WO2017090877A1 - 리튬 비스(플루오르술포닐)이미드의 신규한 제조방법 - Google Patents

리튬 비스(플루오르술포닐)이미드의 신규한 제조방법 Download PDF

Info

Publication number
WO2017090877A1
WO2017090877A1 PCT/KR2016/010843 KR2016010843W WO2017090877A1 WO 2017090877 A1 WO2017090877 A1 WO 2017090877A1 KR 2016010843 W KR2016010843 W KR 2016010843W WO 2017090877 A1 WO2017090877 A1 WO 2017090877A1
Authority
WO
WIPO (PCT)
Prior art keywords
imide
fluorosulfonyl
bis
lithium
lithium bis
Prior art date
Application number
PCT/KR2016/010843
Other languages
English (en)
French (fr)
Inventor
임광민
Original Assignee
임광민
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 임광민 filed Critical 임광민
Priority to CN201680069186.3A priority Critical patent/CN108368132B/zh
Priority to PL16868776T priority patent/PL3381923T3/pl
Priority to JP2018547239A priority patent/JP6964595B2/ja
Priority to US15/777,269 priority patent/US11597650B2/en
Priority to EP16868776.2A priority patent/EP3381923B1/en
Publication of WO2017090877A1 publication Critical patent/WO2017090877A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/086Compounds containing nitrogen and non-metals and optionally metals containing one or more sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic System
    • C07F1/02Lithium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/48Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups having nitrogen atoms of sulfonamide groups further bound to another hetero atom
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a novel method for producing lithium bis (fluorosulfonyl) imide, and more particularly, to lithium bis (fluorosulfonyl) imide, which is a lithium salt used in an electrolyte for lithium secondary batteries, is simple and economical.
  • the present invention relates to a method for producing lithium bis (fluorosulfonyl) imide which can be produced in high yield and high purity.
  • step (1) bis (chlorosulfonyl) imide as a starting material is reacted with fluoride zinc (II) (ZnF 2 ) to make bis (fluorosulfonyl)
  • II fluoride zinc
  • step (2) since the final product lithium bis (fluorosulfonyl) imide corresponds to the lithium salt used as an electrolyte, a metal component other than lithium should be adjusted to the PPM level, and thus the zinc metal component in the reactant Removal is important above all.
  • reaction has a problem of using expensive fluoride zinc (II), removing the poorly soluble zinc component, and generating a large amount of wastewater containing zinc component, wherein bis (fluorsulfonyl) Part of the imide is lost, and there is a problem that the zinc metal must finally be adjusted in units of PPM in lithium bis (fluorosulfonyl) imide.
  • II expensive fluoride zinc
  • the present inventors searched for a method for producing lithium bis (fluorosulfonyl) imide, and after reacting the bis (chlorosulfonyl) imide compound as a starting material with a fluorinating reagent, immediately treating the alkali reagent without purification or concentration. In this case, it was confirmed that the problems of the prior art can be solved, and that lithium bis (fluorosulfonyl) imide of high yield and high purity can be produced simply and economically, and completed the present invention.
  • the present invention seeks to provide a novel process for preparing lithium bis (fluorosulfonyl) imide.
  • the present invention is to provide a lithium bis (fluorosulfonyl) imide having a purity of 99.9% or more prepared by the above production method.
  • the present invention is a.
  • the present invention also provides lithium bis (fluorsulfonyl) imide having a purity of at least 99.9% prepared by the above production method.
  • a novel method for preparing lithium bis (fluorosulfonyl) imide according to the present invention is to react the bis (chlorosulfonyl) imide compound as a starting material with a fluorinating reagent, and then immediately alkali treatment without purification or concentration. It is possible to solve the problems of the prior art, and there is an effect of preparing lithium bis (fluorsulfonyl) imide of high yield and high purity simply and economically.
  • the present invention comprises the steps of (1) reacting bis (chlorosulfonyl) imide in a solvent with a fluorination reagent, followed by alkaline reagent treatment to prepare ammonium bis (fluorosulfonyl) imide; And (2) reacting the ammonium bis (fluorosulfonyl) imide with a lithium base; preparing lithium bis (fluorosulfonyl) imide represented by the following Chemical Formula 1, including: Provide a method.
  • lithium bis (fluorosulfonyl) imide represented by Chemical Formula 1 may be prepared as in Scheme 1 below.
  • lithium bis (fluorosulfonyl) imide represented by Formula 1 of the present invention (Formula 1) is a bis (chlorosulfonyl) imide as a starting material (chemical formula 2) and a fluorinated reagent After the reaction, it can be prepared by treating with an alkaline reagent without additional concentration and purification, and then adding a lithium base to the intermediate product (Formula 3).
  • Step (1) is a step of reacting bis (chlorosulfonyl) imide with a fluorinating reagent in a solvent, followed by alkali treatment to prepare ammonium bis (fluorosulfonyl) imide.
  • the fluorinating reagent may be a reagent for imparting a fluorine group (F) to the reactant.
  • the fluorinating reagent may be a reagent for generating the bis (chlorosulfonyl) imide into bis (fluorosulfonyl) imide.
  • As the fluorination reagent ammonium fluoride (NH 4 F), hydrogen fluoride (HF), diethylaminosulfur trifluoride, sulfur tetrafluoride, etc. may be used, and ammonium fluoride (NH 4 F) may be used. It is preferred to use anhydrous ammonium fluoride, most preferably.
  • the fluorinating reagent should be low in water, and preferably has a water content of 0.01 to 3,000 PPM. If the water content exceeds 3,000 PPM, the starting material, bis (chlorosulfonyl) imide, is hydrolyzed to decompose into sulfate derivatives and hydrochloric acid, thus reducing the yield, causing severe plant corrosion and adding under acid conditions. There is a problem of decomposing a starting material or a product.
  • the said fluorination reagent removes water by the solvent sultry method.
  • Conventional methods of drying fluorine reagents include a method of removing water by heating under vacuum, but in the case of ammonium fluoride, since the purity of the product itself decreases when heated to 100 ° C. or more, it is difficult to give sufficient heat for a long time.
  • a strong dehydrating phosphorus pentoxide P 2 O 5
  • it is not economical because it takes more than 72 hours to reduce the water content to less than 3,000 PPM.
  • the water of the fluorinating reagent is removed using the solvent slurry method of the present invention, there is an advantage that the water content can be reduced to 1,000 PPM or less within a few hours.
  • Solvents used for water removal using the solvent slurry method are alkyl ketones of acetone, methyl ethyl ketone, methyl isopropyl ketone; Alcohols of methanol, ethanol anhydride, 1-propanol, isopropanol; Acetonitrile, alkylnitrile of propionitrile; Tetrahydrofuran, ether of dialkoxyalkane; And acetone, which is low in price and low in boiling point, can be easily removed and dried.
  • the amount of solvent used is preferably 0.5 to 1.5 weight ratio based on the weight of the fluorination reagent.
  • the fluorinating reagent may be used in an amount of 2.0 to 10.0 equivalents based on bis (chlorosulfonyl) imide, and is preferably used in an amount of 3.0 to 8.0 equivalents.
  • the solvent used may be diethyl ether, diisopropyl ether, methyl t-butyl ether, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, pentane, hexane, heptane, etc. It is not limited to this.
  • the solvent should be low in moisture, preferably in a moisture content of 0.01 to 100 PPM.
  • the solvent may be used in an amount of 1.0 to 100.0 equivalents based on bis (chlorosulfonyl) imide, but is not limited thereto.
  • the reaction between the bis (chlorosulfonyl) imide (formula 2) and the fluorinating reagent is preferably carried out by raising the temperature to a temperature of 30 to 100 ° C, preferably 50 to 90 ° C.
  • the reaction produces bis (fluorosulfonyl) imide
  • the ammonium bis (fluorosulfonyl) imide (Formula 3) can be produced by treating the alkaline reagent directly without concentration, filter, and purification.
  • the alkali reagents include amines of ammonia, aqueous ammonia, alkylamine, arylamine, dialkylamine, diarylamine, alkylarylamine, trialkylamine, dialkylarylamine, and alkyldiarylamine; Hydroxide salts, carbonate salts, hydrogen carbonate salts, sulfate salts, phosphate salts, alkyl salts, aryl salts and aqueous solutions of alkali (I) metals or alkaline earth (II) metals; And the like, and hydroxide, carbonate, hydrogen carbonate, sulfate, phosphate, alkyl and aryl salts of alkali (I) metals or alkaline earth (II) metals can be preferably used.
  • the alkali reagent when the alkali reagent is treated (Examples 4-1 to 4-4), 30% or more higher than the alkali-free treatment (Comparative Examples 1-1 to 1-2) Yield of lithium bis (fluorosulfonyl) imide has been improved, and especially, when a salt of an alkali (I) metal or an alkaline earth (II) metal is used as a reagent, a high lithium bis (fluorosulfonyl) imide is used. De yield.
  • the residual fluorination reagent in the reactant that is, NH 4 F or NH 4 Cl generated
  • the reactant preferentially undergoes an acid-alkali neutralization reaction with the alkali reagent, and ammonia is generated.
  • Reaction with bis (fluorosulfonyl) imide yields ammoniumbis (fluorosulfonyl) imide (Formula 3). Schematic of this is shown in Scheme (2) below.
  • ammonium bis (fluorosulfonyl) imide (Formula 3) can be prevented from being lost to the water layer, thereby increasing the yield.
  • bis (fluorosulfonyl) imide has a problem that may corrode the equipment to be contacted during the reaction or transfer to an acidic substance and cause health problems when exposed to workers.
  • ammonium bis (fluorosulfonyl) imide (formula 3) is a weak acid to neutral stable solid material, there is no problem of equipment corrosion and there is no risk of evaporation.
  • Step (2) is a step of reacting ammonium bis (fluorosulfonyl) imide with a lithium base.
  • the lithium base is lithium hydroxide (LiOH), lithium hydroxide hydrate (LiOHH 2 O), lithium carbonate (Li 2 CO 3 ), lithium carbonate (LiHCO 3 ), lithium chloride (LiCl), lithium acetate (LiCH 3 COO ), Lithium oxalate (Li 2 C 2 O 4 ) and the like can be used, but is not limited thereto.
  • the lithium base may be used in an amount of 1.0 to 5.0 equivalents based on ammonium bis (fluorosulfonyl) imide, and after the addition of the lithium base, the reaction is preferably performed by stirring for 10 to 120 minutes.
  • the water layer can be separated, and the final product lithium bis (fluorsulfonyl) imide can be produced through concentration, purification and recrystallization.
  • the ammonium salt remaining in the reactant may be removed, and the content of the ammonium salt remaining may be 1 to 5000 PPM, preferably 1 to 10 PPM.
  • the present invention may include the step of concentrating, purifying and recrystallizing the reactant after the step (2).
  • the concentration may be carried out using a molecular distillation (MOLECULAR DISTILLATOR), it may be carried out at a temperature of 100 °C or less, preferably 0 °C to 80 °C temperature, where the atmospheric pressure is 0.1 to 100 Torr in a vacuum state It is preferable.
  • the residual reaction solvent and the Kurd concentrate in the concentration may be a weight ratio of 1: 0.01 to 1:10.
  • Impurities may be removed through the concentration, purification and recrystallization to produce high purity lithium bis (fluorosulfonyl) imide.
  • the solvent is dichloromethane, 1,2-dichloroethane, chloroform, carbon tetrachloride, 1,1,2,2-tetrachloroethane, chlorobenzene, dichlorobenzene, trichlorobenzene, diethyl ether, diisopropyl ether , Methyl-t-butyl ether, pentane, hexane, heptane and the like can be used.
  • lithium bis (fluorosulfonyl) imide is produced by concentrating only the reaction solvent without separate purification process, but in this case, impurities are precipitated together, thereby degrading product quality such as product purity, color, and acidity.
  • product quality such as product purity, color, and acidity.
  • the antisolvent has a weight ratio of 0.01 to 1.0 weight ratio based on lithium bis (fluorosulfonyl) imide before purification
  • the crystallization solvent has a weight ratio of 1.0 to 100.0 weight ratio relative to lithium bis (fluorosulfonyl) imide before purification.
  • the recrystallization temperature is preferably between 0 and 80 °C
  • the recrystallization solvent preferably has a moisture content of 0.1 to 100 PPM. Through the concentration, purification and recrystallization process, it is possible to provide at least 99.9% of lithium bis (fluorsulfonyl) imide.
  • the present invention can provide more than 99.99% of lithium bis (fluorosulfonyl) imide by removing the insoluble component by further recrystallization of the concentrated, purified and recrystallized product.
  • the recrystallization solvent alkanes, alcohols, ketones, ethers, esters, carbonates, and the like may be used, and the water content of the solvent is preferably 100 PPM or less.
  • the present invention provides lithium bis (fluorosulfonyl) imide having a high purity of at least 99.9%, and the lithium bis (fluorosulfonyl) imide having an ultra high purity of at least 99.99% through the concentration, purification and recrystallization process. There is an advantage.
  • Ammonium bis (fluorine) was prepared in the same manner as in Example 2-1, except that 5.5 g of lithium hydroxide hydrate was dissolved in 28.2 g of distilled water instead of 17.1 g of Li 2 CO 3 powder in Example 2-1. 37.1 g of sulfonyl) imide were obtained (yield: 81%, purity: 99.0%).
  • the reactant was separated using a butyl acetate layer and a water layer using a separatory funnel, and the resulting butyl acetate layer was concentrated under reduced pressure, and then concentrated at 80 ° C. or lower until the residual solvent amount was 5% by weight or less of the Kurd product. To give a pale yellow concentrate. Thereafter, 3 weight times of 1,2-dichloroethane was gradually added to the obtained concentrate at 80 ° C. or lower and gradually cooled to room temperature. The resulting crystals were filtered through a filter paper to obtain 25.2 g of a lithium bis (fluorosulfonyl) imide compound as a white crystal (yield: 89%, purity: 99.9%).
  • the reactant was separated using a butyl acetate layer and a water layer using a separatory funnel, and the resulting butyl acetate layer was concentrated under reduced pressure, and then concentrated at 80 ° C. or lower until the residual solvent amount was 5% by weight or less of the Kurd product. To give a pale yellow concentrate. Thereafter, 3 weight times of 1,2-dichloroethane was gradually added to the obtained concentrate at 80 ° C. or lower and gradually cooled to room temperature. The resulting crystals were filtered through a filter paper to obtain 38.8 g of a lithium bis (fluorosulfonyl) imide compound as a white crystal (yield: 85%, purity: 99.9%)
  • Lithium bis (fluorosulfonyl) imide in the same manner as in Example 4-1, except that 32.0 g of K 2 CO 3 powder was used instead of 17.1 g of Li 2 CO 3 powder in Example 4-1. 37.2 g were obtained (yield: 81%, purity: 99.8%).
  • Lithium bis (fluorosulfonyl) was carried out in the same manner as in Example 4-1, except that 15.8 g of 25% (v / v) ammonia water was used instead of 17.1 g of Li 2 CO 3 powder in Example 4-1. 33.8 g of imide were obtained (yield: 74%, purity: 99.9%).
  • Example 4-1 Except for using 17.1 g of Li 2 CO 3 powder in Example 4-1, an aqueous solution of 5.5 g of lithium hydroxide hydrate dissolved in 28.2 g of distilled water was used. 33.3 g of sulfonyl) imide were obtained (yield: 73%, purity: 99.9%).
  • the temperature was cooled to room temperature, the generated salt was filtered through a filter paper, the filtered salt was washed with 100 g of acetonitrile and combined with the filtered reaction solution, and the solvent was distilled off under reduced pressure and concentrated.
  • 150 g of butyl acetate was added to the concentrate, 9.7 g of lithium hydroxide hydrate (LiOH.H 2 O) and 57.8 g of distilled water were added thereto, and the mixture was stirred at 40 ° C for 1 hour. Thereafter, the butyl acetate layer and the water layer were separated using a separatory funnel, and the water layer was extracted three times with 80 g of butyl acetate.
  • Example 5 Yield Comparison of Lithium Bis (Fluorosulfonyl) imide Compounds According to Examples 4-1 to 4-4 and Comparative Examples 1-1 to 1-2
  • Table 1 shows the yields of the lithium bis (fluorosulfonyl) imide compounds according to Examples 4-1 to 4-4 and Comparative Examples 1-1 to 1-2.

