WO2017155221A1 - 표면 평활도 및 금속 증착성이 우수한 램프 리플렉터용 수지 조성물 - Google Patents

표면 평활도 및 금속 증착성이 우수한 램프 리플렉터용 수지 조성물 Download PDF

Info

Publication number
WO2017155221A1
WO2017155221A1 PCT/KR2017/001761 KR2017001761W WO2017155221A1 WO 2017155221 A1 WO2017155221 A1 WO 2017155221A1 KR 2017001761 W KR2017001761 W KR 2017001761W WO 2017155221 A1 WO2017155221 A1 WO 2017155221A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
resin
weight
calcium carbonate
lamp reflector
Prior art date
Application number
PCT/KR2017/001761
Other languages
English (en)
French (fr)
Inventor
안병우
신종욱
정명욱
황희역
오형근
김해리
Original Assignee
이니츠 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이니츠 주식회사 filed Critical 이니츠 주식회사
Priority to CN201780008609.5A priority Critical patent/CN108603031B/zh
Priority to JP2018545319A priority patent/JP6707658B2/ja
Priority to EP17763484.7A priority patent/EP3428234A4/en
Publication of WO2017155221A1 publication Critical patent/WO2017155221A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/04Polysulfides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/24Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/28Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/222Magnesia, i.e. magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/40Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • C08K7/20Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds

Definitions

  • This invention relates to the resin composition for lamp reflectors excellent in surface smoothness and metal vapor deposition property.
  • 'PAS' polyarylene sulfide
  • polyphenylene sulfide (hereinafter referred to as 'PPS').
  • 'PPS' polyphenylene sulfide
  • the polyphenylene sulfide resin alone is insufficient in heat resistance and mechanical strength, and in many cases, a mixture of fillers is used to enhance it.
  • Korean Patent No. 10-1280100 discloses a polyarylene sulfide resin composition comprising a low chlorine content polyarylene sulfide, a liquid crystalline polyester amide resin and a low nitrogen content glass fiber, through which a high flowability Disclosed is an effect of less burr generation and high heat resistance during molding.
  • automobile lamp reflectors are mainly made of metals such as magnesium and aluminum, and lamp reflectors made of metal materials reflect reflector price despite low material cost due to limited implementation design and low productivity in die casting process. Is high.
  • the plasticization of the metal is rapidly proceeding in accordance with the trend of lighter weight of the car, the weight of the lamp module is rather increasing due to the multifunction of the car lamp module. Therefore, the weight of the automotive lamp module is urgently needed.
  • the lamp reflector should be usable in a high temperature environment of about 230 ° C. and should have a low water absorption.
  • the lamp reflector should satisfy the condition that the haze characteristic at high temperature should be good.
  • lamp reflector manufacturing is generally performed by coating and curing a primer composition on a molding (base material) obtained by molding a resin molding material to form a primer layer, and then coating a metal such as aluminum or zinc on the primer layer to form a metal reflective layer. It includes a process to make.
  • substrates for lamp reflectors require low surface smoothness and high metal deposition.
  • Another object of the present invention is to provide a lamp reflector which is produced by molding the resin composition, which is excellent in surface smoothness and metal deposition property.
  • the present invention to achieve the above object is polyarylene sulfide; A phenoxy resin comprising a repeating unit represented by Formula 1 below; Glass beads; Fillers; And hydrotalcite,
  • the polyarylene sulfide provides a resin composition for a lamp reflector in which the main chain terminal is substituted with a carboxyl group, an amine group or a hydroxy group:
  • the present invention also provides a lamp reflector manufactured by molding the resin composition.
  • the resin composition according to the present invention is useful as a resin for lamp reflectors while maintaining excellent PAS inherent mechanical and thermal properties, low surface smoothness and high metal deposition properties.
  • the resin composition of the present invention is applicable to the field of LED lighting and various electrical and electronic components, which are applications of lamp reflectors, and can be widely used in various fields requiring high metal adhesion.
  • the present invention is polyarylene sulfide; A phenoxy resin comprising a repeating unit represented by Formula 1 below; Glass beads; Fillers; And hydrotalcite,
  • the polyarylene sulfide provides a resin composition for a lamp reflector, wherein the polyarylene sulfide has a carboxyl group, an amine group or a hydroxy group substituent at the main chain end thereof:
  • the phenoxy resin improves the metal deposition property of the resin composition, and includes a repeating unit represented by Chemical Formula 1. Specifically, the phenoxy resin may have a weight average molecular weight of 30,000 to 70,000. More specifically, the phenoxy resin may have a weight average molecular weight of 50,000 to 70,000.
  • the phenoxy resin may be included in an amount of 0.5 to 10% by weight based on the total weight of the resin composition. Specifically, the phenoxy resin may be included in an amount of 1 to 5% by weight based on the total weight of the resin composition.
  • the hydrotalcite serves to reduce the haze of the resin composition.
  • the hydrotalcite may include MgO and Al 2 O 3 in a weight ratio of 3.0 to 5.0: 1, and an average particle diameter may be 0.3 to 0.8 ⁇ m. More specifically, the hydrotalcite may include MgO and Al 2 O 3 in a weight ratio of 3.5 to 4.5: 1, and an average particle diameter may be 0.3 to 0.6 ⁇ m.
  • the hydrotalcite may be included in an amount of 0.05 to 2 wt% based on the total weight of the resin composition. Specifically, the hydrotalcite may be included in an amount of 0.1 to 1.5% by weight based on the total weight of the resin composition.
  • the glass bead serves to improve the surface smoothness of the resin composition and reduce the moisture absorption rate, and may use the surface-treated glass beads to improve the interfacial adhesion with the resin.
  • the glass beads may have an average particle diameter of 3 to 50 ⁇ m.
  • the surface treatment of the glass beads may be performed with a material selected from silane, maleic anhydride, titanate, zirconate, fumaric acid, and combinations thereof.
  • the glass beads may be surface treated with silane.
  • the glass beads may be included in an amount of 0.5 to 15% by weight based on the total weight of the resin composition. Specifically, the glass beads may be included in an amount of 1 to 10% by weight based on the total weight of the resin composition.
  • the resin composition of this invention contains polyarylene sulfide.
  • the polyarylene sulfide has a carboxyl group, an amine group or a hydroxyl group substituent at the main chain terminal. Due to the substituent, polyarylene sulfide has excellent compatibility with other polymer materials or fillers, and excellent physical properties peculiar to polyarylene sulfide are maintained.
  • the polyarylene sulfide may have a number average molecular weight of 5,000 to 50,000, specifically 8,000 to 40,000, and more specifically 10,000 to 30,000.
  • the polyarylene sulfide may have a dispersion degree defined as a weight average molecular weight relative to a number average molecular weight of 2.0 to 4.5, specifically 2.0 to 4.0, and more specifically 2.0 to 3.5.
  • the polyarylene sulfide may have a melt viscosity of 10 to 50,000 poise, specifically 100 to 20,000 poise, and more specifically 300 to 10,000 poise, measured at 300 ° C. using a rotating disc viscometer.
  • the polyarylene sulfide is not particularly limited as long as it satisfies the above-described physical properties, but may be, for example, polyarylene sulfide prepared by melt polymerization.
  • the polyarylene sulfide that satisfies the physical properties as described above can improve the surface smoothness and metal deposition properties of the resin composition.
  • the polyarylene sulfide is polymerized with a reactant containing a diiodine aromatic compound and elemental sulfur; And proceeding with the polymerization step, it can be prepared by a manufacturing method comprising the step of adding an aromatic compound having a carboxyl group, an amine group or a hydroxyl group.
  • the diiodine aromatic compounds are, for example, diododobenzene (DIB), diiodonaphthalene, diiodobiphenyl, diiodobisphenol, and diiodobenzophenone One or more selected from the group consisting of (diiodobenzophenone), but is not limited thereto.
  • the diiodine aromatic compound may include a substituent such as an alkyl group or a sulfone group, and a diiodine aromatic compound in which atoms such as oxygen or nitrogen are contained in the aromatic group may also be used. .
  • the diiodine aromatic compound has various isomers depending on the position of the iodine atom, among them, para-diiodobenzene (pDIB), 2,6-dioodonaphthalene, or p, p'- Compounds in which the iodine is bonded in the para position, such as diiodobiphenyl, may be used more suitably.
  • pDIB para-diiodobenzene
  • 2,6-dioodonaphthalene 2,6-dioodonaphthalene
  • p, p'- Compounds in which the iodine is bonded in the para position such as diiodobiphenyl, may be used more suitably.
  • the form of the elemental sulfur reacted with the diiodine aromatic compound is not particularly limited.
  • the elemental sulfur is usually present in the form of a ring (cyclooctasulfur; S 8 ) in which eight atoms are connected at room temperature. If the sulfur element is not commercially available, any element may be used without particular limitation.
  • the reactant may further include a polymerization initiator, a stabilizer, or a mixture thereof.
  • the polymerization initiator is 1,3-diiodo-4-nitrobenzene, mercaptobenzothiazole, 2,2'-dithiobenzothiazole, cyclohexylbenzothiazole sulfenamide, and butylbenzothiazole
  • the stabilizer may be used without particular limitation as long as it is a stabilizer that is usually used in the polymerization of the resin.
  • the polymerization reaction can be carried out under any condition as long as the polymerization of the reactant containing the diiodine aromatic compound and elemental sulfur can be started.
  • the polymerization may be carried out under elevated pressure and reduced pressure conditions.
  • the temperature and pressure drop may be performed at an initial reaction condition of 180 to 250 ° C. and 50 to 450 torr to give final reaction conditions of 270 to 350 ° C. and 0.001.
  • To 20 torr and may proceed for 1 to 30 hours.
  • the polymerization reaction may be carried out with final reaction conditions of 280 to 300 °C and 0.1 to 0.5 torr.
  • the aromatic compound having a carboxyl group, an amine group, or a hydroxy group has a polymerization reaction between the diiodine aromatic compound and elemental sulfur when the degree of polymerization is measured as a ratio of the present viscosity to the target viscosity of the polyarylene sulfide. It may be added when more than%, in particular 90% to less than 100% (for example, late in the polymerization).
  • the progress of the polymerization reaction may be determined as a ratio of the current viscosity to the target viscosity by setting the target molecular weight of the polyarylene sulfide and the target viscosity of the polymerization product according thereto, and measuring the current viscosity according to the progress of the polymerization reaction.
  • the method of measuring the current viscosity can be determined by methods obvious to those skilled in the art according to the reactor scale. For example, when the polymerization proceeds in a relatively small polymerization reactor, a sample undergoing polymerization reaction in the reactor can be taken and measured by a viscometer. In contrast, when the polymerization proceeds in a large continuous polymerization reactor, the present viscosity can be automatically measured in real time continuously and with a viscometer installed in the reactor itself.
  • an aromatic compound having a carboxyl group, an amine group, or a hydroxy group at the end of the polymerization step in the polymerization reaction of the diiodine aromatic compound with the element containing sulfur, an end group of the polyarylene sulfide main chain (End Group) Polyarylene sulfide in which a carboxyl group, an amine group or a hydroxy group is introduced into at least a part thereof may be prepared.
  • a polyarylene sulfide having a carboxyl group, an amine group or a hydroxyl group introduced into the main chain terminal group as described above has excellent compatibility with other polymer materials or fillers, and has the advantage of maintaining excellent physical properties unique to polyarylene sulfide. have.
  • the aromatic compound having a carboxyl group, an amine group or a hydroxy group a compound in the form of any monomer (mono molecule) having a carboxyl group, an amine group or a hydroxy group can be used.
  • the aromatic compound having a carboxyl group, an amine group or a hydroxyl group is 2-iodophenol, 3-iodophenol, 4-iodophenol, 2,2 '-Dithiodiphenol (2,2'-Dithiodiphenol), 3,3'-Dithiodiphenol (3,3'-Dithiodiphenol), 4,4'-Dithiodiphenol, 2- 2-Iodobenzoic acid, 3-Iodobenzoic acid, 4-Iodobenzoic acid, 2,2'-Dithiobenzoic acid ), 2-iodoaniline (2-Iodoaniline), 3-iodoaniline (3-Iodoaniline), 4-iodoaniline (4-
  • the aromatic compound having a carboxyl group, an amine group or a hydroxyl group may be added in an amount of 0.0001 to 10 parts by weight, specifically 0.001 to 7 parts by weight, and more specifically 0.01 to 2 parts by weight based on 100 parts by weight of the diiodine aromatic compound. .
  • an aromatic compound having a carboxyl group, amine group or hydroxy group is added in the content within the above range, a carboxyl group, amine group or hydroxy group can be introduced into the main chain terminal group.
  • a polymerization terminator may be further added to the reactant at a time when polymerization is made to some extent.
  • the polymerization terminator is not particularly limited as long as the compound can stop the polymerization by removing the iodine group included in the polymer to be polymerized.
  • the polymerization terminating agent is diphenyl sulfide, diphenyl ether, diphenyl, diphenyl, benzophenone, dibenzothiazole disulfide, monoiodoaryl Compounds selected from the group consisting of monoiodoaryl compounds, benzothiazoles, benzothiazole sulfenamides, thiurams, dithiocarbamates and diphenyl disulfides. It may be one or more.
  • iodobiphenyl iodobiphenyl
  • iodobiphenyl iodophenol
  • iodoaniline iodoaniline
  • iodobenzophenone iodobenzophenone
  • 2-mercaptobenzothiazole 2,2 ' 2,2'-dithiobisbenzothiazole
  • N-cyclohexylbenzothiazole-2-sulfenamide 2-morpholinothiobenzothiazole
  • N, N-dicyclohexylbenzothiazole-2-sulfenamide tetramethylthiuram monosulfide
  • tetramethylthiuram disulfide Zinc dimethyldithiocarbamate, zinc diethyldithiocarbamate and diphenyl disulfide may be one or more selected from the group consisting of.
  • the timing of administration of the polymerization terminator may be determined in consideration of the target molecular weight of the polyarylene sulfide. For example, 70 to 100% by weight of the diiodine aromatic compound included in the initial reactant may be administered when the reaction is exhausted.
  • the method may further include melt mixing a reactant including a diiodine aromatic compound and an elemental sulfur before the polymerization reaction.
  • the melt mixing step may facilitate the reaction of the polymerization reaction to be carried out later.
  • the melt mixing is not particularly limited as long as the reactant can be melt mixed. For example, it may proceed at 130 to 200 °C, specifically 160 to 190 °C.
  • the polymerization in the method for preparing polyarylene sulfide as described above, may be performed in the presence of a nitrobenzene catalyst.
