, 6H), 1.97(s, 6H), 3.07(s, 1H)
2) 디메틸 테트라메틸시클로펜타디에닐 2-메틸-4-(4-t-부틸페닐)인데닐 실란(Dimethyl tetramethylcyclopentadienyl 2-methyl-4-(4-tert-butylphenyl)indenyl silane)의 합성
톨루엔(200㎖), 테트라히드로퓨란(40㎖)과 2-메틸-4-(4-t-부틸페닐)인덴(50g)을 투입한 플라스크를 -10℃로 냉각시킨 다음, n-BuLi(2.5M hexane 용액)(76㎖)를 천천히 적가한 후 상온에서 12시간 동안 교반하였다. 상기 반응물의 온도를 다시 -10℃로 내린 다음, 디메틸 테트라메틸시클로펜타디에닐 클로로실란 (38g)을 투입하고 상온에서 12시간 동안 교반하여 반응시켰다. 반응이 완료되면 물(400㎖)을 투입하고 다시 상온에서 1.5시간 동안 교반시킨 다음, 톨루엔으로 추출하고 진공 건조하여 노란색 오일 형태의 디메틸 테트라메틸시클로펜타디에닐 2-메틸-4-(4-t-부틸페닐)인데닐 실란 80g을 얻었다(수율 95%).
1H-NMR(300 MHz, CDCl3) δ 0.2-0.23(d, 6H), 1.44(s, 9H), 1.91(s, 6H), 2.05-2.08(d, 6H), 2.29(s, 3H), 2.41(s, 1H), 3.76(s, 1H), 6.87(s, 1H)
3) 테트라메틸시클로펜타디에닐 디메틸실릴 2-메틸-4-(4-t-부틸페닐)인데닐 지르코늄 디클로라이드(Tetramethylcyclopentadienyl dimethylsilyl 2-methyl-4-(4-tert-butylphenyl)indenyl Zr dichloride)의 합성
디메틸 테트라메틸시클로펜타디에닐 2-메틸-4-(4-t-부틸페닐)인데닐 실란(50g), 톨루엔(300㎖) 및 디에틸에테르(100㎖)를 플라스크에 넣고 -10℃로 냉각시킨 다음, n-BuLi(2.5M hexane 용액)(90㎖)를 천천히 적가하였다. 적가가 끝나면 반응온도를 상온으로 올려 48시간 동안 교반시킨 다음, 여과하였다. 얻어진 여과액을 진공 건조하여 고체 형태로 테트라메틸시클로펜타디에닐 디메틸실릴 2-메틸-4-(4-t-부틸페닐)인데닐 디리튬 염 40g(수율 80%)을 수득하였으며, 정제하지 않고 바로 다음 반응에 사용하였다.
테트라메틸시클로펜타디에닐 디메틸실릴 2-메틸-4-(4-t-부틸페닐)인데닐 디리튬 염(40g), 톨루엔(40㎖) 및 에테르(10㎖)를 플라스크 #1에 넣고 교반하였다. 플라스크 #2에는 톨루엔(30㎖)와 ZrCl4(20g)의 혼합액을 준비하였다. 캐뉼러(cannular)로 플라스크 #2의 혼합액을 플라스크 #1으로 천천히 적가한 뒤, 상온에서 24시간 동안 교반시켰다. 교반이 끝나면 진공 건조시킨 다음, 메틸렌 클로라이드(500㎖)로 추출하여 셀라이트 필터로 여과한 후 여과액을 진공건조하였다. 얻어진 고체를 메틸렌 클로라이드와 n-헥산의 1:3 혼합액(50㎖)을 사용하여 세척한 다음, 진공건조하여 노란색 고체 형태의 테트라메틸시클로펜타디에닐 디메틸실릴 2-메틸-4-(4-t-부틸페닐)인데닐 지르코늄 디클로라이드 32g을 수득하였다(수율 60%).
1H-NMR (300 MHz, CDCl3) δ 1.09(s, 3H), 1.202(s, 3H), 1.346(s, 9H), 1.887-1.911(d, 6H), 1.989(s, 3H), 2.075(s, 3H), 2.278(s, 3H), 7.0-7.628(m, 8H)
실시예 1
상온에서 내부 용량이 3ℓ인 스테인레스 스틸(Stainless Steel) 오토클레이브(Autoclave)의 내부를 질소로 완전히 치환하였다. 질소 퍼징(Purging)을 유지하면서, 상온에서 n-헥산 600㎖, 메틸알루미녹산 톨루엔 용액 4.0㎖(Al 기준 6mmol)을 가한 다음, 프로필렌 500g을 가하고, 70℃로 승온시킨 다음 촉매탱크를 이용하여 메탈로센 화합물 및 디엔 화합물로 1,5-헥사디엔 1㎖를 가하였다. 그 후, 30분 동안 중합을 실시하였다. 중합 완료 후 상온으로 유지시킨 다음, 여분의 프로필렌을 배출 라인을 통해 제거하여 중합체를 얻었다. 얻어진 중합체를 진공 오븐을 이용하여 80℃로 가열하면서 4시간 이상 건조시켜 프로필렌-디엔 공중합체 수지를 제조하였다.
실시예 2