Abstract

본 발명은 리튬 비스(플루오르술포닐)이미드의 신규한 제조방법에 관한 것으로, 보다 상세하게는 리튬 2차 전지용 전해액에 사용되는 리튬염인 리튬 비스(플루오르술포닐)이미드를 간단하고 경제적으로, 고수율 및 고순도로 제조할 수 있는 리튬 비스(플루오르술포닐)이미드의 제조방법에 관한 것이다. 본 발명에 따른 리튬 비스(플루오르술포닐)이미드의 신규한 제조방법은 출발물질인 비스(클로로술포닐)이미드화합물을 플루오르화 시약과 반응시킨 후, 정제나 농축없이 바로 알칼리 시약 처리함으로써, 상기 종래 기술의 문제점을 해결할 수 있으며, 간단하고 경제적으로 고수율 및 고순도의 리튬 비스(플루오르술포닐)이미드를 제조할 수 있는 효과가 있다.

Description

리튬 비스(플루오르술포닐)이미드의 신규한 제조방법
본 발명은 리튬 비스(플루오르술포닐)이미드의 신규한 제조방법에 관한 것으로, 보다 상세하게는 리튬 2차 전지용 전해액에 사용되는 리튬염인 리튬 비스(플루오르술포닐)이미드를 간단하고 경제적으로, 고수율 및 고순도로 제조할 수 있는 리튬 비스(플루오르술포닐)이미드의 제조방법에 관한 것이다.
최근 각종 모바일 기기의 상품화에 따라 고성능 2차 전지의 필요성이 증대되고 있으며, 전기자동차, 하이브리드 전기자동차의 상용화 및 전기저장 장치의 개발에 따라 고출력, 고에너지 밀도, 고방전 전압 등의 성능을 갖춘 2차 전지가 필요하게 되었다. 특히 전기자동차에 필요한 2차 전지는 소형 모바일 기기용 2차 전지에 비해 장기간 사용이 가능해야 하고, 사용기간 동안 충방전이 단시간에 이루어져야 하며, 안전성, 고출력이 발휘되어야 한다. 따라서, 이에 적합한 전해액의 조성물 중 리튬염의 중요성이 대두되었으며, 특히, 리튬 비스(플루오르술포닐)이미드 화합물이 LiPF6 등에 비해 탁월한 요구성능을 가짐이 밝혀졌다.
한편, 전기자동차의 원가구조에서 2차 전지의 비중은 40% 에 육박하고, 2차 전지의 원가구조에서 리튬염의 비중이 높은 실정으로 인해, 경제적으로 고순도의 리튬 비스(플루오르술포닐)이미드를 제조할 필요성이 절실하게 되었다. 종래 리튬 비스(플루오르술포닐)이미드의 제조방법을 도식화하면 다음 반응식과 같다.
Figure PCTKR2016010843-appb-I000001
상기 반응식에 나타낸 바와 같이, 종래 제조방법에 따르면 (1) 단계에서, 비스(클로로술포닐)이미드를 출발물질로 하여 플루오라이드아연(II)(ZnF2)와 반응시켜 비스(플루오르술포닐)이미드 화합물을 제조하였다. 이때, (2) 단계에서, 최종 생성물인 리튬 비스(플루오르술포닐)이미드는 전해액으로 사용되는 리튬염에 해당하므로, 리튬 이외의 금속 성분이 PPM 수준으로 조절되어야 하며, 따라서 반응물 내 아연 금속 성분의 제거가 무엇보다 중요하다. 그러나 상기 반응은 고가의 플루오라이드아연(II)을 사용해야 한다는 점, 난용성인 아연 성분을 제거해야 하며 아연 성분이 함유된 폐수가 다량 발생한다는 점의 문제가 있으며, 또한, 이때 비스(플루오르술포닐)이미드의 일부가 손실되고, 최종적으로 아연 금속을 리튬 비스(플루오르술포닐)이미드 내에 PPM 단위로 조절해야 하는 등의 문제가 있다.
또한, 다른 종래 리튬 비스(플루오르술포닐)이미드의 제조방법을 도식화하면 다음 반응식과 같다.
Figure PCTKR2016010843-appb-I000002
상기 반응식은 출발물질인 비스(클로로술포닐)이미드를 플로오르화 시약인 NH4F(HF)n (n=1~10)와 반응시키면, 중간 생성물로 암모늄비스(플루오르술포닐)이미드염이 만들어진다고 개시하고 있다. 그러나, 플루오르화 시약으로 NH4F나 NH4F(HF)n (n=0~10)를 사용하여 반응을 진행할 경우, NH4F는 NH4Cl로 전환되고 NH4F(HF)n는 NH4Cl(HF)n으로 전환될 뿐, 유리 상태의 암모니아(NH3)가 방출될 순 없기 때문에 중간 생성물인 암모늄비스(플루오르술포닐)이미드염이 생성될 수 없다. 그 이유는 강산인 불산(HF) 또는 염산(HCl) (pH <0)에 비해, 비스(플루오르술포닐)이미드의 산성도(pH=2~3)가 떨어지기 때문에 암모니아 작용기가 NH4F(HF)n 및 NH4Cl(HF)n에서 유리되어 비스(플루오르술포닐)이미드에 결합할 수 없기 때문이다. 또한, 비스(플로오르술포닐)이미드 화합물은 비교적 끓는점이 낮은 액상물질(끓는점: 68~69℃/25 mmHg)로 이송이나 농축중 증발되어 손실되기 때문에 높은 수율을 기대할 수 없으며, NH4(HF)n (n=1~10) 및 비스(플로오르술포닐)이미드은 산성이 강해 생산공정 진행중 설비의 부식을 일으킬 수 있는 문제가 있다.
또한 상기 방법 이외에 플루오르화 시약으로 As 화합물이나 Bi 화합물을 사용하거나, 무수불산을 사용하는 방법이 있으나, 이 방법들의 경우 독성이 있는 화합물을 사용해야하거나, 부식이 야기되는 등 경제성이 저하되며, 따라서 상업적으로 적합하지 않는 문제가 있다.
본 발명자들은 리튬 비스(플루오르술포닐)이미드의 제조방법에 대해 탐색하던 중, 출발물질인 비스(클로로술포닐)이미드화합물을 플루오르화 시약과 반응시킨 후, 정제나 농축없이 바로 알칼리 시약 처리할 경우, 상기 종래 기술의 문제점을 해결할 수 있으며, 간단하고 경제적으로 고수율 및 고순도의 리튬 비스(플루오르술포닐)이미드를 제조할 수 있는 것을 확인하고, 본 발명을 완성하였다.
따라서, 본 발명은 리튬 비스(플루오르술포닐)이미드의 신규한 제조방법을 제공하고자 한다.
또한, 본 발명은 상기 제조방법에 의해 제조된, 99.9% 이상의 순도를 갖는 리튬 비스(플루오르술포닐)이미드를 제공하고자 한다.
상기와 같은 목적을 달성하기 위해서,
본 발명은
(1) 용매하에서 비스(클로로술포닐)이미드를 플루오르화 시약과 반응시킨 후, 알칼리 시약 처리하여 암모늄 비스(플루오르술포닐)이미드를 제조하는 단계; 및
(2) 상기 암모늄 비스(플루오르술포닐)이미드를 리튬 염기와 반응시키는 단계;를 포함하는 하기 화학식 1로 표시되는 리튬 비스(플루오르술포닐)이미드(Lithium bis(fluorosulfonyl)imide)의 제조방법을 제공한다.
[화학식 1]
Figure PCTKR2016010843-appb-I000003
또한, 본 발명은 상기 제조방법에 의해 제조된, 99.9% 이상의 순도를 갖는 리튬 비스(플루오르술포닐)이미드를 제공한다.
본 발명에 따른 리튬 비스(플루오르술포닐)이미드의 신규한 제조방법은 출발물질인 비스(클로로술포닐)이미드화합물을 플루오르화 시약과 반응시킨 후, 정제나 농축없이 바로 알칼리 처리함으로써, 상기 종래 기술의 문제점을 해결할 수 있으며, 간단하고 경제적으로 고수율 및 고순도의 리튬 비스(플루오르술포닐)이미드를 제조할 수 있는 효과가 있다.
이하 본 발명을 상세히 설명한다.
본 발명은 (1) 용매하에서 비스(클로로술포닐)이미드를 플루오르화 시약과 반응시킨 후, 알칼리 시약 처리하여 암모늄 비스(플루오르술포닐)이미드를 제조하는 단계; 및 (2) 상기 암모늄 비스(플루오르술포닐)이미드를 리튬 염기와 반응시키는 단계;를 포함하는 하기 화학식 1로 표시되는 리튬 비스(플루오르술포닐)이미드(Lithium bis(fluorosulfonyl)imide)의 제조방법을 제공한다.
[화학식 1]
Figure PCTKR2016010843-appb-I000004
구체적으로는, 상기 화학식 1로 표시되는 리튬 비스(플루오르술포닐)이미드는 하기 반응식 1과 같이 제조될 수 있다.
[반응식 1]
Figure PCTKR2016010843-appb-I000005
상기 반응식 1에 따르면, 본 발명의 화학식 1로 표시되는 리튬 비스(플루오르술포닐)이미드(화학식 1)는 비스(클로로술포닐)이미드를 출발물질(화확식 2)로 하여 플루오르화 시약과 반응시킨 후, 별도의 농축 및 정제없이 알칼리 시약으로 처리한 후, 상기 중간 생성물(화학식 3)에 리튬 염기를 첨가하여 제조할 수 있다.
