WO2017159539A1 - 車両制御装置、車両制御方法、および車両制御プログラム - Google Patents

車両制御装置、車両制御方法、および車両制御プログラム Download PDF

Info

Publication number
WO2017159539A1
WO2017159539A1 PCT/JP2017/009489 JP2017009489W WO2017159539A1 WO 2017159539 A1 WO2017159539 A1 WO 2017159539A1 JP 2017009489 W JP2017009489 W JP 2017009489W WO 2017159539 A1 WO2017159539 A1 WO 2017159539A1
Authority
WO
WIPO (PCT)
Prior art keywords
track
trajectory
vehicle
host vehicle
generation unit
Prior art date
Application number
PCT/JP2017/009489
Other languages
English (en)
French (fr)
Inventor
政宣 武田
大智 加藤
宏史 小黒
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to US16/082,324 priority Critical patent/US20190084561A1/en
Priority to CN201780014080.8A priority patent/CN108778882B/zh
Priority to JP2018505880A priority patent/JP6507464B2/ja
Publication of WO2017159539A1 publication Critical patent/WO2017159539A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/143Speed control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/17Control of distance between vehicles, e.g. keeping a distance to preceding vehicle with provision for special action when the preceding vehicle comes to a halt, e.g. stop and go
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18018Start-stop drive, e.g. in a traffic jam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/072Curvature of the road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/076Slope angle of the road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0015Planning or execution of driving tasks specially adapted for safety
    • B60W60/0016Planning or execution of driving tasks specially adapted for safety of the vehicle or its occupants
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/20Static objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/402Type
    • B60W2554/4029Pedestrians
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/406Traffic density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/801Lateral distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/802Longitudinal distance