실시예 1에서 1,5-헥사디엔을 5㎖ 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 프로필렌-디엔 공중합체 수지를 제조하였다.
실시예 3
실시예 1에서 1,5-헥사디엔 대신 1,7-옥타디엔을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 프로필렌-디엔 공중합체 수지를 제조하였다.
실시예 4
실시예 2에서 1,5-헥사디엔 대신 1,7-옥타디엔을 사용한 것을 제외하고는 실시예 2와 동일한 방법으로 프로필렌-디엔 공중합체 수지를 제조하였다.
비교예 1
실시예 1에서 1,5-헥사디엔을 사용하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 프로필렌 중합체 수지를 제조하였다.
비교예 2
실시예 1에서 1,5-헥사디엔을 0.5㎖ 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 프로필렌-디엔 공중합체 수지를 제조하였다.
비교예 3
실시예 1에서 1,5-헥사디엔을 10㎖ 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 프로필렌-디엔 공중합체 수지를 제조하였다.
비교예 4
실시예 3에서 1,7-옥타디엔을 0.5㎖ 사용한 것을 제외하고는 실시예 3과 동일한 방법으로 프로필렌-디엔 공중합체 수지를 제조하였다.
비교예 5
실시예 3에서 1,7-옥타디엔을 10㎖ 사용한 것을 제외하고는 실시예 3과 동일한 방법으로 프로필렌-디엔 공중합체 수지를 제조하였다.
비교예 6
실시예 2에서 촉매계로 상용 지글러-나타 촉매계(LC200, 롯데케미칼)를 사용한 것을 제외하고는 실시예 2와 동일한 방법으로 프로필렌-디엔 공중합체 수지를 제조하였다.
비교예 7
실시예 4에서 촉매계로 상용 지글러-나타 촉매계를 사용한 것을 제외하고는 실시예 4와 동일한 방법으로 프로필렌-디엔 공중합체 수지를 제조하였다.
비교예 8
기존 방식에 따라 후공정을 이용하여 퍼옥사이드 분해를 통해 제조된 고용융장력 폴리프로필렌 수지(HMSPP, SMS-514F, 롯데케미칼)를 준비하였다.
먼저, 상기 실시예 1 내지 4, 비교예 1, 2, 4, 6 및 7에 따라 제조된 중합체 수지에 대하여 촉매 활성, 융용점(Tm), 중량평균 분자량 및 분자량 분포를 측정한 결과를 하기 표 1에 나타내었다.
Figure PCTKR2017003788-appb-T000001
표 1을 참조하면, 본 발명에 따라 특정 메탈로센 촉매계를 이용하여 중합 과정에서 디엔 개질된 프로필렌-디엔 공중합체 수지를 제조하고 일정 함량의 디엔 화합물을 사용하여, 중합 시 촉매 활성이 우수하고, 특정 피크 온도 범위의 용융 피크를 2개 가지고, 요구되는 중량평균 분자량 및 분자량 분포를 갖도록 함으로써 종래 방식의 공중합체 수지와 상이한 물성 특성을 나타내어 가공성이 향상되고 용융 강도 개선에 적합한 물성을 갖는 것을 확인할 수 있다.
다음으로, 실시예 1 내지 4, 비교예 1, 3, 5 내지 8에 따라 제조된 중합체 수지를 트윈 압출기로 190~250℃의 온도범위에서 압출한 후 냉각 및 고화하여 펠렛을 얻었고, 이를 시편으로 사용하여 용융지수, 용융 장력(ARES) 및 겔 함량을 측정하고 그 결과를 하기 표 2에 나타내었다.
Figure PCTKR2017003788-appb-T000002
표 2를 참조하면, 본 발명에 따라 특정 메탈로센 촉매계를 이용하고 일정 함량의 디엔 화합물로 개질된 프로필렌-디엔 공중합체 수지를 제조할 경우 0.5~2.5g/10min 수준의 용융지수를 갖고, 겔 함량을 5% 이하로 유지하면서도 용융 장력을 22~38g 수준으로 향상시킬 수 있고, 또한 종래 후공정에 의해 생성된 장쇄 분지 수지에 비해 공정 비용이 저렴하면서도 우수한 물성을 갖도록 하는 것을 확인할 수 있다.
이상으로 본 발명의 바람직한 실시예를 상세하게 설명하였다. 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다.
따라서, 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미, 범위 및 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (5)

