WO2021045390A1 - 코폴리카보네이트 및 이를 포함하는 폴리카보네이트 조성물 - Google Patents

코폴리카보네이트 및 이를 포함하는 폴리카보네이트 조성물 Download PDF

Info

Publication number
WO2021045390A1
WO2021045390A1 PCT/KR2020/009961 KR2020009961W WO2021045390A1 WO 2021045390 A1 WO2021045390 A1 WO 2021045390A1 KR 2020009961 W KR2020009961 W KR 2020009961W WO 2021045390 A1 WO2021045390 A1 WO 2021045390A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
copolycarbonate
halogen
alkoxy
repeating unit
Prior art date
Application number
PCT/KR2020/009961
Other languages
English (en)
French (fr)
Inventor
황영영
손영욱
황대현
홍무호
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200093464A external-priority patent/KR102426547B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP20851275.6A priority Critical patent/EP3825344B1/en
Priority to JP2021512869A priority patent/JP7090804B2/ja
Priority to CN202080004839.6A priority patent/CN112789310B/zh
Priority to US17/276,678 priority patent/US11572439B2/en
Publication of WO2021045390A1 publication Critical patent/WO2021045390A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • C08G64/08Aromatic polycarbonates not containing aliphatic unsaturation containing atoms other than carbon, hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/18Block or graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates

Definitions

  • the present invention relates to a copolycarbonate and a polycarbonate composition comprising the same.
  • Polycarbonate is manufactured by condensation polymerization of an aromatic diol such as bisphenol A and a carbonate precursor such as phosgene, and has excellent impact strength, numerical stability, heat resistance and transparency, and has exterior materials for electric and electronic products, automobile parts, construction materials, optical parts, It is applied to a wide range of fields such as clothing materials.
  • aromatic diol such as bisphenol A
  • carbonate precursor such as phosgene
  • Polycarbonate has excellent impact properties and is also used as an exterior material for automobiles. Recently, customers' demand for new materials having excellent scratch resistance and weather resistance while exhibiting excellent impact properties like conventional polycarbonate is increasing.
  • the present invention provides a copolycarbonate having excellent impact resistance and remarkably improved weather resistance, and a polycarbonate composition comprising the same.
  • a copolycarbonate comprising a repeating unit represented by the following formula (1) and a repeating unit represented by the following formula (2).
  • R 1 to R 4 are each independently hydrogen, C 1-10 alkyl, C 1-10 alkoxy, or halogen,
  • Z is Beach and unsubstituted or phenyl-substituted C 1-10 alkylene, unsubstituted or C 1-10 alkyl substituted by a C 3-15 cycloalkylene, O, S, SO, SO 2, or CO, the
  • R 5 , R 6 , R 7 , R 8 and R 9 are each independently hydrogen; halogen; Allyl; C 1-15 alkyl unsubstituted or substituted with one or more selected from the group consisting of halogen, C 1-10 alkoxy and C 6-20 aryl; Halogen, C 1-10 alkoxy and substituted or unsubstituted by one or more selected from the group consisting of C 6-20 aryl C 1-10 alkoxy; Or halogen, C 1-15 alkyl and C 1-10 alkoxy substituted or unsubstituted C 6-20 aryl with one or more selected from the group consisting of,
  • R 10 is hydrogen, C 1-6 alkyl, halogen, hydroxy, C 1-6 alkoxy, or C 6-20 aryl,
  • Each X is independently C 1-10 alkylene, -(OCO)-(C 1-10 alkylene)-, or -(COO)-(C 1-10 alkylene)-,
  • Each Y is independently hydrogen, C 1-6 alkyl, halogen, hydroxy, C 1-6 alkoxy, or C 6-20 aryl,
  • L is C 3-10 alkylene
  • Ar 1 , Ar 2 and Ar 3 are each independently a C 6-20 arylene substituted or unsubstituted with one or more selected from the group consisting of halogen, C 1-15 alkyl and C 1-10 alkoxy,
  • n and m are each independently an integer of 1 to 999, and l is an integer of 0 to 999.
  • a polycarbonate composition including the copolycarbonate is provided.
  • the copolycarbonate according to an embodiment of the present invention has excellent impact resistance, particularly low temperature impact resistance, and excellent weather resistance. Accordingly, it is expected that the use of the copolycarbonate can provide an automotive exterior material that does not change physical properties even in an extreme environment.
  • a copolycarbonate comprising a repeating unit represented by the following formula (1) and a repeating unit represented by the following formula (2) is provided.
  • R 1 to R 4 are each independently hydrogen, C 1-10 alkyl, C 1-10 alkoxy, or halogen,
  • Z is Beach and unsubstituted or phenyl-substituted C 1-10 alkylene, unsubstituted or C 1-10 alkyl substituted by a C 3-15 cycloalkylene, O, S, SO, SO 2, or CO, the
  • R 5 , R 6 , R 7 , R 8 and R 9 are each independently hydrogen; halogen; Allyl; C 1-15 alkyl unsubstituted or substituted with one or more selected from the group consisting of halogen, C 1-10 alkoxy and C 6-20 aryl; Halogen, C 1-10 alkoxy and substituted or unsubstituted by one or more selected from the group consisting of C 6-20 aryl C 1-10 alkoxy; Or halogen, C 1-15 alkyl and C 1-10 alkoxy substituted or unsubstituted C 6-20 aryl with one or more selected from the group consisting of,
  • R 10 is hydrogen, C 1-6 alkyl, halogen, hydroxy, C 1-6 alkoxy, or C 6-20 aryl,
  • Each X is independently C 1-10 alkylene, -(OCO)-(C 1-10 alkylene)-, or -(COO)-(C 1-10 alkylene)-,
  • Each Y is independently hydrogen, C 1-6 alkyl, halogen, hydroxy, C 1-6 alkoxy, or C 6-20 aryl,
  • L is C 3-10 alkylene
  • Ar 1 , Ar 2 and Ar 3 are each independently a C 6-20 arylene substituted or unsubstituted with one or more selected from the group consisting of halogen, C 1-15 alkyl and C 1-10 alkoxy,
  • n and m are each independently an integer of 1 to 999, and l is an integer of 0 to 999.
  • the copolycarbonate refers to a polymer in which a polysiloxane structure in which an aromatic group connected to a side chain or a repeating unit connected by two or more aromatic groups connected through an ester group is introduced into the main chain of a polycarbonate, specifically represented by Formula 1 above. It includes a repeating unit and a repeating unit represented by Formula 2.
  • the main chain of the copolycarbonate is a repeating unit formed by reacting an aromatic diol compound and a carbonate precursor, and includes a repeating unit represented by Formula 1 above.
  • R 1 to R 4 are, for example, each independently hydrogen, methyl, methoxy, chloro, or bromo.
  • Z may be, for example, unsubstituted or phenyl-substituted linear or branched C 1-10 alkylene. Specifically, Z may be methylene, ethane-1,1-diyl, propane-2,2-diyl, butane-2,2-diyl, 1-phenylethane-1,1-diyl, or diphenylmethylene. In addition, in Formula 1, Z may be, for example, cyclohexane-1,1-diyl, O, S, SO, SO 2 , or CO.
  • the repeating unit represented by Formula 1 is bis(4-hydroxyphenyl)methane, bis(4-hydroxyphenyl)ether, bis(4-hydroxyphenyl)sulfone, bis(4-hydroxyphenyl)sulfoxide, Bis(4-hydroxyphenyl)sulfide, bis(4-hydroxyphenyl)ketone, 1,1-bis(4-hydroxyphenyl)ethane, bisphenol A, 2,2-bis(4-hydroxyphenyl)butane , 1,1-bis(4-hydroxyphenyl)cyclohexane, 2,2-bis(4-hydroxy-3,5-dibromophenyl)propane, 2,2-bis(4-hydroxy-3) ,5-dichlorophenyl)propane, 2,2-bis(4-hydroxy-3-bromophenyl)propane, 2,2-bis(4-hydroxy-3-chlorophenyl)propane, 2,2-bis (4-hydroxy-3-methylphenyl)propane, 2,2-bis(4-
  • the meaning of "derived from an aromatic diol compound” means that a hydroxy group of an aromatic diol compound reacts with a carbonate precursor to form a repeating unit represented by Formula 1 above.
  • a hydroxy group of an aromatic diol compound reacts with a carbonate precursor to form a repeating unit represented by Formula 1 above.
  • the repeating unit represented by Formula 1 is represented by the following Formula 1-1.
  • Examples of the carbonate precursors include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dicyclohexyl carbonate, diphenyl carbonate, ditolyl carbonate, bis(chlorophenyl) carbonate, di-m-cresyl carbonate, dinaphthyl carbonate, At least one selected from the group consisting of bis(diphenyl) carbonate, phosgene, triphosgene, diphosgene, bromophosgene, and bishaloformate may be used.
  • triphosgene or phosgene may be used.
  • the main chain of the copolycarbonate is a polysiloxane structure in which an aromatic group connected with an ester group or a repeating unit in which two or more aromatic groups are connected through an ester group in addition to the repeating unit represented by Formula 1 are introduced. Includes.
  • the copolycarbonate may exhibit excellent impact resistance, particularly low temperature impact resistance, by introducing a polysiloxane structure into the main chain, and may exhibit excellent chemical resistance.
  • an aromatic group connected with an ester group or a repeating unit in which two or more aromatic groups are connected through an ester group is introduced into the side chain of the polysiloxane structure, excellent impact resistance can be maintained and remarkably improved weather resistance can be exhibited.
  • the repeating unit represented by Chemical Formula 2 is represented by the following Chemical Formula 3 including a polysiloxane structure in which a hydroxy group is bonded to both ends and a repeating unit connected with an aromatic group or two or more aromatic groups connected through an ester group is introduced into the side chain. It may be formed by reacting a modified polyorganosiloxane with a carbonate precursor.
  • R 5 to R 10 , X, Y, L, Ar 1 to Ar 3 , m, n, and l are as defined in Formula 2.
  • the modified polyorganosiloxane represented by Formula 3 is, for example, a polysiloxane structure in which an aromatic group connected to an ester group or a repeating unit connected to two or more aromatic groups through an ester group as a repeating unit repeated n times is prepared, and then m As a repeating unit repeated twice, a polysiloxane structure in which the side chain is not modified is added to the polysiloxane structure in which the aromatic group connected with the ester group or the repeating unit in which two or more aromatic groups are connected through an ester group is introduced, and hydroxyphenyl is added to the polysiloxane structure thus prepared. It can be prepared by adding the containing end group.
  • a metal catalyst may be used to prepare the modified polyorganosiloxane.
  • a Pt catalyst may be used, and as a Pt catalyst, Ashby catalyst, Karstedt catalyst, Lamoreaux catalyst, Speier catalyst, PtCl 2 (COD), PtCl 2 One or more selected from the group consisting of (benzonitrile) 2 and H 2 PtBr 6 may be used.
  • R 5 , R 6 , R 7 , R 8 and R 9 are each independently hydrogen, methyl, ethyl, propyl, 3-phenylpropyl, 2-phenylpropyl, fluoro, chloro, bromo, io Also, it may be methoxy, ethoxy, propoxy, allyl, 2,2,2-trifluoroethyl, 3,3,3-trifluoropropyl, phenyl, or naphthyl. More specifically, R 5 , R 6 , R 7 , R 8 and R 9 may each independently be C 1-10 alkyl, C 1-6 alkyl, C 1-3 alkyl, or methyl.
  • R 10 may be hydrogen, methyl, ethyl, propyl, fluoro, chloro, bromo, iodo, hydroxy, methoxy, ethoxy, propoxy, or phenyl. More specifically, R 10 may be hydrogen or hydroxy.
  • each of X may independently be C 2-10 alkylene, -(OCO)-(C 2-10 alkylene)-, or -(COO)-(C 2-10 alkylene)-.
  • X may be C 2-5 alkylene, -(OCO)-(C 2-5 alkylene)-, or -(COO)-(C 2-5 alkylene)-, and more specifically, X may be propane-1,3-diyl.
  • each of Y may independently be hydrogen or methoxy.
  • L may be C 3-5 alkylene. More specifically, L may be propane-1,3-diyl.
  • Ar 1 , Ar 2 and Ar 3 are each independently benzenediyl, methylbenzenediyl, methoxybenzenediyl, dimethylbenzenediyl, dimethoxybenzenediyl, naphthalenediyl, methylnaphthalenediyl, methoxynaphthalenediyl, dimethyl It may be naphthalenediyl or dimethoxynaphthalenediyl. More specifically, Ar 1 , Ar 2 and Ar 3 may each independently be benzene-1,2-diyl, benzene-1,3-diyl, or benzene-1,4-diyl.
  • the repeating unit represented by Formula 2 may be represented by Formula 2-1 below.
  • R 5 to R 10 , X, Y, L, m, n, and l are as defined in Formula 2.
  • repeating unit represented by Formula 2 may be represented by Formula 2-2 below.