  • the nitrobenzene-based catalyst when further comprising a melt mixing step before the polymerization as described above, may be added in the melt mixing step.
  • Nitrobenzene-based catalysts include, but are not limited to, 1,3-diiodo-4-nitrobenzene, or 1-iodo-4-nitrobenzene.
  • Polyarylene sulfides prepared as described above may include iodine and free iodine bonded to the main chain.
  • the iodine and free iodine content bonded to the main chain may be 10 to 10,000 ppm.
  • the iodine and free iodine content bound to the main chain may be measured by quantitatively using ion chromatography after heat-treating a polyarylene sulfide sample at high temperature as described in the following Examples.
  • the free iodine occurs during the polymerization of a reactant containing a diiodine aromatic compound and a sulfur element as described above, and the iodine molecules, iodine ions or iodine radicals which remain in a chemically separated state from the polyarylene sulfide finally formed.
  • a reactant containing a diiodine aromatic compound and a sulfur element as described above, and the iodine molecules, iodine ions or iodine radicals which remain in a chemically separated state from the polyarylene sulfide finally formed.
  • the polyarylene sulfide may be included in an amount of 20 to 60 wt% based on the total weight of the resin composition. Specifically, the polyarylene sulfide may be included in an amount of 25 to 45% by weight based on the total weight of the resin composition.
  • the filler is selected from calcium carbonate, glass fibers, glass flakes, carbon fibers, wollastonite, whiskers, milled glass, mica, barium sulfate, talc, silica and combinations thereof. Can be. Specifically, the filler may be selected from calcium carbonate, glass fibers and combinations thereof. More specifically, the filler may include calcium carbonate and glass fibers.
  • the filler may be included in an amount of 40 to 70% by weight based on the total weight of the resin composition. Specifically, the filler may be included in an amount of 40 to 65% by weight based on the total weight of the resin composition.
  • the calcium carbonate improves the surface smoothness of the resin composition, and specifically, the average particle diameter (D50) may be 0.5 to 10 ⁇ m.
  • the calcium carbonate may be included in an amount of 10 to 50% by weight based on the total weight of the resin composition.
  • calcium carbonate may be included in an amount of 20 to 40% by weight based on the total weight of the resin composition. More specifically, the calcium carbonate is based on the total weight of the resin composition of 10 to 40% by weight of fine particle calcium carbonate having an average particle diameter of 0.5 to 3.0 ⁇ m and 0 to 10% by weight of small calcium carbonate having an average particle diameter of more than 3.0 to 10 ⁇ m It may include.
  • the composition contains a small particle calcium carbonate having an average particle diameter of more than 3.0 to 10 ⁇ m in an amount of more than 10% by weight based on the total weight of the resin composition, the mechanical properties of the resin composition is lowered, due to the surface protrusion of the calcium carbonate Problems may occur in that the reflectance is lowered after aluminum deposition.
  • the calcium carbonate may be surface treated calcium carbonate, surface untreated calcium carbonate, or a mixture thereof.
  • the calcium carbonate may include the surface treated calcium carbonate and the surface untreated calcium carbonate in a weight ratio of 1: 0.2 to 0.5.
  • the surface treatment method used for the filler of resin can be used.
  • the surface treatment can increase the dispersibility of calcium carbonate in the resin and reduce the aggregation of calcium carbonate, for example, by using a saturated fatty acid, unsaturated fatty acid, resin acid or salts thereof, esters, alcohol-based surfactants, and the like. can do.
  • the saturated fatty acid include stearic acid, capric acid, lauric acid, myristic acid, and the like
  • unsaturated fatty acids include oleic acid and linoleic acid.
  • the surface treatment of the calcium carbonate may be a surface of the calcium carbonate treated with stearic acid.
  • the glass fiber serves to improve the heat resistance and mechanical strength of the resin composition, it may be used a surface-treated glass fiber to improve the interfacial adhesion with the resin.
  • the glass fibers may have an average diameter of 6 to 15 ⁇ m and an average length of 2 to 5 mm.
  • the glass fiber may also be alumino-borosilicate glass comprising alkali oxides.
  • the surface treatment of the glass fiber may be performed with a material selected from silane, maleic anhydride, titanate, zirconate, fumaric acid, and combinations thereof.
  • the glass fiber may be surface treated with silane.
  • the glass fiber may be included in an amount of 5 to 30% by weight based on the total weight of the resin composition. Specifically, the glass fiber may be included in an amount of 10 to 25% by weight based on the total weight of the resin composition.
  • the resin composition comprises 20 to 60 wt% polyarylene sulfide, 0.5 to 10 wt% phenoxy resin, 0.5 to 15 wt% glass beads, 40 to 70 wt% filler and 0.05 based on the total weight of the composition To 2.0 wt% hydrotalcite.
  • the resin composition may further add conventional additive components such as heat stabilizers, lubricants, antistatic agents, nucleating agents, slip agents, pigments, and combinations thereof in an appropriate amount as necessary.
  • conventional additive components such as heat stabilizers, lubricants, antistatic agents, nucleating agents, slip agents, pigments, and combinations thereof in an appropriate amount as necessary.
  • the resin composition is useful for lamp reflectors because the metal deposition property measured by the ASTM D 3359 method after aluminum deposition has improved metal deposition property of 5B or more.
  • the resin composition for lamp reflectors of the present invention containing the above components can be prepared by a conventional method, for example, by kneading using the same biaxial extruder after blending the above components.
  • the present invention provides a lamp reflector manufactured by molding the resin composition as described above.
  • compression molding, transfer molding, injection molding, etc. can be used, for example, can be manufactured by a lamp reflector through injection molding specifically ,.
  • a reactant containing 5130 g of paradiiodobenzene (p-DIB) and 450 g of sulfur was heated to 180 ° C. in a 5 L reactor equipped with a thermocouple capable of measuring the internal temperature of the reactor and a vacuum line capable of nitrogen filling and vacuuming.
  • the final reaction temperature is 300 ° C.
  • the pressure is 0.6-0.9 Torr in steps of temperature rise and pressure drop for 4 hours
  • sulfur is The polymerization reaction was carried out while adding 19 g each for 7 times.
  • the PPS-1 resin was analyzed by FT-IR to confirm the presence of carboxyl peaks of about 2,400 to 3,600 cm ⁇ 1 on the spectrum.
  • the height intensity of the ring stretch peak appearing at about 1,400 to 1,600 cm ⁇ 1 is 100% on the FT-IR spectrum
  • the relative height intensity of the peak at about 2,400 to 3,600 cm ⁇ 1 is about 3.4%. appear.
  • the PPS-1 resin was measured for melting point (Tm), number average molecular weight (Mn), molecular weight distribution (PDI) and melt viscosity (MV) in the following manner.
  • Tm melting point
  • Mn number average molecular weight
  • PDI molecular weight distribution
  • MV melt viscosity
  • Melt viscosity was measured at a Tm + 20 ° C. with a rotating disk viscometer. In measuring by the frequency sweep method, the angular frequency was measured from 0.6 to 500 rad / s, and the viscosity at 1.0 rad / s was defined as the melt viscosity.
  • DSC differential scanning calorimeter
  • Mn Number average molecular weight (Mn) and molecular weight distribution (PDI)
  • a sample was prepared by stirring PPS resin in 1-chloronaphthalene (1-chloronaphthalene) at a concentration of 0.4% by weight at 250 ° C. for 25 minutes.
  • the polyphenylene sulfides having different molecular weights were sequentially separated in the column while flowing the sample at a flow rate of 1 ml / min in a high temperature gel permeation chromatography (210 ° C) system, and then separated using a RI detector. Intensity of each molecular weight of polyphenylene sulfide was measured.
  • a calibration curve was prepared from polystyrene with known molecular weight, and the relative number average molecular weight (Mn) and molecular weight distribution (PDI) of the measurement sample were calculated.
  • the main chain-bound iodine and free iodine content (ppm) is obtained by burning the sample using a furnace at 1,000 ° C, and then preparing the sample through an automatic pretreatment apparatus (AQF) in which iodine is ionized and dissolved in distilled water through ion chromatography.
  • the content of iodine in the sample was measured using a calibration curve previously analyzed.
  • a polyphenylene sulfide resin was prepared in the same manner as in Preparation Example 1 except that 4-iodoaniline was used instead of 4-iodobenzoic acid to include an amine group at the end of the main chain (hereinafter, 'PPS-2 Resin ').
  • the PPS-2 resin was analyzed by FT-IR to confirm the presence of an amine group peak of about 3,180 to 3,350 cm ⁇ 1 on the spectrum.
  • the height intensity of the ring stretch peak appearing at about 1,400 to 1,600 cm ⁇ 1 is 100% on the FT-IR spectrum
  • the relative height intensity of the peak at about 3,180 to 3,350 cm ⁇ 1 is about 1.4%. appear.
  • PPS-2 resin was measured for melting point (Tm), number average molecular weight (Mn), molecular weight distribution (PDI) and melt viscosity (MV) in the same manner as in Preparation Example 1.
  • Tm melting point
  • Mn number average molecular weight
  • PDI molecular weight distribution
  • MV melt viscosity
  • a polyphenylene sulfide resin was prepared in the same manner as in Preparation Example 1, except that 4,4'-dithiodiphenol was used instead of 4-iodobenzoic acid to include a hydroxy group at the end of the main chain (hereinafter, ' PPS-3 resin ').
  • PPS-3 resin was measured for melting point (Tm), number average molecular weight (Mn), molecular weight distribution (PDI) and melt viscosity (MV) in the same manner as in Preparation Example 1.
  • Tm melting point
  • Mn number average molecular weight
  • PDI molecular weight distribution
  • MV melt viscosity
  • a polyphenylene sulfide was prepared in the same manner as in Preparation Example 1 except that 4-iodobenzoic acid was not added, and thus a polyphenylene sulfide resin (hereinafter, referred to as 'PPS-4 resin') containing no substituent at the end of the main chain Substrate).
  • 'PPS-4 resin' a polyphenylene sulfide resin
  • the PPS-4 resin was measured for melting point (Tm), number average molecular weight (Mn), molecular weight distribution (PDI) and melt viscosity (MV) in the same manner as in Preparation Example 1.
  • Tm melting point
  • Mn number average molecular weight
  • PDI molecular weight distribution
  • MV melt viscosity
  • a PPS resin composition was prepared in the same manner as in Example 1, except that the ingredients and contents shown in Tables 2 and 3 were used.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6
  • Example 7 PPS-1 36.5 - - 36.5 36.5 36.5 34.5 PPS-2 - 36.5 - - - - - PPS-3 - - 36.5 - - - - PPS-4 - - - - - - - PPS-5 - - - - - - - Calcium Carbonate-1 30
  • 30 30 35 - 20 20 Calcium Carbonate-2 - - - - 30 - - Calcium Carbonate-3 - - - - - 10
  • Glass beads 10 10
  • 10 10
  • 10 10
  • 10 10
  • 10 10
  • 10 10
  • 10 10
  • 10 10
  • 10 10
  • 10 10
  • 10 10
  • 10 10
  • 10 10
  • 10 10
  • 10 10
  • 10 10
  • 10 10
  • 10 10
  • 10 10
  • 10 10
  • 10 10
  • 10 10
  • 10 10
  • 10 10
  • 10 10
  • an injection specimen was prepared by injecting the PPS resin compositions prepared in Examples and Comparative Examples at an injection speed of 50 mm / s, an injection pressure of 120 MPa, and an injection temperature of 310 ° C., respectively.
  • the tensile strength of the injection specimen was measured.
  • the heat deflection temperature of the injection specimen was measured using a load of 1.82 MPa.
  • the surface smoothness of the injection specimens was measured using a surface analyzer (manufacturer: Nano system, model name: NV-1800). Surface smoothness was measured by analyzing the same site on a plate specimen of 40 ⁇ 70 ⁇ 2 (mm).
  • the injection specimen was placed in a vacuum glass bottle, a glass plate was placed at the inlet of the vacuum glass bottle, and the plate was left in a 250 ° C. oven for 90 hours. Is%.
  • the injection composition (width: 40 mm, length: 70 mm and height: 2 mm) was used for 5 minutes at IR-100 ° C. using a coating composition containing an aluminum UP5403 ⁇ R (manufactured by KCC) and aluminum. Hot air oven), and aluminum were deposited under UV-3000 mJ / 180 kPa conditions. After that, the metal deposition property was evaluated according to the ASTM D 3359 method on the aluminum-deposited injection specimen.
  • Example 1 1230 267 63 0.5 5B 200
  • Example 2 1190 267 67 0.6 5B 200
  • Example 3 1200 267 65 0.6 5B 200
  • Example 4 1150 265 69 0.6 5B 230
  • Example 5 1140 265 61 0.7 5B 160
  • Example 6 1210 267 72 0.6 5B 210
  • Example 7 1120 265 76 0.8 5B 250 Comparative Example 1 1200 267 68 0.6 4B 200 Comparative Example 2 1270 269 154 1.9 4B 400
  • Comparative Example 4 1240 267 83 4.7 5B 800 Comparative Example 5 1250 268 108 3.5 5B 500
  • Examples 1 to 3 in which the main chain end group was substituted than Comparative Example 1 including the main chain end group unsubstituted PPS showed improved metal deposition properties.
  • Examples 1 to 3 showed more improved metal deposition and lower moisture absorption.
  • Examples 1 to 3 compared with Comparative Example 4, which did not include hydrotalcite, Examples 1 to 3 exhibited significantly lower haze of 1.0 or less.
  • Examples 1 to 3 exhibited significantly lower haze and surface smoothness than Comparative Example 5 including polyphenylene sulfide prepared by solution polymerization.
  • the resin composition according to the present invention has excellent surface smoothness, haze and metal deposition property, and is suitable for use in lamp reflectors, and is applicable to LED lighting fields and various electric and electronic component fields, which are applications of lamp reflectors. It can be widely used in various fields where metal adhesion is required.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 폴리아릴렌 설파이드; 페녹시 수지; 충진재; 및 하이드로탈사이트(hydrotalcite)를 포함하고, 상기 폴리아릴렌 설파이드가 주쇄 말단에 카르복시기, 아민기 또는 히드록시기 치환기를 갖는, 램프 리플렉터용 수지 조성물에 관한 것으로서, 본 발명의 수지 조성물은 폴리아릴렌 설파이드 고유의 우수한 기계적 및 열적 물성을 유지하면서 표면 평활도는 낮고 금속 증착성은 높아 램프 리플렉터용 수지로 유용하다.