  1. 촉매계를 이용한 프로필렌 및 C4-C20의 디엔 화합물의 중합 단계;를 포함하여 제조되는 프로필렌-디엔 공중합체 수지로서,
    상기 촉매계는 하기 화학식 1로 표시되는 메탈로센 화합물; 및 하기 화학식 2 내지 4로 표시되는 붕소 화합물 및 화학식 5 내지 9로 표시되는 알루미늄 화합물로 이루어진 군에서 선택되는 하나 이상의 조촉매 화합물;을 포함하고,
    상기 프로필렌-디엔 공중합체 수지는 용융지수(230℃, 2.16kg 하중)가 0.1~100g/10min이고, 용융 장력(ARES(Advanced Rheometric Expansion System) Melt Strength)이 5~100g인 것을 특징으로 하는 프로필렌-디엔 공중합체 수지 :
    [화학식 1]
    Figure PCTKR2017003788-appb-I000010
    [화학식 2]
    B(R11)3
    [화학식 3]
    [R12]+[B(R11)4]-
    [화학식 4]
    [(R13)rZH]+[B(R11)4]-
    [화학식 5]
    -[Al(R14)-O]s-
    [화학식 6]
    (R14)2Al-[O(R14)]t-(R14)2
    [화학식 7]
    (R15)uAl(E)3-u
    [화학식 8]
    (R16)2AlOR17
    [화학식 9]
    R16Al(OR17)2
    화학식 1에서, M은 전이금속이고, M이 주기율표 상 4족의 4가 전이금속인 경우 m은 2이고 n은 0이고, M이 주기율표 상 4족의 2가 전이금속인 경우 m은 0이고 n은 1이고; Cp는 M과 η5-결합할 수 있는 시클로펜타디에닐 고리이고, 상기 시클로펜타디에닐 고리는 (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C20)아릴, 트리(C1-C20)알킬실릴, 트리(C6-C20)아릴실릴, (C1-C20)알킬디(C6-C20)아릴실릴, (C6-C20)아릴디(C1-C20)알킬실릴 및 (C2-C20)알케닐로 이루어진 군으로부터 선택되는 하나 이상으로 더 치환될 수 있고; D는 SiR3R4 또는 (C2-C20)알케닐렌이고; R3 및 R4는 각각 독립적으로 수소, (C1-C20)알킬, (C3-C20)시클로알킬 또는 (C6-C20)아릴이거나, 상기 R3 및 R4는 (C4-C7)알킬렌으로 연결되어 고리를 형성할 수 있고; R1은 (C1-C20)알킬이고; Ar은 (C6-C20)아릴이고; R2는 수소, (C1-C20)알킬, (C3-C20)시클로알킬 또는 (C6-C20)아릴이고; 상기 Ar 및 R2는 (C1-C7)알킬렌, (C2-C7)알케닐렌 또는 (C4-C7)알칸디에닐렌으로 연결되어 융합고리를 형성할 수 있고; X1은 할로겐, (C1-C20)알킬, (C1-C20)알콕시, (C3-C20)시클로알킬, (C6-C20)아릴, (C6-C20)아릴옥시, -OSiRaRbRc, -SRd, -NReRf 또는 -PRgRh이고; Ra 내지 Rh는 서로 독립적으로 (C1-C20)알킬, (C6-C20)아릴 또는 (C3-C20)시클로알킬이고; X2는 중성의 공액 또는 비공액 (C4-C20)디엔이고; 상기 R1의 알킬, Ar의 아릴, R2, R3 및 R4의 알킬, 시클로알킬, 아릴은 서로 독립적으로 할로겐, (C1-C20)알킬, 할로(C1-C20)알킬, (C3-C20)시클로알킬, (C6-C20)아릴, (C1-C20)알콕시 및 (C6-C20)아릴옥시로 이루어진 군에서 선택된 하나 이상의 치환체로 더 치환될 수 있고;