  • m and n are only for indicating the ratio of the repeating unit repeated m times and the repeating unit repeated n times, and the repeating unit repeated m times and repeating n times
  • the repeating units can be arranged randomly.
  • n and m may independently be an integer of 1 to 999 or an integer of 1 to 200.
  • n may be 10 or more, 15 or more, 20 or more, or 25 or more, 100 or less, 50 or less, 45 or less, 40 or less, 35 or less, or an integer of 30 or less
  • m is 2 or more, 3 or more , 5 or more, or 7 or more, and may be an integer of 100 or less, 50 or less, 25 or less, 15 or less, or 10 or less.
  • Formula 2 may be an integer of 0 to 200, an integer of 0 to 100, an integer of 0 to 50, an integer of 0 to 20, or an integer of 0 to 10.
  • the repeating unit represented by Chemical Formula 2 is 1 to 99% by weight, 1 to 80% by weight, 1 to 70% by weight, 1 to 60, based on the total weight of the repeating units represented by Chemical Formulas 1 and 2 It may be included in wt%, 1 to 50 wt%, 1 to 40 wt%, 1 to 30 wt%, 1 to 20 wt%, 3 to 20 wt%, or 5 to 20 wt%.
  • the copolycarbonate may be prepared by polymerizing a composition including an aromatic diol compound, a carbonate precursor, and a modified polyorganosiloxane represented by Chemical Formula 3.
  • the aromatic diol compound, the carbonate precursor, and the modified polyorganosiloxane represented by Chemical Formula 3 are as described above.
  • the aromatic diol compound and the modified polyorganosiloxane represented by Formula 3 may be used in an appropriate amount depending on the content of the repeating units represented by Formulas 1 and 2 to be introduced into the copolycarbonate.
  • the carbonate precursor may be used in the number of moles substantially equal to the aromatic diol compound and the modified polyorganosiloxane represented by Chemical Formula 3 above.
  • the polymerization is preferably performed by interfacial polymerization, and during interfacial polymerization, a polymerization reaction is possible at normal pressure and low temperature, and molecular weight control is easy.
  • the interfacial polymerization may include, for example, pre-polymerization and then adding a coupling agent and then polymerizing again, and in this case, a high molecular weight copolycarbonate may be obtained.
  • the polymerization temperature is preferably 0 °C to 40 °C, the reaction time is 10 minutes to 5 hours. In addition, it is preferable to maintain the pH of 9 or more or 11 or more during the reaction.
  • the solvent that can be used for the polymerization is not particularly limited as long as it is a solvent used for polymerization of copolycarbonate in the art, and for example, a halogenated hydrocarbon such as methylene chloride or chlorobenzene may be used.
  • the polymerization is preferably carried out in the presence of an acid binder, and an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide or an amine compound such as pyridine may be used as the acid binder.
  • an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide or an amine compound such as pyridine may be used as the acid binder.
  • C 1-20 alkylphenol may be used as the molecular weight control agent, and specific examples thereof are p-tert-butylphenol, p-cumylphenol, decylphenol, dodecylphenol, tetradecylphenol, hexadecylphenol, octadecylphenol, eico Silphenol, docosylphenol, or triacontylphenol.
  • the molecular weight modifier may be added before the polymerization initiation, during the polymerization initiation, or after the polymerization initiation.
  • the molecular weight modifier is, for example, 0.01 parts by weight or more, 0,1 parts by weight or more, or 1 part by weight or more, and includes 10 parts by weight or less, 6 parts by weight or less, or 5 parts by weight or less based on 100 parts by weight of the aromatic diol compound. And a desired molecular weight can be obtained within this range.
  • reactions such as triethylamine, tetra-n-butylammonium bromide, and tertiary amine compounds such as tetra-n-butylphosphonium bromide, quaternary ammonium compounds, quaternary phosphonium compounds, etc.
  • Additional accelerators can be used.
  • the copolycarbonate preferably has a weight average molecular weight (g/mol) of 1,000 to 100,000, more preferably 15,000 to 35,000. More preferably, the weight average molecular weight is 20,000 or more, 21,000 or more, 22,000 or more, 23,000 or more, 24,000 or more, 25,000 or more, 26,000 or more, 27,000 or more, or 28,000 or more. Further, the weight average molecular weight is 34,000 or less, 33,000 or less, or 32,000 or less.
  • a polycarbonate composition including the copolycarbonate is provided.
  • the polycarbonate composition may contain one or more, two or more, or three or more of the above-described copolycarbonates.
  • polycarbonate composition may further include a polycarbonate that does not contain a repeating unit represented by Formula 2.
  • the polycarbonate not including the repeating unit represented by Formula 2 may include, for example, a polycarbonate including at least one repeating unit represented by Formula 1; Or a repeating unit represented by the following formula 4 in which at least one repeating unit represented by Formula 1 and a repeating unit connected to an ester group or two or more aromatic groups connected to a side chain of the repeating unit of Formula 2 are not introduced. And polycarbonate containing.
  • R 5 ', R 6 ', R 7 ', R 8 ', R 9 ', X', Y', m'and n' are each of R 5 , R 6 , R 7 , R 8 , R of Formula 2 9 , X, Y, m and n are as defined, and R 11 is as defined for R 7'.
  • the polycarbonate composition may further include various additives known in the art to which the present invention pertains.
  • the polycarbonate composition has excellent impact resistance, particularly low temperature impact resistance, and excellent weather resistance. Accordingly, it is expected that the use of the composition can provide an automotive exterior material with no change in physical properties even in an extreme environment.
  • tetramethylcyclotetrasiloxane 9.62 g (40.0 mmol) was added, and 0.005 g (25 ppm) of Karlstedt's platinum catalyst was added and reacted at 90° C. for 1 hour, followed by 2-allylphenol. 1.49 g (11.1 mmol) was mixed and reacted for 3 hours. Then, 200 mL of a methylene chloride solvent was added at room temperature, and 4.60 g of 3-hydroxybenzoic acid was added dropwise.
  • TEA was removed by lowering the pH to 4 or less with 35% by weight of HCl aqueous solution, and the resulting polymer was washed 3 times with distilled water to adjust the pH of the resulting polymer to 6-7 neutral.
  • the polymer thus obtained was obtained by reprecipitation in a mixed solution of methanol and hexane, and then dried at 120° C. to obtain a final copolycarbonate.
  • the obtained copolycarbonate is a repeating unit represented by Chemical Formula 2, and contains about 10% by weight of the repeating unit derived from the modified polyorganosiloxane prepared in Preparation Example 1, based on the total repeating units, and PC Standard
  • the molecular weight was measured by GPC using and it was confirmed that the weight average molecular weight was 29,800 g/mol.
  • Example 1 a copolycarbonate was prepared in the same manner as in Example 1, except that the modified polyorganosiloxane prepared in Preparation Example 2 was used instead of the modified polyorganosiloxane prepared in Preparation Example 1.
  • the copolycarbonate was a repeating unit represented by Chemical Formula 2, and contained about 10% by weight of the repeating unit derived from the modified polyorganosiloxane prepared in Preparation Example 2 based on the total repeating units.
  • Example 1 a copolycarbonate was prepared in the same manner as in Example 1, except that the content of the modified polyorganosiloxane prepared in Preparation Example 1 was changed to 13.16 g instead of 26.30 g.
  • the copolycarbonate was a repeating unit represented by Chemical Formula 2, and contained about 5% by weight of the repeating unit derived from the modified polyorganosiloxane prepared in Preparation Example 1, based on the total repeating units.
  • Example 2 a copolycarbonate was prepared in the same manner as in Example 2, except that the content of the modified polyorganosiloxane prepared in Preparation Example 2 was changed to 13.16 g instead of 26.30 g.
  • the copolycarbonate was a repeating unit represented by Chemical Formula 2, and contained about 5% by weight of the repeating unit derived from the modified polyorganosiloxane prepared in Preparation Example 2, based on the total repeating units.
  • copolycarbonate prepared in Example 1 and the polycarbonate prepared in Comparative Example 1 were mixed in a weight ratio of 50:50 and pelletized using a twin screw extruder with a vent to prepare a polycarbonate composition.
  • copolycarbonate prepared in Example 2 and the polycarbonate prepared in Comparative Example 1 were mixed at a weight ratio of 50:50 and pelletized using a twin screw extruder with a vent to prepare a polycarbonate composition.
  • Example 1 a polycarbonate was prepared in the same manner as in Example 1, except that the modified polyorganosiloxane of Preparation Example 1 was not used.
  • Example 1 a copolycarbonate was prepared in the same manner as in Example 1, except that the modified polyorganosiloxane prepared in Preparation Example 3 was used instead of the modified polyorganosiloxane prepared in Preparation Example 1.
  • Weight average molecular weight (Mw) Measured by GPC using a PC standard using an Agilent 1200 series.
  • Fluidity (Melt Index; MI): It was measured according to ASTM D1238 (300°C, 1.2 kg condition).
  • Room temperature and low temperature impact strength According to ASTM D256 (1/8 inch, Notched Izod), room temperature and low temperature impact strength were measured at 23°C and -30°C, respectively.
  • Example 1 29,800 12.2 90.3 5.8 610 530 8.6
  • Example 2 30,300 11.9 90.4 5.4 650 490 7.8
  • Example 3 29,300 12.9 90.6 6.2 830 710 6.8
  • Example 4 29,500 13.0 90.3 6.1 820 730 5.6
  • Example 5 29,800 11.8 89.3 3.8 850 630 8.2
  • Example 6 30,000 11.7 89.5 4.2 860 680 6.7 Comparative Example 1 29,700 11.9 91.3 1.4 880 230 35.1 Comparative Example 2 30,100 11.2 90.1 5.5 640 510 28.3
  • Examples 1 to 6 use copolycarbonate containing repeating units represented by Chemical Formulas 1 and 2, while maintaining excellent general properties of the polycarbonate of Comparative Example 1, Comparative Example 1 Compared to that, it is confirmed that it has excellent impact resistance, particularly low temperature impact resistance, and shows remarkably improved weather resistance.
  • Comparative Example 2 did not exhibit the low-temperature impact resistance and weather resistance of the Example level by using a copolycarbonate that does not contain the repeating unit represented by Chemical Formula 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 코폴리카보네이트 및 이를 포함하는 폴리카보네이트 조성물에 관한 것이다. 상기 코폴리카보네이트는 내충격성 특히 저온 내충격성이 우수하며, 내후성이 우수하다. 이에 따라, 상기 코폴리카보네이트를 이용하면 극한의 환경에서도 물성 변화가 없는 자동차 외장 소재를 제공할 수 있을 것으로 기대된다.