Description

표면 평활도 및 금속 증착성이 우수한 램프 리플렉터용 수지 조성물
본 발명은 표면 평활도 및 금속 증착성이 우수한 램프 리플렉터용 수지 조성물에 관한 것이다.
현재 폴리아릴렌 설파이드(polyarylene sulfide; 이하 'PAS'로 기재)는 대표적인 엔지니어링 플라스틱(engineering plastic)으로, 높은 내열성과 내화학성, 내화염성(flame resistance), 전기 절연성 등으로 인해 고온과 부식성 환경에서 사용되는 각종 제품이나 전자 제품에 사용되는 용도로 수요가 증대되고 있다.
이러한 폴리아릴렌 설파이드 중에서 상업적으로 판매되는 것은 폴리페닐렌 설파이드(polyphenylene sulfide; 이하 'PPS'로 기재)가 유일하다. PPS는 뛰어난 기계적, 전기적 및 열적 특성과 내약품성으로 인하여 자동차 장비, 전기 전자 기기의 하우징이나 주요 부품으로 널리 사용되고 있다. 그러나, 폴리페닐렌 설파이드 수지만으로는 내열성 및 기계적 강도 등이 불충분하여 이를 증진시키기 위해 충진재를 혼합하여 사용하는 경우가 많다.
대한민국 등록특허 제 10-1280100 호는 낮은 염소 함량의 폴리아릴렌 설파이드, 액정성 폴리에스터 아마이드 수지 및 낮은 질소 함량의 유리 섬유를 포함하는 폴리아릴렌 설파이드 수지 조성물을 개시하고 있으며, 이를 통해 높은 유동성으로 성형시 버(burr) 발생이 적고 높은 내열성을 나타내는 효과를 개시하고 있다.
한편, 자동차 램프 리플렉터의 소재로는 마그네슘, 알루미늄 등의 금속을 주로 사용하고 있으며, 금속 소재를 사용한 램프 리플렉터는 다이캐스팅 공정에 있어서 구현 디자인의 한계가 있고 생산성이 낮기 때문에 저렴한 소재 원가에도 불구하고 리플렉터 가격은 높은 실정이다. 또한, 자동차 경량화 추세에 따라 금속의 플라스틱화가 빠르게 진행되고 있으나, 자동차 램프 모듈의 다기능화로 램프 모듈의 중량은 오히려 증가하는 추세이다. 따라서 자동차 램프 모듈의 경량화가 절실한 실정이다.
램프 리플렉터는 약 230 ℃의 고온 환경에서 사용 가능해야하고, 수분 흡수율이 낮아야 한다. 또한, 상기 램프 리플렉터는 고온에서의 헤이즈(haze) 특성이 좋아야 하는 조건을 만족해야 한다. 나아가, 램프 리플렉터 제조는 통상적으로 수지 성형 재료를 성형하여 얻어진 성형물(기재) 상에 프라이머 조성물을 도포 및 경화하여 프라이머층을 형성한 후 프라이머층 위에 알루미늄 또는 아연 등의 금속을 코팅하여 금속 반사층을 형성하는 공정을 포함한다. 따라서, 램프 리플렉터용 기재는 낮은 표면 평활도 및 높은 금속 증착성이 요구된다.
따라서, 본 발명의 목적은 표면 평활도 및 금속 증착성이 우수한 램프 리플렉터용 수지 조성물을 제공하는 것이다.
본 발명의 다른 목적은 상기 수지 조성물을 성형하여 제조된, 표면 평활도 및 금속 증착성이 우수한 램프 리플렉터를 제공하는 것이다.
상기 목적을 달성하기 위해 본 발명은 폴리아릴렌 설파이드; 하기 화학식 1로 표시되는 반복단위를 포함하는 페녹시 수지; 유리 비드; 충진재; 및 하이드로탈사이트(hydrotalcite)를 포함하고,
상기 폴리아릴렌 설파이드는 주쇄 말단이 카르복시기, 아민기 또는 히드록시기로 치환된, 램프 리플렉터용 수지 조성물을 제공한다:
Figure PCTKR2017001761-appb-C000001
또한, 본 발명은 상기 수지 조성물을 성형하여 제조된 램프 리플렉터를 제공한다.
본 발명에 따른 수지 조성물은 PAS 고유의 우수한 기계적 및 열적 물성을 유지하면서, 표면 평활도는 낮고 금속 증착성은 높아 램프 리플렉터용 수지로 유용하다. 또한, 본 발명의 수지 조성물은 램프 리플렉터의 응용분야인 LED 조명 분야 및 각종 전기전자 부품 분야에도 적용 가능하며, 높은 금속 접착성이 필요한 여러 분야에서 폭넓게 사용할 수 있다.
본 발명은 폴리아릴렌 설파이드; 하기 화학식 1로 표시되는 반복단위를 포함하는 페녹시 수지; 유리 비드; 충진재; 및 하이드로탈사이트(hydrotalcite)를 포함하고,
상기 폴리아릴렌 설파이드가 주쇄 말단에 카르복시기, 아민기 또는 히드록시기 치환기를 갖는, 램프 리플렉터용 수지 조성물을 제공한다:
[화학식 1]
Figure PCTKR2017001761-appb-I000001
상기 페녹시 수지는 수지 조성물의 금속 증착성을 향상시키며, 상기 화학식 1로 표시되는 반복단위를 포함한다. 구체적으로, 상기 페녹시 수지는 중량평균분자량이 30,000 내지 70,000일 수 있다. 더 구체적으로, 상기 페녹시 수지는 중량평균분자량이 50,000 내지 70,000일 수 있다.
상기 페녹시 수지는 수지 조성물의 총 중량을 기준으로 0.5 내지 10 중량%의 양으로 포함될 수 있다. 구체적으로, 페녹시 수지는 수지 조성물의 총 중량을 기준으로 1 내지 5 중량%의 양으로 포함될 수 있다.
상기 하이드로탈사이트는 수지 조성물의 헤이즈를 저감시키는 역할을 한다. 구체적으로, 상기 하이드로탈사이트는 MgO와 Al2O3를 3.0 내지 5.0 : 1의 중량비로 포함하고, 평균 입경이 0.3 내지 0.8 ㎛일 수 있다. 더 구체적으로, 상기 하이드로탈사이트는 MgO와 Al2O3를 3.5 내지 4.5 : 1의 중량비로 포함하고, 평균 입경이 0.3 내지 0.6 ㎛일 수 있다.
상기 하이드로탈사이트는 수지 조성물의 총 중량을 기준으로 0.05 내지 2 중량%의 양으로 포함될 수 있다. 구체적으로, 하이드로탈사이트는 수지 조성물의 총 중량을 기준으로 0.1 내지 1.5 중량%의 양으로 포함될 수 있다.
상기 유리 비드는 수지 조성물의 표면 평활도를 향상시키고 흡습율을 저감시키는 역할을 하며, 수지와의 계면접착력 향상을 위해 표면처리된 유리 비드를 사용할 수 있다. 구체적으로, 상기 유리 비드는 평균 입경이 3 내지 50 ㎛일 수 있다.
더불어, 상기 유리 비드의 표면처리는 실란, 말레산 무수물, 티탄산염(titanate), 지르콘산염(zirconate), 푸마르산(fumaric acid) 및 이의 조합으로부터 선택된 물질로 수행될 수 있다. 구체적으로, 상기 유리 비드는 실란으로 표면처리된 것일 수 있다.
또한, 상기 유리 비드는 수지 조성물 총 중량을 기준으로 0.5 내지 15 중량%의 함량으로 포함될 수 있다. 구체적으로, 상기 유리 비드는 수지 조성물 총 중량을 기준으로 1 내지 10 중량%의 함량으로 포함될 수 있다.
본 발명의 수지 조성물은 폴리아릴렌 설파이드를 포함한다.
상기 폴리아릴렌 설파이드는 주쇄 말단에 카르복시기, 아민기 또는 히드록시기 치환기를 갖는다. 상기 치환기로 인해, 폴리아릴렌 설파이드는 다른 고분자 소재 또는 충진재 등과의 상용성이 우수해지며, 폴리아릴렌 설파이드 특유의 우수한 물성은 유지된다.
상기 폴리아릴렌 설파이드는 수평균분자량이 5,000 내지 50,000, 구체적으로 8,000 내지 40,000, 보다 구체적으로 10,000 내지 30,000일 수 있다. 또한, 상기 폴리아릴렌 설파이드는 수평균분자량에 대한 중량평균분자량으로 정의되는 분산도가 2.0 내지 4.5, 구체적으로 2.0 내지 4.0, 보다 구체적으로 2.0 내지 3.5일 수 있다.
상기 폴리아릴렌 설파이드는 회전 원판 점도계로 300 ℃에서 측정한 용융점도가 10 내지 50,000 poise, 구체적으로 100 내지 20,000 poise, 보다 구체적으로 300 내지 10,000 poise일 수 있다.
상기 폴리아릴렌 설파이드는 상술한 바와 같은 물성을 만족하는 것이라면 특별히 한정되지 않으나, 예를 들어, 용융중합법으로 제조된 폴리아릴렌 설파이드일 수 있다. 또한, 상술한 바와 같은 물성을 만족하는 폴리아릴렌 설파이드는 수지 조성물의 표면 평활도 및 금속 증착성을 향상시킬 수 있다.
구체적으로, 상기 폴리아릴렌 설파이드는 디요오드 방향족 화합물과 황 원소를 포함하는 반응물을 중합반응시키는 단계; 및 상기 중합반응 단계를 진행하면서, 카르복시기, 아민기 또는 히드록시기를 갖는 방향족 화합물을 첨가하는 단계를 포함하는 제조방법으로 제조할 수 있다.
상기 디요오드 방향족 화합물은 예를 들어, 디요오도벤젠(diiodobenzene; DIB), 디요오도나프탈렌(diiodonaphthalene), 디요오도비페닐(diiodobiphenyl), 디요오도비스페놀(diiodobisphenol), 및 디요오도벤조페논(diiodobenzophenone)으로 이루어진 군에서 선택되는 1종 이상을 들 수 있지만, 이에 한정되지 않는다. 또한, 상기 디요오드 방향족 화합물은 알킬 원자단(alkyl group)이나 술폰 원자단(sulfone group) 등의 치환기를 포함할 수 있으며, 방향족기에 산소나 질소 등의 원자가 함유된 형태의 디요오드 방향족 화합물도 사용될 수 있다. 나아가, 상기 디요오드 방향족 화합물은 요오드 원자가 붙은 위치에 따라 여러 가지 이성질체(isomer)가 있는데, 이 중에서도 파라-디요오도벤젠(pDIB), 2,6-디요오도나프탈렌, 또는 p,p'-디요오도비페닐처럼 파라 위치에 요오드가 결합된 화합물이 보다 적합하게 사용될 수 있다.
상기 디요오드 방향족 화합물과 반응하는 황 원소의 형태는 특별히 제한되지 않는다. 보통 황 원소는 상온에서 원자 8개가 연결된 고리 형태(cyclooctasulfur; S8)로 존재하는데, 이러한 형태가 아니더라도 상업적으로 사용 가능한 고체 또는 액체 상태의 황이라면, 특별한 한정 없이 모두 사용할 수 있다.
또한, 상기 반응물은 중합개시제, 안정제, 또는 이들의 혼합물을 추가로 포함할 수 있다. 구체적으로, 상기 중합개시제는 1,3-디요오도-4-니트로벤젠, 머캅토벤조티아졸, 2,2'-디티오벤조티아졸, 사이클로헥실벤조티아졸 술펜아미드, 및 부틸벤조티아졸 술펜아미드로 이루어진 군에서 선택되는 1 종 이상을 사용할 수 있으나, 이에 한정되지 않는다. 또한, 상기 안정제는 통상 수지의 중합반응에 사용되는 안정제이면 특별한 한정 없이 사용될 수 있다.
상기 중합반응은 디요오드 방향족 화합물과 황 원소를 포함하는 반응물의 중합이 개시될 수 있는 조건이면 어떠한 조건에서든 진행될 수 있다. 예를 들어, 상기 중합반응은 승온 감압 반응 조건에서 진행될 수 있으며, 구체적으로 180 내지 250 ℃ 및 50 내지 450 torr의 초기 반응조건에서 온도 상승 및 압력 강하를 수행하여 최종 반응조건 270 내지 350 ℃ 및 0.001 내지 20 torr로 변화시키며, 1 내지 30 시간 동안 진행할 수 있다. 보다 구체적으로, 최종 반응조건을 280 내지 300 ℃ 및 0.1 내지 0.5 torr로 하여 중합반응을 진행할 수 있다.
상기 카르복시기, 아민기 또는 히드록시기를 갖는 방향족 화합물은 폴리아릴렌 설파이드의 목표 점도에 대한 현재 점도의 비율로 중합반응의 진행 정도를 측정하였을 때, 상기 디요오드 방향족 화합물과 황 원소 간의 중합반응이 약 90 % 이상, 구체적으로 90 % 내지 100 % 미만으로 진행되었을 때(예를 들어, 중합반응 후기에) 첨가될 수 있다. 상기 중합반응의 진행 정도는 폴리아릴렌 설파이드의 목적 분자량 및 이에 따른 중합 산물의 목표 점도를 설정하고, 중합 반응의 진행 정도에 따른 현재 점도를 측정하여 상기 목표 점도에 대한 현재 점도의 비율로서 측정할 수 있다. 이때, 현재 점도를 측정하는 방법은 반응기 스케일에 따라 당업자에게 자명한 방법으로 결정할 수 있다. 예를 들어, 상대적으로 소형 중합 반응기에서 중합을 진행하는 경우, 반응기에서 중합 반응이 진행 중인 샘플을 취하여 점도계로 측정할 수 있다. 이와 달리, 대형 연속 중합 반응기에서 중합을 진행하는 경우, 반응기 자체에 설치된 점도계로 연속적, 실시간으로 현재 점도가 자동 측정될 수 있다.
이와 같이, 상기 디요오드 방향족 화합물과 황 원소를 포함하는 반응물을 중합반응시키는 단계 중 중합반응 후기에 카르복시기, 아민기 또는 히드록시기를 갖는 방향족 화합물을 첨가함으로써, 폴리아릴렌 설파이드 주쇄의 말단기(End Group) 중 적어도 일부에 카르복시기, 아민기 또는 히드록시기가 도입된 폴리아릴렌 설파이드를 제조할 수 있다. 특히, 상술한 바와 같은 주쇄 말단기에 카르복시기, 아민기 또는 히드록시기가 도입된 폴리아릴렌 설파이드는 다른 고분자 소재 또는 충진재 등과의 상용성이 우수하며, 폴리아릴렌 설파이드 특유의 우수한 물성이 유지되는 장점이 있다.