    화학식 2 내지 4에서, B는 붕소 원자이며; R11는 페닐이며, 상기 페닐은 불소 원자, (C1-C20)알킬, 불소 원자에 의해 치환된 (C1-C20)알킬, (C1-C20)알콕시 및 불소 원자에 의해 치환된 (C1-C20)알콕시로부터 선택된 3 내지 5 개의 치환기로 더 치환될 수 있으며; R12는 (C5-C7)방향족 라디칼 또는 (C1-C20)알킬(C6-C20)아릴 라디칼, (C6-C20)아릴(C1-C20)알킬 라디칼이며; Z는 질소 또는 인 원자이며; R13은 (C1-C20)알킬 라디칼 또는 질소원자와 함께 2개의 (C1-C10)알킬로 치환된 아닐리니움(Anilinium) 라디칼이며; r는 2 또는 3의 정수이며;
    화학식 5 내지 9에서, R14는 (C1-C20)알킬이고; s 및 t는 각각 독립적으로 5 내지 20의 정수이고; R15 및 R16는 각각 독립적으로 (C1-C20)알킬이고; E는 수소 원자, 할로겐 원자 또는 (C1-C20)알킬이고; u는 1 내지 3의 정수이고; R17은 (C1-C20)알킬 또는 (C6-C20)아릴이다.
  2. 제1항에 있어서,
    상기 중합 단계에서, 상기 디엔 화합물의 함량은 상기 프로필렌 대비 0.001~3몰%로 준비된 것을 특징으로 하는 프로필렌-디엔 공중합체 수지.
  3. 제1항에 있어서,
    상기 디엔 화합물은 직쇄 또는 분쇄의 C4-C20의 디엔, 또는 C5-C20의 시클로디엔으로 이루어진 군에서 하나 이상 선택된 것을 특징으로 하는 프로필렌-디엔 공중합체 수지.
  4. 제3항에 있어서,
    상기 디엔 화합물은 1,3-부타디엔, 1,4-펜타디엔, 2-메틸-1,3-부타디엔, 1,4-헥사디엔, 1,5-헥사디엔, 1,5-헵타디엔, 1,6-헵타디엔, 1,6-옥타디엔, 1,7-옥타디엔, 1,7-노나디엔, 1,8-노나디엔, 1,8-데카디엔, 1,9-데카디엔, 1,12-테트라데카디엔, 1,13-테트라데카디엔, 3-메틸-1,4-헥사디엔, 3-메틸-1,5-헥사디엔, 3-에틸-1,4-헥사디엔, 3-에틸-1,5-헥사디엔, 3,3-디메틸-1,4-헥사디엔, 3,3-디메틸-1,5-헥사디엔, 시클로펜타디엔, 시클로헥사디엔, 시클로헵타디엔 및 시클로옥타디엔으로 이루어진 군에서 하나 이상 선택된 것을 특징으로 하는 프로필렌-디엔 공중합체 수지.
  5. 제1항에 있어서,
    상기 프로필렌-디엔 공중합체 수지는 겔 함량이 10중량% 이하인 것을 특징으로 하는 프로필렌-디엔 공중합체 수지.
PCT/KR2017/003788 2016-04-06 2017-04-06 용융 장력이 우수한 프로필렌-디엔 공중합체 수지 WO2017176074A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018552047A JP7008032B2 (ja) 2016-04-06 2017-04-06 溶融張力に優れたプロピレンジエン共重合体樹脂
US16/091,658 US10875951B2 (en) 2016-04-06 2017-04-06 Propylene-diene copolymer resin having excellent melt tension
CN201780027463.9A CN109071713B (zh) 2016-04-06 2017-04-06 具有优异熔体张力的丙烯-二烯共聚物树脂
EP17779374.2A EP3441407B1 (en) 2016-04-06 2017-04-06 Propylene-diene copolymer resin having excellent melt tension

