WO2017170748A1 - 応力センサ - Google Patents

応力センサ Download PDF

Info

Publication number
WO2017170748A1
WO2017170748A1 PCT/JP2017/013026 JP2017013026W WO2017170748A1 WO 2017170748 A1 WO2017170748 A1 WO 2017170748A1 JP 2017013026 W JP2017013026 W JP 2017013026W WO 2017170748 A1 WO2017170748 A1 WO 2017170748A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
sensitive film
region
stress sensor
stress
Prior art date
Application number
PCT/JP2017/013026
Other languages
English (en)
French (fr)
Inventor
京平 小林
涼 上野
阿部 真一
久 坂井
優 永田
安田 隆則
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016072681A external-priority patent/JP6882850B2/ja
Priority claimed from JP2016072675A external-priority patent/JP2017181434A/ja
Priority claimed from JP2016072678A external-priority patent/JP2017181435A/ja
Priority claimed from JP2016072685A external-priority patent/JP2017181438A/ja
Priority claimed from JP2016072668A external-priority patent/JP6773437B2/ja
Priority claimed from JP2016072666A external-priority patent/JP6908355B2/ja
Priority claimed from JP2016072672A external-priority patent/JP6882849B2/ja
Priority claimed from JP2016072691A external-priority patent/JP6694747B2/ja
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US16/089,568 priority Critical patent/US10866203B2/en
Priority to CN201780021252.4A priority patent/CN108885165B/zh
Publication of WO2017170748A1 publication Critical patent/WO2017170748A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/18Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2287Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges
    • G01L1/2293Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges of the semi-conductor type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods

Definitions

  • This application includes Japanese Patent Application No. 2016-072668 (filed on Mar. 31, 2016), Japanese Patent Application No. 2016-072666 (filed on Mar. 31, 2016), Japanese Patent Application No. 2016-072672 (2016) Filed on March 31, 2016), Japanese Patent Application No. 2016-072675 (filed on March 31, 2016), Japanese Patent Application No. 2016-072678 (filed on March 31, 2016), Japanese Patent Application 2016- No. 072681 (filed on March 31, 2016), Japanese Patent Application No. 2016-072585 (filed on March 31, 2016), and Japanese Patent Application No. 2016-072691 (filed on March 31, 2016)
  • the entire disclosure of that application is hereby incorporated by reference.
  • This disclosure relates to a stress sensor.
  • Patent Document 1 discloses a pressure sensor that detects a pressure applied to a diaphragm based on the deflection of the diaphragm.
  • a stress sensor includes a diaphragm, an intermediate layer, a sensitive film, and a detection unit.
  • the intermediate layer is disposed on the surface of the diaphragm.
  • the sensitive film is disposed on the intermediate layer.
  • the detection unit is located in a region of the diaphragm that contacts the outer edge of the intermediate layer.
  • the detection capability can be improved.
  • FIG. 2 is a sectional view taken along line LL of the stress sensor shown in FIG. It is a figure which shows an example of the contact area
  • FIG. 3 is an enlarged view of a range A shown in FIG. 2 when gas molecules are adsorbed on a sensitive film.
  • FIG. 3 shows schematic structure of the SOI substrate used for manufacture of the stress sensor which concerns on 1st Embodiment. It is sectional drawing for demonstrating the manufacturing process of the stress sensor which concerns on 1st Embodiment.
  • FIG. 1 is a top view showing a schematic configuration of the stress sensor 1 according to the first embodiment
  • FIG. 2 is a cross-sectional view taken along line LL of the stress sensor 1 shown in FIG.
  • the positive z-axis direction is the upper side
  • the negative z-axis direction is the lower side.
  • the stress sensor 1 includes a diaphragm 10, a sensitive film 20, an intermediate layer 30, and four piezoresistive elements (detectors) 40, 41, 42, and 43.
  • the intermediate layer 30 is disposed on the upper surface of the diaphragm 10, and the sensitive film 20 is disposed on the upper surface of the intermediate layer 30.
  • the stress sensor 1 detects a substance in the fluid when the sensitive film 20 adsorbs a specific substance in the fluid. For example, gas is blown onto the stress sensor 1 from the upper surface side.
  • the stress sensor 1 can detect whether a predetermined gas molecule to be detected is included in the sprayed gas.
  • the stress sensor 1 is manufactured using, for example, an SOI (Silicon on Insulator) substrate. An example of the manufacturing method of the stress sensor 1 will be described later.
  • the diaphragm 10 is a deformable member.
  • the diaphragm 10 is, for example, a thin substrate.
  • the diaphragm 10 can be an n-type second substrate, for example. As shown in FIG. 1, the diaphragm 10 may have a rectangular shape when viewed from the upper surface side.
  • the diaphragm 10 is integrally formed with a substrate thicker than the diaphragm 10 around the diaphragm 10. When the sensitive film 20 disposed on the upper surface is deformed, the diaphragm 10 is deformed according to the degree of deformation of the sensitive film 20 via the intermediate layer 30.
  • the sensitive film 20 has a circular shape in a top view in the present embodiment.
  • the sensitive film 20 is deformed by swelling, expansion, contraction, or extension due to physical contact with the substance or chemical reaction with the substance.
  • a material corresponding to a substance to be detected is used for the sensitive film 20.
  • the material of the sensitive film 20 include polystyrene, chloroprene rubber, polymethyl methacrylate, vinyl acetate, chloroethylene, epoxy resin, nitrocellulose, methacrylate resin, and polyvinylpyrrolidone.
  • the intermediate layer 30 is a thin film layer disposed between the diaphragm 10 and the sensitive film 20.
  • the intermediate layer 30 has a circular shape in a top view.
  • a region that contacts the outer edge 31 of the intermediate layer 30 in the diaphragm 10 when a substance to be detected is adsorbed to the sensitive film 20 (hereinafter also referred to as “contact region”).
  • the stress generated in is increased compared to the case where the intermediate layer 30 is not provided. Details of this principle will be described later.
  • the material of the intermediate layer 30 is, for example, a metal material such as gold, aluminum, silver, tin, magnesium, or an alloy thereof, a glass material such as soda glass, or an alkali halide such as lithium fluoride.
  • the contact region includes the vicinity of the region in contact with the outer edge 31 of the intermediate layer 30 in the diaphragm 10.
  • the vicinity of the region in contact with the outer edge 31 of the intermediate layer 30 includes a range within a predetermined distance from the outer edge 31 in a top view. Therefore, in the present embodiment, the contact area is an annular area, for example, as shown as area D in FIG.
  • the contact region D when the substance to be detected is adsorbed to the sensitive film 20, the stress changes greatly as compared with other regions due to the deformation of the diaphragm 10 due to the presence of the intermediate layer 30.
  • the intermediate layer 30 is about the same as the diaphragm 10 or smaller than the diaphragm 10.
  • the diameter of the intermediate layer 30 may be set to, for example, 100 ⁇ m or more and 1000 ⁇ m or less.
  • the contact area may be, for example, within a range of ⁇ 20 ⁇ m or less from the outer edge 31 of the intermediate layer 30.
  • the intermediate layer 30 is formed of a material having a Young's modulus intermediate between the Young's modulus of the diaphragm 10 and the Young's modulus of the sensitive film 20.
  • the Young's modulus of the intermediate layer 30 is lower than the Young's modulus of the diaphragm 10 and higher than the Young's modulus of the sensitive film 20. It is formed by.
  • the Young's modulus of the diaphragm 10 may be, for example, 100 GPa or more and 120 GPa or less.
  • the Young's modulus of the sensitive film 20 may be, for example, 0.1 GPa or more and 10 GPa or less.
  • the Young's modulus of the intermediate layer 30 may be, for example, 5 GPa or more and 100 GPa or less.
  • the intermediate layer 30 may be circular.
  • the diameter of the intermediate layer 30 may be greater than or equal to the diameter of the sensitive film 20.
  • the thickness of the intermediate layer 30 may be smaller (thinner) than the thickness of the sensitive film 20. As the thickness of the intermediate layer 30 is smaller, it is easier to process at the time of manufacture, so that the shape of the outer edge 31 is easily processed into a desired shape.
  • membrane 20 should just be 1 micrometer or more and 20 micrometers or less, for example.
  • the thickness of the intermediate layer 30 may be, for example, 0.1 ⁇ m or more and 2 ⁇ m or less.
  • the resistance values of the piezoresistive elements 40 to 43 change depending on the stress that they receive.
  • the piezoresistive elements 40 to 43 are, for example, p-type Si.
  • the piezoresistive elements 40 to 43 may be formed by diffusing boron (B) when the diaphragm 10 is n-type Si.
  • the piezoresistive elements 40 to 43 are disposed on the diaphragm 10.
  • being arranged on the diaphragm 10 means a state in which it is arranged on the upper surface of the flat diaphragm 10 and a state in which it is embedded in the diaphragm 10 on the upper surface side of the diaphragm 10 as shown in FIG. Including.
  • the piezoresistive elements 40 to 43 are located in the contact area D on the diaphragm 10. In the present embodiment, as shown in FIG. 1, the four piezoresistive elements 40 to 43 are arranged at equal intervals along the outer edge 31 of the intermediate layer 30 in a top view.
  • Piezoresistive elements 40 to 43 constitute a Wheatstone bridge circuit.
  • the stress sensor 1 detects a change in the resistance value of the piezoresistive elements 40 to 43 as an electric signal from the Wheatstone bridge circuit constituted by the piezoresistive elements 40 to 43, and thereby to the sensitive film 20 of the substance to be detected. Can be detected.
  • the Wheatstone bridge circuit does not necessarily need to be configured using all four piezoresistive elements 40 to 43, and may be configured using any one, two, or three of the piezoresistive elements 40 to 43. Good.
  • the stress sensor 1 uses the number of piezoresistive elements used in the Wheatstone bridge circuit as a diaphragm 10. You may make it prepare for above.
  • the piezoresistive elements 40 to 43 are located in the contact region D. Further, in the piezoresistive elements 40 to 43, the portion located outside the intermediate layer 30 may be larger than the portion located inside the intermediate layer 30. As a result, the detection accuracy of the stress sensor 1 can be improved.
  • the piezoresistive elements 40 to 43 may be strip-shaped, for example.
  • the piezoresistive elements 40 to 43 are located on the upper surface side of the diaphragm 10 in FIGS. 1 and 2, but may be located inside or on the lower surface side of the diaphragm 10.
  • the stress sensor 1 includes four piezoresistive elements 40 to 43, but the number of piezoresistive elements included in the stress sensor 1 is not limited to four.
  • the stress sensor 1 only needs to include an arbitrary number of piezoresistive elements capable of detecting a substance to be detected.
  • piezoelectric elements may be used in place of the piezoresistive element as a detection unit for detecting the stress generated in the diaphragm 10.
  • FIG. 4 is an enlarged view of a range A shown in FIG. 2 when the gas molecules 2 are adsorbed on the sensitive film 20.
  • the gas molecule 2 schematically shows a gas molecule to be detected using the stress sensor 1.
  • the sensitive film 20 when the gas molecule 2 is adsorbed to the sensitive film 20, the sensitive film 20 is deformed. As the sensitive film 20 is deformed, the intermediate layer 30 is deformed, and the region where the intermediate layer 30 is disposed in the diaphragm 10 is also deformed. Due to the deformation of the diaphragm 10, a stress is generated in the contact region D.
  • the region C in which the intermediate layer 30 is disposed in the diaphragm 10 is deformed into a convex shape in which the central portion of the circular sensitive film 20 is raised upward.
  • stress due to deformation is generated through the intermediate layer 30 in the contact region D of the diaphragm 10 in the present embodiment. Since the Young's modulus of the intermediate layer 30 is higher than the Young's modulus of the sensitive film 20, the contact area D of the diaphragm 10 is compared with the case where the sensitive film 20 is directly disposed without the intermediate layer 30 being disposed on the diaphragm 10. The stress generated in the is increased.
  • the sensitive film 20 when the sensitive film 20 is disposed directly on the diaphragm 10, the sensitive film 20 has a Young's modulus lower than that of the intermediate layer 30, so that the diaphragm 10 is deformed by forming a gentler curved surface.
  • the contact region D of the diaphragm 10 of the present embodiment is subjected to a force for deformation via the intermediate layer 30 having a higher Young's modulus than the sensitive film 20, so that the deformation in the contact region D becomes larger. Therefore, the diaphragm 10 of this embodiment has a high stress generated in the contact region D.
  • the stress generated in the contact region D is higher than in the case where the intermediate layer 30 is not disposed on the diaphragm 10. For this reason, the change in the resistance value of the piezoresistive elements 40 to 43 located in the contact region D becomes larger.
  • the detection capability of the stress which arises in the diaphragm 10 can be improved. Therefore, in the stress sensor 1, the detection capability of the substance to be detected can be improved. Therefore, according to the stress sensor 1, the detection capability can be improved.
  • FIG. 5 shows a schematic structure of an SOI substrate used for manufacturing the stress sensor according to the present embodiment.
  • the SOI substrate 100 includes a first substrate 110, a SiO 2 layer 111, and a second substrate 112.
  • the first substrate 110 and the second substrate 112 are Si substrates.
  • the first substrate 110 functions as a diaphragm and is thinner than the second substrate 112.
  • the SiO 2 layer 111 is disposed on the second substrate 112, and the first substrate 110 is disposed on the SiO 2 layer 111.
  • the SOI substrate 100 is manufactured by, for example, a so-called bonding method.
  • the first substrate 110 is assumed to be n-type.
  • a diffusion wiring is formed on the SOI substrate 100 shown in FIG. As shown in FIG. 6, after the mask pattern 200 is formed on the first substrate 110, boron (B) at a high concentration is implanted into the opening of the mask pattern 200 by ion implantation, and the diffusion wirings 41a, 41b, 43a. , 43b.
  • piezoresistive elements 40 to 43 are formed. As shown in FIG. 7, after forming the mask pattern 201 on the first substrate 110, boron (B) at a low concentration is implanted into the opening of the mask pattern 201 by ion implantation, and the piezoresistive elements 40 to 43 are formed. Form.
  • metal wiring such as aluminum is formed.
  • a metal for example, aluminum
  • a metal layer 300 for example, an aluminum layer.
  • a mask pattern 202 is formed on the metal layer 300.
  • the metal wirings 300a and 300b are formed by etching the metal layer not protected by the mask pattern 202.
  • the piezoresistive elements 40 to 43 constitute a Wheatstone bridge circuit by connection using the metal wiring 300a and the like and the diffusion wiring 41a and the like.
  • an intermediate layer is formed. As shown in FIG. 9, the intermediate layer 30 is formed by applying a predetermined material on the first substrate 110. At this time, the intermediate layer 30 may be formed into a desired shape by photolithography.
  • the diaphragm is formed.
  • the second substrate 112 that is not protected by the mask pattern 204 is dry-etched to form a recess 400.
  • dry etching conditions are set in advance so that the SiO 2 layer 111 serves as a stop layer.
  • the dry etching conditions are changed, and as shown in FIG. 10B, the SiO 2 layer 111 is removed to form a diaphragm.
  • the sensitive film 20 is formed. As shown in FIG. 11, the sensitive film material is applied on the intermediate layer 30 and then dried to form the sensitive film 20.
  • the first substrate 110 is described as n-type. However, for example, when the first substrate 110 is p-type, (2) formation of the diffusion wiring (highly doped layer) and (3) piezoresistive element. In the formation of the (low doped layer), phosphorus (P) is implanted instead of boron (B).
  • FIG. 12 is a top view showing a schematic configuration of the stress sensor 1a according to the second embodiment.
  • the same components as those described in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
  • the stress sensor 1a includes a diaphragm 10a having notches 50, 51, 52, 53 on the outer periphery, a sensitive film 20a having notches 50, 51, 52, 53 on the outer periphery, and piezoresistive elements 40, 41. , 42, 43.
  • the sensitive film 20a may be disposed on the upper surface of the diaphragm 10a.
  • the diaphragm 10a is a Si substrate.
  • the Si substrate is a single crystal n-type Si substrate.
  • a plane parallel to the xy plane shown in FIG. 12 (a plane perpendicular to the z axis) is the Si (100) plane.
  • the x-axis direction is the [110] direction
  • the y-axis direction is the [1-10] direction
  • the z-axis direction is the [001] direction.
  • the diaphragm 10a has four notches 50 to 53 on the outer periphery thereof.
  • the sensitive film 20a has four notches 50 to 53, four extending portions 21, 22, 23, and 24 delimited by the notches 50 to 53 on the outer periphery thereof, and Four outer edge portions 25, 26, 27, and 28 located at the tips of the existing portions 21 to 24 are provided. Due to the notches 50 to 53, in the present embodiment, the extending portions 21 to 24 are rectangular, and therefore the sensitive film 20a has a cross shape.
  • the cutout portions 50 to 53 of the diaphragm 10a and the sensitive film 20a are cut out in the same shape. That is, as shown in FIG. 12, in the top view, the notch lines of the notch portions 50 to 53 of the diaphragm 10a and the sensitive film 20a coincide with each other.
  • the notches of the diaphragm 10a and the sensitive film 20a may have different shapes. In the present embodiment, the notches 50 to 53 have a rectangular shape when viewed from above, as shown in FIG.
  • the extended portions 21 to 24 have end portions that intersect each other.
  • the sensitive film 20a extends in four directions from the central portion of the diaphragm 10a.
  • each of the extending portions 21 to 24 has a [ ⁇ 110] direction, a [ ⁇ 1-10] direction, a [1-10] direction and a [110] direction of the diaphragm 10a (hereinafter collectively “ ⁇ 110> ”).
  • the thicknesses of the diaphragm 10a and the sensitive film 20a can be appropriately selected in consideration of the material used for the sensitive film 20a, the substance to be detected, and the like.
  • the piezoresistive elements 40 to 43 are arranged on the diaphragm 10a so as to be arranged in the ⁇ 110> direction of the diaphragm 10a. That is, the longitudinal direction of the piezoresistive elements 40 to 43 is provided along the ⁇ 110> direction of the diaphragm 10a.
  • the piezoresistance coefficient (proportional coefficient between the stress applied to the piezoresistive element and the resistance value of the piezoresistive element changed by the stress) depends on the crystal orientation and is ⁇ 110> on the Si (100) plane. Maximum in the direction and minimum in the ⁇ 100> direction.
  • the piezoresistive elements 40 to 43 are arranged in the direction in which the piezoresistance coefficient is maximized so that the resistance value that varies depending on the stress received is maximized.
  • the piezoresistive elements 40 to 43 are located in the stress change region on the diaphragm 10a. Hereinafter, the stress change region will be described.
  • the stress change region is a region where the stress greatly changes with the deformation of the diaphragm 10a when the substance to be detected is adsorbed to the sensitive film 20a.
  • the notches 50 to 53 are formed so as to correspond to the ⁇ 100> direction of the diaphragm 10a. Therefore, when the sensitive film 20a is deformed, the diaphragm 10a is extended to the extending parts 21 to 21 of the sensitive film 20a. 24, the ⁇ 110> direction is mainly deformed. The degree of deformation of the diaphragm 10a becomes larger in the vicinity of the outer edge portions 25 to 28 located at the tips of the extending portions 21 to 24 of the sensitive film 20 that are delimited by the notches 50 to 53.
  • the stress change region is, for example, a region including the outer edge portions 25 to 28 and the vicinity of the outer edge portions 25 to 28.
  • the vicinity of the outer edge portions 25 to 28 includes an inner region and an outer region of the outer edge portions 25 to 28 with respect to the outer edge portions 25 to 28 in a top view.
  • the four piezoresistive elements 40 to 43 are arranged at equal intervals below the outer edge portions 25 to 28 in a top view.
  • the piezoresistive elements 40 to 43 may be located in the stress change region. Therefore, the piezoresistive elements 40 to 43 may be located outside or inside the outer edge portions 25 to 28. From the viewpoint of stress concentration, the piezoresistive elements 40 to 43 preferably have a portion located outside the outer edge portions 25 to 28 larger than a portion located inside. That is, for example, in the piezoresistive elements 40 to 43, the planar area located outside the outer edge portions 25 to 28 may be larger than the planar area located inside the outer edge portions 25 to 28. Although the piezoresistive elements 40 to 43 are located on the upper surface side of the diaphragm 10a in FIG. 12, they may be located inside or on the lower surface side of the diaphragm 10a.
  • the sensitive film 20a when the gas molecules 2 are adsorbed to the sensitive film 20a, the sensitive film 20a is deformed. Along with the deformation of the sensitive film 20a, the region of the diaphragm 10a where the sensitive film 20a is disposed is also deformed. On the other hand, in the diaphragm 10a, the region where the sensitive film 20a is not disposed is not easily deformed by the sensitive film 20a. In this manner, a region susceptible to the influence of the sensitive film 20a and a region difficult to receive are formed on the outer side and the inner side of the outer edge with reference to the outer edge 26.
  • the region that is susceptible to the sensitive film 20a is deformed into a convex shape in which the center side of the sensitive film 20a rises upward.
  • the region that is not easily affected by the sensitive film 20a is hardly affected by the deformation of the sensitive film 20a, and thus is not easily deformed. For example, it remains substantially parallel to the xy plane.
  • the diaphragm 10a is greatly deformed in a region existing near the boundary between these regions. Therefore, in the region near the boundary, the degree of deformation of the diaphragm 10a increases, and the stress generated in the portion increases.
  • the piezoresistive elements 40 to 43 are disposed in the vicinity of the boundary where large stress is likely to occur, the piezoresistive elements 40 to 43 when the substance to be detected is adsorbed to the sensitive film 20a. Deformation also increases. Therefore, the resistance values of the piezoresistive elements 40 to 43 are also likely to change greatly.
