WO2016182212A1 - 금속과의 접착성이 우수한 폴리아릴렌 설파이드 조성물 - Google Patents
금속과의 접착성이 우수한 폴리아릴렌 설파이드 조성물 Download PDFInfo
- Publication number
- WO2016182212A1 WO2016182212A1 PCT/KR2016/003943 KR2016003943W WO2016182212A1 WO 2016182212 A1 WO2016182212 A1 WO 2016182212A1 KR 2016003943 W KR2016003943 W KR 2016003943W WO 2016182212 A1 WO2016182212 A1 WO 2016182212A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin composition
- composition
- resin
- elastomer
- formula
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L29/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
- C08L29/14—Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L81/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
- C08L81/02—Polythioethers; Polythioether-ethers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J171/00—Adhesives based on polyethers obtained by reactions forming an ether link in the main chain; Adhesives based on derivatives of such polymers
- C09J171/08—Polyethers derived from hydroxy compounds or from their metallic derivatives
- C09J171/10—Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J181/00—Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur, with or without nitrogen, oxygen, or carbon only; Adhesives based on polysulfones; Adhesives based on derivatives of such polymers
- C09J181/02—Polythioethers; Polythioether-ethers
Definitions
- the present invention relates to a polyarylene sulfide composition having a low content of out valence, a high heat deformation temperature, and an excellent impact strength and adhesion to a metal.
- PAS polyarylene sulfide
- PPS polyphenylene sulfide
- a method of preparing polyarylene sulfide such as PPS has been proposed as a method of melt polymerizing a reactant containing a diiodine aromatic compound and elemental sulfur.
- the polyarylene sulfide thus prepared does not generate by-products in the form of salts during the manufacturing process and does not require the use of an organic solvent. Therefore, a separate process for removing the by-products or the organic solvent is not required.
- the final manufactured polyarylene sulfide has a pellet (pellet) form, there is an advantage that post-processing is easier and workability is good.
- the conventional PPS is unable to fill the fine pores of the metal surface due to the large amount of out gas (low molecular weight oligomer) generated in the injection flow front when bonding with the metal, thereby deteriorating the metal adhesion Was generated.
- a resin composition prepared by compounding a polyolefin containing a polar group and a compatibilizer with the PPS has been proposed, the use of the alloy oligomer is a mechanical Problems have been found that lower the physical properties or weaken the thermal properties.
- an object of the present invention is to provide a polyarylene sulfide composition having a low amount of outgas generated at the flow front and excellent adhesion to metals.
- a resin composition having an outgas content of 300 ppm or less is provided:
- R is isopropyl or methyl.
- the resin composition according to the present invention has a low out gas content and can exhibit excellent metal adhesion without degrading the excellent mechanical and thermal properties peculiar to polyarylene sulfide. It can be used in various fields ranging from components to wide applications. In addition, since a small amount of by-products in the form of salts does not occur due to the performance degradation of the electronic product, it can be usefully used as a built-in material such as a mobile phone or a notebook.
- Figure 1 illustrates a part of the process for producing a test piece for measuring the metal adhesive strength using the resin composition of the present invention.
- the present invention (a) polyarylene sulfide; And (b) 45 to 95 mol% of repeating units represented by Formula 1, 0 to 10 mol% of repeating units represented by Formula 2, and 5 to 50 mol% of repeating units represented by Formula 3;
- a resin composition comprising a Lal resin and having an outgas content of 300 ppm or less:
- R is isopropyl or methyl.
- the resin composition according to the present invention may have an outgas content of 300 ppm or less, specifically 150 to 300 ppm.
- the resin composition according to the present invention may have a Cl content of 300 ppm or less, 200 ppm or less, or 100 ppm or less, specifically 0 to 100 ppm, more specifically 70 ppm or less.
- the resin composition of this invention contains polyarylene sulfide.
- the polyarylene sulfide may be included in 20 to 85% by weight, specifically 30 to 80% by weight based on the total weight of the composition. When the polyarylene sulfide is included in an amount of 20% by weight or more, the mechanical strength such as tensile strength is not lowered. When the polyarylene sulfide is included in an amount of 85% by weight or less, the metal adhesion effect is excellent.
- the polyarylene sulfide may include an arylene sulfide repeat unit and an arylene disulfide repeat unit, and the weight ratio of the arylene sulfide repeat unit: arylene disulfide repeat unit may be 1: 0.0001 to 0.5.
- the arylene sulfide repeating unit may be included in an amount of 95 to 99.99 wt% based on the total polyarylene sulfide weight, and the arylene disulfide repeating unit may be included in an amount of 0.01 to 5 wt% based on the total polyarylene sulfide weight.
- the polyarylene sulfide may have a number average molecular weight of 3,000 to 1,000,000, and has a dispersion degree of 2.0 to 4.0, which is defined as a weight average molecular weight with respect to the number average molecular weight, having a relatively even dispersion.
- the polyarylene sulfide may have a melting point of 270 to 290 ° C, specifically 275 to 285 ° C, and more specifically about 280 ° C. Further, the melt viscosity measured at a melting point + 20 ° C. with a rotating disc viscometer may be between 100 and 5,000 poises, specifically between 500 and 3,000 poises, more specifically about 2,000 poises.
- the polyarylene sulfide used in the present invention may have a lower melting point compared to polyarylene sulfide composed of pure arylene sulfide repeating units such as copolymers having the same molecular weight, including a certain amount of arylene disulfide repeating units.
- the processable temperature is lowered, the amount of outgas that is a by-product during molding process is less, and the physical properties of the resulting polyarylene sulfide are also excellent.
- the polyarylene sulfide is not particularly limited as long as it satisfies the above-described physical properties, but may be, for example, polyarylene sulfide prepared by melt polymerization.
- the polyarylene sulfide that satisfies the physical properties as described above can improve the metal adhesion ability of the resin composition.
- the polyarylene sulfide may be prepared according to the method disclosed in Korean Patent Application Laid-Open No. 2011-0102226, which may be, for example, polymerizing a reactant including (a) a diiodine aromatic compound and a sulfur compound. Reacting; And (b) further adding 0.1 to 20 parts by weight of the sulfur compound with respect to 100 parts by weight of the sulfur compound included in the reactant while the polymerization reaction step is performed.
- a reactant including (a) a diiodine aromatic compound and a sulfur compound. Reacting; And (b) further adding 0.1 to 20 parts by weight of the sulfur compound with respect to 100 parts by weight of the sulfur compound included in the reactant while the polymerization reaction step is performed.
- disulfide-based bonds may be formed in the polymer.
- Such disulfide-based bonds can uniformize the molecular weight of the polymer chains contained in the polyarylene sulfide while continuously causing a sulfur exchange reaction in equilibrium with the polymer chains contained in the polyarylene sulfide.
- the equilibrium sulfur exchange reaction since the degree of polymerization of the entire reactant can be uniform, the formation of polyarylene sulfide polymer chains having too large or small molecular weight can be suppressed.
- the reactant including the diiodine aromatic compound and the sulfur compound may be subjected to melt mixing before the polymerization step, and the diiodine aromatic compound may be used in an amount of 1,000 to 1,400 parts by weight based on 100 parts by weight of the sulfur compound added before the polymerization. have.
- step (a) 1 to 20 parts by weight of the polymerization terminator may be further included based on 100 parts by weight of the sulfur compound included in the reactant.
- the polymerization inhibitor is a compound capable of stopping the polymerization by removing the iodine group contained in the polymer to be polymerized
- the configuration for example, diphenyl sulfide, diphenyl ether, Biphenyl (biphenyl or diphenyl), benzophenone, dibenzothiazyl disulfide, monoiodoaryl compounds, benzothiazoles, benzothiazole sulfenamide
- at least one selected from the group consisting of thiuram, dithiocarbamate and diphenyl disulfide can be used.
- diiodine aromatic compounds that can be used for the polymerization of the polyarylene sulfide as described above are diiodobenzene (DIB), diiodonaphthalene (diiodonaphthalene), diiodobiphenyl (diiodobiphenyl), diiodobisphenol (diiodobisphenol)
- DIB diiodobenzene
- diiodonaphthalene diiiodonaphthalene
- diiodobiphenyl diiodobiphenyl
- diiodobisphenol diiodobisphenol
- diiodobisphenol diiodobisphenol
- the step (a) is not particularly limited as long as the polymerization reaction of the reactant containing the diiodine aromatic compound and the sulfur compound can be started.
- the reaction may be performed at elevated temperature and reduced pressure reaction conditions.
- temperature rise and pressure drop may be performed at initial reaction conditions of a temperature of 180 to 250 ° C. and a pressure of 50 to 450 torr.
- the pressure can be varied from 0.001 to 20 torr and run for 1 to 30 hours.
- Polyarylene sulfide used in the present invention unlike the polyarylene sulfide produced by the conventional solution polymerization process, contains little by-product in salt form.