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160042125A KR101810317B1 (ko) 2016-04-06 2016-04-06 용융 장력이 우수한 폴리프로필렌 수지
KR10-2016-0042125 2016-04-06

Publications (1)

Publication Number Publication Date
WO2017176074A1 true WO2017176074A1 (ko) 2017-10-12

Family

ID=60000558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003788 WO2017176074A1 (ko) 2016-04-06 2017-04-06 용융 장력이 우수한 프로필렌-디엔 공중합체 수지

Country Status (6)

Country Link
US (1) US10875951B2 (ko)
EP (1) EP3441407B1 (ko)
JP (1) JP7008032B2 (ko)
KR (1) KR101810317B1 (ko)
CN (1) CN109071713B (ko)
WO (1) WO2017176074A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3708594A4 (en) * 2017-11-09 2021-10-13 Lotte Chemical Corporation PROCESS FOR THE PRODUCTION OF HIGH MELT STRENGTH POLYPROPYLENE RESIN
JP2022511452A (ja) * 2018-11-29 2022-01-31 ロッテ ケミカル コーポレーション 優れた溶融特性を有するポリプロピレン樹脂及びその製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109983040B (zh) * 2016-11-23 2022-12-23 乐天化学株式会社 聚烯烃催化剂和使用其制备聚烯烃的方法
US20230212330A1 (en) 2020-06-16 2023-07-06 Exxonmobil Chemical Patents Inc. Metallocene Catalysts for Producing Vinyl-Terminated Polyalphaolefins and Methods Associated Therewith
CN116670146A (zh) 2020-11-23 2023-08-29 埃克森美孚化学专利公司 使用不含芳族溶剂的载体制备的茂金属聚丙烯
CN112794964B (zh) * 2021-01-19 2021-07-30 天津大学 一种丙烯-共轭二烯共聚物及其制备方法
US11802170B2 (en) 2021-04-29 2023-10-31 Exxonmobil Chemical Patents Inc. Polyolefins prepared with binuclear metallocene catalysts
WO2023034889A1 (en) 2021-09-02 2023-03-09 Exxonmobil Chemical Patents Inc. C1 symmetric metallocene catalysts tailored for production of vinyl-terminated polypropylene oligomers and macromonomers

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752597A (en) 1985-12-12 1988-06-21 Exxon Chemical Patents Inc. New polymerization catalyst
EP0416815A2 (en) 1989-08-31 1991-03-13 The Dow Chemical Company Constrained geometry addition polymerization catalysts, processes for their preparation, precursors therefor, methods of use, and novel polymers formed therewith
EP0420436A1 (en) 1989-09-13 1991-04-03 Exxon Chemical Patents Inc. Olefin polymerization catalysts
US5198401A (en) 1987-01-30 1993-03-30 Exxon Chemical Patents Inc. Ionic metallocene catalyst compositions
EP0842939A1 (en) 1995-07-14 1998-05-20 Sumitomo Chemical Company, Limited Transition metal complex, process for the preparation thereof, polymerization catalyst for olefins containing the complex, and process for producing olefin polymers
KR19990044019A (ko) * 1995-08-28 1999-06-25 카덴헤드 벤 씨 올리엔-개질된 프로필렌 중합체의 제조 방법
JP2002226520A (ja) * 2001-02-05 2002-08-14 Grand Polymer Co Ltd プロピレン・α,ω−ジエンランダム共重合体およびその製造方法
US7226886B2 (en) 2005-09-15 2007-06-05 Chevron Phillips Chemical Company, L.P. Polymerization catalysts and process for producing bimodal polymers in a single reactor
JP2011137146A (ja) * 2009-12-02 2011-07-14 Japan Polyethylene Corp エチレン系重合体の製造方法
US20140194277A1 (en) * 2011-03-30 2014-07-10 Japan Polyethylene Corporation Ethylene-based polymer, polyethylene-based resin composition and use thereof, catalyst component for olefin polymerization, olefin polymerization catalyst containing the component, and method for producing ethylene-based polymer by using the catalyst
KR20140133343A (ko) 2013-05-10 2014-11-19 주식회사 엘지화학 올레핀 중합용 촉매 및 이를 이용한 폴리올레핀의 제조방법
KR20150029368A (ko) 2013-09-10 2015-03-18 주식회사 엘지화학 촉매 조성물 및 이를 이용한 올레핀계 중합체의 제조방법
US20150119539A1 (en) * 2013-10-29 2015-04-30 Exxonmobil Chemical Patents Inc. Asymmetric Polypropylene Catalysts