  • the stress sensor 1a when the substance to be detected is adsorbed to the sensitive film 20a, the degree of deformation of the diaphragm 10a in the stress change region is determined by the notch portion of the sensitive film 20a. Compared to the case without 50-53, it becomes larger. Therefore, the stress generated in the stress change region is also increased. Accordingly, the change in resistance value of the piezoresistive elements 50 to 53 located in the stress change region is also increased. Thereby, in the stress sensor 1a, when the substance to be detected is adsorbed to the sensitive film 20a, it is possible to improve the detection ability of the stress generated in the diaphragm 10a. Therefore, in the stress sensor 1a, the detection capability of the substance to be detected can be improved.
  • the stress sensor 1a when a substance to be detected is sprayed on the stress sensor 1a from the upper surface side, the substance that is not adsorbed on the sensitive film 20a passes through the notches 50 to 53. To do. Therefore, according to the stress sensor 1a, it is possible to prevent the test object that has not been adsorbed to the sensitive film 20a from staying on the upper surface of the stress sensor 1a.
  • a second sensitive film may be disposed on the lower surface of the diaphragm 10a where the sensitive film 20a is not disposed.
  • the substance to be detected that has passed through the notches 50 to 53 flows into the lower surface side of the diaphragm 10a and can be adsorbed to the second sensitive film.
  • the second sensitive film has a property of deforming in the direction opposite to the sensitive film 20a on the upper surface side when the substance to be detected is adsorbed, the degree of deformation of the diaphragm 10a becomes larger.
  • FIG. 13 is a top view showing a schematic configuration of the stress sensor 1b according to the third embodiment.
  • the same components as those shown in FIG. 12 are given the same reference numerals, and the description thereof is omitted as appropriate.
  • the stress sensor 1b includes a diaphragm 10b, a sensitive film 20b, and piezoresistive elements 40 to 43.
  • the diaphragm 10b and the sensitive film 20b each have four notches 50b, 51b, 52b, and 53b on the outer periphery thereof.
  • the notches 50b to 53b of the diaphragm 10b and the sensitive film 20b are notched in the same shape. That is, as shown in FIG. 13, the cut-out lines of the cut-out portions 50b to 53b of the diaphragm 10b and the sensitive film 20b coincide in the top view.
  • the notches of the diaphragm 10b and the sensitive film 20b may have different shapes.
  • the sensitive film 20b includes four extending portions 21b, 22b, 23b, 24b separated by the notches 50b-53b, and four outer edge portions 25b, 26b, which are located at the tips of the extending portions 21b-24b, 27b and 28b.
  • the notches 50b to 53b have a wedge shape when viewed from the upper surface side as shown in FIG.
  • the wedge shape refers to a shape whose width becomes narrower toward the tip.
  • the wedge shape is a triangle. Due to the cutout portions 50b to 53b, in the present embodiment, the extending portions 21b to 24b are shaped so as to increase in width toward the outer edge portions 25b to 28b, respectively.
  • the surface areas of the extending portions 21b to 24b of the sensitive film 20b arranged to correspond to the ⁇ 110> direction of the diaphragm 10b are increased. Accordingly, when the sensitive film 20b is deformed, the degree of deformation of the diaphragm 10b in the ⁇ 110> direction is increased, and the stress generated in the stress change region is also increased.
  • FIG. 14 is a top view showing a schematic configuration of the stress sensor 1c according to the fourth embodiment.
  • the same constituent elements as those described in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
  • the stress sensor 1c includes a diaphragm 10c having a penetrating region 11, a sensitive film 20c, and four piezoresistive elements (detectors) 40, 41, 42, and 43.
  • the sensitive film 20c is disposed on the upper surface of the diaphragm 10c.
  • the diaphragm 10c has a penetrating region 11 penetrating in the z direction in a part thereof.
  • the penetrating region 11 has a circular shape when viewed from the upper surface side.
  • region 11 is located in the center part of the diaphragm 10c.
  • the sensitive film 20c is disposed on the surface of the diaphragm 10c so as to cover at least a part of the penetrating region 11.
  • the sensitive film 20 c has a region that is disposed on the surface of the diaphragm 10 c and a region that covers the through region 11 when viewed from the upper surface side.
  • membrane 20c is an area
  • the sensitive film 20 c is disposed on the surface of the diaphragm 10 c near the edge 12 outside the edge 12 of the penetrating region 11.
  • the thickness of the diaphragm 10c and the sensitive film 20c can be appropriately selected in consideration of the material used for the sensitive film 20c, the substance to be detected, and the like.
  • the outer edge 31 c of the sensitive film 20 c according to the present embodiment is similar to the edge 12 of the penetrating region 11.
  • the piezoresistive elements 40 to 43 are located in the stress change region on the diaphragm 10c.
  • the stress change region includes, for example, a region where the outer edge 31c of the sensitive film 20c is disposed in the diaphragm 10c and the vicinity of the region.
  • the outer edge 31c is disposed in the vicinity of the edge 12 in the diaphragm 10c.
  • the four piezoresistive elements 40 to 43 are arranged at equal intervals in a region on the diaphragm 10c where the outer edge 31c of the sensitive film 20c is arranged in a top view.
  • the stress change region may be, for example, within a range of ⁇ 20 ⁇ m or less from the outer edge 31c of the sensitive film 20c.
  • the piezoresistive elements 40 to 43 are located on the outer edge 31c of the sensitive film 20c in the top view, but the piezoresistive elements 40 to 43 may be located in the stress change region. Therefore, the piezoresistive elements 40 to 43 may be positioned along the outer edge 31c on the inner side or the outer side of the outer edge 31c of the sensitive film 2c.
  • the sensitive film 20c when the gas molecule 2 is adsorbed to the sensitive film 20c, the sensitive film 20c is deformed. Along with the deformation of the sensitive film 20c, the region of the diaphragm 10c where the sensitive film 20c is disposed is also deformed. On the other hand, in the area where the sensitive film 20c is not disposed in the diaphragm 10c, deformation due to the sensitive film 20c hardly occurs. As described above, since the sensitive film 20c is arranged with the outer edge 31c as a boundary, in the diaphragm 10c, an area that is easily affected by deformation, and an area that is not affected by the deformation because the sensitive film 20c is not arranged. Is formed.
  • the central region excluding the vicinity of the outer edge 31 c in the sensitive film 20 c is disposed so as to cover the penetrating region 11.
  • the sensitive film 20c is formed on the diaphragm 10c
  • the sensitive film 20c tries to deform, and at the same time, the diaphragm 10c in contact with the sensitive film 20c prevents the deformation.
  • the action of preventing deformation does not work on the region of the sensitive film 20c covering the penetrating region 11. Therefore, the degree of deformation of the central region of the sensitive film 20c disposed so as to cover the penetrating region 11 is greater than that in the case where the central region is disposed on the diaphragm 10c.
  • the region of the diaphragm 10c that is susceptible to deformation is deformed into a convex shape with the center side of the sensitive film 20c raised upward.
  • the region that is easily affected by the deformation is largely deformed as a whole.
  • the region that is not easily affected by deformation in the diaphragm 10c is hardly affected by the deformation of the sensitive film 20c, and thus is not easily deformed. For example, it remains substantially parallel to the xy plane.
  • the diaphragm 10c is greatly deformed in a region near the boundary between a region that is not easily affected by deformation and a region that is susceptible to deformation.
  • the degree of deformation of the diaphragm 10c increases, and the stress generated in the portion increases.
  • the piezoresistive elements 40 to 43 are arranged in such a region where a large stress is likely to occur, the piezoresistive elements 40 to 43 when the substance to be detected is adsorbed to the sensitive film 20c. Deformation also increases. Therefore, the resistance values of the piezoresistive elements 40 to 43 are also likely to change greatly.
  • the sensitive film 20c when the substance to be detected is adsorbed to the sensitive film 20c, the sensitive film 20c has a region that covers the penetrating region 11; The degree of deformation of the sensitive film 20c is greater than when all the regions are formed on the diaphragm 10c.
  • region 11 changes greatly, the stress which arises in a stress change area
  • the stress sensor 1c when the substance to be detected is adsorbed to the sensitive film 20c, it is possible to improve the ability to detect the stress generated in the diaphragm 10c. Therefore, in the stress sensor 1c, the detection capability of the substance to be detected can be improved. Therefore, according to the stress sensor 1c, the detection capability can be improved.
  • FIG. 15 is a top view showing a schematic configuration of a stress sensor 1d according to the fifth embodiment.
  • the same constituent elements as those shown in FIG. 14 are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
  • the stress sensor 1d includes a diaphragm 10d having a penetrating region 11d, a sensitive film 20d, and piezoresistive elements 40 to 43. As shown in FIG. 15, the penetrating region 11d and the sensitive film 20d have a rectangular shape when viewed from the upper surface side. The outer edge 31d of the sensitive film 20d is similar to the edge 12d of the penetrating region 11d.
  • the piezoresistive elements 40 to 43 are arranged in the stress change region, similarly to the stress sensor 1c in the fourth embodiment.
  • the penetrating region 11d and the sensitive film 20d can have any other shape besides the circular shape and the rectangular shape.
  • the piezoresistive elements 40 to 43 may be located in a corner area of the outer edge 21d of the sensitive film 20d.
  • FIG. 16 is a top view showing a schematic configuration of a stress sensor 1e according to the sixth embodiment.
  • the same constituent elements as those shown in FIG. 14 are denoted by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the stress sensor 1e includes a diaphragm 10e having a through region 11e.
  • the outer edge 31e of the sensitive film 20e has a circular shape and is similar to the edge 12e of the penetrating region 11e.
  • the through region 11e has a plurality of through holes as shown in FIG. In other words, the penetration region 11e has a mesh shape when viewed from the upper surface side. As a result, the strength of the diaphragm 10e can be improved.
  • FIG. 17 is a cross-sectional view showing a schematic configuration of a stress sensor 1f according to the seventh embodiment.
  • the same components as those described in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
  • the stress sensor 1f includes a diaphragm 10f, a sensitive film 20f, and four piezoresistive elements.
  • the sensitive film 20f may be circular when viewed from above. In the present embodiment, the sensitive film 20f is disposed on the upper surface of the diaphragm 10f.
  • the four piezoresistive elements may be arranged at equal intervals along the circumference of the sensitive film 20f in a top view. In FIG. 17, two piezoresistive elements 41 and 43 among the four piezoresistive elements are illustrated.
  • the sensitive film 20f is disposed on the upper surface of the diaphragm 10f.
  • the diaphragm 10f is not uniform in length in the z-axis direction (hereinafter referred to as “thickness”).
  • the diaphragm 10 f includes a first region 101 including the center of the diaphragm 10 f and a second region 102 surrounding the first region 101.
  • the first area 101 is an area in which the diaphragm 10 f is thinner than the second area 102.
  • the first region 101 of the diaphragm 10f is referred to as a central region
  • the second region 102 is also referred to as an outer edge region.
  • the sensitive film 20f is arranged so as to cover the central region of the diaphragm 10f in a top view. Specifically, in the top view, the sensitive film 20f has a central portion including the center of the sensitive film 20f and a portion close to the center disposed at the central portion of the central region of the diaphragm 10f, and the outer edge 31f and the outer edge 31f of the sensitive film 20f. A portion close to is located at the outer edge of the central region.
  • the thickness of the sensitive film 20f can be appropriately selected in consideration of the material used for the sensitive film 20f, the substance to be detected, and the like.
  • the outer edge 31f of the sensitive film 20 may be located on the outer edge region.
  • the four piezoresistive elements are located in the stress change region on the diaphragm 10f.
  • the four piezoresistive elements are arranged at equal intervals along a region on the diaphragm 10f where the outer edge 31f of the sensitive film 20f is located in a top view.
  • the piezoresistive element may be located along the outer edge 31f inside or outside the outer edge 31f of the sensitive film 20f.
  • the sensitive film 20f when the gas molecule 2 is adsorbed to the sensitive film 20f, the sensitive film 20f is deformed. Along with the deformation of the sensitive film 20f, the region where the sensitive film 20f is disposed in the diaphragm 10f is also deformed. On the other hand, in the diaphragm 10f, the region where the sensitive film 20f is not disposed is not easily deformed by the sensitive film 20f. In this way, the sensitive film 20f is arranged with the outer edge 31f as a boundary, and a region that is easily affected by deformation and a region that is not arranged with the sensitive film 20 and is not easily affected by deformation are formed. .
  • the central portion excluding the vicinity of the outer edge 31f of the sensitive film 20f is disposed on a thin region of the diaphragm 10f.
  • the sensitive film 20f is formed on the thick region of the diaphragm 10f, when the gas molecules 2 are adsorbed to the sensitive film 20f, the sensitive film 20f tends to be deformed, while the thick diaphragm 10f under the sensitive film 20f causes the deformation. That deformation is hindered.
  • the sensitive film 20f is arranged so as to cover the thin area of the diaphragm 10f as in the central part of the sensitive film 20f in the present embodiment, the deformation of the sensitive film 20f is not easily prevented. Accordingly, the degree of deformation of the central portion of the sensitive film 20f disposed on the thin region of the diaphragm 10f is greater than that in the case where the central portion is disposed on the thick region.
  • the region of the diaphragm 10 that is susceptible to deformation is deformed into a convex shape with the center side of the sensitive film 20f raised upward.
  • the region that is easily affected by the deformation tends to be largely deformed as a whole.
  • the region that is not easily affected by deformation in the diaphragm 10f is hardly affected by the deformation of the sensitive film 20f, and thus is not easily deformed, and remains substantially parallel to, for example, the xy plane.
  • the diaphragm 10f is greatly deformed in a region near the boundary between the region susceptible to deformation and the region difficult to be affected by deformation. For this reason, in the region near the boundary, the degree of deformation of the diaphragm 10f increases, and the stress generated in the portion increases. Since the piezoresistive element is arranged in such a region where a large stress is likely to occur, the deformation of the piezoresistive element when the substance to be detected is adsorbed to the sensitive film 20f becomes large. Therefore, the resistance value of the piezoresistive element is also likely to change greatly.
  • the sensitive film 20f covers a thin region of the diaphragm 10f, when the substance to be detected is adsorbed to the sensitive film 20f, the sensitive film 20f is integrated.
  • the degree of deformation of the sensitive film 20f is greater than that when formed on the thick diaphragm 10f.
  • the sensitive film 20f in the portion covering the thin area is largely changed, the stress generated in the stress change area is also increased. Therefore, the change in the resistance value of the piezoresistive element located in the vicinity of the outer edge 31f of the sensitive film 20f, which is a stress change region, is also increased.
  • the stress sensor 1f when the substance to be detected is adsorbed to the sensitive film 20f, it is possible to improve the detection ability of the stress generated in the diaphragm 10f. Therefore, in the stress sensor 1f, the detection capability of the substance to be detected can be improved. Therefore, according to the stress sensor 1f, the detection capability can be improved.
  • the center portion is thinner than the outer edge portion. Furthermore, in the 1st area
  • the upper surface of the first region 101 of the diaphragm 10f according to the present embodiment is a flat surface, and the lower surface of the first region 101 is a curved surface. Further, the shape of the first region 101 according to the present embodiment may be similar to the shape of the sensitive film 20f.
  • the outer edge 31 f of the sensitive film 20 f may be disposed in the first region 101.
  • the piezoresistive element may be disposed in the first region 101.
  • the first region 101 may have a region thinner than the sensitive film 20f. Thereby, the deformation degree of the diaphragm 10f can be improved by the deformation of the sensitive film 20f.
  • the second region 102 may have a region thicker than the sensitive film 20f. Thereby, the intensity
  • FIG. 18 is a cross-sectional view showing a schematic configuration of a stress sensor 1g according to the eighth embodiment.
  • the same components as those described in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
  • the stress sensor 1g includes a diaphragm 10g, a sensitive film 20g, and four piezoresistive elements.
  • the sensitive film 20g may be circular when viewed from above.
  • the sensitive film 20g is disposed on the upper surface of the diaphragm 10g.
  • the four piezoresistive elements may be arranged at equal intervals along the circumference of the sensitive film 20g in a top view.
  • FIG. 18 illustrates two piezoresistive elements 41 and 43 among the four piezoresistive elements.
  • At least the surface of the sensitive film 20g that is not in contact with the diaphragm 10g (hereinafter referred to as “upper surface”) has an uneven shape.
  • the surface of the sensitive film 20g on the side in contact with the diaphragm 10g may also have an uneven shape.
  • both the upper surface and the lower surface of the sensitive film 20g have an uneven shape.
  • the uneven shape may be, for example, one in which conical portions are arranged.
  • the concavo-convex shape may be one in which concave portions and convex portions are alternately arranged concentrically as shown in FIG.
  • the surface area of the upper surface of the sensitive film 20g is larger than the surface area of the upper surface when the sensitive film 20g is flat.
  • the concave part is set to be larger than molecules or the like adsorbed on the sensitive film 20g.
  • the shape of the upper surface of the sensitive film 20g is not limited to the above example, and may be any shape having a large surface area compared to the case where the upper surface of the sensitive film 20g is flat.
  • the uneven shape on the upper surface may not be a regularly arranged shape.
  • the four piezoresistive elements are located in the stress change region on the diaphragm 10g.
  • the four piezoresistive elements are arranged at equal intervals in a region on the diaphragm 10g where the outer edge 31g is arranged in a top view.
  • the piezoresistive element may be located along the outer edge 31g inside or outside the outer edge 31g of the sensitive film 20g.
  • the sensitive film 20g when the gas molecule 2 is adsorbed to the sensitive film 20g, the sensitive film 20g is deformed. Along with the deformation of the sensitive film 20g, the region where the sensitive film 20g is arranged in the diaphragm 10g is also deformed. On the other hand, in the diaphragm 10g, the region where the sensitive film 20g is not disposed is not easily deformed by the sensitive film 20g. In this way, an area that is easily affected by the sensitive film 20g and an area that is not easily affected are formed in the inner area and the outer area with reference to the position where the outer edge 31g of the diaphragm 10g is disposed.
  • the inner area of the diaphragm 10g is deformed into a convex shape with the center side of the sensitive film 20g raised upward.
  • the region outside the diaphragm 10g is not significantly affected by the deformation of the sensitive film 20g, it is difficult to deform, and remains substantially parallel to the xy plane, for example.
  • the diaphragm 10g is greatly deformed in a region existing near the boundary between the inner region and the outer region. For this reason, in the region near the boundary, the degree of deformation of the diaphragm 10g increases, and the stress generated in the portion increases.
  • the piezoresistive element Since the piezoresistive element is arranged in the vicinity of the boundary where a large stress is likely to occur, the deformation of the piezoresistive element when the substance to be detected is adsorbed to the sensitive film 20g is increased. Therefore, the resistance value of the piezoresistive element is also likely to change greatly.
  • the sensitive film 20g of the present embodiment has a concavo-convex shape on the surface, the surface area is large compared to the case where the sensitive film 20g does not have a concavo-convex shape. Therefore, the number of gas molecules 2 to be adsorbed is larger in 20 g having an uneven shape on the surface. Therefore, the degree of change of the sensitive film 20g is large, and the resistance value of the piezoresistive element is easily changed.