상기 카르복시기, 아민기 또는 히드록시기를 갖는 방향족 화합물은, 카르복시기, 아민기 또는 히드록시기를 갖는 임의의 모노머(단분자) 형태의 화합물을 사용할 수 있다. 구체적으로 카르복시기, 아민기 또는 히드록시기를 갖는 방향족 화합물은, 2-요오도페놀(2-Iodophenol), 3-요오도페놀(3-Iodophenol), 4-요오도페놀(4-Iodophenol), 2,2'-디티오디페놀(2,2'-Dithiodiphenol), 3,3'-디티오디페놀(3,3'-Dithiodiphenol), 4,4'-디티오디페놀(4,4'-Dithiodiphenol), 2-요오도벤조산(2-Iodobenzoic acid), 3-요오도벤조산(3-Iodobenzoic acid), 4-요오도벤조산(4-Iodobenzoic acid), 2,2'-디티오벤조산(2,2'-Dithiobenzoic acid), 2-요오도아닐린 (2-Iodoaniline), 3-요오도아닐린(3-Iodoaniline), 4-요오도아닐린(4-Iodoaniline), 2,2'-디티오디아닐린(2,2'-Dithiodianiline), 또는 4,4'-디티오디아닐린(4,4'-Dithiodianiline) 등을 들 수 있으며, 이외에도 다양한 카르복시기, 아민기 또는 히드록시기를 갖는 방향족 화합물을 사용할 수 있다.
상기 카르복시기, 아민기 또는 히드록시기를 갖는 방향족 화합물은 디요오드 방향족 화합물의 100 중량부에 대해 0.0001 내지 10 중량부, 구체적으로 0.001 내지 7 중량부, 보다 구체적으로 0.01 내지 2 중량부의 함량으로 첨가될 수 있다. 상기 범위 내의 함량으로 카르복시기, 아민기 또는 히드록시기를 갖는 방향족 화합물을 첨가할 경우, 주쇄 말단기에 카르복시기, 아민기 또는 히드록시기를 도입할 수 있다.
한편, 상기 중합반응 도중, 중합이 어느 정도 이루어진 시점에 상기 반응물에 중합중지제를 추가로 첨가할 수 있다. 상기 중합중지제는 중합되는 고분자에 포함되는 요오드 그룹을 제거하여 중합을 중지시킬 수 있는 화합물이면 특별히 한정되지 않는다. 구체적으로, 상기 중합중지제는 디페닐 설파이드(diphenyl sulfide), 디페닐 에테르(diphenyl ether), 디페닐(diphenyl), 벤조페논(benzophenone), 디벤조티아졸 디설파이드(dibenzothiazole disulfide), 모노요오도아릴 화합물(monoiodoaryl compound), 벤조티아졸(benzothiazole)류, 벤조티아졸 술펜아미드(benzothiazole sulfenamide)류, 티우람(thiuram)류, 디티오카바메이트(dithiocarbamate)류 및 디페닐 디설파이드로 이루어진 군에서 선택되는 1종 이상일 수 있다. 보다 구체적으로, 요오도비페닐(iodobiphenyl), 요오도페놀(iodophenol), 요오도아닐린(iodoaniline), 요오도벤조페논(iodobenzophenone), 2-메르캅토벤조티아졸(2-mercaptobenzothiazole), 2,2'-디티오비스벤조티아졸(2,2'-dithiobisbenzothiazole), N-시클로헥실벤조티아졸-2-술펜아미드(N-cyclohexylbenzothiazole-2-sulfenamide), 2-모르폴리노티오벤조티아졸(2-morpholinothiobenzothiazole), N,N-디시클로헥실벤조티아졸-2-술펜아미드(N,N-dicyclohexylbenzothiazole-2-sulfenamide), 테트라메틸티우람 모노술파이드(tetramethylthiuram monosulfide), 테트라메틸티우람 디술파이드(tetramethylthiuram disulfide), 아연 디메틸디티오카바메이트(Zinc dimethyldithiocarbamate), 아연 디에틸디티오카바메이트(Zinc diethyldithiocarbamate) 및 디페닐 디설파이드(diphenyl disulfide)로 이루어진 군에서 선택되는 1종 이상일 수 있다.
중합중지제의 투여 시점은 폴리아릴렌 설파이드의 목적 분자량을 고려하여 그 시기를 결정할 수 있다. 예를 들어, 초기 반응물 내에 포함된 디요오드 방향족 화합물이 70 내지 100 중량%가 반응되어 소진된 시점에서 투여할 수 있다.
본 발명의 일구현예에 따르면, 상기 중합반응 전에 디요오드 방향족 화합물과 황 원소를 포함하는 반응물을 용융 혼합하는 단계를 더 포함할 수 있다. 상기 용융 혼합 단계는 추후 행해지는 중합반응의 반응을 용이하게 할 수 있다.
상기 용융 혼합은 상기 반응물이 용융 혼합될 수 있는 조건이면 특별히 한정되지 않는다. 예를 들어, 130 내지 200 ℃, 구체적으로 160 내지 190 ℃에서 진행할 수 있다.
본 발명의 일구현예에 따르면, 상술한 바와 같은 폴리아릴렌 설파이드의 제조 방법에 있어서, 중합반응은 니트로벤젠계 촉매의 존재 하에서 진행될 수 있다. 또한, 상술한 바와 같은 중합반응 전 용융 혼합 단계를 추가로 포함하는 경우, 상기 니트로벤젠계 촉매는 용융혼합 단계에서 추가될 수 있다. 니트로벤젠계 촉매는 1,3-디요오도-4-니트로벤젠, 또는 1-요오도-4-니트로벤젠 등을 들 수 있으나, 이에 한정되는 것은 아니다.
상술한 바와 같이 제조된 폴리아릴렌 설파이드는 주쇄에 결합된 요오드 및 유리 요오드를 포함할 수 있다. 구체적으로, 상기 주쇄에 결합된 요오드 및 유리 요오드 함량은 10 내지 10,000 ppm일 수 있다. 상기 주쇄에 결합된 요오드 및 유리 요오드 함량은 하기 실시예의 기재와 같이, 폴리아릴렌 설파이드 시료를 고온에서 열처리한 후, 이온크로마토그래피를 이용해 정량하는 방법으로 측정할 수 있다. 상기 유리 요오드는 상술한 바와 같은 디요오드 방향족 화합물과 황 원소를 포함하는 반응물의 중합 과정에서 발생하며, 최종 형성된 폴리아릴렌 설파이드와 화학적으로 분리된 상태로 잔류하는 요오드 분자, 요오드 이온 또는 요오드 라디칼 등을 총칭한다.
상기 폴리아릴렌 설파이드는 수지 조성물의 총 중량을 기준으로 20 내지 60 중량%의 양으로 포함될 수 있다. 구체적으로, 폴리아릴렌 설파이드는 수지 조성물의 총 중량을 기준으로 25 내지 45 중량%의 양으로 포함될 수 있다.
상기 충진재는 탄산칼슘, 유리 섬유, 판유리(Glass flake), 카본섬유, 울라스토나이트(wollastonite), 휘스커(whisker), 밀드 글래스(Milled glass), 운모, 황산 바륨, 탈크, 실리카 및 이의 조합으로부터 선택될 수 있다. 구체적으로, 상기 충진재는 탄산칼슘, 유리 섬유 및 이의 조합으로부터 선택될 수 있다. 더 구체적으로, 상기 충진재는 탄산칼슘 및 유리 섬유를 포함할 수 있다.
상기 충진재는 수지 조성물의 총 중량을 기준으로 40 내지 70 중량%의 양으로 포함될 수 있다. 구체적으로, 충진재는 수지 조성물의 총 중량을 기준으로 40 내지 65 중량%의 양으로 포함될 수 있다.
상기 탄산칼슘은 수지 조성물의 표면 평활도를 향상시키며, 구체적으로, 평균 입경(D50)이 0.5 내지 10 ㎛일 수 있다. 예를 들어, 상기 탄산칼슘은 수지 조성물의 총 중량을 기준으로 10 내지 50 중량%의 양으로 포함될 수 있다. 구체적으로, 탄산칼슘은 수지 조성물의 총 중량을 기준으로 20 내지 40 중량%의 양으로 포함될 수 있다. 더 구체적으로, 상기 탄산칼슘은 수지 조성물 총 중량을 기준으로 평균 입경 0.5 내지 3.0 ㎛의 미립 탄산칼슘을 10 내지 40 중량% 및 평균 입경 3.0 초과 내지 10 ㎛의 소립 탄산칼슘을 0 내지 10 중량%로 포함할 수 있다. 상기 조성물이 평균 입경 3.0 초과 내지 10 ㎛의 소립 탄산칼슘을 수지 조성물 총 중량을 기준으로 10 중량%를 초과하는 함량으로 포함할 경우, 수지 조성물의 기계적 물성이 저하되며, 탄산칼슘의 표면 돌출로 인해 알루미늄 증착 후 반사율이 저하되는 문제가 발생할 수 있다.
또한, 상기 탄산칼슘은 표면처리된 탄산칼슘, 표면 미처리 탄산칼슘, 또는 이의 혼합물일 수 있다. 구체적으로, 상기 탄산칼슘은 표면처리된 탄산칼슘과 표면 미처리 탄산칼슘을 1: 0.2 내지 0.5의 중량비로 포함할 수 있다.
상기 탄산칼슘의 표면처리에 관하여는 특별히 한정되지 않으며, 통상적으로 수지의 충진재에 사용되는 표면처리 방법을 사용할 수 있다. 상기 표면처리는 수지에서 탄산칼슘의 분산성을 높이고 탄산칼슘의 응집을 줄여줄 수 있으며, 예를 들어, 포화지방산, 불포화 지방산, 수지산이나 이의 염, 에스테르, 알코올계 계면 활성제 등을 이용하여 수행할 수 있다. 상기 포화지방산으로는 스테아린산, 카프르산, 라우르산, 미리스트산 등을 들 수 있고, 불포화 지방산으로는 오레산, 리놀산등을 들 수 있다. 구체적으로, 상기 탄산칼슘의 표면처리는 탄산칼슘의 표면이 스테아린산으로 처리된 것일 수 있다.
상기 유리 섬유는 수지 조성물의 내열성 및 기계적 강도를 향상시키는 역할을 하며, 수지와의 계면접착력 향상을 위해 표면처리된 유리 섬유를 사용할 수 있다. 구체적으로, 상기 유리 섬유는 평균 직경이 6 내지 15 ㎛이고, 평균 길이가 2 내지 5 ㎜일 수 있다.
또한, 상기 유리 섬유는 산화 알칼리를 포함하는 알루미노-보로실리케이트 유리(alumino-borosilicate glass)일 수 있다.
더불어, 상기 유리 섬유의 표면처리는 실란, 말레산 무수물, 티탄산염(titanate), 지르콘산염(zirconate), 푸마르산(fumaric acid) 및 이의 조합으로부터 선택된 물질로 수행될 수 있다. 구체적으로, 상기 유리 섬유는 실란으로 표면처리된 것일 수 있다.
나아가, 상기 유리 섬유는 수지 조성물 총 중량을 기준으로 5 내지 30 중량%의 함량으로 포함될 수 있다. 구체적으로, 상기 유리 섬유는 수지 조성물 총 중량을 기준으로 10 내지 25 중량%의 함량으로 포함될 수 있다.
상기 수지 조성물은 조성물의 총 중량을 기준으로 20 내지 60 중량%의 폴리아릴렌 설파이드, 0.5 내지 10 중량%의 페녹시 수지, 0.5 내지 15 중량%의 유리 비드, 40 내지 70 중량%의 충진재 및 0.05 내지 2.0 중량%의 하이드로탈사이트를 포함할 수 있다.
상기 수지 조성물은 내열안정제, 활제, 대전방지제, 핵제, 슬립제, 안료 및 이의 조합 등의 통상적인 첨가제 성분을 필요에 따라 적절한 양으로 더 첨가할 수 있다.
상기 수지 조성물은 알루미늄 증착 후 ASTM D 3359 방법으로 측정한 금속 증착성이 5B 이상으로 향상된 금속 증착성을 가지므로 램프 리플렉터용으로 유용하다.
상술한 바와 같은 성분을 포함하는 본 발명의 램프 리플렉터용 수지 조성물은 통상의 방법, 예를 들어, 상기 성분들을 배합한 후 동방향 이축압출기 등을 사용하여 혼련함으로서 제조할 수 있다.
한편, 본 발명은 상술한 바와 같은 수지 조성물을 성형하여 제조된 램프 리플렉터를 제공한다.
상기 수지 조성물의 성형 방법으로는, 예를 들어, 압축 성형, 트랜스퍼 성형, 사출 성형 등을 사용할 수 있으며, 구체적으로, 사출 성형을 통해 램프리플렉터로 제조할 수 있다.
이하, 본 발명을 하기 실시예에 의하여 더욱 상세하게 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들만으로 한정되는 것은 아니다.
[실시예]
제조예 1: PPS-1 수지의 제조
반응기의 내온 측정이 가능한 써모커플, 그리고 질소 충전 및 진공을 걸 수 있는 진공라인이 부착된 5 L 반응기에 파라디요오도벤젠(p-DIB) 5130 g, 황 450 g을 포함한 반응물을 180 ℃로 가열하여 완전히 용융 혼합한 후, 220 ℃ 및 350 Torr의 초기 반응 조건에서 시작하여, 최종 반응온도는 300 ℃, 압력은 0.6 내지 0.9 Torr까지 단계적으로 온도 상승 및 압력 강하를 4 시간 동안 수행하고, 황을 19 g씩 7 회에 걸쳐 투입하면서 중합반응을 진행하였다. 상기 중합반응이 80 % 진행되었을 때(이러한 중합반응의 진행 정도는 식"(현재 점도/목표 점도)×100"으로, 목표 점도에 대한 현재 점도의 상대 비율로서 측정하였으며, 현재 점도는 중합 진행 중의 샘플을 채취해 점도계로 측정하였다. 또한, 목표 점도는 600 poise로 하였다.), 중합중지제로 디페닐 디설파이드 35 g을 첨가하고 1 시간 반응을 진행하였다. 이어서, 중합반응이 90 % 진행되었을 때 4-요오도벤조산 51 g을 첨가하고 10 분 동안 질소 분위기 하에서 중합반응을 진행한 후, 0.5 Torr 이하로 서서히 진공을 가하여 2 시간 반응을 진행한 후 종료하여, 카르복시기를 주쇄 말단에 포함하는 폴리페닐렌 설파이드 수지(이하, 'PPS-1 수지'로 기재)를 합성하였다. 반응이 완료된 PPS-1 수지를 소형 스트랜드 커터기를 사용하여 펠렛 형태로 제조하였다.
PPS-1 수지를 FT-IR로 분석하여 스펙트럼 상에서, 약 2,400 내지 3,600 cm-1의 카르복시기 피크의 존재를 확인하였다. 또한, 상기 FT-IR 스펙트럼 상에서, 약 1,400 내지 1,600 cm-1에서 나타나는 Ring stretch 피크의 높이 강도를 100 %로 하였을 때, 상기 약 2,400 내지 3,600 cm-1의 피크의 상대적 높이 강도는 약 3.4 %로 나타났다.