Definitions

  • the present invention relates to a vehicle control device, a vehicle control method, and a vehicle control program.
  • An object of an aspect of the present invention is to provide a vehicle control device, a vehicle control method, and a vehicle control program that can perform a start from a specific scene with high responsiveness.
  • a vehicle control device executes a process in a first cycle and generates a first track that is a future target track of the host vehicle, and the first track generation unit
  • the process is executed in a second cycle shorter than the first cycle, the second track is generated based on the first track, and the host vehicle is moved from a state where the host vehicle is stopped or running at a low speed based on the external environment.
  • the host vehicle is generated based on the second track generating unit that generates the second track for starting the host vehicle earlier than the first track, and the second track generated by the second track generating unit.
  • a travel control unit for controlling the travel of the vehicle.
  • the first trajectory generation unit and the second trajectory generation unit are generated at a higher level and a safety index that evaluates an element including an interval between the host vehicle and a surrounding object.
  • the trajectory may be evaluated based on two criteria of a planability index for evaluating an element including the followability to the trajectory, and a highly evaluated trajectory may be selected from the evaluated trajectories.
  • the target period of the first trajectory may be longer than the target period of the second trajectory.
  • the first track generation unit is configured to perform the second track generation unit after a predetermined time has elapsed since the host vehicle started.
  • the first trajectory may be generated so as to approach the generated second trajectory.
  • the first track generation unit is configured to perform a predetermined distance after the host vehicle has started, and then the second track generation unit The first trajectory may be generated so as to approach the generated second trajectory.
  • a computer-implemented method for vehicle control executes processing in a first cycle, generates a first track that is a future target track of the host vehicle, and Processing is executed in a second cycle shorter than the cycle, a second track is generated based on the first track, and the host vehicle is accelerated from a state where the host vehicle is stopped based on the external environment or is traveling at a low speed.
  • the second track for starting the host vehicle earlier than the first track is generated, and the traveling of the host vehicle is controlled based on the generated second track.
  • a vehicle control program includes a process for causing a computer to execute a process at a first period to generate a first track that is a future target track of the host vehicle; Processing is executed in a second cycle shorter than the cycle, a second track is generated based on the first track, and the host vehicle is accelerated from a state where the host vehicle is stopped based on the external environment or is traveling at a low speed. In this case, a process of generating the second track for starting the host vehicle earlier than the first track and a process of controlling the traveling of the host vehicle based on the generated second track are performed.
  • the second trajectory generation unit executes processing in the second cycle shorter than the first cycle, and based on the first trajectory.
  • the host vehicle is started earlier than the first track. Can be started with good responsiveness.
  • the first trajectory generator and the second trajectory generator are the safety indices for evaluating the distance between the host vehicle and the surrounding object.
  • a planability index that evaluates the elements including the followability to the trajectory generated at the upper level, and evaluate the trajectory, and select a higher evaluation trajectory from the evaluated trajectories. The trajectory can be selected.
  • the first trajectory generator generates the first trajectory so as to approach the second trajectory generated by the second trajectory generator.
  • the host vehicle can be controlled so that the vehicle travels.
  • FIG. 1 is a diagram illustrating components included in a vehicle (hereinafter referred to as a host vehicle M) on which a vehicle control device 100 according to the embodiment is mounted.
  • the vehicle on which the vehicle control device 100 is mounted is, for example, a motor vehicle such as a two-wheel, three-wheel, or four-wheel vehicle, and a vehicle using an internal combustion engine such as a diesel engine or a gasoline engine as a power source, or an electric vehicle using a motor as a power source.
  • a hybrid vehicle having an internal combustion engine and an electric motor.
  • the electric vehicle mentioned above is driven using the electric power discharged by batteries, such as a secondary battery, a hydrogen fuel cell, a metal fuel cell, an alcohol fuel cell, for example.
  • the host vehicle M includes a finder 20-1 to 20-7, radars 30-1 to 30-6, sensors such as a camera 40, a navigation device 50, and the vehicle control device 100 described above. And will be installed.
  • the finders 20-1 to 20-7 are, for example, LIDAR (Light Detection and Ranging) that measures scattered light with respect to irradiation light and measures the distance to the target.
  • LIDAR Light Detection and Ranging
  • the finder 20-1 is attached to a front grill or the like
  • the finders 20-2 and 20-3 are attached to a side surface of a vehicle body, a door mirror, the inside of a headlamp, a side lamp, and the like.
  • the finder 20-4 is attached to a trunk lid or the like, and the finders 20-5 and 20-6 are attached to the side surface of the vehicle body, the interior of the taillight, or the like.
  • the above-described viewfinders 20-1 to 20-6 have a detection area of about 150 degrees in the horizontal direction, for example.
  • the finder 20-7 is attached to a roof or the like.
  • the finder 20-7 has a detection area of 360 degrees in the horizontal direction, for example.
  • the above-described radars 30-1 and 30-4 are, for example, long-range millimeter wave radars having a detection area in the depth direction wider than that of other radars.
  • Radars 30-2, 30-3, 30-5, and 30-6 are medium-range millimeter-wave radars that have a narrower detection area in the depth direction than radars 30-1 and 30-4.
  • finders 20-1 to 20-7 are not particularly distinguished, they are simply referred to as “finder 20”
  • radars 30-1 to 30-6 are not particularly distinguished, they are simply referred to as “radar 30”.
  • the radar 30 detects an object by, for example, FM-CW (Frequency Modulated Continuous Wave) method.
  • FM-CW Frequency Modulated Continuous Wave
  • the camera 40 is a digital camera using an individual image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • the camera 40 is attached to the upper part of the front windshield, the rear surface of the rearview mirror, or the like. For example, the camera 40 periodically images the front of the host vehicle M repeatedly.
  • FIG. 1 is merely an example, and a part of the configuration may be omitted, or another configuration may be added.
  • FIG. 2 is a functional configuration diagram of the host vehicle M centering on the vehicle control device 100.
  • a navigation device 50 In the host vehicle M, in addition to the finder 20, the radar 30, and the camera 40, a navigation device 50, a vehicle sensor 60, an operation device 70, an operation detection sensor 72, a changeover switch 80, and a driving force for traveling.
  • Driving force output device 90, steering device 92, brake device 94, and vehicle control device 100 are mounted. These devices and devices are connected to each other by a multiple communication line such as a CAN (Controller Area Network) communication line, a serial communication line, a wireless communication network, or the like.
  • CAN Controller Area Network
  • the navigation device 50 includes a GNSS (Global Navigation Satellite System) receiver, map information (navigation map), a touch panel display device that functions as a user interface, a speaker, a microphone, and the like.
  • the navigation device 50 identifies the position of the host vehicle M using the GNSS receiver, and derives a route from the position to the destination specified by the user.
  • the route derived by the navigation device 50 is stored in the storage unit 150 as route information 154.
  • the position of the host vehicle M may be specified or supplemented by an INS (Inertial Navigation System) using the output of the vehicle sensor 60.
  • the navigation device 50 guides the route to the destination by voice or navigation display when the vehicle control device 100 is executing the manual operation mode.
  • the configuration for specifying the position of the host vehicle M may be provided independently of the navigation device 50.
  • the navigation apparatus 50 may be implement
  • information is transmitted and received between the terminal device and the vehicle control device 100 by wireless or wired communication.
  • the vehicle sensor 60 includes a speed sensor that detects speed, an acceleration sensor that detects acceleration, a yaw rate sensor that detects angular velocity around the vertical axis, a direction sensor that detects the direction of the host vehicle M, and the like.
  • the operation device 70 includes, for example, an accelerator pedal, a steering wheel, a brake pedal, a shift lever, and the like.
  • the operation device 70 is provided with an operation detection sensor 72 that detects the presence / absence and amount of operation by the driver.
  • the operation detection sensor 72 includes, for example, an accelerator opening sensor, a steering torque sensor, a brake sensor, a shift position sensor, and the like.
  • the operation detection sensor 72 outputs the accelerator opening, steering torque, brake pedal stroke, shift position, and the like as detection results to the travel control unit 130.
  • the detection result of the operation detection sensor 72 may be directly output to the driving force output device 90, the steering device 92, or the brake device 94.
  • the changeover switch 80 is a switch operated by a driver or the like.
  • the changeover switch 80 may be, for example, a mechanical switch installed on a steering wheel, a garnish (dashboard), or a GUI (Graphical User Interface) switch provided on the touch panel of the navigation device 50. Good.
  • the changeover switch 80 receives an operation of a driver or the like, generates a control mode designation signal that designates the control mode by the traveling control unit 130 as either the automatic driving mode or the manual driving mode, and outputs the control mode designation signal to the control switching unit 140.
  • the automatic operation mode is an operation mode that travels in a state where the driver does not perform an operation (or the operation amount is small or the operation frequency is low compared to the manual operation mode), and more specifically. Is an operation mode for controlling part or all of the driving force output device 90, the steering device 92, and the brake device 94 based on the action plan.
  • the driving force output device 90 includes, for example, an engine and an engine ECU (Electronic Control Unit) that controls the engine when the host vehicle M is an automobile using an internal combustion engine as a power source.
  • the driving force output device 90 includes a travel motor and a motor ECU that controls the travel motor.
  • the driving force output device 90 includes an engine and an engine ECU, a travel motor, and a motor ECU.
  • the engine ECU adjusts the throttle opening, the shift stage, and the like of the engine according to information input from the travel control unit 130, which will be described later, and travel driving for the vehicle to travel.
  • the motor ECU adjusts the duty ratio of the PWM signal given to the traveling motor in accordance with the information input from the traveling control unit 130, and the above-described traveling driving force. Is output. Further, when the driving force output device 90 includes an engine and a traveling motor, both the engine ECU and the motor ECU control the traveling driving force in cooperation with each other according to information input from the traveling control unit 130.
  • the steering device 92 includes, for example, an electric motor.
  • the electric motor changes the direction of the steered wheels by applying a force to a rack and pinion mechanism.
  • the steering device 92 drives the electric motor according to the information input from the travel control unit 130 and changes the direction of the steered wheels.
  • the brake device 94 is, for example, an electric servo brake device that includes a brake caliper, a cylinder that transmits hydraulic pressure to the brake caliper, an electric motor that generates hydraulic pressure in the cylinder, and a braking control unit.
  • the braking control unit of the electric servo brake device controls the electric motor according to the information input from the traveling control unit 130 so that the brake torque corresponding to the braking operation is output to each wheel.
  • the electric servo brake device may include, as a backup, a mechanism that transmits the hydraulic pressure generated by operating the brake pedal to the cylinder via the master cylinder.
  • the brake device 94 is not limited to the electric servo brake device described above, and may be an electronically controlled hydraulic brake device.
  • the electronically controlled hydraulic brake device controls the actuator in accordance with information input from the traveling control unit 130, and transmits the hydraulic pressure of the master cylinder to the cylinder.
  • the brake device 94 may include a regenerative brake. This regenerative brake uses electric power generated by a traveling motor that can be included in the driving force output device 90.
  • the vehicle control device 100 includes, for example, a host vehicle position recognition unit 102, an external environment recognition unit 104, an action plan generation unit 106, a first track generation unit 110, a second track generation unit 120, and a travel control unit 130.
  • the control switching unit 140 and the storage unit 150 are provided.
  • the vehicle position recognition unit 102, the external environment recognition unit 104, the action plan generation unit 106, the first track generation unit 110, the second track generation unit 120, the travel control unit 130, and the control switching unit 140 are A software function unit that functions when a processor such as a CPU (Central Processing Unit) executes a program. Some or all of these may be hardware function units such as LSI (Large Scale Integration) and ASIC (Application Specific Integrated Circuit).
  • the storage unit 150 is realized by a ROM (Read Only Memory), a RAM (Random Access Memory), an HDD (Hard Disk Drive), a flash memory, or the like.
  • the program executed by the processor may be stored in the storage unit 150 in advance, or may be downloaded from an external device via an in-vehicle internet facility or the like. Further, the program may be installed in the storage unit 150 by attaching a portable storage medium storing the program to a drive device (not shown).
  • the own vehicle position recognition unit 102 is based on the map information 152 stored in the storage unit 150 and information input from the finder 20, the radar 30, the camera 40, the navigation device 50, or the vehicle sensor 60. Recognizes the lane in which the vehicle is traveling (the traveling lane) and the relative position of the host vehicle M with respect to the traveling lane.
  • the map information 152 is, for example, map information with higher accuracy than the navigation map included in the navigation device 50, and includes information on the center of the lane or information on the boundary of the lane. More specifically, the map information 152 includes road information, traffic regulation information, address information (address / postal code), facility information, telephone number information, and the like.
  • Road information includes information indicating the type of road such as expressway, toll road, national road, prefectural road, road lane number, width of each lane, road gradient, road position (longitude, latitude, height). Information including 3D coordinates), curvature of lane curves, lane merging and branch point positions, signs provided on roads, and the like.
  • the traffic regulation information includes information that the lane is blocked due to construction, traffic accidents, traffic jams, or the like.
  • FIG. 3 is a diagram illustrating how the vehicle position recognition unit 102 recognizes the relative position of the vehicle M with respect to the travel lane L1.
  • the own vehicle position recognition unit 102 for example, connects the deviation OS of the reference point (for example, the center of gravity and the center of the rear wheel axle) of the own vehicle M from the travel lane center CL and the travel lane center CL in the traveling direction of the own vehicle M.
  • the angle ⁇ formed with respect to the line is recognized as the relative position of the host vehicle M with respect to the traveling lane L1.
  • the host vehicle position recognition unit 102 recognizes the position of the reference point of the host vehicle M with respect to any side end of the travel lane L1 as the relative position of the host vehicle M with respect to the travel lane. Also good.
  • the external environment recognition unit 104 recognizes the positions of surrounding vehicles and the state such as speed and acceleration based on information input from the finder 20, the radar 30, the camera 40, and the like.
  • the peripheral vehicle in the present embodiment is a vehicle that travels around the host vehicle M and travels in the same direction as the host vehicle M.
  • the position of the surrounding vehicle may be represented by a representative point such as the center of gravity or corner of the surrounding vehicle, or may be represented by a region expressed by the outline of the surrounding vehicle.
  • the “state” of the surrounding vehicle may include the acceleration of the surrounding vehicle, whether the lane is changed (or whether the lane is going to be changed), which is grasped based on the information of the various devices.
  • the external environment recognition unit 104 may recognize the positions of guardrails, utility poles, parked vehicles, pedestrians, and other objects.
  • the action plan generation unit 106 generates an action plan in a predetermined section.
  • the predetermined section is, for example, a section that passes through a toll road such as an expressway among the routes derived by the navigation device 50. Not only this but the action plan production
  • the action plan is composed of, for example, a plurality of events that are sequentially executed.
  • the event include a deceleration event for decelerating the host vehicle M, an acceleration event for accelerating the host vehicle M, a lane keeping event for driving the host vehicle M so as not to deviate from the traveling lane, and a lane change event for changing the traveling lane.
  • the branch event in which the own vehicle M is driven so as not to deviate from the current traveling lane, or the main line A merging event for accelerating / decelerating the own vehicle M in the merging lane and changing the traveling lane is included.
  • the vehicle control device 100 changes the lane so that the host vehicle M travels in the direction of the destination in the automatic driving mode. Need to maintain lanes. Therefore, when it is determined that the junction exists on the route with reference to the map information 152, the action plan generation unit 106 from the current position (coordinates) of the host vehicle M to the position (coordinates) of the junction. In the meantime, a lane change event is set for changing the lane to a desired lane that can proceed in the direction of the destination. Information indicating the action plan generated by the action plan generation unit 106 is stored in the storage unit 150 as action plan information 156.
  • FIG. 4 is a diagram showing an example of an action plan generated for a certain section.
  • the action plan generation unit 106 classifies scenes that occur when traveling according to a route to a destination, and generates an action plan so that an event corresponding to each scene is executed.
  • generation part 106 may change an action plan dynamically according to the condition change of the own vehicle M.
  • the action plan generation unit 106 may change (update) the generated action plan based on the state of the outside world recognized by the outside world recognition unit 104.
  • the state of the outside world constantly changes.
  • the distance interval with the surrounding vehicles changes relatively.
  • the action plan generation unit 106 may change the event set for each control section in accordance with the external state change as described above.
  • the action plan generation unit 106 determines that the speed of the surrounding vehicle recognized by the external recognition unit 104 during traveling of the vehicle exceeds a threshold value or the moving direction of the surrounding vehicle traveling in the lane adjacent to the own lane is self-explanatory.
  • the event set in the driving section where the host vehicle M is scheduled to travel is changed. For example, when the event is set so that the lane change event is executed after the lane keep event, the vehicle is more than the threshold from the rear of the lane to which the lane is changed during the lane keep event according to the recognition result of the external recognition unit 104.