  • the stress sensor 1g since the amount of the substance to be detected adsorbed to the sensitive film 20g increases, the degree of deformation of the diaphragm 10g in the stress change region is determined by the sensitive film 20g. Becomes larger compared to the case where the surface does not have an uneven shape. Therefore, the stress generated in the stress change region is also increased. Therefore, the change in the resistance value of the piezoresistive element located in the vicinity of the position where the outer edge 31g of the sensitive film 20g, which is the stress change region, is arranged becomes larger.
  • the stress sensor 1g when the substance to be detected is adsorbed to the sensitive film 20g, it is possible to improve the ability to detect the stress generated in the diaphragm 10g. Therefore, in the stress sensor 1g, the detection ability of the substance to be detected can be improved. Therefore, according to the stress sensor 1g, the detection capability can be improved.
  • the upper surface of the diaphragm 10g may have an uneven shape as shown in FIG. In other words, the upper surface of the diaphragm 10g may have the uneven third region 103. As a result, since the contact area between the diaphragm 10g and the sensitive film 20g is increased, the sensitive film 20g is difficult to peel from the diaphragm 10g.
  • the surface roughness (Ra) of the diaphragm 10g is larger than the surface roughness (Ra) of the sensitive film 20g.
  • the surface roughness (Ra) of the diaphragm 10g is set to, for example, 1 ⁇ m or more and 3 ⁇ m or less.
  • the surface roughness (Ra) of the sensitive film 20g is set to 90% or less of the surface roughness (Ra) of the diaphragm 10g, for example.
  • the piezoresistive element may be located outside the third region 103. As a result, it becomes easy to prevent the piezoresistive element from being disconnected. That is, conduction of the piezoresistive element can be ensured.
  • the third region 103 of the diaphragm 10g may be larger than the sensitive film 20g. In this case, the outer edge of the third region 103 is located outside the outer edge 31g of the sensitive film 20g.
  • the third region 103 of the diaphragm 10g may be smaller than the sensitive film 20g. In this case, the outer edge of the third region 103 is located inside the outer edge 31g of the sensitive film 20g.
  • Only the central portion of the upper surface of the sensitive film 20g may be uneven, or the entire upper surface of the sensitive film 20g may be uneven.
  • the uneven shape of the third region 103 may be a concentric shape similar to the shape of the sensitive film 20g.
  • the recess may have a plurality of grooves along the outer edge 31g of the sensitive film 20g. Accordingly, for example, when the outer edge 31g expands due to expansion of the sensitive film 20g, the uneven shape of the third region 103 is positioned in a state perpendicular to or close to perpendicular to the expansion direction of the outer edge 31g. It becomes easy to receive. As a result, the diaphragm 10g is easily deformed.
  • FIG. 19 is a cross-sectional view showing a schematic configuration of a stress sensor 1h according to the ninth embodiment.
  • the same components as those described in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
  • the stress sensor 1h includes a diaphragm 10h, a sensitive film 20h, and two piezoresistive elements 40 and 41.
  • the sensitive film 20h may be circular when viewed from above.
  • the sensitive film 20h is disposed on the upper surface of the diaphragm 10h.
  • the two piezoresistive elements 40 and 41 are arranged in positions facing each other across the sensitive film 20h in a region outside the outer edge portion 31h in a top view.
  • the two piezoresistive elements 40 and 41 are located in the stress change region on the diaphragm 10h.
  • the piezoresistive elements 40 and 41 may be located inside the outer edge 31h or the outer edge portion 31h of the sensitive film 20h.
  • the stress sensor 1h may include one or more piezoresistive elements.
  • the thickness of the arrangement area is smaller than the thickness of other areas other than the arrangement area.
  • the arrangement region is a region including a region within a predetermined range from the region where the piezoresistive elements 40 and 41 are arranged. That is, for example, as shown in FIG. 19 as a region B, the arrangement region is within a predetermined range from the region where the piezoresistive elements 40 and 41 are arranged in the top view and the region where the piezoresistive elements 40 and 41 are arranged. Area.
  • the arrangement region B is included in the stress change region. Since the thickness of the arrangement area B is smaller than the thickness of the other areas, the stress generated in the arrangement area B when the substance to be detected is adsorbed to the sensitive film 20h becomes larger than the other areas. Details of this principle will be described.
  • the sensitive film 20h when the gas molecule 2 is adsorbed to the sensitive film 20h, the sensitive film 20h is deformed. With the deformation of the sensitive film 20h, the region where the sensitive film 20h is arranged in the diaphragm 10h is also deformed. A stress is generated in the arrangement region B due to the deformation of the diaphragm 10h.
  • the region where the sensitive film 20h is arranged in the diaphragm 10h is deformed into a convex shape in which the center of the circular sensitive film 20h is raised upward. Due to the deformation of the region, an upward force is applied to the region of the diaphragm 10h where the sensitive film 20h is not disposed. At this time, since the arrangement area of the diaphragm 10 is thinner than the other areas, it is easier to deform than the other areas. For this reason, in the arrangement region B, the degree of deformation of the diaphragm 10h is greater than in other regions, and the stress generated in the location is increased.
  • the piezoresistive element 40 when the substance to be detected is adsorbed to the sensitive film 20h.
  • the deformation of 41 is also increased. Therefore, the resistance values of the piezoresistive elements 40 and 41 are also likely to change greatly.
  • the stress sensor 1h when the substance to be detected is adsorbed to the sensitive film 20h, the degree of deformation of the diaphragm 10h in the arrangement region B is compared with other regions. , Get bigger. For this reason, the stress generated in the arrangement region B is also increased. Therefore, the change in the resistance value of the piezoresistive elements 40 and 41 arranged in the arrangement region B becomes larger.
  • the stress sensor 1h when the substance to be detected is adsorbed to the sensitive film 20h, it is possible to improve the detection capability of the stress generated in the diaphragm 10h. Therefore, in the stress sensor 1h, the detection ability of the substance to be detected can be improved. Therefore, according to the stress sensor 1h, the detection capability can be improved.
  • FIG. 20 is a cross-sectional view illustrating a schematic configuration of a stress sensor 1 i according to the tenth embodiment.
  • the same components as those described in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
  • the stress sensor 1i includes a diaphragm 10i, a sensitive film 20i disposed on the upper surface of the diaphragm 10i, a connection portion, a first piezoresistive element (first detecting portion), and a second piezoresistive element (second detecting portion).
  • the sensitive film 20i is disposed on the upper surface of the diaphragm 10i.
  • the first piezoresistive element and the second piezoresistive element are each electrically connected in series by a connecting portion to constitute four resistance portions. In FIG. 20, two resistor portions 44 and 45 among the four resistor portions are illustrated.
  • the resistance unit 44 includes a first piezoresistive element 44a, a second piezoresistive element 44b, and a connection unit 34 that connects the first piezoresistive element 44a and the second piezoresistive element 44b.
  • the resistance unit 45 includes a first piezoresistive element 45a, a second piezoresistive element 45b, and a connection unit 35 that connects the first piezoresistive element 45a and the second piezoresistive element 45b.
  • piezoresistive elements when the first piezoresistive element and the second piezoresistive element are not distinguished, they are simply referred to as “piezoresistive elements”.
  • the diaphragm 10i is a single crystal n-type Si substrate.
  • a plane parallel to the xy plane (a plane perpendicular to the z-axis) is a Si (100) plane.
  • the x-axis direction is the [110] direction
  • the y-axis direction is the [1-10] direction
  • the z-axis direction is the [001] direction.
  • connection part is, for example, a via conductor or a diffusion wiring, and the first piezoresistive element and the second piezoresistive element are electrically connected in series to constitute a resistance part.
  • a resistor unit 44 configured by connecting piezoresistive elements 44 a and 44 b in series by a connecting unit 34
  • a resistor unit configured by connecting piezoresistive elements 45 a and 45 b in series by a connecting unit 35. 45.
  • the resistance value of the piezoresistive element changes depending on the stress that it receives.
  • the piezoresistive element is p-type Si, and is formed by diffusing boron (B) into a diaphragm 10i that is an n-type Si substrate.
  • the first piezoresistive element is disposed on the diaphragm 10i.
  • positioned on the diaphragm 10i means the state arrange
  • the second piezoresistive element is disposed below the diaphragm 10i.
  • being arranged under the diaphragm 10i means a state where it is arranged on the lower surface of the flat diaphragm 10i and a state where it is embedded in the diaphragm 10i on the lower surface side of the diaphragm 10i as shown in FIG. Including.
  • the longitudinal direction of the first piezoresistive element and the longitudinal direction of the second piezoresistive element may be different from each other.
  • the longitudinal direction of the first piezoresistive element and the longitudinal direction of the second piezoresistive element may be orthogonal to each other.
  • the longitudinal direction of the first piezoresistive element is the y-axis direction (first direction)
  • the longitudinal direction of the second piezoresistive element is the x-axis direction (second direction).
  • the current flowing in the piezoresistive element flows along the longitudinal direction of the piezoresistive element. That is, the current flowing through the first piezoresistive element flows along the first direction, and the current flowing through the second piezoresistive element flows along the second direction. Part of the first piezoresistive element and the second piezoresistive element overlap each other when viewed from above. As shown in FIG. 20, the connecting portion extends in the vertical direction at a position where the first piezoresistive element and the second piezoresistive element overlap in top view, and connects the first piezoresistive element and the second piezoresistive element. ing.
  • the resistance unit is configured by electrically connecting a first piezoresistive element and a second piezoresistive element in series.
  • the resistance value of the resistance portion is a value obtained by adding the resistance value of the first piezoresistive element and the resistance value of the second piezoresistive element, respectively.
  • each of the resistance portions is configured by connecting a first piezoresistive element and a second piezoresistive element in an L shape in a top view.
  • the four resistance units constitute a Wheatstone bridge circuit.
  • the stress sensor 1i can detect adsorption of a substance to be detected on the sensitive film 20i by detecting a change in the resistance value of the resistance portion as an electric signal from a Wheatstone bridge circuit configured by four resistance portions.
  • the Wheatstone bridge circuit does not necessarily have to be configured using all four resistance units, and may be configured using any one, two, or three of the resistance units.
  • the stress sensor 1i is configured so that the diaphragm 10i includes the number of resistance units used in the Wheatstone bridge circuit. Also good.
  • the stress sensor 1i includes four resistance units, but the number of resistance units included in the stress sensor 1i is not limited to four.
  • the stress sensor 1i only needs to include an arbitrary number of resistance units that can detect a substance to be detected.
  • the stress generated in the diaphragm 10i when the substance to be detected is adsorbed on the sensitive film 20i will be described.
  • the stress sensor 1i when the gas molecules 2 are adsorbed to the sensitive film 20i, the sensitive film 20i is deformed, and the diaphragm 10i is also deformed along with this deformation.
  • the diaphragm 10i for example, when the upper surface side of the diaphragm 10i extends and the lower surface side of the diaphragm 10i contracts, stresses in different directions are generated on the upper surface side of the diaphragm 10i and the lower surface side of the diaphragm 10i.
  • a first stress directed toward the center of the diaphragm 10i is generated on the upper surface side of the diaphragm 10i
  • a second stress directed toward the peripheral portion of the diaphragm 10i is generated on the lower surface side of the diaphragm 10i.
  • the first stress x-axis component that is the stress component in the x-axis direction of the first stress and the second stress x-axis component that is the stress component in the x-axis direction of the second stress are opposite in the x-axis direction. It becomes the stress of.
  • the diaphragm 10i is single-crystal Si whose surface is Si (100), and the stress generated in the diaphragm 10 can be regarded as plane stress.
  • the change amount ⁇ R of the resistance value of the piezoresistive element is proportional to ( ⁇ x ⁇ y), where ⁇ x is a stress in the x-axis direction and ⁇ y is a stress in the y-axis direction. Accordingly, the sign of the amount of change ⁇ R in the resistance value of the piezoresistive element depends on the direction of ⁇ x, which is the stress in the x-axis direction.
  • the first stress x-axis component and the second stress x-axis component which are different from each other in the x-axis direction, are generated on the upper surface side and the lower surface side of the diaphragm 10i. Accordingly, when the longitudinal direction of the piezoresistive elements arranged above and below the diaphragm 10i is aligned with the y-axis direction, the change amount ⁇ R of one resistance value of the piezoresistive elements arranged above and below the diaphragm 10i becomes a positive value. The change amount ⁇ R of the other resistance value is a negative value.
  • the longitudinal direction of the first piezoresistive element disposed on the diaphragm 10i is the y-axis direction
  • the longitudinal direction of the second piezoresistive element disposed below the diaphragm 10i is the x-axis direction. It is. Accordingly, even if the first piezoresistive element and the second piezoresistive element are connected in series to form the resistor portion, the stress in the x-axis direction that affects the resistor portion is received by the first piezoresistive device 41a. Only the stress x-axis component.
  • the resistance portion can also obtain the amount of change in the resistance value due to the stress in the y-axis direction of the second piezoresistive element whose longitudinal direction is the x-axis direction.
  • the resistance unit can obtain a larger change amount of the resistance value by adding the change amounts of the resistance values of the first piezoresistive element and the second piezoresistive element.
  • the first piezoresistive element arranged on the diaphragm 10i and the second piezoresistive element arranged under the diaphragm 10i are connected in series. It constitutes a resistance part.
  • the resistance value of the resistance portion becomes a value obtained by adding the resistance values of the first piezoresistive element and the second piezoresistive element, respectively. Therefore, in the stress sensor 1i, when the substance to be detected is adsorbed to the sensitive film 20i, the change in the resistance value of the resistance portion is larger than that in the case where the resistance portion is not configured as a series resistance of the piezoresistive element. can do. Therefore, in the stress sensor 1i, the detection ability of the substance to be detected can be improved.
  • FIG. 21 is a cross-sectional view showing a schematic configuration of the stress sensor 1j according to the eleventh embodiment.
  • the same components as those described in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
  • the stress sensor 1j includes a diaphragm 10j, a sensitive film 20j, a convex portion 32, and four piezoresistive elements.
  • the sensitive film 20j may be circular when viewed from above.
  • the sensitive film 20j is disposed in a region surrounded by the convex portion 32 on the upper surface of the diaphragm 10j.
  • FIG. 21 shows two piezoresistive elements 41 and 43 among the four piezoresistive elements.
  • the sensitive film 20j has a central portion 20A and an outer portion 20B having a thickness larger than that of the central portion 20A.
  • Making the thickness of the outer portion 20B larger than the thickness of the central portion 20A is, for example, by forming a convex portion 32 and then applying a sensitive film material to a region surrounded by the convex portion 32. This is realized by forming 20j.
  • the sensitive film 20j is formed in this way, when the sensitive film material is applied, the liquid-like sensitive film material to be spread is blocked by the convex portions 32, so that the outer portion 20B is raised. Therefore, the sensitive film 20j has a shape in which the thickness of the outer portion 20B is larger than the thickness of the central portion 20A.
  • the convex portion 32 is in contact with the sensitive film 20j.
  • the convex portion 32 is disposed on the upper surface of the diaphragm 10j.
  • the convex portion 32 has, for example, a ring shape with a substantially rectangular cross section.
  • the convex portion 32 may be formed of a hydrophobic material. This is because the convex part 32 can repel the sensitive film 20j and the outer edge 31j of the sensitive film 20j can have a more prominent edge when the stress sensor 1j is manufactured.
  • the material of the convex part 32 is SiN etc., for example.
  • the term “hydrophilic” means that chemical species and substituents of the material of the sensitive film 20j are bonded to water (H 2 O) by hydrogen bonding or the like. Hydrophobic means that the material of the sensitive film 20j has a polarity opposite to that of hydrophilicity.
  • the four piezoresistive elements are located in the stress change region on the diaphragm 10j.
  • the four piezoresistive elements are arranged at equal intervals along a region on the diaphragm 10j where the outer edge 31j of the sensitive film 20j is located in a top view.
  • the piezoresistive element may be located along the outer edge 31j inside or outside the outer edge 31j of the sensitive film 20j.
  • the stress sensor 1j when the gas molecule 2 is adsorbed to the sensitive film 20j, the sensitive film 20j is deformed. Along with the deformation of the sensitive film 20j, the region where the sensitive film 20j is arranged in the diaphragm 10j is also deformed. Due to the deformation of the diaphragm 10j, a stress is generated in the stress change region.
  • the diaphragm 10j a region inside the convex portion 32 in the top view is deformed into a convex shape in which the center side of the sensitive film 20j is raised upward.
  • the stress generated in the stress change region of the diaphragm 10j increases when the edge of the outer edge 31j of the sensitive film 20j is steep.
  • the sensitive film 20j of the present embodiment has a configuration in which the thickness of the outer portion 20B is larger than the thickness of the central portion 20A. Therefore, the edge of the outer edge 31j is steep compared to the sensitive film formed so that the outer thickness is gradually smaller than the thickness of the central portion by a normal manufacturing method.
  • the diaphragm 10j in which the sensitive film 20j according to the configuration of the present embodiment is formed on the upper surface has a higher stress generated in the stress change region than the diaphragm in which the sensitive film formed by a normal manufacturing method is formed on the upper surface.
  • the stress generated in the region near the outer edge 31j of the diaphragm 10j is higher than that of the diaphragm formed on the upper surface of the sensitive film formed by the normal manufacturing method. .
  • the change in the resistance value of the piezoresistive element located in the region near the outer edge 31j becomes larger.
  • the stress sensor 1j since the stress sensor 1j according to the present embodiment has the convex portion 32, for example, when the sensitive film 20j tries to expand, the convex portion 32 receives a force from the sensitive film 20j. At this time, since the convex portion 32 is connected to the diaphragm 10j, a moment acts with the intersection point between the inner surface of the convex portion 32 and the upper surface of the diaphragm 10j as a rotation axis. Therefore, the stress generated in the diaphragm 10j can be improved.
  • the piezoresistive element may be located immediately below the boundary between the sensitive film 20j and the convex portion 32. As a result, the sensitivity of the stress sensor 1j can be improved.
  • the Young's modulus of the convex portion 32 may be larger than the Young's modulus of the sensitive film 20j. As a result, the deformation of the protrusion 32 itself can be reduced when receiving a force from the sensitive film 20j.
  • the Young's modulus of the convex portion 32 may be larger than the Young's modulus of the diaphragm 10j.
  • the height of the convex portion 32 is larger than the width of the convex portion 32.
  • the height of the convex portion 32 is the length in the z-axis direction.
  • the width of the convex portion 32 is the length in the plane direction when the convex portion 32 is cut as shown in FIG.
  • the height of the convex portion 32 is set to be lower than the height of the sensitive film 20j.