Description

코폴리카보네이트 및 이를 포함하는 폴리카보네이트 조성물
[관련 출원(들)과의 상호 인용]
본 출원은 2019년 9월 2일자 한국 특허 출원 제 10-2019-0108427 호 및 2020년 7월 28일자 한국 특허 출원 제 10-2020-0093464 호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 코폴리카보네이트 및 이를 포함하는 폴리카보네이트 조성물에 관한 것이다.
폴리카보네이트는 비스페놀 A와 같은 방향족 디올과 포스겐과 같은 카보네이트 전구체를 축중합하여 제조되고, 우수한 충격강도, 수치안정성, 내열성 및 투명성 등을 가지며, 전기전자 제품의 외장재, 자동차 부품, 건축 소재, 광학 부품, 의류 소재 등 광범위한 분야에 적용된다.
이러한 폴리카보네이트에 대하여 최근 보다 다양한 분야에 적용하기 위해 2종 이상의 서로 다른 구조의 방향족 디올 화합물을 공중합하여 구조가 다른 단위체를 폴리카보네이트의 주쇄에 도입하여 원하는 물성을 얻고자 하는 연구가 많이 시도되고 있다.
폴리카보네이트는 충격성이 우수하여 자동차 외장 소재로도 사용되고 있는데, 최근 기존의 폴리카보네이트와 같은 우수한 충격성을 나타내면서도 내스크래치성, 내후성 등이 우수한 새로운 소재에 대한 고객의 요구가 증가하고 있는 추세이다.
본 발명은 내충격성이 우수하면서도 내후성이 현저히 향상된 코폴리카보네이트 및 이를 포함하는 폴리카보네이트 조성물을 제공한다.
본 발명의 일 구현예에 따르면, 하기 화학식 1로 표시되는 반복 단위 및 하기 화학식 2로 표시되는 반복 단위를 포함하는 코폴리카보네이트가 제공된다.
[화학식 1]
Figure PCTKR2020009961-appb-img-000001
상기 화학식 1에서,
R 1 내지 R 4는 각각 독립적으로 수소, C 1-10 알킬, C 1-10 알콕시, 또는 할로겐이고,
Z는 비치환되거나 또는 페닐로 치환된 C 1-10 알킬렌, 비치환되거나 또는 C 1-10 알킬로 치환된 C 3-15 시클로알킬렌, O, S, SO, SO 2, 또는 CO이고,
[화학식 2]
Figure PCTKR2020009961-appb-img-000002
상기 화학식 2에서,
R 5, R 6, R 7, R 8 및 R 9은 각각 독립적으로 수소; 할로겐; 알릴; 할로겐, C 1-10 알콕시 및 C 6-20 아릴로 이루어진 군에서 선택된 하나 이상으로 치환 또는 비치환된 C 1-15 알킬; 할로겐, C 1-10 알콕시 및 C 6-20 아릴로 이루어진 군에서 선택된 하나 이상으로 치환 또는 비치환된 C 1-10 알콕시; 또는 할로겐, C 1-15 알킬 및 C 1-10 알콕시로 이루어진 군에서 선택된 하나 이상으로 치환 또는 비치환된 C 6-20 아릴이고,
R 10은 수소, C 1-6 알킬, 할로겐, 히드록시, C 1-6 알콕시, 또는 C 6-20 아릴이고,
X는 각각 독립적으로 C 1-10 알킬렌, -(OCO)-(C 1-10 알킬렌)-, 또는 -(COO)-(C 1-10 알킬렌)-이고,
Y은 각각 독립적으로 수소, C 1-6 알킬, 할로겐, 히드록시, C 1-6 알콕시, 또는 C 6-20 아릴이고,
L은 C 3-10 알킬렌이고,
Ar 1, Ar 2 및 Ar 3는 각각 독립적으로 할로겐, C 1-15 알킬 및 C 1-10 알콕시로 이루어진 군에서 선택된 하나 이상으로 치환 또는 비치환된 C 6-20 아릴렌이고,
n 및 m은 각각 독립적으로 1 내지 999의 정수이고, l은 0 내지 999의 정수이다.
한편, 발명의 다른 구현예에 따르면, 상기 코폴리카보네이트를 포함하는 폴리카보네이트 조성물이 제공된다.
발명의 일 구현예에 따른 코폴리카보네이트는 내충격성 특히 저온 내충격성이 우수하며, 내후성이 우수하다. 이에 따라, 상기 코폴리카보네이트를 이용하면 극한의 환경에서도 물성 변화가 없는 자동차 외장 소재를 제공할 수 있을 것으로 기대된다.
이하 발명의 구체적인 구현예에 따른 코폴리카보네이트 및 이를 포함하는 폴리카보네이트 조성물 등에 대해 설명하기로 한다.
발명의 일 구현예에 따르면, 하기 화학식 1로 표시되는 반복 단위 및 하기 화학식 2로 표시되는 반복 단위를 포함하는 코폴리카보네이트가 제공된다.
[화학식 1]
Figure PCTKR2020009961-appb-img-000003
상기 화학식 1에서,
R 1 내지 R 4는 각각 독립적으로 수소, C 1-10 알킬, C 1-10 알콕시, 또는 할로겐이고,
Z는 비치환되거나 또는 페닐로 치환된 C 1-10 알킬렌, 비치환되거나 또는 C 1-10 알킬로 치환된 C 3-15 시클로알킬렌, O, S, SO, SO 2, 또는 CO이고,
[화학식 2]
Figure PCTKR2020009961-appb-img-000004
상기 화학식 2에서,
R 5, R 6, R 7, R 8 및 R 9은 각각 독립적으로 수소; 할로겐; 알릴; 할로겐, C 1-10 알콕시 및 C 6-20 아릴로 이루어진 군에서 선택된 하나 이상으로 치환 또는 비치환된 C 1-15 알킬; 할로겐, C 1-10 알콕시 및 C 6-20 아릴로 이루어진 군에서 선택된 하나 이상으로 치환 또는 비치환된 C 1-10 알콕시; 또는 할로겐, C 1-15 알킬 및 C 1-10 알콕시로 이루어진 군에서 선택된 하나 이상으로 치환 또는 비치환된 C 6-20 아릴이고,
R 10은 수소, C 1-6 알킬, 할로겐, 히드록시, C 1-6 알콕시, 또는 C 6-20 아릴이고,
X는 각각 독립적으로 C 1-10 알킬렌, -(OCO)-(C 1-10 알킬렌)-, 또는 -(COO)-(C 1-10 알킬렌)-이고,
Y은 각각 독립적으로 수소, C 1-6 알킬, 할로겐, 히드록시, C 1-6 알콕시, 또는 C 6-20 아릴이고,
L은 C 3-10 알킬렌이고,
Ar 1, Ar 2 및 Ar 3는 각각 독립적으로 할로겐, C 1-15 알킬 및 C 1-10 알콕시로 이루어진 군에서 선택된 하나 이상으로 치환 또는 비치환된 C 6-20 아릴렌이고,
n 및 m은 각각 독립적으로 1 내지 999의 정수이고, l은 0 내지 999의 정수이다.
상기 코폴리카보네이트는, 측쇄에 에스테르기로 연결된 방향족기 혹은 2 이상의 방향족기가 에스테르기를 통해 연결된 반복 단위가 도입된 폴리실록산 구조가 폴리카보네이트의 주쇄에 도입된 고분자를 의미하며, 구체적으로 상기 화학식 1로 표시되는 반복 단위 및 화학식 2로 표시되는 반복 단위를 포함한다.
상기 코폴리카보네이트의 주쇄는, 방향족 디올 화합물과 카보네이트 전구체가 반응하여 형성된 반복 단위로서 상기 화학식 1로 표시되는 반복 단위를 포함한다.
상기 화학식 1에서, R 1 내지 R 4는 예를 들면 각각 독립적으로 수소, 메틸, 메톡시, 클로로, 또는 브로모이다.
상기 화학식 1에서, Z는 예를 들면 비치환되거나 또는 페닐로 치환된 직쇄 또는 분지쇄의 C 1-10 알킬렌일 수 있다. 구체적으로, Z는 메틸렌, 에탄-1,1-디일, 프로판-2,2-디일, 부탄-2,2-디일, 1-페닐에탄-1,1-디일, 또는 디페닐메틸렌일 수 있다. 또한, 상기 화학식 1에서 Z는 예를 들면 시클로헥산-1,1-디일, O, S, SO, SO 2, 또는 CO일 수 있다.
상기 화학식 1로 표시되는 반복 단위는 비스(4-히드록시페닐)메탄, 비스(4-히드록시페닐)에테르, 비스(4-히드록시페닐)설폰, 비스(4-히드록시페닐)설폭사이드, 비스(4-히드록시페닐)설파이드, 비스(4-히드록시페닐)케톤, 1,1-비스(4-히드록시페닐)에탄, 비스페놀 A, 2,2-비스(4-히드록시페닐)부탄, 1,1-비스(4-히드록시페닐)시클로헥산, 2,2-비스(4-히드록시-3,5-디브로모페닐)프로판, 2,2-비스(4-히드록시-3,5-디클로로페닐)프로판, 2,2-비스(4-히드록시-3-브로모페닐)프로판, 2,2-비스(4-히드록시-3-클로로페닐)프로판, 2,2-비스(4-히드록시-3-메틸페닐)프로판, 2,2-비스(4-히드록시-3,5-디메틸페닐)프로판, 및 1,1-비스(4-히드록시페닐)-1-페닐에탄, 비스(4-히드록시페닐)디페닐메탄으로 이루어진 군으로부터 선택되는 어느 하나 이상의 방향족 디올 화합물로부터 유래할 수 있다.
상기 '방향족 디올 화합물로부터 유래한다'의 의미는, 방향족 디올 화합물의 히드록시기와 카보네이트 전구체가 반응하여 상기 화학식 1로 표시되는 반복 단위를 형성하는 것을 의미한다. 예컨대, 방향족 디올 화합물인 비스페놀 A와 카보네이트 전구체인 트리포스겐이 중합된 경우, 상기 화학식 1로 표시되는 반복 단위는 하기 화학식 1-1로 표시된다.
[화학식 1-1]
Figure PCTKR2020009961-appb-img-000005
.
상기 카보네이트 전구체로는, 디메틸 카보네이트, 디에틸 카보네이트, 디부틸 카보네이트, 디시클로헥실 카보네이트, 디페닐 카보네이트, 디토릴 카보네이트, 비스(클로로페닐) 카보네이트, 디-m-크레실 카보네이트, 디나프틸 카보네이트, 비스(디페닐) 카보네이트, 포스겐, 트리포스겐, 디포스겐, 브로모포스겐 및 비스할로포르메이트로 이루어진 군으로부터 선택된 1종 이상을 사용할 수 있다. 바람직하게는, 트리포스겐 또는 포스겐을 사용할 수 있다.
상기 코폴리카보네이트의 주쇄는, 상기 화학식 1로 표시되는 반복 단위 외에 측쇄에 에스테르기로 연결된 방향족기 혹은 2 이상의 방향족기가 에스테르기를 통해 연결된 반복 단위가 도입된 폴리실록산 구조로서 상기 화학식 2로 표시되는 반복 단위를 포함한다.
상기 코폴리카보네이트는 주쇄에 폴리실록산 구조가 도입됨으로써 우수한 내충격성 특히 저온 내충격성을 나타낼 수 있으며, 우수한 내화학성을 나타낼 수 있다. 게다가, 에스테르기로 연결된 방향족기 혹은 2 이상의 방향족기가 에스테르기를 통해 연결된 반복 단위가 상기 폴리실록산 구조의 측쇄에 도입됨으로써 우수한 내충격성을 유지하면서도 현저하게 향상된 내후성을 나타낼 수 있다.
상기 화학식 2로 표시되는 반복 단위는 양 말단에 히드록시기가 결합되어 있고, 측쇄에 에스테르기로 연결된 방향족기 혹은 2 이상의 방향족기가 에스테르기를 통해 연결된 반복 단위가 도입된 폴리실록산 구조를 포함하는 하기 화학식 3으로 표시되는 변성 폴리오르가노실록산을 카보네이트 전구체와 반응시켜 형성된 것일 수 있다.
[화학식 3]
Figure PCTKR2020009961-appb-img-000006
상기 화학식 3의 R 5 내지 R 10, X, Y, L, Ar 1 내지 Ar 3, m, n, 및 l은 화학식 2에서 정의한 바와 같다.
상기 화학식 3으로 표시되는 변성 폴리오르가노실록산은, 예를 들면, n 번 반복되는 반복 단위로서 에스테르기로 연결된 방향족기 혹은 2 이상의 방향족기가 에스테르기를 통해 연결된 반복 단위가 도입된 폴리실록산 구조를 제조한 다음 m 번 반복 되는 반복 단위로서 측쇄를 변형하지 않은 폴리실록산 구조를 상기 에스테르기로 연결된 방향족기 혹은 2 이상의 방향족기가 에스테르기를 통해 연결된 반복 단위가 도입된 폴리실록산 구조에 부가하고, 이렇게 제조된 폴리실록산 구조에 히드록시페닐을 포함하는 말단기를 부가하여 제조될 수 있다.