PPS-1 수지는 다음과 같은 방식에 따라 융점(Tm), 수평균분자량(Mn), 분자량 분포(PDI) 및 용융점도(MV)를 측정하였다. 그 결과, PPS-1 수지의 융점은 280 ℃, Mn은 15,420, PDI는 2.9, 용융점도는 617 Poise, 주쇄 결합 요오드 및 유리 요오드 함량은 300 ppm으로 나타났다.
- 용융점도
용융점도는 회전 원판 점도계(rotating disk viscometer)로 Tm+20 ℃에서 측정하였다. 주파수 스위프(frequency sweep) 방법으로 측정함에 있어, 각주파수(angular frequency)를 0.6부터 500 rad/s까지 측정하였고, 1.0 rad/s에서의 점도를 용융점도로 정의하였다.
- 융점
시차주사 열량분석기(differential scanning calorimeter; DSC)를 이용하여 30 ℃에서 320 ℃까지 10 ℃/분의 속도로 승온 후 30 ℃까지 냉각한 다음 다시 30 ℃에서 320 ℃까지 10 ℃/분의 속도로 승온하면서 융점을 측정하였다.
- 수평균 분자량(Mn) 및 분자량 분포(PDI)
PPS 수지를 1-클로로나프탈렌(1-chloronaphthalene)에 0.4 중량%의 농도로 250 ℃에서 25 분간 교반 용해하여 샘플을 제조하였다. 이후 고온 GPC(Gel permeation chromatography)시스템(210 ℃)에서 상기 샘플을 1 ㎖/분의 유속으로 흘려주면서 분자량이 서로 다른 폴리페닐렌 설파이드를 순차적으로 컬럼 내에서 분리하면서, RI detector를 이용하여 분리된 폴리페닐렌 설파이드의 분자량별 강도(Intensity)를 측정하였다. 분자량을 알고 있는 표준시료(Polystyrene)로 검량선을 작성하여, 측정 샘플의 상대적인 수평균분자량(Mn) 및 분자량 분포(PDI)를 계산하였다.
- 주쇄 결합 요오드 및 유리 요오드 함량(ppm)
주쇄 결합 요오드 및 유리 요오드 함량(ppm)은 시료를 1,000 ℃에서 furnace를 이용하여 태운 후 요오드를 이온화하여 증류수에 용해시키는 자동 전처리장치(AQF)를 통해 준비된 샘플을 이온크로마토그래피(ion chromatography)를 통해 미리 분석된 검량 커브를 이용하여 시료 중 요오드의 함량을 측정하였다.
제조예 2: PPS-2 수지의 제조
4-요오도벤조산 대신 4-요오도아닐린을 사용한 것을 제외하고, 제조예 1과 동일한 방법으로 폴리페닐렌 설파이드를 제조하여 아민기를 주쇄 말단에 포함하는 폴리페닐렌 설파이드 수지(이하, 'PPS-2 수지'로 기재)를 합성하였다.
PPS-2 수지를 FT-IR로 분석하여 스펙트럼 상에서, 약 3,180 내지 3,350 cm-1의 아민기 피크의 존재를 확인하였다. 또한, 상기 FT-IR 스펙트럼 상에서, 약 1,400 내지 1,600 cm-1에서 나타나는 Ring stretch 피크의 높이 강도를 100 %로 하였을 때, 상기 약 3,180 내지 3,350 cm-1의 피크의 상대적 높이 강도는 약 1.4 %로 나타났다.
PPS-2 수지는 제조예 1과 동일한 방식으로 융점(Tm), 수평균 분자량(Mn), 분자량 분포(PDI) 및 용융점도(MV)를 측정하였다. 그 결과, PPS-2 수지의 융점은 281 ℃, Mn은 16,340, PDI는 2.8, 용융점도는 713 Poise, 주쇄 결합 요오드 및 유리 요오드 함량은 250 ppm으로 나타났다.
제조예 3: PPS-3 수지의 제조
4-요오도벤조산 대신 4,4'-디티오디페놀을 사용한 것을 제외하고, 제조예 1과 동일한 방법으로 폴리페닐렌 설파이드를 제조하여 히드록시기를 주쇄 말단에 포함하는 폴리페닐렌 설파이드 수지(이하, 'PPS-3 수지'로 기재)를 합성하였다.
PPS-3 수지를 FT-IR로 분석하여 스펙트럼 상에서, 약 3,300 내지 3,400 cm- 1및 약 3,600 내지 3,650 cm-1의 히드록시기 피크의 존재를 확인하였다. 또한, 상기 FT-IR 스펙트럼 상에서, 약 1,400 내지 1,600 cm-1에서 나타나는 Ring stretch 피크의 높이 강도를 100 %로 하였을 때, 상기 약 3,300 내지 3,400 cm-1 및 약 3,600 내지 3,650 cm-1의 피크의 상대적 높이 강도는 약 0.58 %로 나타났다.
PPS-3 수지는 제조예 1과 동일한 방식으로 융점(Tm), 수평균 분자량(Mn), 분자량 분포(PDI) 및 용융점도(MV)를 측정하였다. 그 결과, PPS-3 수지의 융점은 280 ℃, Mn은 15,890, PDI는 2.7, 용융점도는 680 Poise, 주쇄 결합 요오드 및 유리 요오드 함량은 200 ppm으로 나타났다.
제조예 4: PPS-4 수지의 제조
4-요오도벤조산을 첨가하지 않은 것을 제외하고, 제조예 1과 동일한 방법으로 폴리페닐렌 설파이드를 제조하여 주쇄 말단에 치환기를 포함하지 않는 폴리페닐렌 설파이드 수지(이하, 'PPS-4 수지'로 기재)를 합성하였다.
PPS-4 수지는 제조예 1과 동일한 방식으로 융점(Tm), 수평균 분자량(Mn), 분자량 분포(PDI) 및 용융점도(MV)를 측정하였다. 그 결과, PPS-4 수지의 융점은 280 ℃, Mn은 16,420, PDI는 2.8, 용융점도는 600 Poise, 주쇄 결합 요오드 및 유리 요오드 함량은 200 ppm으로 나타났다.
실시예 1: PPS 수지 조성물의 제조
이축 스크류 압출기에, 상기 제조예 1의 PPS-1 36.5 중량%, 탄산칼슘-1 30 중량%, 유리 비드-1 10 중량%, 유리 섬유 20 중량%, 페녹시 수지 3 중량% 및 하이드로탈사이트 0.5 중량%를 혼합하여 수지 조성물을 제조하였다.
이때 사용한 이축 압출기는 SM platek의 직경 40 mm, L/D=44 압출기를 사용하였다. 공정 조건은 스크류 250 rpm, 토출양(feed rate) 60 kg/시, 배럴 온도는 280 ℃에서 300 ℃, 토크 60 %로 수행하였다. 원료 투입은 총 세 개의 피더(feeder)를 사용하였으며, 피더 1은 PPS-1 수지 및 페녹시 수지를, 피더 2는 하이드로탈사이트를, 피더 3은 유리 섬유, 유리 비드 및 탄산칼슘을 각각 분산 투입하여 PPS 수지 조성물을 제조하였다.
실시예 2 내지 7 및 비교예 1 내지 5: PPS 수지 조성물의 제조
하기 표 2 및 3에 기재된 성분 및 함량을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 PPS 수지 조성물을 제조하였다.
실시예 1 내지 7 및 비교예 1 내지 5에서 사용된 성분들의 특성 및 입수처를 정리하여 하기 표 1에 나타내었다.
항 목 특 성
PPS-1 제조예 1에서 제조(MV: 617 poise), 주쇄 말단기 COOH
PPS-2 제조예 2에서 제조(MV: 713 poise), 주쇄 말단기 NH2
PPS-3 제조예 3에서 제조(MV: 680 poise), 주쇄 말단기 OH
PPS-4 제조예 4에서 제조(MV: 600 poise), 주쇄 말단기 미치환
PPS-5(용액중합) 제조사: Solvay, 제품명: PR-26, cross type (MV: 500~1000 poise)
탄산칼슘-1 제조사: OMYA, 제품명: 1HB, 평균입경: 1.5 ㎛, 표면처리 無
탄산칼슘-2 제조사: OMYA, 제품명: 1T, 평균입경: 1.5 ㎛, 표면처리 有(스테아린산 칼슘으로 처리).
탄산칼슘-3 제조사: OMYA, 제품명: 5HB, 평균입경: 6 ㎛, 표면처리 無
유리 비드 평균입경: 40 ㎛, 모스경도 5.5, E-glass bead, 에폭시 실란으로 표면처리
유리 섬유 제조사: 오웬스코닝, 제품명: FT-562, 직경: 10 ㎛, 길이: 4 mm, Epoxy sizing.
페녹시 수지 제조사: kukdo chemical, 제품명: YP-50, 중량평균분자량: 50,000~70,000
하이드로탈사이트 제조사: kyowa chemical, 제품명: DHT-4A, 평균 입경: 0.5 ㎛
항 목 (단위: 중량%) 실시예 1 실시예 2 실시예 3 실시예 4 실시예 5 실시예 6 실시예 7
PPS-1 36.5 - - 36.5 36.5 36.5 34.5
PPS-2 - 36.5 - - - - -
PPS-3 - - 36.5 - - - -
PPS-4 - - - - - - -
PPS-5 - - - - - - -
탄산칼슘-1 30 30 30 35 - 20 20
탄산칼슘-2 - - - - 30 - -
탄산칼슘-3 - - - - - 10 10
유리 비드 10 10 10 5 10 10 10
유리 섬유 20 20 20 20 20 20 20
페녹시 수지 3 3 3 3 3 3 5
하이드로탈사이드 0.5 0.5 0.5 0.5 0.5 0.5 0.5
항 목 (단위: 중량%) 비교예 1 비교예 2 비교예 3 비교예 4 비교예 5
PPS-1 - - 39.5 37.0 -
PPS-2 - - - - -
PPS-3 - - - - -
PPS-4 36.5 36.5 - - -
PPS-5 - - - - 36.5
탄산칼슘-1 30 20 30 30 30
탄산칼슘-2 - - - - -
탄산칼슘-3 - - - - -
유리 비드-1 10 20 10 10 10
유리 섬유 20 20 20 20 20
페녹시 수지 3 3 - 3 3
하이드로탈사이드 0.5 0.5 0.5 - 0.5
실험예
상기 실시예 및 비교예에서 제조한 PPS 수지 조성물을 대상으로 하기 기재된 바에 따라 물성을 측정하였다.
먼저, 실시예 및 비교예에서 제조한 PPS 수지 조성물을 80 톤 Engel 사출기에서, 사출속도 50 mm/s, 사출압 120 ㎫ 및 사출온도 310 ℃에서 각각 사출하여 사출 시편을 제조하였다.
(1) 인장 강도
ISO 527법에 따라, 상기 사출 시편의 인장 강도를 측정하였다.
(2) 열변형온도(HDT; heat deflection temperature)
ISO 75-1 및 75-2/A 법에 따라, 하중 1.82 MPa를 사용하여 사출 시편의 열변형온도를 측정하였다.
(3) 표면 평활도
표면 분석기(제조사: Nano system, 모델명: NV-1800)를 사용하여 사출 시편의 표면 평활도를 측정하였다. 표면 평활도 측정은 40 × 70 × 2 (㎜)의 평판 시편에 동일한 부위를 분석하여 Ra를 측정하였다.
(4) 헤이즈(haze)
사출 시편을 진공 유리병에 담고, 진공 유리병 입구에 유리판을 놓은 뒤 250 ℃ 오븐에 90 시간 동안 방치한 후 유리판을 헤이즈 미터기(NIPPON DENSHOKU社의 NDH 7000 모델)를 사용하여 헤이즈를 측정하였으며, 단위는 %이다.
(5) 알루미늄 증착성
사출 시편(가로: 40 mm, 세로: 70 mm 및 높이: 2 mm)에 UV 경화형 도료인 UP5403ⓒR(KCC사 제품)와 알루미늄을 포함하는 도료 조성물을 이용하여, IR-100℃에서 5 분(열풍 오븐 이용), 및 UV-3000mJ/180㎽ 조건에서 알루미늄을 증착하였다. 이후 알루미늄이 증착된 사출 시편에 ASTM D 3359 법에 따라 금속 증착성을 평가하였다.
(6) 흡습율
사출 시편을 230 ℃에서 10분 동안 방치한 후 칼 피셔 수분 측정기(Karl Fisher Moisture Meter, 정량한계: 100 ppm)를 이용하여 흡습율을 측정하였다.
상기 물성측정의 결과를 하기 표 4에 나타냈다.
항 목 인장강도(kgf/㎠) HDT(℃) 표면 평활도(㎛) Haze(%) 금속 증착성 흡습율(ppm)
실시예 1 1230 267 63 0.5 5B 200
실시예 2 1190 267 67 0.6 5B 200
실시예 3 1200 267 65 0.6 5B 200
실시예 4 1150 265 69 0.6 5B 230
실시예 5 1140 265 61 0.7 5B 160
실시예 6 1210 267 72 0.6 5B 210
실시예 7 1120 265 76 0.8 5B 250
비교예 1 1200 267 68 0.6 4B 200
비교예 2 1270 269 154 1.9 4B 400
비교예 3 1260 268 75 0.7 3B 300
비교예 4 1240 267 83 4.7 5B 800
비교예 5 1250 268 108 3.5 5B 500
표 4에서 보는 바와 같이, 주쇄 말단기 미치환 PPS를 포함하는 비교예 1보다 주쇄 말단기가 치환된 실시예 1 내지 3이 향상된 금속 증착성을 나타냈다. 또한, 페녹시 수지를 포함하지 않는 비교예 3에 비해, 실시예 1 내지 3이 보다 향상된 금속 증착성 및 낮은 흡습율을 보였다. 나아가, 하이드로탈사이트를 포함하지 않는 비교예 4에 비해, 실시예 1 내지 3은 1.0 이하의 현저히 낮은 헤이즈를 나타냈다. 더불어, 용액중합법으로 제조된 폴리페닐렌 설파이드를 포함하는 비교예 5보다 실시예 1 내지 3이 현저히 낮은 헤이즈 및 표면 평활도를 나타냈다.
따라서, 본 발명에 따른 수지 조성물은 표면 평활도, 헤이즈 및 금속 증착성이 우수하여 램프 리플렉터용으로 사용하기 적합하며, 램프 리플렉터의 응용분야인 LED 조명 분야 및 각종 전기전자 부품 분야에도 적용 가능하고, 높은 금속 접착성이 필요한 여러 분야에서 폭넓게 사용할 수 있다.