Abstract

応力センサは、ダイヤフラムと、ダイヤフラムの面上に配置される中間層と、中間層上に配置される感応膜と、ダイヤフラムにおいて中間層の外縁と接触する領域に位置するピエゾ抵抗素子とを備える。

Description

応力センサ 関連出願の相互参照
 本出願は、日本国特許出願2016-072668号(2016年3月31日出願)、日本国特許出願2016-072666号(2016年3月31日出願)、日本国特許出願2016-072672号(2016年3月31日出願)、日本国特許出願2016-072675号(2016年3月31日出願)、日本国特許出願2016-072678号(2016年3月31日出願)、日本国特許出願2016-072681号(2016年3月31日出願)、日本国特許出願2016-072685号(2016年3月31日出願)、及び日本国特許出願2016-072691号(2016年3月31日出願)の優先権を主張するものであり、当該出願の開示全体を、ここに参照のために取り込む。
 本開示は、応力センサに関する。
 従来、ダイヤフラムを用いて圧力又は応力等を検出するセンサが知られている。例えば、特許文献1には、ダイヤフラムに加えられる圧力を、ダイヤフラムの撓みに基づいて検出する圧力センサが開示されている。
特開2015-143713号公報
 本発明の一実施形態に係る応力センサは、ダイヤフラムと、中間層と、感応膜と、検出部と、を備える。前記中間層は、前記ダイヤフラムの面上に配置される。前記感応膜は、前記中間層上に配置される。前記検出部は、前記ダイヤフラムにおいて前記中間層の外縁と接触する領域に位置する。
 上記応力センサによれば、検出能力を向上できる。
第1実施形態に係る応力センサの概略構成を示す上面図である。 図1に示す応力センサのL-L線に沿った断面図である。 第1実施形態におけるダイヤフラムの接触領域の一例を示す図である。 ガス分子が感応膜に吸着された際の図2に示す範囲Aの拡大図である。 第1実施形態に係る応力センサの製造に用いるSOI基板の概略構造を示す断面図である。 第1実施形態に係る応力センサの製造工程を説明するための断面図である。 第1実施形態に係る応力センサの製造工程を説明するための断面図である。 第1実施形態に係る応力センサの製造工程を説明するための断面図である。 第1実施形態に係る応力センサの製造工程を説明するための断面図である。 第1実施形態に係る応力センサの製造工程を説明するための断面図である。 第1実施形態に係る応力センサの製造工程を説明するための断面図である。 第2実施形態に係る応力センサの概略構成を示す上面図である。 第3実施形態に係る応力センサの概略構成を示す上面図である。 第4実施形態に係る応力センサの概略構成を示す上面図である。 第5実施形態に係る応力センサの概略構成を示す上面図である。 第6実施形態に係る応力センサの概略構成を示す上面図である。 第7実施形態に係る応力センサの概略構成を示す断面図である。 第8実施形態に係る応力センサの概略構成を示す断面図である。 第9実施形態に係る応力センサの概略構成を示す断面図である。 第10実施形態に係る応力センサの概略構成を示す断面図である。 第11実施形態に係る応力センサの概略構成を示す断面図である。
 以下、いくつかの実施形態について、図面を参照して説明する。以下説明する実施形態では、ダイヤフラムの面上に配置された膜(感応膜)への物質の吸着によって、ダイヤフラムが変形し、ダイヤフラムに応力が生じるものとして説明する。以下の説明で用いられる図は模式的なものである。
(第1実施形態)
 図1は、第1実施形態に係る応力センサ1の概略構成を示す上面図であり、図2は、図1に示す応力センサ1のL-L線に沿った断面図である。なお、本明細書では、z軸正方向が上側、z軸負方向が下側であるとして、以下説明する。
 応力センサ1は、ダイヤフラム10と、感応膜20と、中間層30と、4個のピエゾ抵抗素子(検出部)40,41,42,43とを備える。ダイヤフラム10の上面に、中間層30が配置され、中間層30の上面に感応膜20が配置される。応力センサ1は、感応膜20が流体中の特定の物質を吸着することにより、流体中の物質を検出する。応力センサ1には、例えば上面側から気体が吹きかけられる。応力センサ1は、吹きかけられた気体中に、検出対象となる所定のガス分子が含まれるか否かを検出できる。応力センサ1は、例えばSOI(Silicon on Insulator)基板を用いて製造される。応力センサ1の製造方法の一例については後述する。
 ダイヤフラム10は、変形可能な部材である。ダイヤフラム10は、例えば、薄い基板である。ダイヤフラム10は、例えば、n型第2基板とすることができる。ダイヤフラム10は、図1に示すように、上面側から見て矩形状としてもよい。ダイヤフラム10は、その周囲において、ダイヤフラム10よりも厚い基板と一体として構成されている。ダイヤフラム10は、上面に配置された感応膜20が変形すると、中間層30を介して、感応膜20の変形の度合いに応じて変形する。
 感応膜20は、本実施形態では上面視において円形状である。感応膜20は、検出対象となる物質がその表面に吸着されると、その物質との物理的な接触又はその物質との化学反応等によって、膨潤、膨張、収縮または伸長等して変形する。感応膜20には、検出対象となる物質に応じた材料が用いられる。感応膜20の材料は、例えば、ポリスチレン、クロロプレンゴム、ポリメチルメタクリレート、酢酸ビニル、クロロエチレン、エポキシ樹脂、ニトロセルロース、メタクリレート樹脂またはポリビニルピロリドン等が挙げられる。
 中間層30は、ダイヤフラム10と感応膜20との間に配置される薄膜層である。中間層30は、本実施形態では上面視において円形状である。応力センサ1が中間層30を有することにより、検出対象となる物質が感応膜20に吸着された際に、ダイヤフラム10において中間層30の外縁31と接触する領域(以下「接触領域」ともいう)に生じる応力が、中間層30を有さない場合と比較して大きくなる。この原理の詳細については、後述する。中間層30の材料は、例えば、金、アルミニウム、銀、スズ、マグネシウムまたはこれらの合金などの金属材料、ソーダガラス等のガラス材料、あるいはフッ化リチウム等のアルカリハライド等である。
 接触領域は、ダイヤフラム10において中間層30の外縁31と接触する領域の近辺を含む。ダイヤフラム10において中間層30の外縁31と接触する領域の近辺は、上面視において外縁31から所定の距離内の範囲を含む。従って、接触領域は、本実施形態では、例えば図3において領域Dとして示すように、円環形状の領域である。接触領域Dでは、検出対象となる物質が感応膜20に吸着された際に、中間層30の存在に起因したダイヤフラム10の変形に伴い、他の領域と比較して応力が大きく変化する。
 中間層30は、ダイヤフラム10と同程度またはダイヤフラム10よりも小さい。中間層30の直径は、例えば、100μm以上1000μm以下に設定されていればよい。接触領域は、例えば、中間層30の外縁31から±20μm以下の範囲であればよい。
 中間層30は、ダイヤフラム10のヤング率と、感応膜20のヤング率との中間のヤング率の材料により形成される。本実施形態において、ダイヤフラム10のヤング率は、感応膜20のヤング率よりも高いため、中間層30のヤング率は、ダイヤフラム10のヤング率よりも低く、感応膜20のヤング率よりも高い材料により形成される。
 ダイヤフラム10のヤング率は、例えば、100GPa以上120GPa以下であればよい。感応膜20のヤング率は、例えば、0.1GPa以上10GPa以下であればよい。中間層30のヤング率は、例えば、5GPa以上100GPa以下であればよい。
 中間層30は、円形状であってもよい。中間層30の直径は、感応膜20の直径以上であってもよい。その結果、検出対象となる物質が感応膜20に吸着された際にダイヤフラム10の接触領域Dに生じる応力がさらに大きくなる。
 中間層30の厚さは、感応膜20の厚さよりも小さく(薄く)てもよい。中間層30の厚さが小さいほど、製造時の加工がしやすいため、外縁31の形状を所望の形状に加工しやすくなる。感応膜20の厚さは、例えば、1μm以上20μm以下であればよい。中間層30の厚さは、例えば、0.1μm以上2μm以下であればよい。
 ピエゾ抵抗素子40~43は、自身が受ける応力によって抵抗値が変化する。ピエゾ抵抗素子40~43は、例えばp型Siである。ピエゾ抵抗素子40~43は、ダイヤフラム10がn型Siである場合には、ボロン(B)を拡散させて形成したものであってもよい。ピエゾ抵抗素子40~43は、ダイヤフラム10上に配置される。本明細書において、ダイヤフラム10上に配置されるとは、平板状のダイヤフラム10の上面に配置された状態と、図2に示すようにダイヤフラム10の上面側においてダイヤフラム10に埋め込まれた状態とを含む。ピエゾ抵抗素子40~43は、ダイヤフラム10上の接触領域Dに位置する。本実施形態では、図1に示すように、4個のピエゾ抵抗素子40~43は、上面視において中間層30の外縁31に沿って等間隔に配置されている。
 ピエゾ抵抗素子40~43は、ホイートストンブリッジ回路を構成する。応力センサ1は、ピエゾ抵抗素子40~43で構成されたホイートストンブリッジ回路から、ピエゾ抵抗素子40~43の抵抗値の変化を電気信号として検出することで、検出対象となる物質の感応膜20への吸着を検出できる。ホイートストンブリッジ回路は、必ずしも4個のピエゾ抵抗素子40~43の全てを用いて構成する必要はなく、ピエゾ抵抗素子40~43の何れか1個、2個又は3個を用いて構成してもよい。ピエゾ抵抗素子40~43の何れか1個、2個又は3個を用いてホイートストンブリッジ回路を構成する際には、応力センサ1は、ホイートストンブリッジ回路に用いられる個数のピエゾ抵抗素子を、ダイヤフラム10上に備えるようにしてもよい。
 ピエゾ抵抗素子40~43は、接触領域Dに位置している。また、ピエゾ抵抗素子40~43は、中間層30の外側に位置する部分が、中間層30の内側に位置する部分よりも大きくてもよい。その結果、応力センサ1の検出精度を向上させることができる。ピエゾ抵抗素子40~43は、例えば、帯状であってよい。ピエゾ抵抗素子40~43は、図1及び図2では、ダイヤフラム10の上面側に位置しているが、ダイヤフラム10の内部又は下面側に位置していてもよい。
 本実施形態では、応力センサ1は4個のピエゾ抵抗素子40~43を備えるが、応力センサ1が備えるピエゾ抵抗素子の個数は4個に限られない。応力センサ1は、検出対象となる物質を検出可能な任意の個数のピエゾ抵抗素子を備えていればよい。
 ダイヤフラム10に生じる応力を検出する検出部として、ピエゾ抵抗素子の代わりに、他の圧電素子が用いられてもよい。
 次に、ダイヤフラム10に生じる応力について、図4を参照して説明する。図4は、ガス分子2が感応膜20に吸着された際の図2に示す範囲Aの拡大図である。ガス分子2は、応力センサ1を用いて検出する対象のガス分子を模式的に示すものである。
 図4に示すように、ガス分子2が感応膜20に吸着されると、感応膜20が変形する。感応膜20の変形に伴い、中間層30が変形し、さらにダイヤフラム10において中間層30が配置された領域も変形する。ダイヤフラム10の変形により、接触領域Dに応力が生じる。
 具体的には、ダイヤフラム10において中間層30が配置された領域Cは、円形の感応膜20の中心部が上側に盛り上がった凸形状に変形する。このとき、本実施形態におけるダイヤフラム10の接触領域Dには、中間層30を介して変形による応力が生じる。中間層30のヤング率は、感応膜20のヤング率よりも高いため、ダイヤフラム10に中間層30が配置されずに直接感応膜20が配置された場合と比較して、ダイヤフラム10の接触領域Dに生じる応力が高まる。すなわち、ダイヤフラム10に直接感応膜20が配置された場合には、感応膜20はヤング率が中間層30よりも低いため、ダイヤフラム10は、より緩やかな曲面を形成して変形する。これに対し、本実施形態のダイヤフラム10の接触領域Dには、感応膜20よりもヤング率が高い中間層30を介して変形させる力がかかるため、接触領域Dにおける変形が、より大きくなる。そのため、本実施形態のダイヤフラム10は、接触領域Dに生じる応力が高くなる。
 以上のように、本実施形態に係る応力センサ1では、ダイヤフラム10に中間層30が配置されない場合と比較して、接触領域Dに生じる応力が高くなる。そのため、接触領域Dに位置するピエゾ抵抗素子40~43の抵抗値の変化もより大きくなる。これにより、応力センサ1では、検出対象となる物質が感応膜20に吸着された際に、ダイヤフラム10に生じる応力の検出能力を向上させることができる。そのため、応力センサ1では、検出対象となる物質の検出能力を向上させることができる。従って、応力センサ1によれば、検出能力を向上できる。
 (本実施形態に係る応力センサの製造工程)
 次に、本実施形態に係る応力センサの製造工程の一例について、図5~図11を参照して説明する。図5~図11に示す各構成要素において、同一の構成要素には同一符号を付す。
 (1)SOI基板の準備
 まず、応力センサの製造に用いるSOI基板を準備する。図5に、本実施形態に係る応力センサの製造に用いるSOI基板の概略構造を示す。図5に示すように、SOI基板100は、第1基板110と、SiO層111と、第2基板112とを備える。第1基板110及び第2基板112は、Si基板である。第1基板110は、ダイヤフラムとして機能させるものであり、第2基板112よりも薄い。SOI基板100では、第2基板112上にSiO層111が配置され、SiO層111上に第1基板110が配置されている。SOI基板100は、例えばいわゆる貼り合わせ法によって製造される。以下では、第1基板110はn型であるとする。
 (2)拡散配線(高ドープ層)の形成
 次に、図5に示すSOI基板100に、拡散配線を形成する。図6に示すように、第1基板110上にマスクパターン200を形成した後、イオン注入法によってマスクパターン200の開口部に高濃度のボロン(B)を注入し、拡散配線41a,41b,43a,43bを形成する。
 (3)ピエゾ抵抗素子(低ドープ層)の形成
 図6に示すマスクパターン200を除去した後、ピエゾ抵抗素子40~43を形成する。図7に示すように、第1基板110上にマスクパターン201を形成した後、イオン注入法によってマスクパターン201の開口部に低濃度のボロン(B)を注入し、ピエゾ抵抗素子40~43を形成する。
 (4)金属配線の形成
 図7に示すマスクパターン201を除去し、所定のパターンの絶縁層310a,310bを積層した後、アルミニウム等の金属配線を形成する。図8(a)に示すように、第1基板110上の全面にスパッタによって金属(例えばアルミニウム)を堆積させ、金属層300(例えばアルミニウム層)を形成する。次に、図8(b)に示すように、金属層300上にマスクパターン202を形成する。その後、図8(c)に示すように、マスクパターン202により保護されていない金属層をエッチングすることにより、金属配線300a,300bを形成する。金属配線300a等及び拡散配線41a等による接続によって、ピエゾ抵抗素子40~43は、ホイートストンブリッジ回路を構成する。
 (5)中間層の形成
 図8(c)に示すマスクパターン202を除去した後、中間層を形成する。中間層30は、図9に示すように、第1基板110上に所定の材料を塗布することにより、形成される。このとき、フォトリソグラフィにより、中間層30を所望の形状に成形してもよい。
 (6)ダイヤフラムの形成
 SOI基板100の上下を反転させた後、ダイヤフラムを形成する。図10(a)に示すように、第2基板112上にマスクパターン204を形成した後、マスクパターン204により保護されていない第2基板112を、ドライエッチングして凹部400を形成する。このとき、SiO層111がストップ層の役割を果たすように、予めドライエッチングの条件を設定する。その後、ドライエッチングの条件を変更し、図10(b)に示すように、SiO層111を除去してダイヤフラムを形成する。
 (7)感応膜の形成
 図10に示すマスクパターン204を除去し、さらにSOI基板100の上下を反転させた後、感応膜20を形成する。図11に示すように、感応膜材料を中間層30上に塗布した後、乾燥させて感応膜20を形成する。
 ここでは第1基板110がn型であるとして説明したが、例えば第1基板110がp型である場合には、上記(2)拡散配線(高ドープ層)の形成及び(3)ピエゾ抵抗素子(低ドープ層)の形成において、ボロン(B)に替えてリン(P)を注入する。
(第2実施形態)
 図12は、第2実施形態に係る応力センサ1aの概略構成を示す上面図である。図12に示す構成要素において、第1実施形態で説明した構成要素と同一の構成要素には、同一符号を付し、その説明を適宜省略する。
 応力センサ1aは、外周部に切欠き部50,51,52,53を有するダイヤフラム10aと、外周部に切欠き部50,51,52,53を有する感応膜20aと、ピエゾ抵抗素子40,41,42,43とを備える。本実施形態において、感応膜20aは、ダイヤフラム10aの上面に配置されてよい。
 本実施形態では、ダイヤフラム10aは、Si基板であるものとする。Si基板は、単結晶のn型のSi基板であり、図12では、図12に示すxy平面に平行な面(z軸に垂直な面)がSi(100)面となる。また、ダイヤフラム10aにおいて、x軸方向は[110]方向、y軸方向は[1-10]方向及びz軸方向は[001]方向である。
 本実施形態において、ダイヤフラム10aは、その外周部に4個の切欠き部50~53を有する。
 本実施形態において、感応膜20aは、その外周部に4個の切欠き部50~53、切欠き部50~53によって区切られる4個の延在部21,22,23,24、及び、延在部21~24の先端に位置する4個の外縁部25,26,27,28を有する。この切欠き部50~53により、本実施形態では、延在部21~24は矩形状であり、従って、感応膜20aは十字形状である。
 本実施形態において、ダイヤフラム10aと感応膜20aとの切欠き部50~53は、同一の形状に切欠かれている。すなわち、図12に示すように、上面視において、ダイヤフラム10aと感応膜20aとの切欠き部50~53の切欠き線は、一致する。ただし、ダイヤフラム10aと感応膜20aとの切欠き部は、それぞれ異なる形状であってもよい。本実施形態において、切欠き部50~53は、図12に示すように、上面視において、矩形状である。
 各延在部21~24は、互いに交わる端部を有している。言い換えれば、感応膜20aは、ダイヤフラム10aの中央部から四方に延びている。図12に示す例では、各延在部21~24はダイヤフラム10aの[-110]方向、[-1-10]方向、[1-10]方向及び[110]方向(以下、まとめて「<110>」と表記する)に延びている。ダイヤフラム10a及び感応膜20aの厚さは、感応膜20aに用いられる材料、検出対象となる物質等を考慮して適宜選択することができる。
 本実施形態において、ピエゾ抵抗素子40~43は、ダイヤフラム10aの<110>方向に配置されるように、ダイヤフラム10a上に配置される。すなわち、ピエゾ抵抗素子40~43の長手方向は、ダイヤフラム10aの<110>方向に沿って設けられる。ここで、ピエゾ抵抗係数(ピエゾ抵抗素子が受ける応力と、その応力によって変化するピエゾ抵抗素子の抵抗値との間の比例係数)は、結晶方位に依存し、Si(100)面において<110>方向で最大となり、<100>方向で最小となる。従って、ピエゾ抵抗素子40~43は、受ける応力によって変化する抵抗値が最大となるように、ピエゾ抵抗係数が最大となる方向に配置される。ピエゾ抵抗素子40~43は、ダイヤフラム10a上において、応力変化領域に位置する。以下、応力変化領域について説明する。
 本実施形態において、応力変化領域とは、検出対象となる物質が感応膜20aに吸着された際に、ダイヤフラム10aの変形に伴い応力が大きく変化する領域である。本実施形態では、ダイヤフラム10aの<100>方向に対応するように切欠き部50~53が形成されているため、感応膜20aが変形すると、ダイヤフラム10aは、感応膜20aの延在部21~24によって<110>方向が主に変形するようになる。ダイヤフラム10aの変形の度合いは、切欠き部50~53によって区切られる感応膜20の延在部21~24の先端に位置する外縁部25~28の付近でより大きくなる。つまり、応力変化領域は、例えば、外縁部25~28及び外縁部25~28の近辺を含む領域となる。外縁部25~28の近辺は、上面視において、外縁部25~28を基準に、外縁部25~28の内側の領域と外側の領域とを含む。本実施形態では、図12に示すように、4個のピエゾ抵抗素子40~43は、上面視において外縁部25~28の下側に、等間隔に配置されている。
 ピエゾ抵抗素子40~43は、ピエゾ抵抗素子40~43は応力変化領域に位置していればよい。従って、ピエゾ抵抗素子40~43は、外縁部25~28の外側又は内側に位置していてもよい。応力集中の観点では、ピエゾ抵抗素子40~43は、外縁部25~28の外側に位置する部分が、内側に位置する部分よりも大きいとよい。すなわち、例えば、ピエゾ抵抗素子40~43において、外縁部25~28の外側に位置する平面形状の面積が、外縁部25~28の内側に位置する平面形状の面積よりも大きくてもよい。ピエゾ抵抗素子40~43は、図12では、ダイヤフラム10aの上面側に位置しているが、ダイヤフラム10aの内部又は下面側に位置していてもよい。
 本実施形態に係る応力センサ1aにおいて、ガス分子2が感応膜20aに吸着されると、感応膜20aが変形する。感応膜20aの変形に伴い、ダイヤフラム10aにおいて感応膜20aが配置された領域も変形する。一方、ダイヤフラム10aにおいて感応膜20aが配置されていない領域は、感応膜20aによる変形が生じにくい。このように、外縁部26を基準に外縁部の外側と内側とで、感応膜20aの影響を受けやすい領域と、受けにくい領域とが形成される。