본 발명을 상세히 설명하면 다음과 같다.
상기 (1) 단계는 용매하에서 비스(클로로술포닐)이미드를 플루오르화 시약과 반응시킨 후, 알칼리 처리하여 암모늄 비스(플루오르술포닐)이미드를 제조하는 단계이다.
상기 플루오르화 시약은 반응물에 플루오르기(F) 기를 부여하는 시약으로, 상기 비스(클로로술포닐)이미드를 비스(플루오르술포닐)이미드로 생성하는 시약일 수 있다. 상기 플루오르화 시약으로는 암모늄플루오라이드(NH4F), 플루오르화 수소(HF), 디에틸아미노술퍼 트리플루오라이드, 황 테트라플루오라이드 등을 사용할 수 있으며, 암모늄플루오라이드(NH4F)을 사용하는 것이 바람직하고, 무수 암모늄플루오라이드를 사용하는 것이 가장 바람직하다.
상기 플루오르화 시약은 수분이 적어야 하며, 수분 함량이 0.01 내지 3,000 PPM인 것이 바람직하다. 수분 함량이 3,000 PPM을 초과하면, 출발물질인 비스(클로로술포닐)이미드를 가수분해하여 황산유도체와 염산으로 분해시키고, 따라서 수율이 감소하고, 심각한 설비 부식을 일으킬 수 있으며, 산 조건에서 추가로 출발물질이나 생성물을 분해시키는 문제가 있다. 본 발명의 일 비교예에 따르면, 플로오르화 시약으로 상용 암모늄플루오라이드(수분 함량: 약 3%)를 사용한 경우, 출발물질인 비스(클로로술포닐)이미드를 약 30% 정도로 분해하여 수율 저하를 발생시켰으며, 반응이 강산 조건하에 진행됨으로써, 추가적인 출발물질 및 생성물의 분해로 인해, 수율 저하, 색상 불량 및 불순물 증가의 문제점을 나타내었다.
상기 플루오르화 시약은 용매 술러리법에 의해 수분을 제거하는 것이 바람직하다. 통상적인 플루오르 시약의 건조법으로는 진공하에 승온하여 수분을 제거하는 방법이 있으나, 암모늄플루오라이드의 경우는 100 ℃이상으로 승온하면 제품 자체의 순도가 저하되므로 열을 장시간 충분히 주기도 어려운 문제가 있다. 또한, 강력한 탈수제인 오산화인(P2O5)을 이용할 경우, 수분 함량을 3,000 PPM 이하로 감소시키는데 72시간 이상이 소요되므로 경제적이지 못하다. 그러나, 본 발명의 용매 슬러리법을 이용하여 플루오르화 시약의 수분을 제거할 경우, 단 수시간 내에 수분 함량을 1,000 PPM 이하로 감소시킬 수 있는 장점이 있다.
상기 용매 슬러리법을 이용한 수분 제거에 사용되는 용매는 아세톤, 메틸에틸케톤, 메틸이소프로필케톤의 알킬케톤; 메탄올, 무수에탄올, 1-프로판올, 이소프로판올의 알코올; 아세토니트릴, 프로피온니트릴의 알킬니트릴; 테트라히드로퓨란, 디알콕시알칸의 에테르; 등일 수 있으며, 가격이 저렴하고 끓는점이 낮아 쉽게 수분 제거와 건조가 가능한 아세톤인 것이 바람직하다. 사용되는 용매의 양은 플루오르화 시약의 중량 대비 0.5 내지 1.5 중량비인 것이 바람직하다.
상기 플루오르화 시약은 비스(클로로술포닐)이미드 대비 2.0 내지 10.0 당량으로 사용될 수 있으며, 3.0 내지 8.0 당량으로 사용되는 것이 바람직하다.
상기 (1) 단계에서, 사용되는 용매는 디에틸에테르, 디이소프로필 에테르, 메틸-t-부틸에테르, 초산메틸, 초산에틸, 초산프로필, 초산부틸, 펜탄, 헥산, 헵탄 등을 사용할 수 있으나, 이에 제한되는 것은 아니다. 특히, 상기 용매는 수분이 적어야 하며, 바람직하게는 수분 함량이 0.01 내지 100 PPM이여야 한다.
상기 용매는 비스(클로로술포닐)이미드 대비 1.0 내지 100.0 당량으로 사용될 수 있으나, 이에 제한되는 것은 아니다.
상기 비스(클로로술포닐)이미드(화학식 2)와 플루오르화 시약과의 반응은 30~100℃, 바람직하게는 50~90℃의 온도로 승온시켜 진행시키는 것이 좋다. 상기 반응으로 비스(플루오르술포닐)이미드가 생성되면, 농축, 필터, 및 정제 없이 바로 알칼리 시약을 처리하여 암모늄 비스(플루오르술포닐)이미드(화학식 3)을 생성시킬 수 있다.
상기 알칼리 시약은 암모니아, 암모니아수용액, 알킬아민, 아릴아민, 디알킬아민, 디아릴아민, 알킬아릴아민, 트리알킬아민, 디알킬아릴아민, 알킬디아릴아민의 아민류; 알칼리(I) 금속 또는 알칼리토(II) 금속의 히드록시드염, 탄산염, 탄산수소염, 황산염, 인산염, 알킬염, 아릴염 및 이들의 수용액; 등을 사용할 수 있으며, 바람직하게는 알칼리(I) 금속 또는 알칼리토(II) 금속의 히드록시드염, 탄산염, 탄산수소염, 황산염, 인산염, 알킬염 및 아릴염을 사용할 수 있다.
본 발명의 일 실시예에 따르면, 상기 알칼리 시약을 처리한 경우(실시예 4-1 내지 4-4), 알칼리 무처리한 경우(비교예 1-1 내지 1-2)에 비해 30% 이상의 높은 리튬 비스(플루오르술포닐)이미드의 수율 향상을 나타냈으며, 특히, 시약으로 알칼리(I) 금속 또는 알칼리토(II) 금속의 염을 사용한 경우는 80% 이상의 높은 리튬 비스(플루오르술포닐)이미드 수율을 나타내었다.
구체적으로는, 상기 알칼리 시약을 사용하면 반응물 내의 잔류 플루오르화 시약, 즉 NH4F 또는 생성된 NH4Cl가 우선적으로 알칼리 시약과 산-알칼리 중화반응을 진행하여 암모니아가 발생되고, 상기 발생된 암모니아가 비스(플루오르술포닐)이미드와 반응하여 암모늄비스(플루오르술포닐)이미드(화학식 3)를 생성시킨다. 이를 도식화하면 하기 반응식 (2)와 같다.
[반응식 2]
Figure PCTKR2016010843-appb-I000006
특히, 알칼리 시약을 수용액 상태가 아닌, 금속염 분말 형태로 사용할 경우, 암모늄 비스(플루오르술포닐)이미드(화학식 3)가 물층으로 손실되는 것을 막을 수 있어 수율을 더욱 높일 수 있는 장점이 있다.
또한, 비스(플루오르술포닐)이미드를 바로 리튬염화하는 것에 비해, 암모늄비스(플루오르술포닐)이미드(화학식 2)를 통해 리튬 비스(플루오르술포닐)이미드(화합물 1)를 제조하는 것은 다음과 같은 장점이 있다. 상기 비스(플루오르술포닐)이미드는 끓는점이 비교적 낮아(끓는점: 68~69℃/25 mmHg), 이송이나 농축 중 증발되고, 손실되어 수율 저하를 일으킨다. 실제 비스(플루오르술포닐)이미드 화합물은 무색 투명의 저비점 액체이다. 또한 비스(플루오르술포닐)이미드은 산성 물질로 반응이나 이송중 접촉하는 설비를 부식시키고 작업자에 노출시 건강상의 문제를 일으킬 수 있는 문제가 있다. 반면 암모늄비스(플루오르술포닐)이미드(화학식 3)은 약산성~중성의 안정한 고체 물질로, 설비 부식문제가 없으며 증발할 위험성도 없다.
상기 (2) 단계는 암모늄 비스(플루오르술포닐)이미드를 리튬 염기와 반응시키는 단계이다.
상기 리튬 염기는 수산화리튬(LiOH), 수산화리튬 수화물(LiOH·H2O), 탄산리튬(Li2CO3), 탄산수소리튬(LiHCO3), 염화리튬(LiCl), 아세트산리튬(LiCH3COO), 옥살산리튬(Li2C2O4) 등을 사용할 수 있으나, 이에 제한되는 것은 아니다.
상기 리튬 염기는 암모늄 비스(플루오르술포닐)이미드 대비 1.0 내지 5.0 당량으로 사용될 수 있으며, 리튬 염기의 첨가 후, 10 내지 120분 동안 교반하여 반응을 진행시키는 것이 바람직하다. 또한, 상기 반응 후, 물 층을 분리하고, 농축, 정제 및 재결정화 과정을 통해 최종 생성물인 리튬 비스(플루오르술포닐)이미드를 생성할 수 있다. 이 과정에서, 반응물 내 잔존하는 암모늄염을 제거할 수 있으며, 상기 잔존하는 암모늄염의 함량은 1 내지 5000 PPM일 수 있으며, 1 내지 10 PPM인 것이 바람직하다.
또한, 본 발명은 상기 (2)단계 이후, 반응물을 농축, 정제 및 재결정하는 단계를 포함할 수 있다.
상기 농축은 분자증류기(MOLECULAR DISTILLATOR)를 사용하여 수행될 수 있으며, 100 ℃ 이하의 온도, 바람직하게는 0 ℃ 내지 80 ℃의 온도에서 수행될 수 있고, 이때 기압은 0.1 내지 100 Torr의 진공상태인 것이 바람직하다. 상기 농축에서 잔류 반응용매 및 쿠르드 농축물은 1:0.01 내지 1:10의 중량비일 수 있다.
상기 농축, 정제 및 재결정 과정을 통해 불순물을 제거하여 고순도의 리튬 비스(플루오르술포닐)이미드를 생성할 수 있다. 이 때, 용매로는 디클로로메탄, 1,2-디클로로에탄, 클로로포름, 사염화탄소, 1,1,2,2-테트라클로로에탄, 클로로벤젠, 디클로로벤젠, 트리클로로벤젠, 디에틸에테르, 디이소프로필 에테르, 메틸-t-부틸에테르, 펜탄, 헥산, 헵탄 등을 사용할 수 있다.
그런데 이 경우, 고수율과 동시에 고순도의 제품을 얻으려면 반응용매와 재결정화 용매 간의 비율, 결정화 온도 등이 매우 중요하다. 종래의 경우, 별도의 정제과정 없이, 반응 용매의 농축만으로 리튬 비스(플루오르술포닐)이미드를 제조하나, 이 경우, 불순물까지 함께 석출되기 때문에 제품 순도, 색상, 산도 등의 제품의 품질을 떨어뜨리며, 또한 2차 전지 전해액 소재 용도로 사용하기 적합지 않은 문제가 있었다. 그라나, 본 발명은 반응용매를 농축하고, 재결정 용매와의 비율을 조절함으로써 종래 기술의 분말상이 아닌 고순도의 결정상을 얻을 수 있으며, 상대적으로 입자가 크고 분진이 발생하지 않아 작업성이나 흐름성이 매우 양호한 2차 전지 전해액 소재로서 사용하기 적합한 장점이 있다.
상기 반용용매는 정제전 리튬 비스(플루오르술포닐)이미드에 대해 0.01 내지 1.0 중량비를 갖는 것이 바람직하며, 결정화 용매는 정제전 리튬 비스(플루오르술포닐)이미드에 대해 1.0 내지 100.0 중량비를 갖는 것이 바람직하다. 또한, 재결정화 온도는 0 내지 80 ℃ 사이인 것이 바람직하며, 재결정 용매는 수분 함량이 0.1 내지 100 PPM인 것이 바람직하다. 상기 농축, 정제 및 재결정 과정을 통해, 99.9% 이상의 리튬 비스(플루오르술포닐)이미드를 제공할 수 있다.
또한, 본 발명은 상기 농축, 정제 및 재결정된 생성물에 대해 추가로 재결정을 수행함으로써 불용분 성분을 제거하여 99.99% 이상의 리튬 비스(플루오르술포닐)이미드를 제공할 수 있다. 이때, 재결정 용매로는 알칸류, 알코올류, 케톤류, 에테르류, 에스테르류, 카보네이트류 등을 사용할 수 있으며, 상기 용매의 수분 함량은 100 PPM 이하인 것이 바람직하다.
본 발명은 99.9% 이상의 고순도를 갖는 리튬 비스(플루오르술포닐)이미드를 제공하며, 상기 농축, 정제 및 재결정 과정을 통해 99.99% 이상의 초고순도를 갖는 리튬 비스(플루오르술포닐)이미드를 제공하는 장점이 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
실시예 1. 무수 암모늄플루오라이드(NH4F)의 제조
교반 장치, 콘덴서 및 온도계가 부착된 500mL 플라스크에 상용 암모늄플루오라이드(순도:96%; 칼피셔 분석시 수분 3.6%) 100 g과 아세톤 120 g을 투입하고, 3시간 동안 상온에서 교반하였다. 그 후, 교반된 암모늄플루오라이드의 아세톤 슬러리를 거름종이로 거르고, 거름종이에 모인 암모늄플루오라이드를 250 mL 둥근플라스크에 회수한 후, 40 ℃ 및 감압(10 Torr)하에 잔류 아세톤을 증발시키고 건조하여 백색결정인 93 g의 무수 암모늄플루오라이드를 얻었다. 칼피셔 수분 분석시 수분이 760 PPM으로 측정되었고, 이를 반응에 사용하였다.
실시예 2. 암모늄 비스(플루오르술포닐)이미드의 제조
2-1. 무수 NH4F 사용 / Li2CO3 분말 처리한 경우
교반장치, 콘덴서 및 온도계가 부착된 1,000 mL 불소수지제 용기에 질소분위기 하에 무수 암모늄플루오라이드 34.2 g 및 초산부틸 (수분 함량: 80 PPM) 450 g을 상온에서 투입하였다. 상기 혼합물을 교반하면서 비스(디클로로술포닐)이미드 50 g을 천천히 투입한 후, 80 ℃로 승온하면서 반응을 진행하여 비스(플루오르술포닐)이미드를 제조하였다.
반응 완료 후, 온도를 60 ℃까지 냉각시키고 Li2CO3 분말 17.1 g을 반응물에 천천히 투입하여 반응시켰다. 그 후, 반응물을 상온으로 냉각시키고 발생된 염을 거름종이를 통해 걸러내고, 걸러낸 초산부틸 층을 감압 농축하여 백색의 분말을 수득하였다. 적외선 분석 및 원소분석을 통하여 백색 분말이 암모늄 비스(플루오르술포닐)이미드임을 확인하였고, 43.0 g을 수득하였다 (수율: 94%, 순도: 99.0%).
2-2. 무수 NH4F 사용 / K2CO3 분말 처리한 경우
상기 실시예 2-1에서 Li2CO3 분말 17.1 g 대신 K2CO3 분말 32.0 g을 사용한 것을 제외하고는, 실시예 2-1에 기재된 방법과 동일하게 하여 암모늄 비스(플루오르술포닐)이미드 41.3 g을 수득하였다 (수율: 90%, 순도: 98.0%).
2-3. 무수 NH4F 사용 / 암모니아수 처리한 경우
상기 실시예 2-1에서 Li2CO3 분말 17.1 g 대신 25%(v/v) 암모니아수 15.8 g을 사용한 것을 제외하고는, 실시예 2-1에 기재된 방법과 동일하게 하여 암모늄 비스(플루오르술포닐)이미드 38.1 g을 수득하였다 (수율: 83%, 순도: 99.0%).
2-4. 무수 NH4F 사용 / 수산화리튬 수화물 처리한 경우
상기 실시예 2-1에서 Li2CO3 분말 17.1 g 대신 수산화리튬 수화물 5.5 g을 증류수 28.2 g에 용해한 수용액을 사용한 것을 제외하고는, 실시예 2-1에 기재된 방법과 동일하게 하여 암모늄 비스(플루오르술포닐)이미드 37.1 g을 수득하였다 (수율: 81%, 순도: 99.0%).
실시예 3. 암모늄 비스(플루오르술포닐)이미드로부터 리튬 비스(플루오르술포닐)이미드의 제조
상기 실시예 2-1 내지 2-4에서 얻어진 암모늄 비스(플루오르술포닐)이미드 30.0 g 및 초산부틸 300 g을 교반장치, 콘덴서 및 온도계가 부착된 1,000 mL 둥근 플라스크에 질소분위기 하에 상온에서 투입하였다. 상기 혼합물을 상온에서 30분 동안 교반한 후, 수산화리튬 수화물(LiOH·H2O) 수용액 2 당량을 투입하여 60분 동안 다시 교반하였다.
반응 완료 후, 반응물을 분별 깔대기를 이용하여 초산부틸 층 및 물 층을 분리한 후, 얻어진 초산부틸 층을 감압 농축하여 잔류 용매량이 쿠르드 제품량의 5중량% 이하가 될 때까지 80 ℃이하에서 농축하여 담황색의 농축물을 수득하였다. 그 후, 상기 수득한 농축물에 1,2-디클로로에탄 3중량배를 80 ℃이하에서 서서히 투입하고 상온까지 서서히 냉각시켰다. 생성된 결정을 거름종이로 걸러내어 백색 결정인 리튬 비스(플루오르술포닐)이미드 화합물 25.2 g수득하였다 (수율: 89%, 순도: 99.9%)
실시예 4. 리튬 비스(플루오르술포닐)이미드의 제조 (인-시츄 공정)
4-1. 무수 NH4F 사용 / Li2CO3 분말 처리한 경우
교반장치, 콘덴서 및 온도계가 부착된 1,000mL 불소수지제 용기에 질소분위기 하에 무수 암모늄플루오라이드 34.2 g 및 초산부틸 450 g을 상온에서 투입하였다. 상기 혼합물을 교반하면서 비스(디클로로술포닐)이미드 50 g을 천천히 투입한 후, 80 ℃로 승온하면서 반응을 진행시켜 비스(플루오르술포닐)이미드를 제조하였다.
반응 완료 후, 온도를 60 ℃까지 냉각시키고 Li2CO3 분말 17.1 g을 반응물에 천천히 투입하여 반응시켰다. 그 후, 반응물을 상온으로 냉각시키고 발생된 염을 거름종이를 통해 걸러내고, 상기 걸러낸 반응물에 수산화리튬 수화물(LiOH·H2O) 수용액 2 당량을 투입하여 60분 동안 다시 교반하였다.
반응 완료 후, 반응물을 분별 깔대기를 이용하여 초산부틸 층 및 물 층을 분리한 후, 얻어진 초산부틸 층을 감압 농축하여 잔류 용매량이 쿠르드 제품량의 5중량% 이하가 될 때까지 80 ℃이하에서 농축하여 담황색의 농축물을 수득하였다. 그 후, 상기 수득한 농축물에 1,2-디클로로에탄 3중량배를 80 ℃이하에서 서서히 투입하고 상온까지 서서히 냉각시켰다. 생성된 결정을 거름종이로 걸러내어 백색 결정인 리튬 비스(플루오르술포닐)이미드 화합물 38.8 g수득하였다 (수율: 85%, 순도: 99.9%)
4-2. 무수 NH4F 사용 / K2CO3 분말 처리한 경우
상기 실시예 4-1에서 Li2CO3 분말 17.1 g 대신 K2CO3 분말 32.0 g을 사용한 것을 제외하고는, 실시예 4-1에 기재된 방법과 동일하게 하여 리튬 비스(플루오르술포닐)이미드 37.2 g을 수득하였다 (수율: 81%, 순도: 99.8%).
4-3. 무수 NH4F 사용 / 암모니아수 처리한 경우
상기 실시예 4-1에서 Li2CO3 분말 17.1 g 대신 25%(v/v) 암모니아수 15.8 g을 사용한 것을 제외하고는, 실시예 4-1에 기재된 방법과 동일하게 하여 리튬 비스(플루오르술포닐)이미드 33.8 g을 수득하였다 (수율: 74%, 순도: 99.9%).
4-4. 무수 NH4F 사용 / 수산화리튬 수화물 처리한 경우
상기 실시예 4-1에서 Li2CO3 분말 17.1 g 대신 수산화리튬 수화물 5.5 g을 증류수 28.2 g에 용해한 수용액을 사용한 것을 제외하고는, 실시예 4-1에 기재된 방법과 동일하게 하여 리튬 비스(플루오르술포닐)이미드 33.3 g을 수득하였다 (수율: 73%, 순도: 99.9%).
비교예 1. 리튬 비스(플루오르술포닐)이미드의 제조 (알칼리 무처리)
1-1. 상용 NH4F 사용 / 알칼리 무처리
교반장치, 콘덴서 및 온도계가 부착된 500 mL 불소수지제 용기에 질소분위기에서 상용 암모늄플루오라이드(수분:3.6%) 8.9 g 및 아세토니트릴 100 g을 상온에서 투입하였다. 상기 반응물을 교반시키면서 비스(디클로로술포닐)이미드 10.7g을 천천히 투입하고, 84 ℃로 승온시키면서 4시간 동안 환류하여 반응시켰다.
반응 완료 후, 온도를 상온까지 냉각시키고, 발생된 염을 거름종이를 통해 걸러내고, 걸러낸 염을 아세토니트릴 100 g으로 세척하여 걸러낸 반응액과 합친 후, 용매를 감압하에서 증류, 농축하였다. 농축물에 초산부틸 150 g을 투입하고, 수산화리튬 수화물(LiOH·H2O) 9.7 g과 증류수 57.8 g을 투입하여 40 ℃에서 1시간 동안 교반시켰다. 그 후, 분별 깔대기를 이용하여 초산부틸 층과 물 층을 분리한 후, 물 층을 80 g의 초산부틸로 3회 추출하였다. 얻어진 초산부틸 층을 물 6 g으로 1회 세척하고, 초산부틸 층을 감압농축하여 3.1 g의 갈색 분말을 수득하였다. 상기 수득한 분말에 디클로로메탄 9.2 g을 가했으나, 결정이 얻어지지 않아 정제된 리튬 비스(플루오르술포닐)이미드 화합물을 수득할 수 없었다.
1-2. 무수 NH4F 사용 / 알칼리 무처리
상기 비교예 1-1에서 상용 암모늄플루오라이드(수분:3.6%) 8.9 g 대신 무수 암모늄플루오라이드(수분함량: 760 PPM) 8.9 g을 사용한 것을 제외하고는, 비교예 1-1에 기재된 방법과 동일하게 하여 담황색 분말 4.6 g을 수득하였다 (수율: 49%, 순도: 98.1%).
실시예 5. 실시예 4-1 내지 4-4 및 비교예 1-1 내지 1-2에 따른 리튬 비스(플루오르술포닐)이미드 화합물의 수율 비교
상기 실시예 4-1 내지 4-4 및 비교예 1-1 내지 1-2에 따른 리튬 비스(플루오르술포닐)이미드 화합물의 수율을 표 1에 나타내었다.
플루오르화 시약 알칼리 처리 리튬 비스(플루오르술포닐)이미드의 수율(%)
실시예 4-1 무수 NH4F Li2CO3 분말 85
실시예 4-2 무수 NH4F K2CO3 분말 81
실시예 4-3 무수 NH4F 암모니아수 74
실시예 4-4 무수 NH4F 수산화리튬 수화물 73
비교예 1-1 상용 NH4F 무처리 -
비교예 1-2 무수 NH4F 무처리 49
표 1에 나타난 바와 같이, 상기 알칼리 시약을 처리한 경우(실시예 4-1 내지 4-4), 알칼리 무처리한 경우(비교예 1-1 내지 1-2)에 비해 30% 이상의 높은 리튬 비스(플루오르술포닐)이미드의 수율 향상을 나타냈으며, 특히, 시약으로 알칼리(I) 금속 또는 알칼리토(II) 금속의 염을 사용한 경우는 80% 이상의 높은 리튬 비스(플루오르술포닐)이미드 수율을 나타내었다.
또한, 비교예 1-1 내지 1-2에 나타난 바와 같이, 상용 NH4F를 사용한 경우에 비해, 무수 NH4F를 사용한 경우, 리튬 비스(플루오르술포닐)이미드의 더 높은 수율을 나타내었다.
실시예 6. 리튬 비스(플루오르술포닐)이미드의 고순도 정제
교반장치, 콘덴서 및 온도계가 부착된 500 mL 불소수지제 용기에 질소분위기에서 상기 실시예 4-1 내지 4-4에서 얻어진 순도 99.9% 수준의 리튬 비스(플루오르술포닐)이미드 30 g 및 디메틸카보네이트 90 g을 상온에서 투입하였다. 상기 반응물을 80 ℃로 승온시켜 리튬 비스(플루오르술포닐)이미드를 용해시켰다. 상기 용액을 상온까지 냉각시키고, 1시간 동안 교반한 후, 녹지 않는 미량의 불용 성분을 거름종이를 통해 걸러내고, 디메틸카보네이트 용액을 감압 농축하여 잔류 용매량이 쿠르드 제품량의 5중량비 이하가 될 때까지, 60 ℃ 및 80 Torr에서 분자증류기(MOLECULAR DISTILLATOR)로 농축하여 백색 투명한 점성 농축물을 수득하였다.
상기 수득한 농축물에 1,2-디클로로에탄(수분 함량: 80PPM) 3중량비를 60 ℃에서 서서히 투입하고 상온까지 서서히 냉각시켰다. 생성된 결정을 거름종이로 걸러내어 백색결정인 리튬 비스(플루오르술포닐)이미드 화합물을 27.6 g수득하였다(수율: 92%, 순도: 99.99%).
실시예 7. 리튬 비스(플루오르술포닐)이미드의 제조 및 고순도 정제
교반장치, 콘덴서 및 온도계가 부착된 1,000 mL 불소수지제 용기에 질소분위기에서 무수 암모늄플루오라이드 34.2 g 및 초산부틸 450 g을 상온에서 투입하였다. 상기 반응물을 교반시키면서 비스(디클로로술포닐)이미드 50.0 g을 천천히 투입하고, 80 ℃로 승온시키면서 반응을 진행시켜 비스(플루오르술포닐)이미드를 제조하였다.
반응 완료 후 온도를 상온까지 냉각시키고, 수산화칼륨 13.0 g을 증류수 52 g에 녹인 용액을 반응물에 서서히 투입하고 2시간 동안 교반한 후 초산부틸 층과 물 층을 분별깔대기를 이용해 분리하였다. 분리된 초산부틸 층에 수산화리튬 수화물(LiOH·H2O)의 수용액 2당량을 투입하여 60분간 교반시켰다. 상기 반응물을 분별 깔대기를 이용하여 초산부틸 층과 물 층을 분리시킨 후, 얻어진 초산부틸 층을 감압 농축하여 잔류 용매량이 쿠르드 제품량의 2중량% 이하가 될 때까지 80 ℃이하에서 농축하여 담황색의 고체를 수득하였다.
상기 수득한 고체에 디메틸카보네이트 3중량비를 상온에서 투입하고, 80 ℃로 승온시켜 고체를 용해하였다. 그 후, 용액을 상온까지 냉각시키고, 1시간 동안 교반한 후, 녹지 않는 미량의 불용 성분을 거름종이를 통해 걸러내고, 디메틸카보네이트 용액을 감압 농축하여 잔류 용매량이 쿠르드 제품량의 5중량% 이하가 될 때까지 60 ℃이하에서 농축하여 담황색의 농축물을 수득하였다.
상기 수득한 농축물에 1,2-디클로로에탄 3중량비를 60 ℃이하에서 서서히 투입하고, 상온까지 서서히 냉각시켰다. 생성된 결정을 거름종이로 걸러내어 백색결정인 리튬 비스(플루오르술포닐)이미드 화합물을 29.0 g수득하였다(수율: 67%, 순도: 99.99%)

Claims (24)

  1. (1) 용매하에서 비스(클로로술포닐)이미드를 플루오르화 시약과 반응시킨 후, 알칼리 시약 처리하여 암모늄 비스(플루오르술포닐)이미드를 제조하는 단계; 및
    (2) 상기 암모늄 비스(플루오르술포닐)이미드를 리튬 염기와 반응시키는 단계;를 포함하는 하기 화학식 1로 표시되는 리튬 비스(플루오르술포닐)이미드(Lithium bis(fluorosulfonyl)imide)의 제조방법:
    [화학식 1]
    Figure PCTKR2016010843-appb-I000007
  2. 제1항에 있어서,
    상기 플루오르화 시약은 암모늄플루오라이드(NH4F), 플루오르화 수소(HF), 디에틸아미노술퍼 트리플루오라이드 및 황 테트라플루오라이드로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는, 리튬 비스(플루오르술포닐)이미드의 제조방법.
  3. 제1항에 있어서,
    상기 플루오르화 시약은 수분 함량이 0.01 내지 3,000 PPM인 것을 특징으로 하는, 리튬 비스(플루오르술포닐)이미드의 제조방법.
  4. 제1항에 있어서,
    상기 플루오르화 시약은 용매 슬러리법에 의해 수분이 제거된 것을 특징으로 하는, 리튬 비스(플루오르술포닐)이미드의 제조방법.
  5. 제4항에 있어서,
    상기 용매는 아세톤, 메틸에틸케톤, 메틸이소프로필케톤의 알킬케톤; 메탄올, 무수에탄올, 1-프로판올, 이소프로판올의 알코올; 아세토니트릴, 프로피온니트릴의 알킬니트릴; 테트라히드로퓨란, 디알콕시알칸의 에테르;로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는, 리튬 비스(플루오르술포닐)이미드의 제조방법.
  6. 제1항에 있어서,
    상기 플루오르화 시약은 비스(클로로술포닐)이미드 대비 2.0 내지 10.0 당량으로 사용되는 것을 특징으로 하는, 리튬 비스(플루오르술포닐)이미드의 제조방법.
  7. 제1항에 있어서,
    상기 용매는 디에틸에테르, 디이소프로필 에테르, 메틸-t-부틸에테르, 초산메틸, 초산에틸, 초산프로필, 초산부틸, 펜탄, 헥산 및 헵탄으로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는, 리튬 비스(플루오르술포닐)이미드의 제조방법.
  8. 제1항에 있어서,
    상기 용매는 수분 함량이 0.01 내지 100 PPM인 것을 특징으로 하는, 리튬 비스(플루오르술포닐)이미드의 제조방법.
  9. 제1항에 있어서,
    상기 용매는 비스(클로로술포닐)이미드 대비 1.0 ~ 100.0 당량으로 사용되는 것을 특징으로 하는, 리튬 비스(플루오르술포닐)이미드의 제조방법.
  10. 제1항에 있어서,
    상기 알칼리 시약은 암모니아, 암모니아수용액, 알킬아민, 아릴아민, 디알킬아민, 디아릴아민, 알킬아릴아민, 트리알킬아민, 디알킬아릴아민, 알킬디아릴아민의 아민류; 알칼리(I) 금속 또는 알칼리토(II) 금속의 히드록시드염, 탄산염, 탄산수소염, 황산염, 인산염, 알킬염, 아릴염 및 이들의 수용액;으로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는, 리튬 비스(플루오르술포닐)이미드의 제조방법.
  11. 제1항에 있어서,
    상기 알칼리 시약은 알칼리(I) 금속 또는 알칼리토(II) 금속의 히드록시드염, 탄산염, 탄산수소염, 황산염, 인산염, 알킬염 및 아릴염으로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는, 리튬 비스(플루오르술포닐)이미드의 제조방법.
  12. 제1항에 있어서,
    상기 리튬 염기는 수산화리튬(LiOH), 수산화리튬 수화물(LiOH·H2O), 탄산리튬(Li2CO3), 탄산수소리튬(LiHCO3), 염화리튬(LiCl), 아세트산리튬(LiCH3COO) 및 옥살산리튬(Li2C2O4)으로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는, 리튬 비스(플루오르술포닐)이미드의 제조방법.
  13. 제1항에 있어서,
    상기 리튬 염기는 비스(플루오르술포닐)이미드 대비 1.0 내지 5.0 당량으로 사용되는 것을 특징으로 하는, 리튬 비스(플루오르술포닐)이미드의 제조방법.
  14. 제1항에 있어서,
    상기 (2) 단계에서, 반응물 내 잔존 암모늄염의 함량은 1 내지 5000 PPM인 것을 특징으로 하는, 리튬 비스(플루오르술포닐)이미드의 제조방법.
  15. 제1항에 있어서,
    상기 (2)단계 이후, 반응물을 농축, 정제 및 재결정하는 단계를 포함하는 것을 특징으로 하는, 리튬 비스(플루오르술포닐)이미드의 제조방법.
  16. 제15항에 있어서,
    상기 농축은 분자증류기(MOLECULAR DISTILLATOR)를 사용하여 수행되는 것을 특징으로 하는, 리튬 비스(플루오르술포닐)이미드의 제조방법.
  17. 제15항에 있어서,
    상기 농축은 0 ℃ 내지 80 ℃에서 수행되는 것을 특징으로 하는, 리튬 비스(플루오르술포닐)이미드의 제조방법.
  18. 제15항에 있어서,
    상기 농축은 0.1 내지 100 Torr의 진공에서 수행되는 것을 특징으로 하는 리튬 비스(플루오르술포닐)이미드의 제조방법.
  19. 제15항에 있어서,
    상기 농축은 잔류 반응용매 및 쿠르드 농축물이 1:0.01 내지 1:10의 중량비가 될 때까지 수행되는 것을 특징으로 하는, 리튬 비스(플루오르술포닐)이미드의 제조방법.
  20. 제15항에 있어서,
    상기 정제는 디클로로메탄, 1,2-디클로로에탄, 클로로포름, 사염화탄소, 1,1,2,2-테트라클로로에탄, 클로로벤젠, 디클로로벤젠, 트리클로로벤젠, 디에틸에테르, 디이소프로필 에테르, 메틸-t-부틸에테르, 펜탄, 헥산 및 헵탄으로 이루어진 군으로부터 선택된 1종 이상의 용매를 사용하여 수행되는 것을 특징으로 하는, 리튬 비스(플루오르술포닐)이미드의 제조방법.
  21. 제15항에 있어서,
    상기 재결정 용매의 수분 함량은 0.1 내지 100 PPM인 것을 특징으로 하는 리튬 비스(플루오르술포닐)이미드의 제조방법.
  22. 제15항에 있어서,
    상기 재결정은 0 내지 80 ℃의 온도에서 수행되는 것을 특징으로 하는, 리튬 비스(플루오르술포닐)이미드의 제조방법.
  23. 제15항에 있어서,
    상기 농축, 정제 및 재결정된 반응물을 알칸류, 알코올류, 케톤류, 에테르류, 에스테르류, 또는 카보네이트류의 용매로 재결정하는 단계를 더 포함하는 것을 특징으로 하는, 리튬 비스(플루오르술포닐)이미드의 제조방법.
  24. 제1항 내지 제23항 중 어느 한 항의 제조방법에 의해 제조된, 99.9% 이상의 순도를 갖는 리튬 비스(플루오르술포닐)이미드.
PCT/KR2016/010843 2015-11-26 2016-09-28 리튬 비스(플루오르술포닐)이미드의 신규한 제조방법 WO2017090877A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680069186.3A CN108368132B (zh) 2015-11-26 2016-09-28 双(氟磺酰基)酰亚胺锂的新型制造方法
PL16868776T PL3381923T3 (pl) 2015-11-26 2016-09-28 Nowy sposób wytwarzania bis(fluorosulfonylo)imidu litu
JP2018547239A JP6964595B2 (ja) 2015-11-26 2016-09-28 リチウムビス(フルオロスルホニル)イミドの新規の製造方法
US15/777,269 US11597650B2 (en) 2015-11-26 2016-09-28 Method for preparing lithium bis(fluorosulfonyl)imide
EP16868776.2A EP3381923B1 (en) 2015-11-26 2016-09-28 Novel method for preparing lithium bis(fluorosulfonyl)imide

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150166565 2015-11-26
KR10-2015-0166565 2015-11-26
KR10-2016-0119266 2016-09-19
KR1020160119266A KR101718292B1 (ko) 2015-11-26 2016-09-19 리튬 비스(플루오르술포닐)이미드의 신규한 제조방법

Publications (1)

Publication Number Publication Date
WO2017090877A1 true WO2017090877A1 (ko) 2017-06-01

Family

ID=58502341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010843 WO2017090877A1 (ko) 2015-11-26 2016-09-28 리튬 비스(플루오르술포닐)이미드의 신규한 제조방법

Country Status (8)

Country Link
US (1) US11597650B2 (ko)
EP (1) EP3381923B1 (ko)
JP (1) JP6964595B2 (ko)
KR (1) KR101718292B1 (ko)
CN (1) CN108368132B (ko)
HU (1) HUE055587T2 (ko)
PL (1) PL3381923T3 (ko)
WO (1) WO2017090877A1 (ko)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019229366A1 (fr) * 2018-06-01 2019-12-05 Arkema France Composition de sel de lithium de bis(fluorosulfonyl)imide
WO2020100115A1 (en) * 2018-11-16 2020-05-22 Ses Holdings Pte. Ltd. Processes for removing reactive solvent from lithium bis(fluorosulfonyl)imide (lifsi) using organic solvents that are stable toward anodes in lithium-ion and lithium-metal batteries
US10967295B2 (en) 2018-11-16 2021-04-06 Ses Holdings Pte. Ltd. Processes for removing reactive solvent from lithium bis(fluorosulfonyl)imide (LiFSI) using organic solvents that are stable toward anodes in lithium-ion and lithium-metal batteries
WO2022248215A1 (en) 2021-05-26 2022-12-01 Rhodia Operations Method for producing alkali sulfonyl imide salts
WO2022258679A1 (en) 2021-06-10 2022-12-15 Rhodia Operations Solvent-free process for preparing a salt of bis(fluorosulfonyl)imide
WO2023277515A1 (ko) * 2021-06-30 2023-01-05 주식회사 천보 비스(플루오로설포닐)이미드 알칼리금속염
EP4151592A1 (en) 2021-09-15 2023-03-22 Rhodia Operations Solvent-free process for preparing a salt of bis(fluorosulfonyl)imide
WO2023089084A1 (en) 2021-11-19 2023-05-25 Rhodia Operations Dry dispersion of ammonium bis(fluorosulfonyl)imide (nh4fsi) salt with an at least bimodal particle size distribution
WO2023118115A1 (en) 2021-12-23 2023-06-29 Rhodia Operations Process for removing water from bis(fluorosulfonyl)imide solutions
WO2023117899A1 (en) 2021-12-20 2023-06-29 Rhodia Operations Process for producing alkali salts of bis(fluorosulfonyl)imide
WO2023169842A1 (en) 2022-03-07 2023-09-14 Specialty Operations France Method for producing alkali sulfonyl imide salts
WO2023169843A1 (en) 2022-03-07 2023-09-14 Specialty Operations France Method for producing lithium fluorosulfonyl imide salts
WO2023202918A1 (en) 2022-04-21 2023-10-26 Specialty Operations France Process for manufacture lithium salt of bis(fluorosulfonyl)imide in solid form
WO2023202920A1 (en) 2022-04-21 2023-10-26 Specialty Operations France Process for manufacture lithium salt of bis(fluorosulfonyl)imide in solid form
WO2024002897A1 (en) 2022-07-01 2024-01-04 Specialty Operations France Method for fluorinating hydrogen bis(chlorosulfonyl)imide in gas phase
JP7475343B2 (ja) 2018-11-16 2024-04-26 エスイーエス ホールディングス プライベート リミテッド 精製リチウムビス(フルオロスルホニル)イミド(lifsi)生成物、粗lifsiの精製方法、および精製lifsi生成物の使用

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107055493B (zh) * 2017-05-10 2019-02-26 浙江永太科技股份有限公司 一种双氟磺酰亚胺锂盐的制备方法
KR101955096B1 (ko) * 2017-06-26 2019-03-06 임광민 매우 간단하고 효율적인 리튬 비스(플루오로술포닐)이미드의 새로운 제조방법
CN107416782A (zh) * 2017-08-10 2017-12-01 江苏理文化工有限公司 一种双氟磺酰亚胺锂盐的制备方法
KR102064904B1 (ko) * 2018-01-08 2020-01-10 주식회사 천보 비스(플루오로술포닐)이미드염의 제조방법
WO2019199013A1 (ko) 2018-04-10 2019-10-17 주식회사 엘지화학 리튬 비스(플루오로술포닐)이미드염의 제조방법
KR101982602B1 (ko) * 2018-09-11 2019-05-27 주식회사 천보 불소 음이온의 함유량이 저감된 비스(플루오로설포닐)이미드 리튬염(LiFSI)의 제조 방법(1)
KR101982603B1 (ko) * 2018-09-11 2019-05-27 주식회사 천보 불소음이온의 함유량이 저감된 비스(플루오로설포닐)이미드 리튬염(LiFSI)의 제조 방법 (2)
KR101982601B1 (ko) * 2018-09-11 2019-05-27 주식회사 천보 알콕시트리알킬실란을 이용한 불소음이온의 함유량이 저감된 비스(플루오로설포닐)이미드 리튬염(LiFSI)의 제조 방법
CN109264683B (zh) * 2018-10-16 2021-07-27 广州理文科技有限公司 一种双(氟磺酰)亚胺的提取与纯化方法
WO2020099527A1 (en) 2018-11-16 2020-05-22 Solvay Sa Method for producing alkali sulfonyl imide salts
US10926190B2 (en) * 2018-11-16 2021-02-23 Ses Holdings Pte. Ltd. Purified lithium bis(fluorosulfonyl)imide (LiFSI) products, methods of purifying crude LiFSI, and uses of purified LiFSI products
KR102007477B1 (ko) * 2018-12-10 2019-08-05 주식회사 천보 비스(플루오로술포닐)이미드의 신규한 정제 방법
KR102007476B1 (ko) * 2018-12-10 2019-08-05 주식회사 천보 비스(플루오로술포닐)이미드 리튬염의 신규한 정제 방법
CN111517293B (zh) * 2019-02-03 2023-01-31 中国科学院上海有机化学研究所 双氟磺酰亚胺类化合物及其金属盐的制备方法
US10840553B2 (en) 2019-03-01 2020-11-17 Ses Holdings Pte. Ltd. Free-solvent-free lithium sulfonamide salt compositions that are liquid at room temperature, and uses thereof in lithium ion battery
US10734664B1 (en) * 2019-03-01 2020-08-04 Ses Holdings Pte. Ltd. Purified hydrogen bis(fluorosulfonyl)imide (HFSI) products, methods of purifying crude HFSI, and uses of purified HFSI products
KR102285465B1 (ko) * 2019-03-28 2021-08-03 주식회사 천보 불소 음이온의 함유량이 저감된 비스(플루오로설포닐)이미드 리튬염(LiFSI)의 제조 방법
KR102259982B1 (ko) * 2019-03-28 2021-06-03 주식회사 천보 불소 음이온의 함유량이 저감된 비스(플루오로설포닐)이미드 리튬염(LiFSI)의 제조 방법
KR102259984B1 (ko) * 2019-03-28 2021-06-03 주식회사 천보 불소 음이온의 함유량이 저감된 비스(플루오로설포닐)이미드 리튬염(LiFSI)의 제조 방법
KR102285464B1 (ko) * 2019-03-28 2021-08-03 주식회사 천보 불소 음이온의 함유량이 저감된 비스(플루오로설포닐)이미드 리튬염(LiFSI)의 제조 방법
KR102259983B1 (ko) * 2019-03-28 2021-06-03 주식회사 천보 불소 음이온의 함유량이 저감된 비스(플루오로설포닐)이미드 리튬염(LiFSI)의 제조 방법
KR102259985B1 (ko) * 2019-03-28 2021-06-03 주식회사 천보 불소 음이온의 함유량이 저감된 비스(플루오로설포닐)이미드 리튬염(LiFSI)의 제조 방법
CN109941978B (zh) * 2019-04-25 2020-08-18 浙江科峰锂电材料科技有限公司 制备双氟磺酰亚胺铵及双氟磺酰亚胺碱金属盐的方法
CN110040702A (zh) * 2019-05-05 2019-07-23 上海如鲲新材料有限公司 一种双氟磺酰亚胺锂结晶颗粒及其制备方法
FR3096367B1 (fr) * 2019-05-22 2021-04-23 Arkema France Procede de preparation de sel d’ammonium contenant un groupement fluorosulfonyle
CN110217763A (zh) * 2019-06-18 2019-09-10 山东安博新材料研究院有限公司 一种LiFSI的制备方法
KR102181108B1 (ko) 2019-09-11 2020-11-20 (주)부흥산업사 리튬 비스(플루오로술포닐)이미드와 그 제조방법
KR102175800B1 (ko) * 2019-10-18 2020-11-06 주식회사 이브이에스텍 비스(플루오로술포닐)이미드 금속염의 신규한 제조방법
CN110745795B (zh) * 2019-11-07 2022-08-26 兰州大学 利用电化学合成双氟磺酰亚胺锂的方法
CN110697668B (zh) * 2019-11-20 2021-08-06 上海如鲲新材料有限公司 一种高纯度双氟磺酰亚胺盐的制备方法
CN111410179B (zh) * 2020-03-31 2021-03-30 如鲲(山东)新材料科技有限公司 一种制备双氟磺酰亚胺的方法
CN111620315A (zh) * 2020-07-22 2020-09-04 上海华谊(集团)公司 双氟磺酰亚胺锂的制备方法
JP2023541873A (ja) * 2020-09-10 2023-10-04 ソルヴェイ(ソシエテ アノニム) ビス(フルオロスルホニル)イミド塩の精製
CA3200173A1 (en) 2020-12-16 2022-06-23 Etienne SCHMITT Method for producing onium sulfonyl imide salts and alkali metal sulfonyl imide salts
CA3230262A1 (en) 2021-09-23 2023-03-30 Etienne SCHMITT Method for producing ultra-pure bis(chlorosulfonyl)imide
WO2023106565A1 (ko) * 2021-12-07 2023-06-15 주식회사 이브이에스텍 비스(플루오로술포닐)이미드 금속염 용액의 경제적인 대량 제조방법
CN114590785B (zh) * 2022-04-18 2023-01-06 湖北万润新能源科技股份有限公司 一种双氟磺酰亚胺锂的制备方法、锂离子电池
WO2023202919A1 (en) 2022-04-21 2023-10-26 Specialty Operations France Process for purifying a lithium salt of bis(fluorosulfonyl)imide
CN115490619B (zh) * 2022-09-02 2023-08-18 衢州市九洲化工有限公司 一种双(三氟甲基磺酰基)亚胺盐的制备方法
CN115611246A (zh) * 2022-09-21 2023-01-17 多氟多新材料股份有限公司 一种有机酸锂的制备方法以及制备双(氟磺酰基)亚胺锂的应用
CN115818593A (zh) * 2022-12-21 2023-03-21 浙江研一新能源科技有限公司 一种双氟磺酰亚胺钠的制备方法及钠离子电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120022833A (ko) * 2009-11-27 2012-03-12 니폰 쇼쿠바이 컴파니 리미티드 플루오로설포닐이미드염 및 플루오로설포닐이미드염의 제조방법
KR20130114738A (ko) * 2011-03-03 2013-10-17 닛뽕소다 가부시키가이샤 플루오로술포닐이미드암모늄염의 제조 방법
KR20130116939A (ko) * 2011-03-03 2013-10-24 닛뽕소다 가부시키가이샤 불소 함유 술포닐이미드염의 제조 방법
KR20130140216A (ko) * 2011-05-24 2013-12-23 아르끄마 프랑스 리튬 또는 나트륨 비스(플루오로술포닐)이미드의 제조 방법
KR20150039845A (ko) * 2012-09-10 2015-04-13 에이치에스씨 코포레이션 리튬비스(플루오로술포닐)이미드의 제조방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101291903B1 (ko) * 2008-07-23 2013-07-31 다이이치 고교 세이야쿠 가부시키가이샤 비스(플루오로설포닐)이미드 음이온 화합물의 제조 방법과 이온대화합물
EP3792221B1 (en) * 2010-05-28 2023-07-12 Nippon Shokubai Co., Ltd. Alkali metal salt of fluorosulfonyl imide
US8377406B1 (en) * 2012-08-29 2013-02-19 Boulder Ionics Corporation Synthesis of bis(fluorosulfonyl)imide
JP6147523B2 (ja) * 2013-02-25 2017-06-14 株式会社日本触媒 フルオロスルホニルイミド塩の製造方法
CN105121335A (zh) * 2013-03-18 2015-12-02 日本曹达株式会社 二磺酰胺碱金属盐的制造方法
FR3014438B1 (fr) * 2013-12-05 2017-10-06 Rhodia Operations Procede de preparation d'un compose fluore et soufre et de ses sels en milieu aqueux
FR3020060B1 (fr) * 2014-04-18 2016-04-01 Arkema France Preparation d'imides contenant un groupement fluorosulfonyle
CN104085864B (zh) * 2014-07-09 2016-08-24 张家港瀚康化工有限公司 二氟磺酰亚胺盐的制备方法
JP2016124735A (ja) * 2014-12-26 2016-07-11 株式会社日本触媒 フルオロスルホニルイミド化合物の製造方法
EP3262706B1 (en) * 2015-02-25 2020-04-01 SES Holdings Pte. Ltd Electrolyte system for high voltage lithium battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120022833A (ko) * 2009-11-27 2012-03-12 니폰 쇼쿠바이 컴파니 리미티드 플루오로설포닐이미드염 및 플루오로설포닐이미드염의 제조방법
KR20130114738A (ko) * 2011-03-03 2013-10-17 닛뽕소다 가부시키가이샤 플루오로술포닐이미드암모늄염의 제조 방법
KR20130116939A (ko) * 2011-03-03 2013-10-24 닛뽕소다 가부시키가이샤 불소 함유 술포닐이미드염의 제조 방법
KR20130140216A (ko) * 2011-05-24 2013-12-23 아르끄마 프랑스 리튬 또는 나트륨 비스(플루오로술포닐)이미드의 제조 방법
KR20150039845A (ko) * 2012-09-10 2015-04-13 에이치에스씨 코포레이션 리튬비스(플루오로술포닐)이미드의 제조방법

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3081857A1 (fr) * 2018-06-01 2019-12-06 Arkema France Composition de sel de lithium de bis(fluorosulfonyl)imide
WO2019229366A1 (fr) * 2018-06-01 2019-12-05 Arkema France Composition de sel de lithium de bis(fluorosulfonyl)imide
JP7475343B2 (ja) 2018-11-16 2024-04-26 エスイーエス ホールディングス プライベート リミテッド 精製リチウムビス(フルオロスルホニル)イミド(lifsi)生成物、粗lifsiの精製方法、および精製lifsi生成物の使用
WO2020100115A1 (en) * 2018-11-16 2020-05-22 Ses Holdings Pte. Ltd. Processes for removing reactive solvent from lithium bis(fluorosulfonyl)imide (lifsi) using organic solvents that are stable toward anodes in lithium-ion and lithium-metal batteries
US10967295B2 (en) 2018-11-16 2021-04-06 Ses Holdings Pte. Ltd. Processes for removing reactive solvent from lithium bis(fluorosulfonyl)imide (LiFSI) using organic solvents that are stable toward anodes in lithium-ion and lithium-metal batteries
CN113015692A (zh) * 2018-11-16 2021-06-22 麻省固能控股有限公司 使用对锂离子电池和锂金属电池中的阳极稳定的有机溶剂从双(氟磺酰基)亚胺锂(LiFSI)中去除反应性溶剂的工艺
WO2022248215A1 (en) 2021-05-26 2022-12-01 Rhodia Operations Method for producing alkali sulfonyl imide salts
WO2022258679A1 (en) 2021-06-10 2022-12-15 Rhodia Operations Solvent-free process for preparing a salt of bis(fluorosulfonyl)imide
WO2023277515A1 (ko) * 2021-06-30 2023-01-05 주식회사 천보 비스(플루오로설포닐)이미드 알칼리금속염
EP4151592A1 (en) 2021-09-15 2023-03-22 Rhodia Operations Solvent-free process for preparing a salt of bis(fluorosulfonyl)imide
WO2023041519A1 (en) 2021-09-15 2023-03-23 Rhodia Operations Solvent-free process for preparing a salt of bis(fluorosulfonyl)imide
WO2023089084A1 (en) 2021-11-19 2023-05-25 Rhodia Operations Dry dispersion of ammonium bis(fluorosulfonyl)imide (nh4fsi) salt with an at least bimodal particle size distribution
WO2023117899A1 (en) 2021-12-20 2023-06-29 Rhodia Operations Process for producing alkali salts of bis(fluorosulfonyl)imide
WO2023118115A1 (en) 2021-12-23 2023-06-29 Rhodia Operations Process for removing water from bis(fluorosulfonyl)imide solutions
WO2023169842A1 (en) 2022-03-07 2023-09-14 Specialty Operations France Method for producing alkali sulfonyl imide salts
WO2023169843A1 (en) 2022-03-07 2023-09-14 Specialty Operations France Method for producing lithium fluorosulfonyl imide salts
WO2023202918A1 (en) 2022-04-21 2023-10-26 Specialty Operations France Process for manufacture lithium salt of bis(fluorosulfonyl)imide in solid form
WO2023202920A1 (en) 2022-04-21 2023-10-26 Specialty Operations France Process for manufacture lithium salt of bis(fluorosulfonyl)imide in solid form
WO2024002897A1 (en) 2022-07-01 2024-01-04 Specialty Operations France Method for fluorinating hydrogen bis(chlorosulfonyl)imide in gas phase

Also Published As

Publication number Publication date
US11597650B2 (en) 2023-03-07
US20180370799A1 (en) 2018-12-27
CN108368132B (zh) 2023-11-14
CN108368132A (zh) 2018-08-03
EP3381923B1 (en) 2021-04-21
EP3381923A4 (en) 2019-08-21
JP2019501858A (ja) 2019-01-24
HUE055587T2 (hu) 2021-12-28
KR101718292B1 (ko) 2017-03-21
PL3381923T4 (pl) 2021-12-20
EP3381923A1 (en) 2018-10-03
JP6964595B2 (ja) 2021-11-10
PL3381923T3 (pl) 2021-12-20

Similar Documents

Publication Publication Date Title
WO2017090877A1 (ko) 리튬 비스(플루오르술포닐)이미드의 신규한 제조방법
WO2020027415A1 (ko) 디플루오로인산리튬염 결정체를 고순도로 제조하는 방법 및 이를 이용한 2차 전지용 비수계 전해액
KR102285464B1 (ko) 불소 음이온의 함유량이 저감된 비스(플루오로설포닐)이미드 리튬염(LiFSI)의 제조 방법
WO2020055030A1 (ko) 불소 음이온의 함유량이 저감된 비스(플루오로설포닐)이미드 리튬염(LiFSI)의 제조 방법(1)
WO2017023123A1 (ko) 크로마논 유도체의 신규한 제조방법
CN109850926B (zh) 四氟草酸磷酸锂和二氟双草酸磷酸锂的制备方法
WO2020055033A1 (ko) 알콕시트리알킬실란을 이용한 불소음이온의 함유량이 저감된 비스(플루오로설포닐)이미드 리튬염(LiFSI)의 제조 방법
CN111989295A (zh) 六氟磷酸锂的生产
CN114014280B (zh) 一种双氟磺酰亚胺锂的制备方法
CN111138464A (zh) 一种二草酸硼酸锂的制备方法
CN114873571A (zh) 一种双氟磺酰亚胺盐的制备方法
CN113929711A (zh) 一种二氟草酸硼酸锂的制备方法
CN113979454A (zh) 一种氟磺酸碱金属盐的制备方法
EP3750848B1 (en) Method for preparing lithium bis(fluorosulfonyl)imide salt
CN106008262A (zh) 4,5-二氰基-2-三氟甲基咪唑、其制备中间体及其盐的制备方法
CN116143088A (zh) 一种双氟磺酰亚胺和双氟磺酰亚胺锂的制备方法
CN114671899A (zh) 双草酸硼酸锂的制备方法及双草酸硼酸锂的应用
CN114621116A (zh) 一种1,3,6-己烷三腈的制备方法
KR20190061478A (ko) 리튬 플루오로술포닐이미드의 제조방법 및 이를 이용한 리튬 플루오로술포닐이미드
CN113753875B (zh) 一种二氟双草酸磷酸锂的制备方法
JP2001278867A (ja) 環式酸の製造
US4065550A (en) Process for preparing lithium hexafluoroarsenate of high purity
CN113912037B (zh) 一种二氟磷酸锂及其制备方法和应用
WO2023106565A1 (ko) 비스(플루오로술포닐)이미드 금속염 용액의 경제적인 대량 제조방법
CN115872370A (zh) 一种双氟磺酰亚胺及双氟磺酰亚胺盐的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868776

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 201680069186.3

Country of ref document: CN

Ref document number: 2018547239

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016868776

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016868776

Country of ref document: EP

Effective date: 20180626