상기 변성 폴리오르가노실록산의 제조에는 금속 촉매가 사용될 수 있다. 상기 금속 촉매로는 Pt 촉매를 사용할 수 있으며, Pt 촉매로 애쉬바이(Ashby)촉매, 칼스테드(Karstedt)촉매, 라모레오(Lamoreaux)촉매, 스파이어(Speier)촉매, PtCl 2(COD), PtCl 2(벤조니트릴) 2, 및 H 2PtBr 6로 이루어진 군으로부터 선택된 1 종 이상을 사용할 수 있다.
상기 화학식 2에서, R 5, R 6, R 7, R 8 및 R 9은 각각 독립적으로 수소, 메틸, 에틸, 프로필, 3-페닐프로필, 2-페닐프로필, 플루오로, 클로로, 브로모, 아이오도, 메톡시, 에톡시, 프로폭시, 알릴, 2,2,2-트리플루오로에틸, 3,3,3-트리플루오로프로필, 페닐, 또는 나프틸일 수 있다. 보다 구체적으로, R 5, R 6, R 7, R 8 및 R 9은 각각 독립적으로 C 1-10 알킬, C 1-6 알킬, C 1-3 알킬, 또는 메틸일 수 있다.
상기 화학식 2에서 R 10은 수소, 메틸, 에틸, 프로필, 플루오로, 클로로, 브로모, 아이오도, 히드록시, 메톡시, 에톡시, 프로폭시, 또는 페닐일 수 있다. 보다 구체적으로, R 10은 수소, 또는 히드록시일 수 있다.
상기 화학식 2에서 X는 각각 독립적으로 C 2-10 알킬렌, -(OCO)-(C 2-10 알킬렌)-, 또는 -(COO)-(C 2-10 알킬렌)-일 수 있다. 구체적으로, X는 C 2-5 알킬렌, -(OCO)-(C 2-5 알킬렌)-, 또는 -(COO)-(C 2-5 알킬렌)-일 수 있고, 보다 구체적으로, X는 프로판-1,3-디일일 수 있다.
상기 화학식 2에서 Y는 각각 독립적으로 수소, 또는 메톡시일 수 있다.
상기 화학식 2에서 L은 C 3-5 알킬렌일 수 있다. 보다 구체적으로, L은 프로판-1,3-디일일 수 있다.
상기 화학식 2에서 Ar 1, Ar 2 및 Ar 3는 각각 독립적으로 벤젠디일, 메틸벤젠디일, 메톡시벤젠디일, 디메틸벤젠디일, 디메톡시벤젠디일, 나프탈렌디일, 메틸나프탈렌디일, 메톡시나프탈렌디일, 디메틸나프탈렌디일 또는 디메톡시나프탈렌디일일 수 있다. 보다 구체적으로 Ar 1, Ar 2 및 Ar 3는 각각 독립적으로 벤젠-1,2-디일, 벤젠-1,3-디일 또는 벤젠-1,4-디일일 수 있다.
일 예로, 상기 화학식 2로 표시되는 반복 단위는 하기 화학식 2-1로 표시될 수 있다.
[화학식 2-1]
Figure PCTKR2020009961-appb-img-000007
상기 화학식 2-1에서, R 5 내지 R 10, X, Y, L, m, n, 및 l은 화학식 2에서 정의한 바와 같다.
또한 다른 일 예로, 상기 화학식 2로 표시되는 반복 단위는 하기 화학식 2-2로 표시될 수 있다.
[화학식 2-2]
Figure PCTKR2020009961-appb-img-000008
상기 화학식 2-2에서,
m, n, 및 l은 화학식 2에서 정의한 바와 같다.
상기 화학식 2, 화학식 2-1 및 화학식 2-2에서 m과 n은 m번 반복되는 반복 단위와 n번 반복되는 반복 단위의 비율을 나타내기 위한 것일 뿐, m번 반복되는 반복 단위와 n번 반복되는 반복 단위는 무작위하게 배치될 수 있다.
상기 n 및 m은 각각 독립적으로 1 내지 999의 정수 혹은 1 내지 200의 정수일 수 있다. 구체적으로, 상기 n은 10 이상, 15 이상, 20 이상, 혹은 25 이상이고, 100 이하, 50 이하, 45 이하, 40 이하, 35 이하, 혹은 30 이하의 정수일 수 있고, m은 2 이상, 3 이상, 5 이상, 혹은 7 이상이고, 100 이하, 50 이하, 25 이하, 15 이하, 혹은 10 이하의 정수일 수 있다.
상기 화학식 2, 화학식 2-1 및 화학식 2-2에서 l은 0 내지 200의 정수, 0 내지 100의 정수, 0 내지 50의 정수, 0 내지 20의 정수, 혹은 0 내지 10의 정수일 수 있다.
상기 코폴리카보네이트에서, 상기 화학식 2로 표시되는 반복 단위는 상기 화학식 1 및 2로 표시되는 반복 단위 총 중량에 대하여 1 내지 99 중량%, 1 내지 80 중량%, 1 내지 70 중량%, 1 내지 60 중량%, 1 내지 50 중량%, 1 내지 40 중량%, 1 내지 30 중량%, 1 내지 20 중량%, 3 내지 20 중량%, 혹은 5 내지 20 중량%로 포함될 수 있다.
상기 코폴리카보네이트는 방향족 디올 화합물, 카보네이트 전구체 및 상기 화학식 3으로 표시되는 변성 폴리오르가노실록산을 포함하는 조성물을 중합하는 단계를 통해 제조할 수 있다. 상기 방향족 디올 화합물, 카보네이트 전구체 및 상기 화학식 3으로 표시되는 변성 폴리오르가노실록산은 앞서 설명한 바와 같다.
상기 중합시, 방향족 디올 화합물과 상기 화학식 3으로 표시되는 변성 폴리오르가노실록산은 코폴리카보네이트에 도입될 상기 화학식 1 및 2로 표시되는 반복 단위의 함량에 따라 적절한 함량으로 사용할 수 있다. 또한, 카보네이트 전구체는 방향족 디올 화합물과 상기 화학식 3으로 표시되는 변성 폴리오르가노실록산과 실질적으로 동등한 몰 수로 사용할 수 있다.
상기 중합은 계면 중합으로 수행하는 것이 바람직하며, 계면 중합시 상압과 낮은 온도에서 중합 반응이 가능하며 분자량 조절이 용이하다. 또한, 상기 계면 중합은 일례로 선중합(pre-polymerization) 후 커플링제를 투입한 다음, 다시 중합시키는 단계를 포함할 수 있고, 이 경우 고분자량의 코폴리카보네이트를 얻을 수 있다.
상기 중합 온도는 0℃ 내지 40℃, 반응 시간은 10 분 내지 5 시간이 바람직하다. 또한, 반응 중 pH는 9 이상 또는 11 이상으로 유지하는 것이 바람직하다.
상기 중합에 사용할 수 있는 용매로는, 당업계에서 코폴리카보네이트의 중합에 사용되는 용매이면 특별히 제한되지 않으며, 일례로 메틸렌 클로라이드, 클로로벤젠 등의 할로겐화 탄화수소를 사용할 수 있다.
또한, 상기 중합은 산결합제의 존재 하에 수행하는 것이 바람직하며, 상기 산결합제로 수산화나트륨, 수산화칼륨 등의 알칼리금속 수산화물 또는 피리딘 등의 아민 화합물을 사용할 수 있다.
또한, 상기 중합시 코폴리카보네이트의 분자량 조절을 위하여, 분자량 조절제의 존재 하에 중합하는 것이 바람직하다. 상기 분자량 조절제로 C 1-20 알킬페놀을 사용할 수 있으며, 이의 구체적인 예로 p-tert-부틸페놀, p-쿠밀페놀, 데실페놀, 도데실페놀, 테트라데실페놀, 헥사데실페놀, 옥타데실페놀, 에이코실페놀, 도코실페놀 또는 트리아콘틸페놀을 들 수 있다. 상기 분자량 조절제는, 중합 개시 전, 중합 개시 중 또는 중합 개시 후에 투입될 수 있다. 상기 분자량 조절제는 일례로 방향족 디올 화합물 100 중량부를 기준으로 0.01 중량부 이상, 0,1 중량부 이상, 또는 1 중량부 이상이고, 10 중량부 이하, 6 중량부 이하, 또는 5 중량부 이하로 포함되고, 이 범위 내에서 원하는 분자량을 얻을 수 있다.
또한, 상기 중합 반응의 촉진을 위하여, 트리에틸아민, 테트라-n-부틸암모늄브로마이드, 테트라-n-부틸포스포늄브로마이드 등의 3차 아민 화합물, 4차 암모늄 화합물, 4차 포스포늄 화합물 등과 같은 반응 촉진제를 추가로 사용할 수 있다.
상기 코폴리카보네이트는, 바람직하게는 중량 평균 분자량(g/mol)이 1,000 내지 100,000이고, 보다 바람직하게는 15,000 내지 35,000 이다. 보다 바람직하게는, 상기 중량 평균 분자량은 20,000 이상, 21,000 이상, 22,000 이상, 23,000 이상, 24,000 이상, 25,000 이상, 26,000 이상, 27,000 이상, 또는 28,000 이상이다. 또한, 상기 중량 평균 분자량은 34,000 이하, 33,000 이하, 또는 32,000 이하이다.
한편, 발명의 다른 구현예에 따르면, 상기 코폴리카보네이트를 포함하는 폴리카보네이트 조성물이 제공된다.
코폴리카보네이트에 대해서는 앞서 자세히 설명하였으므로, 여기서는 자세한 설명을 생략한다.
상기 폴리카보네이트 조성물은 상술한 코폴리카보네이트를 1 종 이상, 2 종 이상, 혹은 3 종 이상 포함할 수 있다.
또한, 상기 폴리카보네이트 조성물은 상기 화학식 2로 표시되는 반복 단위를 포함하지 않는 폴리카보네이트를 추가로 포함할 수 있다.
구체적으로, 상기 화학식 2로 표시되는 반복 단위를 포함하지 않는 폴리카보네이트로는, 예를 들면, 상기 화학식 1로 표시되는 1 종 이상의 반복 단위를 포함하는 폴리카보네이트; 혹은 상기 화학식 1로 표시되는 1 종 이상의 반복 단위와 상기 화학식 2의 반복 단위 중 측쇄에 에스테르기로 연결된 방향족기 혹은 2 이상의 방향족기가 에스테르기를 통해 연결된 반복 단위가 도입되지 않은 하기 화학식 4로 표시되는 반복 단위를 포함하는 폴리카보네이트 등을 들 수 있다.
[화학식 4]
Figure PCTKR2020009961-appb-img-000009
상기 화학식 4에서,
R 5', R 6', R 7', R 8', R 9', X', Y', m' 및 n'은 각각 상기 화학식 2의 R 5, R 6, R 7, R 8, R 9, X, Y, m 및 n에 대해 정의한 바와 같으며, R 11은 R 7'에 대해 정의한 바와 같다.
상기 폴리카보네이트 조성물은 본 발명이 속하는 기술분야에 알려진 다양한 첨가제를 추가로 포함할 수 있다.
상기 폴리카보네이트 조성물은 내충격성 특히 저온 내충격성이 우수하며, 내후성이 우수하다. 이에 따라, 상기 조성물을 이용하면 극한의 환경에서도 물성 변화가 없는 자동자 외장 소재를 제공할 수 있을 것으로 기대된다.
이하 발명의 구체적인 실시예를 통해 발명의 작용, 효과를 보다 구체적으로 설명하기로 한다. 다만, 이는 발명의 예시로서 제시된 것으로 이에 의해 발명의 권리범위가 어떠한 의미로든 한정되는 것은 아니다.
제조예 1: 변성 폴리오르가노실록산의 제조
1 L 플라스크에 테트라메틸시클로테트라실록산 9.62 g (40.0 mmol)을 넣고, 칼스테드 백금 촉매(Karstedt's platinum catalyst) 0.005 g (25 ppm)을 투입하여 90℃에서 1 시간 동안 반응시킨 후, 2-알릴페놀 1.49 g (11.1 mmol)을 혼합하여 3 시간 동안 반응시켰다. 그리고, 상온에서 메틸렌 클로라이드 용매 200 mL을 넣고, 벤조산(benzoic acid) 1.36 g을 적가하였다. 그 후 옥살릴 클로라이드(oxalyl chloride) 1.41 g 및 DMF 0.01 g을 적가하여 4 시간 가량 상온에서 교반하고, 감압 회전 증발기를 통하여 용매를 제거하였다.
상기 변형 폴리오르가노실록산에 옥타메틸시클로테트라실록산 38.56 g (130.0 mmol), 테트라메틸디실록산 2.44 g (18.2 mmol)을 혼합한 후, 이 혼합물을 옥타메틸시클로테트라실록산 100 중량부 대비 산성백토(DC-A3) 1 중량부와 함께 1 L 플라스크에 넣고 60℃로 4 시간 동안 반응시켰다. 반응 종료 후 이를 에틸아세테이트로 희석하고 셀라이트(celite)를 사용하여 빠르게 필터링하였다.