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07165814A (ja) * 1993-12-14 1995-06-27 Mitsui Toatsu Chem Inc プロピレン共重合体およびその製造方法
DE4344688A1 (de) * 1993-12-27 1995-06-29 Hoechst Ag Metallocenverbindung
JP3344841B2 (ja) * 1994-09-22 2002-11-18 昭和電工株式会社 プロピレン系重合体およびその製造方法
DE69820642T2 (de) * 1997-09-04 2004-09-30 Chisso Corp. Propylencopolymer und verfahren zu dessen herstellung
JP2003286321A (ja) 2002-03-29 2003-10-10 Sumitomo Chem Co Ltd プロピレン系重合体およびその製造方法
US7319125B2 (en) * 2002-09-20 2008-01-15 Exxonmobil Chemical Patents Inc. Supercritical polymerization process and polymers produced therefrom
EP2688923A4 (en) * 2011-03-25 2015-05-20 Exxonmobil Chem Patents Inc VINYL-TERMINATED BRANCHED POLYMERS AND METHODS FOR PRODUCING THE SAME
EP2733173A1 (en) * 2012-11-20 2014-05-21 Total Research & Technology Feluy Polypropylene polymer presenting improved strain hardening behaviour
CN103980402B (zh) * 2014-04-30 2015-12-09 中国科学院化学研究所 一种可用于3d打印的交联聚丙烯树脂及其制备方法和应用

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752597A (en) 1985-12-12 1988-06-21 Exxon Chemical Patents Inc. New polymerization catalyst
US5198401A (en) 1987-01-30 1993-03-30 Exxon Chemical Patents Inc. Ionic metallocene catalyst compositions
EP0416815A2 (en) 1989-08-31 1991-03-13 The Dow Chemical Company Constrained geometry addition polymerization catalysts, processes for their preparation, precursors therefor, methods of use, and novel polymers formed therewith
EP0420436A1 (en) 1989-09-13 1991-04-03 Exxon Chemical Patents Inc. Olefin polymerization catalysts
EP0842939A1 (en) 1995-07-14 1998-05-20 Sumitomo Chemical Company, Limited Transition metal complex, process for the preparation thereof, polymerization catalyst for olefins containing the complex, and process for producing olefin polymers
KR19990044019A (ko) * 1995-08-28 1999-06-25 카덴헤드 벤 씨 올리엔-개질된 프로필렌 중합체의 제조 방법
JP2002226520A (ja) * 2001-02-05 2002-08-14 Grand Polymer Co Ltd プロピレン・α,ω−ジエンランダム共重合体およびその製造方法
US7226886B2 (en) 2005-09-15 2007-06-05 Chevron Phillips Chemical Company, L.P. Polymerization catalysts and process for producing bimodal polymers in a single reactor
JP2011137146A (ja) * 2009-12-02 2011-07-14 Japan Polyethylene Corp エチレン系重合体の製造方法
US20140194277A1 (en) * 2011-03-30 2014-07-10 Japan Polyethylene Corporation Ethylene-based polymer, polyethylene-based resin composition and use thereof, catalyst component for olefin polymerization, olefin polymerization catalyst containing the component, and method for producing ethylene-based polymer by using the catalyst
KR20140133343A (ko) 2013-05-10 2014-11-19 주식회사 엘지화학 올레핀 중합용 촉매 및 이를 이용한 폴리올레핀의 제조방법
KR20150029368A (ko) 2013-09-10 2015-03-18 주식회사 엘지화학 촉매 조성물 및 이를 이용한 올레핀계 중합체의 제조방법
US20150119539A1 (en) * 2013-10-29 2015-04-30 Exxonmobil Chemical Patents Inc. Asymmetric Polypropylene Catalysts