Claims (16)

  1. 폴리아릴렌 설파이드; 하기 화학식 1로 표시되는 반복단위를 포함하는 페녹시 수지; 유리 비드; 충진재; 및 하이드로탈사이트(hydrotalcite)를 포함하고,
    상기 폴리아릴렌 설파이드가 주쇄 말단에 카르복시기, 아민기 또는 히드록시기 치환기를 갖는, 램프 리플렉터용 수지 조성물:
    [화학식 1]
    Figure PCTKR2017001761-appb-I000002
  2. 제1항에 있어서,
    상기 페녹시 수지는 중량평균분자량이 30,000 내지 70,000인, 램프 리플렉터용 수지 조성물.
  3. 제1항에 있어서,
    상기 하이드로탈사이트가 MgO와 Al2O3를 3.0 내지 5.0 : 1의 중량비로 포함하고, 평균 입경이 0.3 내지 0.8 ㎛인, 램프 리플렉터용 수지 조성물.
  4. 제1항에 있어서,
    상기 유리 비드는 평균 입경이 3 내지 50 ㎛인, 램프 리플렉터용 수지 조성물.
  5. 제1항에 있어서,
    상기 폴리아릴렌 설파이드는 수평균분자량이 5,000 내지 50,000이고,
    상기 폴리아릴렌 설파이드가 주쇄 말단에 카르복시기, 아민기, 히드록시기 및 이의 조합으로부터 선택되는 치환기를 갖는, 램프 리플렉터용 수지 조성물.
  6. 제1항에 있어서,
    상기 폴리아릴렌 설파이드는 주쇄에 결합된 요오드 또는 유리 요오드를 포함하며, 상기 주쇄에 결합된 요오드 및 유리 요오드 함량이 10 내지 10,000 ppm인, 램프 리플렉터용 수지 조성물.
  7. 제1항에 있어서,
    상기 충진재가 탄산칼슘, 유리 섬유, 판유리(Glass flake), 카본섬유, 울라스토나이트(wollastonite), 휘스커(whisker), 밀드 글래스(Milled glass), 운모, 황산 바륨, 탈크, 실리카 및 이의 조합으로부터 선택되는, 램프 리플렉터용 수지 조성물.
  8. 제7항에 있어서,
    상기 충진재가 탄산칼슘, 유리 섬유 및 이의 조합으로부터 선택되는, 램프 리플렉터용 수지 조성물.
  9. 제7항에 있어서,
    상기 탄산칼슘은 평균 입경(D50)이 0.5 내지 10 ㎛인, 램프 리플렉터용 수지 조성물.
  10. 제7항에 있어서,
    상기 탄산칼슘은 수지 조성물 총 중량을 기준으로 평균 입경 0.5 내지 3.0 ㎛의 미립 탄산칼슘을 10 내지 40 중량% 및 평균 입경 3.0 초과 내지 10 ㎛의 소립 탄산칼슘을 0 내지 10 중량%로 포함하는, 램프 리플렉터용 수지 조성물.
  11. 제7항에 있어서,
    상기 탄산칼슘은 수지 조성물 총 중량을 기준으로 10 내지 50 중량%의 함량으로 포함되는, 램프 리플렉터용 수지 조성물.
  12. 제7항에 있어서,
    상기 유리 섬유는 평균 직경이 6 내지 15 ㎛이고, 평균 길이가 2 내지 5 ㎜이며, 산화 알칼리를 포함하는 알루미노-보로실리케이트 유리(alumino-borosilicate glass)인, 램프 리플렉터용 수지 조성물.
  13. 제7항에 있어서,
    상기 유리 섬유는 수지 조성물 총 중량을 기준으로 5 내지 30 중량%의 함량으로 포함되는, 램프 리플렉터용 수지 조성물.
  14. 제1항에 있어서,
    상기 수지 조성물이 총 중량을 기준으로 20 내지 60 중량%의 폴리아릴렌 설파이드, 0.5 내지 10 중량%의 페녹시 수지, 0.5 내지 15 중량%의 유리 비드, 40 내지 70 중량%의 충진재 및 0.05 내지 2.0 중량%의 하이드로탈사이트를 포함하는, 램프 리플렉터용 수지 조성물.
  15. 제1항에 있어서,
    상기 수지 조성물은 알루미늄 증착 후 ASTM D 3359 방법으로 측정한 금속 증착성이 5B 이상인, 램프 리플렉터용 수지 조성물.
  16. 제1항 내지 제15항 중 어느 한 항의 수지 조성물을 성형하여 제조된 램프 리플렉터.
PCT/KR2017/001761 2016-03-09 2017-02-17 표면 평활도 및 금속 증착성이 우수한 램프 리플렉터용 수지 조성물 WO2017155221A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780008609.5A CN108603031B (zh) 2016-03-09 2017-02-17 用于灯具反射器的具有优异的表面光滑度和金属附着力的树脂组合物
JP2018545319A JP6707658B2 (ja) 2016-03-09 2017-02-17 優れた表面平滑性及び金属付着性を有するランプリフレクター用の樹脂組成物
EP17763484.7A EP3428234A4 (en) 2016-03-09 2017-02-17 RESIN COMPOSITION FOR LAMP REFLECTOR HAVING EXCELLENT SURFACE LIFT AND EXCELLENT METAL DEPOSITION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160028259A KR20170105269A (ko) 2016-03-09 2016-03-09 표면 평활도 및 금속 증착성이 우수한 램프 리플렉터용 수지 조성물
KR10-2016-0028259 2016-03-09