상기 수득된 말단 미변성 폴리오르가노실록산에, 칼스테드 백금 촉매(Karstedt's platinum catalyst) 0.01 g (50 ppm)을 투입하여 90℃에서 1 시간 동안 반응시킨 후, 2-알릴페놀 4.93 g (36.8 mmol)을 추가로 투입하여 3 시간 동안 더 반응시켰다. 반응종료 후 미반응 실록산은 120℃, 1 torr에서 증발시켜 제거하였다. 이렇게 제조된 변성 폴리오르가노실록산의 구조는 1H NMR로 확인하였으며, 반복단위 n 및 m은 각각 26 및 8 이고, l은 0 이었다.
제조예 2: 변성 폴리오르가노실록산의 제조
1 L 플라스크에 테트라메틸시클로테트라실록산 9.62 g (40.0 mmol)을 넣고, 칼스테드 백금 촉매(Karstedt's platinum catalyst) 0.005 g (25 ppm)을 투입하여 90℃에서 1 시간 동안 반응시킨 후, 2-알릴페놀 1.49 g (11.1 mmol)을 혼합하여 3 시간 동안 반응시켰다. 그리고, 상온에서 메틸렌클로라이드 용매 200 mL을 넣고, 3-히드록시벤조산(3-hydroxybenzoic acid) 4.60 g을 적가하였다. 그 후 옥살릴 클로라이드 4.07 g 및 DMF 0.01 g을 적가하여 4 시간 가량 상온에서 교반하고, 벤조산 1.36 g과 옥살릴 클로라이드 1.41 g 및 DMF 0.01 g을 추가로 넣고 4 시간 가량 상온에서 더 교반하여 반응을 완료시키고, 감압 회전 증발기를 통하여 용매를 제거하였다.
상기 변형 폴리오르가노실록산에 옥타메틸시클로테트라실록산 38.56 g (130.0 mmol), 테트라메틸디실록산 2.44 g (18.2 mmol)을 혼합한 후, 이 혼합물을 옥타메틸시클로테트라실록산 100 중량부 대비 산성백토(DC-A3) 1 중량부와 함께 1 L 플라스크에 넣고 60℃로 4 시간 동안 반응시켰다. 반응 종료 후 이를 에틸아세테이트로 희석하고 셀라이트(celite)를 사용하여 빠르게 필터링하였다.
상기 수득된 말단 미변성 폴리오르가노실록산에, 칼스테드 백금 촉매(Karstedt's platinum catalyst) 0.01 g (50 ppm)을 투입하여 90℃에서 1 시간 동안 반응시킨 후, 2-알릴페놀 4.93 g (36.8 mmol)을 추가로 투입하여 3 시간 동안 더 반응시켰다. 반응종료 후 미반응 실록산은 120℃, 1 torr에서 증발시켜 제거하였다. 이렇게 제조된 변성 폴리오르가노실록산의 구조는 1H NMR로 확인하였으며, 반복단위 n 및 m은 각각 26 및 8 이고, l은 3 이었다.
제조예 3: 변성 폴리오르가노실록산의 제조
테트라메틸시클로테트라실록산 50.43 g (170.0 mmol), 옥타메틸시클로테트라실록산 38.56 g (130.0 mmol), 테트라메틸디실록산 2.44 g (18.2 mmol)을 혼합한 후, 이 혼합물을 옥타메틸시클로테트라실록산 100 중량부 대비 산성백토(DC-A3) 1 중량부와 함께 1 L 플라스크에 넣고 60℃로 4 시간 동안 반응시켰다. 반응 종료 후 이를 에틸아세테이트로 희석하고 셀라이트(celite)를 사용하여 빠르게 필터링하였다.
상기 수득된 말단 미변성 폴리오르가노실록산에, 칼스테드 백금 촉매(Karstedt's platinum catalyst) 0.01 g (50 ppm)을 투입하여 90℃에서 1 시간 동안 반응시킨 후, 2-알릴페놀 4.93 g (36.8 mmol)을 추가로 투입하여 3 시간 동안 더 반응시켰다. 반응종료 후 미반응 실록산은 120℃, 1 torr에서 증발시켜 제거하였다. 이렇게 제조된 변성 폴리오르가노실록산의 구조는 1H NMR로 확인하였으며, 실록산 유래의 반복 단위의 반복 횟수는 34 이었다.
실시예 1: 코폴리카보네이트의 제조
중합 반응기에 물 1784 g, NaOH 385 g, BPA(bisphenol A) 232 g을 넣고, 질소 분위기 하에 혼합하여 녹였다. 여기에 PTBP(para-tert butylphenol) 4.3 g과 상기 제조예 1에서 제조한 변성 폴리오르가노실록산 26.3 g을 MC(methylene chloride)로 용해하여 넣어주었다. 그 다음 TPG(triphosgene) 130 g을 MC에 녹여 40 중량%의 NaOH 수용액으로 pH를 11 이상으로 유지시켜 주면서 1 시간 동안 투입하여 반응시킨 다음 10 분 뒤에 TEA(triethylamine) 2.18 g을 넣어 커플링(coupling) 반응을 시켰다. 총 반응시간 1 시간 20 분이 지난 다음 35 중량%의 HCl 수용액으로 pH를 4 이하로 낮추어 TEA를 제거하였고, 증류수로 3회 세척하여 생성된 중합체의 pH를 6~7 중성으로 맞추었다. 이렇게 얻은 중합체를 메탄올과 헥산 혼합용액에서 재침전시켜 수득한 다음, 이를 120℃에서 건조하여 최종 코폴리카보네이트를 얻었다. 수득한 코폴리카보네이트는 상기 화학식 2로 표시되는 반복 단위로서 상기 제조예 1에서 제조한 변성 폴리오르가노실록산 유래의 반복 단위를 총 반복 단위에 대하여 약 10 중량%로 포함하며, PC 스탠다드(Standard)를 이용한 GPC로 분자량을 측정하여 중량평균분자량이 29,800 g/mol인 것을 확인하였다.
실시예 2: 코폴리카보네이트의 제조
실시예 1에서 제조예 1에서 제조한 변성 폴리오르가노실록산 대신 제조예 2에서 제조한 변성 폴리오르가노실록산을 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 코폴리카보네이트를 제조하였다. 상기 코폴리카보네이트는 상기 화학식 2로 표시되는 반복 단위로서 상기 제조예 2에서 제조한 변성 폴리오르가노실록산 유래의 반복 단위를 총 반복 단위에 대하여 약 10 중량%로 포함하였다.
실시예 3: 코폴리카보네이트의 제조
실시예 1에서 제조예 1에서 제조한 변성 폴리오르가노실록산의 함량을 26.30 g 대신 13.16 g으로 변경한 것을 제외하고, 실시예 1과 동일한 방법으로 코폴리카보네이트를 제조하였다. 상기 코폴리카보네이트는 상기 화학식 2로 표시되는 반복 단위로서 상기 제조예 1에서 제조한 변성 폴리오르가노실록산 유래의 반복 단위를 총 반복 단위에 대하여 약 5 중량%로 포함하였다.
실시예 4: 코폴리카보네이트의 제조
실시예 2에서 제조예 2에서 제조한 변성 폴리오르가노실록산의 함량을 26.30 g 대신 13.16 g으로 변경한 것을 제외하고, 실시예 2와 동일한 방법으로 코폴리카보네이트를 제조하였다. 상기 코폴리카보네이트는 상기 화학식 2로 표시되는 반복 단위로서 상기 제조예 2에서 제조한 변성 폴리오르가노실록산 유래의 반복 단위를 총 반복 단위에 대하여 약 5 중량%로 포함하였다.
실시예 5: 폴리카보네이트 조성물의 제조
실시예 1에서 제조한 코폴리카보네이트와 하기 비교예 1에서 제조한 폴리카보네이트를 50:50의 중량비로 혼합하여 벤트 부착 이축압출기를 이용하여 펠렛화하여 폴리카보네이트 조성물을 제조하였다.
실시예 6: 폴리카보네이트 조성물의 제조
실시예 2에서 제조한 코폴리카보네이트와 하기 비교예 1에서 제조한 폴리카보네이트를 50:50의 중량비로 혼합하여 벤트 부착 이축압출기를 이용하여 펠렛화하여 폴리카보네이트 조성물을 제조하였다.
비교예 1: 폴리카보네이트의 제조
실시예 1에서 제조예 1의 변성 폴리오르가노실록산을 사용하지 않은 것을 제외하고, 실시예 1과 동일한 방법으로 폴리카보네이트를 제조하였다.
비교예 2: 코폴리카보네이트의 제조
실시예 1에서 제조예 1에서 제조한 변성 폴리오르가노실록산 대신 제조예 3에서 제조한 변성 폴리오르가노실록산을 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 코폴리카보네이트를 제조하였다.
시험예: (코)폴리카보네이트의 물성 평가
실시예 및 비교예에서 제조한 (코)폴리카보네이트의 물성을 아래와 같은 방법으로 평가하여 그 결과를 표 1에 나타내었다.
<시편의 제조>
상기 실시예 및 비교예에서 제조한 (코)폴리카보네이트 혹은 폴리카보네이트 조성물 1 중량부에 대하여, 트리스(2,4-디-tert-부틸페닐)포스파이트 0.050 중량부, 옥타데실-3-(3,5-디-tert-부틸-4-히드록시페닐)프로피오네이트 0.010 중량부, 펜타에리스리톨 테트라스테아레이트 0.030 중량부를 첨가하여, 벤트 부착 Φ19 ㎜ 이축압출기를 사용하여 펠릿화한 후, HAAKE Minijet 사출성형기를 사용하여 실린더 온도 300℃, 금형 온도 90℃로 사출 성형하여 시편을 제조하였다.
1) 중량 평균 분자량(Mw): Agilent 1200 series를 이용하여 PC 스탠다드(Standard)를 이용한 GPC로 측정하였다.
2) 유동성(Melt Index; MI): ASTM D1238 (300℃, 1.2 kg 조건)에 의거하여 측정하였다.
3) 투명도: ASTM D1003에 의거하여 UltraScan PRO (HunterLab사 제조)를 사용하여 약 350 내지 1050 nm 범위에서의 투과율(transmittance)을 측정하였다.
4) 황색 지수 (Yellow Index; YI): ASTM D1925에 의거하여 UltraScan PRO (HunterLab사 제조)를 이용하여 상온(20℃)에서의 YI 값을 측정하였다.
5) 상온 및 저온 충격 강도: ASTM D256 (1/8 inch, Notched Izod)에 의거하여 상온 및 저온 충격 강도를 각각 23℃ 및 -30℃에서 측정하였다.
6) 내후성: 두께 1/8 inch 시편에 대하여 UltraScan PRO(Hunterlab社) 장비를 이용하여 L, a 및 b 값을 측정하였다. 이후 해당 시편을 ASTM D7869에 의거하여 Weather-Ometer®(Ci5000) 기계를 이용해 2250 시간 동안 방치한 다음 이에 대하여 동일한 방법으로 L, a 및 b 값을 측정하고 하기 식 1에 대입하여 △E을 산출하였다.
[식 1]
△E = (△L 2 + △a 2 + △b 2) 1/2
Mw(g/mol) 유동성(g/10 min) 투명도(%) 황색도(YI) 상온 충격 강도(23℃, J/m) 저온 충격 강도(-30℃, J/m) 내후성(△E)
실시예 1 29,800 12.2 90.3 5.8 610 530 8.6
실시예 2 30,300 11.9 90.4 5.4 650 490 7.8
실시예 3 29,300 12.9 90.6 6.2 830 710 6.8
실시예 4 29,500 13.0 90.3 6.1 820 730 5.6
실시예 5 29,800 11.8 89.3 3.8 850 630 8.2
실시예 6 30,000 11.7 89.5 4.2 860 680 6.7
비교예 1 29,700 11.9 91.3 1.4 880 230 35.1
비교예 2 30,100 11.2 90.1 5.5 640 510 28.3
상기 표 1을 참조하면, 실시예 1 내지 6은 상기 화학식 1 및 2로 표시되는 반복 단위를 포함하는 코폴리카보네이트를 사용하여, 비교예 1의 폴리카보네이트의 우수한 제반 물성을 유지하면서도, 비교예 1에 비하여 내충격성 특히 저온 내충격성이 우수하며, 현저히 개선된 내후성을 나타내는 것이 확인된다.
이에 반해, 비교예 2는 상기 화학식 2로 표시되는 반복 단위를 포함하지 못하는 코폴리카보네이트를 사용하여 실시예 수준의 저온 내충격성 및 내후성을 나타내지 못하는 것이 확인된다.