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3441407A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3708594A4 (en) * 2017-11-09 2021-10-13 Lotte Chemical Corporation PROCESS FOR THE PRODUCTION OF HIGH MELT STRENGTH POLYPROPYLENE RESIN
JP2022511452A (ja) * 2018-11-29 2022-01-31 ロッテ ケミカル コーポレーション 優れた溶融特性を有するポリプロピレン樹脂及びその製造方法

Also Published As

Publication number Publication date
KR20170115199A (ko) 2017-10-17
EP3441407B1 (en) 2024-04-03
EP3441407A4 (en) 2019-12-25
EP3441407A1 (en) 2019-02-13
CN109071713B (zh) 2022-05-27
US10875951B2 (en) 2020-12-29
KR101810317B1 (ko) 2017-12-19
JP2019510863A (ja) 2019-04-18
US20190119427A1 (en) 2019-04-25
CN109071713A (zh) 2018-12-21
JP7008032B2 (ja) 2022-01-25

Similar Documents

Publication Publication Date Title
WO2017176074A1 (ko) 용융 장력이 우수한 프로필렌-디엔 공중합체 수지
WO2017155149A1 (ko) 혼성 촉매 조성물, 이의 제조방법, 및 이를 이용하여 제조된 폴리올레핀
WO2017188602A1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 가공성이 우수한 폴리올레핀 수지
WO2018021656A1 (ko) 혼성 담지 메탈로센 촉매를 이용한 고가공성 고밀도 에틸렌계 중합체 및 제조방법
WO2017188569A1 (ko) 혼성 담지 메탈로센 촉매를 이용한 고밀도 에틸렌계 중합체 및 제조방법
WO2010128826A2 (ko) 올레핀계 중합체 및 이를 포함하는 섬유
WO2017209372A1 (ko) 혼성 담지 메탈로센 촉매를 이용한 고밀도 에틸렌계 중합체 및 제조방법
WO2017099491A1 (ko) 올레핀계 중합체
WO2019093630A1 (ko) 고용융장력 폴리프로필렌 수지 제조방법
WO2019117443A1 (ko) 장기 내압 특성이 우수한 에틸렌계 중합체 및 이를 이용한 파이프
WO2013133595A1 (en) Hybrid supported metallocene catalyst, method for preparing the same, and process for preparing polyolefin using the same
WO2012169812A2 (en) METHOD OF PREPARING ETHYLENE-α-OLEFIN-DIENE COPOLYMER
WO2018110915A1 (ko) 혼성 담지 메탈로센 촉매를 이용한 고가공성 고밀도 에틸렌계 중합체 및 제조방법
WO2017003261A1 (ko) 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2019038605A1 (en) NEW TRANSITION METAL COMPOUND, CATALYST COMPOSITION CONTAINING THE SAME, AND PROCESS FOR PREPARING HOMOPOLYMER OR ETHYLENE COPOLYMER AND ALPHA-OLEFIN USING THE SAME
WO2010053264A2 (en) METHOD FOR PREPARING ELASTOMERIC COPOLYMERS OF ETHYLENE AND α-OLEFINS
WO2017026605A1 (ko) 전이금속 화합물, 이를 포함한 올레핀 중합용 전이금속 촉매 조성물 및 이를 이용한 올레핀계 중합체의 제조방법
WO2010079906A2 (ko) 에틸렌-프로필렌-디엔 공중합체 제조방법
WO2018097468A1 (ko) 폴리올레핀 촉매 및 이를 이용한 폴리올레핀 제조방법
WO2017003262A1 (ko) 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2018127772A1 (ko) 신규한 전이금속 화합물, 이를 포함하는 촉매 조성물, 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조방법
WO2017111553A1 (ko) 신규한 전이금속 화합물을 포함하는 촉매 조성물
WO2017115927A1 (ko) 혼성 메탈로센 담지 촉매, 이를 이용한 올레핀 중합체의 제조방법 및 용융강도가 향상된 올레핀 중합체
WO2020111777A1 (ko) 우수한 용융 특성을 지닌 폴리프로필렌 수지 및 그 제조 방법
WO2018106029A1 (ko) 올레핀 중합 촉매용 전이금속 화합물, 이를 포함하는 올레핀 중합 촉매 및 이를 이용하여 중합된 폴리올레핀

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018552047

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017779374

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017779374

Country of ref document: EP

Effective date: 20181106

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17779374

Country of ref document: EP

Kind code of ref document: A1