 具体的には、感応膜20aの影響を受けやすい領域は、感応膜20aの中心側が上側に盛り上がった凸形状に変形する。一方、感応膜20aの影響を受けにくい領域は、感応膜20aの変形の影響をあまり受けないため、変形しにくく、例えばxy平面に対してほぼ平行なままである。このとき、これらの領域の境界付近に存在する領域では、ダイヤフラム10aが大きく変形する。そのため、当該境界付近の領域では、ダイヤフラム10aの変形の度合いが大きくなり、当該箇所に生じる応力が大きくなる。そして、このように大きな応力が生じやすい境界付近の領域にピエゾ抵抗素子40~43が配置されているため、検出対象となる物質が感応膜20aに吸着された際におけるピエゾ抵抗素子40~43の変形も大きくなる。そのため、ピエゾ抵抗素子40~43の抵抗値も、大きく変化しやすくなる。
 以上のように、本実施形態に係る応力センサ1aでは、検出対象となる物質が感応膜20aに吸着された際に、応力変化領域におけるダイヤフラム10aの変形の度合いが、感応膜20aが切欠き部50~53を有しない場合と比較して、大きくなる。そのため、応力変化領域に生じる応力もより大きくなる。従って、応力変化領域に位置するピエゾ抵抗素子50~53の抵抗値の変化もより大きくなる。これにより、応力センサ1aでは、検出対象となる物質が感応膜20aに吸着された際に、ダイヤフラム10aに生じる応力の検出能力を向上させることができる。従って、応力センサ1aでは、検出対象となる物質の検出能力を向上させることができる。
 本実施形態に係る応力センサ1aによれば、検出対象となる物質が上面側から応力センサ1aに対して吹きかけられた際、感応膜20aに吸着されなかった物質が切欠き部50~53を通過する。そのため、応力センサ1aによれば、感応膜20aに吸着されなかった被検物が、応力センサ1aの上面に滞ることを防ぐことができる。
 加えて、応力センサ1aにおいて、ダイヤフラム10aの感応膜20aが配置されない下面上に、第2感応膜が配置されてもよい。これにより、切欠き部50~53を通過した検出対象となる物質がダイヤフラム10aの下面側に流れ込み、第2感応膜に吸着され得る。第2感応膜が、検出対象となる物質を吸着した際に、上面側の感応膜20aとは反対方向に変形する性質を有する場合には、ダイヤフラム10aの変形の度合いがより大きくなる。
 (第3実施形態)
 図13は、第3実施形態に係る応力センサ1bの概略構成を示す上面図である。図13に示す構成要素において、図12に示す構成要素と同一の構成要素は、同一符号を付し、その説明を適宜省略する。
 応力センサ1bは、ダイヤフラム10bと、感応膜20bと、ピエゾ抵抗素子40~43とを備える。ダイヤフラム10b及び感応膜20bは、それぞれ、その外周部に4個の切欠き部50b,51b,52b,53bを有する。本実施形態において、ダイヤフラム10bと感応膜20bとの切欠き部50b~53bは、同一の形状に切欠かれている。すなわち、図13に示すように、上面視において、ダイヤフラム10bと感応膜20bとの切欠き部50b~53bの切欠き線は、一致する。ただし、ダイヤフラム10bと感応膜20bとの切欠き部は、それぞれ異なる形状であってもよい。
 感応膜20bは、切欠き部50b~53bによって区切られる4個の延在部21b,22b,23b,24b、及び、延在部21b~24bの先端に位置する4個の外縁部25b,26b,27b,28bを有する。
 本実施形態において、切欠き部50b~53bは、図13に示すように、上面側から見ると、くさび形状である。くさび形状とは、先端に向かうにつれて幅が狭くなる形状を指す。本実施形態において、くさび形状は三角形である。この切欠き部50b~53bによって、本実施形態において、延在部21b~24bは、それぞれ、外縁部25b~28bに向かうにつれて幅が広くなる形状となる。
 このように、切欠き部50b~53bをくさび形状にすると、ダイヤフラム10bの〈110〉方向に対応するように配置される感応膜20bの延在部21b~24bの表面積が大きくなる。従って、感応膜20bが変形した際、ダイヤフラム10bにおける<110>方向の変形の度合いがより大きくなり、応力変化領域に生じる応力もより大きくなる。
 本実施形態に係る応力センサ1bにおいて、その他の構成及び効果は、第2実施形態に係る応力センサ1aと同様であるため、ここでは説明を省略する。
(第4実施形態)
 図14は、第4実施形態に係る応力センサ1cの概略構成を示す上面図である。図14に示す構成要素において、第1実施形態で説明した構成要素と同一の構成要素には、同一符号を付し、その説明を適宜省略する。
 応力センサ1cは、貫通領域11を有するダイヤフラム10cと、感応膜20cと、4個のピエゾ抵抗素子(検出部)40,41,42,43とを備える。本実施形態において、感応膜20cは、ダイヤフラム10cの上面に配置される。
 本実施形態において、ダイヤフラム10cは、その一部に、z方向に貫通する貫通領域11を有する。本実施形態では、貫通領域11は、図14に示すように、上面側から見ると円形状である。また、貫通領域11はダイヤフラム10cの中央部に位置する。
 感応膜20cは、貫通領域11の少なくとも一部を覆ってダイヤフラム10cの面上に配置される。具体的には、感応膜20cは、上面側から見ると、ダイヤフラム10cの面上に配置される領域、及び貫通領域11を覆う領域を有する。感応膜20cにおけるダイヤフラム10cの面上に配置される領域は、感応膜20cの外縁31cと外縁31cの近辺を含む領域である。感応膜20cは、貫通領域11の縁12の外側で、縁12の近辺でダイヤフラム10cの面上に配置される。ダイヤフラム10c及び感応膜20cの厚さは、感応膜20cに用いられる材料、検出対象となる物質等を考慮して適宜選択することができる。本実施形態に係る感応膜20cの外縁31cは、貫通領域11の縁12と相似形である。
 応力センサ1cでは、貫通領域11の存在に起因して、検出対象となる物質が感応膜20cに吸着された際にダイヤフラム10cにおける感応膜20cの外縁31cが位置している領域に生じる応力が大きくなる。
 ピエゾ抵抗素子40~43は、ダイヤフラム10c上において、応力変化領域に位置する。応力変化領域は、例えば、ダイヤフラム10cにおいて感応膜20cの外縁31cが配置される領域及び該領域の近辺を含む。外縁31cは、ダイヤフラム10cにおける縁12の近辺に配置される。本実施形態では、図14に示すように、4個のピエゾ抵抗素子40~43は、上面視において感応膜20cの外縁31cが配置される、ダイヤフラム10c上の領域に等間隔に配置されている。応力変化領域は、例えば、感応膜20cの外縁31cから±20μm以下の範囲であればよい。
 ピエゾ抵抗素子40~43は、図14に示す例では、上面視において感応膜20cの外縁31cに位置しているが、ピエゾ抵抗素子40~43は応力変化領域に位置していればよい。従って、ピエゾ抵抗素子40~43は、感応膜2cの外縁31cの内側又は外側に外縁31cに沿って位置していてもよい。
 本実施形態に係る応力センサ1cにおいて、ガス分子2が感応膜20cに吸着されると、感応膜20cが変形する。感応膜20cの変形に伴い、ダイヤフラム10cにおいて感応膜20cが配置された領域も変形する。一方、ダイヤフラム10cにおける感応膜20cが配置されていない領域は、感応膜20cによる変形が生じにくい。このように、外縁31cを境にして感応膜20cが配置されているため、ダイヤフラム10cにおいて、変形の影響を受けやすい領域と、感応膜20cが配置されておらず変形の影響を受けにくい領域とが形成される。
 さらに、感応膜20cにおける外縁31cの近辺を除く中央領域は、貫通領域11を覆って配置されている。感応膜20cがダイヤフラム10c上に形成された場合、感応膜20cに物質が吸着されると、感応膜20cが変形しようとすると同時に、感応膜20cに接触しているダイヤフラム10cによってその変形を妨げる作用が働く。これに対し、貫通領域11を覆う感応膜20cの領域には変形を妨げる作用は働かない。従って、貫通領域11を覆うように配置されている感応膜20cの中央領域は、ダイヤフラム10c上に配置されている場合と比較して変形の度合いがより大きくなる。
 具体的には、ダイヤフラム10cにおいて変形の影響を受けやすい領域は、感応膜20cの中心側が上側に盛り上がった凸形状に変形する。特に、中央領域においては、上述のように変形の度合いが大きいため、変形の影響を受けやすい領域は、全体としてより大きく変形する。一方、ダイヤフラム10cにおいて変形の影響を受けにくい領域は、感応膜20cの変形の影響をあまり受けないため、変形しにくく、例えばxy平面に対してほぼ平行なままである。このとき、変形の影響を受けにくい領域と変形の影響を受けやすい領域との境界付近に存在する領域では、ダイヤフラム10cが大きく変形する。そのため、当該領域では、ダイヤフラム10cの変形の度合いが大きくなり、当該箇所に生じる応力が大きくなる。応力センサ1cにおいて、このように大きな応力が生じやすい領域にピエゾ抵抗素子40~43が配置されているため、検出対象となる物質が感応膜20cに吸着された際におけるピエゾ抵抗素子40~43の変形も大きくなる。そのため、ピエゾ抵抗素子40~43の抵抗値も、大きく変化しやすくなる。
 以上のように、第4実施形態に係る応力センサ1cでは、検出対象となる物質が感応膜20cに吸着された際に、感応膜20cに貫通領域11を覆う領域があるため、感応膜20cの全ての領域がダイヤフラム10c上に形成された場合と比較して、感応膜20cの変形の度合いがより大きくなる。このように、貫通領域11を覆う部分の感応膜20cが大きく変化することにより、応力変化領域に生じる応力もより大きくなる。従って、応力変化領域である、感応膜20cの外縁31cの近辺に位置するピエゾ抵抗素子40~43の抵抗値の変化もより大きくなる。これにより、応力センサ1cでは、検出対象となる物質が感応膜20cに吸着された際に、ダイヤフラム10cに生じる応力の検出能力を向上させることができる。そのため、応力センサ1cでは、検出対象となる物質の検出能力を向上させることができる。従って、応力センサ1cによれば、検出能力を向上できる。
(第5実施形態)
 図15は、第5実施形態に係る応力センサ1dの概略構成を示す上面図である。図15に示す各構成要素において、図14に示す構成要素と同一の構成要素は同一符号を付し、その説明を適宜省略する。
 応力センサ1dは、貫通領域11dを有するダイヤフラム10dと、感応膜20dと、ピエゾ抵抗素子40~43とを備える。貫通領域11d及び感応膜20dは、図15に示すように、上面側から見ると矩形状である。感応膜20dの外縁31dは、貫通領域11dの縁12dと相似形である。ピエゾ抵抗素子40~43は、第4実施形態における応力センサ1cと同様に、応力変化領域に配置されている。
 このような応力センサ1dであっても、第4実施形態に係る応力センサ1cと同様の効果を得ることができる。貫通領域11d及び感応膜20dは、円形状及び矩形状以外にも、他の任意の形状とすることができる。
 本実施形態において、ピエゾ抵抗素子40~43は、感応膜20dの外縁21dの角部の領域に位置していてもよい。
(第6実施形態)
 図16は、第6実施形態に係る応力センサ1eの概略構成を示す上面図である。図16に示す各構成要素において、図14に示す構成要素と同一の構成要素は同一符号を付し、その説明を適宜省略する。
 応力センサ1eは、貫通領域11eを有するダイヤフラム10eを備える。感応膜20eの外縁31eは、円形であり、貫通領域11eの縁12eと相似形である。本実施形態において、貫通領域11eは、図16に示すように、複数の貫通孔を有している。言い換えれば、貫通領域11eは、上面側から見ると、網目状である。その結果、ダイヤフラム10eの強度を向上させることができる。
(第7実施形態)
 図17は、第7実施形態に係る応力センサ1fの概略構成を示す断面図である。図17に示す構成要素において、第1実施形態で説明した構成要素と同一の構成要素には、同一符号を付し、その説明を適宜省略する。
 応力センサ1fは、ダイヤフラム10fと、感応膜20fと、4個のピエゾ抵抗素子とを備える。感応膜20fは、上面視において円形であってよい。本実施形態において、感応膜20fは、ダイヤフラム10fの上面に配置される。4個のピエゾ抵抗素子は、上面視において、感応膜20fの円周に沿って等間隔に配置されていてよい。図17では、4個のピエゾ抵抗素子のうち、2個のピエゾ抵抗素子41,43が図示されている。
 感応膜20fは、ダイヤフラム10fの上面に配置される。ダイヤフラム10fは、z軸方向の長さ(以降、「厚さ」という)が一様でない。具体的には、ダイヤフラム10fは、ダイヤフラム10fの中央を含む第1領域101と、第1領域101を囲む第2領域102とを有している。第1領域101は、第2領域102よりもダイヤフラム10fの厚さが薄い領域である。本実施形態に関する以下の説明においては、例として、ダイヤフラム10fの第1領域101を中央領域と称し、第2領域102を外縁領域とも称する。
 感応膜20fは、上面視においてダイヤフラム10fの中央領域を覆うように配置される。具体的には、感応膜20fは、上面視において、感応膜20fの中心及び中心に近い部分を含む中央部がダイヤフラム10fの中央領域の中央部に配置され、感応膜20fの外縁31f及び外縁31fに近い部分が中央領域の外縁部に配置される。感応膜20fの厚さは、感応膜20fに用いられる材料、検出対象となる物質等を考慮して適宜選択することができる。感応膜20の外縁31fは、外縁領域の上に位置していてもよい。
 4個のピエゾ抵抗素子は、ダイヤフラム10f上において、応力変化領域に位置する。本実施形態では、4個のピエゾ抵抗素子は、上面視において感応膜20fの外縁31fが位置する、ダイヤフラム10f上の領域に沿って等間隔に配置されている。ピエゾ抵抗素子は、感応膜20fの外縁31fの内側又は外側に外縁31fに沿って位置していてもよい。
 本実施形態に係る応力センサ1fにおいて、ガス分子2が感応膜20fに吸着されると、感応膜20fが変形する。感応膜20fの変形に伴い、ダイヤフラム10fにおいて感応膜20fが配置された領域も変形する。一方、ダイヤフラム10fにおける感応膜20fが配置されていない領域は、感応膜20fによる変形が生じにくい。このように、外縁31fを境にして感応膜20fが配置されており、変形の影響を受けやすい領域と、感応膜20が配置されておらず、変形の影響を受けにくい領域とが形成される。
 さらに、感応膜20fの外縁31fの近辺を除く中央部は、ダイヤフラム10fの薄い領域上に配置されている。感応膜20fがダイヤフラム10fの厚い領域上に形成された場合、ガス分子2が感応膜20fに吸着されると、感応膜20fが変形しようとする一方、感応膜20fの下にある厚いダイヤフラム10fによってその変形が妨げられる。これに対し、本実施形態における感応膜20fの中央部のように、感応膜20fがダイヤフラム10fの薄い領域を覆うように配置されている場合、感応膜20fの変形は、妨げられにくくなる。従って、ダイヤフラム10fの薄い領域上に配置されている感応膜20fの中央部は、厚い領域上に配置された場合と比較して変形の度合いがより大きくなる。
 具体的には、ダイヤフラム10において変形の影響を受けやすい領域は、感応膜20fの中心側が上側に盛り上がった凸形状に変形する。特に、ダイヤフラム10fの薄い領域においては、上述のように変形の度合いが大きいため、変形の影響を受けやすい領域は全体としてより大きく変形しやすくなる。一方、ダイヤフラム10fにおいて変形の影響を受けにくい領域は、感応膜20fの変形の影響をあまり受けないため、変形しにくく、例えばxy平面に対してほぼ平行なままである。このとき、変形の影響を受けやすい領域と変形の影響を受けにくい領域との境界付近に存在する領域では、ダイヤフラム10fが大きく変形する。そのため、境界付近の領域では、ダイヤフラム10fの変形の度合いが大きくなり、当該箇所に生じる応力が大きくなる。このように大きな応力が生じやすい領域にピエゾ抵抗素子が配置されているため、検出対象となる物質が感応膜20fに吸着された際におけるピエゾ抵抗素子の変形も大きくなる。そのため、ピエゾ抵抗素子の抵抗値も、大きく変化しやすくなる。
 以上のように、第7実施形態に係る応力センサ1fでは、感応膜20fはダイヤフラム10fの薄い領域を覆うため、検出対象となる物質が感応膜20fに吸着された際に、感応膜20fが一様に厚いダイヤフラム10f上に形成された場合と比較して、感応膜20fの変形の度合いがより大きくなる。このように、薄い領域を覆う部分の感応膜20fが大きく変化することにより、応力変化領域に生じる応力もより大きくなる。従って、応力変化領域である、感応膜20fの外縁31fの近辺に位置するピエゾ抵抗素子の抵抗値の変化もより大きくなる。これにより、応力センサ1fでは、検出対象となる物質が感応膜20fに吸着された際に、ダイヤフラム10fに生じる応力の検出能力を向上させることができる。そのため、応力センサ1fでは、検出対象となる物質の検出能力を向上させることができる。従って、応力センサ1fによれば、検出能力を向上できる。
 本実施形態において、ダイヤフラム10の外縁領域を厚くすることによってダイヤフラム10fの強度を高めることができ、これにより応力センサ1fの製造における歩留りを向上させることが可能となる。
 本実施形態に係るダイヤフラム10fの第1領域101では、中央部が外縁部よりも薄くなっている。さらに、本実施形態に係るダイヤフラム10fの第1領域101では、外縁部から中央部に向かうにつれて薄くなっている。本実施形態に係るダイヤフラム10fの第1領域101の上面は平面であり、第1領域101の下面は曲面である。また、本実施形態に係る第1領域101の形状は、感応膜20fの形状と相似形でもよい。
 感応膜20fの外縁31fは、第1領域101に配置されていてもよい。その結果、ダイヤフラム10fの変形の度合いを向上させることができる。ピエゾ抵抗素子は、第1領域101に配置されていてもよい。
 第1領域101は、感応膜20fよりも薄い領域を有していてもよい。これにより、感応膜20fの変形によって、ダイヤフラム10fの変形の度合いを向上させることができる。第2領域102は、感応膜20fよりも厚い領域を有していてもよい。これにより、ダイヤフラム10fの強度を向上させることができる。
(第8実施形態)
 図18は、第8実施形態に係る応力センサ1gの概略構成を示す断面図である。図18に示す構成要素において、第1実施形態で説明した構成要素と同一の構成要素には、同一符号を付し、その説明を適宜省略する。
 応力センサ1gは、ダイヤフラム10gと、感応膜20gと、4個のピエゾ抵抗素子とを備える。感応膜20gは、上面視において円形であってよい。本実施形態において、感応膜20gは、ダイヤフラム10gの上面に配置される。4個のピエゾ抵抗素子は、上面視において、感応膜20gの円周に沿って等間隔に配置されていてよい。図18では、4個のピエゾ抵抗素子のうち、2個のピエゾ抵抗素子41,43が図示されている。
 図18に示すように、感応膜20gの、少なくともダイヤフラム10gに接していない側の面(以降、「上面」という)は凹凸形状を有する。感応膜20gのダイヤフラム10gに接している側の面も、凹凸形状を有していてもよい。本実施形態では、感応膜20gの上面及び下面のいずれもが凹凸形状を有しているとして説明する。凹凸形状は、例えば、円錐形状部が配列されているものであってもよい。凹凸形状は、図3に示すように同心円状に凹部と凸部とが交互に配列されているものであってよい。このような凹凸形状により、感応膜20gの上面の表面積は、感応膜20gが平坦である場合の上面の表面積より大きい。感応膜20gの上面の凹凸形状において、凹部は、感応膜20gに吸着等する分子等よりも大きく設定されている。感応膜20gの上面の形状は、上記の例に限られるものでなく、感応膜20gの上面が平面である場合に比べて、表面積が大きい任意の形状であればよい。上面の凹凸形状は、規則的に配列された形状でなくてもよい。
 4個のピエゾ抵抗素子は、ダイヤフラム10g上において、応力変化領域に位置する。本実施形態では、4個のピエゾ抵抗素子は、上面視において外縁31gが配置される、ダイヤフラム10g上の領域に等間隔に配置されている。ピエゾ抵抗素子は、感応膜20gの外縁31gの内側又は外側に外縁31gに沿って位置していてもよい。
 本実施形態に係る応力センサ1gにおいて、ガス分子2が感応膜20gに吸着されると、感応膜20gが変形する。感応膜20gの変形に伴い、ダイヤフラム10gにおいて感応膜20gが配置された領域も変形する。一方、ダイヤフラム10gにおける感応膜20gが配置されていない領域は、感応膜20gによる変形が生じにくい。このように、ダイヤフラム10gにおける外縁31gが配置される位置を基準に内側の領域と外側の領域とで、感応膜20gの影響を受けやすい領域と影響を受けにくい領域とが形成される。
 具体的には、ダイヤフラム10gの内側の領域は、感応膜20gの中心側が上側に盛り上がった凸形状に変形する。一方、ダイヤフラム10gの外側の領域は、感応膜20gの変形の影響をあまり受けないため、変形しにくく、例えばxy平面に対してほぼ平行なままである。このとき、内側の領域と外側の領域との境界付近に存在する領域では、ダイヤフラム10gが大きく変形する。そのため、境界付近の領域では、ダイヤフラム10gの変形の度合いが大きくなり、当該箇所に生じる応力が大きくなる。このように大きな応力が生じやすい境界付近の領域にピエゾ抵抗素子が配置されているため、検出対象となる物質が感応膜20gに吸着された際におけるピエゾ抵抗素子の変形も大きくなる。そのため、ピエゾ抵抗素子の抵抗値も、大きく変化しやすくなる。
 さらに、本実施形態の感応膜20gは表面に凹凸形状を有するため、感応膜20gが凹凸形状を有さない場合と比較して表面積が大きい。そのため、表面に凹凸形状を有する20gの方が、吸着されるガス分子2の数が多い。従って、感応膜20gが変化する度合も大きく、ピエゾ抵抗素子の抵抗値は変化しやすい。
