WO2013047955A1 - 폴리카보네이트 및 그의 제조 방법 - Google Patents

폴리카보네이트 및 그의 제조 방법 Download PDF

Info

Publication number
WO2013047955A1
WO2013047955A1 PCT/KR2011/009684 KR2011009684W WO2013047955A1 WO 2013047955 A1 WO2013047955 A1 WO 2013047955A1 KR 2011009684 W KR2011009684 W KR 2011009684W WO 2013047955 A1 WO2013047955 A1 WO 2013047955A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
polycarbonate
unsubstituted
substituted
mol
Prior art date
Application number
PCT/KR2011/009684
Other languages
English (en)
French (fr)
Inventor
권오성
지준호
허종찬
이창헌
장복남
Original Assignee
제일모직 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직 주식회사 filed Critical 제일모직 주식회사
Priority to EP11873052.2A priority Critical patent/EP2762516B1/en
Priority to CN201180073855.1A priority patent/CN103842405B/zh
Publication of WO2013047955A1 publication Critical patent/WO2013047955A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/16Aliphatic-aromatic or araliphatic polycarbonates
    • C08G64/1608Aliphatic-aromatic or araliphatic polycarbonates saturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates

Definitions

  • the present invention relates to polycarbonates and methods for their preparation. More specifically, the present invention relates to a polycarbonate excellent in chemical resistance and impact properties and a method for producing the same.
  • Polycarbonate is a representative thermoplastic material with a heat deformation temperature of about 135 ° C or more. It is excellent in mechanical properties such as impact resistance, and excellent in self-extinguishing, dimensional stability, heat resistance and transparency. It is increasing day by day.
  • polycarbonate has excellent transparency and mechanical properties
  • a plastic material is used as an exterior material
  • painting is often performed in order to express the beauty of the exterior.
  • the paint is diluted using various organic solvents, and then coated on the surface of the resin molded article and then dried.
  • organic solvents used as diluents penetrate into the polycarbonate and act as a cause of lowering transparency and mechanical rigidity. Therefore, resistance to these organic solvents is required in order to apply polycarbonate to a product in which contact of various organic solvents can easily occur in a living environment.
  • Various methods have been proposed to improve the chemical resistance of polycarbonate resins.
  • KR 2007-0071446, KR 2009-0026359 and KR 2010-0022376 propose a method of improving chemical resistance by blending with other resins having chemical resistance.
  • this method can slightly improve the chemical resistance, but the effect is weak and the impact characteristics are reduced.
  • Impact modifiers are sometimes used to improve the impact properties reduced due to blending, but this results in a significant loss of transparency of the resin.
  • JP5-339390 and US Pat. No. 5,401,826 propose a method of improving the chemical resistance by preparing a copolymerized polycarbonate in which a material having chemical resistance is inserted into an existing polycarbonate resin.
  • An example of the material to be copolymerized is 4,4'-biphenol, which is copolymerized when preparing a polycarbonate resin to improve chemical resistance.
  • the chemical resistance could be improved by using 4,4'-biphenol, but the impact properties are reduced, and the advantages of polycarbonate resins are reduced.
  • the fluidity decreases rapidly. This results in worsening.
  • An object of the present invention is to provide a polycarbonate excellent in chemical resistance and fluidity, and a method of manufacturing the same without deteriorating impact characteristics compared to the existing polycarbonate.
  • Another object of the present invention is to provide a polycarbonate excellent in chemical resistance, fluidity, normal temperature / low temperature impact strength and heat resistance while maintaining transparency, and a method of manufacturing the same.
  • the polycarbonate includes the following Chemical Formula 1, Chemical Formula 2 and Chemical Formula 3 as repeating units:
  • R 1 and R 2 are each independently a substituted or unsubstituted C1 to C6 alkyl group, a substituted or unsubstituted C3 to C6 cycloalkyl group, a substituted or unsubstituted C6 to C12 aryl group or a halogen atom, a and b are each independently an integer of 0 to 4).
  • R 1 and R 2 are each independently a substituted or unsubstituted C1 to C6 alkyl group, a substituted or unsubstituted C3 to C6 cycloalkyl group, a substituted or unsubstituted C6 to C12 aryl group or a halogen atom, a and b are each independently an integer of 0 to 4).
  • Q is a substituted or unsubstituted C5 to C10 cycloalkyl group, and a and b are each independently an integer from 0 to 4).
  • the polycarbonate has a molar ratio of Formula 1 (M1), Formula 2 (M2), and Formula 3 (M3) that meets the following conditions:
  • the polycarbonate has a glass transition temperature of 135 to 160 ° C., a refractive index of about 1.58 to about 1.59, and an Izod notch room temperature impact strength of about 65 to about 95 kg by ASTM D256 at a thickness of 1/8 ". May be cm / cm.
  • the polycarbonate may have an Izod notch ⁇ 30 ° C. impact strength according to ASTM D542 at 1/8 ′′ thickness of about 55 to about 85 kg ⁇ cm / cm.
  • the polycarbonate may include a sulfonic acid compound represented by Formula 4 below:
  • R 9 is a substituted or unsubstituted C 1 to C 20 alkyl group
  • R 10 is a substituted or unsubstituted C 11 to C 20 alkylene group
  • n is an integer of 0 to 5
  • Another aspect of the invention relates to a method for producing a polycarbonate.
  • the method includes transesterifying a diol represented by Formula 1-1, Formula 2-1, and Formula 3-1 with a diaryl carbonate:
  • R 1 and R 2 are each independently a substituted or unsubstituted C1 to C6 alkyl group, a substituted or unsubstituted C3 to C6 cycloalkyl group, a substituted or unsubstituted C6 to C12 aryl group or a halogen atom, a and b are each independently an integer of 0 to 4).
  • R 1 and R 2 are each independently a substituted or unsubstituted C1 to C6 alkyl group, a substituted or unsubstituted C3 to C6 cycloalkyl group, a substituted or unsubstituted C6 to C12 aryl group or a halogen atom, a and b are each independently an integer of 0 to 4).
  • Q is a substituted or unsubstituted C5 to C10 cycloalkyl group, and a and b are each independently an integer from 0 to 4).
  • the molar ratio of Formula 1-1, Formula 2-1, and Formula 3-1 may be about 30 to 90 mol%: 5 to 30 mol%: 5 to 40 mol%.
  • the present invention has the effect of providing a polycarbonate excellent in chemical resistance and fluidity, transparency, room temperature / low temperature impact strength and heat resistance and a method of manufacturing the same without lowering the impact characteristics compared to the existing polycarbonate.
  • the polycarbonate of the present invention is prepared by transesterifying a diol represented by the following Chemical Formulas 1-1, 2-1 and 3-1 with a diaryl carbonate.
  • R 1 and R 2 are each independently a substituted or unsubstituted C1 to C6 alkyl group, a substituted or unsubstituted C3 to C6 cycloalkyl group, a substituted or unsubstituted C6 to C12 aryl group or a halogen atom, a and b are each independently an integer of 0 to 4).
  • R 1 and R 2 are each independently a substituted or unsubstituted C1 to C6 alkyl group, a substituted or unsubstituted C3 to C6 cycloalkyl group, a substituted or unsubstituted C6 to C12 aryl group or a halogen atom, a and b are each independently an integer of 0 to 4).
  • Q is a substituted or unsubstituted C5 to C10 cycloalkyl group, and a and b are each independently an integer from 0 to 4).
  • Examples of the formula 1-1 include 2,2-bis- (4-hydroxyphenyl) -propane, 2,2-bis- (3,5-dimethyl-4-hydroxyphenyl) -propane, 2,2- Bis- (3,5-diisopropyl-4-hydroxyphenyl) -propane and the like, preferably 2,2-bis- (4-hydroxyphenyl) -propane, also called bisphenol-A.
  • Examples of Formula 2-1 include 4,4'-biphenol, 2,2'-dimethyl 4,4'-biphenyldiol, 3,3-dimethyl 4,4-dihydroxy biphenyl, 2,2 ' , 6,6 ',-tetramethyl-4,4'-biphenol and the like. Among these, 4,4'-biphenol is preferable.