- the polyarylene sulfide of the present invention may have a Cl content of 300 ppm or less, 200 ppm or less, or 100 ppm or less, specifically 0 to 100 ppm, more specifically 60 ppm or less.
- the resin composition of the present invention includes a polyvinyl butyral resin (PVB resin).
- the resin composition exhibits excellent metal adhesion, which is improved over the conventional PPS resin composition by including polyvinyl butyral resin.
- the polyvinyl butyral resin may have a weight average molecular weight of 20,000 to 300,000, specifically 30,000 to 250,000.
- the polyvinyl butyral resin may include repeating units consisting of the following Chemical Formulas 1 to 3, for example, a polyvinyl butyral repeating unit represented by Chemical Formula 1, a polyvinyl acetate repeating unit represented by Chemical Formula 2, and Chemical Formula 3
- the polyvinyl alcohol repeating unit represented by may be a copolymerized resin:
- R is isopropyl or methyl.
- the repeating unit represented by Formula 1 may include 45 to 95 mol%, 50 to 95 mol%, 55 to 85 mol%, or 50 to 85 mol% based on the total polyvinyl butyral resin.
- the repeating unit represented by Formula 2 may be included in 0 to 10 mol%, 0 to 6 mol%, 0 to 5 mol%, or 1 to 5 mol% based on the total polyvinyl butyral resin.
- the glass transition temperature of the resin composition may be high and the viscosity may be low.
- the repeating unit represented by Formula 3 may be included in 5 to 50 mol%, 15 to 45 mol%, or 10 to 40 mol% based on the total polyvinyl butyral resin.
- content of the repeating unit represented by Chemical Formula 3 is in the above range, adhesion between the resin composition and the metal may be increased and compatibility with the resin may be increased.
- the polyvinyl butyral resin may be included in 0.5 to 15% by weight, 1 to 8% by weight, or 5 to 8% by weight based on the total weight of the composition.
- the polyvinyl butyral resin is contained in an amount of 0.5 wt% or more, the metal adhesion is excellent.
- the polyvinyl butyral resin is included in an amount of 15 wt% or less, a problem of a decrease in mechanical strength does not occur.
- the polyvinyl butyral resin may have a glass transition temperature of 50 to 120 ° C., 60 to 110 ° C. or 60 to 70 ° C., and a content of volatile material of less than 5 wt%.
- the polyvinyl butyral resin may use a polyvinyl butyral resin in which a functional group such as a carboxyl group is introduced to improve compatibility with PAS and metal adhesion.
- the resin composition of the present invention may further include a component selected from the group consisting of elastomers, fillers, shock absorbers, adhesion promoters, stabilizers, pigments, and combinations thereof.
- the elastomer is a polyvinyl chloride elastomer, a polyolefin elastomer, a polyurethane elastomer, a polyester elastomer, a polyamide elastomer, a polybutadiene elastomer, a tertiary copolymer of glycidyl methacrylate and methyl acrylic ester, and a combination thereof.
- Thermoplastic elastomers selected from the group consisting of can be used, and in particular, terpolymers of glycidyl methacrylate and methyl acrylic ester can be used.
- the elastomer may be included in 1 to 15% by weight, preferably 3 to 10% by weight based on the total weight of the resin composition.
- the resin composition of the present invention may exhibit an effect of imparting toughness to the PAS to prevent interfacial separation between the resin and the metal due to temperature change after metal bonding by including an elastomer.
- the filler may be one or more organic or inorganic fillers selected from the group consisting of glass fibers, carbon fibers, boron fibers, glass beads, glass flakes, talc and calcium carbonate, and specifically, glass fibers may be used.
- the filler may be in the form of powder or flake, but is not particularly limited thereto.
- the glass fiber used as the filler may be selected from the group consisting of epoxy silane-treated glass fibers, amino silane-treated glass fibers and combinations thereof, and specifically, may be glass fibers treated with epoxy silane.
- the filler may be included in 5 to 50% by weight, specifically 10 to 40% by weight based on the total weight of the composition.
- the pigment may be used a variety of conventional organic or inorganic pigments known in the art, for example, may be used an organic or inorganic pigment selected from the group consisting of titanium dioxide (TiO 2 ), carbon black and combinations thereof, Preferably titanium dioxide can be used.
- TiO 2 titanium dioxide
- carbon black Preferably titanium dioxide can be used.
- the pigment may be included in 0.1 to 10% by weight, preferably 0.3 to 7% by weight based on the total weight of the composition.
- shock absorber adhesion enhancer and stabilizer may use conventional components known in the art.
- stabilizer examples include antioxidants, light stabilizers, UV stabilizers, combinations thereof, and the like.
- the antioxidant may serve to support high heat resistance and thermal stability of the resin composition.
- antioxidants include antioxidants of phenolic, amine, sulfur and phosphorus compounds.
- a hindered phenolic compound may be preferable.
- Specific examples include tetrakis [methylene-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] methane, thiodiethylene bis [3- (3,5-di-tert-butyl -4-hydroxyphenyl) propionate] N, N'-hexane-1,6-diylbis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionamide], etc .; Can be.
- Phosphorus antioxidants include tris (2,4-di-tert-butylphenyl) phosphate, O, O'-dioctadecylpentaerythritol bis (phosphite), bis (2,4-di-tert-butylphenyl) Pentaerythritol diphosphite, 3,9-bis (2,4-di-tert-butylphenoxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane and the like Can be mentioned.
- the resin composition of the present invention may further add other conventional additives known in the art, such as plasticizers and nucleating agents.
- the resin composition according to the present invention may further include various lubricants in order to improve moldability, in particular, using a hydrocarbon-based lubricant to prevent friction between the resin and the metal of the metal mold, impart releasability during desorption in the metal mold. can do.
- the resin composition of the present invention may have a heat deflection temperature (HDT) value of 220 to 260 ° C measured according to ISO 75.
- HDT heat deflection temperature
- the resin composition of the present invention has a metal adhesive strength value of 50 MPa or more, 50 to 90 MPa, measured by the test method of ASTM D 3163 obtained by etching a specific pattern on an aluminum plate (insert injection molding) Or 70 to 90 MPa.
- the resin composition of the present invention may have an impact strength value of 6.5 KJ / m 2 or more, 7 KJ / m 2 or more, 7 to 9 KJ / m 2, or 7.5 to 9 KJ / m 2 measured according to ISO 179.
- the resin composition of the present invention can exhibit excellent metal adhesion performance by having a low out gas content without degrading the excellent mechanical and thermal properties peculiar to PAS.
- this invention provides the molded article manufactured from the said resin composition.
- the present invention can be produced by molding the resin composition by a method known in the art such as biaxial extrusion into a molded article having excellent metal adhesiveness applicable to various applications.
- the molded article may be in various forms such as a film, a sheet, or a fiber.
- the molded article may be an injection molded article, an extrusion molded article, or a blow molded article.
- the mold temperature may be about 130 ° C. or more from the viewpoint of crystallization.
- the molded article when in the form of a film or sheet, it may be made of various films or sheets such as undrawn, uniaxially stretched, biaxially stretched, and the like.
- the fibers may be various fibers such as undrawn yarn, drawn yarn, or super drawn yarn, and may be in the form of a woven fabric, knitted fabric, nonwoven fabric (spunbond, melt blown, staple), rope, or net.
- Such molded articles can be used as electrical / electronic parts such as computer accessories, building parts, automobile parts, mechanical parts, coatings of parts contacted by daily necessities or chemicals, industrial chemical resistant fibers, and the like.
- the resulting PPS resin was measured for the melt viscosity (MV), melting point (Tm) and the weight of the repeating unit in the following manner.
- MV melt viscosity
- Tm melting point
- the weight ratio of the melt viscosity 2,000 poise, melting point 280 degreeC, number average molecular weight 16,400, arylene sulfide repeating unit: arylene disulfide repeating unit was 1: 0.003.
- Melt viscosity was measured at Tm + 20 ° C. with a rotating disk viscometer. In measuring by the frequency sweep method, the angular frequency was measured from 0.6 to 500 rad / s, and the viscosity at 1.0 rad / s was defined as the melt viscosity.
- DSC differential scanning calorimeter
- the polyvinyl butyral resin is a resin in which 70 to 76 mol% of polyvinyl butyral repeat units, 2 to 8 mol% of polyvinyl acetate repeat units, and about 22 mol% of polyvinyl alcohol repeat units are copolymerized.
- the weight average molecular weight of the polyvinyl butyral resin is 53,000
- the content of the volatile material is 3% by weight or less
- the glass transition temperature was 60 °C.
- a PPS resin composition was prepared in the same manner as in Example 1, using the ingredients and contents as described in Table 2 below.
- a PPS resin composition was prepared in the same manner as in Example 1, except that bisphenol A (BPA) type epoxy resin (YD-017, Kukdo Chemical Co., Ltd.) was used instead of polyvinyl butyral resin.
- BPA bisphenol A
- a PPS resin composition was prepared in the same manner as in Example 1, using the ingredients and contents as described in Table 2 below.
- a PPS resin composition was prepared in the same manner as in Example 1, except that no polyvinyl butyral resin was used, using the ingredients and contents as described in Table 2 below.
- a PPS resin composition was prepared in the same manner as in Example 1, except that PPS 1 (0205P4, Ticona, Linear PPS) prepared by solution polymerization was used instead of PPS prepared in Preparation Example 1 as the PPS resin.
- PPS 1 (0205P4, Ticona, Linear PPS) prepared by solution polymerization was used instead of PPS prepared in Preparation Example 1, except that PVB resin was not used. And using the content was prepared in the same manner as in Example 1 PPS resin composition.
- a PPS resin composition was prepared in the same manner as in Example 1, except that PPS 2 (P6, Chevron Philips, Cross PPS) prepared by solution polymerization was used as the PPS resin instead of the PPS prepared in Preparation Example 1. .
- Table 1 summarizes the availability of the components used in Examples 1 to 6 and Comparative Examples 1 to 6.
- the heat deflection temperature (HDT) value of the injection test specimen was measured.
- the impact strength of injection specimens of 80 mm (length) ⁇ 10 mm (width) ⁇ 4 mm (thickness) was measured by the V-notch Charpy method.
- a specific etched aluminum specimen (width: 70 mm, length: 18 mm and height: 2 mm) was seated between the stationary mold and the moving mold of the injection molding machine two-stage mold.
- the PPS resin compositions prepared in Examples and Comparative Examples were put between the two-stage molds, respectively, and inserted into the 80-ton Engel injection machine at an injection speed of 50 mm / s, an injection pressure of 120 MPa and a mold temperature of 150 ° C., and separated from the mold.
- Specimens for measuring metal adhesion strength (width: 70 mm, length 10 mm and height 3 mm) were prepared (FIG. 1). Metal adhesion strength of the specimen prepared above was measured according to the ASTM D 3163 method.
- Resin which is used as an internal material for electronic parts such as mobile phones and laptops, should have a low content of Cl salt by-products so as not to degrade the performance of electronic parts.
- Cl content of the PPS, solution polymerization PPS 1 and solution polymerization PPS 2 resin prepared in Preparation Example 1 was measured as follows.
- the PPS resin according to Preparation Example 1 was found to have a Cl content of 0 ppm, whereas the solution polymerization PPS 1 resin was 1,300 ppm, and the solution polymerization PPS 2 resin was 2,300 ppm. It was confirmed that the impurity content is significantly low.
- the resin composition according to the present invention reduced the outgas content by up to about 6.5 times as compared to Comparative Examples 4 to 6 including solution polymerization PPS 1 or solution polymerization PPS 2.
- Examples 1 to 6 including the polyvinyl butyral resin showed a metal adhesive strength of 75 to 86 MPa, indicating a significantly improved metal adhesion compared to Comparative Example 1 (29 MPa) containing a BPA epoxy resin. Furthermore, in Comparative Example 2 containing an excess of polyvinyl butyral resin, the heat deformation temperature (HDT) and impact strength were lowered, and in Comparative Example 3 without using the polyvinyl butyral resin, the metal adhesive strength was significantly lowered.
- the resin composition according to the embodiment has an impact strength of 7.5 to 9.0 KJ / m2
- Comparative Example 1 containing an epoxy resin does not contain a polyvinyl butyral resin or an excess of polyvinyl butyral resin It showed significantly better impact strength performance compared to 2-3.
- Example 1 is low, compared to Comparative Example 1 containing an epoxy resin instead of PVB resin.
- the resin composition according to the present invention can exhibit excellent metal adhesion, impact strength and high heat deformation temperature while reducing outgas content, and thus is useful in various fields such as mobile phones, electronic parts, and automobile parts, which are integrated with injection insert molding. Can be used. In addition, impurities are not included, which may contribute to excellent electronic product performance.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
본 발명은 폴리아릴렌 설파이드; 및 폴리비닐 부티랄 수지를 포함하는, 아웃가스 함량이 낮은 폴리아릴렌 설파이드 수지 조성물에 관한 것으로서, 본 발명의 폴리아릴렌 설파이드 수지 조성물은 낮은 아웃가스 함량은 물론, 우수한 열변형온도 및 금속접착강도를 나타내므로 성형 정밀도가 요구되는 제품을 제조하는 수지 조성물로 유용하게 사용될 수 있다.
Description
본 발명은 아웃 가수의 함량이 적고, 열변형 온도가 높으며, 충격 강도 및 금속과의 접착성이 우수한 폴리아릴렌 설파이드 조성물에 관한 것이다.
현재 폴리아릴렌 설파이드(polyarylene sulfide; PAS)는 대표적인 엔지니어링 플라스틱(engineering plastic)으로, 높은 내열성과 내화학성, 내화염성(flame resistance), 전기 절연성 등으로 인해 고온과 부식성 환경에서 사용되는 각종 제품이나 전자 제품에 사용되는 용도로 수요가 증대되고 있다.
이러한 폴리아릴렌 설파이드 중에서 상업적으로 판매되는 것은 폴리페닐렌 설파이드(polyphenylene sulfide; PPS)가 유일하다. PPS는 뛰어난 기계적, 전기적 및 열적 특성, 내약품성으로 인하여 자동차 장비, 전기·전자 기기의 하우징이나 주요 부품의 소재로 널리 사용되고 있다.
현재 PPS의 상업적 생산 공정은 주로 파라-디클로로벤젠(p-dichlorobenzene; pDCB)과 황화나트륨(sodium sulfide)을 원료로 하여 N-메틸 피롤리돈(N-methyl pyrrolidone) 등의 극성 유기 용매에서 용액중합 반응시키는 방법이다. 이 방법은 맥컬럼 공정(Macallum process)으로 알려져 있다.
그러나, 이러한 맥컬럼 공정으로 제조한 폴리아릴렌 설파이드의 경우, 황화나트륨 등을 사용한 용액중합 공정으로 인해 염 형태의 부산물(예컨대, NaCl)이 발생할 수 있다. 이러한 염 형태의 부산물은 전자부품의 성능을 저하시키므로, 상기 염 형태의 부산물 또는 잔류 유기 용매를 반드시 제거해야 한다. 이에 따라 추가의 세척 또는 건조 공정 등이 필요한 단점이 있었다. 또, 이러한 맥컬럼 공정으로 제조된 폴리아릴렌 설파이드가 분말 형태를 가지므로 후가공이 용이하지 않고 작업성이 떨어질 수 있다(미국특허 제2,513,188호 및 제2,583,941호 참고).
이에 따라, 디요오드 방향족 화합물과 황 원소를 포함하는 반응물을 용융중합하는 방법으로 PPS 등의 폴리아릴렌 설파이드를 제조하는 방법이 제안된 바 있다. 이렇게 제조된 폴리아릴렌 설파이드는 제조 과정 중에 염 형태의 부산물 등이 발생하지 않고 유기 용매의 사용이 요구되지 않으므로, 부산물이나 유기 용매의 제거를 위한 별도의 공정이 요구되지 않는다. 또한, 최종 제조된 폴리아릴렌 설파이드가 펠렛(pellet) 형태를 가지므로, 후가공이 보다 용이하고 작업성이 좋은 장점이 있다.
한편, 기존의 PPS는 금속과의 접착 시 사출 유동 선단에서 발생되는 많은 양의 아웃 가스(out gas; 저분자량 올리고머)로 인하여 금속 표면의 미세한 공극들을 채우지 못하고, 그로 인하여 금속 접착성이 저하되는 문제가 발생되었다. 이에, PPS의 금속과의 접착성을 향상시키기 위한 대안으로, 극성기를 함유한 폴리올레핀 및 상용화제를 PPS와 컴파운딩시켜 제조한 수지 조성물이 제안된 바 있으나, 이러한 얼로이나 올리고머의 사용은 PPS의 기계적 물성을 저하시키거나, 열적 특성을 약화시키는 문제점들이 발견되었다.
따라서, 기존의 금속 접착 플라스틱의 근본적인 문제인 유동 선단에서 발생되는 아웃 가스의 양을 줄이면서, Cl과 같은 부산물의 함량이 적고 금속과의 접착성능이 우수한 폴리아릴렌 설파이드 조성물의 개발이 요구되는 실정이다.
따라서, 본 발명의 목적은 유동 선단에서 발생되는 아웃 가스의 양이 적고 금속과의 접착성이 우수한 폴리아릴렌 설파이드 조성물을 제공하는 것이다.
상기 목적을 달성하기 위해 본 발명은,
(a) 폴리아릴렌 설파이드; 및
(b) 하기 화학식 1로 표시되는 반복단위 45 내지 95 mol%, 화학식 2로 표시되는 반복단위 0 내지 10 mol%, 및 화학식 3으로 표시되는 반복단위 5 내지 50 mol%를 포함하는 폴리비닐 부티랄 수지를 포함하며,
아웃가스 함량이 300 ppm 이하인 수지 조성물을 제공한다:
[화학식 1]
[화학식 2]
[화학식 3]
상기 식에서, R은 이소프로필 또는 메틸이다.
본 발명에 따른 수지 조성물은, 폴리아릴렌 설파이드 특유의 우수한 기계적 및 열적 물성을 저하시키지 않으면서, 낮은 아웃 가스 함량을 가져 우수한 금속 접착성능을 나타낼 수 있으므로, 사출 인서트 성형으로 일체화되는 전자 부품에서부터 자동차 부품에 이르기까지 다양한 분야에서 사용 가능하여 폭넓은 용도에의 적용을 기대할 수 있다. 또한, 염 형태의 부산물을 소량으로 포함하므로 이로 인한 전자 제품의 성능 저하 현상이 발생되지 않으므로 휴대폰이나 노트북 등의 내장 소재로 유용하게 사용될 수 있다.
도 1은 본 발명의 수지 조성물을 이용하여 금속접착강도 측정용 시편을 제조하는 일부 과정을 도시화한 것이다.
본 발명은 (a) 폴리아릴렌 설파이드; 및 (b) 하기 화학식 1로 표시되는 반복단위 45 내지 95 mol%, 화학식 2로 표시되는 반복단위 0 내지 10 mol%, 및 화학식 3으로 표시되는 반복단위 5 내지 50 mol%를 포함하는 폴리비닐 부티랄 수지를 포함하며, 아웃가스 함량이 300 ppm 이하인 수지 조성물을 제공한다:
상기 식에서, R은 이소프로필 또는 메틸이다.
본 발명에 따른 수지 조성물은, 아웃가스 함량이 300 ppm 이하, 구체적으로 150 내지 300 ppm일 수 있다.
본 발명에 따른 수지 조성물은, Cl의 함량이 300 ppm 이하, 200 ppm 이하, 또는 100 ppm 이하일 수 있으며, 구체적으로 0 내지 100 ppm, 더 구체적으로 70 ppm 이하일 수 있다.
이하, 본 발명의 구성성분을 구체적으로 설명한다.
본 발명의 수지 조성물은 폴리아릴렌 설파이드를 포함한다.
상기 폴리아릴렌 설파이드는 조성물 총 중량을 기준으로 20 내지 85 중량%, 구체적으로 30 내지 80 중량%로 포함될 수 있다. 상기 폴리아릴렌 설파이드를 20 중량% 이상으로 포함하면 인장강도와 같은 기계적 강도가 저하되지 않고, 85 중량% 이하로 포함하면 금속 접착 효과가 우수하다.
상기 폴리아릴렌 설파이드는 아릴렌 설파이드 반복단위 및 아릴렌 디설파이드 반복단위를 포함하고, 상기 아릴렌 설파이드 반복단위 : 아릴렌 디설파이드 반복단위의 중량비가 1 : 0.0001 내지 0.5일 수 있다.
상기 아릴렌 설파이드 반복단위는 전체 폴리아릴렌 설파이드 중량에 대해 95 내지 99.99 중량%로 포함될 수 있고, 상기 아릴렌 디설파이드 반복단위는 전체 폴리아릴렌 설파이드 중량에 대해 0.01 내지 5 중량%로 포함될 수 있다.
상기 폴리아릴렌 설파이드는 수평균분자량이 3,000 내지 1,000,000일 수 있으며, 수평균분자량에 대한 중량평균분자량으로 정의되는 분산도가 2.0 내지 4.0로서, 비교적 고른 분산도를 갖는 것을 특징으로 한다.
상기 폴리아릴렌 설파이드는 융점이 270 내지 290 ℃, 구체적으로 275 내지 285 ℃, 더 구체적으로 약 280 ℃일 수 있다. 또한, 회전 원판 점도계로 융점+20 ℃에서 측정한 용융 점도가 100 내지 5,000 포이즈(poise), 구체적으로 500 내지 3,000 포이즈, 더 구체적으로 약 2,000 포이즈일 수 있다.
본 발명에서 사용하는 폴리아릴렌 설파이드는 일정 함량의 아릴렌 디설파이드 반복 단위를 포함하여, 동일 분자량 하의 공중합체와 같이 순수한 아릴렌 설파이드 반복단위만으로 이루어진 폴리아릴렌 설파이드에 비해, 낮은 융점을 가질 수 있고, 이에 따라 가공 가능한 온도가 낮아져, 성형 가공 시 부산물인 아웃가스의 발생량도 적고, 최종 생성되는 폴리아릴렌 설파이드의 물성 또한 우수하다.
상기 폴리아릴렌 설파이드는 상술한 바와 같은 물성을 만족하는 것이라면 특별히 한정되지 않으나, 예를 들어, 용융중합법으로 제조된 폴리아릴렌 설파이드일 수 있다. 또한, 상술한 바와 같은 물성을 만족하는 폴리아릴렌 설파이드는 수지 조성물의 금속 접착능을 향상시킬 수 있다.
구체적으로, 상기 폴리아릴렌 설파이드는 대한민국 공개특허 제 2011-0102226 호에 개시된 방법에 따라 제조될 수 있으며, 상기 제조방법은 예를 들어 (a) 디요오드 방향족 화합물과 황 화합물을 포함하는 반응물을 중합 반응시키는 단계; 및 (b) 상기 중합 반응 단계를 진행하면서, 상기 반응물에 포함된 황 화합물 100 중량부에 대해, 0.1 내지 20 중량부의 황 화합물을 추가로 가하는 단계를 포함할 수 있다.
상기와 같은 제조 방법에서는, 중합반응 중에 미량의 황 화합물이 추가적으로 가해짐에 따라, 고분자 내에 디설파이드계 결합이 형성될 수 있다. 이러한 디설파이드계 결합은 폴리아릴렌 설파이드에 포함된 고분자 쇄들과 평형반응인 황 교환 반응을 계속적으로 일으키면서, 폴리아릴렌 설파이드에 포함된 고분자 쇄들의 분자량을 균일화시킬 수 있다. 특히, 상기 평형반응인 황 교환 반응으로 인해, 전체적인 반응물의 중합 정도가 균일화될 수 있으므로, 지나치게 크거나 작은 분자량을 갖는 폴리아릴렌 설파이드 고분자 쇄의 형성이 억제될 수 있다.
상기 디요오드 방향족 화합물 및 황 화합물을 포함하는 반응물은 중합 단계 이전에 용융 혼합하는 단계를 거칠 수 있으며, 상기 디요오드 방향족 화합물은 중합 전 투입되는 황 화합물 100 중량부에 대하여 1,000 내지 1,400 중량부로 사용될 수 있다.
상기 단계 (a)에서는 반응물에 포함된 황 화합물 100 중량부에 대해, 1 내지 20 중량부의 중합 중지제를 추가로 포함할 수 있다. 상기 중합 중지제는 중합되는 고분자에 포함되는 요오드 그룹을 제거하여 중합을 중지시킬 수 있는 화합물이면 그 구성의 한정은 없으나, 예를 들어 디페닐 설파이드(diphenyl sulfide), 디페닐 에테르(diphenyl ether), 비페닐(biphenyl 또는 diphenyl), 벤조페논(benzophenone), 디벤조티아질 디설파이드(dibenzothiazyl disulfide), 모노요오도아릴(monoiodoaryl) 화합물, 벤조티아졸(benzothiazole)류, 벤조티아졸 술펜아미드(benzothiazole sulfenamide)류, 티우람(thiuram)류, 디티오카바메이트(dithiocarbamate)류 및 디페닐 디설파이드로 이루어지는 군에서 선택되는 1종 이상을 사용할 수 있다.
한편, 상기와 같은 폴리아릴렌 설파이드의 중합 반응에 사용 가능한 디요오드 방향족 화합물은 디요오드화벤젠(diiodobenzene; DIB), 디요오드화나프탈렌(diiodonaphthalene), 디요오드화비페닐(diiodobiphenyl), 디요오드화비스페놀(diiodobisphenol), 및 디요오드화벤조페논(diiodobenzophenone)으로 이루어진 군에서 선택되는 1종 이상을 사용할 수 있지만, 이에 한정되지 않는다.
상기 단계 (a)는 디요오드 방향족 화합물과 황 화합물을 포함하는 반응물의 중합이 개시될 수 있는 조건이면 그 중합 반응 조건은 특별히 한정되지 않는다. 구체적으로, 승온 및 감압 반응 조건에서 진행할 수 있는데, 이 경우, 온도 180 내지 250 ℃ 및 압력 50 내지 450 torr의 초기 반응조건에서 온도 상승 및 압력 강하를 수행하여 최종 반응조건으로 온도 270 내지 350 ℃ 및 압력 0.001 내지 20 torr로 변화시켜, 1 내지 30 시간 동안 진행할 수 있다.
본 발명에서 사용하는 폴리아릴렌 설파이드는 기존 용액중합 공정에 의해 생산된 폴리아릴렌 설파이드와 다르게 염 형태의 부산물을 거의 포함하지 않는다. 예를 들어, 본 발명의 폴리아릴렌 설파이드는 Cl 함량이 300 ppm 이하, 200 ppm 이하, 또는 100 ppm 이하일 수 있으며, 구체적으로 0 내지 100 ppm, 더 구체적으로 60 ppm 이하일 수 있다.
한편, 본 발명의 수지 조성물은 폴리비닐 부티랄 수지(polyvinyl butyral resin; PVB 수지)를 포함한다. 상기 수지 조성물은 폴리비닐 부티랄 수지를 포함함으로써 기존의 PPS 수지 조성물보다 향상된, 우수한 금속 접착능을 나타낸다.
상기 폴리비닐 부티랄 수지는 중량평균분자량이 20,000 내지 300,000, 구체적으로 30,000 내지 250,000일 수 있다.
상기 폴리비닐 부티랄 수지는 하기 화학식 1 내지 3으로 이루어진 반복단위들을 포함할 수 있으며, 예를 들어 화학식 1로 표시되는 폴리비닐 부티랄 반복단위, 화학식 2로 표시되는 폴리비닐 아세테이트 반복단위 및 화학식 3으로 표시되는 폴리비닐 알콜 반복단위가 공중합된 수지일 수 있다:
[화학식 1]
[화학식 2]
[화학식 3]
상기 식에서, R은 이소프로필 또는 메틸이다.
구체적으로, 화학식 1로 표시되는 반복단위는 총 폴리비닐 부티랄 수지를 기준으로 45 내지 95 몰%, 50 내지 95 몰%, 55 내지 85 몰%, 또는 50 내지 85 몰%로 포함될 수 있다. 상기 화학식 1로 표시되는 반복단위의 함량은 높을수록 바람직한데, 특히 상기 범위일 때 수지와의 상용성이 좋아지고 수분 흡수율이 낮아질 수 있다.
화학식 2로 표시되는 반복단위는 총 폴리비닐 부티랄 수지를 기준으로 0 내지 10 몰%, 0 내지 6 몰%, 0 내지 5 몰%, 또는 1 내지 5 몰%로 포함될 수 있다. 상기 화학식 2로 표시되는 반복단위의 함량은 상기 범위일 때, 수지 조성물의 유리 전이 온도가 높아지고 점도가 낮아질 수 있다.
화학식 3으로 표시되는 반복단위는 총 폴리비닐 부티랄 수지를 기준으로 5 내지 50 몰%, 15 내지 45 몰%, 또는 10 내지 40 몰%로 포함될 수 있다. 상기 화학식 3으로 표기되는 반복단위의 함량은 상기 범위일 때, 수지 조성물과 금속의 접착성이 높아지며 수지와의 상용성이 증대될 수 있다.
상기 폴리비닐 부티랄 수지는 조성물 총 중량을 기준으로 0.5 내지 15 중량%, 1 내지 8 중량%, 또는 5 내지 8 중량%로 포함될 수 있다. 상기 폴리비닐 부티랄 수지가 0.5 중량% 이상으로 포함되면 금속 접착력이 우수하고, 15 중량% 이하로 포함되면 기계적 강도 저하의 문제가 발생하지 않는다.
상기 폴리비닐 부티랄 수지는 유리전이 온도가 50 내지 120 ℃, 60 내지 110 ℃ 또는 60 내지 70 ℃일 수 있으며, 휘발 물질의 함량이 5 중량% 미만일 수 있다.
또한, 상기 폴리비닐 부티랄 수지는 PAS와의 상용성 및 금속 접착력을 높이기 위해 카르복실기 등의 관능기가 도입된 폴리비닐 부티랄 수지를 사용할 수도 있다.
본 발명의 수지 조성물은 엘라스토머, 충진재, 충격 흡수제, 접착력 향상제, 안정제, 안료 및 이의 조합으로 이루어진 군에서 선택되는 성분을 더 포함할 수 있다.
상기 엘라스토머는 폴리염화비닐계 엘라스토머, 폴리올레핀계 엘라스토머, 폴리우레탄계 엘라스토머, 폴리에스테르계 엘라스토머, 폴리아미드계 엘라스토머, 폴리부타디엔계 엘라스토머, 글리시딜 메타 아크릴레이트와 메틸 아크릴 에스테르의 삼원 공중합체 및 이의 조합으로 이루어진 군에서 선택되는 열가소성 엘라스토머를 사용할 수 있으며, 구체적으로 글리시딜 메타 아크릴레이트와 메틸 아크릴 에스테르의 삼원 공중합체를 사용할 수 있다.
상기 엘라스토머는 수지 조성물 총 중량을 기준으로 1 내지 15 중량%, 바람직하게는 3 내지 10 중량%로 포함될 수 있다. 본 발명의 수지 조성물은 엘라스토머를 포함함으로써 PAS에 인성(toughness)을 부여하여 금속 접착 이후에 온도 변화에 따른 수지와 금속의 계면 분리를 방지하는 효과를 나타낼 수 있다.
상기 충진재는 유리 섬유, 탄소 섬유, 붕소 섬유, 유리 비드, 유리 플레이크, 탈크 및 탄산칼슘으로 이루어진 군으로부터 선택되는 하나 이상의 유기 또는 무기 충진재를 사용할 수 있으며, 구체적으로 유리 섬유를 사용할 수 있다. 상기 충진재는 파우더나 플레이크 형태일 수 있으나, 이에 특별히 제한되지 않는다.
상기 충진재로 사용되는 유리 섬유는 에폭시 실란 처리된 유리 섬유, 아미노 실란 처리된 유리섬유 및 이의 조합으로 이루어진 군에서 선택될 수 있으며, 구체적으로 에폭시 실란으로 처리된 유리 섬유일 수 있다.
상기 충진재는 조성물 총 중량을 기준으로 5 내지 50 중량%, 구체적으로 10 내지 40 중량%로 포함될 수 있다.
상기 안료는 당업계에 공지된 통상적인 각종 유기 또는 무기 안료를 사용할 수 있으며, 예를 들어 이산화 티타늄(TiO2), 카본 블랙 및 이의 조합으로 이루어진 군에서 선택되는 유기 또는 무기 안료를 사용할 수 있으며, 바람직하게는 이산화 티타늄을 사용할 수 있다.
상기 안료는 조성물 총 중량을 기준으로 0.1 내지 10 중량%, 바람직하게는 0.3 내지 7 중량%로 포함될 수 있다.
상기 충격 흡수제, 접착력 향상제 및 안정제는 당업계에 공지된 통상적인 성분을 사용할 수 있다.
상기 안정제로는 산화 방지제, 광 안정제, UV 안정제 및 이의 조합 등을 들 수 있다.
상기 산화 방지제는 수지 조성물의 높은 내열성 및 열안정성을 지지하는 역할을 할 수 있다. 예를 들어, 산화 방지제는 페놀계, 아민계, 유황계, 인계 화합물의 산화방지제를 들 수 있다.
페놀계 산화 방지제로는 힌다드 페놀계 화합물이 바람직할 수 있다. 구체적인 예로는 테트라키스[메틸렌-3-(3,5-디-터트-부틸-4-하이드록시페닐)프로피오네이트]메탄, 티오디에틸렌 비스[3-(3,5-디-터트-부틸-4-하이드록시페닐)프로피오네이트]N,N'-헥산-1,6-디일비스[3-(3,5- 디-터트-부틸-4-하이드록시페닐)프로피온아미드] 등을 들 수 있다.
인계 산화 방지제로는 트리스(2,4- 디-터트-부틸페닐)포스페이트, O,O'-디옥타데실펜타에리트리톨 비스(포스파이트), 비스(2,4-디-터트-부틸페닐)펜타에리트리톨 디포스파이트, 3,9-비스(2,4-디-터트-부틸페녹시)-2,4,8,10-테트라옥사-3,9-디포스파스피로[5.5]운데칸 등을 들 수 있다.
본 발명의 수지 조성물은 상기 성분 이외에도, 가소제, 핵제 등 다양한 당업계에 공지된 통상적인 기타 첨가제를 더 첨가할 수 있다.
또한, 본 발명에 따른 수지 조성물은 성형성을 향상시키기 위하여 다양한 활제를 추가로 포함할 수 있으며, 특히 탄화수소계 활제를 사용하여 수지와 금형의 금속과의 마찰방지, 금형에서의 탈착 중 이형성을 부여할 수 있다.
본 발명의 수지 조성물은 ISO 75에 따라 측정한 열변형온도(HDT) 값이 220 내지 260 ℃일 수 있다.
본 발명의 수지 조성물은 알루미늄 플레이트(plate)에 특정 패턴을 에칭한 후 인서트 사출하여 얻어진 금속 접착 시편을 ASTM D 3163의 시험 방법을 통해 측정한 금속접착강도 값이 50 ㎫ 이상, 50 내지 90 ㎫, 또는 70 내지 90 ㎫일 수 있다.
본 발명의 수지 조성물은 ISO 179에 따라 측정한 충격 강도 값이 6.5 KJ/㎡ 이상, 7 KJ/㎡ 이상, 7 내지 9 KJ/㎡, 또는 7.5 내지 9 KJ/㎡일 수 있다.
본 발명의 수지 조성물은 상기 폴리아릴렌 설파이드 및 폴리비닐 부티랄 수지를 포함함으로써 PAS 특유의 우수한 기계적 및 열적 물성을 저하시키지 않으면서, 낮은 아웃 가스 함량을 가져 우수한 금속 접착 성능을 나타낼 수 있다.
한편, 본 발명은 상기 수지 조성물로부터 제조된 성형품을 제공한다.
본 발명은 상기 수지 조성물을 이축 압출 등 당업계에 공지된 방법으로 성형하여 다양한 용도에 적용 가능한 우수한 금속접착성을 갖는 성형품으로 제조할 수 있다.
본 발명에서 상기 성형품은 필름, 시트, 또는 섬유 등의 다양한 형태일 수 있다. 또, 상기 성형품은 사출 성형품, 압출 성형품, 또는 블로우 성형품일 수 있다. 사출 성형하는 경우, 금형 온도는 결정화의 관점에서 약 130 ℃ 이상일 수 있다.
또한, 상기 성형품이 필름 또는 시트 형태인 경우, 미연신, 1축 연신, 2축 연신 등의 각종 필름 또는 시트로 제조될 수 있다.
상기 섬유는 미연신사, 연신사, 또는 초연신사 등 각종 섬유일 수 있고, 직물, 편물, 부직포(스펀본드, 멜트블로우, 스테이플), 로프, 또는 네트 등의 형태일 수 있다.
이러한 성형품은 컴퓨터 부속품 등의 전기·전자 부품, 건축 부재, 자동차 부품, 기계 부품, 일용품 또는 화학물질이 접촉하는 부분의 코팅, 산업용 내화학성 섬유 등으로 이용될 수 있다.
[실시예]
이하, 본 발명을 하기 실시예에 의하여 더욱 상세하게 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들만으로 한정되는 것은 아니다.
제조예
: PPS의 제조
40 kg의 파라디요오드벤젠, 3.4 kg의 황, 및 촉매로서 150 g의 1,3-디요오드-4-니트로벤젠을 반응기에 넣고 180 ℃에서 용융 혼합시켰다. 상기 혼합된 반응물을 180 ℃에서 340 ℃까지 온도를 높이고, 350 torr에서 10 torr까지 감압시키며 중합 반응을 진행하였다. 중합이 시작된 이후, 5 시간이 지난 시점에서 황 150 g과 중합중지제로서 디페닐 설파이드 100 g을 투여한 후, 3 시간 더 중합 반응을 진행하여 PPS 수지를 얻었다.
생성된 PPS 수지는 다음과 같은 방식에 따라 용융점도(MV), 융점(Tm) 및 반복단위의 중량을 측정하였다. 그 결과, 용융점도 2,000 포이즈, 융점 280 ℃, 수평균분자량은 16,400, 아릴렌 설파이드 반복단위:아릴렌 디설파이드 반복단위의 중량비는 1: 0.003으로 나타났다.
용융점도
용융점도는 회전 원판 점도계(rotating disk viscometer)로 Tm+20℃에서 측정하였다. 주파수 스위프(frequency sweep) 방법으로 측정함에 있어, 각주파수(angular frequency)를 0.6부터 500 rad/s까지 측정하였고, 1.0 rad/s에서의 점도를 용융점도로 정의하였다.
융점
시차주사 열량분석기(differential Scanning Calorimeter; DSC)를 이용하여 30℃에서 320℃까지 10℃/분의 속도로 승온 후 30 ℃까지 냉각 후에 다시 30 ℃에서 320 ℃까지 10 ℃/분의 속도로 승온 하면서 융점을 측정하였다.
반복단위의 중량 분석 방법
생성된 PPS 고분자 2 mg을 AQF(Automatic Quick Furnace)로 1,000 ℃에서 연소시켜 황산 가스를 흡수용액(과산화 수소수)으로 포집 및 이온화한 후 IC(Ion Chromatography) 측정법을 이용하여 컬럼에서 황 이온을 분리하고, 황 이온 표준물질(K2SO4)로 황 함량을 정량하고, 이론 황 함량대비 분석한 황 함량의 차이를 아릴렌 디설파이드로 계산하였다.
실시예
1: PPS 수지 조성물의 제조
이축 스크류 압출기에, 상기 제조예 1에서 수득한 PPS 수지 67 중량%, 우레탄/에폭시실란 처리된 유리 섬유(OCV-910, Owens corning사) 15 중량%, 엘라스토머(Lotader AX-8900 Arkema사) 8 중량%, 폴리비닐 부티랄 수지 (BM-S, Sekisui社) 5 중량%, 백색 안료 TiO2(2233 grade, Kronoss사) 5 중량%를 첨가하여 수지 조성물을 제조하였다. 상기 폴리비닐 부티랄 수지는 폴리비닐 부티랄 반복단위가 70 내지 76 몰%, 폴리비닐 아세테이트 반복단위가 2 내지 8 몰%, 폴리비닐 알콜 반복단위가 약 22 몰%가 공중합된 수지이다. 또한, 상기 폴리비닐 부티랄 수지의 중량평균분자량은 53,000이고, 휘발물질의 함량은 3 중량% 이하이며, 유리 전이 온도는 60 ℃였다.
이때 사용한 이축 압출기는 SM platek의 직경 40 mm, L/D=44 압출기를 사용하였다. 공정 조건은 스크류 250 rpm, 토출양(feed rate) 60 kg/시, 배럴 온도는 280 ℃에서 300 ℃, 토크 60 %로 수행하였다. 원료 투입은 총 세 개의 피더(feeder)를 사용하였으며, 피더 1은 PPS 수지, 엘라스토머와 폴리비닐 부티랄 수지, 피더 2는 백색 안료, 피더 3은 유리 섬유를 각각 분산 투입하여 PPS 수지 조성물을 제조하였다.
실시예
2 내지 6
하기 표 2에 기재된 바와 같은 성분 및 함량을 이용하여 상기 실시예 1과 동일한 방식으로 PPS 수지 조성물을 제조하였다.
비교예
1
폴리비닐 부티랄 수지 대신 비스페놀 A(BPA)형 에폭시 수지(YD-017, 국도화학사)를 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방식으로 PPS 수지 조성물을 제조하였다.
비교예
2
하기 표 2에 기재된 바와 같은 성분 및 함량을 이용하여 상기 실시예 1과 동일한 방식으로 PPS 수지 조성물을 제조하였다.
비교예
3
폴리비닐 부티랄 수지를 사용하지 않은 것을 제외하고는, 하기 표 2에 기재된 바와 같은 성분 및 함량을 이용하여 상기 실시예 1과 동일한 방식으로 PPS 수지 조성물을 제조하였다.
비교예
4
PPS 수지로서 제조예 1에서 제조한 PPS 대신 용액중합으로 제조된 PPS 1(0205P4, Ticona사, 선형 PPS)을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방식으로 PPS 수지 조성물을 제조하였다.
비교예
5
PPS 수지로서 제조예 1에서 제조한 PPS 대신 용액중합으로 제조된 PPS 1(0205P4, Ticona사, 선형 PPS)을 사용하고, PVB 수지를 사용하지 않은 것을 제외하고는, 하기 표 2에 기재된 바와 같은 성분 및 함량을 이용하여 상기 실시예 1과 동일한 방식으로 PPS 수지 조성물을 제조하였다.
비교예
6
PPS 수지로서 제조예 1에서 제조한 PPS 대신 용액중합으로 제조된 PPS 2(P6, Chevron Philips사, 교차형 PPS)을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방식으로 PPS 수지 조성물을 제조하였다.
상기 실시예 1 내지 6 및 비교예 1 내지 6에서 사용된 성분들의 입수처를 정리하여 하기 표 1에 나타내었다.
성분 | Grade | 제조사 | |
A | 제조예 1의 PPS | - | - |
B | 용액 중합 PPS1 | 0205P4 | Ticona |
C | 용액 중합 PPS2 | P6 | Chevron Philips (CPC) |
D | 폴리비닐 부티랄 수지 | BM-S | Sekisui |
E | 에폭시 수지(BPA형) | YD-017 | 국도화학 |
F-1 | 우레탄/에폭시 실란 처리 유리섬유 | TF-523 | Owens corning |
F-2 | 우레탄/아미노 실란 처리 유리섬유 | OCV-910 | Owens corning |
G | 백색 안료(TiO2) | 2233 | Kronoss |
H | 엘라스토머 | Lotader AX-8900 | Arkema |
실험예
상기 실시예 및 비교예에서 제조한 PPS 수지 조성물을 대상으로 하기 기재된 바에 따라 물성을 측정하였으며, 측정 결과를 하기 표 2에 나타내었다.
먼저, 실시예 및 비교예에서 제조한 PPS 수지 조성물을 310 ℃에서 각각 사출하여 사출 시편으로 제조하였다.
(1) 아웃 가스 함량
사출 시편의 시료(2 g)를 20 ㎖ 밀봉 바이알(vial)에 넣고 밀봉시킨 후 HS(Head Space) 장비로 260 ℃에서 30 분간 가열한 후 발생한 가스를 자동으로 GC/MS(gas chromatography-mass Spectrometer) 장비로 보내었다. 이후, 각 성분을 캐필러리 컬럼으로 분리한 후 정성 분석하고, 표준물질로 벤조티아졸(benzothiazole)을 사용하여 시료 내 각 성분의 함량을 대체 정량 분석하였다.
(2) 열변형온도(HDT) 값
ISO 75에 따라, 사출 시편의 열변형온도(HDT) 값을 측정하였다.
(3) 충격 강도 (노치)
ISO 179 법에 따라, 80mm(길이) × 10mm(너비) × 4mm(두께)의 사출 시편의 충격강도를 V-노치 샤르피(V-notch Charpy) 방법으로 측정하였다.
(4) 금속접착강도
사출 성형기 2단 금형의 고정 금형과 이동 금형 사이에 특정 에칭 처리된 알루미늄 시편(가로: 70 mm, 세로: 18 mm 및 높이: 2 mm)을 안착시켰다. 2 단 금형 사이에 실시예 및 비교예에서 제조한 PPS 수지 조성물을 각각 넣어 80 톤 Engel 사출기에서, 사출속도 50 mm/s, 사출압 120 ㎫ 및 금형온도 150 ℃에서 인서트 사출하고, 금형으로부터 분리함으로써 금속접착강도 측정용 시편(가로: 70 mm, 세로 10 mm 및 높이 3 mm)을 제조하였다(도 1). 상기에서 제조된 시편의 금속접착강도를 ASTM D 3163 법에 따라 측정하였다.
(5) Cl 함량
휴대폰, 노트북 등의 전자 부품의 내장 소재로 사용되는 수지는 Cl 염 부산물의 함량이 낮아야 전자 부품의 성능을 저하시키지 않는다. 이에, 제조예 1에서 제조한 PPS, 용액 중합 PPS 1 및 용액 중합 PPS 2 수지를 대상으로 Cl 함량을 다음과 같이 측정하였다.
먼저, 수지 시료 50 mg을 약 1,000 ℃에서 유기물을 회화하고 할로겐 흡수용액에 포집한 후 이온 크로마토그래피(Ion Chromatography, Auto Quick Furnace)로 측정하였다.
그 결과, 제조예 1에 따른 PPS 수지는 Cl 함량이 0 ppm으로 확인되었고 반면, 용액 중합 PPS 1 수지는 1,300 ppm으로, 용액 중합 PPS 2 수지는 2,300 ppm으로 나타나, 제조예 1에 따른 PPS 수지의 불순물 함량이 현저히 낮음을 확인할 수 있었다.
한편, 상기와 동일한 방식으로 실시예 1 내지 6, 및 비교예 1 내지 6에 따른 수지 조성물의 Cl 함량을 측정하여 하기 표 2에 나타내었다.
성분 (중량%) | 실시예 1 | 실시예 2 | 실시예 3 | 실시예 4 | 실시예 5 | 실시예 6 | 비교예 1 | 비교예 2 | 비교예 3 | 비교예 4 | 비교예 5 | 비교예 6 | |
PPS | A | 67 | 62 | 52 | 42 | 59 | 59 | 67 | 52 | 72 | - | - | - |
B | - | - | - | - | - | - | - | - | - | 67 | 72 | - | |
C | - | - | - | - | - | - | - | - | - | - | - | 67 | |
PVB | D | 5 | 5 | 5 | 5 | 8 | 8 | - | 20 | - | 5 | - | 5 |
에폭시 | E | - | - | - | - | - | - | 5 | - | - | - | - | - |
유리섬유 | F-1 | 15 | 20 | 30 | 40 | 20 | - | 15 | 15 | 15 | 15 | 15 | 15 |
F-2 | - | - | - | - | - | 20 | - | - | - | - | - | - | |
백색안료 | G | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
엘라스토머 | H | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
물성 | 아웃가스함량 (ppm) | 287 | 289 | 243 | 198 | 295 | 298 | 304 | 327 | 281 | 679 | 688 | 1325 |
Cl 함량 (ppm) | 0 | 0 | 0 | 0 | 0 | 0 | 75 | 0 | 0 | 860 | 938 | 1482 | |
HDT(℃) | 220 | 232 | 245 | 260 | 230 | 221 | 190 | 170 | 227 | 211 | 220 | 217 | |
충격강도(노치)(KJ/㎡) | 7.5 | 8.0 | 8.6 | 8.9 | 7.9 | 7.5 | 5.7 | 5.2 | 7.8 | 7.3 | 7.5 | 6.5 | |
금속접착강도(㎫) | 80 | 78 | 77 | 75 | 86 | 80 | 29 | 88 | 13 | 40 | 13 | 24 |
표 2에서 보는 바와 같이, 본 발명에 따른 수지 조성물은, 용액중합 PPS 1 또는 용액중합 PPS 2를 포함하는 비교예 4 내지 6에 비해 아웃 가스 함량이 최대 약 6.5 배 감소하였다.
또한, 폴리비닐 부티랄 수지를 포함하는 실시예 1 내지 6은 금속 접착 강도가 75 내지 86 ㎫로 나타나, BPA 에폭시 수지를 포함하는 비교예 1(29 ㎫)에 비해 매우 향상된 금속 접착능을 나타냈다. 나아가, 폴리비닐 부티랄 수지를 과량 포함하는 비교예 2는 열변형온도(HDT) 및 충격강도가 저하되었으며, 폴리비닐 부티랄 수지를 사용하지 않은 비교예 3은 금속 접착 강도가 현저히 저하되었다.
한편, 실시예에 따른 수지 조성물은 충격 강도가 7.5 내지 9.0 KJ/㎡으로 나타나, 에폭시 수지를 포함하거나, 폴리비닐 부티랄 수지를 포함하지 않거나 또는 폴리비닐 부티랄 수지를 과량으로 포함하는 비교예 1 내지 3에 비해 현저히 우수한 충격 강도 성능을 나타내었다.
더불어, 실시예 1 내지 6의 경우 Cl 함량이 0 ppm으로 나타나 불순물이 포함되지 않은 반면, 용액 중합 PPS 1을 포함하는 비교예 4 및 5의 Cl 함량은 860 내지 938 ppm, 용액 중합 PPS 2를 포함하는 비교예 6의 Cl 함량은 1482 ppm으로 나타나 불순물 함량에서 매우 큰 차이를 나타냈다.
또한, 본 발명에 따른 PPS를 포함하더라도 PVB 수지 대신 에폭시 수지를 포함하는 비교예 1과 비교하여, 실시예 1의 Cl 함량이 낮음을 확인할 수 있었다.
따라서, 본 발명에 따른 수지 조성물은 아웃 가스 함량을 감소시키면서도 우수한 금속 접착능 및 충격 강도와 높은 열변형 온도를 나타낼 수 있으므로 사출 인서트 성형으로 일체화되는 휴대폰, 전자부품, 자동차 부품 등의 다양한 분야에서 유용하게 사용될 수 있다. 또한, 불순물이 포함되지 않아 우수한 전자 제품 성능 향상에 기여할 수 있다.
Claims (14)
- 제1항에 있어서,상기 폴리비닐 부티랄 수지가 조성물 총 중량을 기준으로 0.5 내지 15 중량%로 포함되는, 수지 조성물.
- 제1항에 있어서,상기 수지 조성물이 엘라스토머, 충진재, 충격 흡수제, 접착력 향상제, 안정제, 안료 및 이의 조합으로 이루어진 군에서 선택된 성분을 더 포함하는, 수지 조성물.
- 제3항에 있어서,상기 엘라스토머가 폴리염화비닐계 엘라스토머, 폴리올레핀계 엘라스토머, 폴리우레탄계 엘라스토머, 폴리에스테르계 엘라스토머, 폴리아미드계 엘라스토머, 폴리부타디엔계 엘라스토머, 글리시딜 메타 아크릴레이트와 메틸 아크릴 에스테르의 삼원 공중합체 및 이의 조합으로 이루어진 군에서 선택되는 열가소성 엘라스토머인, 수지 조성물.
- 제3항에 있어서,상기 충진재가 유리 섬유, 탄소 섬유, 붕소 섬유, 유리 비드, 유리 플레이크, 탈크 및 탄산칼슘으로 이루어진 군으로부터 선택되는 하나 이상의 유기 또는 무기 충진재인, 수지 조성물.
- 제5항에 있어서,상기 유리 섬유가 에폭시 실란 처리된 유리 섬유, 아미노 실란 처리된 유리 섬유 및 이의 조합으로 이루어진 군에서 선택되는, 수지 조성물.
- 제3항에 있어서,상기 안료가 이산화 티타늄(TiO2), 카본 블랙 및 이의 조합으로 이루어진 군에서 선택되는 유기 또는 무기 안료인, 수지 조성물.
- 제3항에 있어서,상기 안료가 조성물 총 중량을 기준으로 0.1 내지 10 중량%로 포함되는, 수지 조성물.
- 제1항에 있어서,상기 조성물이 ISO 75에 따라 측정한 열변형온도 값이 220 내지 260℃인 수지 조성물.
- 제1항에 있어서,상기 조성물이 ASTM D 3163에 따라 측정한 금속접착강도 값이 50 내지 90 ㎫인, 수지 조성물.
- 제1항에 있어서,상기 조성물이 ISO 179에 따라 측정한 충격 강도 값이 7 내지 9 KJ/㎡인, 수지 조성물.
- 제1항에 있어서,상기 조성물의 Cl의 함량이 300 ppm 이하인, 수지 조성물.
- 제12항에 있어서,상기 조성물의 Cl의 함량이 100 ppm 이하인, 수지 조성물.
- 제1항에 있어서,상기 폴리아릴렌 설파이드가 아릴렌 설파이드 반복단위 및 아릴렌 디설파이드 반복단위를 포함하고, 상기 아릴렌 설파이드 반복단위 : 아릴렌 디설파이드 반복단위의 중량비가 1 : 0.0001 내지 0.5인, 수지 조성물.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2015-0067442 | 2015-05-14 | ||
KR1020150067442A KR102289864B1 (ko) | 2015-05-14 | 2015-05-14 | 금속과의 접착성이 우수한 폴리아릴렌 설파이드 조성물 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016182212A1 true WO2016182212A1 (ko) | 2016-11-17 |
Family
ID=57248043
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/003943 WO2016182212A1 (ko) | 2015-05-14 | 2016-04-15 | 금속과의 접착성이 우수한 폴리아릴렌 설파이드 조성물 |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR102289864B1 (ko) |
TW (1) | TWI731857B (ko) |
WO (1) | WO2016182212A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110102226A (ko) * | 2010-03-10 | 2011-09-16 | 에스케이케미칼주식회사 | 아웃 가스 발생량이 적은 폴리아릴렌 설파이드 및 이의 제조 방법 |
CN103305003A (zh) * | 2013-07-11 | 2013-09-18 | 常熟市慧丰塑料制品有限公司 | 一种改性聚苯硫醚塑料的配方 |
JP2013256082A (ja) * | 2012-06-13 | 2013-12-26 | Toray Ind Inc | 樹脂複合成形体および樹脂複合成形体を製造する方法 |
KR20140037776A (ko) * | 2012-09-19 | 2014-03-27 | 에스케이케미칼주식회사 | 폴리아릴렌 설파이드계 수지 조성물 및 성형품 |
CN103937250A (zh) * | 2014-04-18 | 2014-07-23 | 安徽省中日农业环保科技有限公司 | 一种汽车塑料件用柔软耐冲击改性聚苯硫醚材料 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2513188B2 (ja) | 1986-08-30 | 1996-07-03 | 日本電気株式会社 | 加工順序制御式外形加工機 |
JP2583941B2 (ja) | 1988-02-12 | 1997-02-19 | 株式会社テック | 表面処理装置 |
JPH08134216A (ja) * | 1994-11-02 | 1996-05-28 | Dainippon Ink & Chem Inc | 硫黄系ガス発生量の少ないポリアリーレンスルフィドの製造方法 |
JP5567834B2 (ja) * | 2007-12-20 | 2014-08-06 | 株式会社クラレ | 熱可塑性重合体組成物及びそれからなる成形品 |
-
2015
- 2015-05-14 KR KR1020150067442A patent/KR102289864B1/ko active IP Right Grant
-
2016
- 2016-04-15 WO PCT/KR2016/003943 patent/WO2016182212A1/ko active Application Filing
- 2016-04-22 TW TW105112637A patent/TWI731857B/zh not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110102226A (ko) * | 2010-03-10 | 2011-09-16 | 에스케이케미칼주식회사 | 아웃 가스 발생량이 적은 폴리아릴렌 설파이드 및 이의 제조 방법 |
JP2013256082A (ja) * | 2012-06-13 | 2013-12-26 | Toray Ind Inc | 樹脂複合成形体および樹脂複合成形体を製造する方法 |
KR20140037776A (ko) * | 2012-09-19 | 2014-03-27 | 에스케이케미칼주식회사 | 폴리아릴렌 설파이드계 수지 조성물 및 성형품 |
CN103305003A (zh) * | 2013-07-11 | 2013-09-18 | 常熟市慧丰塑料制品有限公司 | 一种改性聚苯硫醚塑料的配方 |
CN103937250A (zh) * | 2014-04-18 | 2014-07-23 | 安徽省中日农业环保科技有限公司 | 一种汽车塑料件用柔软耐冲击改性聚苯硫醚材料 |
Also Published As
Publication number | Publication date |
---|---|
TWI731857B (zh) | 2021-07-01 |
KR102289864B1 (ko) | 2021-08-13 |
KR20160134050A (ko) | 2016-11-23 |
TW201704344A (zh) | 2017-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017057847A1 (ko) | 고분자 조성물, 고분자 조성물의 제조 방법, 전자기기 및 전자기기의 제조 방법 | |
WO2012015128A1 (ko) | 난연성 및 내열성이 우수한 투명 열가소성 수지 조성물 | |
WO2017155221A1 (ko) | 표면 평활도 및 금속 증착성이 우수한 램프 리플렉터용 수지 조성물 | |
WO2017200203A1 (ko) | 내화학성이 우수한 폴리아릴렌 설파이드 수지 조성물 | |
WO2012015109A1 (ko) | 내스크래치성과 내충격성이 우수한 난연 폴리카보네이트 수지 조성물 및 이를 이용한 성형품 | |
WO2017188604A1 (ko) | 내가수분해성이 우수한 폴리아릴렌 설파이드 수지 조성물 | |
WO2014119827A9 (ko) | 폴리카보네이트계 열가소성 수지 조성물 및 성형품 | |
WO2013047955A1 (ko) | 폴리카보네이트 및 그의 제조 방법 | |
WO2016182215A1 (ko) | 금속과의 접착성이 우수한 폴리아릴렌 설파이드 조성물 | |
WO2016129833A1 (ko) | 금속과의 접착성이 우수한 폴리아릴렌 설파이드 조성물 | |
WO2016182212A1 (ko) | 금속과의 접착성이 우수한 폴리아릴렌 설파이드 조성물 | |
WO2022139527A1 (ko) | 폴리아릴렌 설파이드 수지 조성물 및 내열충격성 성형체 | |
WO2017142217A1 (ko) | 금속과의 접착성이 우수한 폴리아릴렌 설파이드 조성물 | |
WO2023068481A1 (ko) | 폴리에스테르 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품 | |
WO2020138772A1 (ko) | 열가소성 수지 조성물 및 이로부터 형성된 성형품 | |
KR20170130837A (ko) | 사출 성형성이 우수한 폴리아릴렌 설파이드 수지 조성물 | |
WO2022010311A1 (ko) | 폴리아릴렌 설파이드 공중합체, 이의 제조방법, 및 이로부터 제조된 성형품 | |
WO2020235913A1 (ko) | 경화성 조성물 및 이의 경화물을 포함하는 광학 부재 | |
WO2015016464A1 (ko) | 열가소성 수지 조성물 및 이를 이용한 성형품 | |
WO2023234584A1 (ko) | 폴리카보네이트 공중합체 | |
WO2021080250A1 (ko) | 폴리에스테르계 수지 조성물 및 이의 성형품 | |
WO2019212222A1 (ko) | 열가소성 수지 조성물 및 이를 포함하는 성형품 | |
WO2023075104A1 (ko) | 열가소성 폴리에스테르 엘라스토머 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품 | |
WO2017209392A1 (ko) | 연성 및 치수 안정성이 우수한 폴리아릴렌 설파이드 수지 조성물 | |
WO2023146151A1 (ko) | 폴리에스테르 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16792858 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16792858 Country of ref document: EP Kind code of ref document: A1 |