  • the action plan generation unit 106 changes the event next to the lane keep event from a lane change to a deceleration event, a lane keep event, or the like. As a result, the vehicle control device 100 can safely drive the host vehicle M safely even when a change occurs in the external environment.
  • the first trajectory generation unit 110 executes processing in the first cycle to generate a first trajectory. Further, the first trajectory generation unit 110 acquires the processing result of the second trajectory generation unit 120 and generates the first trajectory by reflecting the acquired processing result of the second trajectory generation unit 120.
  • the first trajectory generation unit 110 includes a first prediction unit 112 that predicts a first future state, a first trajectory candidate generation unit 114, and a first evaluation selection unit 116.
  • the first prediction unit 112 predicts the future state of the surrounding environment of the host vehicle.
  • the future state is, for example, a state of a road on which the host vehicle M predicted based on the map information 152 may travel in the future.
  • the road condition includes, for example, increase / decrease in lanes, branching of lanes, curvature and direction of curves.
  • the first prediction unit 112 predicts a future position change of the surrounding vehicle for the surrounding vehicle recognized by the external recognition unit 104 (see later).
  • the first trajectory candidate generation unit 114 generates a plurality of first trajectory candidates based on the prediction result of the first prediction unit 112.
  • the first evaluation selection unit 116 selects the first track on which the host vehicle M travels based on safety and planability from among the plurality of tracks generated by the first track candidate generation unit 114. Specific examples of the processes of the first prediction unit 112 and the first evaluation selection unit 116 will be described later.
  • the first trajectory generating unit 110 is one of constant speed traveling, following traveling, decelerating traveling, curve traveling, obstacle avoidance traveling, etc.
  • the driving mode is determined. For example, when there is no surrounding vehicle in front of the host vehicle M, the first track generation unit 110 determines the travel mode to be constant speed travel. Moreover, the 1st track
  • generation part 110 determines a driving
  • the first trajectory generation unit 110 generates a first trajectory based on the determined running mode.
  • a track is a set of points obtained by sampling a future target position expected to reach when the host vehicle M travels based on the travel mode determined by the first track generation unit 110 every predetermined time. (Trajectory).
  • the second trajectory generated by the second trajectory generation unit 120 is the same, and the first step and the second trajectory may have different time increments. In addition, the first or second trajectory may have the same time step size but may be different only in the generation period.
  • the first track generation unit 110 is based on at least the speed of the target OB existing in front of the host vehicle M recognized by the host vehicle position recognition unit 102 or the external environment recognition unit 104 and the distance between the host vehicle M and the target OB.
  • the target speed of the host vehicle M is calculated.
  • the first trajectory generation unit 110 generates a first trajectory based on the calculated target speed.
  • the target OB includes a preceding vehicle, points such as a merge point, a branch point, a target point, and an object such as an obstacle.
  • FIG. 5 is a diagram illustrating an example of the first trajectory generated by the first trajectory generation unit 110.
  • the first trajectory generation unit 110 uses K (1), K (2) every time a predetermined time ⁇ t has elapsed from the current time with reference to the current position of the host vehicle M. ), K (3),... Are set as the first track of the host vehicle M.
  • target positions K when these target positions are not distinguished, they are simply referred to as “target positions K”.
  • the number of target positions K is determined according to the target time T.
  • the first trajectory generation unit 110 sets the target position K on the center line of the traveling lane in a predetermined time ⁇ t (for example, 0.1 second) in this 10 seconds,
  • the arrangement intervals of the plurality of target positions K are determined based on the running mode.
  • the first track generation unit 110 may derive the center line of the traveling lane from information such as the width of the lane included in the map information 152, or if this is included in the map information 152 in advance, You may acquire from the map information 152.
  • the first trajectory generation unit 110 when the travel mode is determined to be constant speed travel, the first trajectory generation unit 110 generates a first trajectory by setting a plurality of target positions K at regular intervals, as shown in FIG. .
  • the first trajectory generation unit 110 determines the travel mode to be decelerated travel (including the case where the preceding vehicle decelerates in the follow-up travel), as shown in FIG.
  • the first trajectory is generated by increasing the interval as the target position K is earlier and narrowing the interval as the target position K arrives later.
  • the preceding vehicle may be set as the target OB, or a junction point other than the preceding vehicle, a point such as a branch point or a target point, an obstacle, or the like may be set as the target OB.
  • the target position K that arrives later from the host vehicle M approaches the current position of the host vehicle M, so that the travel control unit 130 described later decelerates the host vehicle M.
  • the number of first trajectory candidates that can be generated by the first trajectory candidate generation unit 114 does not increase, and only one first trajectory candidate is generated. May be.
  • the first evaluation selection unit 116 automatically selects one first trajectory candidate generated by the first trajectory candidate generation unit 114 as the first trajectory.
  • the first trajectory generating unit 110 determines the traveling mode to be curved traveling.
  • the first trajectory generation unit 110 for example, according to the curvature of the road, sets the plurality of target positions K to the lateral position with respect to the traveling direction of the host vehicle M (the position in the lane width direction and substantially orthogonal to the traveling direction.
  • the first trajectory is generated by changing the direction.
  • the first trajectory generation unit 110 sets the traveling mode as an obstacle avoidance. Decide on driving. In this case, the first trajectory generation unit 110 generates a first trajectory by arranging a plurality of target positions K so as to travel while avoiding the obstacle OB.
  • the first prediction unit 112 predicts that the road on which the host vehicle M is scheduled to travel is a curved road in the future.
  • the first trajectory candidate generation unit 114 acquires road information (such as the road width and the curvature of the lane curve) of the curved road on which the host vehicle M is to travel. Based on the road information, the first track candidate generation unit 114 generates information obtained by virtually converting the shape of the curved road on which the vehicle travels into a linear shape.
  • the first trajectory candidate generation unit 114 extracts information indicating the shape of the road existing on the route indicated by the route information 154 from the map information 152, and virtually sets the shape of the road on the information indicating the shape of the road.
  • the information converted into a linear shape is generated.
  • the first trajectory candidate generation unit 114 follows the road converted into a linear shape based on the position (start point) of the host vehicle M, the target point (end point), and the speed, yaw rate angle, and steering angle of the host vehicle M. A plurality of first trajectory candidates are generated.
  • the first trajectory candidate generation unit 114 selects a plurality of first trajectory candidates so that the acceleration / deceleration, the turning angle, the assumed yaw rate, and the like are within the first predetermined range for each of the trajectory points of the traveling trajectory. Generate.
  • the first trajectory candidate generation unit 114 generates a spline curve under the above conditions, for example, based on a spline function.
  • the speed of the host vehicle M is v 0 and the acceleration is a 0 at the coordinates (x 0 , y 0 ) of the start point Ps.
  • the speed v0 of the host vehicle M is a speed vector in which the x-direction component vx0 and the y-direction component vy0 of the speed are combined.
  • the acceleration a 0 of the host vehicle M is an acceleration vector in which the x-direction component a x0 and the y-direction component a y0 of the acceleration are combined. It is assumed that the speed of the host vehicle M is v 1 and the acceleration is a 1 at the coordinates (x 1 , y 1 ) of the end point Pe.
  • the speed v 1 of the host vehicle M is a speed vector obtained by combining the x-direction component v x1 and the y-direction component v y1 of the speed.
  • the acceleration a 1 of the host vehicle M is an acceleration vector obtained by combining the x-direction component a x1 and the y-direction component a y1 of acceleration.
  • the first trajectory candidate generation unit 114 sets a target point (x, y) for every time t in the cycle in which the unit time T from the host vehicle M from the start point Ps to the end point Pe elapses.
  • the arithmetic expression of the target point (x, y) is expressed by the spline function of Expression (1) and Expression (2).
  • m 5 , m 4 , and m 3 are represented as Formula (3), Formula (4), and Formula (5). Further, the coefficients k 1 and k 2 in the expressions (1) and (2) may be the same or different.
  • p 0 is the position (x 0 , y 0 ) of the host vehicle M at the start point Ps
  • p 1 is the position (x 1 ) of the host vehicle M at the end point Pe. , Y 1 ).
  • the first track candidate generation unit 114 substitutes a value obtained by multiplying the speed of the host vehicle M by a gain for v x0 and v y0 in the equations (1) and (2), and sets the unit time T for each time t.
  • the target points (x (t), y (t)) specified by the calculation results of the expressions (1) and (2) are acquired. Accordingly, the first trajectory candidate generation unit 114 obtains a spline curve obtained by interpolating the start point Ps and the end point Pe with a plurality of target points (x (t), y (t)).
  • FIG. 6 is a diagram showing an example of a traveling track (spline curve) generated on a straight road.
  • the first track candidate generation unit 114 generates a spline curve as shown in FIG. 6A as the travel track Tg.
  • the first trajectory candidate generation unit 114 performs reverse conversion of the conversion on the travel trajectory Tg generated on the straight road so that the road before being converted into the straight shape as shown in FIG.
  • the traveling track Tg # of the host vehicle M in the shape of is generated.
  • the first trajectory candidate generation unit 114 expresses the spline curve generated as the travel trajectory Tg as a point sequence having a predetermined width, and the trajectory Tg is obtained by inversely transforming each point. #.
  • the first trajectory candidate generation unit 114 converts the straight road shape back to the original road shape, converts the travel trajectory Tg generated on the straight road, and returns the original road shape to the original road shape.
  • a new traveling track Tg # is generated.
  • the first evaluation selection unit 116 selects a first track on which the host vehicle M travels based on safety and planability from among a plurality of first track candidates generated by the first track candidate generation unit 114. .
  • the first evaluation selection unit 116 selects an optimal trajectory based on the evaluation function f shown in the following formula (6).
  • e 1 is a safety index
  • e 2 is a planning index.
  • the safety index is an evaluation value determined based on, for example, the distance between the host vehicle M and the obstacle OB, the acceleration / deceleration and steering angle at each track point, an assumed yaw rate, and the like.
  • the safety index is evaluated to be higher as the distance between the host vehicle M and the obstacle OB is longer, and as the acceleration / deceleration and the change amount of the steering angle are smaller.
  • the planability index is an evaluation value based on the followability to the trajectory generated at the upper level and / or the shortness of the trajectory.
  • “Upper rank” in the higher-order generated trajectory refers to the action plan generating section 106 when the first trajectory generating section 110 is targeted. If the action plan generation unit 106 determines that “run the central lane and change the lane to the right before the branch point”, the trajectory that changes the lane to the left halfway is evaluated as having a low planability index. The determination is made by the selection unit 116. In addition, a track whose lane is changed to the left in the middle is evaluated low by the first evaluation selection unit 116 also from the viewpoint of the short track. Further, “upper rank” indicates the first trajectory generation section 110 when the second trajectory generation section 120 is targeted.
  • the planability index is lower as the distance from the first trajectory generated by the first trajectory generation unit 110 is larger.
  • the planability index is evaluated lower by the second evaluation selection unit 126 of the second trajectory generation unit 120 as the trajectory is not smoother and the trajectory is longer.
  • FIG. 7 is a diagram illustrating an example of a criterion for trajectory determination based on the safety index and the planning index.
  • the vertical axis shows planning, and the horizontal axis shows the safety index.
  • the evaluation function f has a gradient in which the evaluation increases in the direction of the arrow ar in FIG.
  • the first evaluation selection unit 116 can select a trajectory that takes into account planning characteristics after sufficiently considering safety.
  • the first trajectory generation unit 110 performs processing such as setting of a target position that is a target of lane change, determination of whether or not to change lanes, prediction of future states, lane change trajectory generation, and trajectory evaluation. Do.
  • the target position is a relative position set between, for example, two neighboring vehicles selected in the adjacent lane. Further, the first trajectory generation unit 110 may perform the same processing when a branch event or a merge event is performed.
  • the first prediction unit 112 predicts the future state of surrounding vehicles. First, the first prediction unit 112 identifies the surrounding vehicles mA, mB, and mC.
  • FIG. 8 is a diagram illustrating an example of a positional relationship between the host vehicle M and surrounding vehicles. In FIG. 8, it is assumed that the positional relationship of the vehicle is mA-mB-mC-M.
  • the peripheral vehicle mA is a vehicle (previous vehicle) that travels immediately before the host vehicle M in the lane in which the host vehicle M travels.
  • the peripheral vehicle mB is a vehicle existing immediately before the target position among the “two peripheral vehicles” traveling in the adjacent lane
  • the peripheral vehicle mC is the “two peripheral vehicles” traveling in the adjacent lane. Among these, the vehicle travels immediately after the target position.
  • the first prediction unit 112 predicts future position changes of the surrounding vehicles mA, mB, and mC.
  • the first prediction unit 112 is, for example, a constant speed model that assumes that the vehicle travels while maintaining the current speed, a constant acceleration model that assumes that the vehicle travels while maintaining the current acceleration, and a rear vehicle is a front vehicle. Based on a follow-up running model assumed to follow and run while maintaining a certain distance, and other various models.
  • FIG. 9 is a diagram illustrating an example of the positional relationship of surrounding vehicles predicted by the first prediction unit 112.
  • the speed of surrounding vehicles is mA> mC> mB.
  • the vertical axis in FIG. 9 represents the displacement (x) in the traveling direction with reference to the host vehicle M, and the horizontal axis represents the elapsed time (t).
  • the first prediction unit 112 indicates a result of predicting the state of the surrounding vehicle based on the constant speed model.
  • the first track candidate generation unit 114 generates a plurality of feasible first track candidates for lane change based on the future state predicted by the first prediction unit 112.
  • FIG. 10 is a diagram illustrating an example of the positional relationship between the host vehicle and the surrounding vehicles when the host vehicle M changes lanes. The description overlapping with FIG. 9 is omitted.
  • the candidates for the first trajectory such as the trajectory OR are generated in a plurality of combinations.
  • the first track candidate generation unit 114 typifies the positional changes of the host vehicle M and the surrounding vehicles mA, mB, and mC.
  • the first track candidate generation unit 114 sets the target position and the lane changeable period P for changing the lane based on the position changes of the surrounding vehicles mA, mB, and mC predicted by the first prediction unit 112. decide.
  • the first track candidate generation unit 114 determines the end point of the lane changeable period based on the predicted position changes of the surrounding vehicles mA, mB, and mC.
  • the first track candidate generation unit 114 determines when the surrounding vehicle mC catches up with the surrounding vehicle mB and the distance between the surrounding vehicle mC and the surrounding vehicle mB becomes a predetermined distance as the end point of the lane changeable period P. .
  • the first trajectory candidate generation unit 114 derives a speed change curve with the legal speed as an upper limit within a range where the current vehicle M does not suddenly accelerate, and combines with the position change of the surrounding vehicle mC.
  • the time when the host vehicle M overtakes the surrounding vehicle mC is determined. For example, if the first track candidate generation unit 114 decelerates, the first track candidate generation unit 114 decelerates by about a predetermined amount (for example, about 20%) from the current speed of the host vehicle M. Is derived.
  • the first track candidate generation unit 114 generates a track OR for changing the lane, and determines whether or not the generated track OR is a track that satisfies the setting condition.
  • the setting condition is, for example, that the acceleration / deceleration, turning angle, assumed yaw rate, and the like are within a predetermined range for each point of the orbital point.
  • the first evaluation selection unit 116 selects a trajectory having a high evaluation among the trajectories that satisfy the setting condition.
  • the first trajectory generation unit 110 outputs information on the selected trajectory to the second trajectory generation unit 120.
  • the first trajectory generating unit 110 may perform a process of resetting the standby state or the target position.
  • FIG. 11 is a diagram illustrating a state in which the first trajectory candidate generation unit 114 generates a trajectory.
  • the first track candidate generation unit 114 causes the host vehicle M to be positioned between the surrounding vehicle mB and the surrounding vehicle mC at a certain time in the future without the host vehicle M interfering with or contacting the surrounding vehicle mA. Generate multiple trajectories.
  • the first track candidate generation unit 114 smoothly connects the current position of the host vehicle M to the center of the lane to which the lane is changed and the end point of the lane change using a polynomial curve such as a spline curve.
  • a predetermined number of target positions K are arranged on the curve at regular intervals or at irregular intervals.
  • the first evaluation selection unit 116 evaluates each trajectory using the trajectory determination criterion based on the safety index and the planability index, and determines a trajectory having a high evaluation (in accordance with the target position K in FIG. 11). Select the formed trajectory).
  • the second trajectory generation unit 120 executes processing in a second cycle shorter than the first cycle, acquires the processing result of the first trajectory generation unit 110, and reflects the acquired processing result of the first trajectory generation unit 110. To generate a second trajectory.
  • the second trajectory generation unit 120 generates a plurality of second trajectory candidates that satisfy the second setting condition, which is a milder standard than when the first trajectory candidates are generated.
  • the second setting condition is, for example, that the acceleration / deceleration, the turning angle, the assumed yaw rate, etc. are within a second predetermined range that is larger than the first predetermined range for each point of the orbit point. That is, since the second track generation unit 120 generates the track so as to change the acceleration / deceleration, the turning angle, and the assumed yaw rate so as to be within the second predetermined range, the host vehicle M can be controlled sharply. .
  • the second trajectory generation unit 120 includes a second prediction unit 122 that predicts a second future state, a second trajectory candidate generation unit 124, and a second evaluation selection unit 126. Similar to the first prediction unit 112, the second prediction unit 122 predicts a future state. Similar to the first trajectory candidate generation unit 114, the second trajectory candidate generation unit 124 generates a plurality of second trajectory candidates.
  • the target period of the second trajectory is, for example, 3 seconds, and is shorter than the target period of the first trajectory (for example, 10 seconds).
  • the second track generation unit 120 executes the process at a second cycle shorter than that of the first track generation unit 110, an obstacle that has not been predicted appears and may interfere with the host vehicle M. In addition, it is possible to generate the second trajectory that can avoid the obstacle sharply.
  • the obstacles that have not been predicted are, for example, surrounding vehicles that have suddenly cut into the lane in which the host vehicle M travels, nearby vehicles or objects (people) that have jumped out immediately before the host vehicle M, and the like.
  • FIG. 12 is a diagram illustrating an example of a case where an unpredicted person jumps out near the track on which the host vehicle M is scheduled to travel.
  • the second trajectory generation unit 120 uses the second trajectory for avoiding the obstacle. Is generated.
  • the second trajectory generation unit 120 generates a second trajectory that is different from the first trajectory generated by the first trajectory generation unit 110.
  • the second trajectory generation unit 120 is a different trajectory from the first trajectory generated by the first trajectory generation unit 110 (K in FIG. 12), and a plurality of the trajectory generation units 120 avoids the obstacle OB.
  • a second trajectory (K # in FIG. 12) is generated by arranging the target position.
  • the example shown in FIG. 12 shows a case where the time increments of the target positions of the first trajectory and the second trajectory are different.
  • the second trajectory candidate generation unit 124 generates a plurality of second trajectory candidates for avoiding the obstacle OB.
  • the second evaluation selection unit 126 can avoid the obstacle OB from the plurality of second trajectory candidates generated by the second trajectory candidate generation unit 124, and is generated by the first trajectory generation unit 110.
  • the trajectory as close as possible to the first trajectory is highly evaluated and selected as the second trajectory.
  • the second evaluation selection unit 126 selects a second track on which the host vehicle M travels from among the plurality of generated tracks based on safety and planability.
  • the second evaluation selection unit 126 selects an optimal trajectory based on the evaluation function f shown in the following formula (7).
  • e 3 is a safety index
  • e 4 is a planning index.
  • the safety index is an evaluation value determined based on, for example, the distance (interval) between the host vehicle M and the obstacle OB, the acceleration / deceleration and steering angle at each track point, an assumed yaw rate, and the like. For example, the safety index is evaluated to be higher as the distance between the host vehicle M and the obstacle OB is longer, and as the acceleration / deceleration and the change amount of the steering angle are smaller.
  • the second trajectory generation unit 120 can select the second trajectory that takes into account the planability after sufficiently considering safety. As a result, the second trajectory generation unit 120 can generate a second trajectory that can avoid the obstacle OB even when an obstacle that has not been predicted appears.
  • the second track generation unit 120 starts the host vehicle M earlier than the first track when accelerating the host vehicle M from a state where the host vehicle M is stopped based on the external environment or traveling at a low speed. Generate a trajectory. This will be described later with reference to FIG.
  • the traveling control unit 130 sets the control mode to the automatic operation mode or the manual operation mode under the control of the control switching unit 140, and one of the driving force output device 90, the steering device 92, and the brake device 94 is set according to the set control mode.
  • the control object including a part or all is controlled.
  • the traveling control unit 130 reads the behavior plan information 156 generated by the behavior plan generation unit 106 in the automatic driving mode, and controls the control target based on the event included in the read behavior plan information 156.
  • the traveling control unit 130 drives the control amount (for example, the number of rotations) of the electric motor in the steering device 92 according to the second track generated by the second track generating unit 120 and the drive.
  • a control amount (for example, an engine throttle opening degree, a shift stage, etc.) of the ECU in the force output device 90 is determined.
  • the traveling control unit 130 derives the speed of the host vehicle M for each predetermined time ⁇ t based on the distance between the target positions K on the track and the predetermined time ⁇ t when the target position K is arranged.
  • the control amount of the ECU in the driving force output device 90 is determined according to the speed for each predetermined time ⁇ t.
  • the travel control unit 130 controls the electric motor in the steering device 92 according to the angle formed by the traveling direction of the host vehicle M for each target position K and the direction of the next target position with reference to the target position. Determine the amount.
  • the traveling control unit 130 follows the second track generated by the second track generation unit 120 and controls the amount of control of the electric motor in the steering device 92 and the driving force output device 90.
  • the control amount of the ECU is determined.
  • the traveling control unit 130 outputs information indicating the control amount determined for each event to the corresponding control target. Accordingly, each device (90, 92, 94) to be controlled can control its own device according to the information indicating the control amount input from the travel control unit 130. In addition, the traveling control unit 130 appropriately adjusts the determined control amount based on the detection result of the vehicle sensor 60.
  • the traveling control unit 130 controls the control target based on the operation detection signal output from the operation detection sensor 72 in the manual operation mode. For example, the traveling control unit 130 outputs the operation detection signal output by the operation detection sensor 72 to each device to be controlled as it is.
  • the control switching unit 140 changes the control mode of the host vehicle M by the travel control unit 130 from the automatic driving mode to the manual driving mode. Or, switch from manual operation mode to automatic operation mode. Further, the control switching unit 140 automatically changes the control mode of the host vehicle M by the travel control unit 130 from the automatic operation mode to the manual operation mode or automatically from the manual operation mode based on the control mode designation signal input from the changeover switch 80. Switch to operation mode. That is, the control mode of the traveling control unit 130 can be arbitrarily changed during traveling or stopping by an operation of a driver or the like.
  • control switching unit 140 switches the control mode of the host vehicle M by the travel control unit 130 from the automatic driving mode to the manual driving mode based on the operation detection signal input from the operation detection sensor 72. For example, when the operation amount included in the operation detection signal exceeds a threshold value, that is, when the operation device 70 receives an operation with an operation amount exceeding the threshold value, the control switching unit 140 automatically sets the control mode of the travel control unit 130. Switch from operation mode to manual operation mode. For example, when the host vehicle M is automatically traveling by the traveling control unit 130 set to the automatic driving mode, when the driver operates the steering wheel, the accelerator pedal, or the brake pedal with an operation amount exceeding a threshold value, The control switching unit 140 switches the control mode of the travel control unit 130 from the automatic operation mode to the manual operation mode.
  • the vehicle control device 100 does not go through the operation of the changeover switch 80 by the operation performed by the driver when an object such as a person jumps out on the roadway or the surrounding vehicle mA suddenly stops. You can immediately switch to manual operation mode. As a result, the vehicle control device 100 can cope with an emergency operation by the driver, and can improve safety during traveling.
  • the second evaluation selection unit 126 evaluates the trajectory based on safety and planability. When there are no obstacles in the vicinity, the safety does not change greatly depending on the mode of the track. For this reason, the second evaluation selection unit 126 evaluates the trajectory as close as possible to the first trajectory generated by the first trajectory generation unit 110 and selects it as the second trajectory. On the other hand, when avoiding an obstacle, the second evaluation selection unit 126 highly evaluates a trajectory as close as possible to the first trajectory generated by the first trajectory generation unit 110 while placing importance on avoiding the obstacle, The second trajectory is selected.
  • the second evaluation selection unit 126 takes the second track giving priority to the first track generated by the first track generation unit 110 having a long processing cycle as described above. If generated, even if the host vehicle M is ready to start, the host vehicle M may not start with good responsiveness. This is because the first track includes a portion that makes the host vehicle M stop. Further, the criteria for evaluation and selection performed by the second evaluation selector 126 do not include a criterion such as “start with good responsiveness”. For this reason, even if the responsiveness of the start of the own vehicle M is bad, the evaluation value does not decrease. Therefore, the second trajectory generation unit 120 of the present embodiment generates a trajectory for starting the host vehicle M with high responsiveness as described below as an exception process from the stop to the start.
  • FIG. 13 is a flowchart showing a flow of processing executed by the second trajectory generation unit 120.
  • the second track generation unit 120 determines whether or not the host vehicle M is in a state of being stopped by the external environment (step S100).
  • the state in which the host vehicle M is stopped by the external environment is a state in which the host vehicle M has to stop due to the external environment even though the host vehicle M wants to travel toward the destination for automatic driving.
  • This state includes, for example, a state where the host vehicle M is stopped because the signal indicates stop, a state where the host vehicle M needs to stop due to traffic congestion, and the like. If it is determined that the host vehicle M is not in a stopped state due to the external environment, the processing of this flowchart ends.
  • the second track generation unit 120 determines whether or not the host vehicle M can start due to a change in the external environment (step) S102).
  • the state in which the host vehicle M can start due to a change in the external environment is, for example, a case where the signal changes from a state indicating stop to a state indicating advance, or a case where the vehicle immediately before the host vehicle M starts in a traffic jam. .
  • the processing of this flowchart ends.
  • the second track generation unit 120 When it is determined that the host vehicle M can start due to a change in the external environment, the second track generation unit 120 generates a second track for starting the host vehicle M with high responsiveness (step S104).
  • the second evaluation selection unit 126 temporarily ignores the followability to the first trajectory that is an element of the planability index, and evaluates and selects the second trajectory. . Thereby, the process of one routine of this flowchart is completed.
  • FIG. 14 is a diagram for explaining a process of generating a second track for starting the host vehicle M with good responsiveness.
  • the vertical axis in the figure is the displacement (x) with respect to the traveling direction of the host vehicle M from the current position of the host vehicle M, and the horizontal axis indicates time t.
  • the displacement (x) is a traveling direction component of the second trajectory.
  • the transition line Tr1 indicates the second trajectory when the exceptional process for starting with good responsiveness is not performed.
  • the second trajectory is generated along the first trajectory. Since the first track is generated in the first cycle, when the host vehicle M adopts the second track along the first track, the first track is longer than the first cycle after being able to start.
  • the trajectory point where the host vehicle M is started is not reached.
  • the transition line Tr indicates the second trajectory in the case where exceptional processing for starting with good responsiveness is performed.
  • the second trajectory is generated at the second cycle by the original determination of the second trajectory generation unit 120. Therefore, when the second cycle elapses after the start of the vehicle can start. It can be expected that the vehicle reaches the track point where the vehicle M is started and can start.
  • FIG. 15 is a diagram illustrating an example of behavior when the host vehicle M starts from a state where the vehicle M is stopped by a signal.
  • the vehicle control device 100 recognizes information indicated by the signal based on an image captured by the camera 40.
  • FIG. 15A shows a state in which the host vehicle M is stopped because the signal is stopped (STOP in FIG. 15).
  • the second trajectory generation unit 120 generates a second trajectory along the first trajectory generated by the first trajectory generation unit 110.
  • This track is a track for stopping the host vehicle M, and a plurality of target positions K (STOP) are arranged at the stop position of the host vehicle M.
  • STOP target positions K
  • (B) in FIG. 15 is an example of a case where the signal is advanced after stopping (GO in FIG. 15).
  • the second trajectory generation unit 120 temporarily ignores the first trajectory and places the second trajectory (indicated by black in FIG. 15) on which the target position K (GO) for starting the host vehicle M with good responsiveness is arranged. Circle).
  • the host vehicle M starts based on the second track.
  • the vehicle control device 100 can start from a specific scene with good responsiveness.
  • generation part 110 will produce
  • the first trajectory generation unit 110 generates the first trajectory so as to approach the second trajectory generated by the second trajectory generation unit 120.
  • “To approach” means that the first track generation unit 110 detects the state in which the vehicle can start while regenerating the first track in its processing cycle and the speed of the host vehicle M at that time. It is realized by generating a first trajectory that accelerates naturally from the speed at that time.
  • FIG. 16 is a diagram for explaining details of a case where the process of the vehicle control device 100 of the present embodiment is not applied and a case where the process is applied.
  • the first period is 2T and the second period is T.
  • the horizontal axis represents time.
  • a solid line arrow indicates information notification (information including the second trajectory) from the second trajectory generation unit 120 to the first trajectory generation unit 110
  • a broken line arrow indicates the second trajectory from the first trajectory generation unit 110.
  • An information notification (information including the first trajectory) to the generation unit 120 is shown.
  • the first trajectory generation unit 110 notifies the second trajectory generation unit 120 that the signal display has changed to progress (see FIG. 16), or by the first trajectory generation unit 110 itself by the processing at the timing Tb. Then, the first trajectory generation unit 110 generates a first trajectory that immediately starts the host vehicle M at timing Tc, which is the next process, and outputs the first trajectory to the second trajectory generation unit 120 (FD in FIG. 16). In this case, after Td, the second track generation unit 120 generates a second track that immediately starts the host vehicle M based on the first track, and the host vehicle M starts based on the generated second track. Will be.
  • the host vehicle M can start with good responsiveness.
  • the second trajectory generation unit 120 recognizes that the signal display has changed to advance by the process of timing Te.
  • the 2nd track generation part 120 generates the 2nd track which makes the own vehicle M start with sufficient responsiveness without waiting for the processing result of the 1st track generation part 110 at timing Tb which is the next processing.
  • the vehicle M can start from a specific scene with good responsiveness.
  • this embodiment demonstrated the case where the own vehicle M started from the stop state, you may apply to the case where the own vehicle M travels while accelerating from the case where the own vehicle M travels at a low speed.
  • the vehicle immediately before the host vehicle M may travel at a low speed and the host vehicle M may be following.
  • the second track generation unit 120 accelerates the host vehicle M to travel the second track or the vehicle immediately before the host vehicle M.
  • a second trajectory that follows may be generated. For example, the process of step S100 in the flowchart of FIG.
  • the second track generation unit 120 determines whether or not the host vehicle M is traveling at a low speed in the external environment”.
  • the processing of S102 is “the second track generation unit 120 determines whether or not the host vehicle M is in a state in which the host vehicle M can accelerate and travel.” Or “the second track generation unit 120 determines that the host vehicle M is immediately before. It may be read as “determining whether or not the vehicle can be followed”.
  • the vehicle control apparatus 100 accelerates the host vehicle M with high responsiveness even when the host vehicle M travels at a low speed from the time when the host vehicle M travels at a low speed or can follow the vehicle immediately before. Can be followed.
  • the second track generation unit 120 grants permission to generate a second track for starting the host vehicle M with high responsiveness when the host vehicle M can start by a change in the external environment. It may be obtained in advance from one trajectory generation unit 110. For example, when the host vehicle M stops due to a change in the external environment, the second track generation unit 120 transmits stop information indicating that the host vehicle M has stopped due to a change in the external environment to the first track generation unit 110. When the first track generation unit 110 acquires the stop information, the first track generation unit 110 permits permission to generate a second track for starting the host vehicle M when the host vehicle M can start the vehicle due to a change in the external environment. Information is transmitted to the second trajectory generator 120. When acquiring permission information from the first track generation unit 110, the second track generation unit 120 starts the host vehicle M with high responsiveness when the vehicle M can start due to a change in the external environment. The second trajectory is generated.
  • the preset condition is a state in which the host vehicle M is stopped by the external environment, and the host vehicle M has to stop by the external environment even though it wants to travel toward the destination for automatic driving. There is no state. For example, a state in which the host vehicle M is stopped due to the signal indicating stop, a state in which the host vehicle M is stopped due to traffic congestion, and the like are included.
  • the second track generation unit 120 When the preset condition is satisfied, the second track generation unit 120 generates a second track for starting the host vehicle M with high responsiveness based on its own judgment.
  • the predetermined condition is not satisfied, the second trajectory generation unit 120 executes a process based on the upper process result. As a result, the host vehicle M is appropriately controlled depending on the scene.
  • the first track generation unit 110 may transmit permission information to the second track generation unit 120 when the host vehicle M stops due to a change in the external environment. Good.
  • the second trajectory generation unit 120 of the vehicle control device 100 executes processing in the second cycle shorter than the first cycle that is the processing cycle of the first trajectory generation unit 110, and the first trajectory.
  • the second track is earlier than the first track.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

車両制御装置(100)は、第1の周期で処理を実行し、自車両の将来の目標軌道である第1軌道を生成する第1軌道生成部(110)と、自車両が外部環境に基づいて停止、または低速走行している状態から自車両を加速させる場合、前記第1軌道より早く自車両を発進させる前記第2軌道を生成する第2軌道生成部(120)と、前記第2軌道生成部(120)により生成された前記第2軌道に基づいて、前記自車両の走行を制御する走行制御部(130)とを備える。

Description

車両制御装置、車両制御方法、および車両制御プログラム
 本発明は、車両制御装置、車両制御方法、および車両制御プログラムに関する。
 本願は、2016年3月15日に出願された日本国特願2016-051331号に基づき優先権を主張し、その内容をここに援用する。
 近年、目的地までの経路に沿って自車両が自動的に走行するように制御する技術について研究が進められている。これに関連して、運転者の操作により自車両の自動運転の開始を指示する指示手段と、自動運転の目的地を設定する設定手段と、運転者により前記指示手段が操作された場合に、前記目的地が設定されているか否かに基づいて自動運転のモードを決定する決定手段と、前記決定手段により決定された前記自動運転のモードに基づいて車両走行制御する制御手段と、を備え、前記決定手段は、前記目的地が設定されていない場合は、前記自動運転のモードを、前記自車両の現在の走行路に沿って走行する自動運転又は自動停車に決定する、運転支援装置が知られている(例えば、特許文献1参照)。
国際公開第2011/158347号
 しかしながら、従来の技術では、特定場面からの発進を応答性よく行うことができない場合があった。
 本発明の態様は、特定場面からの発進を応答性よく行うことができる車両制御装置、車両制御方法、および車両制御プログラムを提供することを目的の一つとする。
 (1)本発明の一態様に係る車両制御装置は、第1の周期で処理を実行し、自車両の将来の目標軌道である第1軌道を生成する第1軌道生成部と、前記第1の周期より短い第2の周期で処理を実行し、前記第1軌道に基づいて第2軌道を生成するとともに、自車両が外部環境に基づいて停止、または低速走行している状態から自車両を加速させる場合、前記第1軌道より早く自車両を発進させる前記第2軌道を生成する第2軌道生成部と、前記第2軌道生成部により生成された前記第2軌道に基づいて、前記自車両の走行を制御する走行制御部とを備える。
 (2)上記(1)の態様において、前記第1軌道生成部および前記第2軌道生成部は、前記自車両と周辺物体との間隔を含む要素を評価する安全性指標と、上位で生成された軌道への追従性を含む要素を評価する計画性指標との二つの基準で軌道を評価し、評価した軌道のうち高い評価の軌道を選択してもよい。
 (3)上記(1)または(2)の態様において、前記第1軌道の対象期間は、前記第2軌道の対象期間よりも長くてもよい。
 (4)上記(1)から(3)のいずれか一項の態様において、前記第1軌道生成部は、前記自車両が発進してから所定時間を経過した後に、前記第2軌道生成部により生成された第2軌道に近づくように前記第1軌道を生成してもよい。
 (5)上記(1)から(3)のいずれか一項の態様において、前記第1軌道生成部は、前記自車両が発進してから所定距離を走行した後に、前記第2軌道生成部により生成された第2軌道に近づくように前記第1軌道を生成してもよい。
 (6)本発明の一態様に係る車両制御のためのコンピュータ実装方法は、第1の周期で処理を実行し、自車両の将来の目標軌道である第1軌道を生成し、前記第1の周期より短い第2の周期で処理を実行し、前記第1軌道に基づいて第2軌道を生成し、自車両が外部環境に基づいて停止、または低速走行している状態から自車両を加速させる場合、前記第1軌道より早く自車両を発進させる前記第2軌道を生成し、前記生成された前記第2軌道に基づいて、前記自車両の走行を制御する。
 (7)本発明の一態様に係る車両制御プログラムは、コンピュータに、第1の周期で処理を実行し、自車両の将来の目標軌道である第1軌道を生成する処理と、前記第1の周期より短い第2の周期で処理を実行し、前記第1軌道に基づいて第2軌道を生成し、自車両が外部環境に基づいて停止、または低速走行している状態から自車両を加速させる場合、前記第1軌道より早く自車両を発進させる前記第2軌道を生成する処理と、前記生成された前記第2軌道に基づいて、前記自車両の走行を制御する処理と、を行わせる。
 上記(1)、(3)、(6)および(7)の態様によれば、第2軌道生成部は、第1の周期より短い第2の周期で処理を実行し、第1軌道に基づいて第2軌道を生成するとともに、自車両が外部環境に基づいて停止、または低速走行している状態から自車両を加速させる場合、第1軌道より早く自車両を発進させることにより、特定場面からの発進を応答性よく行うことができる。
 上記(2)の態様によれば、第1軌道生成部および第2軌道生成部は、第1軌道生成部および第2軌道生成部は、自車両と周辺物体との間隔を評価する安全性指標と、上位で生成された軌道への追従性を含む要素を評価する計画性指標との二つの基準で軌道を評価し、評価した軌道のうち高い評価の軌道を選択することにより、より適切な軌道を選択することができる。
 上記(4)および(5)の態様によれば、第1軌道生成部は、第2軌道生成部により生成された第2軌道に近づくように第1軌道を生成することにより、より滑らかに自車両が走行するように自車両を制御することができる。
車両制御装置が搭載された自車両の有する構成要素を示す図である。 車両制御装置を中心とした自車両の機能構成図である。 自車位置認識部により走行車線に対する自車両の相対位置が認識される様子を示す図である。 ある区間について生成された行動計画の一例を示す図である。 第1軌道生成部により生成される軌道の一例を示す図である。 直線形状の道路上に生成された走行軌道(スプライン曲線)の一例を示す図である。 安全性指数および計画性指数に基づく、軌道判定の基準の一例を示す図である。 自車両と周辺車両との位置関係の一例を示す図である。 第1予測部が予測した周辺車両の位置関係の一例を示す図である。 自車両が車線変更する場合の自車両と周辺車両の位置関係の一例を示す図である。 第1軌道候補生成部が軌道を生成する様子を示す図である。 予測していない人が自車両Mの走行する予定の軌道付近に飛び出してきた場合の一例を示す図である。 第2軌道生成部により実行される処理の流れを示すフローチャートである。 自車両を応答性よく発進させるための第2軌道を生成する処理を説明するための図である。 自車両が信号で停止している状態から発進する場合の挙動の一例を示す図である。 本実施形態の車両制御装置を適用しない場合と、適用する場合の処理の詳細について説明するための図である。
 以下、図面を参照し、本発明の車両制御装置、車両制御方法、および車両制御プログラムの実施形態について説明する。
 [車両構成]
 図1は、実施形態に係る車両制御装置100が搭載された車両(以下、自車両Mと称する)の有する構成要素を示す図である。車両制御装置100が搭載される車両は、例えば、二輪や三輪、四輪等の自動車であり、ディーゼルエンジンやガソリンエンジン等の内燃機関を動力源とした自動車や、電動機を動力源とした電気自動車、内燃機関および電動機を兼ね備えたハイブリッド自動車等を含む。また、上述した電気自動車は、例えば、二次電池、水素燃料電池、金属燃料電池、アルコール燃料電池等の電池により放電される電力を使用して駆動される。
 図1に示すように、自車両Mには、ファインダ20-1から20-7、レーダ30-1から30-6、およびカメラ40等のセンサと、ナビゲーション装置50と、上述した車両制御装置100とが搭載される。
 ファインダ20-1から20-7は、例えば、照射光に対する散乱光を測定し、対象までの距離を測定するLIDAR(Light Detection and Ranging、或いはLaser Imaging Detection and Ranging)である。例えば、ファインダ20-1は、フロントグリル等に取り付けられ、ファインダ20-2および20-3は、車体の側面やドアミラー、前照灯内部、側方灯付近等に取り付けられる。ファインダ20-4は、トランクリッド等に取り付けられ、ファインダ20-5および20-6は、車体の側面や尾灯内部等に取り付けられる。上述したファインダ20-1から20-6は、例えば、水平方向に関して150度程度の検出領域を有している。また、ファインダ20-7は、ルーフ等に取り付けられる。ファインダ20-7は、例えば、水平方向に関して360度の検出領域を有している。
 上述したレーダ30-1および30-4は、例えば、奥行き方向の検出領域が他のレーダよりも広い長距離ミリ波レーダである。また、レーダ30-2、30-3、30-5、30-6は、レーダ30-1および30-4よりも奥行き方向の検出領域が狭い中距離ミリ波レーダである。以下、ファインダ20-1から20-7を特段区別しない場合は、単に「ファインダ20」と記載し、レーダ30-1から30-6を特段区別しない場合は、単に「レーダ30」と記載する。レーダ30は、例えば、FM-CW(Frequency Modulated Continuous Wave)方式によって物体を検出する。
 カメラ40は、例えば、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の個体撮像素子を利用したデジタルカメラである。カメラ40は、フロントウィンドシールド上部やルームミラー裏面等に取り付けられる。カメラ40は、例えば周期的に繰り返し自車両Mの前方を撮像する。
 なお、図1に示す構成はあくまで一例であり、構成の一部が省略されてもよいし、更に別の構成が追加されてもよい。
 図2は、車両制御装置100を中心とした自車両Mの機能構成図である。自車両Mには、ファインダ20、レーダ30、およびカメラ40の他、ナビゲーション装置50と、車両センサ60と、操作デバイス70と、操作検出センサ72と、切替スイッチ80と、走行するための駆動力を出力する駆動力出力装置90、ステアリング装置92、ブレーキ装置94と、車両制御装置100とが搭載される。これらの装置や機器は、CAN(Controller Area Network)通信線等の多重通信線やシリアル通信線、無線通信網等によって互いに接続される。
 ナビゲーション装置50は、GNSS(Global Navigation Satellite System)受信機や地図情報(ナビ地図)、ユーザインターフェースとして機能するタッチパネル式表示装置、スピーカ、マイク等を有する。ナビゲーション装置50は、GNSS受信機によって自車両Mの位置を特定し、その位置からユーザによって指定された目的地までの経路を導出する。ナビゲーション装置50により導出された経路は、経路情報154として記憶部150に格納される。自車両Mの位置は、車両センサ60の出力を利用したINS(Inertial Navigation System)によって特定または補完されてもよい。
 また、ナビゲーション装置50は、車両制御装置100が手動運転モードを実行している際に、目的地に至る経路について音声やナビ表示によって案内を行う。
 なお、自車両Mの位置を特定するための構成は、ナビゲーション装置50とは独立して設けられてもよい。
 また、ナビゲーション装置50は、例えば、ユーザの保有するスマートフォンやタブレット端末等の端末装置の一機能によって実現されてもよい。この場合、端末装置と車両制御装置100との間で無線または有線による通信によって情報の送受信が行われる。
 車両センサ60は、速度を検出する速度センサ、加速度を検出する加速度センサ、鉛直軸回りの角速度を検出するヨーレートセンサ、自車両Mの向きを検出する方位センサ等を含む。
 操作デバイス70は、例えば、アクセルペダルやステアリングホイール、ブレーキペダル、シフトレバー等を含む。操作デバイス70には、運転者による操作の有無や量を検出する操作検出センサ72が取り付けられている。操作検出センサ72は、例えば、アクセル開度センサ、ステアリングトルクセンサ、ブレーキセンサ、シフト位置センサ等を含む。
 操作検出センサ72は、検出結果としてのアクセル開度、ステアリングトルク、ブレーキ踏量、シフト位置等を走行制御部130に出力する。なお、これに代えて、操作検出センサ72の検出結果が、直接的に駆動力出力装置90、ステアリング装置92、またはブレーキ装置94に出力されてもよい。
 切替スイッチ80は、運転者等によって操作されるスイッチである。切替スイッチ80は、例えば、ステアリングホイールやガーニッシュ(ダッシュボード)等に設置される機械式のスイッチであってもよいし、ナビゲーション装置50のタッチパネルに設けられるGUI(Graphical User Interface)スイッチであってもよい。切替スイッチ80は、運転者等の操作を受け付け、走行制御部130による制御モードを自動運転モードまたは手動運転モードのいずれか一方に指定する制御モード指定信号を生成し、制御切替部140に出力する。
 自動運転モードとは、上述したように、運転者が操作を行わない(或いは手動運転モードに比して操作量が小さい、または操作頻度が低い)状態で走行する運転モードであり、より具体的には、行動計画に基づいて駆動力出力装置90、ステアリング装置92、およびブレーキ装置94の一部または全部を制御する運転モードである。
 駆動力出力装置90は、例えば、自車両Mが内燃機関を動力源とした自動車である場合、エンジンおよびエンジンを制御するエンジンECU(Electronic Control Unit)を備える。また、自車両Mが電動機を動力源とした電気自動車である場合、駆動力出力装置90は、走行用モータおよび走行用モータを制御するモータECUを備える。また、自車両Mがハイブリッド自動車である場合、駆動力出力装置90は、エンジンおよびエンジンECUと走行用モータおよびモータECUを備える。
 駆動力出力装置90がエンジンのみを含む場合、エンジンECUは、後述する走行制御部130から入力される情報に従って、エンジンのスロットル開度やシフト段等を調整し、車両が走行するための走行駆動力(トルク)を出力する。
 また、駆動力出力装置90が走行用モータのみを含む場合、モータECUは、走行制御部130から入力される情報に従って、走行用モータに与えるPWM信号のデューティ比を調整し、上述した走行駆動力を出力する。
 また、駆動力出力装置90がエンジンおよび走行用モータを含む場合、エンジンECUおよびモータECUの双方は、走行制御部130から入力される情報に従って、互いに協調して走行駆動力を制御する。
 ステアリング装置92は、例えば、電動モータを備える。電動モータは、例えば、ラックアンドピニオン機構に力を作用させて転舵輪の向きを変更する。
 ステアリング装置92は、走行制御部130から入力される情報に従って、電動モータを駆動させ、転舵輪の向きを変更する。
 ブレーキ装置94は、例えば、ブレーキキャリパーと、ブレーキキャリパーに油圧を伝達するシリンダと、シリンダに油圧を発生させる電動モータと、制動制御部とを備える電動サーボブレーキ装置である。
 電動サーボブレーキ装置の制動制御部は、走行制御部130から入力される情報に従って電動モータを制御し、制動操作に応じたブレーキトルクが各車輪に出力されるようにする。
 電動サーボブレーキ装置は、ブレーキペダルの操作によって発生させた油圧を、マスターシリンダを介してシリンダに伝達する機構をバックアップとして備えてよい。
 なお、ブレーキ装置94は、上記説明した電動サーボブレーキ装置に限らず、電子制御式油圧ブレーキ装置であってもよい。電子制御式油圧ブレーキ装置は、走行制御部130から入力される情報に従ってアクチュエータを制御して、マスターシリンダの油圧をシリンダに伝達する。
 また、ブレーキ装置94は、回生ブレーキを含んでもよい。この回生ブレーキは、駆動力出力装置90に含まれ得る走行用モータにより発電された電力を利用する。
 [車両制御装置]
 以下、車両制御装置100について説明する。車両制御装置100は、例えば、自車位置認識部102と、外界認識部104と、行動計画生成部106と、第1軌道生成部110と、第2軌道生成部120と、走行制御部130と、制御切替部140と、記憶部150とを備える。
 自車位置認識部102、外界認識部104、行動計画生成部106、第1軌道生成部110、第2軌道生成部120、走行制御部130、および制御切替部140のうち一部または全部は、CPU(Central Processing Unit)等のプロセッサがプログラムを実行することにより機能するソフトウェア機能部である。また、これらのうち一部または全部は、LSI(Large Scale Integration)やASIC(Application SpecificIntegrated Circuit)等のハードウェア機能部であってもよい。
 また、記憶部150は、ROM(Read Only Memory)やRAM(Random Access Memory)、HDD(Hard Disk Drive)、フラッシュメモリ等で実現される。プロセッサが実行するプログラムは、予め記憶部150に格納されていてもよいし、車載インターネット設備等を介して外部装置からダウンロードされてもよい。また、プログラムは、そのプログラムを格納した可搬型記憶媒体が図示しないドライブ装置に装着されることで記憶部150にインストールされてもよい。
 自車位置認識部102は、記憶部150に格納された地図情報152と、ファインダ20、レーダ30、カメラ40、ナビゲーション装置50、または車両センサ60から入力される情報とに基づいて、自車両Mが走行している車線(走行車線)、および、走行車線に対する自車両Mの相対位置を認識する。
 地図情報152は、例えば、ナビゲーション装置50が有するナビ地図よりも高精度な地図情報であり、車線の中央の情報あるいは車線の境界の情報等を含んでいる。
 より具体的には、地図情報152には、道路情報と、交通規制情報、住所情報(住所・郵便番号)、施設情報、電話番号情報等が含まれる。
 道路情報には、高速道路、有料道路、国道、都道府県道といった道路の種別を表す情報や、道路の車線数、各車線の幅員、道路の勾配、道路の位置(経度、緯度、高さを含む3次元座標)、車線のカーブの曲率、車線の合流および分岐ポイントの位置、道路に設けられた標識等の情報が含まれる。
 交通規制情報には、工事や交通事故、渋滞等によって車線が封鎖されているといった情報が含まれる。
 図3は、自車位置認識部102により走行車線L1に対する自車両Mの相対位置が認識される様子を示す図である。自車位置認識部102は、例えば、自車両Mの基準点(例えば重心や後輪軸中心など)の走行車線中央CLからの乖離OS、および自車両Mの進行方向の走行車線中央CLを連ねた線に対してなす角度θを、走行車線L1に対する自車両Mの相対位置として認識する。
 なお、これに代えて、自車位置認識部102は、走行車線L1のいずれかの側端部に対する自車両Mの基準点の位置などを、走行車線に対する自車両Mの相対位置として認識してもよい。
 外界認識部104は、ファインダ20、レーダ30、カメラ40等から入力される情報に基づいて、周辺車両の位置、および速度、加速度等の状態を認識する。
 本実施形態における周辺車両とは、自車両Mの周辺を走行する車両であって、自車両Mと同じ方向に走行する車両である。周辺車両の位置は、周辺車両の重心やコーナー等の代表点で表されてもよいし、周辺車両の輪郭で表現された領域で表されてもよい。
 周辺車両の「状態」とは、上記各種機器の情報に基づいて把握される、周辺車両の加速度、車線変更をしているか否か(あるいは車線変更をしようとしているか否か)を含んでもよい。
 また、外界認識部104は、周辺車両に加えて、ガードレールや電柱、駐車車両、歩行者その他の物体の位置を認識してもよい。
 行動計画生成部106は、所定の区間における行動計画を生成する。所定の区間とは、例えば、ナビゲーション装置50により導出された経路のうち、高速道路等の有料道路を通る区間である。なお、これに限らず、行動計画生成部106は、任意の区間について行動計画を生成してもよい。
 行動計画は、例えば、順次実行される複数のイベントで構成される。イベントには、例えば、自車両Mを減速させる減速イベントや、自車両Mを加速させる加速イベント、走行車線を逸脱しないように自車両Mを走行させるレーンキープイベント、走行車線を変更させる車線変更イベント、自車両Mに前走車両を追い越させる追い越しイベント、分岐ポイントにおいて所望の車線に変更させたり、現在の走行車線を逸脱しないように自車両Mを走行させたりする分岐イベント、本線に合流するための合流車線において自車両Mを加減速させ、走行車線を変更させる合流イベント等が含まれる。