 以上のように、本実施形態に係る応力センサ1gでは、検出対象となる物質の、感応膜20gに吸着される量が増加するため、応力変化領域におけるダイヤフラム10gの変形の度合いが、感応膜20gが表面に凹凸形状を有さない場合と比較して、より大きくなる。そのため、応力変化領域に生じる応力もより大きくなる。従って、応力変化領域である感応膜20gの外縁31gが配置される位置の近辺に位置するピエゾ抵抗素子の抵抗値の変化もより大きくなる。これにより、応力センサ1gでは、検出対象となる物質が感応膜20gに吸着された際に、ダイヤフラム10gに生じる応力の検出能力を向上させることができる。そのため、応力センサ1gでは、検出対象となる物質の検出能力を向上させることができる。従って、応力センサ1gによれば、検出能力を向上できる。
 ダイヤフラム10gの上面は、図18に示すように、凹凸形状を有していてもよい。言い換えれば、ダイヤフラム10gの上面は、凹凸形状の第3領域103を有していてもよい。その結果、ダイヤフラム10gと感応膜20gとの接触面積が大きくなるため、感応膜20gがダイヤフラム10gから剥離しにくくなる。
 本実施形態において、ダイヤフラム10gの表面粗さ(Ra)は、感応膜20gの表面粗さ(Ra)よりも大きい。ダイヤフラム10gの表面粗さ(Ra)は、例えば、1μm以上3μm以下に設定される。感応膜20gの表面粗さ(Ra)は、例えば、ダイヤフラム10gの表面粗さ(Ra)の90%以下に設定される。
 ピエゾ抵抗素子は、第3領域103よりも外側に位置していてもよい。その結果、ピエゾ抵抗素子が断線することを防止しやすくなる。すなわち、ピエゾ抵抗素子の導通を確保することができる。
 ダイヤフラム10gの第3領域103は、感応膜20gよりも大きくてもよい。この場合、第3領域103の外縁は、感応膜20gの外縁31gよりも外側に位置している。ダイヤフラム10gの第3領域103は、感応膜20gよりも小さくてもよい。この場合、第3領域103の外縁は、感応膜20gの外縁31gよりも内側に位置している。
 感応膜20gの上面のうち中央部のみ凹凸形状であってもよいし、感応膜20gの上面の全てが凹凸形状であってもよい。
 第3領域103の凹凸形状は、感応膜20gの形状に相似形の、同心形状であってもよい。具体的には、凹部として、感応膜20gの外縁31gに沿った複数の溝を有していてもよい。これにより、例えば感応膜20gの膨張によって外縁31gが拡大するときに、第3領域103の凹凸形状が外縁31gの拡大方向に垂直又は垂直に近い状態で位置するため、感応膜20gの変形による力を受けやすくなる。その結果、ダイヤフラム10gが変形しやすくなる。
(第9実施形態)
 図19は、第9実施形態に係る応力センサ1hの概略構成を示す断面図である。図19に示す構成要素において、第1実施形態で説明した構成要素と同一の構成要素には、同一符号を付し、その説明を適宜省略する。
 応力センサ1hは、ダイヤフラム10hと、感応膜20hと、2個のピエゾ抵抗素子40,41とを備える。感応膜20hは、上面視において円形であってよい。本実施形態において、感応膜20hは、ダイヤフラム10hの上面に配置される。2個のピエゾ抵抗素子40,41は、上面視において外縁部31hよりも外側の領域に、感応膜20hを挟んで対向する位置に配置されている。
 2個のピエゾ抵抗素子40,41は、ダイヤフラム10h上において、応力変化領域に位置する。ピエゾ抵抗素子40,41は、感応膜20hの外縁31hまたは外縁部31hよりも内側に位置していてもよい。応力センサ1hは、ピエゾ抵抗素子を、1個または3個以上備えていてもよい。
 本実施形態のダイヤフラム10hにおいて、配置領域の厚さは、配置領域以外の他の領域の厚さよりも小さい。ここで、配置領域は、ピエゾ抵抗素子40,41が配置された領域から所定の範囲内の領域を含む領域である。すなわち、配置領域は、例えば図19に領域Bとして示すように、上面視においてピエゾ抵抗素子40,41が配置された領域と、ピエゾ抵抗素子40,41が配置された領域から所定の範囲内の領域とを含む。配置領域Bは、応力変化領域に含まれる。配置領域Bの厚さが、他の領域の厚さよりも小さいことにより、検出対象となる物質が感応膜20hに吸着された際に配置領域Bに生じる応力が、他の領域よりも大きくなる。この原理の詳細について説明する。
 本実施形態に係る応力センサ1hにおいて、ガス分子2が感応膜20hに吸着されると、感応膜20hが変形する。感応膜20hの変形に伴い、ダイヤフラム10hにおいて感応膜20hが配置された領域も変形する。ダイヤフラム10hの変形により、配置領域Bに応力が生じる。
 具体的には、ダイヤフラム10hにおいて感応膜20hが配置された領域は、円形の感応膜20hの中心部が上側に盛り上がった凸形状に変形する。当該領域の変形により、ダイヤフラム10hにおいて感応膜20hが配置されていない領域に対し、上側への力が働く。このとき、ダイヤフラム10の配置領域は、他の領域よりも薄くなっているため、他の領域よりも変形しやすくなっている。そのため、配置領域Bでは、他の領域と比較して、ダイヤフラム10hの変形の度合いが大きくなり、当該箇所に生じる応力が大きくなる。そして、このように大きな応力が生じやすい配置領域Bは、ピエゾ抵抗素子40,41が配置された領域であるため、検出対象となる物質が感応膜20hに吸着された際におけるピエゾ抵抗素子40,41の変形も大きくなる。そのため、ピエゾ抵抗素子40,41の抵抗値も、大きく変化しやすくなる。
 以上のように、本実施形態に係る応力センサ1hでは、検出対象となる物質が感応膜20hに吸着された際に、配置領域Bにおけるダイヤフラム10hの変形の度合いが、他の領域と比較して、より大きくなる。そのため、配置領域Bに生じる応力もより大きくなる。そのため、配置領域Bに配置されたピエゾ抵抗素子40,41の抵抗値の変化もより大きくなる。これにより、応力センサ1hでは、検出対象となる物質が感応膜20hに吸着された際に、ダイヤフラム10hに生じる応力の検出能力を向上させることができる。そのため、応力センサ1hでは、検出対象となる物質の検出能力を向上させることができる。従って、応力センサ1hによれば、検出能力を向上できる。
(第10実施形態)
 図20は、第10実施形態に係る応力センサ1iの概略構成を示す断面図である。図19に示す構成要素において、第1実施形態で説明した構成要素と同一の構成要素には、同一符号を付し、その説明を適宜省略する。
 応力センサ1iは、ダイヤフラム10iと、ダイヤフラム10iの上面に配置される感応膜20iと、接続部と、第1ピエゾ抵抗素子(第1検出部)と、第2ピエゾ抵抗素子(第2検出部)とを備える。本実施形態において、感応膜20iは、ダイヤフラム10iの上面に配置される。第1ピエゾ抵抗素子と第2ピエゾ抵抗素子とは、それぞれ、接続部によって電気的に直列に接続され、4個の抵抗部を構成する。図20では、4個の抵抗部のうち、2個の抵抗部44,45が図示されている。抵抗部44は、第1ピエゾ抵抗素子44aと、第2ピエゾ抵抗素子44bと、第1ピエゾ抵抗素子44a及び第2ピエゾ抵抗素子44bを接続する接続部34とを備える。抵抗部45は、第1ピエゾ抵抗素子45aと、第2ピエゾ抵抗素子45bと、第1ピエゾ抵抗素子45a及び第2ピエゾ抵抗素子45bを接続する接続部35とを備える。本実施形態において、第1ピエゾ抵抗素子と第2ピエゾ抵抗素子とを区別しない場合には、単に「ピエゾ抵抗素子」と記載する。
 本実施形態に係るダイヤフラム10iは、単結晶のn型のSi基板であり、図20では、xy平面に平行な面(z軸に垂直な面)がSi(100)面となる。ダイヤフラム10iにおいて、x軸方向は[110]方向、y軸方向は[1-10]方向及びz軸方向は[001]方向である。
 接続部は、例えば、ビア導体又は拡散配線等であり、第1ピエゾ抵抗素子と第2ピエゾ抵抗素子とを電気的に直列に接続させ、抵抗部を構成する。図20には、接続部34によってピエゾ抵抗素子44a,44bを直列に接続させて構成される抵抗部44と、接続部35によってピエゾ抵抗素子45a,45bを直列に接続させて構成される抵抗部45とが示されている。
 ピエゾ抵抗素子は、自身が受ける応力によって抵抗値が変化する。ピエゾ抵抗素子は、p型Siであり、n型のSi基板であるダイヤフラム10iにボロン(B)を拡散させることで形成される。
 第1ピエゾ抵抗素子は、ダイヤフラム10i上に配置される。なお、本実施形態において、ダイヤフラム10i上に配置されるとは、平板状のダイヤフラム10iの上面に配置された状態と、図20に示すようにダイヤフラム10iの上面側においてダイヤフラム10iに埋め込まれた状態とを含む。
 第2ピエゾ抵抗素子は、ダイヤフラム10i下に配置される。本実施形態において、ダイヤフラム10i下に配置されるとは、平板状のダイヤフラム10iの下面に配置された状態と、図20に示すようにダイヤフラム10iの下面側においてダイヤフラム10iに埋め込まれた状態とを含む。
 第1ピエゾ抵抗素子の長手方向と第2ピエゾ抵抗素子の長手方向は、互いに異なる方向であってよい。第1ピエゾ抵抗素子の長手方向と第2ピエゾ抵抗素子の長手方向は、互いに直交してよい。本実施形態では、第1ピエゾ抵抗素子の長手方向はy軸方向(第1方向)であり、第2ピエゾ抵抗素子の長手方向はx軸方向(第2方向)である。
 ピエゾ抵抗素子中を流れる電流は、ピエゾ抵抗素子の長手方向に沿って流れる。すなわち、第1ピエゾ抵抗素子中を流れる電流は第1方向に沿って流れ、第2ピエゾ抵抗素子中を流れる電流は第2方向に沿って流れる。第1ピエゾ抵抗素子及び第2ピエゾ抵抗素子の一部は、上面視において重なっている。接続部は、図20に示すように、第1ピエゾ抵抗素子と第2ピエゾ抵抗素子とが上面視において重なる位置において上下方向に延び、第1ピエゾ抵抗素子と第2ピエゾ抵抗素子とを接続している。
 抵抗部は、第1ピエゾ抵抗素子と第2ピエゾ抵抗素子とを電気的に直列に接続させて構成される。このように構成することで、抵抗部の抵抗値は、それぞれ、第1ピエゾ抵抗素子の抵抗値と、第2ピエゾ抵抗素子の抵抗値とを足し合わせた値になる。本実施形態では、抵抗部は、それぞれ、第1ピエゾ抵抗素子と第2ピエゾ抵抗素子とを、上面視においてL字型に接続させて構成されている。
 4つの抵抗部は、ホイートストンブリッジ回路を構成する。応力センサ1iは、4つの抵抗部で構成されたホイートストンブリッジ回路から、抵抗部の抵抗値の変化を電気信号として検出することで、検出対象となる物質の感応膜20iへの吸着を検出できる。ホイートストンブリッジ回路は、必ずしも4個の抵抗部の全てを用いて構成する必要はなく、抵抗部の何れか1個、2個又は3個を用いて構成されていてもよい。抵抗部の何れか1個、2個又は3個を用いてホイートストンブリッジ回路を構成する際には、応力センサ1iは、ホイートストンブリッジ回路に用いられる個数の抵抗部を、ダイヤフラム10iが備えるようにしてもよい。
 本実施形態では、応力センサ1iは4個の抵抗部を備えるが、応力センサ1iが備える抵抗部の個数は4個に限られない。応力センサ1iは、検出対象となる物質を検出可能な任意の個数の抵抗部を備えていればよい。
 次に、感応膜20iに検出対象となる物質が吸着された際にダイヤフラム10iに生じる応力について説明する。本実施形態に係る応力センサ1iにおいて、ガス分子2が感応膜20iに吸着されると、感応膜20iが変形し、この変形に伴い、ダイヤフラム10iも変形する。このとき、ダイヤフラム10iでは、例えばダイヤフラム10iの上面側が伸び、かつダイヤフラム10iの下面側が縮むことで、ダイヤフラム10iの上面側とダイヤフラム10iの下面側とにおいて、互いに異なる向きの応力が生じる。本実施形態では、ダイヤフラム10iの上面側では、ダイヤフラム10iの中央部を向く第1応力が生じ、ダイヤフラム10iの下面側では、ダイヤフラム10iの周辺部を向く第2応力が生じている。このとき、第1応力のx軸方向の応力成分である第1応力x軸成分と、第2応力のx軸方向の応力成分である第2応力x軸成分とは、x軸方向において逆向きの応力となる。
 ここで、ダイヤフラム10iに生じる応力と、ピエゾ抵抗素子の抵抗値の変化量ΔRとの関係について説明する。本実施形態では、ダイヤフラム10iは、その表面をSi(100)とする単結晶Siであり、また、ダイヤフラム10に生じる応力は、平面応力とみなすことができる。この場合、ピエゾ抵抗素子の抵抗値の変化量ΔRは、σxをx軸方向の応力及びσyをy軸方向の応力とすると、(σx-σy)に比例する。従って、ピエゾ抵抗素子の抵抗値の変化量ΔRの正負は、x軸方向の応力であるσxの向きに依存する。
 本実施形態において、ダイヤフラム10iの上面側と下面側とでは、x軸方向において、互いに向きの異なる第1応力x軸成分と、第2応力x軸成分とが生じている。従って、ダイヤフラム10iの上下に配置するピエゾ抵抗素子の長手方向をy軸方向に揃えると、ダイヤフラム10iの上下に配置するピエゾ抵抗素子において、一方の抵抗値の変化量ΔRは正の値になり、他方の抵抗値の変化量ΔRは負の値になる。この場合、ダイヤフラム10iの上下に配置するピエゾ抵抗素子を直列に接続させて直列抵抗を構成すると、直列抵抗の抵抗値の変化量は、ピエゾ抵抗素子の抵抗値の変化量ΔRの正負が反対になって打ち消し合うため、低減してしまう。
 これに対し、本実施形態では、ダイヤフラム10iの上に配置する第1ピエゾ抵抗素子の長手方向はy軸方向であり、ダイヤフラム10iの下に配置する第2ピエゾ抵抗素子の長手方向はx軸方向である。従って、第1ピエゾ抵抗素子と第2ピエゾ抵抗素子とを直列に接続させて抵抗部を構成しても、抵抗部に影響するx軸方向の応力は、第1ピエゾ抵抗素子41aが受ける第1応力x軸成分のみである。さらに、本実施形態では、抵抗部は、長手方向をx軸方向とする第2ピエゾ抵抗素子のy軸方向の応力による抵抗値の変化量も得ることができる。これにより、抵抗部は、第1ピエゾ抵抗素子と第2ピエゾ抵抗素子との抵抗値の変化量を足し合わせた、より大きな抵抗値の変化量を得ることができる。
 以上のように、本実施形態に係る応力センサ1iでは、ダイヤフラム10i上に配置される第1ピエゾ抵抗素子と、ダイヤフラム10i下に配置される第2ピエゾ抵抗素子とを直列に接続させることで、抵抗部を構成している。これにより、抵抗部の抵抗値は、それぞれ、第1ピエゾ抵抗素子と、第2ピエゾ抵抗素子との抵抗値とを足し合わせた値となる。そのため、応力センサ1iでは、検出対象となる物質が感応膜20iに吸着された際、抵抗部の抵抗値の変化を、抵抗部をピエゾ抵抗素子の直列抵抗として構成しない場合と比較して、大きくすることができる。従って、応力センサ1iでは、検出対象となる物質の検出能力を向上させることができる。
(第11実施形態)
 図21は、第11実施形態に係る応力センサ1jの概略構成を示す断面図である。図21に示す構成要素において、第1実施形態で説明した構成要素と同一の構成要素には、同一符号を付し、その説明を適宜省略する。
 応力センサ1jは、ダイヤフラム10jと、感応膜20jと、凸部32と、4個のピエゾ抵抗素子とを備える。感応膜20jは、上面視において円形であってよい。本実施形態において、感応膜20jは、ダイヤフラム10jの上面において、凸部32に囲まれた領域に配置される。図21では、4個のピエゾ抵抗素子のうち、2個のピエゾ抵抗素子41,43が図示されている。
 感応膜20jは、図21に示すように、中央部20Aと、中央部20Aよりも厚みが大きい外側部20Bとを有する。外側部20Bの厚みを、中央部20Aの厚みよりも大きい形状とすることは、例えば、凸部32を形成してから、凸部32に囲まれた領域に感応膜材料を塗布して感応膜20jを形成することにより実現される。このように感応膜20jを形成すると、感応膜材料を塗布した際に、広がろうとする液体状の感応膜材料が凸部32によって堰き止められるため、外側部20Bが盛り上がる。そのため、感応膜20jは、外側部20Bの厚みが、中央部20Aの厚みよりも大きい形状となる。なお、凸部32は、感応膜20jに接している。
 凸部32は、ダイヤフラム10jの上面に配置される。凸部32は、例えば、断面が略矩形状のリング状である。凸部32は、例えば、感応膜20jが親水性の材料である場合は、疎水性の材料で形成してもよい。こうすると、応力センサ1jの製造時において、凸部32が感応膜20jをはじき、感応膜20jの外縁31jを、よりエッジが立った構成とすることができるからである。凸部32の材料は、例えば、SiNなどである。親水性とは、感応膜20jの材料の化学種や置換基が、水(HO)との間で水素結合などで結合することを指す。また、疎水性とは、感応膜20jの材料が、親水性と逆の極性を有していることを指す。
 4個のピエゾ抵抗素子は、ダイヤフラム10j上において、応力変化領域に位置する。本実施形態では、4個のピエゾ抵抗素子は、上面視において感応膜20jの外縁31jが位置する、ダイヤフラム10j上の領域に沿って等間隔に配置されている。ピエゾ抵抗素子は、感応膜20jの外縁31jの内側又は外側に外縁31jに沿って位置していてもよい。
 本実施形態に係る応力センサ1jにおいて、ガス分子2が感応膜20jに吸着されると、感応膜20jが変形する。感応膜20jの変形に伴い、ダイヤフラム10jにおいて感応膜20jが配置された領域も変形する。ダイヤフラム10jの変形により、応力変化領域に応力が生じる。
 具体的には、ダイヤフラム10jにおいて、上面視における凸部32よりも内側の領域は、感応膜20jの中心側が上側に盛り上がった凸形状に変形する。この際、感応膜20jの外縁31jのエッジが急峻に立っている方がダイヤフラム10jの応力変化領域に生じる応力が高まる。本実施形態の感応膜20jは、外側部20Bの厚みが中央部20Aの厚みよりも大きい構成である。そのため、通常の製造方法によって、外側の厚みが中央部の厚みよりも徐々に小さくなっていくように形成された感応膜と比較して、外縁31jのエッジが急峻に立っている。したがって、本実施形態の構成に係る感応膜20jを上面に形成したダイヤフラム10jは、通常の製造方法によって形成された感応膜を上面に形成したダイヤフラムよりも、応力変化領域に生じる応力が高くなる。
 以上のように、本実施形態に係る応力センサ1jでは、通常の製造方法によって形成された感応膜を上面に形成したダイヤフラムに比較して、ダイヤフラム10jにおける外縁31j付近の領域に生じる応力が高くなる。そのため、外縁31j付近の領域に位置するピエゾ抵抗素子の抵抗値の変化もより大きくなる。これにより、応力センサ1jでは、検出対象となる物質が感応膜20jに吸着された際に、ダイヤフラム10jに生じる応力の検出能力を向上させることができる。そのため、応力センサ1jでは、検出対象となる物質の検出能力を向上させることができる。
 本実施形態に係る応力センサ1jは、凸部32を有しているため、例えば感応膜20jが膨張しようとした場合、凸部32が感応膜20jから力を受ける。このとき、凸部32はダイヤフラム10jに接続していることから、凸部32の内側面とダイヤフラム10jの上面との交点を回転軸として、モーメントが働く。したがって、ダイヤフラム10jに生じる応力を向上させることができる。
 本実施形態に係る応力センサ1jにおいて、ピエゾ抵抗素子は、感応膜20jと凸部32との境界の直下に位置していてもよい。その結果、応力センサ1jの感度を向上させることができる。
 本実施形態に係る応力センサ1jにおいて、凸部32のヤング率は、感応膜20jのヤング率よりも大きくてもよい。その結果、感応膜20jから力を受けたときに、凸部32自体の変形を低減することができる。
 本実施形態に係る応力センサ1jにおいて、凸部32のヤング率は、ダイヤフラム10jのヤング率よりも大きくてもよい。その結果、凸部32にモーメントが働いたときに、凸部32自体の変形を低減しつつ、ダイヤフラム10jに生じる応力を向上させることができる。
 本実施形態において、凸部32の高さは、凸部32の幅よりも大きい。凸部32の高さは、z軸方向の長さである。凸部32の幅は、凸部32を図2のように切断した場合における、平面方向の長さである。本実施形態において、凸部32の高さは、感応膜20jの高さよりも低く設定されている。
 いくつかの実施形態について説明してきたが、当業者であれば本開示に基づき種々の変形や修正を行うことが容易であることに注意されたい。従って、これらの変形や修正は本開示の範囲に含まれることに留意されたい。例えば、各構成部、各ステップ等に含まれる機能等は論理的に矛盾しないように再配置可能であり、複数の構成部やステップ等を1つに組み合わせたり、或いは分割したりすることが可能である。上記各実施形態で説明した各構成要素は、適宜組み合わせて応力センサを構成することができる。
 1,1a,1b,1c,1d,1e,1f,1g,1h,1i,1j 応力センサ
 2 ガス分子
 10,10a,10b,10c,10d,10e,10f,10g,10h,10i,10j ダイヤフラム
 11,11d,11e 貫通領域
 12,12d,12e 縁
 20,20a,20b,20c,20d,20e,20f,20g,20h,20i、20j 感応膜
 20A 中央部
 20B 外側部
 21,22,23,24,21b,22b,23b,24b 延在部
 25,26,27,28,25b,26b,27b,28b 外縁部
 30 中間層
 31,31c,31d,31e,31f,31g,31h,31j 外縁
 32 凸部
 34,35 接続部
 40,41,42,43 ピエゾ抵抗素子(検出部)
 44,45 抵抗部
 44a,45a 第1ピエゾ抵抗素子
 44b,45b 第2ピエゾ抵抗素子
 41a,41b,43a,43b 拡散配線
 50,51,52,53,50b,51b,52b,53b 切欠き部
 100 SOI基板
 101 第1領域
 102 第2領域
 103 第3領域
 110 第1基板
 111 SiO
 112 第2基板
 200,201,202,204 マスクパターン
 300 金属層
 300a,300b 金属配線
 310a,310b 絶縁層
 400 凹部
 