Publications (1)

Publication Number Publication Date
WO2017155221A1 true WO2017155221A1 (ko) 2017-09-14

Family

ID=59789666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001761 WO2017155221A1 (ko) 2016-03-09 2017-02-17 표면 평활도 및 금속 증착성이 우수한 램프 리플렉터용 수지 조성물

Country Status (6)

Country Link
EP (1) EP3428234A4 (ko)
JP (1) JP6707658B2 (ko)
KR (1) KR20170105269A (ko)
CN (1) CN108603031B (ko)
TW (1) TWI713700B (ko)
WO (1) WO2017155221A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019156987A (ja) * 2018-03-14 2019-09-19 帝人株式会社 樹脂組成物
JP2020125413A (ja) * 2019-02-05 2020-08-20 帝人株式会社 樹脂組成物

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210105748A (ko) * 2020-02-19 2021-08-27 에스케이케미칼 주식회사 폴리아릴렌 설파이드 수지 및 이의 제조방법
KR20210112903A (ko) * 2020-03-06 2021-09-15 에스케이케미칼 주식회사 폴리아릴렌 설파이드 수지 조성물 및 이의 제조방법
KR20220000502A (ko) * 2020-06-26 2022-01-04 에스케이케미칼 주식회사 전기자동차 부품용 수지 조성물 및 이를 포함하는 전기자동차 부품
KR20220055346A (ko) * 2020-10-26 2022-05-03 에이치디씨폴리올 주식회사 폴리아릴렌 설파이드 멀티 필라멘트 섬유
KR20230015732A (ko) * 2021-07-23 2023-01-31 에이치디씨폴리올 주식회사 폴리아릴렌 설파이드 모노필라멘트 섬유
KR20230022007A (ko) * 2021-08-06 2023-02-14 에이치디씨폴리올 주식회사 폴리아릴렌 설파이드 스테이플 섬유 및 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188555A (ja) * 1993-12-27 1995-07-25 Toray Ind Inc 樹脂組成物および成形体
KR20010062684A (ko) * 1999-12-28 2001-07-07 고지마 류조 램프 반사경 및 램프 반사경의 제조 방법
JP2003026710A (ja) * 2001-07-13 2003-01-29 Nippon Synthetic Chem Ind Co Ltd:The 紫外線硬化型樹脂組成物、塗膜形成方法及びその用途
JP2005536597A (ja) * 2002-08-26 2005-12-02 ソルヴェイ アドバンスド ポリマーズ リミテッド ライアビリティ カンパニー 増強された強度特性を示す芳香族重縮合ポリマー組成物
KR20110102226A (ko) * 2010-03-10 2011-09-16 에스케이케미칼주식회사 아웃 가스 발생량이 적은 폴리아릴렌 설파이드 및 이의 제조 방법

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4749598A (en) * 1987-02-19 1988-06-07 Phillips Petroleum Company Poly(arylene sulfide) composition and process
JPH04198276A (ja) * 1990-11-27 1992-07-17 Dainippon Ink & Chem Inc 樹脂組成物
JP4603694B2 (ja) * 1999-02-05 2010-12-22 丸尾カルシウム株式会社 光反射用成形体用の樹脂組成物及び光反射用成形体
JP2000302968A (ja) * 1999-04-23 2000-10-31 Matsushita Electric Works Ltd 電子部品封止用樹脂組成物およびその製造方法、ならびにこの電子部品封止用樹脂組成物を用いた封止電子部品
JP4614024B2 (ja) * 2000-03-31 2011-01-19 Dic株式会社 ポリアリーレンスルフィド組成物
JP2003226810A (ja) * 2002-02-06 2003-08-15 Idemitsu Petrochem Co Ltd ポリアリーレンスルフィド樹脂組成物及びそれを用いた成形体
JP5196076B1 (ja) * 2011-03-31 2013-05-15 東レ株式会社 ポリフェニレンスルフィド樹脂組成物およびそれからなる成形体
WO2013161321A1 (ja) * 2012-04-27 2013-10-31 東レ株式会社 ポリアリーレンスルフィド樹脂組成物、該樹脂組成物の製造方法、および該樹脂組成物の成形品
US20150168603A1 (en) * 2012-06-26 2015-06-18 Polyplastics Co., Ltd. Light-reflecting component and method for producing same
WO2014025190A1 (ko) * 2012-08-07 2014-02-13 에스케이케미칼주식회사 폴리아릴렌 설파이드 수지 및 그의 제조 방법
KR20140037776A (ko) * 2012-09-19 2014-03-27 에스케이케미칼주식회사 폴리아릴렌 설파이드계 수지 조성물 및 성형품
CN111073286A (zh) * 2013-03-25 2020-04-28 Dic株式会社 聚芳硫醚树脂的制造方法和聚芳硫醚树脂组合物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188555A (ja) * 1993-12-27 1995-07-25 Toray Ind Inc 樹脂組成物および成形体
KR20010062684A (ko) * 1999-12-28 2001-07-07 고지마 류조 램프 반사경 및 램프 반사경의 제조 방법
JP2003026710A (ja) * 2001-07-13 2003-01-29 Nippon Synthetic Chem Ind Co Ltd:The 紫外線硬化型樹脂組成物、塗膜形成方法及びその用途
JP2005536597A (ja) * 2002-08-26 2005-12-02 ソルヴェイ アドバンスド ポリマーズ リミテッド ライアビリティ カンパニー 増強された強度特性を示す芳香族重縮合ポリマー組成物
KR20110102226A (ko) * 2010-03-10 2011-09-16 에스케이케미칼주식회사 아웃 가스 발생량이 적은 폴리아릴렌 설파이드 및 이의 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3428234A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019156987A (ja) * 2018-03-14 2019-09-19 帝人株式会社 樹脂組成物
JP2020125413A (ja) * 2019-02-05 2020-08-20 帝人株式会社 樹脂組成物
JP7260317B2 (ja) 2019-02-05 2023-04-18 帝人株式会社 樹脂組成物

Also Published As

Publication number Publication date
EP3428234A1 (en) 2019-01-16
CN108603031A (zh) 2018-09-28
JP6707658B2 (ja) 2020-06-10
KR20170105269A (ko) 2017-09-19
CN108603031B (zh) 2020-09-22
JP2019506517A (ja) 2019-03-07
TWI713700B (zh) 2020-12-21
TW201800487A (zh) 2018-01-01
EP3428234A4 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
WO2017155221A1 (ko) 표면 평활도 및 금속 증착성이 우수한 램프 리플렉터용 수지 조성물
WO2018056573A1 (ko) 폴리이미드 전구체 용액 및 이의 제조방법
WO2020130365A1 (ko) 폴리페닐렌 설파이드 수지 조성물, 이의 제조방법 및 이로부터 제조된 사출성형품
WO2020116769A1 (ko) 레이저직접구조화 수지 조성물, 이의 제조방법 및 이로부터 제조된 사출성형품
WO2018117426A2 (ko) 폴리페닐렌 설파이드의 제조방법 및 이로부터 제조된 고 점도 폴리페닐렌 설파이드
WO2017200203A1 (ko) 내화학성이 우수한 폴리아릴렌 설파이드 수지 조성물
WO2019083153A1 (ko) 그라프트 공중합체, 이를 포함하는 열가소성 수지 조성물 및 이의 제조방법
WO2015099443A1 (ko) 열 용융-압출 성형이 가능한 실세스퀴옥산, 이를 이용한 고투명 및 고내열 플라스틱 투명기판 및 이의 제조방법
CA1298023C (en) Process for producing improved polyphenylene sulfide resin
KR20170122028A (ko) 내가수분해성이 우수한 폴리아릴렌 설파이드 수지 조성물
KR950003191B1 (ko) 폴리(아릴렌 설파이드) 조성물 및 그 제조 방법
US5300362A (en) Polyarylene sulfide coated wire
KR20010030731A (ko) 폴리아릴렌 설파이드 수지 조성물
WO2022139527A1 (ko) 폴리아릴렌 설파이드 수지 조성물 및 내열충격성 성형체
US6521354B1 (en) Epoxy resin composition and semiconductor device
US5258442A (en) Polyphenylene sulfide resin composition
WO2016182215A1 (ko) 금속과의 접착성이 우수한 폴리아릴렌 설파이드 조성물
WO2016129833A1 (ko) 금속과의 접착성이 우수한 폴리아릴렌 설파이드 조성물
KR20170105278A (ko) 표면 평활도 및 금속 증착성이 우수한 램프 리플렉터용 수지 조성물
WO2016089090A1 (ko) 폴리카보네이트 수지 조성물 및 이의 제조방법
JP2560469B2 (ja) エポキシ系樹脂組成物
WO2019132513A1 (ko) 기계적 특성 및 부식 특성이 우수한 폴리아릴렌 설파이드 수지 조성물
WO2016182212A1 (ko) 금속과의 접착성이 우수한 폴리아릴렌 설파이드 조성물
WO2021080250A1 (ko) 폴리에스테르계 수지 조성물 및 이의 성형품
WO2017142217A1 (ko) 금속과의 접착성이 우수한 폴리아릴렌 설파이드 조성물

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018545319

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017763484

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017763484

Country of ref document: EP

Effective date: 20181009

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763484

Country of ref document: EP

Kind code of ref document: A1