 例えば、有料道路(例えば高速道路等)においてジャンクション(分岐点)が存在する場合、車両制御装置100は、自動運転モードにおいて、自車両Mを目的地の方向に進行するように車線を変更したり、車線を維持したりする必要がある。従って、行動計画生成部106は、地図情報152を参照して経路上にジャンクションが存在していると判明した場合、現在の自車両Mの位置(座標)から当該ジャンクションの位置(座標)までの間に、目的地の方向に進行することができる所望の車線に車線変更するための車線変更イベントを設定する。なお、行動計画生成部106によって生成された行動計画を示す情報は、行動計画情報156として記憶部150に格納される。
 図4は、ある区間について生成された行動計画の一例を示す図である。図4に示すように、行動計画生成部106は、目的地までの経路に従って走行した場合に生じる場面を分類し、個々の場面に即したイベントが実行されるように行動計画を生成する。なお、行動計画生成部106は、自車両Mの状況変化に応じて動的に行動計画を変更してもよい。
 行動計画生成部106は、例えば、生成した行動計画を、外界認識部104によって認識された外界の状態に基づいて変更(更新)してもよい。一般的に、車両が走行している間、外界の状態は絶えず変化する。特に、複数の車線を含む道路を自車両Mが走行する場合、周辺車両との距離間隔は相対的に変化する。
 例えば、前方の車両が急ブレーキを掛けて減速したり、隣の車線を走行する車両が自車両M前方に割り込んで来たりする場合、自車両Mは、前方の車両の挙動や、隣接する車線の車両の挙動に合わせて速度や車線を適宜変更しつつ走行する必要がある。従って、行動計画生成部106は、上述したような外界の状態変化に応じて、制御区間ごとに設定したイベントを変更してもよい。
 具体的には、行動計画生成部106は、車両走行中に外界認識部104によって認識された周辺車両の速度が閾値を超えたり、自車線に隣接する車線を走行する周辺車両の移動方向が自車線方向に向いたりした場合に、自車両Mが走行予定の運転区間に設定されたイベントを変更する。
 例えば、レーンキープイベントの後に車線変更イベントが実行されるようにイベントが設定されている場合において、外界認識部104の認識結果によって当該レーンキープイベント中に車線変更先の車線後方から車両が閾値以上の速度で進行してきたことが判明した場合、行動計画生成部106は、レーンキープイベントの次のイベントを車線変更から減速イベントやレーンキープイベント等に変更する。この結果、車両制御装置100は、外界の状態に変化が生じた場合においても、安全に自車両Mを自動走行させることができる。
 第1軌道生成部110は、第1の周期で処理を実行し、第1軌道を生成する。また、第1軌道生成部110は、第2軌道生成部120の処理結果を取得し、取得した第2軌道生成部120の処理結果を反映させて第1軌道を生成する。
 第1軌道生成部110は、第1の将来状態を予測する第1予測部112、第1軌道候補生成部114、および第1評価選択部116を含む。第1予測部112は、自車両の周辺環境の将来の状態を予測する。将来の状態とは、例えば地図情報152に基づいて予測される自車両Mが将来走行する可能性のある道路の状態である。道路の状態とは、例えば、車線の増減や、車線の分岐、カーブの曲率や向き等である。また、第1予測部112は、外界認識部104によって認識された周辺車両について、周辺車両の将来の位置変化を予測する(後述参照)。
 第1軌道候補生成部114は、第1予測部112の予測結果に基づいて、複数の第1軌道の候補を生成する。第1評価選択部116は、第1軌道候補生成部114により生成された複数の軌道の中から、安全性と計画性とに基づいて自車両Mが走行する第1軌道を選択する。第1予測部112および第1評価選択部116の処理の具体例については後述する。
 [レーンキープイベント]
 第1軌道生成部110は、行動計画に含まれるレーンキープイベントが走行制御部130により実施される際に、定速走行、追従走行、減速走行、カーブ走行、障害物回避走行などのうちいずれかの走行態様を決定する。
 例えば、第1軌道生成部110は、自車両Mの前方に周辺車両が存在しない場合に、走行態様を定速走行に決定する。
 また、第1軌道生成部110は、前走車両に対して追従走行するような場合に、走行態様を追従走行に決定する。
 また、第1軌道生成部110は、外界認識部104により前走車両の減速が認識された場合や、停車や駐車などのイベントを実施する場合に、走行態様を減速走行に決定する。
 また、第1軌道生成部110は、外界認識部104により自車両Mがカーブ路に差し掛かったことが認識された場合に、走行態様をカーブ走行に決定する。
 また、第1軌道生成部110は、外界認識部104により自車両Mの前方に障害物が認識された場合に、走行態様を障害物回避走行に決定する。
 第1軌道生成部110は、決定した走行態様に基づいて、第1軌道を生成する。軌道とは、自車両Mが第1軌道生成部110により決定された走行態様に基づいて走行する場合に、到達することが想定される将来の目標位置を、所定時間ごとにサンプリングした点の集合(軌跡)である。なお、第2軌道生成部120が生成する第2軌道も同様であり、第1軌道と第2軌道は時間的な刻み幅が異なってよい。また、第1軌道と第2軌道は、時間的な刻み幅は同じで、生成する周期のみが異なってもよい。
 第1軌道生成部110は、少なくとも、自車位置認識部102または外界認識部104により認識された自車両Mの前方に存在する対象OBの速度、および自車両Mと対象OBとの距離に基づいて自車両Mの目標速度を算出する。第1軌道生成部110は、算出した目標速度に基づいて第1軌道を生成する。対象OBとは、前走車両や、合流地点、分岐地点、目標地点などの地点、障害物などの物体等を含む。
 以下、特に対象OBの存在を考慮しない場合と、考慮する場合との双方における軌道の生成について説明する。
 図5は、第1軌道生成部110により生成される第1軌道の一例を示す図である。図5中(A)に示すように、例えば、第1軌道生成部110は、自車両Mの現在位置を基準に、現時刻から所定時間Δt経過するごとに、K(1)、K(2)、K(3)、…といった将来の目標位置(軌道点)を連ねたものを、自車両Mの第1軌道として設定する。以下、これら目標位置を区別しない場合、単に「目標位置K」と表記する。
 例えば、目標位置Kの個数は、目標時間Tに応じて決定される。例えば、第1軌道生成部110は、目標時間Tを10秒とした場合、この10秒間において、所定時間Δt(例えば0.1秒)刻みで目標位置Kを走行車線の中央線上に設定し、これら複数の目標位置Kの配置間隔を走行態様に基づいて決定する。第1軌道生成部110は、例えば、走行車線の中央線を、地図情報152に含まれる車線の幅員等の情報から導出してもよいし、予め地図情報152に含まれている場合に、この地図情報152から取得してもよい。
 例えば、第1軌道生成部110は、走行態様を定速走行に決定した場合、図5中(A)に示すように、等間隔で複数の目標位置Kを設定して第1軌道を生成する。
 また、第1軌道生成部110は、走行態様を減速走行に決定した場合(追従走行において前走車両が減速した場合も含む)、図5中(B)に示すように、到達する時刻がより早い目標位置Kほど間隔を広くし、到達する時刻がより遅い目標位置Kほど間隔を狭くして第1軌道を生成する。この場合において、前走車両が対象OBに設定されたり、前走車両以外の合流地点や、分岐地点、目標地点などの地点、障害物等が対象OBに設定されたりすることがある。これにより、自車両Mからの到達する時刻が遅い目標位置Kが自車両Mの現在位置と近づくため、後述する走行制御部130が自車両Mを減速させることになる。
 図5(A)、(B)に示すような状況において、第1軌道候補生成部114が生成し得る第1軌道の候補は、多くはならず、一つの第1軌道の候補のみが生成されてもよい。この場合、第1評価選択部116は、自動的に、第1軌道候補生成部114により生成された一つの第1軌道の候補を、第1軌道として選択する。
 また、図5中(C)に示すように、道路がカーブ路である場合に、第1軌道生成部110は、走行態様をカーブ走行に決定する。この場合、第1軌道生成部110は、例えば、道路の曲率に応じて、複数の目標位置Kを自車両Mの進行方向に対する横位置(車線幅方向の位置であり、進行方向に略直行する方向)を変更しながら配置して第1軌道を生成する。
 また、図5中(D)に示すように、自車両Mの前方の道路上に人間や停止車両等の障害物OBが存在する場合、第1軌道生成部110は、走行態様を障害物回避走行に決定する。
 この場合、第1軌道生成部110は、この障害物OBを回避して走行するように、複数の目標位置Kを配置して第1軌道を生成する。
 [カーブ走行時における軌道の生成]
 ここで、一例として走行態様がカーブ走行である場合に、第1軌道生成部110が行う処理について説明する。第1予測部112が、将来、自車両Mが走行する予定の道路がカーブ路であることを予測する。第1軌道候補生成部114が、自車両Mが走行する予定のカーブ路の道路情報(道路の幅や車線のカーブの曲率等)を取得する。第1軌道候補生成部114は、道路情報に基づいて、自車両が走行するカーブ路の形状を仮想的に直線形状に変換した情報を生成する。例えば、第1軌道候補生成部114は、地図情報152から経路情報154によって示される経路に存在する道路の形状を示す情報を抽出し、上記道路の形状を示す情報上において道路の形状を仮想的に直線形状に変換した情報を生成する。
 第1軌道候補生成部114は、自車両Mの位置(始点)、目標点(終点)、および自車両Mの速度、ヨーレート角ならびにステアリング角に基づいて、直線形状に変換された道路上に沿った第1軌道の候補を複数生成する。第1軌道候補生成部114は、走行軌道の軌道点の各点について、加減速度や転向角、想定されるヨーレートなどが第1所定範囲以内に収まっているように複数の第1軌道の候補を生成する。第1軌道候補生成部114は、上記の条件下で、例えばスプライン関数に基づいて、スプライン曲線を生成する。
 例えば、始点Psの座標(x,y)において自車両Mの速度がvであり、加速度がaであるものとする。自車両Mの速度v0は、速度のx方向成分vx0とy方向成分vy0とが合成された速度ベクトルである。自車両Mの加速度aは、加速度のx方向成分ax0とy方向成分ay0とが合成された加速度ベクトルである。終点Peの座標(x,y)において自車両Mの速度がvであり、加速度がaであるものとする。自車両Mの速度vは、速度のx方向成分vx1とy方向成分vy1とが合成された速度ベクトルである。自車両Mの加速度aは、加速度のx方向成分ax1とy方向成分ay1とが合成された加速度ベクトルである。
 第1軌道候補生成部114は、自車両Mが始点Psから終点Peまでに至る単位時間Tが経過する周期中の時間tごとに、目標点(x,y)を設定する。目標点(x,y)の演算式は、式(1)および式(2)のスプライン関数により表される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 式(1)および式(2)において、m、m、およびmは、式(3)、式(4)および式(5)のように表される。また、式(1)および式(2)における係数kおよびkは、同じであってもよいし相違していてもよい。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 式(3)、式(4)および式(5)においてpは始点Psにおける自車両Mの位置(x,y)であり、pは終点Peにおける自車両Mの位置(x,y)である。
 第1軌道候補生成部114は、式(1)および式(2)におけるvx0およびvy0に自車両Mの速度にゲインを掛け合わせた値を代入して、単位時間Tを時刻tごとに式(1)および式(2)の演算結果により特定された目標点(x(t),y(t))を取得する。これにより、第1軌道候補生成部114は、始点Psと終点Peとを複数の目標点(x(t),y(t))により補間したスプライン曲線を得る。
 図6は、直線形状の道路上に生成された走行軌道(スプライン曲線)の一例を示す図である。第1軌道候補生成部114は、図6(A)に示すようなスプライン曲線を、走行軌道Tgとして生成する。
 第1軌道候補生成部114は、直線形状の道路上に生成した走行軌道Tgに対し、変換の逆変換を行うことで、図6(B)に示すような直線形状に変換される前の道路の形状における自車両Mの走行軌道Tg#を生成する。例えば、第1軌道候補生成部114は、走行軌道Tgとして生成されたスプライン曲線を、所定幅を有する点列で表現し、それぞれの点を逆変換することで得られる点列を、走行軌道Tg#とする。これによって、第1軌道候補生成部114は、直線形状の道路形状を元の道路形状に逆変換するとともに、直線形状の道路上において生成された走行軌道Tgを変換して、元の道路上に新たな走行軌道Tg#を生成する。
 第1評価選択部116は、第1軌道候補生成部114により生成された複数の第1軌道候補の中から、安全性と計画性とに基づいて自車両Mが走行する第1軌道を選択する。例えば、第1評価選択部116は、下記式(6)に示す評価関数fに基づいて、最適な軌道を選択する。w(=(w+1)-1)およびwは、重み係数であり、eは安全性指数であり、eは計画性指数である。安全性指数とは、例えば、自車両Mと障害物OBとの距離、各軌道点における加減速度や操舵角、想定されるヨーレートなどに基づいて決定される評価値である。例えば自車両Mと障害物OBとの距離が遠いほど、加減速度や操舵角の変化量などが小さいほど、安全性指数が高いものと評価される。計画性指数とは、上位で生成された軌道に対する追従性、および/または軌道の短さに基づく評価値である。
 上位で生成された軌道における「上位」とは、第1軌道生成部110を対象とする場合は行動計画生成部106を指す。行動計画生成部106が、「中央車線を走行し、分岐点手前で右に車線変更する」と決定した場合、途中で左に車線変更するような軌道は、計画性指数が低いと第1評価選択部116により判定される。また、途中で左に車線変更する軌道は、軌道の短さの点からも第1評価選択部116により低く評価される。また、「上位」とは、第2軌道生成部120を対象とする場合は第1軌道生成部110を指す。第2軌道生成部120の処理では、第1軌道生成部110が生成した第1軌道から乖離するほど計画性指数が低いと判定される。例えば、軌道が滑らかでない程、また、軌道が長い程、計画性指数は、第2軌道生成部120の第2評価選択部126により低く評価される。
 f=w(w+1)・・・(6)
 図7は、安全性指数および計画性指数に基づく、軌道判定の基準の一例を示す図である。縦軸は計画性を示し、横軸は安全性指数を示している。評価関数fは、図7中、矢印ar方向に評価が上昇する勾配を有する。評価関数fは、例えばf*=w+wのように単純な加重和として求める場合に比して、安全性指数が極めて低い軌道の評価を下げ、これを除外することができる。このように第1評価選択部116は、安全性を十分に考慮した上で、計画性を加味した軌道を選択することができる。
 [車線変更イベント]
 また、車線変更イベントが実施される場合、第1軌道生成部110は、車線変更のターゲットとなるターゲット位置の設定、車線変更可否判定、将来状態の予測、車線変更軌道生成、軌道評価といった処理を行う。ターゲット位置は、例えば隣接車線において選択された2台の周辺車両の間に設定される相対的な位置である。また、第1軌道生成部110は、分岐イベントや合流イベントが実施される場合にも、同様の処理を行ってよい。
 第1予測部112は、周辺車両の将来状態を予測する。まず、第1予測部112は、周辺車両mA、mB、およびmCを特定する。図8は、自車両Mと周辺車両との位置関係の一例を示す図である。図8では、車両の位置関係は、mA-mB-mC-Mであるものとする。周辺車両mAは、自車両Mが走行する車線において自車両Mの直前を走行する車両(前走車両)である。周辺車両mBは、隣接車線を走行する上記「2台の周辺車両」のうち、ターゲット位置の直前に存在する車両であり、周辺車両mCは、隣接車線を走行する上記「2台の周辺車両」のうち、ターゲット位置の直後を走行する車両である。
 次に、第1予測部112が、周辺車両mA、mB、およびmCの将来の位置変化を予測する。第1予測部112は、例えば、車両が現在の速度を保ったまま走行すると仮定した定速度モデル、車両が現在の加速度を保ったまま走行すると仮定した定加速度モデル、後方の車両が前方の車両と一定距離を保ちながら追従して走行すると仮定した追従走行モデル、その他、種々のモデルに基づいて予測する。
 図9は、第1予測部112が予測した周辺車両の位置関係の一例を示す図である。図9では、周辺車両の速度は、mA>mC>mBであるものとする。図9における縦軸は、自車両Mを基準とした進行方向に関する変位(x)を、横軸は経過時間(t)を、それぞれ表している。図9に示す例では、第1予測部112が、定速度モデルに基づいて、周辺車両の状態を予測した結果を示している。
 第1軌道候補生成部114は、第1予測部112により予測された将来状態に基づいて、車線変更のための実現可能な第1軌道の候補を複数生成する。図10は、自車両Mが車線変更する場合の自車両と周辺車両の位置関係の一例を示す図である。図9と重複する説明は省略する。図10中、軌道ORのような第1軌道の候補は複数の組み合わせで生成される。
 第1軌道候補生成部114が、車線変更可能領域に対応する車線変更可能期間Pを導出するために、自車両Mと、周辺車両mA、mB、およびmCの位置変化を類型化する。次に、第1軌道候補生成部114は、第1予測部112により予測された周辺車両mA、mB、およびmCの位置変化に基づいて、車線変更するためのターゲット位置および車線変更可能期間Pを決定する。第1軌道候補生成部114は、予測された周辺車両mA、mB、およびmCの位置変化に基づいて、車線変更可能期間の終了時点を決定する。
第1軌道候補生成部114は、例えば、周辺車両mCが周辺車両mBに追いつき、周辺車両mCと周辺車両mBとの距離が所定距離となったときを車線変更可能期間Pの終了時点と決定する。
 ここで、車線変更の開始時点を決定するためには、「自車両Mが周辺車両mCを追い抜く時点」といった要素が存在し、これを解くためには自車両Mの加速に関する仮定が必要となる。この点、第1軌道候補生成部114は、現在の自車両Mの速度から急加速とならない範囲内で、法定速度を上限として速度変化曲線を導出し、周辺車両mCの位置変化と合わせて「自車両Mが周辺車両mCを追い抜く時点」を決定する。なお、第1軌道候補生成部114は、例えば、減速するのであれば、現在の自車両Mの速度から所定程度(例えば2割程度)減速するものとし、急減速にならない範囲内で速度変化曲線を導出する。
 次に、第1軌道候補生成部114は、車線変更するための軌道ORを生成し、生成された軌道ORが設定条件を満たす軌道であるか否かを判定する。設定条件とは、例えば、軌道点の各点について、加減速度や転向角、想定されるヨーレートなどが所定の範囲内に収まっていることである。設定条件を満たす軌道を生成できた場合、第1評価選択部116が、設定条件を満たす軌道のうち、評価が高い軌道を選択する。第1軌道生成部110は、選択された軌道の情報を第2軌道生成部120に出力する。一方、設定条件を満たす軌道を生成できなかった場合、第1軌道生成部110は、待機状態やターゲット位置を再設定する処理等を行ってもよい。
 図11は、第1軌道候補生成部114が軌道を生成する様子を示す図である。例えば、第1軌道候補生成部114は、自車両Mが周辺車両mAと干渉、又は接触せずに、将来のある時刻において自車両Mが周辺車両mBと周辺車両mCとの間に位置するように複数の軌道を生成する。例えば、第1軌道候補生成部114は、現在の自車両Mの位置から、車線変更先の車線の中央、且つ車線変更の終了地点までをスプライン曲線等の多項式曲線を用いて滑らかに繋ぎ、この曲線上に等間隔あるいは不等間隔で目標位置Kを所定個数配置する。第1評価選択部116は、前述したように安全性指数および計画性指数に基づく、軌道判定の基準を用いて、各軌道を評価して、評価の高い軌道(図11中、目標位置Kにより形成された軌道)を選択する。
 [第2軌道生成部]
 第2軌道生成部120は、第1の周期より短い第2の周期で処理を実行し、第1軌道生成部110の処理結果を取得し、取得した第1軌道生成部110の処理結果を反映させて第2軌道を生成する。
 第2軌道生成部120は、第1軌道の候補が生成される場合よりも緩やかな基準である第2設定条件を満たす第2軌道の候補を複数生成する。第2設定条件とは、例えば、軌道点の各点について、加減速度や転向角、想定されるヨーレートなどが第1所定範囲よりも大きい第2所定範囲以内に収まっていることである。すなわち、第2軌道生成部120は、第2所定範囲に収まるように加減速度や転向角、想定されるヨーレートを変化させるように軌道を生成するため、自車両Mを急峻に制御することができる。
 第2軌道生成部120は、第2の将来状態を予測する第2予測部122、第2軌道候補生成部124、および第2評価選択部126を備える。第2予測部122は、第1予測部112と同様に、将来の状態を予測する。第2軌道候補生成部124は、第1軌道候補生成部114と同様に、複数の第2軌道の候補を生成する。第2軌道の対象期間は、例えば3秒であり、第1軌道の対象期間(例えば10秒)よりも短い。
 第2軌道生成部120は、第1軌道生成部110より短い第2の周期で処理を実行するため、予測していなかった障害物が出現し、自車両Mに干渉する可能性が生じた場合に、急峻に障害物を回避可能な第2軌道を生成することができる。予測していなかった障害物とは、例えば自車両Mが走行する車線へ急に割り込んできた周辺車両や、自車両Mの直前に急に飛び出してきた周辺車両や物体(人)等である。
 図12は、予測していない人が自車両Mの走行する予定の軌道付近に飛び出してきた場合の一例を示す図である。図12に示すように、自車両Mの前方の道路上に予測していない人等の障害物OBが飛び出してきた場合、第2軌道生成部120は、障害物を回避するための第2軌道を生成する。この場合、第2軌道生成部120は、第1軌道生成部110に生成された第1軌道とは異なる第2軌道を生成する。第2軌道生成部120は、第1軌道生成部110により生成された第1軌道(図12中、K)とは異なる軌道であって、障害物OBを回避して走行するように、複数の目標位置を配置して第2軌道(図12中、K#)を生成する。なお、図12に示す例は、第1軌道と第2軌道との目標位置の時間的な刻み幅が異なる場合を示している。
 より具体的には、例えば、第2軌道候補生成部124が、障害物OBを回避するための複数の第2軌道の候補を生成する。第2評価選択部126は、第2軌道候補生成部124により生成された複数の第2軌道の候補のうちから、障害物OBを回避することができ、且つ第1軌道生成部110により生成された第1軌道になるべく近い軌道を高く評価し、第2軌道として選択する。第2評価選択部126は、安全性と計画性とに基づいて、生成された複数の軌道の中から自車両Mが走行する第2軌道を選択する。
 例えば、第2評価選択部126は、下記の式(7)に示す評価関数fに基づいて、最適な軌道を選択する。w(=(w+1)-1)およびwは、重み係数であり、eは安全性指数であり、eは計画性指数である。安全性指数とは、例えば、自車両Mと障害物OBとの距離(間隔)、各軌道点における加減速度や操舵角、想定されるヨーレートなどに基づいて決定される評価値である。例えば自車両Mと障害物OBとの距離が遠いほど、加減速度や操舵角の変化量などが小さいほど、安全性指数が高いものと評価される。計画性指数とは、上位で生成された軌道に対する追従性、および/または軌道の短さに基づく評価値である。
 f=w(w+1)・・・(7)
 評価関数fは、例えばf*=w+wのように単純な加重和として求める場合に比して、安全性指数が極めて低い軌道の評価を下げ、これを除外することができる。
 このように、第2軌道生成部120は、安全性を十分に考慮した上で、計画性を加味した第2軌道を選択することができる。この結果、第2軌道生成部120は、予測していなかった障害物が出現した場合であっても、障害物OBを回避可能な第2軌道を生成することができる。
 また、第2軌道生成部120は、自車両Mが外部環境に基づいて停止、または低速走行している状態から自車両Mを加速させる場合、第1軌道より早く自車両Mを発進させる第2軌道を生成する。これについては、後に図13等を用いて説明する。
 [走行制御]
 走行制御部130は、制御切替部140による制御によって、制御モードを自動運転モードあるいは手動運転モードに設定し、設定した制御モードに従って、駆動力出力装置90、ステアリング装置92、およびブレーキ装置94の一部または全部を含む制御対象を制御する。走行制御部130は、自動運転モード時において、行動計画生成部106によって生成された行動計画情報156を読み込み、読み込んだ行動計画情報156に含まれるイベントに基づいて制御対象を制御する。
 例えば、このイベントがレーンキープイベントである場合、走行制御部130は、第2軌道生成部120により生成された第2軌道に従い、ステアリング装置92における電動モータの制御量(例えば回転数)と、駆動力出力装置90におけるECUの制御量(例えばエンジンのスロットル開度やシフト段等)と、を決定する。具体的には、走行制御部130は、軌道の目的位置K間の距離と、目的位置Kを配置した際の所定時間Δtとに基づいて、所定時間Δtごとの自車両Mの速度を導出し、この所定時間Δtごとの速度に従って、駆動力出力装置90におけるECUの制御量を決定する。また、走行制御部130は、目的位置Kごとの自車両Mの進行方向と、この目的位置を基準とした次の目的位置の方向とのなす角度に応じて、ステアリング装置92における電動モータの制御量を決定する。
 また、上記イベントが車線変更イベントである場合、走行制御部130は、第2軌道生成部120により生成された第2軌道に従い、ステアリング装置92における電動モータの制御量と、駆動力出力装置90におけるECUの制御量とを決定する。
 走行制御部130は、イベントごとに決定した制御量を示す情報を、対応する制御対象に出力する。これによって、制御対象の各装置(90、92、94)は、走行制御部130から入力された制御量を示す情報に従って、自装置を制御することができる。また、走行制御部130は、車両センサ60の検出結果に基づいて、決定した制御量を適宜調整する。
 また、走行制御部130は、手動運転モード時において、操作検出センサ72により出力される操作検出信号に基づいて制御対象を制御する。例えば、走行制御部130は、操作検出センサ72により出力された操作検出信号を、制御対象の各装置にそのまま出力する。
 制御切替部140は、行動計画生成部106によって生成され、記憶部150に格納された行動計画情報156に基づいて、走行制御部130による自車両Mの制御モードを自動運転モードから手動運転モードに、または手動運転モードから自動運転モードに切り換える。また、制御切替部140は、切替スイッチ80から入力される制御モード指定信号に基づいて、走行制御部130による自車両Mの制御モードを自動運転モードから手動運転モードに、または手動運転モードから自動運転モードに切り換える。すなわち、走行制御部130の制御モードは、運転者等の操作によって走行中や停車中に任意に変更することができる。
 また、制御切替部140は、操作検出センサ72から入力される操作検出信号に基づいて、走行制御部130による自車両Mの制御モードを自動運転モードから手動運転モードに切り換える。例えば、制御切替部140は、操作検出信号に含まれる操作量が閾値を超える場合、すなわち、操作デバイス70が閾値を超えた操作量で操作を受けた場合、走行制御部130の制御モードを自動運転モードから手動運転モードに切り換える。例えば、自動運転モードに設定された走行制御部130によって自車両Mが自動走行している場合において、運転者によってステアリングホイール、アクセルペダル、またはブレーキペダルが閾値を超える操作量で操作された場合、制御切替部140は、走行制御部130の制御モードを自動運転モードから手動運転モードに切り換える。これによって、車両制御装置100は、人間等の物体が車道に飛び出して来たり、周辺車両mAが急停止したりした際に運転者により咄嗟になされた操作によって、切替スイッチ80の操作を介さずに直ぐさま手動運転モードに切り替えることができる。この結果、車両制御装置100は、運転者による緊急時の操作に対応することができ、走行時の安全性を高めることができる。
 [停止時から発進時の制御]
 ここで、自動運転モードにおいて、自車両Mが停車している状態から発進するときの処理について説明する。前述したように第2評価選択部126は、安全性と計画性とに基づいて、軌道を評価する。周辺に障害物が存在しない場合、安全性は軌道の態様によって大きく変化しない。このため、第2評価選択部126は、第1軌道生成部110により生成された第1軌道になるべく近い軌道を高く評価し、第2軌道として選択することになる。
 一方、障害物を回避する場合、第2評価選択部126は、障害物を回避することを重視しつつ、第1軌道生成部110によって生成された第1軌道になるべく近い軌道を高く評価し、第2軌道として選択することになる。
 しかしながら、自車両Mが停車時から発進時において、上述したように第2評価選択部126が、処理の周期が長い第1軌道生成部110により生成された第1軌道を優先した第2軌道を生成すると、自車両Mが発進できる状態になっても、自車両Mが応答性よく発進できない場合がある。第1軌道には、自車両Mを停止状態にする部分が含まれるためである。また、第2評価選択部126が行う評価および選択の基準には、「応答性よく発進」といった基準は含まれていない。このため、自車両Mの発進の応答性が悪くても評価値が低下しない。従って、本実施形態の第2軌道生成部120は、停止時から発進時における例外処理として、以下に説明するように、自車両Mを応答性よく発進させる軌道を生成する。
 図13は、第2軌道生成部120により実行される処理の流れを示すフローチャートである。まず、第2軌道生成部120は、自車両Mが外部環境により停止している状態であるか否かを判定する(ステップS100)。自車両Mが外部環境により停止している状態とは、自車両Mが自動運転の目的地に向かって走行したいにも関わらず、外部環境によって停止せざる得ない状態である。この状態には、例えば信号が停止を示していることで自車両Mが停止している状態や、渋滞により自車両Mが停止する必要がある状態などが含まれる。自車両Mが外部環境により停止している状態でないと判定した場合、本フローチャートの処理は終了する。
 一方、自車両Mが外部環境により停止している状態であると判定した場合、第2軌道生成部120は、自車両Mが外部環境の変化により発進可能であるか否かを判定する(ステップS102)。自車両Mが外部環境の変化により発進可能な状態とは、例えば信号が止まれを示す状態から進めを示す状態に変わった場合や、渋滞時に自車両Mの直前の車両が発進した場合等である。
 自車両Mが外部環境の変化により発進可能でないと判定した場合、本フローチャートの処理は終了する。自車両Mが外部環境の変化により発進可能であると判定した場合、第2軌道生成部120は、自車両Mを応答性よく発進させるための第2軌道を生成する(ステップS104)。この場合、例えば、第2評価選択部126が、評価値を導出する場合に計画性指数の要素である第1軌道への追従性を一時的に無視して、第2軌道を評価および選択する。これにより本フローチャートの1ルーチンの処理は終了する。
 図14は、自車両Mを応答性よく発進させるための第2軌道を生成する処理を説明するための図である。図の縦軸は、現在の自車両Mの位置から自車両Mの進行方向に対する変位(x)であり、横軸は時間tを示している。変位(x)は、第2軌道の進行方向成分である。推移線Tr1は、応答性よく発進させる例外処理を行わない場合の第2軌道を示す。この第2軌道は第1軌道に沿うように生成されたものである。第1軌道は、第1の周期で生成されるため、これに沿った第2軌道を自車両Mが採用する場合、発進可能となってから、少なくとも第1の周期よりも長く、第1軌道生成部110から第2軌道生成部120への通知、問い合わせに要する期間を含む期間dが経過するのを待たなければ自車両Mを発進させる軌道点に到達しない。これに対し、推移線Trは、応答性よく発進させる例外処理を行う場合の第2軌道を示す。例外処理を行う場合、第2軌道は、第2の周期で、第2軌道生成部120の独自の判断で生成されるため、発進可能となってから第2の周期を経過した時点で、自車両Mを発進させる軌道点に到達し、発進可能となることが期待できる。
 図15は、自車両Mが信号で停止している状態から発進する場合の挙動の一例を示す図である。例えば、車両制御装置100は、カメラ40により撮像された画像に基づいて、信号が示す情報を認識する。図15中(A)は、信号が止まれ(図15中、STOP)を示しているため、自車両Mが停止している状態を示している。この場合、第2軌道生成部120は、第1軌道生成部110により生成された第1軌道に沿った第2軌道を生成する。この軌道は、自車両Mを停止させるための軌道であり、自車両Mの停止位置に複数の目標位置K(STOP)が配置される。
 図15中(B)は、信号が止まれから進め(図15中、GO)を示した場合の一例である。この場合、第2軌道生成部120は、第1軌道を一時的に無視し、自車両Mを応答性よく発進させる目標位置K(GO)を配置した第2軌道(図15中、黒塗の丸)を生成する。自車両Mは、第2軌道に基づいて発進する。この結果、車両制御装置100は、特定場面からの発進を応答性よく行うことができる。
 なお、第1軌道生成部110は、第1周期が経過すると、自車両Mの環境や速度に基づいて第1軌道を生成する。この場合、第1軌道生成部110は、第2軌道生成部120により生成された第2軌道に近づくように、第1軌道を生成する。「近づくように」とは、第1軌道生成部110が自身の処理周期で第1軌道を再生成する中で、発進可能である状態と、その時点の自車両Mの速度を検出することで、自然とその時点の速度から加速するような第1軌道を生成することで実現される。
 図16は、本実施形態の車両制御装置100の処理を適用しない場合と、適用する場合の処理の詳細について説明するための図である。本図において、第1周期が2Tであり、第2周期がTであるものとする。図16中、横軸は時間である。また、図16中、実線矢印は第2軌道生成部120から第1軌道生成部110への情報通知(第2軌道を含む情報)を示し、破線矢印は第1軌道生成部110から第2軌道生成部120への情報通知(第1軌道を含む情報)を示している。
 例えば、本実施形態の車両制御装置100の処理を適用しない場合において、自車両Mが止まれを示す信号の表示により停止しているものとする。このとき、あるタイミングTaで信号の表示が進めを示す表示に変わった場合、第1軌道生成部110は、信号の表示が進めに変わったことを、第2軌道生成部120からの通知(図16中、SD)を受けて、または第1軌道生成部110自身によって、タイミングTbの処理で認識する。そして、第1軌道生成部110は、次の処理であるタイミングTcで、自車両Mを直ちに発進させる第1軌道を生成し、第2軌道生成部120に出力する(図16中、FD)。この場合、Td以降に、第2軌道生成部120が、第1軌道に基づいて自車両Mを直ちに発進させる第2軌道を生成し、自車両Mは、生成された第2軌道に基づいて発進することとなる。
 これに対して、本実施形態の車両制御装置100の処理を適用した場合、自車両Mは、応答性よく発進することができる。あるタイミングTaで信号の表示が進めを示す表示に変わった場合、第2軌道生成部120は、信号の表示が進めに変わったことを、タイミングTeの処理で認識する。そして、第2軌道生成部120は、次の処理であるタイミングTbで、第1軌道生成部110の処理結果を待たずに自車両Mを応答性よく発進させる第2軌道を生成する。この場合、自車両Mは、第2軌道に基づいて走行するため、特定場面からの発進を応答性よく行うことができる。
 なお、本実施形態では、自車両Mが停車している状態から発進する場合について説明したが、自車両Mが低速走行している場合から加速しながら走行する場合に適用してもよい。例えば、渋滞等において、自車両Mの直前の車両が低速走行し、自車両Mが追従している場合がある。このような状況において自車両Mの直前の車両が加速して走行した場合、第2軌道生成部120は、自車両Mを加速させて走行させる第2軌道、または自車両Mの直前の車両を追従する第2軌道を生成してもよい。例えば、上述した図13のフローチャートのステップS100の処理を「第2軌道生成部120は、自車両Mが外部環境により低速走行している状態であるか否かを判定する。」と読み替え、ステップS102の処理を「第2軌道生成部120は、自車両Mが加速して走行可能な状態であるか否かを判定する。」または「第2軌道生成部120は、自車両Mが直前の車両を追従可能な状態であるか否かを判定する。」と読み替えてもよい。これにより、車両制御装置100は、自車両Mが低速走行している場合から加速して走行する、または直前の車両を追従することが可能なときにおいても、自車両Mを応答性よく加速または追従させることができる。
 また、第2軌道生成部120は、自車両Mが外部環境の変化により発進可能となった場合に、自車両Mを応答性よく発進させるための第2軌道を生成することの許可を、第1軌道生成部110から事前に得てもよい。例えば、第2軌道生成部120は、自車両Mが外部環境の変化により停止した場合、第1軌道生成部110に自車両Mが外部環境の変化により停止したことを示す停止情報を送信する。第1軌道生成部110は、停止情報を取得すると、自車両Mが外部環境の変化により発進可能となった場合に、自車両Mを発進させるための第2軌道を生成することを許可する許可情報を、第2軌道生成部120に送信する。第2軌道生成部120は、第1軌道生成部110から許可情報を取得した場合に、自車両Mが外部環境の変化により発進可能となった場合に、自車両Mを応答性よく発進させるための第2軌道を生成する。
 また、自車両Mが外部環境の変化により発進可能となった場合に、自車両Mを応答性よく発進させるための第2軌道を生成することの許可は、予め設定された条件を満たす場合にのみ適用される制限付の許可であってもよい。予め設定された条件とは、自車両Mが外部環境により停止している状態であって、自車両Mが自動運転の目的地に向かって走行したいにも関わらず、外部環境によって停止せざる得ない状態である。例えば、信号が停止を示していることで自車両Mが停止している状態や、渋滞により自車両Mが停止している状態などが含まれる。第2軌道生成部120は、予め設定された条件を満たす場合は、自らの判断で自車両Mを応答性よく発進させるための第2軌道を生成する。一方、第2軌道生成部120は、予め設定された条件を満たさない場合は、上位の処理結果に基づく処理を実行する。この結果、自車両Mは、場面によって適切に制御される。
 また、第1軌道生成部110は停止情報を取得していない場合であっても、自車両Mが外部環境の変化により停止した場合に、第2軌道生成部120に許可情報を送信してもよい。
 以上説明した実施形態における車両制御装置100の第2軌道生成部120は、第1軌道生成部110の処理の周期である第1の周期より短い第2の周期で処理を実行し、第1軌道生成部110により生成された第1軌道に基づいて第2軌道を生成し、自車両が外部環境に基づいて停止、または低速走行している状態から自車両を加速させる場合、第1軌道より早く自車両を発進させる第2軌道を生成することで、特定場面からの発進を応答性よく行うことができる。
 以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形及び置換を加えることができる。
 20…ファインダ、30…レーダ、40…カメラ、50…ナビゲーション装置、60…車両センサ、70…操作デバイス、72…操作検出センサ、80…切替スイッチ、90…駆動力出力装置、92…ステアリング装置、94…ブレーキ装置、100…車両制御装置、102…自車位置認識部、104…外界認識部、106…行動計画生成部、110…第1軌道生成部、112…第1予測部、114…第1軌道候補生成部、116…第1評価選択部、120…第2軌道生成部、122…第2予測部、124…第2軌道候補生成部、126…第2評価選択部、130…走行制御部、140…制御切替部、150…記憶部、M…車両