  • Chemical Formula 3-1 examples include 1,2-cyclopentanediol, 1,3-cyclopentanediol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1, 2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,2-cycloheptanediol, 1,3-cycloheptanediol, 1,4-cycloheptanediol, 1 , 2-cyclooctanediol, 1,3-cyclooctanediol, 1,4-cyclooctanediol and the like. Among these, 1,4-cyclohexane dimethanol is preferable.
  • the molar ratio of Formula 1-1, Formula 2-1, and Formula 3-1 may be about 30 to 90 mol%: 5 to 30 mol%: 5 to 40 mol%. Within this range, it is possible to obtain a balance of physical properties of impact strength, chemical resistance and fluidity.
  • diaryl carbonate examples include diphenyl carbonate, ditoryl carbonate, bis (chlorophenyl) carbonate, m-cresyl carbonate, dinaphthyl carbonate, bis (diphenyl) carbonate, diethyl carbonate, dimethyl carbonate, dibutyl carbonate, Dicyclohexyl carbonate etc. are mentioned, It is not necessarily limited to this. These may be used alone or in combination of two or more, preferably diphenyl carbonate.
  • the diol compounds of Formulas 1-1, 2-1, and 3-1 are used in a molar ratio of about 0.6 to 1.0, preferably about 0.7 to 0.9, with respect to the diaryl carbonate. do. When used in the molar ratio, excellent mechanical strength can be obtained.
  • the transesterification reaction may proceed under reduced pressure at about 150 to about 300 °C, preferably about 160 to about 280 °C, more preferably about 190 to about 260 °C. It is preferable in the reaction rate and side reaction reduction in the above temperature range.
  • the transesterification reaction is at least about 10 minutes, preferably at least about 100 torr, for example at most about 75 torr, preferably at most about 30 torr, more preferably at most about 1 torr Running from 15 minutes to about 24 hours, more preferably from about 15 minutes to about 12 hours, is preferred in terms of reaction rate and side reaction reduction.
  • the transesterification reaction can be carried out in the presence of an alkali metal and alkaline earth metal catalyst.
  • alkali metal and alkaline earth metal catalysts include LiOH, NaOH, KOH, and the like, but are not necessarily limited thereto. These may be used alone or in combination of two or more thereof.
  • the content of the catalyst can be determined by the amount of aromatic dihydroxy compound used. In one embodiment of the present invention can be used in the range of about 1 ⁇ 10 -8 to 1 ⁇ 10 -3 moles per mole of aromatic dihydroxy compound. In the above content range, by-products due to sufficient reactivity and side reactions may be minimized, thereby improving thermal stability and color stability.
  • the residual activity of the catalyst may be removed by adding the sulfonic acid ester compound represented by Chemical Formula 4 or a mixture thereof to the polymer produced by the reaction.
  • R 9 is a substituted or unsubstituted C 1 to C 20 alkyl group
  • R 10 is a substituted or unsubstituted C 11 to C 20 alkylene group
  • n is an integer of 0 to 5
  • Examples of Formula 4 include dodecyl p-toluene sulfonic acid ester, octadecyl p-toluene sulfonic acid ester, dodecyl (dodecylbenzene) sulfonic acid ester, octadecyl (dodecylbenzene) sulfonic acid ester, and the like.
  • the sulfonic acid ester compound may be added at about 0.0001 to 0.001 parts by weight, preferably about 0.0003 to 0.0008 parts by weight, based on 100 parts by weight of the monomer. It is excellent in thermal stability and hydrolysis resistance in the said range.
  • the sulfonic acid ester compound may be added to the polycarbonate in which the reaction is completed, as it is, in the reactor.
  • the polycarbonate and sulfonic acid ester compound produced by the transesterification reaction may be mixed in the extrusion step. After the polycarbonate produced after the reaction is transferred to an extruder, the sulfonic acid ester compound is added to the extruder, it can be prepared in pellet form. In addition, when the sulfonic acid ester compound is added, it may be extruded by adding with a conventional additive.
  • the additives include flame retardants, antibacterial agents, mold release agents, heat stabilizers, antioxidants, light stabilizers, compatibilizers, dyes, inorganic additives, fillers, plasticizers, impact modifiers, admixtures, colorants, stabilizers, lubricants, antistatic agents, pigments, weathering agents, ultraviolet rays Blocking agents and the like may be used, but are not necessarily limited thereto. These may be used alone or in mixture of two or more.
  • the polycarbonate prepared by the above method includes the following Chemical Formula 1, Chemical Formula 2 and Chemical Formula 3 as repeating units:
  • R 1 and R 2 are each independently a substituted or unsubstituted C1 to C6 alkyl group, a substituted or unsubstituted C3 to C6 cycloalkyl group, a substituted or unsubstituted C6 to C12 aryl group or a halogen atom, a and b are each independently an integer of 0 to 4).
  • R 1 and R 2 are each independently a substituted or unsubstituted C1 to C6 alkyl group, a substituted or unsubstituted C3 to C6 cycloalkyl group, a substituted or unsubstituted C6 to C12 aryl group or a halogen atom, a and b are each independently an integer of 0 to 4).
  • Q is a substituted or unsubstituted C5 to C10 cycloalkyl group, and a and b are each independently an integer from 0 to 4).
  • M1: M2: M3 about 75-90 mol%: 5-15 mol%: 5-15 mol%.
  • M1: M2: M3 about 75-90 mol%: 5-15 mol%: 5-15 mol%.
  • M1: M2: M3 about 75-90 mol%: 5-15 mol%: 5-15 mol%.
  • the glass transition temperature in the range is 135 to 160 °C
  • the refractive index is about 1.58 to about 1.59
  • Izod notch room temperature impact strength according to ASTM D256 at 1/8 "thickness of about 65 to about 95 kg ⁇ cm / may be cm.
  • M1: M2: M3 about 30-80 mol%: 10-30 mol%: 10- 40 mol%.
  • the polycarbonate in the above range may be about 55 to about 85 kg ⁇ cm / cm Izod notch -30 °C impact strength according to ASTM D542 at 1/8 "thickness.
  • the polycarbonate has a molar ratio of Formula 1 (M1), Formula 2 (M2) and Formula 3 (M3) that satisfy the following conditions:
  • M1> M2 More preferably, it is M1> M2 + M3. In this case, heat resistance and room temperature impact strength are particularly excellent.
  • the molar ratio of M2 and M3 may be about 1: 1 to 1: 2. It has particularly good chemical resistance in the above range.
  • the polycarbonate resin prepared by the present invention can be applied to various products because it has excellent balance of chemical resistance, flowability and impact strength.
  • it can be used for automobiles, mechanical parts, electrical and electronic parts, office equipment such as computers, or miscellaneous goods.
  • the present invention can be suitably applied to humidifiers, steam cleaners, steam irons, and the like as well as housings of electric and electronic products such as televisions, computers, printers, washing machines, cassette players, audio, mobile phones, game machines, toys, and the like.
  • a conventional method may be applied, and for example, extrusion molding, injection molding, vacuum molding, casting molding, extrusion molding, blow molding, calendar molding, or the like may be applied. These are well known by those skilled in the art to which the present invention pertains.
  • the polymer in the molten state was then 0.0005 phr of dodecyl p-toluene sulfonic acid ester, octadecyl 3- (3,5-di-tert-4-hydroxyphenyl) propionate 0.03 phr, tris (2,4-di-tert 0.05 phr of -butylphenyl) phosphate was added and mixed uniformly for about 10 minutes.
  • the physical properties of the prepared pellets were measured by the following method, and the results are shown in Table 2.
  • MI Melt index
  • Examples 1 to 6 and Comparative Examples 1 to 3 were experimented with the melt index (MI) at 30 g / 10 min.
  • MI melt index
  • Comparative Examples 4 to 5 the MI value was found to be too high to measure at 250 ° C and 10 kg load conditions.
  • Comparative Example 1 in which only BPA is applied, is significantly lower in chemical resistance
  • Comparative Example 2-3 in which alicyclic diol is not applied shows that room temperature impact strength and practical flow are inferior.
  • Comparative Example 4-5 without BP was excellent in practical flow but the impact strength of the room temperature and low temperature was low, in particular, Comparative Example 4 it can be seen that the chemical resistance is also reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

본 발명의 폴리카보네이트 수지는 화학식 1, 화학식 2, 및 화학식 3을 반복단위로 포함하는 것을 특징으로 한다.