Claims (6)

  1. 하기 화학식 1로 표시되는 반복 단위 및 하기 화학식 2로 표시되는 반복 단위를 포함하는 코폴리카보네이트:
    [화학식 1]
    Figure PCTKR2020009961-appb-img-000010
    상기 화학식 1에서,
    R 1 내지 R 4는 각각 독립적으로 수소, C 1-10 알킬, C 1-10 알콕시, 또는 할로겐이고,
    Z는 비치환되거나 또는 페닐로 치환된 C 1-10 알킬렌, 비치환되거나 또는 C 1-10 알킬로 치환된 C 3-15 시클로알킬렌, O, S, SO, SO 2, 또는 CO이고,
    [화학식 2]
    Figure PCTKR2020009961-appb-img-000011
    상기 화학식 2에서,
    R 5, R 6, R 7, R 8 및 R 9은 각각 독립적으로 수소; 할로겐; 알릴; 할로겐, C 1-10 알콕시 및 C 6-20 아릴로 이루어진 군에서 선택된 하나 이상으로 치환 또는 비치환된 C 1-15 알킬; 할로겐, C 1-10 알콕시 및 C 6-20 아릴로 이루어진 군에서 선택된 하나 이상으로 치환 또는 비치환된 C 1-10 알콕시; 또는 할로겐, C 1-15 알킬 및 C 1-10 알콕시로 이루어진 군에서 선택된 하나 이상으로 치환 또는 비치환된 C 6-20 아릴이고,
    R 10은 수소, C 1-6 알킬, 할로겐, 히드록시, C 1-6 알콕시, 또는 C 6-20 아릴이고,
    X는 각각 독립적으로 C 1-10 알킬렌, -(OCO)-(C 1-10 알킬렌)-, 또는 -(COO)-(C 1-10 알킬렌)-이고,
    Y은 각각 독립적으로 수소, C 1-6 알킬, 할로겐, 히드록시, C 1-6 알콕시, 또는 C 6-20 아릴이고,
    L은 C 3-10 알킬렌이고,
    Ar 1, Ar 2 및 Ar 3는 각각 독립적으로 할로겐, C 1-15 알킬 및 C 1-10 알콕시로 이루어진 군에서 선택된 하나 이상으로 치환 또는 비치환된 C 6-20 아릴렌이고,
    n 및 m은 각각 독립적으로 1 내지 999의 정수이고, l은 0 내지 999의 정수이다.
  2. 제 1 항에 있어서, 상기 화학식 2로 표시되는 반복 단위는 하기 화학식 2-1로 표시되는 코폴리카보네이트:
    [화학식 2-1]
    Figure PCTKR2020009961-appb-img-000012
    상기 화학식 2-1에서,
    R 5, R 6, R 7, R 8 및 R 9은 각각 독립적으로 수소; 할로겐; 알릴; 할로겐, C 1-10 알콕시 및 C 6-20 아릴로 이루어진 군에서 선택된 하나 이상으로 치환 또는 비치환된 C 1-15 알킬; 할로겐, C 1-10 알콕시 및 C 6-20 아릴로 이루어진 군에서 선택된 하나 이상으로 치환 또는 비치환된 C 1-10 알콕시; 또는 할로겐, C 1-15 알킬 및 C 1-10 알콕시로 이루어진 군에서 선택된 하나 이상으로 치환 또는 비치환된 C 6-20 아릴이고,
    R 10은 수소, C 1-6 알킬, 할로겐, 히드록시, C 1-6 알콕시, 또는 C 6-20 아릴이고,
    X는 각각 독립적으로 C 1-10 알킬렌, -(OCO)-(C 1-10 알킬렌)-, 또는 -(COO)-(C 1-10 알킬렌)-이고,
    Y은 각각 독립적으로 수소, C 1-6 알킬, 할로겐, 히드록시, C 1-6 알콕시, 또는 C 6-20 아릴이고,
    L은 C 3-10 알킬렌이고,
    n 및 m은 각각 독립적으로 1 내지 999의 정수이고, l은 0 내지 999의 정수이다.
  3. 제 1 항에 있어서, 상기 화학식 2로 표시되는 반복 단위는 하기 화학식 2-2로 표시되는 코폴리카보네이트:
    [화학식 2-2]
    Figure PCTKR2020009961-appb-img-000013
    상기 화학식 2-1에서,
    n 및 m은 각각 독립적으로 1 내지 999의 정수이고, l은 0 내지 999의 정수이다.
  4. 제 1 항에 있어서, 상기 화학식 2로 표시되는 반복 단위는 상기 화학식 1 및 2로 표시되는 반복 단위 총 중량에 대하여 5 내지 20 중량%로 포함되는, 코폴리카보네이트.
  5. 제 1 항의 코폴리카보네이트를 포함하는 폴리카보네이트 조성물.
  6. 제 5 항에 있어서, 상기 화학식 2로 표시되는 반복 단위를 포함하지 않는 폴리카보네이트를 추가로 포함하는, 폴리카보네이트 조성물.
PCT/KR2020/009961 2019-09-02 2020-07-29 코폴리카보네이트 및 이를 포함하는 폴리카보네이트 조성물 WO2021045390A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20851275.6A EP3825344B1 (en) 2019-09-02 2020-07-29 Copolycarbonate, and polycarbonate composition comprising same
JP2021512869A JP7090804B2 (ja) 2019-09-02 2020-07-29 コポリカーボネートおよびこれを含むポリカーボネート組成物
CN202080004839.6A CN112789310B (zh) 2019-09-02 2020-07-29 共聚碳酸酯和包含该共聚碳酸酯的聚碳酸酯组合物
US17/276,678 US11572439B2 (en) 2019-09-02 2020-07-29 Copolycarbonate and polycarbonate composition comprising the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20190108427 2019-09-02
KR10-2019-0108427 2019-09-02
KR10-2020-0093464 2020-07-28
KR1020200093464A KR102426547B1 (ko) 2019-09-02 2020-07-28 코폴리카보네이트 및 이를 포함하는 폴리카보네이트 조성물