 

Claims (20)

  1.  ダイヤフラムと、
     前記ダイヤフラムの面上に配置される中間層と、
     前記中間層上に配置される感応膜と、
     前記ダイヤフラムにおいて前記中間層の外縁と接触する領域に位置する検出部と、を備える応力センサ。
  2.  前記中間層のヤング率は、前記ダイヤフラムのヤング率よりも小さい、請求項1に記載の応力センサ。
  3.  前記中間層の厚さは、前記感応膜の厚さよりも小さい、請求項1又は2に記載の応力センサ。
  4.  前記検出部はピエゾ抵抗を含んで構成される、請求項1に記載の応力センサ。
  5.  前記検出部は、前記外縁の外側に位置する部分が前記外縁の内側に位置する部分よりも大きい、請求項4に記載の応力センサ。
  6.  前記ダイヤフラムは、外周部に第1の切欠き部を有し、
     前記感応膜は、外周部に第2の切欠き部を有し、
     前記ダイヤフラムにおいて、前記第2の切欠き部による応力変化が生じる応力変化領域に位置する検出部をさらに備える、
    請求項1に記載の応力センサ。
  7.  前記第1の切欠き部及び前記第2の切欠き部の少なくともいずれかは、矩形状である、請求項6に記載の応力センサ。
  8.  前記第1の切欠き部及び前記第2の切欠き部の少なくともいずれかは、くさび形状である、請求項6に記載の応力センサ。
  9.  前記第1の切欠き部及び前記第2の切欠き部の切欠き線は一致する、請求項6に記載の応力センサ。
  10.  前記ダイヤフラムにおいて前記感応膜が配置された面とは異なる他の面上に配置された第2感応膜をさらに備える、請求項6に記載の応力センサ。
  11.  前記応力変化領域は、前記感応膜の外縁部及び該外縁部の近辺を含む領域である、請求項6に記載の応力センサ。
  12.  前記ダイヤフラムは、貫通領域を有し、
     前記感応膜は、前記貫通領域の少なくとも一部を覆って配置され、
     前記ダイヤフラムにおいて前記感応膜の外縁が配置される領域を含む領域に位置する検出部をさらに備える、
    請求項1に記載の応力センサ。
  13.  前記ダイヤフラムは、第1領域及び該第1領域よりも厚い第2領域を有し、
     前記感応膜の変化に伴う前記ダイヤフラムの変形を検出する検出部をさらに備える、
    請求項1に記載の応力センサ。
  14.  前記第1領域は前記ダイヤフラムの中央部を含む領域であり、前記第2領域は前記第1領域を囲む領域である、請求項13に記載の応力センサ。
  15.  前記感応膜は、表面に凹凸形状を有し、
     前記ダイヤフラムにおいて、前記感応膜の外縁が配置された位置に配置される検出部をさらに備える、
    請求項1に記載の応力センサ。
  16.  前記中間層が配置される前記ダイヤフラムの面上は、凹凸形状を有する、請求項15に記載の応力センサ。
  17.  前記ダイヤフラムにおいて、前記検出部が配置された領域を含む配置領域の厚さは、該配置領域以外の他の領域の厚さよりも小さい、請求項1に記載の応力センサ。
  18.  前記ダイヤフラム上に配置される第1検出部と、
     前記ダイヤフラム下に配置される第2検出部と、
     接続部と、をさらに備え、
     前記第1検出部と前記第2検出部とは、前記接続部によって電気的に直列に接続されている、請求項1に記載の応力センサ。
  19.  前記ダイヤフラムの面上に配置され、前記感応膜を囲う凸部と、
     前記ダイヤフラムにおいて前記感応膜の外縁付近の領域に位置する検出部と、をさらに備える、
    請求項1に記載の応力センサ。
  20.  前記感応膜は、中央部と、該中央部の外側に位置し該中央部よりも厚さが大きい外側部とを有する、請求項19に記載の応力センサ。
     
     
     
PCT/JP2017/013026 2016-03-31 2017-03-29 応力センサ WO2017170748A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/089,568 US10866203B2 (en) 2016-03-31 2017-03-29 Stress sensor
CN201780021252.4A CN108885165B (zh) 2016-03-31 2017-03-29 应力传感器

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
JP2016072681A JP6882850B2 (ja) 2016-03-31 2016-03-31 応力センサ
JP2016072675A JP2017181434A (ja) 2016-03-31 2016-03-31 応力センサ
JP2016072678A JP2017181435A (ja) 2016-03-31 2016-03-31 応力センサ
JP2016-072675 2016-03-31
JP2016072685A JP2017181438A (ja) 2016-03-31 2016-03-31 応力センサ
JP2016072668A JP6773437B2 (ja) 2016-03-31 2016-03-31 応力センサ
JP2016-072672 2016-03-31
JP2016-072685 2016-03-31
JP2016072666A JP6908355B2 (ja) 2016-03-31 2016-03-31 応力センサ
JP2016-072668 2016-03-31
JP2016-072691 2016-03-31
JP2016-072666 2016-03-31
JP2016072672A JP6882849B2 (ja) 2016-03-31 2016-03-31 応力センサ
JP2016072691A JP6694747B2 (ja) 2016-03-31 2016-03-31 応力センサ及びその製造方法
JP2016-072681 2016-03-31
JP2016-072678 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017170748A1 true WO2017170748A1 (ja) 2017-10-05

Family

ID=59965836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013026 WO2017170748A1 (ja) 2016-03-31 2017-03-29 応力センサ

Country Status (3)

Country Link
US (1) US10866203B2 (ja)
CN (1) CN108885165B (ja)
WO (1) WO2017170748A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022038755A1 (ja) * 2020-08-20 2022-02-24 日本電気株式会社 標的分析装置、標的分析方法、および標的分析システム
JP7304606B2 (ja) 2017-08-10 2023-07-07 国立研究開発法人物質・材料研究機構 膜型表面応力センサーを用いた水素センサー及び水素検出方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11573137B2 (en) * 2017-09-20 2023-02-07 Asahi Kasei Kabushiki Kaisha Surface stress sensor, hollow structural element, and method for manufacturing same
US11189536B2 (en) * 2018-12-31 2021-11-30 Micron Technology, Inc. Method and apparatus for on-chip stress detection
US20220057372A1 (en) * 2019-03-06 2022-02-24 National Institute For Materials Science Hydrogen sensor and method for detecting hydrogen
DE102019129411A1 (de) * 2019-09-12 2021-03-18 Wika Alexander Wiegand Se & Co. Kg Aufnehmerkörper mit einem Messelement und Herstellungsverfahren für einen Aufnehmerkörper
DE102020105210A1 (de) * 2020-02-27 2021-09-02 Tdk Electronics Ag Sensor und Verfahren zur Herstellung eines Sensors
JP2022100447A (ja) * 2020-12-24 2022-07-06 横河電機株式会社 力検出器及び力検出システム
JP2022157555A (ja) * 2021-03-31 2022-10-14 本田技研工業株式会社 薄膜センサ
CN116429299B (zh) * 2023-06-12 2023-09-22 之江实验室 一种可晶圆系统集成的压力传感芯片制造方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5577178A (en) * 1978-12-06 1980-06-10 Toshiba Corp Semiconductor pressure converting element
JPH01315172A (ja) * 1988-06-15 1989-12-20 Komatsu Ltd 応力変換素子およびその製造方法
JPH0328741A (ja) * 1989-06-27 1991-02-06 Sanyo Electric Co Ltd 湿度検出装置
JPH1073530A (ja) * 1996-08-29 1998-03-17 Japan Steel Works Ltd:The 水素貯蔵合金の水素吸蔵量検知センサー並びに該センサーを用いた水素吸蔵量検知方法及び水素吸蔵量制御方法
JPH11333765A (ja) * 1998-05-26 1999-12-07 Tokai Rika Co Ltd 力センサ付きマイクロマニピュレータ
JP2002071492A (ja) * 2000-08-31 2002-03-08 Sony Corp 圧力センサデバイス及び信号処理装置
JP2009519454A (ja) * 2005-12-15 2009-05-14 エコル ポリテクニーク 変形可能な部分および応力センサを備えるマイクロ電気機械システム
JP2010204098A (ja) * 2009-02-27 2010-09-16 Commissariat A L'energie Atomique & Aux Energies Alternatives ナノワイヤセンサ装置
WO2011148774A1 (ja) * 2010-05-24 2011-12-01 独立行政法人物質・材料研究機構 表面応力センサ
JP2012122924A (ja) * 2010-12-10 2012-06-28 Panasonic Corp 圧力センサ
WO2013157581A1 (ja) * 2012-04-17 2013-10-24 独立行政法人物質・材料研究機構 両面被覆表面応力センサー

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3278881A (en) 1961-07-25 1966-10-11 Gen Electric Membrane strain gauge
US4376929A (en) * 1976-12-27 1983-03-15 Myhre Kjell E Optimized stress and strain distribution diaphragms
JPS59117271A (ja) * 1982-12-24 1984-07-06 Hitachi Ltd 圧力感知素子を有する半導体装置とその製造法
DE3319605A1 (de) * 1983-05-30 1984-12-06 Siemens AG, 1000 Berlin und 8000 München Sensor mit polykristallinen silicium-widerstaenden
JPH0618278Y2 (ja) 1985-08-05 1994-05-11 三洋電機株式会社 湿度検出装置
JPS63237480A (ja) * 1987-03-25 1988-10-03 Nippon Denso Co Ltd 半導体圧力センサの製造方法
JPS63155774A (ja) 1986-12-19 1988-06-28 Toshiba Corp 半導体圧力センサ
US5110373A (en) * 1988-09-13 1992-05-05 Nanostructures, Inc. Silicon membrane with controlled stress
JPH06128721A (ja) 1992-10-19 1994-05-10 Mitsubishi Electric Corp 窒素酸化物ガスセンサ用感応薄膜の形成方法
DE4309207C2 (de) * 1993-03-22 1996-07-11 Texas Instruments Deutschland Halbleitervorrichtung mit einem piezoresistiven Drucksensor
US5736430A (en) * 1995-06-07 1998-04-07 Ssi Technologies, Inc. Transducer having a silicon diaphragm and method for forming same
US5563341A (en) * 1995-06-07 1996-10-08 Fenner; Ralph L. Vapor pressure sensor and method
JPH10300603A (ja) * 1997-04-23 1998-11-13 Denso Corp 半導体式変位検出装置の製造方法
SG68002A1 (en) * 1997-11-25 1999-10-19 Inst Of Microelectronics Natio Cmos compatible integrated pressure sensor
JP2000214072A (ja) 1999-01-27 2000-08-04 Akira Kawai カンチレバ―型の吸着センサ―並びに吸着力解析方法
JP4066577B2 (ja) 1999-10-27 2008-03-26 松下電工株式会社 半導体加速度センサ
JP2004251742A (ja) * 2003-02-20 2004-09-09 Denso Corp センサ装置
US20040223884A1 (en) * 2003-05-05 2004-11-11 Ing-Shin Chen Chemical sensor responsive to change in volume of material exposed to target particle
JP4828804B2 (ja) 2003-06-26 2011-11-30 京セラ株式会社 セラミックダイアフラム及びその製法並びに圧力センサ
CN2881579Y (zh) * 2005-11-18 2007-03-21 沈阳仪表科学研究院 高温压力传感器
JP2007170830A (ja) 2005-12-19 2007-07-05 Fujikura Ltd 半導体圧力センサ及びその製造方法
TWI319479B (en) * 2006-10-18 2010-01-11 Ind Tech Res Inst A resistive-type humidity sensing structure with micro-bridge format and a method therefor
JP4471001B2 (ja) 2008-01-23 2010-06-02 セイコーエプソン株式会社 半導体センサ及び半導体センサの製造方法
WO2010089234A1 (en) 2009-02-03 2010-08-12 Oce-Technologies B.V. A print head and a method for measuring on the print head
JP4902679B2 (ja) * 2009-02-27 2012-03-21 日立オートモティブシステムズ株式会社 計測素子
JP2010261766A (ja) * 2009-05-01 2010-11-18 Alps Electric Co Ltd 抵抗型湿度センサ及びその製造方法
EP2473830A4 (en) * 2009-09-02 2014-07-02 Kontel Data System Ltd MEMS BURDENING CONCENTRATION STRUCTURE FOR MEMS SENSORS
EP2589958B1 (en) * 2011-11-04 2016-10-26 Stichting IMEC Nederland Chemical sensing
US9103705B2 (en) 2012-02-27 2015-08-11 Freescale Semiconductor, Inc. Combined environmental parameter sensor
CN103674357B (zh) * 2013-12-23 2015-09-02 中北大学 一种嵌入刀具式的薄膜测力传感器及其制备方法
JP5866496B2 (ja) 2015-04-27 2016-02-17 パナソニックIpマネジメント株式会社 半導体圧力センサ
CN105181217B (zh) 2015-05-05 2018-10-23 苏州曼普拉斯传感科技有限公司 Mems压力传感器及其制造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5577178A (en) * 1978-12-06 1980-06-10 Toshiba Corp Semiconductor pressure converting element
JPH01315172A (ja) * 1988-06-15 1989-12-20 Komatsu Ltd 応力変換素子およびその製造方法
JPH0328741A (ja) * 1989-06-27 1991-02-06 Sanyo Electric Co Ltd 湿度検出装置
JPH1073530A (ja) * 1996-08-29 1998-03-17 Japan Steel Works Ltd:The 水素貯蔵合金の水素吸蔵量検知センサー並びに該センサーを用いた水素吸蔵量検知方法及び水素吸蔵量制御方法
JPH11333765A (ja) * 1998-05-26 1999-12-07 Tokai Rika Co Ltd 力センサ付きマイクロマニピュレータ
JP2002071492A (ja) * 2000-08-31 2002-03-08 Sony Corp 圧力センサデバイス及び信号処理装置
JP2009519454A (ja) * 2005-12-15 2009-05-14 エコル ポリテクニーク 変形可能な部分および応力センサを備えるマイクロ電気機械システム
JP2010204098A (ja) * 2009-02-27 2010-09-16 Commissariat A L'energie Atomique & Aux Energies Alternatives ナノワイヤセンサ装置
WO2011148774A1 (ja) * 2010-05-24 2011-12-01 独立行政法人物質・材料研究機構 表面応力センサ
JP2012122924A (ja) * 2010-12-10 2012-06-28 Panasonic Corp 圧力センサ
WO2013157581A1 (ja) * 2012-04-17 2013-10-24 独立行政法人物質・材料研究機構 両面被覆表面応力センサー

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AKIKO ITAKURA: "Gas Sensing Technique by using Molecular Adsorption on Micro Cantilever Surface", J.VAC.SOC.JPN., vol. 55, no. 8, 2012, pages 383 - 388, XP055429532 *
YOSHIKAWA.G ET AL.: "Sub-ppm detection of vapors using piezoresistive microcantilever array sensors", NANOTECHNOLOGY, vol. 20, 7 January 2009 (2009-01-07), pages 1 - 5, XP020152962 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7304606B2 (ja) 2017-08-10 2023-07-07 国立研究開発法人物質・材料研究機構 膜型表面応力センサーを用いた水素センサー及び水素検出方法
WO2022038755A1 (ja) * 2020-08-20 2022-02-24 日本電気株式会社 標的分析装置、標的分析方法、および標的分析システム
JP7375940B2 (ja) 2020-08-20 2023-11-08 日本電気株式会社 標的分析装置、標的分析方法、および標的分析システム

Also Published As

Publication number Publication date
CN108885165A (zh) 2018-11-23
US10866203B2 (en) 2020-12-15
US20190120781A1 (en) 2019-04-25
CN108885165B (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
WO2017170748A1 (ja) 応力センサ
US7340960B2 (en) Miniature sensor
US20070052046A1 (en) Pressure sensors and methods of making the same
US11573137B2 (en) Surface stress sensor, hollow structural element, and method for manufacturing same
US20230126952A1 (en) Surface stress sensor, hollow structural element, and method for manufacturing same
US10913652B2 (en) Micromechanical z-inertial sensor
WO2015115365A1 (ja) センサおよびその製造方法
US10899603B2 (en) Micromechanical z-inertial sensor
US20150353345A1 (en) Vertical Hybrid Integrated MEMS ASIC Component Having A Stress Decoupling Structure
JP6908355B2 (ja) 応力センサ
CN113008420A (zh) 压力传感器及其制造方法
JP6691414B2 (ja) 応力センサ
JP2017181439A (ja) 応力センサ及びその製造方法
JP6882850B2 (ja) 応力センサ
US9964458B2 (en) Pressure sensor device with anchors for die shrinkage and high sensitivity
JP6713321B2 (ja) 応力センサ及びその製造方法
JP6773437B2 (ja) 応力センサ
CN214277274U (zh) 压力传感器
JP2017181435A (ja) 応力センサ
JP6882849B2 (ja) 応力センサ
JP4000169B2 (ja) チップサイズパッケージ
JP2006300904A (ja) 物理量センサ
JP2015114233A (ja) 半導体圧力センサ
KR101461335B1 (ko) 관성센서용 마스킹 패턴 및 이에 의해 제조된 관성센서
JP2017181434A (ja) 応力センサ

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775282

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17775282

Country of ref document: EP

Kind code of ref document: A1