Claims (7)

  1.  第1の周期で処理を実行し、自車両の将来の目標軌道である第1軌道を生成する第1軌道生成部と、
     前記第1の周期より短い第2の周期で処理を実行し、前記第1軌道に基づいて第2軌道を生成するとともに、自車両が外部環境に基づいて停止、または低速走行している状態から自車両を加速させる場合、前記第1軌道より早く自車両を発進させる前記第2軌道を生成する第2軌道生成部と、
     前記第2軌道生成部により生成された前記第2軌道に基づいて、前記自車両の走行を制御する走行制御部と、
     を備える車両制御装置。
  2.  前記第1軌道生成部および前記第2軌道生成部は、前記自車両と周辺物体との間隔を含む要素を評価する安全性指標と、上位で生成された軌道への追従性を含む要素を評価する計画性指標との二つの基準で軌道を評価し、評価した軌道のうち高い評価の軌道を選択する、
     請求項1記載の車両制御装置。
  3.  前記第1軌道の対象期間は、前記第2軌道の対象期間よりも長い、
     請求項1または請求項2記載の車両制御装置。
  4.  前記第1軌道生成部は、前記自車両が発進してから所定時間を経過した後に、前記第2軌道生成部により生成された第2軌道に近づくように前記第1軌道を生成する、
     請求項1から3のうちいずれか1項記載の車両制御装置。
  5.  前記第1軌道生成部は、前記自車両が発進してから所定距離を走行した後に、前記第2軌道生成部により生成された第2軌道に近づくように前記第1軌道を生成する、
     請求項1から3のうちいずれか1項記載の車両制御装置。
  6.  第1の周期で処理を実行し、自車両の将来の目標軌道である第1軌道を生成し、
     前記第1の周期より短い第2の周期で処理を実行し、前記第1軌道に基づいて第2軌道を生成し、自車両が外部環境に基づいて停止、または低速走行している状態から自車両を加速させる場合、前記第1軌道より早く自車両を発進させる前記第2軌道を生成し、
     前記生成された前記第2軌道に基づいて、前記自車両の走行を制御する、
     車両制御のためのコンピュータ実装方法。
  7.  コンピュータに、
     第1の周期で処理を実行し、自車両の将来の目標軌道である第1軌道を生成する処理と、
     前記第1の周期より短い第2の周期で処理を実行し、前記第1軌道に基づいて第2軌道を生成し、自車両が外部環境に基づいて停止、または低速走行している状態から自車両を加速させる場合、前記第1軌道より早く自車両を発進させる前記第2軌道を生成する処理と、
     前記生成された前記第2軌道に基づいて、前記自車両の走行を制御する処理と、
     を行わせる車両制御プログラム。
PCT/JP2017/009489 2016-03-15 2017-03-09 車両制御装置、車両制御方法、および車両制御プログラム WO2017159539A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/082,324 US20190084561A1 (en) 2016-03-15 2017-03-09 Vehicle control apparatus, vehicle control method, and vehicle control program
CN201780014080.8A CN108778882B (zh) 2016-03-15 2017-03-09 车辆控制装置、车辆控制方法及存储介质
JP2018505880A JP6507464B2 (ja) 2016-03-15 2017-03-09 車両制御装置、車両制御方法、および車両制御プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016051331 2016-03-15
JP2016-051331 2016-03-15

Publications (1)

Publication Number Publication Date
WO2017159539A1 true WO2017159539A1 (ja) 2017-09-21

Family

ID=59852247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009489 WO2017159539A1 (ja) 2016-03-15 2017-03-09 車両制御装置、車両制御方法、および車両制御プログラム

Country Status (4)

Country Link
US (1) US20190084561A1 (ja)
JP (2) JP6507464B2 (ja)
CN (1) CN108778882B (ja)
WO (1) WO2017159539A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109131363A (zh) * 2018-09-14 2019-01-04 中铁第四勘察设计院集团有限公司 一种智轨列车交叉式渡线停车线结构
JP2019123377A (ja) * 2018-01-17 2019-07-25 マツダ株式会社 車両制御装置
CN110497909A (zh) * 2019-07-17 2019-11-26 百度在线网络技术(北京)有限公司 应用于车辆的碰撞检测和避免方法及装置
JP2020111299A (ja) * 2019-01-17 2020-07-27 マツダ株式会社 車両運転支援システム及び方法
CN113165648A (zh) * 2018-10-31 2021-07-23 Zf汽车德国有限公司 用于基于采样对机动车辆的可能轨迹进行规划的控制系统和控制方法
WO2021199555A1 (ja) * 2020-03-31 2021-10-07 株式会社デンソー 走路生成装置、方法及びプログラム
US11235757B2 (en) 2018-09-05 2022-02-01 Mitsubishi Electric Corporation Collision avoidance apparatus
US11708069B2 (en) 2018-09-05 2023-07-25 Mitsubishi Electric Corporation Obstacle avoidance apparatus and obstacle avoidance route generating apparatus

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018073886A1 (ja) * 2016-10-18 2018-04-26 本田技研工業株式会社 車両制御装置
EP3354525B1 (en) * 2017-01-26 2021-01-13 Volvo Car Corporation Arrangement and method for mitigating a forward collision between road vehicles
JP6911434B2 (ja) * 2017-03-23 2021-07-28 株式会社アイシン 車両走行支援装置
JP6564424B2 (ja) * 2017-06-09 2019-08-21 株式会社Subaru 車両制御装置
JP6600671B2 (ja) * 2017-10-12 2019-10-30 本田技研工業株式会社 車両制御装置
WO2019087380A1 (ja) * 2017-11-06 2019-05-09 本田技研工業株式会社 車両制御装置
US11458964B2 (en) * 2018-01-10 2022-10-04 Hitachi Astemo, Ltd. Driver assistance device, driver assistance method, and driver assistance system
US10824153B2 (en) * 2018-04-16 2020-11-03 Baidu Usa Llc Cost design for path selection in autonomous driving technology
US11199847B2 (en) * 2018-09-26 2021-12-14 Baidu Usa Llc Curvature corrected path sampling system for autonomous driving vehicles
US11392127B2 (en) * 2018-10-15 2022-07-19 Zoox, Inc. Trajectory initialization
DK201970148A1 (en) * 2018-12-10 2020-07-06 Aptiv Tech Ltd Motion graph construction and lane level route planning
US11142196B2 (en) * 2019-02-03 2021-10-12 Denso International America, Inc. Lane detection method and system for a vehicle
JP7194640B2 (ja) * 2019-05-16 2022-12-22 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
US11235804B2 (en) * 2019-08-06 2022-02-01 Fca Us Llc Automated vehicle lane change control techniques
JP7207257B2 (ja) * 2019-10-15 2023-01-18 トヨタ自動車株式会社 車両制御システム
JP7215391B2 (ja) 2019-10-15 2023-01-31 トヨタ自動車株式会社 自動運転車両の車両制御システム及び車両制御装置
US20210114625A1 (en) * 2019-10-18 2021-04-22 WeRide Corp. System and method for autonomous collision avoidance
CN111060071B (zh) * 2019-12-16 2022-07-08 中公高科养护科技股份有限公司 一种道路坡度的测量方法及系统
JP7369077B2 (ja) 2020-03-31 2023-10-25 本田技研工業株式会社 車両制御装置、車両制御方法、及びプログラム
JP7465705B2 (ja) * 2020-03-31 2024-04-11 本田技研工業株式会社 車両制御装置、車両制御方法、及びプログラム
JP7464425B2 (ja) * 2020-03-31 2024-04-09 本田技研工業株式会社 車両制御装置、車両制御方法、及びプログラム
KR20220139064A (ko) * 2021-04-07 2022-10-14 현대모비스 주식회사 차량용 센서 제어 시스템 및 제어 방법
CN113501007B (zh) * 2021-07-30 2022-11-15 中汽创智科技有限公司 一种基于自动驾驶的路径轨迹规划方法、装置及终端
JP7317166B1 (ja) 2022-03-25 2023-07-28 三菱電機株式会社 運転支援装置及び運転支援方法
US20230339512A1 (en) * 2022-04-25 2023-10-26 Aptiv Technologies Limited Leveraging Vehicle-to-Everything (V2X) for Host Vehicle Trajectories
US20230415736A1 (en) * 2022-06-23 2023-12-28 Ford Global Technologies, Llc Systems and methods for controlling longitudinal acceleration based on lateral objects

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000305625A (ja) * 1999-04-16 2000-11-02 Honda Motor Co Ltd 自動走行車
JP2015057688A (ja) * 2013-08-12 2015-03-26 株式会社日本自動車部品総合研究所 走行経路生成装置
WO2015106875A1 (de) * 2014-01-16 2015-07-23 Robert Bosch Gmbh Verfahren zum betreiben eines fahrzeugs
JP2015148545A (ja) * 2014-02-07 2015-08-20 株式会社豊田中央研究所 車両制御装置及びプログラム

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09212229A (ja) * 1996-01-30 1997-08-15 Komatsu Ltd ロボットの教示装置
DE19623666C1 (de) * 1996-06-13 1997-11-20 Siemens Ag Verfahren zur dynamischen Routenempfehlung
JPH10221103A (ja) * 1997-02-06 1998-08-21 Nissan Motor Co Ltd 車両用経路誘導装置
JP4036693B2 (ja) * 2002-06-28 2008-01-23 ダイハツ工業株式会社 車両走行制御装置
EP1990788B1 (en) * 2006-03-01 2012-09-05 Toyota Jidosha Kabushiki Kaisha Vehicle path determining method and vehicle course determining device
JP4893118B2 (ja) * 2006-06-13 2012-03-07 日産自動車株式会社 回避制御装置、この回避制御装置を備える車両および回避制御方法
JP4706654B2 (ja) * 2007-03-27 2011-06-22 トヨタ自動車株式会社 衝突回避装置
JP4900133B2 (ja) * 2007-08-09 2012-03-21 トヨタ自動車株式会社 走行制御計画評価装置
JP5310116B2 (ja) * 2009-03-06 2013-10-09 トヨタ自動車株式会社 移動軌跡生成装置
JP5402203B2 (ja) * 2009-04-20 2014-01-29 トヨタ自動車株式会社 車両制御装置および車両制御方法
JP4957747B2 (ja) * 2009-05-18 2012-06-20 トヨタ自動車株式会社 車両環境推定装置
KR101302832B1 (ko) * 2009-09-01 2013-09-02 주식회사 만도 주차시 장애물인식 시스템 및 그 방법
JP2011204124A (ja) * 2010-03-26 2011-10-13 Toyota Motor Corp 進路予測装置
DE112010005666B4 (de) * 2010-06-16 2022-06-30 Toyota Jidosha Kabushiki Kaisha Fahrunterstützungsvorrichtung
JP5679121B2 (ja) * 2011-05-25 2015-03-04 株式会社Ihi ロボットの運動予測制御方法と装置
DE102012017628A1 (de) * 2012-09-06 2014-03-06 Volkswagen Aktiengesellschaft Verfahren zur Steuerung eines Fahrzeugs und Fahrerassistenzsystem
JP5986533B2 (ja) * 2013-04-18 2016-09-06 株式会社豊田中央研究所 経路修正装置
JP2015003566A (ja) * 2013-06-19 2015-01-08 トヨタ自動車株式会社 逸脱防止装置
EP3125211B1 (en) * 2014-03-26 2018-05-09 Nissan Motor Co., Ltd Information presentation device and information presentation method
JP5991340B2 (ja) * 2014-04-28 2016-09-14 トヨタ自動車株式会社 運転支援装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000305625A (ja) * 1999-04-16 2000-11-02 Honda Motor Co Ltd 自動走行車
JP2015057688A (ja) * 2013-08-12 2015-03-26 株式会社日本自動車部品総合研究所 走行経路生成装置
WO2015106875A1 (de) * 2014-01-16 2015-07-23 Robert Bosch Gmbh Verfahren zum betreiben eines fahrzeugs
JP2015148545A (ja) * 2014-02-07 2015-08-20 株式会社豊田中央研究所 車両制御装置及びプログラム

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019123377A (ja) * 2018-01-17 2019-07-25 マツダ株式会社 車両制御装置
CN110053619A (zh) * 2018-01-17 2019-07-26 马自达汽车株式会社 车辆控制装置
JP7069518B2 (ja) 2018-01-17 2022-05-18 マツダ株式会社 車両制御装置
US11235757B2 (en) 2018-09-05 2022-02-01 Mitsubishi Electric Corporation Collision avoidance apparatus
US11708069B2 (en) 2018-09-05 2023-07-25 Mitsubishi Electric Corporation Obstacle avoidance apparatus and obstacle avoidance route generating apparatus
CN109131363B (zh) * 2018-09-14 2024-01-16 中铁第四勘察设计院集团有限公司 一种智轨列车停车系统
CN109131363A (zh) * 2018-09-14 2019-01-04 中铁第四勘察设计院集团有限公司 一种智轨列车交叉式渡线停车线结构
CN113165648A (zh) * 2018-10-31 2021-07-23 Zf汽车德国有限公司 用于基于采样对机动车辆的可能轨迹进行规划的控制系统和控制方法
JP7112658B2 (ja) 2019-01-17 2022-08-04 マツダ株式会社 車両運転支援システム及び方法
JP2020111299A (ja) * 2019-01-17 2020-07-27 マツダ株式会社 車両運転支援システム及び方法
CN110497909B (zh) * 2019-07-17 2021-06-29 百度在线网络技术(北京)有限公司 应用于车辆的碰撞检测和避免方法及装置
CN110497909A (zh) * 2019-07-17 2019-11-26 百度在线网络技术(北京)有限公司 应用于车辆的碰撞检测和避免方法及装置
JP2021160464A (ja) * 2020-03-31 2021-10-11 株式会社デンソー 走路生成装置、方法及びプログラム
WO2021199555A1 (ja) * 2020-03-31 2021-10-07 株式会社デンソー 走路生成装置、方法及びプログラム
JP7347301B2 (ja) 2020-03-31 2023-09-20 株式会社デンソー 走路生成装置、方法及びプログラム

Also Published As

Publication number Publication date
JP2019108124A (ja) 2019-07-04
CN108778882B (zh) 2021-07-23
US20190084561A1 (en) 2019-03-21
JP6507464B2 (ja) 2019-05-08
JP6965297B2 (ja) 2021-11-10
CN108778882A (zh) 2018-11-09
JPWO2017159539A1 (ja) 2018-09-27

Similar Documents

Publication Publication Date Title
JP6965297B2 (ja) 車両制御装置、車両制御方法、および車両制御プログラム
JP6270227B2 (ja) 車両制御装置、車両制御方法、および車両制御プログラム
JP6344695B2 (ja) 車両制御装置、車両制御方法、および車両制御プログラム
CN107848531B (zh) 车辆控制装置、车辆控制方法及存储车辆控制程序的介质
JP6337382B2 (ja) 車両制御システム、交通情報共有システム、車両制御方法、および車両制御プログラム
JP6246844B2 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JP6768787B2 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JP6303217B2 (ja) 車両制御装置、車両制御方法、および車両制御プログラム
JP6304894B2 (ja) 車両制御装置、車両制御方法、および車両制御プログラム
JP6590270B2 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JP6332875B2 (ja) 車両制御装置、車両制御方法、および車両制御プログラム
JP6598127B2 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
WO2017010344A1 (ja) 車両制御装置、車両制御方法、および車両制御プログラム
WO2017141788A1 (ja) 車両制御装置、車両制御方法、および車両制御プログラム
JP6311889B2 (ja) 車両制御装置、車両制御方法、および車両制御プログラム
WO2017159487A1 (ja) 車両制御装置、車両制御方法、および車両制御プログラム
WO2017159493A1 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
WO2017141396A1 (ja) 車両制御装置、車両制御方法、および車両制御プログラム
JPWO2017199751A1 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JP6304504B2 (ja) 車両制御装置、車両制御方法、および車両制御プログラム
JPWO2017138513A1 (ja) 車両制御装置、車両制御方法、および車両制御プログラム
JP2017165156A (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JP2017144886A (ja) 車両制御装置、車両制御方法、および車両制御プログラム
WO2017159489A1 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JP2017081421A (ja) 車両制御装置、車両制御方法、および車両制御プログラム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018505880

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766540

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766540

Country of ref document: EP

Kind code of ref document: A1