Publications (1)

Publication Number Publication Date
WO2021045390A1 true WO2021045390A1 (ko) 2021-03-11

Family

ID=74852323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/009961 WO2021045390A1 (ko) 2019-09-02 2020-07-29 코폴리카보네이트 및 이를 포함하는 폴리카보네이트 조성물

Country Status (1)

Country Link
WO (1) WO2021045390A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6072011A (en) * 1991-07-01 2000-06-06 General Electric Company Polycarbonate-polysiloxane block copolymers
JP3831834B2 (ja) * 1997-11-06 2006-10-11 株式会社カネカ 硬化剤、該硬化剤を用いた硬化性組成物及び発泡性樹脂組成物、及び該発泡性樹脂組成物を用いた発泡体とその製造方法
KR20130100274A (ko) * 2010-08-26 2013-09-10 이데미쓰 고산 가부시키가이샤 폴리카보네이트계 수지 조성물
JP2015174897A (ja) * 2014-03-14 2015-10-05 信越化学工業株式会社 硬化性組成物、メソゲン基含有硬化物及びその製造方法
KR20170045092A (ko) * 2015-10-15 2017-04-26 주식회사 삼양사 투명성 및 난연성이 향상된 폴리실록산-폴리카보네이트 공중합체 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6072011A (en) * 1991-07-01 2000-06-06 General Electric Company Polycarbonate-polysiloxane block copolymers
JP3831834B2 (ja) * 1997-11-06 2006-10-11 株式会社カネカ 硬化剤、該硬化剤を用いた硬化性組成物及び発泡性樹脂組成物、及び該発泡性樹脂組成物を用いた発泡体とその製造方法
KR20130100274A (ko) * 2010-08-26 2013-09-10 이데미쓰 고산 가부시키가이샤 폴리카보네이트계 수지 조성물
JP2015174897A (ja) * 2014-03-14 2015-10-05 信越化学工業株式会社 硬化性組成物、メソゲン基含有硬化物及びその製造方法
KR20170045092A (ko) * 2015-10-15 2017-04-26 주식회사 삼양사 투명성 및 난연성이 향상된 폴리실록산-폴리카보네이트 공중합체 및 그 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3825344A4 *

Similar Documents

Publication Publication Date Title
WO2015002427A1 (ko) 폴리오르가노실록산 화합물, 제조방법 및 이를 포함하는 코폴리카보네이트 수지
WO2013066000A1 (en) Polycarbonate resin composition having improved low-temperature impact resistance and method of manufacturing the same
WO2013066002A1 (en) Polysiloxane-polycarbonate copolymer and method of manufacturing the same
WO2012060516A1 (ko) 폴리카보네이트 수지 및 상기 폴리카보네이트 수지를 포함하는 열가소성 수지 조성물
WO2011122767A2 (ko) 히드록시 말단 실록산, 폴리실록산-폴리카보네이트 공중합체 및 그 제조 방법
WO2015041441A1 (ko) 코폴리카보네이트 수지 및 이를 포함하는 물품
WO2013100494A1 (en) Method of preparing polysiloxane-polycarbonate copolymer
WO2013100606A1 (en) Flame-retardant thermoplastic resin composition and molded article thereof
WO2012091293A2 (ko) 내화학성이 우수한 폴리카보네이트 수지 조성물
WO2013047955A1 (ko) 폴리카보네이트 및 그의 제조 방법
WO2020055178A1 (ko) 디올 화합물, 폴리카보네이트 및 이의 제조방법
WO2014204146A1 (ko) 난연성과 투명성이 우수한 열가소성 공중합체 수지 및 그 제조방법
WO2012060515A1 (ko) 난연 내스크래치성 폴리카보네이트 수지 조성물
WO2014119827A9 (ko) 폴리카보네이트계 열가소성 수지 조성물 및 성형품
WO2014092243A1 (ko) 폴리카보네이트 수지, 그 제조방법 및 이를 포함하는 성형품
WO2020060148A1 (ko) 내충격성, 난연성 및 투명도가 우수한 폴리실록산-폴리카보네이트 공중합체 및 그 제조방법
WO2013100288A1 (ko) 분지상 폴리카보네이트-폴리실록산 공중합체 및 그 제조방법
WO2012091308A2 (ko) 폴리카보네이트-폴리실록산 공중합체 및 그의 제조 방법
WO2015178676A1 (ko) 투명성 및 내충격성이 향상된 폴리실록산-폴리카보네이트 공중합체 및 그 제조방법
WO2021045390A1 (ko) 코폴리카보네이트 및 이를 포함하는 폴리카보네이트 조성물
WO2016195312A1 (ko) 폴리카보네이트 수지 및 이의 제조방법
WO2013042827A1 (ko) 폴리카보네이트 및 그 제조방법
WO2013176349A1 (ko) 신규 폴리실록산, 그 제조방법 및 이를 포함하는 폴리카보네이트-폴리실록산 공중합체
WO2023234584A1 (ko) 폴리카보네이트 공중합체
WO2021112473A1 (ko) 폴리카보네이트 조성물 및 이로부터 형성된 광학 제품

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020851275

Country of ref document: EP

Effective date: 20210216

ENP Entry into the national phase

Ref document number: 2021512869

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE