WO2017141736A1 - 基板処理装置および基板処理方法 - Google Patents

基板処理装置および基板処理方法 Download PDF

Info

Publication number
WO2017141736A1
WO2017141736A1 PCT/JP2017/004031 JP2017004031W WO2017141736A1 WO 2017141736 A1 WO2017141736 A1 WO 2017141736A1 JP 2017004031 W JP2017004031 W JP 2017004031W WO 2017141736 A1 WO2017141736 A1 WO 2017141736A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
unit
edge
processing
development processing
Prior art date
Application number
PCT/JP2017/004031
Other languages
English (en)
French (fr)
Inventor
将彦 春本
正也 浅井
田中 裕二
幸司 金山
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Priority to CN201780009122.9A priority Critical patent/CN108604536B/zh
Priority to KR1020187021793A priority patent/KR102207790B1/ko
Priority to US16/073,881 priority patent/US10591820B2/en
Publication of WO2017141736A1 publication Critical patent/WO2017141736A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0042Photosensitive materials with inorganic or organometallic light-sensitive compounds not otherwise provided for, e.g. inorganic resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0042Photosensitive materials with inorganic or organometallic light-sensitive compounds not otherwise provided for, e.g. inorganic resists
    • G03F7/0043Chalcogenides; Silicon, germanium, arsenic or derivatives thereof; Metals, oxides or alloys thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0047Photosensitive materials characterised by additives for obtaining a metallic or ceramic pattern, e.g. by firing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/168Finishing the coated layer, e.g. drying, baking, soaking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/201Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by an oblique exposure; characterised by the use of plural sources; characterised by the rotation of the optical device; characterised by a relative movement of the optical device, the light source, the sensitive system or the mask
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2022Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure
    • G03F7/2026Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure for the removal of unwanted material, e.g. image or background correction
    • G03F7/2028Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure for the removal of unwanted material, e.g. image or background correction of an edge bead on wafers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/3021Imagewise removal using liquid means from a wafer supported on a rotating chuck
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/38Treatment before imagewise removal, e.g. prebaking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70825Mounting of individual elements, e.g. mounts, holders or supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • H01L21/0276Photolithographic processes using an anti-reflective coating

Definitions

  • the present invention relates to a substrate processing apparatus and a substrate processing method for processing a substrate.
  • a coating film is formed by supplying a coating liquid such as a resist liquid onto a substrate.
  • a coating liquid such as a resist liquid
  • the substrate is rotated while being held horizontally by a spin chuck.
  • a resist solution is discharged from the resist nozzle to a substantially central portion of the upper surface of the substrate, whereby a resist film is formed as a coating film on the entire upper surface of the substrate.
  • the transport mechanism for transporting the substrate grips the peripheral edge of the substrate, a part of the resist film is peeled and becomes particles.
  • a coating film containing a metal component (hereinafter referred to as a metal-containing coating film).
  • a metal-containing coating film Even if the coating film on the peripheral portion of the substrate is removed by discharging an organic solvent to the peripheral portion of the metal-containing coating film formed on the substrate, the metal component is not formed on the peripheral portion of the substrate. It was found that the coating film component containing was remained without being removed. Therefore, the substrate processing apparatus and the adjacent exposure apparatus are contaminated by the metal component remaining on the peripheral edge of the substrate.
  • An object of the present invention is to provide a substrate processing apparatus and a substrate processing method capable of preventing the occurrence of metal contamination due to metal components remaining on the peripheral edge of the substrate.
  • a substrate processing apparatus is a substrate processing apparatus disposed adjacent to an exposure apparatus that performs exposure processing on a substrate, and includes a metal-containing photosensitive film including a metal component and a photosensitive material.
  • a film forming unit for forming a substrate on the surface to be processed, an edge exposure unit for irradiating light to the peripheral part of the substrate after forming the metal-containing photosensitive film, and edge exposure by supplying a developer to the peripheral part of the substrate
  • An edge development processing unit for performing development processing on a portion of the metal-containing photosensitive film irradiated with light by the unit, a transport mechanism for transporting the substrate after development processing by the edge development processing unit to the exposure device, and exposure processing in the exposure device
  • a development processing unit that performs development processing of the metal-containing photosensitive film by supplying a developer to the subsequent substrate.
  • edge exposure processing the exposure processing of the metal-containing photosensitive film by the edge exposure processing unit
  • edge development processing the development processing of the metal-containing photosensitive film by the edge development processing unit
  • the peripheral edge of the substrate is irradiated with light.
  • substrate is exposed as an edge exposure process.
  • a developer is supplied to the peripheral edge of the substrate, whereby the exposed metal-containing photosensitive film is developed as an edge developing process.
  • the substrate is transported to the exposure apparatus.
  • an exposure pattern is formed on the metal-containing photosensitive film, and subsequently, a developer is supplied to the substrate after the exposure process in the development processing unit, so that the metal-containing photosensitive property is obtained.
  • the film is developed.
  • the edge exposure process and the edge are performed on the metal-containing photosensitive film portion on the peripheral edge of the substrate. Development processing is performed. Thereby, a metal containing photosensitive film
  • the film forming unit includes a rotation holding unit that rotates while holding the substrate, and a liquid supply unit that supplies a coating solution for the metal-containing photosensitive film to the surface to be processed of the substrate rotated by the rotation holding unit.
  • the edge exposure unit may be configured to irradiate the peripheral edge of the substrate rotated by the rotation holding unit after the coating liquid is supplied by the liquid supply unit.
  • the coating liquid for the metal-containing photosensitive film is supplied to the processing surface of the substrate by the liquid supply unit, and the metal on the peripheral portion of the substrate is supplied by the edge exposure unit.
  • Light is irradiated to a portion of the contained photosensitive film.
  • the film forming unit includes a first removal liquid supply unit that supplies a first removal liquid that dissolves the coating liquid at the peripheral edge of the substrate rotated by the rotation holding unit after the coating liquid is supplied by the liquid supply unit. Further, it may be included.
  • the metal-containing photosensitive film is more sufficiently removed from the peripheral portion of the substrate by supplying the first removal liquid to the peripheral portion of the substrate. Therefore, the metal component is more sufficiently prevented from remaining on the peripheral edge of the substrate.
  • the edge development processing unit may be configured to discharge the developer onto the peripheral edge of the substrate rotated by the rotation holding unit after the light irradiation by the edge exposure unit.
  • the edge development process can be performed in a common space. Thereby, the increase in apparatus cost and the enlargement of the substrate processing apparatus can be further suppressed.
  • the metal-containing photosensitive film portion on the peripheral edge of the substrate can be removed without transporting the substrate from the rotation holding unit. Therefore, the diffusion of the metal component during transport of the substrate is prevented, and the occurrence of metal contamination is more sufficiently prevented.
  • the substrate processing apparatus further includes a heating unit configured to heat the peripheral portion of the substrate rotated by the rotation holding unit after the light irradiation by the edge exposure unit and before the development processing by the edge development processing unit. You may prepare.
  • the catalytic action of the product (acid) generated by the edge exposure processing is promoted, and the solubility of the metal-containing photosensitive film in the developer is increased. Can do.
  • the light irradiation amount of the edge exposure process can be reduced, and the throughput of the edge exposure process can be improved.
  • the edge development processing unit may be provided in the development processing unit.
  • edge development processing and normal development processing of the metal-containing photosensitive film can be performed in a common development processing unit. Thereby, the increase in apparatus cost and the enlargement of the substrate processing apparatus can be suppressed.
  • the edge development processing unit and the development processing unit may have a common developer nozzle capable of discharging the developer.
  • edge development processing and normal development processing can be performed using a common development processing nozzle. Thereby, the apparatus cost can be further reduced.
  • the substrate processing apparatus may further include a heat treatment unit for performing heat treatment on the substrate after the light irradiation by the edge exposure unit and before the development processing by the edge development processing unit.
  • a heat treatment unit for performing heat treatment on the substrate after the light irradiation by the edge exposure unit and before the development processing by the edge development processing unit.
  • the heat treatment unit the heat treatment of the substrate before the exposure processing by the exposure apparatus and the heat treatment of the peripheral portion of the substrate after the edge exposure processing can be performed simultaneously. Thereby, the processing time of the substrate can be shortened.
  • the substrate processing apparatus may further include a second removal liquid supply unit that supplies a second removal liquid that dissolves the metal component in the peripheral portion of the substrate after the development processing by the edge development processing unit. In this case, it can prevent more sufficiently that a metal component remains on the peripheral part of a board
  • a substrate processing method includes a step of forming a metal-containing photosensitive film containing a metal component and a photosensitive material on a surface to be processed by a film forming unit, and an edge exposure unit containing a metal.
  • the step of irradiating light to the peripheral portion of the substrate after the formation of the photosensitive film, and supplying the developer to the peripheral portion of the substrate by the edge development processing unit, the light exposure of the metal-containing photosensitive film irradiated by the edge exposure unit A step of developing a portion, a step of transporting a substrate after development processing by an edge development processing unit to an exposure device, and supplying a developer to the substrate after exposure processing in the exposure device in a development processing unit, And a step of developing the contained photosensitive film.
  • the peripheral edge of the substrate is irradiated with light.
  • substrate is exposed.
  • a developing solution is supplied to the peripheral portion of the substrate, whereby the exposed metal-containing photosensitive film portion is developed.
  • the substrate is transported to the exposure apparatus.
  • an exposure pattern is formed on the metal-containing photosensitive film, and subsequently, a developer is supplied to the substrate after the exposure process in the development processing unit, so that the metal-containing photosensitive property is obtained.
  • the film is developed.
  • the portion of the metal-containing photosensitive film on the peripheral portion of the substrate is exposed and developed. Is done.
  • membrane can be removed appropriately from the peripheral part of a board
  • the step of forming the metal-containing photosensitive film includes the step of supplying a coating liquid for the metal-containing photosensitive film to the surface to be processed of the substrate rotated by the rotation holding unit by the liquid supply unit.
  • the step of irradiating the peripheral part with light may include irradiating the peripheral part of the substrate rotated by the rotation holding part with the edge exposure part after the application liquid is supplied by the liquid supply part.
  • the coating liquid for the metal-containing photosensitive film is supplied to the processing surface of the substrate by the liquid supply unit, and the metal on the peripheral portion of the substrate is supplied by the edge exposure unit.
  • Light is irradiated to a portion of the contained photosensitive film.
  • FIG. 1 is a schematic plan view of a substrate processing apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a schematic side view showing the internal configuration of the coating processing section, the development processing section, and the cleaning / drying processing section of FIG.
  • FIG. 3 is a schematic plan view showing the configuration of the resist film coating unit.
  • FIG. 4 is a schematic side view showing a partial configuration of the resist film coating unit.
  • FIG. 5 is a diagram showing another configuration example of the resist film coating unit.
  • FIG. 6 is a schematic side view showing the internal configuration of the heat treatment section and the cleaning / drying processing section of FIG.
  • FIG. 7 is a schematic diagram for explaining the configuration of the metal removal unit.
  • FIG. 8 is a diagram showing another configuration of the metal removal unit.
  • FIG. 8 is a diagram showing another configuration of the metal removal unit.
  • FIG. 9 is a schematic side view showing the internal configuration of the transport unit.
  • FIG. 10 is a perspective view showing the transport mechanism.
  • FIG. 11 is a schematic diagram for explaining the configuration of a resist film coating unit in the second embodiment.
  • FIG. 12 is a diagram illustrating an example of the cooling gas supply unit.
  • the substrate means a semiconductor substrate, a liquid crystal display substrate, a plasma display substrate, an optical disk substrate, a magnetic disk substrate, a magneto-optical disk substrate, a photomask substrate, or the like.
  • the substrate used in this embodiment has at least a circular outer peripheral portion.
  • the outer peripheral portion excluding the positioning notch has a circular shape.
  • FIG. 1 is a schematic plan view of a substrate processing apparatus according to a first embodiment of the present invention.
  • 1 and 2 and subsequent drawings are provided with arrows indicating X, Y, and Z directions orthogonal to each other in order to clarify the positional relationship.
  • the X direction and the Y direction are orthogonal to each other in the horizontal plane, and the Z direction corresponds to the vertical direction.
  • the substrate processing apparatus 100 includes an indexer block 11, a first processing block 12, a second processing block 13, a cleaning / drying processing block 14A, and a loading / unloading block 14B.
  • the cleaning / drying processing block 14A and the carry-in / carry-out block 14B constitute an interface block 14.
  • the exposure device 15 is disposed adjacent to the carry-in / carry-out block 14B.
  • the exposure apparatus 15 performs an exposure process on the substrate W using, for example, EUV (Extreme Ultra Violet) having a wavelength of 13 nm to 14 nm.
  • EUV Extreme Ultra Violet
  • the indexer block 11 includes a plurality of carrier placement units 111 and a conveyance unit 112. On each carrier placement section 111, a carrier 113 that houses a plurality of substrates W in multiple stages is placed.
  • the transport unit 112 is provided with a main controller 114 and a transport mechanism 115.
  • the main controller 114 controls various components of the substrate processing apparatus 100.
  • the transport mechanism 115 transports the substrate W while holding the substrate W.
  • the first processing block 12 includes a coating processing unit 121, a transport unit 122, and a heat treatment unit 123.
  • the coating processing unit 121 and the heat treatment unit 123 are provided so as to face each other with the conveyance unit 122 interposed therebetween.
  • substrate platforms PASS1 to PASS4 (see FIG. 9) on which the substrate W is mounted are provided.
  • the transport unit 122 is provided with transport mechanisms 127 and 128 (see FIG. 9) for transporting the substrate W.
  • the second processing block 13 includes a development processing unit 131, a transport unit 132, and a heat treatment unit 133.
  • the development processing unit 131 and the heat treatment unit 133 are provided to face each other with the transport unit 132 interposed therebetween.
  • substrate platforms PASS5 to PASS8 (see FIG. 9) on which the substrate W is placed are provided.
  • the transport unit 132 is provided with transport mechanisms 137 and 138 (see FIG. 9) for transporting the substrate W.
  • the cleaning / drying processing block 14 ⁇ / b> A includes cleaning / drying processing units 161 and 162 and a transport unit 163.
  • the cleaning / drying processing units 161 and 162 are provided to face each other with the conveyance unit 163 interposed therebetween.
  • the transport unit 163 is provided with transport mechanisms 141 and 142.
  • placement / buffer units P-BF1 and P-BF2 are provided between the transport unit 163 and the transport unit 132.
  • the placement / buffer units P-BF1 and P-BF2 are configured to accommodate a plurality of substrates W.
  • a substrate platform PASS9 and a later-described placement / cooling unit P-CP are provided between the transport mechanisms 141 and 142 so as to be adjacent to the carry-in / carry-out block 14B.
  • the placement / cooling unit P-CP has a function of cooling the substrate W (for example, a cooling plate).
  • the substrate W is cooled to a temperature suitable for the exposure process.
  • a transport mechanism 146 is provided in the carry-in / carry-out block 14B. The transport mechanism 146 carries the substrate W into and out of the exposure apparatus 15.
  • FIG. 2 is a schematic side view showing the internal configuration of the coating processing unit 121, the development processing unit 131, and the cleaning / drying processing unit 161 in FIG.
  • the coating processing section 121 is provided with coating processing chambers 21, 22, 23, and 24 in a hierarchical manner.
  • a resist film coating processing unit 129a for forming a resist film on the substrate W is provided.
  • an antireflection film coating processing unit 129b for forming an antireflection film on the substrate W is provided.
  • the development processing unit 131 is provided with development processing chambers 31 to 34 in a hierarchical manner. In each of the development processing chambers 31 to 34, a development processing unit 139 is provided.
  • FIG. 3 is a schematic plan view showing the configuration of the resist film coating unit 129a.
  • FIG. 4 is a schematic side view showing a partial configuration of the resist film coating unit 129a.
  • the resist film coating unit 129a includes a standby unit 20, a plurality of spin chucks 25, a plurality of cups 27, a plurality of coating solution nozzles 28, a nozzle transport mechanism 29, a plurality of edge exposure units 41, and A plurality of developer nozzles 43 are provided.
  • two spin chucks 25 are provided in the resist film coating processing unit 129a.
  • Corresponding to each spin chuck 25, a cup 27, an edge exposure unit 41, and a developer nozzle 43 are provided.
  • the resist film coating unit 129 a is provided with a heating unit 42 corresponding to each spin chuck 25.
  • FIG. 4 shows only a portion related to one spin chuck 25.
  • Each spin chuck 25 is rotationally driven by a driving device 25a (FIG. 4) composed of an electric motor or the like while holding the substrate W.
  • the cup 27 is provided so as to surround the periphery of the spin chuck 25.
  • each coating liquid nozzle 28 in FIG. 3 is inserted into the standby unit 20.
  • Each coating solution nozzle 28 is supplied with a coating solution for a resist film (hereinafter referred to as a resist solution) containing a metal component and a photosensitive material, which will be described later, from a coating solution reservoir (not shown).
  • a resist solution for positive tone development is used.
  • any one of the plurality of coating liquid nozzles 28 is moved above the substrate W by the nozzle transport mechanism 29.
  • the resist solution is applied onto the rotating substrate W by discharging the resist solution from the coating solution nozzle 28 while the spin chuck 25 rotates. Thereby, a resist film is formed on the surface to be processed of the substrate W.
  • the surface to be processed refers to the surface of the substrate W on which various patterns such as circuit patterns are formed.
  • the resist solution contains a metal component such as a metal molecule or metal oxide for performing substrate processing with high accuracy as a composition.
  • a metal component such as a metal molecule or metal oxide for performing substrate processing with high accuracy as a composition.
  • the metal component for example, Sn (tin), HfO 2 (hafnium oxide) or ZrO 2 (zirconium dioxide) is contained in the resist solution.
  • the edge exposure unit 41 is made of, for example, an optical fiber, and irradiates light for exposure processing (hereinafter referred to as exposure light) to the peripheral portion of the target surface of the substrate W held by the spin chuck 25.
  • the exposure light is, for example, ultraviolet light.
  • the peripheral portion of the substrate W refers to a region having a constant width along the outer peripheral portion of the substrate W.
  • the edge exposure unit 41 irradiates the peripheral edge of the surface to be processed of the substrate W while the substrate W is rotated by the spin chuck 25. Thereby, an exposure process (hereinafter referred to as an edge exposure process) of the resist film on the peripheral edge of the substrate W is performed.
  • the heating unit 42 is provided below the peripheral edge of the substrate W held by the spin chuck 25.
  • the heating unit 42 is made of, for example, an optical fiber, and irradiates the peripheral edge of the substrate W held by the spin chuck 25 with light for heat treatment (hereinafter referred to as heating light).
  • the heating light is, for example, infrared light.
  • the heating portion 42 irradiates the peripheral edge of the substrate W with heating light while the substrate W is rotated by the spin chuck 25.
  • the post-exposure heat treatment (hereinafter referred to as edge heat treatment) is performed on the resist film portion on the peripheral edge of the substrate W.
  • the edge heat treatment can promote the catalytic action of the product (acid) generated by the photochemical reaction during the edge exposure treatment, and can increase the solubility of the resist film in the developer. Thereby, the light irradiation amount of the edge exposure process can be reduced, and the throughput of the edge exposure process can be improved.
  • the developing solution nozzle 43 is disposed so as to face the peripheral portion of the surface to be processed of the substrate W held by the spin chuck 25.
  • the developer is supplied to the developer nozzle 43 from a developer reservoir (not shown).
  • An alkaline aqueous solution can be used as a developer for positive tone development.
  • the alkaline aqueous solution contains, for example, TMAH (tetramethylammonium hydroxide) or KOH (potassium hydroxide).
  • edge development processing development processing of the resist film portion formed on the peripheral edge of the substrate W is performed. Specifically, the peripheral portion of the resist film exposed in the edge exposure process and heated by the edge heating process is dissolved and removed by the developer.
  • the edge exposure process, the edge heating process, and the edge development process are sequentially performed. Thereby, the portion of the resist film formed on the peripheral edge portion of the substrate W is removed.
  • a rinse liquid nozzle that supplies a rinse liquid (for example, pure water) to the peripheral edge of the substrate W after the edge development processing may be further provided.
  • the rinsing liquid nozzle supplies the rinsing liquid to the peripheral edge of the substrate W, whereby the developer and the resist film residue dissolved by the developer can be washed away from the peripheral edge of the substrate W.
  • FIG. 5 is a diagram showing another configuration example of the resist film coating unit 129a.
  • the example of FIG. 5 will be described while referring to differences from the examples of FIGS. 5 further includes an edge rinse nozzle 44.
  • the edge rinse nozzle 44 is disposed so as to face the peripheral portion of the surface to be processed of the substrate W held by the spin chuck 25.
  • the edge rinse nozzle 44 is provided so that an organic removal liquid (hereinafter referred to as an organic removal liquid) can be discharged.
  • the organic removal liquid contains an organic solvent such as thinner, butyl acetate (butylacetate), PGMEA (propyleneglycol monomethyl ether acetate), or PGME (propyleneglycol monomethyl ether).
  • the substrate W is rotated by the spin chuck 25 while the edge is being rotated.
  • the organic removal liquid is supplied from the rinse nozzle 44 to the peripheral portion of the surface to be processed of the substrate W. Thereby, most of the resist film on the peripheral edge of the substrate W is dissolved and removed. Thereafter, the edge exposure process, the edge heating process, and the edge development process are sequentially performed. Thereby, even if the resist film residue adheres to the peripheral portion of the substrate W after the supply of the organic removal liquid, the resist film residue can be removed by the subsequent edge exposure processing, edge heating processing, and edge development processing. it can.
  • a back rinse nozzle capable of discharging the organic removal liquid may be provided on the back surface of the substrate W.
  • the back surface refers to a surface of the substrate W opposite to the surface to be processed.
  • the developer nozzle 43 may be capable of selectively discharging the developer and the organic removal liquid. In this case, since the edge rinse nozzle 44 is not required, the space for the resist film coating unit 129a can be saved.
  • the antireflection film coating processing unit 129b provided in the coating processing chambers 22 and 24 of FIG. 2 does not include the edge exposure unit 41, the heating unit 42, and the developing solution nozzle 43, except for the points shown in FIGS.
  • the resist film coating unit 129a or the resist film coating unit 129a of FIG. 5 has the same configuration.
  • the coating liquid nozzle 28 of the coating processing unit 129b for the antireflection film is supplied with the coating liquid for the antireflection film, and the coating liquid is supplied onto the substrate W, thereby preventing the reflection of the surface of the substrate W to be processed. A film is formed.
  • the coating liquid supplied to the substrate W in the antireflection film coating processing unit 129b may contain a metal component. In this case, the same metal component as the metal component contained in the resist solution is used.
  • the development processing unit 139 includes a plurality of spin chucks 35 and a plurality of cups 37, similar to the resist film coating processing unit 129a. Further, as shown in FIG. 1, the development processing unit 139 includes two slit nozzles 38 that discharge the developer and a moving mechanism 39 that moves the slit nozzles 38 in the X direction.
  • the spin chuck 35 is rotated by a driving device (not shown). Thereby, the substrate W is rotated. In this state, the developer is supplied to each substrate W while the slit nozzle 38 moves. Thereby, the development processing of the substrate W is performed.
  • the development processing in the development processing unit 139 is performed on the substrate W after the normal exposure processing by the exposure apparatus 15 of FIG.
  • the development processing performed in the development processing unit 139 after the normal exposure processing is referred to as normal development processing.
  • the cleaning / drying processing section 161 is provided with a plurality (three in this example) of cleaning / drying processing units BSS.
  • cleaning and drying processing of the peripheral portion and the back surface of the substrate W before normal exposure processing are performed using an organic solvent or pure water.
  • FIG. 6 is a schematic side view showing the internal configuration of the heat treatment units 123 and 133 and the cleaning / drying processing unit 162 of FIG.
  • the heat treatment part 123 has an upper heat treatment part 301 provided above and a lower heat treatment part 302 provided below.
  • the upper heat treatment section 301 and the lower heat treatment section 302 are provided with a plurality of heat treatment units PHP, a plurality of adhesion reinforcement processing units PAHP, and a plurality of cooling units CP.
  • the local controller LC1 is provided at the top of the heat treatment unit 123.
  • the local controller LC1 controls the operations of the coating processing unit 121, the transport unit 122, and the heat treatment unit 123 based on a command from the main controller 114 in FIG.
  • the substrate W is heated and cooled.
  • adhesion reinforcement processing unit PAHP adhesion reinforcement processing for improving the adhesion between the substrate W and the antireflection film is performed.
  • an adhesion enhancing agent such as HMDS (hexamethyldisilazane) is applied to the substrate W, and the substrate W is subjected to heat treatment.
  • the cooling unit CP the substrate W is cooled.
  • the heat treatment part 133 includes an upper heat treatment part 303 provided above and a lower heat treatment part 304 provided below.
  • the upper heat treatment unit 303 and the lower heat treatment unit 304 are provided with a cooling unit CP and a plurality of heat treatment units PHP.
  • the local controller LC2 is provided at the top of the heat treatment unit 133.
  • the local controller LC2 controls operations of the development processing unit 131, the transport unit 132, and the heat treatment unit 133 based on a command from the main controller 114 in FIG.
  • FIG. 7 is a schematic diagram for explaining the configuration of the metal removal unit MR.
  • the metal removal unit MR is provided with a motor 1, a spin chuck 3, a cup 4, two back surface cleaning nozzles 7, a peripheral edge cleaning nozzle 8, and a gas supply unit 9.
  • the spin chuck 3 is attached to the upper end of the rotating shaft 2 of the motor 1 so as to be rotatable around a vertical axis.
  • the cup 4 is disposed so as to surround the periphery of the substrate W held by the spin chuck 3.
  • a drainage part 5 and an exhaust part 6 are formed in the lower part of the cup 4.
  • the two back surface cleaning nozzles 7 are arranged so as to face the back surface of the substrate W held by the spin chuck 3.
  • a removal liquid (hereinafter referred to as a metal removal liquid) capable of dissolving the metal component is discharged from the back surface cleaning nozzle 7 to the back surface of the substrate W.
  • the peripheral edge cleaning nozzle 8 is disposed so as to face the peripheral edge of the surface to be processed of the substrate W held by the spin chuck 3.
  • a metal removal liquid is discharged from the peripheral edge cleaning nozzle 8 to the peripheral edge of the surface to be processed of the substrate W.
  • an alkaline removal solution or an acidic removal solution is used as the metal removal solution.
  • the alkaline removal liquid is an aqueous solution containing ammonia and hydrogen peroxide, for example.
  • the alkaline removal liquid may be TMAH, for example.
  • the acidic removal liquid is an aqueous solution containing dilute hydrofluoric acid, for example.
  • the acidic removal solution may be an aqueous solution containing, for example, sulfuric acid and hydrogen peroxide, or an aqueous solution containing acetic acid or a chelating agent.
  • the chelating agent is an organic acid, an organic acid salt, an amino acid, an amino acid derivative, an inorganic alkali, an inorganic alkali salt, an alkylamine, an alkylamine derivative, an alkanolamine, and an alkanolamine derivative. Including multiple species.
  • the gas supply unit 9 is disposed above a substantially central portion of the substrate W held by the spin chuck 3.
  • An inert gas for example, nitrogen gas, is jetted from the gas supply unit 9 to a substantially central portion of the surface to be processed of the substrate W.
  • the gas ejected from the gas supply unit 9 diffuses in the substantially central portion of the surface to be processed of the substrate W. This prevents the metal removal liquid discharged from the peripheral edge cleaning nozzle 8 from adhering to the resist film formed on the surface to be processed of the substrate W.
  • the metal removal solution is supplied to the peripheral edge and the back surface of the substrate W. Accordingly, even if the metal component remains on the peripheral edge and the back surface of the substrate W after the edge development processing, the metal component can be dissolved and removed. Therefore, it is possible to sufficiently prevent the contamination by the metal component from occurring inside the substrate processing apparatus 100 and the exposure apparatus 15.
  • a common metal removal solution may be used, or different types of metal removal solutions may be used.
  • the metal removal liquid used in the three metal removal units MR out of the six metal removal units MR may be different from the metal removal liquid used in the remaining three metal removal units MR.
  • the metal component adhering to the peripheral portion and the back surface of the substrate W can be removed by a suitable metal removal unit MR according to the type of the metal component contained in the resist film.
  • FIG. 8 is a diagram showing another configuration of the metal removal unit MR. 8 is provided with a gas-liquid supply nozzle 10 instead of the peripheral edge cleaning nozzle 8 and the gas supply unit 9 of FIG.
  • the gas-liquid supply nozzle 10 includes a liquid nozzle 10a and a gas nozzle 10b arranged in the horizontal direction.
  • the gas-liquid supply nozzle 10 is disposed so as to face the peripheral portion of the substrate W held by the spin chuck 3.
  • the gas nozzle 10b is located at the center of the substrate W rather than the liquid nozzle 10a.
  • the metal removal liquid is discharged from the liquid nozzle 10a to the peripheral edge of the substrate W.
  • An inert gas for example, nitrogen gas, is jetted from the gas nozzle 10 b to the peripheral edge of the substrate W.
  • the position of the substrate W where the gas is ejected from the gas nozzle 10b is closer to the center of the substrate W than the position where the metal removal liquid is discharged from the liquid nozzle 10a. Therefore, the metal removal liquid discharged from the liquid nozzle 10a is prevented from moving toward the center of the substrate W by the gas ejected from the gas nozzle 10b. This prevents the metal removal liquid discharged from the liquid nozzle 10a from adhering to the resist film formed on the surface to be processed of the substrate W.
  • the substrate W after the resist film is cured by the heat treatment unit 123 is transferred to the metal removal unit MR of FIGS. 7 and 8, gas is discharged from the gas supply unit 9 or the gas nozzle 10b to the substrate W. Even if it does not affect the film thickness of the resist film. As a result, a resist film can be formed on the surface to be processed of the substrate W with a uniform thickness.
  • FIG. 9 is a schematic side view showing the internal configuration of the conveying units 122, 132, and 163.
  • the transfer unit 122 includes an upper transfer chamber 125 and a lower transfer chamber 126.
  • the transfer unit 132 includes an upper transfer chamber 135 and a lower transfer chamber 136.
  • the upper transfer chamber 125 is provided with a transfer mechanism 127
  • the lower transfer chamber 126 is provided with a transfer mechanism 128.
  • the upper transfer chamber 135 is provided with a transfer mechanism 137
  • the lower transfer chamber 136 is provided with a transfer mechanism 138.
  • Substrate platforms PASS 1 and PASS 2 are provided between the transport unit 112 and the upper transport chamber 125, and substrate platforms PASS 3 and PASS 4 are provided between the transport unit 112 and the lower transport chamber 126.
  • Substrate platforms PASS5 and PASS6 are provided between the upper transport chamber 125 and the upper transport chamber 135, and substrate platforms PASS7 and PASS8 are provided between the lower transport chamber 126 and the lower transport chamber 136. It is done.
  • a placement / buffer unit P-BF1 is provided between the upper transfer chamber 135 and the transfer unit 163, and a placement / buffer unit P-BF2 is provided between the lower transfer chamber 136 and the transfer unit 163. .
  • a substrate platform PASS9 and a plurality of placement / cooling units P-CP are provided so as to be adjacent to the carry-in / carry-out block 14B in the transport unit 163.
  • the placement / buffer unit P-BF1 is configured such that the substrate W can be loaded and unloaded by the transport mechanism 137 and the transport mechanisms 141 and 142 (FIG. 1).
  • the placement / buffer unit P-BF2 is configured such that the substrate W can be carried in and out by the transport mechanism 138 and the transport mechanisms 141 and 142 (FIG. 1).
  • the substrate platform PASS9 and the placement / cooling unit P-CP are configured such that the substrate W can be carried in and out by the transport mechanisms 141 and 142 (FIG. 1) and the transport mechanism 146.
  • a substrate W transported from the indexer block 11 to the first processing block 12 is placed on the substrate platform PASS1 and the substrate platform PASS3, and the substrate platform PASS2 and the substrate platform PASS4 have a first A substrate W to be transferred from one processing block 12 to the indexer block 11 is placed.
  • the substrate W to be transferred from the first processing block 12 to the second processing block 13 is placed on the substrate platform PASS5 and the substrate platform PASS7, and is placed on the substrate platform PASS6 and the substrate platform PASS8.
  • the substrate W transported from the second processing block 13 to the first processing block 12 is placed.
  • a substrate W transported from the second processing block 13 to the cleaning / drying processing block 14A is placed on the placement / buffer units P-BF1 and P-BF2, and the placement / cooling unit P-CP has a cleaning function.
  • the substrate W transported from the drying processing block 14A to the carry-in / carry-out block 14B is placed, and the substrate W transported from the carry-in / carry-out block 14B to the cleaning / drying processing block 14A is placed on the substrate platform PASS9.
  • FIG. 10 is a perspective view showing the transport mechanism 127.
  • the transport mechanism 127 includes long guide rails 311 and 312.
  • the guide rail 311 is fixed to the conveyance unit 112 side so as to extend in the vertical direction in the upper conveyance chamber 125.
  • the guide rail 312 is fixed to the upper transfer chamber 135 side so as to extend in the vertical direction in the upper transfer chamber 125.
  • a long guide rail 313 is provided between the guide rail 311 and the guide rail 312.
  • the guide rail 313 is attached to the guide rails 311 and 312 so as to be movable up and down.
  • a moving member 314 is attached to the guide rail 313.
  • the moving member 314 is provided to be movable in the longitudinal direction of the guide rail 313.
  • a long rotating member 315 is rotatably provided on the upper surface of the moving member 314.
  • Hands H1, H2, and H3 for holding the outer periphery of the substrate W are attached to the rotating member 315.
  • the hands H1 to H3 are provided so as to be movable in the longitudinal direction of the rotating member 315.
  • the hand H1 is disposed above the hand H2, and the hand H2 is disposed above the hand H3.
  • the transport mechanism 127 can freely move in the X direction and the Z direction in the upper transport chamber 125.
  • the hands W1 to H3 are used to apply the substrate W to the coating processing chambers 21 and 22 (FIG. 2), the substrate platforms PASS1, PASS2, PASS5, PASS6 (FIG. 9) and the upper thermal processing unit 301 (FIG. 6). Delivery can be performed.
  • the transport mechanisms 128, 137, and 138 have the same configuration as the transport mechanism 127.
  • the transport mechanism 142 in FIG. 1 has the same three hands H1 to H3 as the transport mechanism 127.
  • the transport mechanisms 127, 128, 137, and 138 can use the hands H1 to H3 for selection. For example, different hands can be used for transporting the substrate W before processing by the metal removal unit MR and transporting the substrate W after processing by the metal removal unit MR. It is also possible to simultaneously transport a plurality of substrates W using the three hands H1 to H3.
  • the number of hands of each transport mechanism is not limited to three, but may be four or more, or may be two or less.
  • a carrier 113 in which an unprocessed substrate W is accommodated is placed on the carrier placement portion 111 (FIG. 1) of the indexer block 11.
  • the transport mechanism 115 transports the unprocessed substrate W from the carrier 113 to the substrate platforms PASS1 and PASS3 (FIG. 9).
  • the transport mechanism 115 transports the processed substrate W placed on the substrate platforms PASS2 and PASS4 (FIG. 9) to the carrier 113.
  • the transport mechanism 127 applies the unprocessed substrate W placed on the substrate platform PASS ⁇ b> 1 to the adhesion reinforcement processing unit PAHP (FIG. 6) and the cooling unit CP (FIG. 6). And it conveys to the coating process chamber 22 (FIG. 2) in order.
  • the transport mechanism 127 transfers the substrate W in the coating treatment chamber 22 to the heat treatment unit PHP (FIG. 6), the cooling unit CP (FIG. 6), the coating treatment chamber 21 (FIG. 2), the heat treatment unit PHP (FIG. 6), and The substrate is sequentially transferred to the substrate platform PASS5 (FIG. 9).
  • the cooling unit CP cools the substrate W to a temperature suitable for forming the antireflection film.
  • an antireflection film is formed on the substrate W by the antireflection film coating processing unit 129b (FIG. 2).
  • the substrate W is cooled to a temperature suitable for formation of the resist film in the cooling unit CP.
  • a resist film is formed on the substrate W by the resist film coating processing unit 129 a (FIG. 2).
  • the substrate W is heat-treated in the heat treatment unit PHP, and the substrate W is placed on the substrate platform PASS5.
  • the transport mechanism 127 transports the substrate W after the normal development processing placed on the substrate platform PASS6 (FIG. 9) to the substrate platform PASS2 (FIG. 9).
  • the transport mechanism 128 applies the unprocessed substrate W placed on the substrate platform PASS3 to the adhesion reinforcement processing unit PAHP (FIG. 6), the cooling unit CP (FIG. 6), and the coating processing chamber 24 (FIG. 2). ) In order.
  • the transport mechanism 128 transfers the substrate W in the coating treatment chamber 24 to the heat treatment unit PHP (FIG. 6), the cooling unit CP (FIG. 6), the coating treatment chamber 23 (FIG. 2), the heat treatment unit PHP (FIG. 6), and The substrate is transferred sequentially to the substrate platform PASS7 (FIG. 9).
  • the transport mechanism 128 transports the substrate W after the normal development processing placed on the substrate platform PASS8 (FIG. 9) to the substrate platform PASS4 (FIG. 9).
  • the processing contents of the substrate W in the coating processing chambers 23 and 24 (FIG. 2) and the lower thermal processing section 302 (FIG. 6) are the same as those in the coating processing chambers 21 and 22 (FIG. 2) and the upper thermal processing section 301 (FIG. 6).
  • the processing contents of W are the same.
  • the transport mechanism 137 (FIG. 9) transports the substrate W after the formation of the resist film placed on the substrate platform PASS5 to the placement / buffer unit P-BF1 (FIG. 9). .
  • the transport mechanism 137 takes out the substrate W after the normal exposure processing and after the heat treatment from the heat treatment unit PHP (FIG. 6) adjacent to the cleaning / drying processing block 14A.
  • the transport mechanism 137 transfers the substrate W to the cooling unit CP (FIG. 6), one of the development processing chambers 31 and 32 (FIG. 6), the heat treatment unit PHP (FIG. 6), and the substrate platform PASS6 (FIG. 9). Transport in order.
  • the normal development processing of the substrate W is performed by the development processing unit 139 in one of the development processing chambers 31 and 32. . Thereafter, the substrate W is heat-treated in the heat treatment unit PHP, and the substrate W is placed on the substrate platform PASS6.
  • the transport mechanism 138 (FIG. 9) transports the substrate W after the resist film formation placed on the substrate platform PASS7 to the placement / buffer unit P-BF2 (FIG. 9).
  • the transport mechanism 138 takes out the substrate W after the normal exposure process and after the heat treatment from the heat treatment unit PHP (FIG. 6) adjacent to the interface block 14.
  • the transport mechanism 138 transfers the substrate W to the cooling unit CP (FIG. 6), one of the development processing chambers 33 and 34 (FIG. 2), the heat treatment unit PHP (FIG. 6), and the substrate platform PASS8 (FIG. 9). Transport in order.
  • the processing contents of the substrate W in the development processing chambers 33 and 34 and the lower thermal processing section 304 are the same as the processing contents of the substrate W in the development processing chambers 31 and 32 and the upper thermal processing section 303, respectively.
  • the transport mechanism 142 (FIG. 1) transports the substrate W placed on the placement / buffer units P-BF1, P-BF2 (FIG. 9) to the metal removal unit MR (FIG. 6). To do.
  • the transport mechanism 142 transports the substrate W of the metal removal unit MR to the placement / buffer unit P-BF1 (FIG. 9) or the placement / buffer unit P-BF2 (FIG. 9).
  • the transport mechanism 141 (FIG. 1) cleans and dries the substrate W transported from the metal removal unit MR to the placement / buffer units P-BF1, P-BF2, and the placement / cooling unit P-. It conveys to CP (FIG. 9) in order.
  • the metal component remaining on the peripheral edge and the back surface of the substrate W is removed in the metal removal unit MR.
  • the cleaning / drying processing unit BSS the peripheral edge and the back surface of the substrate W are cleaned and dried. Thereafter, the substrate W is cooled to a temperature suitable for normal exposure processing by the exposure apparatus 15 (FIG. 1) in the placement / cooling section P-CP.
  • the transport mechanism 142 (FIG. 1) transports the substrate W after the normal exposure processing placed on the substrate platform PASS9 (FIG. 9) to the thermal processing unit PHP (FIG. 6) of the upper thermal processing unit 303 or the lower thermal processing unit 304. To do. In this case, a post-exposure bake (PEB) process is performed in the heat treatment unit PHP.
  • PEB post-exposure bake
  • the transport mechanism 146 loads the substrate W placed on the placement / cooling unit P-CP (FIG. 6) before the normal exposure processing into the substrate of the exposure apparatus 15 (FIG. 1). To the part. Further, the transport mechanism 146 takes out the substrate W after the normal exposure processing from the substrate carry-out portion of the exposure apparatus 15 and transports the substrate W to the substrate platform PASS9 (FIG. 9).
  • the normal exposure process is performed on the substrate W by EUV having an extremely short wavelength. In this case, since the metal component is contained in the resist film on the substrate W, the EUV light is efficiently absorbed, so that a fine exposure pattern can be formed on the resist film with high resolution.
  • the exposure method is not limited to this, and the normal exposure process may be performed on the substrate W by another method.
  • the processing of the substrate W in the development processing chambers 33 and 34 and the lower thermal processing units 302 and 304 can be performed in parallel. Thereby, the throughput can be improved without increasing the footprint.
  • the resist film on the substrate W after the resist film is formed on the substrate W and before the substrate W is transferred to the exposure apparatus 15. Edge exposure processing and edge development processing are performed. Thereby, the resist film can be appropriately removed from the peripheral portion of the substrate W. Accordingly, the metal component is prevented from remaining at the peripheral edge of the substrate W. As a result, metal contamination in the substrate processing apparatus 100 and the exposure apparatus 15 due to the metal component remaining on the peripheral edge of the substrate W is sufficiently prevented.
  • the resist film coating processing unit 129a while the substrate W is rotated by the spin chuck 25, the resist liquid is coated by the coating liquid nozzle 28, the edge exposure processing by the edge exposure unit 41, and the heating unit 42.
  • the edge heating process by, and the edge development process by the developer nozzle 43 are sequentially performed.
  • FIG. 11 is a schematic diagram for explaining a configuration of a resist film coating unit 129a according to the second embodiment.
  • the resist film coating unit 129a of FIG. 11 is different from the resist film coating unit 129a of FIG. 3 in that the heating unit 42 and the developer nozzle 43 are not provided.
  • the edge heating process and the edge development process are not performed after the edge exposure process.
  • the transport mechanism 127 in FIG. 9 sequentially transfers the substrate W after the edge exposure processing in the coating processing chamber 21 to the heat treatment unit PHP (FIG. 6) and the substrate platform PASS5 (FIG. 9). Transport. Further, the transport mechanism 128 of FIG. 9 sequentially transports the substrate W after the edge exposure processing in the coating processing chamber 23 to the heat treatment unit PHP (FIG. 6) and the substrate platform PASS7 (FIG. 9). In this case, the entire substrate W is heated in each heat treatment unit PHP. Therefore, the heat treatment is performed on the resist film portion on the peripheral edge of the substrate W in the same manner as the edge heat treatment.
  • the transport mechanism 137 in FIG. 9 transports the heat-treated substrate W placed on the substrate platform PASS5 to one of the development processing chambers 31 and 32. Further, the transport mechanism 138 of FIG. 9 transports the heat-treated substrate W placed on the substrate platform PASS7 to one of the development processing chambers 33 and 34.
  • the developer is supplied to the peripheral edge of the substrate W after the heat treatment. Thereby, the edge development processing of the substrate W is performed.
  • the developer may be supplied only from the slit nozzle 38 in FIG. 1 to the peripheral edge of the substrate W, or the nozzle arranged so as to face the peripheral edge of the substrate W in the same manner as the developer nozzle 43 in FIG. May be provided separately.
  • the transport mechanism 137 of FIG. 9 transports the substrate W after the edge development processing from either of the development processing chambers 31 and 32 to the placement / buffer unit P-BF1 (FIG. 9). Further, the transport mechanism 138 in FIG. 9 transports the substrate W after the edge development processing from either of the development processing chambers 33 and 34 to the placement / buffer unit P-BF2 (FIG. 9). Thereafter, similarly to the first embodiment, the substrate W is transferred to the exposure apparatus 15 (FIG. 1), and the normal exposure processing of the substrate W is performed.
  • the portion of the resist film on the peripheral portion of the substrate W after the edge exposure processing is also heated.
  • the subsequent edge development processing can be appropriately performed without performing the edge heating processing individually. Therefore, the processing time of the substrate W can be reduced as compared with the case where the edge heating process is performed individually.
  • the edge development processing and the normal development processing of the substrate W are performed in the common development processing unit 139, respectively. Accordingly, it is not necessary to provide the developer nozzle 43 shown in FIG.
  • the metal removal unit MR that supplies the metal removal liquid to the peripheral portion of the substrate W is provided in the interface block 14, but the present invention is not limited to this.
  • the resist film coating processing unit 129a may be provided with a nozzle capable of discharging the metal removal liquid at the peripheral edge of the substrate W.
  • the metal removal unit MR may not be provided.
  • the edge heating process is performed on the substrate W after the edge exposure process and before the edge development process, but the present invention is not limited to this.
  • the edge development process can be appropriately performed without performing the edge heating process after the edge exposure process.
  • the edge exposure process is performed on the substrate W in the resist film coating unit 129a, but the present invention is not limited to this.
  • a unit that performs edge exposure processing on the substrate W after the formation of the resist film may be provided separately from the resist film coating processing unit 129a.
  • edge development processing is performed on the substrate W in the resist film coating processing unit 129a or the development processing unit 139, but the present invention is not limited to this.
  • a unit for performing edge development processing on the substrate W after the edge exposure processing may be provided separately from the resist film coating processing unit 129a and the development processing unit 139.
  • FIG. 12 is a diagram illustrating an example of the cooling gas supply unit.
  • a cooling gas supply unit 46 is provided below the substrate W held by the spin chuck 25.
  • the cooling gas supply unit 46 supplies a cooling gas to the back surface of the substrate W held by the spin chuck 25.
  • two spin chucks 25 are provided in the coating processing chambers 21 to 24 and three spin chucks 35 are provided in the development processing chambers 31 to 34, but the present invention is not limited to this.
  • One or three or more spin chucks 25 may be provided in the coating processing chambers 21 to 24.
  • two or less or four or more spin chucks 35 may be provided in the development processing chambers 31 to 34.
  • the hands H1 to H3 of the transport mechanisms 127, 128, 137, 138, and 141 hold the outer periphery of the substrate W, but the present invention is not limited to this.
  • the hands H1 to H3 of the transport mechanisms 127, 128, 137, 138, and 141 may hold the back surface of the substrate W by adsorbing the substrate W.
  • the substrate processing apparatus 100 is an example of a substrate processing apparatus
  • the substrate W is an example of a substrate
  • the exposure apparatus 15 is an example of an exposure apparatus
  • the resist film coating processing unit 129a is a film formation.
  • the resist film is an example of a metal-containing photosensitive film
  • the edge exposure unit 41 is an example of an edge exposure unit
  • the developer nozzle 43 is an example of an edge development processing unit
  • the transport mechanism 146 is This is an example of the transport mechanism
  • the development processing unit 139 is an example of the development processing unit.
  • the spin chuck 25 is an example of a rotation holding unit
  • the coating liquid nozzle 28 is an example of a liquid supply unit
  • the edge rinse nozzle 44 is an example of a first removal liquid supply unit
  • the heating unit 42 is a heating unit.
  • the slit nozzle 38 is an example of a developer nozzle
  • the heat treatment unit PHP is an example of a heat treatment unit
  • the peripheral edge cleaning nozzle 8 is an example of a second removal liquid supply unit.
  • the present invention can be effectively used for processing various substrates.

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

基板(W)の被処理面に金属成分および感光性材料を含むレジスト膜が形成された後、エッジ露光部(41)により基板の周縁部に光が照射される。これにより、基板の周縁部上のレジスト膜の部分が露光される。続いて、現像液ノズル(43)により基板の周縁部に現像液が供給されることにより、露光されたレジスト膜の部分の現像処理が行われる。これにより、基板の周縁部上に形成されたレジスト膜の部分が除去される。その後、基板が露光装置(15)に搬送される。露光装置において基板に露光処理が行われることにより、レジスト膜に露光パターンが形成され、続いて現像処理ユニット(139)において露光処理後の基板に現像液が供給されることにより、レジスト膜の現像処理が行われる。

Description

基板処理装置および基板処理方法
 本発明は、基板に処理を行う基板処理装置および基板処理方法に関する。
 半導体デバイス等の製造におけるリソグラフィ工程では、基板上にレジスト液等の塗布液が供給されることにより塗布膜が形成される。例えば、基板がスピンチャックにより水平に保持されつつ回転される。この状態で、基板の上面の略中央部にレジストノズルからレジスト液が吐出されることにより、基板の上面全体に塗布膜としてレジスト膜が形成される。ここで、基板の周縁部にレジスト膜が存在すると、基板を搬送する搬送機構が基板の周縁部を把持した際に、レジスト膜の一部が剥離してパーティクルとなる。そこで、基板の周縁部にエッジリンスノズルから有機溶剤を吐出することにより基板の周縁部のレジスト膜が溶解される。それにより、基板の周縁部のレジスト膜が除去される(例えば、特許文献1参照)。
特開平6-124887号公報
 近年、より微細なパターンを形成するために、金属成分を含有する塗布膜(以下、金属含有塗布膜と呼ぶ。)を適用することが研究されている。しかしながら、発明者の実験により、基板上に形成された金属含有塗布膜の周縁部に有機溶剤を吐出することにより基板の周縁部の塗布膜を除去した場合でも、基板の周縁部上に金属成分を含む塗布膜成分が除去されず残存することが分かった。そのため、基板の周縁部に残存した金属成分により基板処理装置および隣接する露光装置が汚染することとなる。
 本発明の目的は、基板の周縁部に残存する金属成分に起因して金属汚染が発生することを防止可能な基板処理装置および基板処理方法を提供することである。
 (1)本発明の一局面に従う基板処理装置は、基板に露光処理を行う露光装置に隣接するように配置される基板処理装置であって、金属成分および感光性材料を含む金属含有感光性膜を基板の被処理面に形成する膜形成ユニットと、金属含有感光性膜形成後の基板の周縁部に光を照射するエッジ露光部と、基板の周縁部に現像液を供給することによりエッジ露光部により光が照射された金属含有感光性膜の部分の現像処理を行うエッジ現像処理部と、エッジ現像処理部による現像処理後の基板を露光装置に搬送する搬送機構と、露光装置における露光処理後の基板に現像液を供給することにより、金属含有感光性膜の現像処理を行う現像処理ユニットとを備える。
 以下、エッジ露光処理部による金属含有感光性膜の露光処理をエッジ露光処理と呼び、エッジ現像処理部による金属含有感光性膜の現像処理をエッジ現像処理と呼ぶ。
 この基板処理装置においては、基板の被処理面に金属含有感光性膜が形成された後、基板の周縁部に光が照射される。これにより、エッジ露光処理として、基板の周縁部上の金属含有感光性膜の部分が露光される。続いて、基板の周縁部に現像液が供給されることにより、エッジ現像処理として、露光された金属含有感光性膜の部分の現像処理が行われる。その後、基板が露光装置に搬送される。露光装置において基板に露光処理が行われることにより、金属含有感光性膜に露光パターンが形成され、続いて現像処理ユニットにおいて露光処理後の基板に現像液が供給されることにより、金属含有感光性膜の現像処理が行われる。
 このように、基板上に金属含有感光性膜が形成された後であって基板が露光装置に搬送される前に、基板の周縁部上の金属含有感光性膜の部分にエッジ露光処理およびエッジ現像処理が行われる。これにより、基板の周縁部から金属含有感光性膜を適切に除去することができる。したがって、基板の周縁部における金属成分の残存が防止され、基板処理装置および露光装置に金属汚染が生じることが十分に防止される。
 (2)膜形成ユニットは、基板を保持して回転する回転保持部と、回転保持部により回転される基板の被処理面に金属含有感光性膜用の塗布液を供給する液供給部とを含み、エッジ露光部は、液供給部による塗布液の供給後に回転保持部により回転される基板の周縁部に光を照射するように構成されてもよい。
 この場合、共通の回転保持部によって基板が回転されつつ、液供給部により基板の被処理面に金属含有感光性膜用の塗布液が供給され、かつエッジ露光部により基板の周縁部上の金属含有感光性膜の部分に光が照射される。これにより、金属含有感光性膜の形成およびエッジ露光処理を共通のスペースで行うことができる。したがって、装置コストの増大および基板処理装置の大型化を抑制することができる。
 (3)膜形成ユニットは、液供給部による塗布液の供給後に回転保持部により回転される基板の周縁部に塗布液を溶解させる第1の除去液を供給する第1の除去液供給部をさらに含んでもよい。
 この場合、基板の周縁部に第1の除去液が供給されることにより、基板の周縁部から金属含有感光性膜がより十分に除去される。したがって、基板の周縁部に金属成分が残存することがより十分に防止される。
 (4)エッジ現像処理部は、エッジ露光部による光照射後に回転保持部により回転される基板の周縁部に現像液を吐出するように構成されてもよい。この場合、金属含有感光性膜の形成およびエッジ露光処理に加えて、エッジ現像処理を共通のスペースで行うことができる。それにより、装置コストの増大および基板処理装置の大型化をさらに抑制することができる。また、金属含有感光性膜の形成後、回転保持部から基板を搬送することなく、基板の周縁部上の金属含有感光性膜の部分を除去することができる。したがって、基板の搬送時における金属成分の拡散が防止され、金属汚染の発生がより十分に防止される。
 (5)基板処理装置は、エッジ露光部による光照射後であってエッジ現像処理部による現像処理前に回転保持部により回転される基板の周縁部を加熱するように構成された加熱部をさらに備えてもよい。
 この場合、エッジ露光処理後の基板の周縁部を加熱することにより、エッジ露光処理により生じた生成物(酸)の触媒作用を促進し、現像液に対する金属含有感光性膜の溶解性を高めることができる。それにより、エッジ露光処理の光照射量の低減が可能であり、エッジ露光処理のスループットを向上させることができる。
 (6)エッジ現像処理部は、現像処理ユニットに設けられてもよい。この場合、共通の現像処理ユニットにおいて、金属含有感光性膜のエッジ現像処理および通常の現像処理をそれぞれ行うことができる。それにより、装置コストの増大および基板処理装置の大型化を抑制することができる。
 (7)エッジ現像処理部および現像処理ユニットは、現像液を吐出可能な共通の現像液ノズルを有してもよい。この場合、共通の現像処理ノズルを用いてエッジ現像処理および通常の現像処理をそれぞれ行うことができる。それにより、装置コストのさらなる削減が可能となる。
 (8)基板処理装置は、エッジ露光部による光照射後であってエッジ現像処理部による現像処理前の基板に加熱処理を行う熱処理ユニットをさらに備えてもよい。この場合、熱処理ユニットにおいて、露光装置による露光処理前の基板の加熱処理と、エッジ露光処理後の基板の周縁部の加熱処理とを同時に行うことができる。それにより、基板の処理時間を短縮することができる。
 (9)基板処理装置は、エッジ現像処理部による現像処理後に基板の周縁部に金属成分を溶解させる第2の除去液を供給する第2の除去液供給部をさらに備えてもよい。この場合、基板の周縁部上に金属成分が残存することをより十分に防止することができる。
 (10)本発明の他の局面に従う基板処理方法は、膜形成ユニットにより金属成分および感光性材料を含む金属含有感光性膜を基板の被処理面に形成するステップと、エッジ露光部により金属含有感光性膜形成後の基板の周縁部に光を照射するステップと、エッジ現像処理部により基板の周縁部に現像液を供給することによりエッジ露光部により光が照射された金属含有感光性膜の部分の現像処理を行うステップと、エッジ現像処理部による現像処理後の基板を露光装置に搬送するステップと、現像処理ユニットにおいて露光装置における露光処理後の基板に現像液を供給することにより、金属含有感光性膜の現像処理を行うステップとを備える。
 この基板処理方法によれば、基板の被処理面に金属含有感光性膜が形成された後、基板の周縁部に光が照射される。これにより、基板の周縁部上の金属含有感光性膜の部分が露光される。続いて、基板の周縁部に現像液が供給されることにより、露光された金属含有感光性膜の部分の現像処理が行われる。その後、基板が露光装置に搬送される。露光装置において基板に露光処理が行われることにより、金属含有感光性膜に露光パターンが形成され、続いて現像処理ユニットにおいて露光処理後の基板に現像液が供給されることにより、金属含有感光性膜の現像処理が行われる。
 このように、基板上に金属含有感光性膜が形成された後であって基板が露光装置に搬送される前に、基板の周縁部上の金属含有感光性膜の部分に露光処理および現像処理が行われる。これにより、基板の周縁部から金属含有感光性膜を適切に除去することができる。したがって、基板の周縁部における金属成分の残存が防止され、基板処理装置および露光装置に金属汚染が生じることが十分に防止される。
 (11)金属含有感光性膜を形成するステップは、回転保持部により回転される基板の被処理面に液供給部により金属含有感光性膜用の塗布液を供給するステップとを含み、基板の周縁部に光を照射するステップは、液供給部による塗布液の供給後に回転保持部により回転される基板の周縁部にエッジ露光部により光を照射することを含んでもよい。
 この場合、共通の回転保持部によって基板が回転されつつ、液供給部により基板の被処理面に金属含有感光性膜用の塗布液が供給され、かつエッジ露光部により基板の周縁部上の金属含有感光性膜の部分に光が照射される。これにより、金属含有感光性膜の形成およびエッジ露光処理を共通のスペースで行うことができる。したがって、装置コストの増大および基板処理装置の大型化を抑制することができる。
 本発明によれば、基板の周縁部に残存する金属成分に起因して金属汚染が発生することを防止することができる。
図1は本発明の第1の実施の形態に係る基板処理装置の模式的平面図である。 図2は図1の塗布処理部、現像処理部および洗浄乾燥処理部の内部構成を示す模式的側面図である。 図3はレジスト膜用塗布処理ユニットの構成を示す模式的平面図である。 図4はレジスト膜用塗布処理ユニットの一部構成を示す模式的側面図である。 図5はレジスト膜用塗布処理ユニットの他の構成例を示す図である。 図6は図1の熱処理部および洗浄乾燥処理部の内部構成を示す模式的側面図である。 図7は金属除去ユニットの構成を説明するための模式図である。 図8は金属除去ユニットの他の構成を示す図である。 図9は搬送部の内部構成を示す模式的側面図である。 図10は搬送機構を示す斜視図である。 図11は第2の実施の形態におけるレジスト膜用塗布処理ユニットの構成を説明するための模式図である。 図12は冷却気体供給部の一例を示す図である。
 以下、本発明の実施の形態に係る基板処理装置および基板処理方法について図面を用いて説明する。なお、以下の説明において、基板とは、半導体基板、液晶表示装置用基板、プラズマディスプレイ用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板またはフォトマスク用基板等をいう。また、本実施の形態で用いられる基板は、少なくとも一部が円形の外周部を有する。例えば、位置決め用のノッチを除く外周部が円形を有する。
 [1]第1の実施の形態
 (1)基板処理装置
 図1は、本発明の第1の実施の形態に係る基板処理装置の模式的平面図である。図1および図2以降の所定の図には、位置関係を明確にするために互いに直交するX方向、Y方向およびZ方向を示す矢印を付している。X方向およびY方向は水平面内で互いに直交し、Z方向は鉛直方向に相当する。
 図1に示すように、基板処理装置100は、インデクサブロック11、第1の処理ブロック12、第2の処理ブロック13、洗浄乾燥処理ブロック14Aおよび搬入搬出ブロック14Bを備える。洗浄乾燥処理ブロック14Aおよび搬入搬出ブロック14Bにより、インターフェイスブロック14が構成される。搬入搬出ブロック14Bに隣接するように露光装置15が配置される。本例において、露光装置15は、例えば13nm以上14nm以下の波長を有するEUV(Extreme Ultra Violet;超紫外線)により基板Wに露光処理を行う。以下、露光装置15による基板Wの露光処理を通常露光処理と呼ぶ。
 図1に示すように、インデクサブロック11は、複数のキャリア載置部111および搬送部112を含む。各キャリア載置部111には、複数の基板Wを多段に収納するキャリア113が載置される。搬送部112には、メインコントローラ114および搬送機構115が設けられる。メインコントローラ114は、基板処理装置100の種々の構成要素を制御する。搬送機構115は、基板Wを保持しつつその基板Wを搬送する。
 第1の処理ブロック12は、塗布処理部121、搬送部122および熱処理部123を含む。塗布処理部121および熱処理部123は、搬送部122を挟んで対向するように設けられる。搬送部122とインデクサブロック11との間には、基板Wが載置される基板載置部PASS1~PASS4(図9参照)が設けられる。搬送部122には、基板Wを搬送する搬送機構127,128(図9参照)が設けられる。
 第2の処理ブロック13は、現像処理部131、搬送部132および熱処理部133を含む。現像処理部131および熱処理部133は、搬送部132を挟んで対向するように設けられる。搬送部132と搬送部122との間には、基板Wが載置される基板載置部PASS5~PASS8(図9参照)が設けられる。搬送部132には、基板Wを搬送する搬送機構137,138(図9参照)が設けられる。
 洗浄乾燥処理ブロック14Aは、洗浄乾燥処理部161,162および搬送部163を含む。洗浄乾燥処理部161,162は、搬送部163を挟んで対向するように設けられる。搬送部163には、搬送機構141,142が設けられる。搬送部163と搬送部132との間には、載置兼バッファ部P-BF1,P-BF2(図9参照)が設けられる。載置兼バッファ部P-BF1,P-BF2は、複数の基板Wを収容可能に構成される。
 また、搬送機構141,142の間において、搬入搬出ブロック14Bに隣接するように、基板載置部PASS9および後述の載置兼冷却部P-CP(図9参照)が設けられる。載置兼冷却部P-CPは、基板Wを冷却する機能(例えば、クーリングプレート)を備える。載置兼冷却部P-CPにおいて、基板Wが露光処理に適した温度に冷却される。搬入搬出ブロック14Bには、搬送機構146が設けられる。搬送機構146は、露光装置15に対する基板Wの搬入および搬出を行う。
 (2)塗布処理部、現像処理部および洗浄乾燥処理部
 図2は、図1の塗布処理部121、現像処理部131および洗浄乾燥処理部161の内部構成を示す模式的側面図である。図2に示すように、塗布処理部121には、塗布処理室21,22,23,24が階層的に設けられる。塗布処理室21,23には、基板W上にレジスト膜を形成するためのレジスト膜用塗布処理ユニット129aが設けられる。塗布処理室22,24には、基板W上に反射防止膜を形成するための反射防止膜用塗布処理ユニット129bが設けられる。現像処理部131には、現像処理室31~34が階層的に設けられる。各現像処理室31~34には、現像処理ユニット139が設けられる。
 図3は、レジスト膜用塗布処理ユニット129aの構成を示す模式的平面図である。図4は、レジスト膜用塗布処理ユニット129aの一部構成を示す模式的側面図である。図3に示すように、レジスト膜用塗布処理ユニット129aは、待機部20、複数のスピンチャック25、複数のカップ27、複数の塗布液ノズル28、ノズル搬送機構29、複数のエッジ露光部41および複数の現像液ノズル43を備える。本実施の形態では、レジスト膜用塗布処理ユニット129aに2つのスピンチャック25が設けられる。各スピンチャック25に対応して、カップ27、エッジ露光部41および現像液ノズル43が設けられる。また、図4に示すように、レジスト膜用塗布処理ユニット129aには、各スピンチャック25に対応して、加熱部42が設けられる。図4には、1つのスピンチャック25に関連する部分のみが示される。
 各スピンチャック25は、基板Wを保持した状態で、電動モータ等からなる駆動装置25a(図4)により回転駆動される。カップ27はスピンチャック25の周囲を取り囲むように設けられる。待機時には、図3の各塗布液ノズル28は待機部20に挿入される。各塗布液ノズル28には、図示しない塗布液貯留部から後述の金属成分および感光性材料を含むレジスト膜用の塗布液(以下、レジスト液と呼ぶ。)が供給される。本実施の形態では、ポジティブトーン現像用のレジスト液が用いられる。
 複数の塗布液ノズル28のうちのいずれかの塗布液ノズル28がノズル搬送機構29により基板Wの上方に移動される。スピンチャック25が回転しつつ塗布液ノズル28からレジスト液が吐出されることにより、回転する基板W上にレジスト液が塗布される。それにより、基板Wの被処理面にレジスト膜が形成される。ここで、被処理面とは回路パターン等の各種パターンが形成される基板Wの面をいう。
 レジスト液には、高い精度で基板処理を行うための金属分子または金属酸化物等の金属成分が組成物として含有されている。本例では、金属成分として、例えばSn(スズ)、HfO(酸化ハフニウム)またはZrO(二酸化ジルコニウム)がレジスト液に含有される。
 エッジ露光部41は、例えば光ファイバからなり、スピンチャック25により保持される基板Wの被処理面の周縁部に露光処理のための光(以下、露光光と呼ぶ。)を照射する。露光光は、例えば紫外線である。ここで、基板Wの周縁部とは、基板Wの外周部に沿った一定幅の領域をいう。
 基板W上にレジスト膜が形成された後、スピンチャック25により基板Wが回転された状態で、エッジ露光部41により基板Wの被処理面の周縁部に露光光が照射される。それにより、基板Wの周縁部上のレジスト膜の部分の露光処理(以下、エッジ露光処理と呼ぶ。)が行われる。
 図4に示すように、加熱部42は、スピンチャック25により保持される基板Wの周縁部の下方に設けられる。加熱部42は、例えば光ファイバからなり、スピンチャック25により保持された基板Wの周縁部に加熱処理のための光(以下、加熱光と呼ぶ。)を照射する。加熱光は、例えば赤外線である。
 上記のエッジ露光処理の後、スピンチャック25により基板Wが回転された状態で、加熱部42により基板Wの周縁部に加熱光が照射される。これにより、基板Wの周縁部上のレジスト膜の部分に露光後の加熱処理(以下、エッジ加熱処理と呼ぶ。)が行われる。エッジ加熱処理により、エッジ露光処理時の光化学反応により生じた生成物(酸)の触媒作用を促進し、現像液に対するレジスト膜の溶解性を高めることができる。それにより、エッジ露光処理の光照射量の低減が可能であり、エッジ露光処理のスループットを向上させることができる。
 現像液ノズル43は、スピンチャック25により保持された基板Wの被処理面の周縁部を向くように配置される。現像液ノズル43には、図示しない現像液貯留部から現像液が供給される。ポジティブトーン現像処理用の現像液として、アルカリ性水溶液を用いることができる。アルカリ性水溶液は、例えば、TMAH(tetra methyl ammonium hydroxide:水酸化テトラメチルアンモニウム)またはKOH(potassium hydroxide:水酸化カリウム)を含む。
 上記のエッジ露光処理後、スピンチャック25により基板Wが回転された状態で、現像液ノズル43から基板Wの被処理面の周縁部に現像液が供給される。これにより、基板Wの周縁部上に形成されたレジスト膜の部分の現像処理(以下、エッジ現像処理と呼ぶ。)が行われる。具体的には、エッジ露光処理において露光され、かつエッジ加熱処理によって加熱されたレジスト膜の周縁部の部分が現像液によって溶解されて除去される。
 このように、レジスト膜用塗布処理ユニット129aでは、基板W上にレジスト膜が形成された後、エッジ露光処理、エッジ加熱処理およびエッジ現像処理が順に行われる。これにより、基板Wの周縁部上に形成されたレジスト膜の部分が除去される。
 エッジ現像処理後に基板Wの周縁部にリンス液(例えば、純水)を供給するリンス液ノズルがさらに設けられてもよい。この場合、リンス液ノズルが基板Wの周縁部にリンス液を供給することにより、現像液およびその現像液によって溶解されたレジスト膜の残渣を基板Wの周縁部から洗い流すことができる。
 図5は、レジスト膜用塗布処理ユニット129aの他の構成例を示す図である。図5の例について、図3および図4の例と異なる点を説明する。図5のレジスト膜用塗布処理ユニット129aは、エッジリンスノズル44をさらに備える。
 エッジリンスノズル44は、スピンチャック25により保持された基板Wの被処理面の周縁部を向くように配置される。エッジリンスノズル44は、有機性の除去液(以下、有機除去液と呼ぶ。)を吐出可能に設けられる。有機除去液は、例えばシンナー、酢酸ブチル(butyl acetate)、PGMEA(propyleneglycol monomethyl ether acetate:プロピレングリコールモノメチルエーテルアセテート)、またはPGME(propyleneglycol monomethyl ether:プロピレングリコールモノメチルエーテル)等の有機溶媒を含む。
 図5のレジスト膜用塗布処理ユニット129aでは、基板W上にレジスト膜が形成された後であって、上記のエッジ露光処理が行われる前に、スピンチャック25により基板Wが回転されつつ、エッジリンスノズル44から基板Wの被処理面の周縁部に有機除去液が供給される。これにより、基板Wの周縁部上のレジスト膜の大部分が溶解されて除去される。その後、上記のエッジ露光処理、エッジ加熱処理およびエッジ現像処理が順に行われる。それにより、有機除去液の供給後にレジスト膜の残渣が基板Wの周縁部上に付着していても、その後のエッジ露光処理、エッジ加熱処理およびエッジ現像処理によってレジスト膜の残渣を除去することができる。
 エッジリンスノズル44に加えて、基板Wの裏面に有機除去液を吐出可能なバックリンスノズルが設けられてもよい。ここで、裏面とは基板Wの被処理面と反対側の面をいう。この場合、基板Wの裏面にレジスト液が付着していても、バックリンスノズルから吐出される有機除去液によって基板Wの裏面からレジスト液を除去することができる。また、現像液ノズル43が現像液と有機除去液とを選択的に吐出可能であってもよい。この場合、エッジリンスノズル44が不要となるので、レジスト膜用塗布処理ユニット129aの省スペース化が可能となる。
 図2の塗布処理室22,24に設けられる反射防止膜用塗布処理ユニット129bは、エッジ露光部41、加熱部42および現像液ノズル43を有さない点を除いて、図3および図4のレジスト膜用塗布処理ユニット129a、または図5のレジスト膜用塗布処理ユニット129aと同様の構成を有する。反射防止膜用塗布処理ユニット129bの塗布液ノズル28には、反射防止膜用の塗布液が供給され、その塗布液が基板W上に供給されることにより、基板Wの被処理面に反射防止膜が形成される。なお、反射防止膜用塗布処理ユニット129bにおいて基板Wに供給される塗布液に、金属成分が含有されてもよい。この場合、レジスト液に含有される金属成分と同様の金属成分が用いられる。
 図2に示すように、現像処理ユニット139は、レジスト膜用塗布処理ユニット129aと同様に、複数のスピンチャック35および複数のカップ37を備える。また、図1に示すように、現像処理ユニット139は、現像液を吐出する2つのスリットノズル38およびそれらのスリットノズル38をX方向に移動させる移動機構39を備える。
 現像処理ユニット139においては、図示しない駆動装置によりスピンチャック35が回転される。それにより、基板Wが回転される。この状態で、スリットノズル38が移動しつつ各基板Wに現像液を供給する。これにより、基板Wの現像処理が行われる。現像処理ユニット139における現像処理は、図1の露光装置15による通常露光処理後の基板Wに対して行われる。以下、通常露光処理後に現像処理ユニット139において行われる現像処理を通常現像処理と呼ぶ。
 洗浄乾燥処理部161には、複数(本例では3つ)の洗浄乾燥処理ユニットBSSが設けられる。各洗浄乾燥処理ユニットBSSにおいては、有機溶媒または純水を用いて通常露光処理前の基板Wの周縁部および裏面の洗浄ならびに乾燥処理が行われる。
 (3)熱処理部
 図6は、図1の熱処理部123,133および洗浄乾燥処理部162の内部構成を示す模式的側面図である。図6に示すように、熱処理部123は、上方に設けられる上段熱処理部301および下方に設けられる下段熱処理部302を有する。上段熱処理部301および下段熱処理部302には、複数の熱処理ユニットPHP、複数の密着強化処理ユニットPAHPおよび複数の冷却ユニットCPが設けられる。
 熱処理部123の最上部にはローカルコントローラLC1が設けられる。ローカルコントローラLC1は、図1のメインコントローラ114からの指令に基づいて、塗布処理部121、搬送部122および熱処理部123の動作を制御する。
 熱処理ユニットPHPにおいては、基板Wの加熱処理および冷却処理が行われる。密着強化処理ユニットPAHPにおいては、基板Wと反射防止膜との密着性を向上させるための密着強化処理が行われる。具体的には、密着強化処理ユニットPAHPにおいて、基板WにHMDS(ヘキサメチルジシラサン)等の密着強化剤が塗布されるとともに、基板Wに加熱処理が行われる。冷却ユニットCPにおいては、基板Wの冷却処理が行われる。
 熱処理部133は、上方に設けられる上段熱処理部303および下方に設けられる下段熱処理部304を有する。上段熱処理部303および下段熱処理部304には、冷却ユニットCPおよび複数の熱処理ユニットPHPが設けられる。
 熱処理部133の最上部には、ローカルコントローラLC2が設けられる。ローカルコントローラLC2は、図1のメインコントローラ114からの指令に基づいて、現像処理部131、搬送部132および熱処理部133の動作を制御する。
 (4)金属除去ユニット
 洗浄乾燥処理部162には、複数(本例では6つ)の金属除去ユニットMRが設けられる。図7は、金属除去ユニットMRの構成を説明するための模式図である。図7に示すように、金属除去ユニットMRには、モータ1、スピンチャック3、カップ4、2つの裏面洗浄ノズル7、周縁部洗浄ノズル8および気体供給部9が設けられる。スピンチャック3は、鉛直軸の周りで回転可能にモータ1の回転軸2の上端に取り付けられる。カップ4は、スピンチャック3に保持された基板Wの周囲を取り囲むように配置される。カップ4の下部には排液部5および排気部6が形成される。
 2つの裏面洗浄ノズル7は、スピンチャック3により保持された基板Wの裏面を向くように配置される。裏面洗浄ノズル7から基板Wの裏面に金属成分を溶解可能な除去液(以下、金属用除去液と呼ぶ)が吐出される。周縁部洗浄ノズル8は、スピンチャック3により保持された基板Wの被処理面の周縁部を向くように配置される。周縁部洗浄ノズル8から基板Wの被処理面の周縁部に金属用除去液が吐出される。
 金属用除去液として、アルカリ性除去液または酸性除去液が用いられる。アルカリ性除去液は、例えばアンモニアおよび過酸化水素を含む水溶液である。アルカリ性除去液は、例えばTMAHであってもよい。酸性除去液は、例えば希フッ酸を含む水溶液である。酸性除去液は、例えば硫酸および過酸化水素を含む水溶液であってもよいし、酢酸またはキレート剤を含む水溶液であってもよい。キレート剤は、有機酸、有機酸の塩、アミノ酸、アミノ酸の誘導体、無機アルカリ、無機アルカリの塩、アルキルアミン、アルキルアミンの誘導体、アルカノールアミンおよびアルカノールアミンの誘導体よりなる群から選択された一種または複数種を含む。
 気体供給部9は、スピンチャック3により保持された基板Wの略中央部の上方に配置される。気体供給部9から基板Wの被処理面の略中央部に不活性ガス、例えば窒素ガスが噴出される。この場合、気体供給部9から噴出される気体は、基板Wの被処理面の略中央部に拡散する。これにより、周縁部洗浄ノズル8から吐出される金属用除去液が基板Wの被処理面に形成されたレジスト膜に付着することが防止される。
 このように、金属除去ユニットMRにおいては、基板Wの周縁部および裏面に金属用除去液が供給される。それにより、上記のエッジ現像処理後に、基板Wの周縁部および裏面に金属成分が残存していても、その金属成分を溶解させて除去することができる。したがって、基板処理装置100の内部および露光装置15の内部に金属成分による汚染が発生することを十分に防止することができる。
 複数の金属除去ユニットMRにおいて、共通の金属用除去液が用いられてもよく、または異なる種類の金属用除去液が用いられてもよい。例えば、6つの金属除去ユニットMRのうち3つの金属除去ユニットMRで用いられる金属用除去液と、残り3つの金属除去ユニットMRで用いられる金属用除去液とが異なってもよい。この場合、レジスト膜に含有された金属成分の種類に応じて、適した金属除去ユニットMRにより基板Wの周縁部および裏面に付着した金属成分を除去することができる。
 図8は、金属除去ユニットMRの他の構成を示す図である。図8の金属除去ユニットMRには、図7の周縁部洗浄ノズル8および気体供給部9に代えて気液供給ノズル10が設けられる。気液供給ノズル10は、水平方向に並ぶ液体ノズル10aおよび気体ノズル10bを含む。気液供給ノズル10は、スピンチャック3により保持された基板Wの周縁部を向くように配置される。ここで、気体ノズル10bは、液体ノズル10aよりも基板Wの中心に位置する。
 液体ノズル10aから基板Wの周縁部に金属用除去液が吐出される。気体ノズル10bから基板Wの周縁部に不活性ガス、例えば窒素ガスが噴出される。この場合、気体ノズル10bから気体が噴出される基板Wの位置は、液体ノズル10aから金属用除去液が吐出される位置よりも基板Wの中心に近い。そのため、液体ノズル10aから吐出される金属用除去液は、気体ノズル10bから噴出される気体により基板Wの中心に向かうことが妨げられる。これにより、液体ノズル10aから吐出される金属用除去液が基板Wの被処理面に形成されたレジスト膜に付着することが防止される。
 また、図7および図8の金属除去ユニットMRには、熱処理部123によりレジスト膜が硬化された後の基板Wが搬送されるので、気体供給部9または気体ノズル10bから基板Wに気体を吐出してもレジスト膜の膜厚に影響しない。これらの結果、基板Wの被処理面にレジスト膜を均一な厚みに形成することができる。
 (5)搬送部
 図9は、搬送部122,132,163の内部構成を示す模式的側面図である。図9に示すように、搬送部122は、上段搬送室125および下段搬送室126を有する。搬送部132は、上段搬送室135および下段搬送室136を有する。上段搬送室125には搬送機構127が設けられ、下段搬送室126には搬送機構128が設けられる。また、上段搬送室135には搬送機構137が設けられ、下段搬送室136には搬送機構138が設けられる。
 塗布処理室21,22(図2)と上段熱処理部301(図6)とは上段搬送室125を挟んで対向し、塗布処理室23,24(図2)と下段熱処理部302(図6)とは下段搬送室126を挟んで対向する。同様に、現像処理室31,32(図2)と上段熱処理部303(図6)とは上段搬送室135を挟んで対向し、現像処理室33,34(図2)と下段熱処理部304(図6)とは下段搬送室136を挟んで対向する。
 搬送部112と上段搬送室125との間には、基板載置部PASS1,PASS2が設けられ、搬送部112と下段搬送室126との間には、基板載置部PASS3,PASS4が設けられる。上段搬送室125と上段搬送室135との間には、基板載置部PASS5,PASS6が設けられ、下段搬送室126と下段搬送室136との間には、基板載置部PASS7,PASS8が設けられる。
 上段搬送室135と搬送部163との間には、載置兼バッファ部P-BF1が設けられ、下段搬送室136と搬送部163との間には載置兼バッファ部P-BF2が設けられる。搬送部163において搬入搬出ブロック14Bと隣接するように、基板載置部PASS9および複数の載置兼冷却部P-CPが設けられる。
 載置兼バッファ部P-BF1は、搬送機構137および搬送機構141,142(図1)による基板Wの搬入および搬出が可能に構成される。載置兼バッファ部P-BF2は、搬送機構138および搬送機構141,142(図1)による基板Wの搬入および搬出が可能に構成される。また、基板載置部PASS9および載置兼冷却部P-CPは、搬送機構141,142(図1)および搬送機構146による基板Wの搬入および搬出が可能に構成される。
 基板載置部PASS1および基板載置部PASS3には、インデクサブロック11から第1の処理ブロック12へ搬送される基板Wが載置され、基板載置部PASS2および基板載置部PASS4には、第1の処理ブロック12からインデクサブロック11へ搬送される基板Wが載置される。
 基板載置部PASS5および基板載置部PASS7には、第1の処理ブロック12から第2の処理ブロック13へ搬送される基板Wが載置され、基板載置部PASS6および基板載置部PASS8には、第2の処理ブロック13から第1の処理ブロック12へ搬送される基板Wが載置される。
 載置兼バッファ部P-BF1,P-BF2には、第2の処理ブロック13から洗浄乾燥処理ブロック14Aへ搬送される基板Wが載置され、載置兼冷却部P-CPには、洗浄乾燥処理ブロック14Aから搬入搬出ブロック14Bへ搬送される基板Wが載置され、基板載置部PASS9には、搬入搬出ブロック14Bから洗浄乾燥処理ブロック14Aへ搬送される基板Wが載置される。
 次に、搬送機構127について説明する。図10は、搬送機構127を示す斜視図である。図9および図10に示すように、搬送機構127は、長尺状のガイドレール311,312を備える。図9に示すように、ガイドレール311は、上段搬送室125内において上下方向に延びるように搬送部112側に固定される。ガイドレール312は、上段搬送室125内において上下方向に延びるように上段搬送室135側に固定される。
 ガイドレール311とガイドレール312との間には、長尺状のガイドレール313が設けられる。ガイドレール313は、上下動可能にガイドレール311,312に取り付けられる。ガイドレール313に移動部材314が取り付けられる。移動部材314は、ガイドレール313の長手方向に移動可能に設けられる。
 移動部材314の上面には、長尺状の回転部材315が回転可能に設けられる。回転部材315には、基板Wの外周部を保持するためのハンドH1,H2,H3が取り付けられる。ハンドH1~H3は、回転部材315の長手方向に移動可能に設けられる。ハンドH1はハンドH2よりも上方に配置され、ハンドH2はハンドH3よりも上方に配置される。
 上記のような構成により、搬送機構127は、上段搬送室125内においてX方向およびZ方向に自在に移動することができる。また、ハンドH1~H3を用いて塗布処理室21,22(図2)、基板載置部PASS1,PASS2,PASS5,PASS6(図9)および上段熱処理部301(図6)に対して基板Wの受け渡しを行うことができる。
 図9に示すように、搬送機構128,137,138は搬送機構127と同様の構成を有する。また、本実施の形態においては、図1の搬送機構142は、搬送機構127と同様の3つのハンドH1~H3を有する。
 搬送機構127,128,137,138は、ハンドH1~H3を選択に使用することができる。例えば、金属除去ユニットMRによる処理前の基板Wの搬送と、金属除去ユニットMRによる処理後の基板Wの搬送とで異なるハンドを使用することができる。また、3つのハンドH1~H3を用いて複数の基板Wを同時に搬送することも可能である。各搬送機構のハンドの数は3つに限定されず、4つ以上であってもよく、または2つ以下であってもよい。
 (6)基板処理
 図1、図2、図6および図9を参照しながら基板処理を説明する。インデクサブロック11のキャリア載置部111(図1)には、未処理の基板Wが収容されたキャリア113が載置される。搬送機構115は、キャリア113から基板載置部PASS1,PASS3(図9)に未処理の基板Wを搬送する。また、搬送機構115は、基板載置部PASS2,PASS4(図9)に載置された処理済みの基板Wをキャリア113に搬送する。
 第1の処理ブロック12において、搬送機構127(図9)は、基板載置部PASS1に載置された未処理の基板Wを密着強化処理ユニットPAHP(図6)、冷却ユニットCP(図6)および塗布処理室22(図2)に順に搬送する。次に、搬送機構127は、塗布処理室22の基板Wを、熱処理ユニットPHP(図6)、冷却ユニットCP(図6)、塗布処理室21(図2)、熱処理ユニットPHP(図6)および基板載置部PASS5(図9)に順に搬送する。
 この場合、密着強化処理ユニットPAHPにおいて、基板Wに密着強化処理が行われた後、冷却ユニットCPにおいて、反射防止膜の形成に適した温度に基板Wが冷却される。次に、塗布処理室22において、反射防止膜用塗布処理ユニット129b(図2)により基板W上に反射防止膜が形成される。続いて、熱処理ユニットPHPにおいて、基板Wの熱処理が行われた後、冷却ユニットCPにおいて、レジスト膜の形成に適した温度に基板Wが冷却される。次に、塗布処理室21において、レジスト膜用塗布処理ユニット129a(図2)により、基板W上にレジスト膜が形成される。その後、熱処理ユニットPHPにおいて、基板Wの熱処理が行われ、その基板Wが基板載置部PASS5に載置される。
 また、搬送機構127は、基板載置部PASS6(図9)に載置された通常現像処理後の基板Wを基板載置部PASS2(図9)に搬送する。
 搬送機構128(図9)は、基板載置部PASS3に載置された未処理の基板Wを密着強化処理ユニットPAHP(図6)、冷却ユニットCP(図6)および塗布処理室24(図2)に順に搬送する。次に、搬送機構128は、塗布処理室24の基板Wを、熱処理ユニットPHP(図6)、冷却ユニットCP(図6)、塗布処理室23(図2)、熱処理ユニットPHP(図6)および基板載置部PASS7(図9)に順に搬送する。
 また、搬送機構128(図9)は、基板載置部PASS8(図9)に載置された通常現像処理後の基板Wを基板載置部PASS4(図9)に搬送する。塗布処理室23,24(図2)および下段熱処理部302(図6)における基板Wの処理内容は、上記の塗布処理室21,22(図2)および上段熱処理部301(図6)における基板Wの処理内容とそれぞれ同様である。
 第2の処理ブロック13において、搬送機構137(図9)は、基板載置部PASS5に載置されたレジスト膜形成後の基板Wを載置兼バッファ部P-BF1(図9)に搬送する。
 また、搬送機構137(図9)は、洗浄乾燥処理ブロック14Aに隣接する熱処理ユニットPHP(図6)から通常露光処理後でかつ熱処理後の基板Wを取り出す。搬送機構137は、その基板Wを冷却ユニットCP(図6)、現像処理室31,32(図6)のいずれか一方、熱処理ユニットPHP(図6)および基板載置部PASS6(図9)に順に搬送する。
 この場合、冷却ユニットCPにおいて、通常現像処理に適した温度に基板Wが冷却された後、現像処理室31,32のいずれか一方において、現像処理ユニット139により基板Wの通常現像処理が行われる。その後、熱処理ユニットPHPにおいて、基板Wの熱処理が行われ、その基板Wが基板載置部PASS6に載置される。
 搬送機構138(図9)は、基板載置部PASS7に載置されたレジスト膜形成後の基板Wを載置兼バッファ部P-BF2(図9)に搬送する。
 また、搬送機構138(図9)は、インターフェイスブロック14に隣接する熱処理ユニットPHP(図6)から通常露光処理後でかつ熱処理後の基板Wを取り出す。搬送機構138は、その基板Wを冷却ユニットCP(図6)、現像処理室33,34(図2)のいずれか一方、熱処理ユニットPHP(図6)および基板載置部PASS8(図9)に順に搬送する。現像処理室33,34および下段熱処理部304における基板Wの処理内容は、上記の現像処理室31,32および上段熱処理部303における基板Wの処理内容とそれぞれ同様である。
 洗浄乾燥処理ブロック14Aにおいて、搬送機構142(図1)は、載置兼バッファ部P-BF1,P-BF2(図9)に載置された基板Wを金属除去ユニットMR(図6)に搬送する。また、搬送機構142は、金属除去ユニットMRの基板Wを載置兼バッファ部P-BF1(図9)または載置兼バッファ部P-BF2(図9)に搬送する。搬送機構141(図1)は、金属除去ユニットMRから載置兼バッファ部P-BF1,P-BF2に搬送された基板Wを洗浄乾燥処理ユニットBSS(図2)および載置兼冷却部P-CP(図9)に順に搬送する。
 この場合、金属除去ユニットMRにおいて、基板Wの周縁部および裏面に残存する金属成分の除去が行われる。また、洗浄乾燥処理ユニットBSSにおいて、基板Wの周縁部および裏面の洗浄ならびに乾燥処理が行われる。その後、載置兼冷却部P-CPにおいて露光装置15(図1)による通常露光処理に適した温度に基板Wが冷却される。
 搬送機構142(図1)は、基板載置部PASS9(図9)に載置された通常露光処理後の基板Wを上段熱処理部303または下段熱処理部304の熱処理ユニットPHP(図6)に搬送する。この場合、熱処理ユニットPHPにおいて露光後ベーク(PEB)処理が行われる。
 搬入搬出ブロック14Bにおいて、搬送機構146(図1)は、載置兼冷却部P-CP(図6)に載置された通常露光処理前の基板Wを露光装置15(図1)の基板搬入部に搬送する。また、搬送機構146は、露光装置15の基板搬出部から通常露光処理後の基板Wを取り出し、その基板Wを基板載置部PASS9(図9)に搬送する。露光装置15においては、極めて短い波長を有するEUVにより基板Wに通常露光処理が行われる。この場合、基板W上のレジスト膜に金属成分が含有されているので、EUV光の吸収が効率良く行われることにより、レジスト膜に微細な露光パターンを高い解像度で形成することができる。なお、露光方法はこれに限定されず、他の方法により基板Wに通常露光処理が行われてもよい。
 本実施の形態においては、上段に設けられた塗布処理室21,22、現像処理室31,32および上段熱処理部301,303における基板Wの処理と、下段に設けられた塗布処理室23,24、現像処理室33,34および下段熱処理部302,304における基板Wの処理とを並行して行うことができる。それにより、フットプリントを増加させることなく、スループットを向上させることができる。
 (7)効果
 本実施の形態に係る基板処理装置100においては、基板W上にレジスト膜が形成された後であって基板Wが露光装置15に搬送される前に、基板W上のレジスト膜のエッジ露光処理およびエッジ現像処理が行われる。これにより、基板Wの周縁部からレジスト膜を適切に除去することができる。したがって、基板Wの周縁部における金属成分の残存が防止される。その結果、基板Wの周縁部に残存する金属成分に起因して基板処理装置100および露光装置15に金属汚染が生じることが十分に防止される。
 また、本実施の形態では、レジスト膜用塗布処理ユニット129aにおいて、スピンチャック25によって基板Wが回転されつつ、塗布液ノズル28によるレジスト液の塗布、エッジ露光部41によるエッジ露光処理、加熱部42によるエッジ加熱処理、および現像液ノズル43によるエッジ現像処理が順に行われる。これにより、レジスト膜の形成、エッジ露光処理、エッジ加熱処理およびエッジ現像処理を共通のスペースで行うことができる。したがって、装置コストの増大および基板処理装置100の大型化を抑制することができる。
 [2]第2の実施の形態
 本発明の第2の実施の形態について、上記第1の実施の形態と異なる点を説明する。図11は、第2の実施の形態におけるレジスト膜用塗布処理ユニット129aの構成を説明するための模式図である。図11のレジスト膜用塗布処理ユニット129aが図3のレジスト膜用塗布処理ユニット129aと異なる点は、加熱部42および現像液ノズル43が設けられないことである。これにより、図11のレジスト膜用塗布処理ユニット129aにおいては、エッジ露光処理後に、エッジ加熱処理およびエッジ現像処理が行われない。
 図9の搬送機構127は、第1の実施の形態と同様に、塗布処理室21におけるエッジ露光処理後の基板Wを熱処理ユニットPHP(図6)および基板載置部PASS5(図9)に順に搬送する。また、図9の搬送機構128は、塗布処理室23におけるエッジ露光処理後の基板Wを熱処理ユニットPHP(図6)および基板載置部PASS7(図9)に順に搬送する。この場合、各熱処理ユニットPHPにおいて、基板Wの全体が加熱される。そのため、上記のエッジ加熱処理と同様に、基板Wの周縁部上のレジスト膜の部分に加熱処理が行われる。
 図9の搬送機構137は、基板載置部PASS5に載置された熱処理後の基板Wを現像処理室31,32のいずれかに搬送する。また、図9の搬送機構138は、基板載置部PASS7に載置された熱処理後の基板Wを現像処理室33,34のいずれかに搬送する。現像処理室31~34においては、熱処理後の基板Wの周縁部に現像液が供給される。これにより、基板Wのエッジ現像処理が行われる。この場合、図1のスリットノズル38から基板Wの周縁部にのみ現像液が供給されてもよく、または図3の現像液ノズル43と同様に基板Wの周縁部を向くように配置されたノズルが別個に設けられてもよい。
 図9の搬送機構137は、エッジ現像処理後の基板Wを現像処理室31,32のいずれかから載置兼バッファ部P-BF1(図9)に搬送する。また、図9の搬送機構138は、エッジ現像処理後の基板Wを現像処理室33,34のいずれかから載置兼バッファ部P-BF2(図9)に搬送する。その後、上記第1の実施の形態と同様に、基板Wが露光装置15(図1)に搬送され、基板Wの通常露光処理が行われる。
 このように、第2の実施の形態では、熱処理ユニットPHPにおいて基板Wの加熱処理が行われる際にエッジ露光処理後の基板Wの周縁部上のレジスト膜の部分も加熱される。それにより、エッジ加熱処理を個別に行うことなく、その後のエッジ現像処理を適切に行うことができる。したがって、エッジ加熱処理が個別に行われる場合に比べて、基板Wの処理時間を削減することができる。また、図4の加熱部42を設ける必要がないので、装置コストの削減が可能になり、かつ加熱部42の設置スペースの確保が不要となる。
 また、本実施の形態では、共通の現像処理ユニット139において、基板Wのエッジ現像処理および通常現像処理がそれぞれ行われる。それにより、図4の現像液ノズル43を設ける必要がないので、装置コストの削減が可能になり、かつ現像液ノズル43の設置スペースの確保が不要となる。
 [3]他の実施の形態
 (1)上記実施の形態では、基板Wの周縁部に金属用除去液を供給する金属除去ユニットMRがインターフェイスブロック14に設けられるが、本発明はこれに限定されない。例えば、レジスト膜用塗布処理ユニット129aに基板Wの周縁部に金属用除去液を吐出可能なノズルが設けられてもよい。また、エッジ現像処理によって基板Wの周縁部の金属成分を十分に除去可能である場合には、金属除去ユニットMRが設けられなくてもよい。
 (2)上記実施の形態では、エッジ露光処理後であってエッジ現像処理前の基板Wにエッジ加熱処理が行われるが、本発明はこれに限定されない。レジスト膜に含まれる感光性材料の種類によっては、エッジ露光処理後にエッジ加熱処理を行うことなくエッジ現像処理を適切に行うことが可能である。
 (3)上記実施の形態では、レジスト膜用塗布処理ユニット129aにおいて基板Wにエッジ露光処理が行われるが、本発明はこれに限定されない。レジスト膜の形成後の基板Wにエッジ露光処理を行うユニットがレジスト膜用塗布処理ユニット129aとは別個に設けられてもよい。
 (4)上記実施の形態では、レジスト膜用塗布処理ユニット129aまたは現像処理ユニット139において基板Wにエッジ現像処理が行われるが、本発明はこれに限定されない。エッジ露光処理後の基板Wにエッジ現像処理を行うユニットがレジスト膜用塗布処理ユニット129aおよび現像処理ユニット139とは別個に設けられてもよい。
 (5)上記第1の実施の形態においては、エッジ加熱処理時に加熱部42によって基板Wの周縁部が加熱される。この場合、通常露光処理が行われるべきレジスト膜の部分に不均一に熱が加わると、基板Wの処理精度が低下する。そこで、基板Wの周縁部以外の部分に、冷却用の気体を供給する冷却気体供給部が設けられてもよい。図12は、冷却気体供給部の一例を示す図である。図12の例では、スピンチャック25により保持される基板Wの下方に冷却気体供給部46が設けられる。冷却気体供給部46は、スピンチャック25により保持される基板Wの裏面に冷却用の気体を供給する。これにより、通常露光処理が行われるべきレジスト膜の部分の温度上昇が抑制され、レジスト膜の当該部分に対する熱処理の均一性が向上される。それにより、基板Wの処理精度を高めることができる。
 (6)上記実施の形態において、塗布処理室21~24に2つのスピンチャック25が設けられ、現像処理室31~34に3つのスピンチャック35が設けられるが、本発明はこれに限定されない。塗布処理室21~24に1つまたは3つ以上のスピンチャック25が設けられてもよい。また、現像処理室31~34に2つ以下または4つ以上のスピンチャック35が設けられてもよい。
 (7)上記実施の形態において、搬送機構127,128,137,138,141のハンドH1~H3は基板Wの外周部を保持するが、本発明はこれに限定されない。搬送機構127,128,137,138,141のハンドH1~H3は、基板Wを吸着することにより基板Wの裏面を保持してもよい。
 [4]請求項の各構成要素と実施の形態の各要素との対応関係
 以下、請求項の各構成要素と実施の形態の各要素との対応の例について説明するが、本発明は下記の例に限定されない。
 上記の実施の形態では、基板処理装置100が基板処理装置の例であり、基板Wが基板の例であり、露光装置15が露光装置の例であり、レジスト膜用塗布処理ユニット129aが膜形成ユニットの例であり、レジスト膜が金属含有感光性膜の例であり、エッジ露光部41がエッジ露光部の例であり、現像液ノズル43がエッジ現像処理部の例であり、搬送機構146が搬送機構の例であり、現像処理ユニット139が現像処理ユニットの例である。
 また、スピンチャック25が回転保持部の例であり、塗布液ノズル28が液供給部の例であり、エッジリンスノズル44が第1の除去液供給部の例であり、加熱部42が加熱部の例であり、スリットノズル38が現像液ノズルの例であり、熱処理ユニットPHPが熱処理ユニットの例であり、周縁部洗浄ノズル8が第2の除去液供給部の例である。
 請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の要素を用いることもできる。
 本発明は、種々の基板の処理に有効に利用することができる。

Claims (11)

  1. 基板に露光処理を行う露光装置に隣接するように配置される基板処理装置であって、
     金属成分および感光性材料を含む金属含有感光性膜を基板の被処理面に形成する膜形成ユニットと、
     金属含有感光性膜形成後の基板の周縁部に光を照射するエッジ露光部と、
     基板の周縁部に現像液を供給することにより前記エッジ露光部により光が照射された金属含有感光性膜の部分の現像処理を行うエッジ現像処理部と、
     前記エッジ現像処理部による現像処理後の基板を前記露光装置に搬送する搬送機構と、
     前記露光装置における露光処理後の基板に現像液を供給することにより、金属含有感光性膜の現像処理を行う現像処理ユニットとを備える、基板処理装置。
  2. 前記膜形成ユニットは、
     基板を保持して回転する回転保持部と、
     前記回転保持部により回転される基板の前記被処理面に金属含有感光性膜用の塗布液を供給する液供給部とを含み、
     前記エッジ露光部は、前記液供給部による塗布液の供給後に前記回転保持部により回転される基板の周縁部に光を照射するように構成される、請求項1記載の基板処理装置。
  3. 前記膜形成ユニットは、
     前記液供給部による塗布液の供給後に前記回転保持部により回転される基板の周縁部に前記塗布液を溶解させる第1の除去液を供給する第1の除去液供給部をさらに含む、請求項2記載の基板処理装置。
  4. 前記エッジ現像処理部は、前記エッジ露光部による光照射後に前記回転保持部により回転される基板の周縁部に現像液を吐出するように構成される、請求項2または3記載の基板処理装置。
  5. 前記エッジ露光部による光照射後であって前記エッジ現像処理部による現像処理前に前記回転保持部により回転される基板の周縁部を加熱するように構成された加熱部をさらに備える、請求項2~4のいずれか一項に記載の基板処理装置。
  6. 前記エッジ現像処理部は、前記現像処理ユニットに設けられる、請求項1または2記載の基板処理装置。
  7. 前記エッジ現像処理部および前記現像処理ユニットは、現像液を吐出可能な共通の現像液ノズルを有する、請求項6記載の基板処理装置。
  8. 前記エッジ露光部による光照射後であって前記エッジ現像処理部による現像処理前の基板に加熱処理を行う熱処理ユニットをさらに備える、請求項1~3、6および7のいずれか一項に記載の基板処理装置。
  9. 前記エッジ現像処理部による現像処理後に基板の周縁部に金属成分を溶解させる第2の除去液を供給する第2の除去液供給部をさらに備える、請求項1~8のいずれか一項に記載の基板処理装置。
  10. 膜形成ユニットにより金属成分および感光性材料を含む金属含有感光性膜を基板の被処理面に形成するステップと、
     エッジ露光部により金属含有感光性膜形成後の基板の周縁部に光を照射するステップと、
     エッジ現像処理部により基板の周縁部に現像液を供給することにより前記エッジ露光部により光が照射された金属含有感光性膜の部分の現像処理を行うステップと、
     前記エッジ現像処理部による現像処理後の基板を露光装置に搬送するステップと、
     現像処理ユニットにおいて前記露光装置における露光処理後の基板に現像液を供給することにより、金属含有感光性膜の現像処理を行うステップとを備える、基板処理方法。
  11. 前記金属含有感光性膜を形成するステップは、
     回転保持部により回転される基板の前記被処理面に液供給部により金属含有感光性膜用の塗布液を供給するステップとを含み、
     前記基板の周縁部に光を照射するステップは、前記液供給部による塗布液の供給後に前記回転保持部により回転される基板の周縁部に前記エッジ露光部により光を照射することを含む、請求項10記載の基板処理方法。
PCT/JP2017/004031 2016-02-17 2017-02-03 基板処理装置および基板処理方法 WO2017141736A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780009122.9A CN108604536B (zh) 2016-02-17 2017-02-03 基板处理装置及基板处理方法
KR1020187021793A KR102207790B1 (ko) 2016-02-17 2017-02-03 기판 처리 장치 및 기판 처리 방법
US16/073,881 US10591820B2 (en) 2016-02-17 2017-02-03 Substrate processing apparatus and substrate processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016028012A JP6666164B2 (ja) 2016-02-17 2016-02-17 基板処理装置および基板処理方法
JP2016-028012 2016-02-17

Publications (1)

Publication Number Publication Date
WO2017141736A1 true WO2017141736A1 (ja) 2017-08-24

Family

ID=59625081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004031 WO2017141736A1 (ja) 2016-02-17 2017-02-03 基板処理装置および基板処理方法

Country Status (6)

Country Link
US (1) US10591820B2 (ja)
JP (1) JP6666164B2 (ja)
KR (1) KR102207790B1 (ja)
CN (1) CN108604536B (ja)
TW (1) TWI644345B (ja)
WO (1) WO2017141736A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020012790A1 (ja) * 2018-07-13 2020-01-16 株式会社Screenホールディングス 塗布処理装置および塗布処理方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7045196B2 (ja) * 2018-01-15 2022-03-31 東京応化工業株式会社 基板処理装置及び基板処理方法
JP2020013823A (ja) * 2018-07-13 2020-01-23 株式会社Screenホールディングス 基板処理装置および基板処理方法
CN109164677B (zh) 2018-09-05 2021-12-07 京东方科技集团股份有限公司 光刻方法、柔性基板的制备方法以及光刻胶烘干装置
CN109656104B (zh) * 2018-12-26 2021-03-16 深圳市华星光电半导体显示技术有限公司 一种基板曝光方法及装置
JP7198698B2 (ja) * 2019-03-20 2023-01-04 株式会社Screenホールディングス 基板処理装置
US12112948B2 (en) 2020-08-18 2024-10-08 Samsung Electronics Co., Ltd. Method of manufacturing integrated circuit device using a metal-containing photoresist composition
JP2022146507A (ja) * 2021-03-22 2022-10-05 株式会社Screenホールディングス 基板処理装置および基板処理方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61278506A (ja) * 1985-06-03 1986-12-09 Mitsubishi Chem Ind Ltd 光開始剤
JPH0210358A (ja) * 1988-06-29 1990-01-16 Matsushita Electric Ind Co Ltd 微細パターン形成方法
JPH06124887A (ja) * 1991-09-27 1994-05-06 Sony Corp 半導体装置の製造方法及びこれに使用できる基板洗浄装置
JP2002258486A (ja) * 2001-03-02 2002-09-11 Nec Kagoshima Ltd パターン形成方法及びそれを用いた液晶表示装置の製造方法
JP2004006765A (ja) * 2002-03-29 2004-01-08 Hoya Corp フォトマスクブランクの製造方法及び製造装置、並びに不要膜除去装置
JP2009295716A (ja) * 2008-06-04 2009-12-17 Toshiba Corp 半導体装置の製造方法及び基板処理装置
JP2013045864A (ja) * 2011-08-24 2013-03-04 Toshiba Corp 半導体装置の製造方法、及び周辺露光装置
WO2016194285A1 (ja) * 2015-06-03 2016-12-08 株式会社Screenホールディングス 基板処理装置、膜形成ユニット、基板処理方法および膜形成方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6827814B2 (en) * 2000-05-08 2004-12-07 Tokyo Electron Limited Processing apparatus, processing system and processing method
JP3848070B2 (ja) * 2000-09-27 2006-11-22 株式会社東芝 パターン形成方法
JP4381285B2 (ja) * 2004-11-11 2009-12-09 株式会社Sokudo 基板処理装置および基板処理方法
US8709705B2 (en) * 2004-12-13 2014-04-29 Pryog, Llc Metal-containing compositions and method of making same
JP4781834B2 (ja) * 2006-02-07 2011-09-28 大日本スクリーン製造株式会社 現像装置および現像方法
JP6118044B2 (ja) 2012-07-19 2017-04-19 株式会社Screenホールディングス 基板処理装置および基板処理方法
JP6001961B2 (ja) * 2012-08-29 2016-10-05 株式会社Screenセミコンダクターソリューションズ 基板処理装置および基板処理方法
JP5827939B2 (ja) * 2012-12-17 2015-12-02 東京エレクトロン株式会社 成膜方法、プログラム、コンピュータ記憶媒体及び成膜装置
JP6618334B2 (ja) 2015-06-03 2019-12-11 株式会社Screenホールディングス 基板処理装置、膜形成ユニット、基板処理方法および膜形成方法
JP6439766B2 (ja) * 2016-09-23 2018-12-19 東京エレクトロン株式会社 塗布、現像方法及び塗布、現像装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61278506A (ja) * 1985-06-03 1986-12-09 Mitsubishi Chem Ind Ltd 光開始剤
JPH0210358A (ja) * 1988-06-29 1990-01-16 Matsushita Electric Ind Co Ltd 微細パターン形成方法
JPH06124887A (ja) * 1991-09-27 1994-05-06 Sony Corp 半導体装置の製造方法及びこれに使用できる基板洗浄装置
JP2002258486A (ja) * 2001-03-02 2002-09-11 Nec Kagoshima Ltd パターン形成方法及びそれを用いた液晶表示装置の製造方法
JP2004006765A (ja) * 2002-03-29 2004-01-08 Hoya Corp フォトマスクブランクの製造方法及び製造装置、並びに不要膜除去装置
JP2009295716A (ja) * 2008-06-04 2009-12-17 Toshiba Corp 半導体装置の製造方法及び基板処理装置
JP2013045864A (ja) * 2011-08-24 2013-03-04 Toshiba Corp 半導体装置の製造方法、及び周辺露光装置
WO2016194285A1 (ja) * 2015-06-03 2016-12-08 株式会社Screenホールディングス 基板処理装置、膜形成ユニット、基板処理方法および膜形成方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020012790A1 (ja) * 2018-07-13 2020-01-16 株式会社Screenホールディングス 塗布処理装置および塗布処理方法
JP2020011172A (ja) * 2018-07-13 2020-01-23 株式会社Screenホールディングス 塗布処理装置および塗布処理方法
JP7117923B2 (ja) 2018-07-13 2022-08-15 株式会社Screenホールディングス 塗布処理装置および塗布処理方法

Also Published As

Publication number Publication date
KR20180099803A (ko) 2018-09-05
CN108604536B (zh) 2023-02-14
KR102207790B1 (ko) 2021-01-26
CN108604536A (zh) 2018-09-28
JP2017147329A (ja) 2017-08-24
JP6666164B2 (ja) 2020-03-13
US20190041754A1 (en) 2019-02-07
US10591820B2 (en) 2020-03-17
TW201742111A (zh) 2017-12-01
TWI644345B (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
WO2017141736A1 (ja) 基板処理装置および基板処理方法
KR102119331B1 (ko) 현상 유닛, 기판 처리 장치, 현상 방법 및 기판 처리 방법
TWI552220B (zh) Substrate cleaning system, substrate cleaning method and memory media
JP5014811B2 (ja) 基板の処理方法
CN110364459B (zh) 基板处理装置、基板处理方法以及计算机可读记录介质
US20210233784A1 (en) Film processing method
KR20170137923A (ko) 기판 처리 장치, 막 형성 유닛, 기판 처리 방법 및 막 형성 방법
WO2017082065A1 (ja) 膜処理ユニット、基板処理装置および基板処理方法
WO2020012777A1 (ja) 基板処理装置および基板処理方法
WO2016194285A1 (ja) 基板処理装置、膜形成ユニット、基板処理方法および膜形成方法
JP6713910B2 (ja) 現像装置、基板処理装置、現像方法および基板処理方法
KR20190042186A (ko) 포토 마스크 세정 장치 및 포토 마스크 세정 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17752998

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187021793

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17752998

Country of ref document: EP

Kind code of ref document: A1