Description

폴리카보네이트 및 그의 제조 방법
본 발명은 폴리카보네이트 및 그의 제조 방법에 관한 것이다. 보다 구체적으로, 본 발명은 내화학성 및 충격 특성이 우수한 폴리카보네이트 및 그 제조방법에 관한 것이다.
폴리카보네이트는 열변형 온도가 약 135℃ 이상 되는 대표적인 열가소성 소재로 내충격성 등과 같은 기계적 특성이 우수하고, 자기소화성, 치수안정성, 내열성 및 투명성이 우수하여 전기전자 제품 외장재, 자동차 부품 등 그 활용범위가 날로 증가하고 있다.
이처럼 폴리카보네이트는 투명성과 기계적 물성이 우수함에도 불구하고 외장재로 사용되기에는 제한적인 요소가 존재한다. 플라스틱 소재를 외장재로 사용할 경우, 그 외관의 미려함을 발현하기 위하여 도장을 하는 경우가 많다. 이 경우 도료를 각종 유기 용제를 사용하여 희석한 후, 수지 성형품의 표면에 도포한 후 건조하는 과정을 거치게 된다. 이 과정에서 희석제로 사용된 유기 용제들은 폴리카보네이트 내부로 침투하여 투명성 및 기계적 강성을 저하시키는 원인으로 작용한다. 따라서 생활 환경에서 각종 유기 용제의 접촉이 쉽게 발생될 수 있는 제품에 폴리카보네이트가 적용되기 위해서는 이들 유기 용제에 대한 저항성이 요구된다. 폴리카보네이트 수지의 내화학성을 개선하기 위하여 여러 가지 방법들이 제시되고 있다.
KR 2007-0071446, KR 2009-0026359 및 KR 2010-0022376에서는 내화학성을 가지는 다른 수지와의 블렌딩시켜 내화학성을 개선하는 방법을 제시하고 있다. 하지만 이러한 방법은 내화학성을 소폭 개선할 수는 있으나 그 효과가 미약하며 충격 특성이 저하되는 결과를 유발한다. 블렌딩으로 인하여 감소된 충격 특성을 향상시키기 위하여 충격 보강제를 사용하기도 하지만 이럴 경우 수지의 투명성이 크게 손상되는 결과를 초래한다.
한편, JP5-339390와 US 5,401,826 에서는 내화학성의 특성을 지니는 물질을 기존의 폴리카보네이트 수지내에 삽입한 공중합 폴리카보네이트를 제조하여 내화학성을 향상시키는 방법을 제시하고 있다.
상기 공중합되는 물질의 예로는 4,4'-biphenol이 있으며 이를 폴리카보네이트 수지 제조시 공중합시켜 내화학성을 향상시키는 것이다. 하지만 4,4'-biphenol을 사용함으로써 내화학성은 개선시킬 수 있었으나, 충격 특성이 감소되어 폴리카보네이트 수지의 장점이 감소되며 특히 4,4'-biphenol의 사용량이 증가할수록 유동성이 급격히 감소되어 성형성이 나빠지는 결과를 초래한다.
본 발명의 목적은 기존 폴리카보네이트 대비 충격특성의 저하없이 내화학성과 유동성이 우수한 폴리카보네이트 및 그 제조방법을 제공하기 위한 것이다.
본 발명의 다른 목적은 투명성을 유지하면서 내화학성, 유동성, 상온/저온 충격강도 및 내열성이 우수한 폴리카보네이트 및 그 제조방법을 제공하기 위한 것이다.
본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.
본 발명은 하나의 관점은 폴리카보네이트에 관한 것이다. 상기 폴리카보네이트는 하기 화학식 1, 화학식 2 및 화학식 3을 반복단위로 포함한다:
[화학식 1]
Figure PCTKR2011009684-appb-I000001
(상기에서, R1및 R2는 각각 독립적으로 치환 또는 비치환된 C1 내지 C6 알킬기, 치환 또는 비치환된 C3 내지 C6 사이클로알킬기, 치환 또는 비치환된 C6 내지 C12의 아릴기 또는 할로겐 원자이며, a 및 b는 각각 독립적으로 0 내지 4의 정수이다.)
[화학식 2]
Figure PCTKR2011009684-appb-I000002
(상기에서, R1및 R2는 각각 독립적으로 치환 또는 비치환된 C1 내지 C6 알킬기, 치환 또는 비치환된 C3 내지 C6 사이클로알킬기, 치환 또는 비치환된 C6 내지 C12의 아릴기 또는 할로겐 원자이며, a 및 b는 각각 독립적으로 0 내지 4의 정수이다.)
[화학식 3]
Figure PCTKR2011009684-appb-I000003
(상기에서, Q 는 치환 또는 비치환된 C5 내지 C10 사이클로 알킬기이며, a 및 b는 각각 독립적으로 0 내지 4의 정수이다.)
한 구체예에서, 상기 폴리카보네이트는 화학식 1(M1), 화학식 2(M2) 및 화학식 3(M3)의 몰비가 M1: M2: M3 = 약 30~90 mol%: 5~30 mol%: 5~40 mol%일 수 있다.
다른 구체예에서는 상기 폴리카보네이트는 화학식 1(M1), 화학식 2(M2) 및 화학식 3(M3)의 몰비가 M1: M2: M3 = 약 75~90 mol%: 5~15 mol%: 5~15 mol%일 수 있다.
또 다른 구체예에서는 상기 폴리카보네이트는 화학식 1(M1), 화학식 2(M2) 및 화학식 3(M3)의 몰비가 M1: M2: M3 = 약 30~80 mol%: 10~30 mol%: 10~40 mol%일 수 있다.
구체예에서 상기 폴리카보네이트는 화학식 1(M1), 화학식 2(M2) 및 화학식 3(M3)의 몰비가 하기 조건을 만족한다:
M1 > M2 + M3
M2 ≤ M3
한 구체예에서, 상기 폴리카보네이트는 유리전이온도가 135 내지 160℃ 이고, 굴절률이 약 1.58 내지 약 1.59 이며, 1/8" 두께에서 ASTM D256 에 의한 아이조드 노치 상온충격강도가 약 65 내지 약 95 kg·cm/cm일 수 있다.
다른 구체예에서, 상기 폴리카보네이트는 1/8" 두께에서 ASTM D542 에 의한 아이조드 노치 -30℃ 충격강도가 약 55 내지 약 85 kg·cm/cm일 수 있다.
상기 폴리카보네이트는 하기 화학식 4로 표시되는 술폰산 화합물을 포함할 수 있다:
[화학식 4]
Figure PCTKR2011009684-appb-I000004
(상기 식에서 R9는 치환 또는 비치환된 C1 내지 C20 알킬기이고, R10은 치환 또는 비치환된 C11 내지 C20 알킬렌기이며, n은 0~5의 정수이다).
본 발명의 다른 관점은 폴리카보네이트의 제조방법에 관한 것이다. 상기 방법은 하기 화학식 1-1, 화학식 2-1 및 화학식 3-1로 표시되는 디올을 디아릴카보네이트와 에스테르 교환반응시키는 단계를 포함한다:
[화학식 1-1]
Figure PCTKR2011009684-appb-I000005
(상기에서, R1및 R2는 각각 독립적으로 치환 또는 비치환된 C1 내지 C6 알킬기, 치환 또는 비치환된 C3 내지 C6 사이클로알킬기, 치환 또는 비치환된 C6 내지 C12의 아릴기 또는 할로겐 원자이며, a 및 b는 각각 독립적으로 0 내지 4의 정수이다.)
[화학식 2-1]
Figure PCTKR2011009684-appb-I000006
(상기에서, R1및 R2는 각각 독립적으로 치환 또는 비치환된 C1 내지 C6 알킬기, 치환 또는 비치환된 C3 내지 C6 사이클로알킬기, 치환 또는 비치환된 C6 내지 C12의 아릴기 또는 할로겐 원자이며, a 및 b는 각각 독립적으로 0 내지 4의 정수이다.)
[화학식 3-1]
Figure PCTKR2011009684-appb-I000007
(상기에서, Q 는 치환 또는 비치환된 C5 내지 C10 사이클로 알킬기이며, a 및 b는 각각 독립적으로 0 내지 4의 정수이다.)
구체예에서는 상기 화학식 1-1, 화학식 2-1 및 화학식 3-1의 몰비가 약 30~90 mol%: 5~30 mol%: 5~40 mol%일 수 있다.
본 발명은 기존 폴리카보네이트 대비 충격특성의 저하없이 내화학성과 유동성, 투명성, 상온/저온 충격강도 및 내열성이 우수한 폴리카보네이트 및 그 제조방법을 제공하는 발명의 효과를 갖는다.
본 발명의 폴리카보네이트는 하기 화학식 1-1, 화학식 2-1 및 화학식 3-1로 표시되는 디올을 디아릴카보네이트와 에스테르 교환반응시켜 제조된다.
[화학식 1-1]
Figure PCTKR2011009684-appb-I000008
(상기에서, R1및 R2는 각각 독립적으로 치환 또는 비치환된 C1 내지 C6 알킬기, 치환 또는 비치환된 C3 내지 C6 사이클로알킬기, 치환 또는 비치환된 C6 내지 C12의 아릴기 또는 할로겐 원자이며, a 및 b는 각각 독립적으로 0 내지 4의 정수이다.)
[화학식 2-1]
Figure PCTKR2011009684-appb-I000009
(상기에서, R1및 R2는 각각 독립적으로 치환 또는 비치환된 C1 내지 C6 알킬기, 치환 또는 비치환된 C3 내지 C6 사이클로알킬기, 치환 또는 비치환된 C6 내지 C12의 아릴기 또는 할로겐 원자이며, a 및 b는 각각 독립적으로 0 내지 4의 정수이다.)
[화학식 3-1]
(상기에서, Q 는 치환 또는 비치환된 C5 내지 C10 사이클로 알킬기이며, a 및 b는 각각 독립적으로 0 내지 4의 정수이다.)
상기 화학식 1-1의 예로는 2,2-비스-(4-히드록시페닐)-프로판, 2,2-비스-(3,5-디메틸-4-히드록시페닐)-프로판, 2,2-비스-(3,5-디이소프로필-4-히드록시페닐)-프로판 등이 있으며, 이중 바람직하게는 비스페놀-A라고도 불리는 2,2-비스-(4-히드록시페닐)-프로판이다.
상기 화학식 2-1의 예로는 4,4'-비페놀, 2,2'-디메틸 4,4'-비페닐디올, 3,3-디메틸 4,4-디하이드록시 비페닐, 2,2',6,6',-테트라메틸-4,4'-비페놀 등이 있다. 이중 바람직하게는 4,4'-비페놀이다.
상기 화학식 3-1의 예로는 1,2-시클로펜탄디올, 1,3-시클로펜탄디올, 1,2-시클로헥산디올, 1,3-시클로헥산디올, 1,4-시클로헥산디올, 1,2-시클로헥산디메탄올, 1,3-시클로헥산디메탄올, 1,4-시클로헥산디메탄올, 1,2-시클로헵탄디올, 1,3-시클로헵탄디올, 1,4-시클로헵탄디올, 1,2-시클로옥탄디올, 1,3-시클로옥탄디올, 1,4-시클로옥탄디올 등이 있다. 이중 바람직하게는 1,4-시클로헥산디메탄올이다.
구체예에서는 상기 화학식 1-1, 화학식 2-1 및 화학식 3-1의 몰비가 약 30~90 mol%: 5~30 mol%: 5~40 mol%일 수 있다. 상기 범위에서 충격강도, 내화학성 및 유동성의 물성 발란스를 얻을 수 있다.
상기 디아릴카보네이트로는 디페닐 카보네이트, 디토릴 카보네이트, 비스(클로로페닐) 카보네이트, m-크레실 카보네이트, 디나프틸카보네이트, 비스(디페닐) 카보네이트, 디에틸 카보네이트, 디메틸 카보네이트, 디부틸 카보네이트, 디시클로헥실 카보네이트 등을 들 수 있으며, 반드시 이에 제한되는 것은 아니다. 이들은 단독 또는 2종 이상 사용될 수 있으며, 이중 바람직하게는 디페닐 카보네이트이다.
본 발명의 구체예에서는 상기 화학식 1-1, 화학식 2-1 및 화학식 3-1의 디올계 화합물은 상기 디아릴카보네이트에 대하여 약 0.6~1.0의 몰비, 바람직하게는 약 0.7~0.9의 몰비로 사용한다. 상기 몰비로 사용할 경우, 우수한 기계적 강도를 얻을 수 있다.
구체예에서는 상기 에스테르 교환 반응은 약 150 내지 약 300℃, 바람직하게는 약 160 내지 약 280℃, 더 바람직하게는 약 190 내지 약 260℃ 에서 감압 하에서 진행할 수 있다. 상기 온도범위에서 반응속도 및 부반응 감소에 있어 바람직하다.
또한, 상기 에스테르 교환 반응은 약 100 torr 이하, 예를 들면 약 75 torr 이하, 바람직하게는 약 30 torr 이하, 더 바람직하게는 약 1 torr 이하의 감압 조건에서 적어도 약 10분 이상, 바람직하게는 약 15 분 내지 약 24 시간, 더 바람직하게는 약 15분 내지 약 12 시간 진행하는 것이 반응속도 및 부반응 감소에 있어 바람직하다.
본 발명의 하나의 구체예에서는 약 160℃ 내지 약 260℃의 반응 온도에서 약 2 내지 약 9시간 동안 반응시켜 폴리카보네이트 수지를 제조한다.
상기 에스테르 교환 반응은 알칼리 금속 및 알칼리 토금속 촉매의 존재하에서 수행될 수 있다. 상기 알칼리 금속 및 알칼리 토금속 촉매의 예로는 LiOH, NaOH, KOH 등이 있으며, 반드시 이에 제한되는 것은 아니다. 이들은 단독으로 사용하거나 2종 이상 혼합하여 사용될 수 있다. 상기 촉매의 함량은 사용되는 방향족 디히드록시 화합물의 양에 의해서 결정될 수 있다. 본 발명의 하나의 구체예에서는 방향족 디히드록시 화합물 1몰당 약 1×10-8내지 1×10-3몰의 범위에서 사용될 수 있다. 상기 함량범위에서 충분한 반응성 및 부반응에 의한 부산물 생성이 최소화 되어 열안정성 및 색조안정성이 개선되는 효과가 나타날 수 있다.
상기 반응이 완료되어 생성된 중합물에 상기 화학식 4로 표시되는 술폰산 에스테르 화합물 또는 이들의 혼합물을 투입하여 촉매의 잔류 활성을 제거할 수 있다.
[화학식 4]
Figure PCTKR2011009684-appb-I000011
(상기 식에서 R9는 치환 또는 비치환된 C1 내지 C20 알킬기이고, R10은 치환 또는 비치환된 C11 내지 C20 알킬렌기이며, n은 0~5의 정수이다).
상기 화학식 4의 예로는 도데실 p-톨루엔 술폰산 에스테르, 옥타데실 p-톨루엔 술폰산 에스테르, 도데실 (도데실벤젠) 술폰산 에스테르, 옥타데실 (도데실벤젠) 술폰산 에스테르 등이 있다.
본 발명의 구체예에서는 상기 술폰산 에스테르 화합물은 단량체 100 중량부에 대하여 약 0.0001~0.001 중량부, 바람직하게는 약 0.0003~0.0008 중량부로 투입할 수 있다. 상기 범위에서 열안정성이나 내가수분해성이 우수하다.
한 구체예에서는 반응이 완료된 폴리카보네이트에 상기 술폰산 에스테르 화합물을 반응기에 그대로 투입하여 in-situ 반응으로 제조할 수 있다. 다른 구체예에서는 상기 에스테르 교환반응에 의해 생성된 폴리카보네이트와 술폰산 에스테르 화합물을 압출단계에서 혼합할 수 있다. 반응후 생성된 폴리카보네이트를 압출기로 이송한 후, 압출기에 상기 술폰산 에스테르 화합물을 투입하여 압출함으로서 펠렛형태로 제조될 수 있다. 또한 상기 술폰산 에스테르 화합물의 투입시 통상의 첨가제와 함께 투입하여 압출될 수 있다. 상기 첨가제는 난연제, 항균제, 이형제, 열안정제, 산화방지제, 광안정제, 상용화제, 염료, 무기물 첨가제, 충전제, 가소제, 충격보강제, 혼화제, 착색제, 안정제, 활제, 정전기방지제, 안료, 내후제, 자외선 차단제 등이 사용될 수 있으며, 반드시 이에 제한되는 것은 아니다. 이들은 단독 또는 2종 이상의 혼합물로 사용될 수 있다.
상기의 방법으로 제조된 폴리케보네이트는 하기 화학식 1, 화학식 2 및 화학식 3을 반복단위로 포함한다:
[화학식 1]
Figure PCTKR2011009684-appb-I000012
(상기에서, R1및 R2는 각각 독립적으로 치환 또는 비치환된 C1 내지 C6 알킬기, 치환 또는 비치환된 C3 내지 C6 사이클로알킬기, 치환 또는 비치환된 C6 내지 C12의 아릴기 또는 할로겐 원자이며, a 및 b는 각각 독립적으로 0 내지 4의 정수이다.)
[화학식 2]
Figure PCTKR2011009684-appb-I000013
(상기에서, R1및 R2는 각각 독립적으로 치환 또는 비치환된 C1 내지 C6 알킬기, 치환 또는 비치환된 C3 내지 C6 사이클로알킬기, 치환 또는 비치환된 C6 내지 C12의 아릴기 또는 할로겐 원자이며, a 및 b는 각각 독립적으로 0 내지 4의 정수이다.)
[화학식 3]
Figure PCTKR2011009684-appb-I000014
(상기에서, Q 는 치환 또는 비치환된 C5 내지 C10 사이클로 알킬기이며, a 및 b는 각각 독립적으로 0 내지 4의 정수이다.)
한 구체예에서, 상기 폴리카보네이트는 화학식 1(M1), 화학식 2(M2) 및 화학식 3(M3)의 몰비가 M1: M2: M3 = 약 30~90 mol%: 5~30 mol%: 5~40 mol%일 수 있다.
다른 구체예에서는 상기 폴리카보네이트는 화학식 1(M1), 화학식 2(M2) 및 화학식 3(M3)의 몰비가 M1: M2: M3 = 약 75~90 mol%: 5~15 mol%: 5~15 mol%일 수 있다. 상기 범위에서 유동성, 충격강도 및 내화학성이 우수할 뿐만 아니라, 특히 우수한 내열성과 상온충격강도를 갖는다. 또한 낮은 굴절률을 확보할 수 있어 다른 수지와 블렌드시 우수한 상용성을 갖게 된다. 구체예에서는 상기 범위에서 유리전이온도가 135 내지 160℃이고, 굴절률이 약 1.58 내지 약 1.59 이며, 1/8" 두께에서 ASTM D256 에 의한 아이조드 노치 상온충격강도가 약 65 내지 약 95 kg·cm/cm일 수 있다.
또 다른 구체예에서는 상기 폴리카보네이트는 화학식 1(M1), 화학식 2(M2) 및 화학식 3(M3)의 몰비가 M1: M2: M3 = 약 30~80 mol%: 10~30 mol%: 10~40 mol%일 수 있다. 상기 범위에서는 유동성, 충격강도 및 내화학성이 우수할 뿐만 아니라, 특히 우수한 실용유동성과 저온충격강도 및 내화학성을 가질 수 있다. 구체예에서, 상기 범위에서 폴리카보네이트는 1/8" 두께에서 ASTM D542 에 의한 아이조드 노치 -30℃ 충격강도가 약 55 내지 약 85 kg·cm/cm일 수 있다.
바람직한 구체예에서 상기 폴리카보네이트는 화학식 1(M1), 화학식 2(M2) 및 화학식 3(M3)의 몰비가 하기 조건을 만족한다:
M1 ≥ M2
M2 ≤ M3
바람직하게는 M1 > M2이며, 더욱 바람직하게는 M1 > M2 + M3 이다. 이 경우 내열성과 상온충격강도가 특히 우수하다.
또한, M2과 M3의 몰비는 약 1: 1 내지 1: 2 일 수 있다. 상기 범위에서 특히 우수한 내화학성을 갖는다.
본 발명에 의해 제조된 폴리카보네이트 수지는 내화학성, 유동성 및 충격강도가 발란스를 가지면서 우수하므로 다양한 제품에 적용될 수 있다. 예를 들면 자동차, 기계부품, 전기전자 부품, 컴퓨터 등의 사무기기, 또는 잡화 등의 용도로 사용될 수 있다. 특히 텔레비전, 컴퓨터, 프린터, 세탁기, 카셋트 플레이어, 오디오, 휴대폰, 게임기, 완구 등과 같은 전기전자 제품의 하우징뿐만 아니라 가습기, 스팀 청소기, 스팀 다리미등에 바람직하게 적용될 수 있다. 성형 방법은 통상의 방법을 적용할 수 있으며, 예컨대, 압출성형, 사출성형, 진공성형, 캐스팅 성형, 압출성형, 블로우성형, 캘린더 성형 등의 방법이 적용될 수 있다. 이들은 본 발명이 속하는 분야의 통상의 지식을 가진 자에 의해 잘 알려져 있다.
본 발명은 하기의 실시 예에 의하여 보다 더 잘 이해될 수 있으며, 하기의 실시예는 본 발명의 예시 목적을 위한 것이며 첨부된 특허 청구 범위에 의하여 한정하거나 제한하고자 하는 것은 아니다.
실시예 1
2,2-비스(4-히드록시페닐)프로판(비스페놀 A) 4.05kg, 4,4'-비페닐 0.19kg. 1,4-시클로헥산디메탄올 0.14kg 디페닐카보네이트 4.35kg, KOH 150ppb(비스페놀 A 1mol 대비)를 반응기에 차례로 첨가한 후, 질소를 사용하여 반응기 내의 산소를 제거하였다. 반응기의 온도를 160℃로 올리고 190℃까지 다시 승온시켜 6시간 동안 반응시켰다. 6시간 후 반응기의 온도를 210℃까지 다시 승온한 후 100torr의 압력에서 1시간 유지하였다. 반응기의 온도를 260℃로 승온시키고 20torr의 압력에서 1시간 유지한 후 압력을 0.5torr까지 낮춰 1시간 유지하였다. 이후 용융 상태의 중합체에 도데실 p-톨루엔 술폰산 에스테르 0.0005phr, 옥타데실 3-(3,5-디-터트-4-히드록시페닐)프로피오네이트 0.03phr, 트리스(2,4-디-터트-부틸페닐)포스페이트 0.05phr을 첨가하고 약 10분간 균일하게 혼합하였다.
실시예 2
2,2-비스(4-히드록시페닐)프로판(비스페놀 A) 3.83kg, 4,4'-비페닐 0.19kg, 1,4-시클로헥산디메탄올 0.28kg 디페닐카보네이트 4.35kg, KOH 150ppb(비스페놀 A 1mol 대비)를 반응기에 차례로 첨가한 후, 질소를 사용하여 반응기 내의 산소를 제거하였다. 이후 중합은 실시예 1과 동일하게 진행하였다.
실시예 3
2,2-비스(4-히드록시페닐)프로판(비스페놀 A) 3.60kg, 4,4'-비페닐 0.37kg. 1,4-시클로헥산디메탄올 0.28kg 디페닐카보네이트 4.35kg, KOH 150ppb(비스페놀 A 1mol 대비)를 반응기에 차례로 첨가한 후, 질소를 사용하여 반응기 내의 산소를 제거하였다. 이후 중합은 실시예 1과 동일하게 진행하였다.
실시예 4
2,2-비스(4-히드록시페닐)프로판(비스페놀 A) 3.15kg, 4,4'-비페닐 0.37kg. 1,4-시클로헥산디메탄올 0.57kg 디페닐카보네이트 4.35kg, KOH 150ppb(비스페놀 A 1mol 대비)를 반응기에 차례로 첨가한 후, 질소를 사용하여 반응기 내의 산소를 제거하였다. 이후 중합은 실시예 1과 동일하게 진행하였다.
실시예 5
2,2-비스(4-히드록시페닐)프로판(비스페놀 A) 2.25kg, 4,4'-비페닐 0.74kg. 1,4-시클로헥산디메탄올 0.85kg 디페닐카보네이트 4.35kg, KOH 150ppb(비스페놀 A 1mol 대비)를 반응기에 차례로 첨가한 후, 질소를 사용하여 반응기 내의 산소를 제거하였다. 이후 중합은 실시예 1과 동일하게 진행하였다.
실시예 6
2,2-비스(4-히드록시페닐)프로판(비스페놀 A) 1.35kg, 4,4'-비페닐 1.11kg. 1,4-시클로헥산디메탄올 0.85kg 디페닐카보네이트 1.13kg, KOH 150ppb(비스페놀 A 1mol 대비)를 반응기에 차례로 첨가한 후, 질소를 사용하여 반응기 내의 산소를 제거하였다. 이후 중합은 실시예 1과 동일하게 진행하였다.
비교예 1
2,2-비스(4-히드록시페닐)프로판(비스페놀 A) 4.5kg, 디페닐카보네이트 4.35kg, KOH 100ppb(비스페놀 A 1mol 대비)를 반응기에 차례로 첨가한 후, 질소를 사용하여 반응기 내의 산소를 제거하였다. 반응기의 온도를 160℃로 올리고 190℃까지 다시 승온시켜 6시간 동안 반응시켰다. 6시간 후 반응기의 온도를 220℃까지 다시 승온한 후 70torr의 압력에서 1시간 유지하였다. 반응기의 온도를 260℃로 승온시키고 20torr의 압력에서 1시간 유지한 후 압력을 0.5torr까지 낮춰 1시간 유지하였다. 이후 용융 상태의 중합체에 도데실 p-톨루엔 술폰산 에스테르 0.0005phr, 옥타데실 3-(3,5-디-터트-4-히드록시페닐)프로피오네이트 0.03phr, 트리스(2,4-디-터트-부틸페닐)포스페이트 0.05phr을 첨가하고 약 10분간 균일하게 혼합하였다.
비교예 2
2,2-비스(4-히드록시페닐)프로판(비스페놀 A) 3.83kg, 4,4'-비페닐 0.56kg. 디페닐카보네이트 4.35kg, KOH 100ppb(비스페놀 A 1mol 대비)를 반응기에 차례로 첨가한 후, 질소를 사용하여 반응기 내의 산소를 제거하였다. 이후 중합은 비교예 1과 동일하게 진행하였다.
비교예 3
2,2-비스(4-히드록시페닐)프로판(비스페놀 A) 3.15kg, 4,4'-비페닐 1.11kg. 디페닐카보네이트 4.35kg, KOH 150ppb(비스페놀 A 1mol 대비)를 반응기에 차례로 첨가한 후, 질소를 사용하여 반응기 내의 산소를 제거하였다. 이후 중합은 비교예 1과 동일하게 진행하였다.
비교예 4
2,2-비스(4-히드록시페닐)프로판(비스페놀 A) 4.05kg, 1,4-시클로헥산디메탄올 0.28kg 디페닐카보네이트 4.35kg, KOH 150ppb(비스페놀 A 1mol 대비)를 반응기에 차례로 첨가한 후, 질소를 사용하여 반응기 내의 산소를 제거하였다. 이후 중합은 실시예 1과 동일하게 진행하였다.
비교예 5
2,2-비스(4-히드록시페닐)프로판(비스페놀 A) 3.15kg, 1,4-시클로헥산디메탄올 0.85kg 디페닐카보네이트 4.35kg, KOH 150ppb(비스페놀 A 1mol 대비)를 반응기에 차례로 첨가한 후, 질소를 사용하여 반응기 내의 산소를 제거하였다. 이후 중합은 실시예 1과 동일하게 진행하였다.
표 1
실시예 비교예
1 2 3 4 5 6 1 2 3 4 5
BPA (mol%) 90 85 80 70 50 30 100 85 70 90 70
BP (mol%) 5 5 10 10 20 30 - 15 30 - -
CHDM (mol%) 5 10 10 20 30 40 - - - 10 30
산화방지제(phr) 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
인계열안정제(phr) 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
상기 실시예와 비교예에서 제조한 폴리카보네이트 수지를 L/D=36, Φ=32인 이축 압출기에서 270℃의 온도에서 압출하고 펠렛타이저를 이용하여 펠렛으로 제조하였다. 제조한 펠렛에 대해 하기의 방법으로 물성을 측정하고, 그 결과를 표 2에 나타내었다.
물성 평가 방법
(1) 멜트인덱스(MI)(g/10min) : 유동지수 측정기(제조사 : TOYOSEIKI, 모델명 : F-W01)를 이용하여 250℃, 10kg하중을 이용하여 측정하였다.
(2)유리전이온도(℃): DSC를 이용하여 분당 10℃ 승온 속도로 측정하였다(모델명 : Q100, TA INSTRUMENTS)
(3) 굴절률: ASTM D257 규격에 의하여 측정하였다.
(4) 실용유동(cm): 사출기(DHC 120WD, (주)동신유압, 120톤)을 이용하여 290℃ 및 금형온도 80℃에서 2mm 두께를 가지는 나선형 금형에서 실제 흘러간 거리(cm)를 측정하였다.
(5)상온충격강도(kg·cm/cm): 제조한 펠렛을 사출기(DHC 120WD, (주)동신유압, 120톤)를 이용하여 성형온도 270℃ 및 금형온도 70℃의 조건에서 1/8" 아이조드 시편을 제조하고, ASTM D-256(1/8", notched) 평가 방법에 따라 평가하였다.
(6)저온충격강도(kg·cm/cm): ASTM D542 평가방법에 의하여 1/8" 아이조드 시편를 만들어 -30℃에서 평가하였다.
(7) 내화학성:
*알콜류에 대한 내화학성: ASTM D638의 규격에 맞는 인장시편을 사출하여 내환경응력균열성(Environmental Stress Crack Resistance) 기준 ASTM D543에 따라 2.1% 스트레인(Strain)을 가한 상태에서 메탄올과 이소프로필알콜을 떨어 뜨린후 10분 후 굴곡면에 나타난 시편의 crack 상태를 관찰하였다 (◎: crack 무, ○: 미세 crack, △: crack 다량, X: crack으로 haze 관찰됨)
*도장액 침지 후 투과율 : 폴리카보네이트 수지의 하도용 희석제(thinner, 주요성분 : 메틸이소부틸케톤, 씨클로헥사논, 2-에톡시 에탄올)에 2.5mm 평판 시편을 2분 간 침지 후, 80도 에서 30분간 건조한 후 헤이즈미터(BYK-Gardner, Gmbh 4725)를 이용하여 가시광선 투과율(%)을 측정하였다.
표 2
실시예 비교예
1 2 3 4 5 6 1 2 3 4 5
MI 30 30 30 30 30 30 30 30 30 측정불가 측정불가
Tg (℃) 148 140 142 125 120 112 148 152 155 137 119
굴절률 1.585 1.586 1.588 1.588 1.592 1.596 1.584 1.590 1.595 1.582 1.578
실용유동(cm) 28.7 30.5 29.5 36.5 39.0 41.2 28.5 25 22 30.5 35.0
상온 충격 강도(1/8") 69 70 72 68 66 63 73 52 41 50 7
저온(-30℃)충격 강도(1/8") 14 36 65 63 64 61 13 42 39 12 6
내화학성 알콜류 X
도장액 침지 후 투과율(%) 80 88 88 88 88 88 <30 88 88 70 85
실시예 1~6 및 비교예 1~3은 멜트인덱스(MI)를 30 g/10min로 맞추어 실험하였다. 비교예 4~5는 250℃, 10kg하중 조건에서 MI 값이 측정을 할 수 없을 정도로 높게 나왔다. 실시예 1~6의 폴리카보네이트는 유동성, 상온 및 저온 충격강도와 내화학성 및 투과율이 모두 우수한 것을 알 수 있다. 이에 비해, BPA만 적용한 비교예 1은 내화학성이 현저히 떨어졌으며, 지환족 디올을 적용하지 않은 비교예 2-3은 상온충격강도 및 실용 유동이 떨어진 것을 알 수 있다. BP를 적용하지 않은 비교예 4-5는 실용유동은 우수하였지만 상온 및 저온 충격강도가 떨어졌으며, 특히 비교예 4는 내화학성도 저하된 것을 확인할 수 있다.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.

Claims (10)

1. 하기 화학식 1, 화학식 2 및 화학식 3을 반복단위로 포함하는 폴리카보네이트:
[화학식 1]
Figure PCTKR2011009684-appb-I000015
(상기에서, R1및 R2는 각각 독립적으로 치환 또는 비치환된 C1 내지 C6 알킬기, 치환 또는 비치환된 C3 내지 C6 사이클로알킬기, 치환 또는 비치환된 C6 내지 C12의 아릴기 또는 할로겐 원자이며, a 및 b는 각각 독립적으로 0 내지 4의 정수이다.)
[화학식 2]
Figure PCTKR2011009684-appb-I000016
(상기에서, R1및 R2는 각각 독립적으로 치환 또는 비치환된 C1 내지 C6 알킬기, 치환 또는 비치환된 C3 내지 C6 사이클로알킬기, 치환 또는 비치환된 C6 내지 C12의 아릴기 또는 할로겐 원자이며, a 및 b는 각각 독립적으로 0 내지 4의 정수이다.)
[화학식 3]
Figure PCTKR2011009684-appb-I000017
(상기에서, Q 는 치환 또는 비치환된 C5 내지 C10 사이클로 알킬기이며, a 및 b는 각각 독립적으로 0 내지 4의 정수이다.)
제1항에 있어서, 상기 폴리카보네이트는 화학식 1(M1), 화학식 2(M2) 및 화학식 3(M3)의 몰비가 M1: M2: M3 = 약 30~90 mol%: 5~30 mol%: 5~40 mol%인 것을 특징으로 하는 폴리카보네이트.
제1항에 있어서, 상기 폴리카보네이트는 화학식 1(M1), 화학식 2(M2) 및 화학식 3(M3)의 몰비가 M1: M2: M3 = 약 75~90 mol%: 5~15 mol%: 5~15 mol%인 것을 특징으로 하는 폴리카보네이트.
제1항에 있어서, 상기 폴리카보네이트는 화학식 1(M1), 화학식 2(M2) 및 화학식 3(M3)의 몰비가 M1: M2: M3 = 약 30~80 mol%: 10~30 mol%: 10~40 mol%인 것을 특징으로 하는 폴리카보네이트.
제1항에 있어서, 상기 폴리카보네이트는 화학식 1(M1), 화학식 2(M2) 및 화학식 3(M3)의 몰비가 하기 조건을 만족하는 것을 특징으로 하는 폴리카보네이트:
M1 > M2 + M3
M2 ≤ M3
제3항에 있어서, 상기 폴리카보네이트는 유리전이온도가 135 내지 160℃ 이고, 굴절률이 약 1.58 내지 약 1.59 이며, 1/8" 두께에서 ASTM D256 에 의한 아이조드 노치 상온충격강도가 약 65 내지 약 95 kg·cm/cm인 것을 특징으로 하는 폴리카보네이트.
제4항에 있어서, 상기 폴리카보네이트는 1/8" 두께에서 ASTM D542 에 의한 아이조드 노치 -30℃ 충격강도가 약 55 내지 약 85 kg·cm/cm인 것을 특징으로 하는 폴리카보네이트.
제1항에 있어서, 상기 폴리카보네이트는 하기 화학식 4로 표시되는 술폰산 화합물을 포함하는 것을 특징으로 하는 폴리카보네이트:
[화학식 4]
Figure PCTKR2011009684-appb-I000018
(상기 식에서 R9는 치환 또는 비치환된 C1 내지 C20 알킬기이고, R10은 치환 또는 비치환된 C11 내지 C20 알킬렌기이며, n은 0~5의 정수이다).
하기 화학식 1-1, 화학식 2-1 및 화학식 3-1로 표시되는 디올을 디아릴카보네이트와 에스테르 교환반응시키는 단계를 포함하는 폴리카보네이트의 제조방법:
[화학식 1-1]
Figure PCTKR2011009684-appb-I000019
(상기에서, R1및 R2는 각각 독립적으로 치환 또는 비치환된 C1 내지 C6 알킬기, 치환 또는 비치환된 C3 내지 C6 사이클로알킬기, 치환 또는 비치환된 C6 내지 C12의 아릴기 또는 할로겐 원자이며, a 및 b는 각각 독립적으로 0 내지 4의 정수이다.)
[화학식 2-1]
Figure PCTKR2011009684-appb-I000020
(상기에서, R1및 R2는 각각 독립적으로 치환 또는 비치환된 C1 내지 C6 알킬기, 치환 또는 비치환된 C3 내지 C6 사이클로알킬기, 치환 또는 비치환된 C6 내지 C12의 아릴기 또는 할로겐 원자이며, a 및 b는 각각 독립적으로 0 내지 4의 정수이다.)
[화학식 3-1]
Figure PCTKR2011009684-appb-I000021
(상기에서, Q 는 치환 또는 비치환된 C5 내지 C10 사이클로 알킬기이며, a 및 b는 각각 독립적으로 0 내지 4의 정수이다.)
제9항에 있어서, 상기 화학식 1-1, 화학식 2-1 및 화학식 3-1의 몰비가 약 30~90 mol%: 5~30 mol%: 5~40 mol%인 것을 특징으로 하는 폴리카보네이트의 제조방법.
PCT/KR2011/009684 2011-09-30 2011-12-15 폴리카보네이트 및 그의 제조 방법 WO2013047955A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11873052.2A EP2762516B1 (en) 2011-09-30 2011-12-15 Polycarbonate and method for preparing same
CN201180073855.1A CN103842405B (zh) 2011-09-30 2011-12-15 聚碳酸酯及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0099850 2011-09-30
KR20110099850A KR101489952B1 (ko) 2011-09-30 2011-09-30 폴리카보네이트 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2013047955A1 true WO2013047955A1 (ko) 2013-04-04

Family

ID=47989771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009684 WO2013047955A1 (ko) 2011-09-30 2011-12-15 폴리카보네이트 및 그의 제조 방법

Country Status (5)

Country Link
US (1) US8410240B1 (ko)
EP (1) EP2762516B1 (ko)
KR (1) KR101489952B1 (ko)
CN (1) CN103842405B (ko)
WO (1) WO2013047955A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101437140B1 (ko) * 2011-09-21 2014-09-02 제일모직주식회사 폴리카보네이트 및 그 제조방법
KR101685245B1 (ko) * 2013-12-30 2016-12-09 롯데첨단소재(주) 공중합 폴리카보네이트 수지, 이의 제조방법 및 이를 포함하는 성형품
KR101714834B1 (ko) * 2014-04-30 2017-03-10 롯데첨단소재(주) 폴리카보네이트 수지, 그 제조방법 및 이를 포함하는 성형품
KR102036891B1 (ko) * 2014-05-26 2019-10-25 삼성전자주식회사 고분자 조성물, 성형품 및 그 제조 방법
JP6976715B2 (ja) 2017-05-23 2021-12-08 本州化学工業株式会社 芳香族ポリカーボネートオリゴマー固形体
CN109825055B (zh) * 2019-01-15 2021-06-11 金发科技股份有限公司 一种聚碳酸酯组合物及其制备方法
KR20210000860A (ko) 2019-06-26 2021-01-06 김경호 녹차커피차
JP2023539211A (ja) * 2020-10-16 2023-09-13 エルジー・ケム・リミテッド ポリカーボネートおよびその製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05339390A (ja) 1992-06-05 1993-12-21 Idemitsu Kosan Co Ltd ポリカーボネートフィルム
US5401826A (en) 1991-10-29 1995-03-28 General Electric Plastics Japan Method for the preparation, of copolymeric polycarbonates
JPH07199488A (ja) * 1994-01-10 1995-08-04 Konica Corp 電子写真感光体
JPH11349676A (ja) * 1998-06-10 1999-12-21 Mitsubishi Gas Chem Co Inc 芳香族−脂肪族共重合ポリカーボネート樹脂
JP2002226570A (ja) * 2001-02-05 2002-08-14 Teijin Chem Ltd ポリカーボネート樹脂共重合体およびプラスチックレンズ
JP2003090901A (ja) * 2001-07-09 2003-03-28 Teijin Chem Ltd プラスチックレンズ
KR20070071446A (ko) 2005-12-30 2007-07-04 제일모직주식회사 내화학성이 우수한 폴리카보네이트 수지 조성물
KR20090026359A (ko) 2006-07-12 2009-03-12 사빅 이노베이티브 플라스틱스 아이피 비.브이. 난연성 및 내화학성 열가소성 폴리카보네이트 조성물
KR20100022376A (ko) 2008-08-19 2010-03-02 제일모직주식회사 전기 전도성, 기계적 강도 및 내화학성이 우수한 열가소성 수지 조성물 및 플라스틱 성형품

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2827325A1 (de) * 1978-06-22 1980-01-10 Bayer Ag Verfahren zur herstellung von aliphatisch-aromatischen polycarbonaten mit diphenolcarbonat-endgruppen und ihre verwendung zur herstellung von thermoplastisch verarbeitbaren, hochmolekularen, segmentierten, aliphatisch-aromatischen polycarbonat-elastomeren
JP2536196B2 (ja) * 1989-11-08 1996-09-18 富士ゼロックス株式会社 電子写真感光体
JP3763310B2 (ja) * 1998-06-25 2006-04-05 富士ゼロックス株式会社 高分子量ポリカーボネートおよびその製造方法
ES2311018T3 (es) * 2000-07-11 2009-02-01 Teijin Chemicals, Ltd. Lente plastica.
JP2003055543A (ja) * 2001-08-16 2003-02-26 Mitsubishi Gas Chem Co Inc 芳香族−脂肪族共重合ポリカーボネート樹脂組成物
US20100209136A1 (en) * 2007-02-07 2010-08-19 Mitsubishi Chemical Corporation Coating fluid for electrophotographic photoreceptor, electrophotographic photoreceptor, and electrophotographic- photoreceptor cartridge
DE102007015948A1 (de) * 2007-04-03 2008-10-09 Bayer Materialscience Ag Modifizierte Polycarbonate, Polyestercarbonate und Polyester mit verbessertem Dehnverhalten und Flammwidrigkeit
US7848025B2 (en) * 2008-12-31 2010-12-07 Sabic Innovative Plastics Ip B.V. Transparent articles prepared from thermoplastic compositions having high flow and ductility, and method of preparing articles
KR101282709B1 (ko) * 2009-12-21 2013-07-05 제일모직주식회사 열안정성이 향상된 난연 폴리카보네이트계 수지조성물 및 그 제조방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5401826A (en) 1991-10-29 1995-03-28 General Electric Plastics Japan Method for the preparation, of copolymeric polycarbonates
JPH05339390A (ja) 1992-06-05 1993-12-21 Idemitsu Kosan Co Ltd ポリカーボネートフィルム
JPH07199488A (ja) * 1994-01-10 1995-08-04 Konica Corp 電子写真感光体
JPH11349676A (ja) * 1998-06-10 1999-12-21 Mitsubishi Gas Chem Co Inc 芳香族−脂肪族共重合ポリカーボネート樹脂
JP2002226570A (ja) * 2001-02-05 2002-08-14 Teijin Chem Ltd ポリカーボネート樹脂共重合体およびプラスチックレンズ
JP2003090901A (ja) * 2001-07-09 2003-03-28 Teijin Chem Ltd プラスチックレンズ
KR20070071446A (ko) 2005-12-30 2007-07-04 제일모직주식회사 내화학성이 우수한 폴리카보네이트 수지 조성물
KR20090026359A (ko) 2006-07-12 2009-03-12 사빅 이노베이티브 플라스틱스 아이피 비.브이. 난연성 및 내화학성 열가소성 폴리카보네이트 조성물
KR20100022376A (ko) 2008-08-19 2010-03-02 제일모직주식회사 전기 전도성, 기계적 강도 및 내화학성이 우수한 열가소성 수지 조성물 및 플라스틱 성형품

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2762516A4 *

Also Published As

Publication number Publication date
CN103842405B (zh) 2016-04-13
CN103842405A (zh) 2014-06-04
KR20130035515A (ko) 2013-04-09
US20130085252A1 (en) 2013-04-04
EP2762516B1 (en) 2016-10-12
KR101489952B1 (ko) 2015-02-04
EP2762516A1 (en) 2014-08-06
EP2762516A4 (en) 2015-05-27
US8410240B1 (en) 2013-04-02

Similar Documents

Publication Publication Date Title
WO2013047955A1 (ko) 폴리카보네이트 및 그의 제조 방법
WO2015002429A1 (ko) 히드록시 캡핑 단량체, 이의 폴리카보네이트 및 이를 포함하는 물품
WO2015002427A1 (ko) 폴리오르가노실록산 화합물, 제조방법 및 이를 포함하는 코폴리카보네이트 수지
WO2015041441A1 (ko) 코폴리카보네이트 수지 및 이를 포함하는 물품
WO2013115538A1 (ko) 비할로겐 난연 고강성 폴리카보네이트 수지 조성물
WO2012015109A1 (ko) 내스크래치성과 내충격성이 우수한 난연 폴리카보네이트 수지 조성물 및 이를 이용한 성형품
WO2012015128A1 (ko) 난연성 및 내열성이 우수한 투명 열가소성 수지 조성물
WO2012060516A1 (ko) 폴리카보네이트 수지 및 상기 폴리카보네이트 수지를 포함하는 열가소성 수지 조성물
WO2012060515A1 (ko) 난연 내스크래치성 폴리카보네이트 수지 조성물
WO2015030535A1 (ko) 말단 변성 폴리옥시알킬렌 글리콜 및 이를 포함하는 광학특성이 개선된 폴리카보네이트 수지 조성물
WO2014092243A1 (ko) 폴리카보네이트 수지, 그 제조방법 및 이를 포함하는 성형품
WO2013077490A1 (ko) 폴리카보네이트, 그 제조방법 및 이를 포함하는 광학필름
WO2012091308A2 (ko) 폴리카보네이트-폴리실록산 공중합체 및 그의 제조 방법
WO2013100288A1 (ko) 분지상 폴리카보네이트-폴리실록산 공중합체 및 그 제조방법
WO2016195312A1 (ko) 폴리카보네이트 수지 및 이의 제조방법
WO2013042827A1 (ko) 폴리카보네이트 및 그 제조방법
WO2013100303A1 (ko) 고광택 폴리카보네이트계 수지 조성물 및 그 성형품
WO2023200247A1 (ko) 재활용 플라스틱 합성용 단량체 조성물, 이의 제조방법, 그리고 이를 이용한 재활용 플라스틱, 및 성형품
WO2023200244A1 (ko) 재활용 플라스틱 합성용 단량체 조성물, 이의 제조방법, 그리고 이를 이용한 재활용 플라스틱, 및 성형품
WO2016137065A1 (ko) 폴리에스테르카보네이트 수지, 이의 제조방법 및 이를 포함하는 성형품
WO2015102173A1 (ko) 공중합 폴리카보네이트 수지, 이의 제조방법 및 이를 포함하는 성형품
WO2023234584A1 (ko) 폴리카보네이트 공중합체
WO2023018136A1 (ko) 폴리카보네이트 공중합체
WO2022260417A1 (ko) 폴리카보네이트 공중합체 및 이의 제조 방법
WO2021045390A1 (ko) 코폴리카보네이트 및 이를 포함하는 폴리카보네이트 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11873052

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011873052

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011873052

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE