WO2016152611A1 - スクエアエンドミル - Google Patents

スクエアエンドミル Download PDF

Info

Publication number
WO2016152611A1
WO2016152611A1 PCT/JP2016/057928 JP2016057928W WO2016152611A1 WO 2016152611 A1 WO2016152611 A1 WO 2016152611A1 JP 2016057928 W JP2016057928 W JP 2016057928W WO 2016152611 A1 WO2016152611 A1 WO 2016152611A1
Authority
WO
WIPO (PCT)
Prior art keywords
gash
blade
blades
cutting edge
boundary line
Prior art date
Application number
PCT/JP2016/057928
Other languages
English (en)
French (fr)
Inventor
前田 勝俊
Original Assignee
三菱日立ツール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立ツール株式会社 filed Critical 三菱日立ツール株式会社
Priority to CN201680011271.4A priority Critical patent/CN107249798B/zh
Priority to US15/558,120 priority patent/US10307839B2/en
Priority to EP16768514.8A priority patent/EP3272446A4/en
Priority to KR1020177025979A priority patent/KR102463681B1/ko
Priority to JP2017508236A priority patent/JP6711348B2/ja
Publication of WO2016152611A1 publication Critical patent/WO2016152611A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/08Side or top views of the cutting edge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/08Side or top views of the cutting edge
    • B23C2210/084Curved cutting edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/20Number of cutting edges
    • B23C2210/203Number of cutting edges four
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/32Details of teeth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/40Flutes, i.e. chip conveying grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/54Configuration of the cutting part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/64End milling cutters having a groove in the end cutting face, the groove not being present so as to provide a cutting edge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2230/00Details of chip evacuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/28Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools
    • B23P15/34Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools milling cutters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the present invention relates to a square end mill suitable for cutting difficult-to-cut materials such as stainless steel.
  • Square end mills are mainly used for side cutting and grooving of dies, but when machining difficult-to-cut materials (work materials) such as stainless steel, chips are likely to be welded to the cutting edge. There is a tendency for the lifetime of From this point, in order to prolong the life of the tool, the square end mill is required to have a function for increasing the machining efficiency and shortening the machining time.
  • Chip welding on the cutting edge is also caused by the fact that the chips immediately after cutting by the cutting edge are not immediately discharged from the rake face, so if the chip discharge from the cutting edge rake face is sufficiently secured, It is considered possible to avoid welding.
  • the bottom edge rake face and the bottom edge rake face are composed of a plurality of gash faces opposed to the front side in the rotational direction, and the bottom can be guided to the chip discharge groove from the gash.
  • a plurality of gash faces facing the blade rake face are applied from the radial center side to the outer peripheral side, and are inclined at an angle close to the rotation axis of the tool body.
  • JP 2012-91306 A (Claim 1, paragraphs 0041 to 0042, FIG. 5) JP 2011-67928 A (Claim 2, paragraph 0048, FIG. 8) JP 2006-110683 A (paragraphs 0015 to 0032, FIGS. 2 to 4) JP 2007-296588 A (Claim 1, paragraph 0006, FIG. 1) JP 2006-15418 A (Claim 1, paragraphs 0016 to 0018, FIG. 1)
  • the gash surface itself is a flat surface.
  • the volume is not increased.
  • the gash itself has a convex polygonal shape toward the radially outer peripheral side of the tool body. The volume of the gasche cannot be taken large.
  • the gouache itself has a convex polygonal shape contributes to increasing the rigidity of the tool body, but does not increase (increase) the volume of the gouache itself. The benefits of improved emissions are not being exploited.
  • the present invention proposes a square end mill that makes it possible to improve chip discharge.
  • the square end mill according to the first aspect of the present invention includes a cutting edge portion having a bottom edge and an outer edge continuous to the bottom edge from the radial center side to the outer circumference side on the tip end side in the axial direction of the tool body. And at least one bottom blade continuous from the end on the radially outer side to the center in the radial direction when the bottom blade is viewed from the end face side in the axial direction, and the cutting edge portion.
  • a first gash is formed in a region from a line connecting the end of each radial center to the vicinity of the center in the radial direction to each of the base bottom blades on the rear side in the rotational direction.
  • a second gash and a third gash are respectively formed on the front side in the rotation direction, and when the first gash, the second gash, and the third gash are viewed from the end face side in the axial direction, It is characterized by being formed in a concave curved shape toward the shank part side on the opposite side in the axial direction of the cutting edge part.
  • the bottom edge 4a (4c) is a rotation of the tool body (square end mill 1) when the edge 2 of the bottom edge in the radial direction is viewed from the end face side in the axial direction.
  • the bottom blades that reach the vicinity of the axis O indicate the bottom blades
  • the bottom blades 4b and 4d indicate the bottom blades that do not reach the vicinity of the rotation axis O in the radial direction center side of the bottom blades.
  • the square end mill 1 of the present invention has at least one base bottom blade 4a (4c) and at least two bottom blades 4b and 4d
  • the square end mill 1 has three or more blades in terms of the number of blades.
  • the drawing shows an example of a square end mill 1 having a four-blade, in which there are two bottom blades 4a and 4c and two bottom blades 4b and 4d.
  • “The end on the radial center side of the bottom blade reaches the vicinity of the rotation axis” means that the bottom blade (the base bottom blades 4a, 4c) reaches the chisel edge 35 in the radial direction from the end on the radially outer side. Say to continue to the center.
  • the “other end b2, d2 on the outer peripheral side in the radial direction” that identifies the starting point (starting point) of the bottom blade 4b, 4d is the end other than the “end on the outer peripheral side in the radial direction” of the base bottom blade 4a, 4c.
  • the bottom blades 4a and 4c and the bottom blades 4b and 4d are both bottom blades, and the plurality of bottom blades are evenly or substantially evenly distributed in the circumferential direction (rotation direction R) of the tool body. Arrange.
  • the end portions on the outer peripheral side in the radial direction are arranged evenly or substantially uniformly in the peripheral direction together with the base bottom blades 4a and 4c except for the “end portion on the outer peripheral side in the radial direction of the base bottom blade” in the circumferential direction It becomes the position to do.
  • “Equal to the circumferential direction” means that the bottom blades 4a, 4b (4b, 4c) or the peripheral blades 15a, 15b (15b) adjacent to each other in the circumferential direction are not distinguished between the bottom blades 4a, 4c and the bottom blades 4b, 4d. 15c) is constant, and “substantially equal in the circumferential direction” means that the central angles ⁇ , ⁇ formed by the bottom blades or the peripheral blades adjacent in the circumferential direction as shown in FIG. Say not constant.
  • first gashs 7a, 7b and second gashs 8a, 8b, and third gashs 10a, 10b formed in a concave curved surface are end faces of the cutting edge portion 2 (shown in FIG. 2). It points to the surface of each gash facing the tip.
  • Shanky part side refers to the side opposite to the cutting edge part 2 when the tool body is viewed in the axial direction.
  • “Curved concave shape toward the shank part side” means that the surface of each gash is the cutting edge part. When 2 is seen from the end surface side in the axial direction, it says that it is dented toward the shank part 3 side.
  • the ends (the start points a2 and c2 of the base blades 4a and 4c) of the base blades 4a and 4c in the radial direction are located near the rotation axis O of the tool body.
  • the ends on the radial center side of the blades 4b and 4d (start points b2 and d2 of the bottom blades 4b and 4d) do not reach the vicinity of the rotation axis O.
  • the start points b2 and d2 of the bottom blades 4b and 4d define a bottom blade clearance surface (second bottom blade second surfaces 5b and 5d) formed continuously on the rear side in the rotation direction of the bottom blades 4b and 4d. It becomes a point to do.
  • the bottom blade flank (second bottom blade second surfaces 5b, 5d) is located on the radially outer peripheral side of the first gash 7a, 7b.
  • the “bottom blade flank” refers only to the bottom blade second surfaces 5b and 5d formed continuously on the rear side in the rotation direction R of the bottom blades 4b and 4d, and the bottom blade second surface 5b. In some cases, it includes the bottom face third face 6b, 6d formed continuously on the rear side in the rotational direction of 5d.
  • the boundary line (first boundary line) from the start points b2 and d2 of the bottom blades 4b and 4d on the front side in the rotational direction R of the first gashes 7a and 7b. 30a, 30b) continue.
  • the boundary lines (first boundary lines 30a and 30b) once go to the center side in the radial direction, project in the middle toward the third gash 10a and 10b on the front side in the rotational direction, and then the second gash 8a on the rear side in the rotational direction.
  • the starting points a2, c2 are the ends of the bottom blades 4a, 4c on the center side in the radial direction (Claim 3).
  • the bottom edge blades 4a and 4c are formed from the start points a2 and c2 toward the outer peripheral side in the radial direction.
  • the first boundary lines 30a and 30b are boundary lines between the first gash 7a and 7b and the third gash 10a and 10b.
  • the first boundary lines 30a and 30b from the starting points b2 and d2 of the bottom blades 4b and 4d once protrude toward the third gash 10a and 10b from the radial direction center side, and then the second gash 8a, By returning to the 8b side (Claim 3), it is possible to reduce the influence on the decrease in the volume of the third gash 10a, 10b. It becomes possible. As a result, the third gash 10a, 10b of the chips in the first gash 7a, 7b is maintained to a certain extent without reducing the capacity of the chips cut by the bottom blades 4b, 4d in the third gash 10a, 10b. It is possible to increase the induction effect on
  • this effect is obtained when the first boundary lines 30a and 30b form a convex ridge line toward the end face side of the cutting edge portion 2 (Claim 4), or the first boundary lines 30a of the third gashes 10a and 10b.
  • the surface (surface) other than 30b is recessed from the first boundary lines 30a, 30b (Claim 6)
  • the chips in the first gash 7a, 7b easily fall into the third gash 10a, 10b. Therefore, it is demonstrated remarkably.
  • the first boundary lines 30a and 30b form a convex ridge line toward the end face side of the cutting edge part 2
  • the first boundary lines 30a and 30b This means that the third gash 10a, 10b on both sides sandwiched and the first gash 7a, 7b form a line that protrudes relatively to the end face side from the surface.
  • the first boundary lines 30a and 30b themselves draw a concave curve when viewed from the end face side of the cutting edge portion 2.
  • the bottom blade flank (bottom blade second surface 5b) moves backward in the rotational direction.
  • 5d or the bottom edge second face 5b, 5d and the bottom edge third face 6b, 6d) and the sixth boundary lines 37a, 37b, which are the boundary lines between the first gash 7a, 7b, are continuous.
  • the first gashs 7a and 7b are “from the section near the radial center of the rake surfaces 11a and 11c of the base bottom blades 4a and 4c, on the front side in the rotational direction and on the radial center side of the bottom blades 4b and 4d. In other words, it is formed in an area including the end portions (b2, d2) and continuing to the bottom blade flank face that is continuous on the rear side in the rotational direction of the bottom blades 4b, 4d.
  • the boundary lines 31a and 31b continue to the vicinity of the center in the radial direction.
  • the tip is continuous with the bottom edge blades 4a, 4c or the rake faces 11a, 11c.
  • the second gashes 8a and 8b are arranged on the rear side in the rotation direction of the second boundary lines 31a and 31b, on the boundary line with the blade groove 17a in the section closer to the outer periphery in the radial direction of the rake faces 11a and 11c of the base blades 4a and 4c.
  • the third boundary lines 32a and 32b) are formed.
  • the second gashs 8a and 8b are “on the rear side in the rotation direction of the first gashs 7a and 7b and in the region up to the bottom blade scoop surfaces 11a and 11c, or the bottom blade flank (second bottom blade second The bottom bottom blade in the rotational direction rear side from the boundary line (second boundary lines 31a, 31b) on the rear side in the rotational direction (passing the intersection points b3, d3) of the surfaces 5b, 5d or the bottom blade third surface 6b, 6d) 4a, 4c, or the bottom edge rake faces 11a, 11c (third boundary lines 32a, 32b).
  • first gashs 7a and 7b are “from the first boundary lines 30a and 30b passing through the end portions (b2 and d2) closer to the radial center of the bottom blades 4b and 4d on the rear side in the rotational direction of the bottom blade flank ( In other words, it is formed over the region up to the second boundary lines 31a and 31b (which passes through the intersection points b3 and d3).
  • the third gash 10a, 10b is a section (including the start points b2, d2 of the bottom blades 4b, 4d) near the center in the radial direction of the bottom blades 4b, 4d and the rotation of the first boundary lines 30a, 30b continuous thereto.
  • the basal blade flank continuous on the rear side in the rotational direction of the basal blades 4a, 4c located on that side (the second basal blade surfaces 5a, 5c, or the third basal surface 6a, 6c) )
  • the boundary fourth boundary lines 36a and 36b).
  • the third gash 10a, 10b is "in the region from the section near the center in the radial direction of the scoop surfaces 11b, 11d of the bottom blades 4b, 4d to the front side in the rotational direction of the first gash 7a, 7b, or It is formed in the region from the boundary line (fourth boundary line 36a, 36b) on the third gash 10a, 10b side of the bottom blade flank to the bottom blade 4b, 4d and the first gash 7a, 7b on the rear side in the rotation direction. In other words.
  • the second gashes 8a and 8b are formed on the rear side in the rotation direction of the first gashes 7a and 7b so as to be continuous with the base scoop surfaces 11a and 11c together with the first gashes 7a and 7b. Is done. For this reason, the second gashes 8a and 8b are arranged along the ridgelines of the base blades 4a and 4c or the surfaces of the base blade scoop surfaces 11a and 11c together with the first gashes 7a and 7b.
  • the bottom blades 4b, 4d are perpendicular to the bottom blades 4a, 4c, or It will intersect at a close angle. Therefore, as shown in FIG. 2, the third gash 10a, 10b is positioned on the front side in the rotational direction of the first gash 7a, 7b, and along the base bottom blades 4a, 4c or the base bottom scoop surfaces 11a, 11c.
  • the first gashs 7a and 7b are arranged so as to be sandwiched in the ridgeline direction of the base blades 4a and 4c or in the radial direction together with the second gashes 8a and 8b.
  • the third gash 10a, 10b and the second gash 8a, 8b sandwich the first gash 7a, 7b in the ridgeline direction of the base blades 4a, 4c, and are arranged along the ridgeline of the base blades 4a, 4c.
  • the phrase “along the bottom edge blades 4a and 4c” in claim 2 means “along the ridgelines of the bottom edge blades 4a and 4c”.
  • Blade grooves (chip discharge grooves) 17a, 17b, 17c, and 17d are continuous with the second gashes 8a and 8b and the third gashes 10a and 10b in the rotational direction rear side.
  • the third gash 10a, 10b and the second gash 8a, 8b are arranged along the ridgeline of the base bottom blades 4a, 4c across the first gash 7a, 7b (Claim 2). Since the two gashs 8a and 8b are positioned on both sides of the first gashs 7a and 7b along the ridgelines of the mains edge blades 4a and 4c, the main gash blades 4a and 4c cut and entered the first gashes 7a and 7b. Chips tend to be dispersed in the second gash 8a, 8b and the third gash 10a, 10b. Chips dispersed in the second gash 8a, 8b and the third gash 10a, 10b are discharged into the blade grooves 17d, 17b, 17a, 17c continuous on the rear side in the respective rotational directions.
  • Chips cut by the bottom blades 4a and 4c and entering the second gashes 8b and 8a are discharged into the blade grooves 17d and 17b that are continuous to the rear side in the rotation direction. Chips cut by the bottom blades 4b and 4d and entering the third gash 10a and 10b are discharged to the blade grooves 17d and 17b continuous on the rear side in the rotation direction.
  • the surface of the first gash 7a, 7b and the third gash 10a, 10b has a concave curved surface as shown in FIG. 3 and FIG. 4 for discharging chips to the blade grooves 17b, 17a on the rear side in the rotational direction. It is inclined from the boundary lines (first boundary lines 30a, 30b) of both gashes to the blade grooves 17b, 17a on the rear side in the rotation direction of each gasche, and is inclined from the cutting edge part 2 toward the shank part 3.
  • the chips that have entered the first gash 7a, 7b are formed on the rear side in the rotational direction. It is considered that there is a strong tendency to be discharged to the blade grooves 17b and 17d on the rear side in the rotation direction via the second gashes 8a and 8b. Therefore, by forming the boundary lines (first boundary lines 30a, 30b) between the third gash 10a, 10b and the first gash 7a, 7b so as to form a convex ridge line toward the end face side of the cutting edge portion 2. (Claim 4) A part of the chips that have entered the first gash 7a, 7b can easily enter (drop) the third gash 10a, 10b.
  • the boundary lines (first boundary lines 30a, 30b) between the third gash 10a, 10b and the first gash 7a, 7b form a convex ridgeline” means that the boundary line is toward the end face side of the cutting edge portion 2. It protrudes in a convex shape. As described above, this means that the surfaces (surfaces (concave surfaces)) of the third gashes 10a and 10b other than the boundary lines (first boundary lines 30a and 30b) with the first gashes 7a and 7b are relatively. In other words, when the cutting edge portion 2 is viewed from the end face side in the axial direction, it is deeper than the boundary line with the first gashes 7a and 7b and is recessed (located behind) the boundary line. Can do.
  • the surfaces (concave curved surfaces) of the third gashes 10a and 10b are deeper than the boundary lines (first boundary lines 30a and 30b) with the first gashes 7a and 7b, so that they exist in the first gashes 7a and 7b. Since a part of the chips to be cut easily enters (drops) into the third gash 10a, 10b, the chips that have entered the first gash 7a, 7b try to disperse into the second gash 8a, 8b and the third gash 10a, 10b. The tendency to do is strengthened. As a result, it is avoided that the chips concentrate on any of the second gash 8a, 8b and the third gash 10a, 10b and stagnate.
  • first boundary line 30a, 30b When viewed from the boundary line (first boundary line 30a, 30b) between the third gash 10a, 10b and the first gash 7a, 7b, as described above, as shown in FIG.
  • the front surface) and the surfaces (front surfaces) of the third gashes 10a, 10b are inclined from the boundary line as the ridge line to the blade grooves 17b, 17a on the rear side in the rotation direction of each gasche, and are inclined from the cutting edge portion 2 toward the shank portion 3. is doing.
  • chips existing in the vicinity of the boundary lines (first boundary lines 30a and 30b) in the first gash 7a and 7b are located on the front side in the rotational direction, and are also rearward in the rotational direction to the third gashes 10a and 10b.
  • the chips in the first gash 7a, 7b are easily dispersed in the second gash 8a, 8b and the third gash 10a, 10b.
  • each gash has a function of guiding chips to the blade grooves 17a to 17d
  • the surface of each gash is inclined toward the shank part 3 side from the cutting edge part 2 side toward the rear side in the rotation direction.
  • the surface on the rear side is relatively deeper than the surface on the front side in the rotational direction. In this relationship, the depth of the surface of each gash when the cutting edge portion 2 is viewed from the end face side cannot be directly compared, but the relative depth between the boundary line between the adjacent gash and the gash surface is not possible.
  • the surface of the third gash 10a, 10b is deeper than the boundary line (first boundary line 30a, 30b) with the first gash 7a, 7b, so that the boundary line (first boundary line 30a, 30b) It can be said that it becomes easy to induce the fall of the existing chips to the third gash 10a, 10b.
  • Chips entering the first gash 7a, 7b are easily dispersed in the second gash 8a, 8b and the third gash 10a, 10b, so that the chips concentrate on the first gash 7a, 7b or the second gash 8a, 8b.
  • it is difficult for stagnation to occur and chips are easily discharged smoothly from the first gash 7a, 7b to the blade grooves 17a-17d.
  • the chip discharging performance from the first gash 7a, 7b is improved, the welding to the cutting edge due to the stagnation of the chips is easily avoided, and the tool life can be prolonged.
  • the second gash 8a, 8b receives the chips that have entered the first gash 7a, 7b, and guides it to the blade grooves 17d, 17b on the rear side in the rotational direction. Therefore, the second gash 8a, 8b and the first gash 7a , 7b (second boundary lines 31a, 31b) are formed so as to form a convex ridge line toward the end face side of the cutting edge portion 2, that is, the first gash 7a of the second gashes 8a, 8b. It is reasonable to form the second gash 8a, 8b so that the surface other than the boundary line (second boundary line 31a, 31b) with 7b becomes deeper than the boundary line with the first gash 7a, 7b ( Claim 5).
  • the second boundary lines 31a and 31b form a convex ridge line toward the end face side of the cutting edge portion 2, a part of the chips that have entered the second gash 8a and 8b from the first gash 7a and 7b are left as they are. It is possible to easily enter (drop) the grooves 17d and 17b.
  • the second boundary lines 31a and 31b form a convex ridge line toward the end face side of the cutting edge part 2
  • the second boundary lines 31a and 31b This means that the first and second gashes 7a and 7b and the second gashes 8a and 8b sandwiched on both sides form a line that protrudes relatively to the end face side from the surface.
  • the second boundary lines 31a and 31b themselves draw a concave curve when viewed from the end face side of the cutting edge portion 2.
  • each gash itself has a larger volume than when the surface (surface) is flat, so when a plurality of gashes (gash surfaces) are formed on the square end mill.
  • the capacity for storing chips in each gash is increased. This also avoids stagnation of chips in each gash and contributes to improving the discharge efficiency from each gash to the blade grooves 17a to 17d. Therefore, the chip discharge performance using the gash is improved, and The possibility of welding to the cutting edge is further reduced.
  • the boundary line (fifth boundary line 34a, 34b) between the third groove 10a, 10b and the blade grooves 17a, 17c continuous on the rear side in the rotational direction and the end b2 on the radial center side of the bottom blades 4b, 4d. , D2 may not always be as expected.
  • the boundary lines (the fifth boundary lines 34a and 34b) between the third gash 10a and 10b and the blade grooves 17a and 17c are continuous to the bottom blades 4b and 4d or the rake faces 11b and 11d of the bottom blades 4b and 4d.
  • the end portions b2 and d2 on the center side in the radial direction of the bottom blades 4b and 4d are connected to the third gash 10a and 10b and the blade grooves 17c and 17d.
  • the ends b2, d2 on the center side in the radial direction of the bottom blades 4b, 4d are boundaries between the third gash 10a, 10b and the blade grooves 17a, 17c (fifth boundary line 34a, 34b) Since the bottom blades 4b, 4d and the third gash 10a, 10b overlap in the radial direction by being positioned on the center side in the radial direction, the chips cut by the bottom blades 4b, 4d are removed from the third gash. 10a and 10b are easy to enter.
  • Each surface (surface) of the first gash 7a, 7b, the second gash 8a, 8b, and the third gash 10a, 10b is concave toward the shank part 3 when the cutting edge part 2 is viewed from the end face side.
  • the first boundary lines 30a and 30b and the fourth boundary lines 36a and 36b are convex ridgelines, and the intersection of these boundary lines is a convex shape that divides the central side in the radial direction of the first gashes 7a and 7b.
  • Extension lines (ridge lines continuous from the start points a2 and c2) of the bottom edge 4a and 4c that are ridge lines intersect. For this reason, the intersection of these three convex ridgelines, or the protruding portion z including the intersection, becomes a region which is convexly convex toward the end face side of the cutting edge portion 2 as shown in FIG. In this relationship, when the square end mill 1 performs the digging process, the protruding portion z easily comes into contact with the work material.
  • the fourth gashs 9a and 9b are formed in a region up to the rotation direction rear side (the base bottom blade second surfaces 5a and 5c) of the positioned base bottom blades 4a and 4c (claim 8).
  • the protruding portion z that protrudes toward the end face side of the cutting edge portion 2 can be absent, so that the protruding portion z contacts the work material. The possibility of loss due to is eliminated.
  • the fourth gashs 9a and 9b can be formed by forming a concave curved surface toward the shank part 3 when the cutting edge part 2 is viewed from the axial end face side. Since the fourth gashs 9a and 9b can also have a function of suppressing the stagnation of the chips, the possibility of welding of the chips to the blade edges in the fourth gashs 9a and 9b is also reduced.
  • the second gash and the third gash formed on the front side in the rotation direction are formed in a concave curved shape toward the shank portion side. For this reason, the volume of each gash itself when a plurality of gashes are formed in a square end mill can be enlarged, and the capacity of storing chips in each gash can be increased.
  • FIG. 2 is an end view showing an end surface on the cutting edge side of FIG. 1. It is the perspective view which showed a mode when the end surface of FIG. 2 was seen from the radial direction outer peripheral side of the bottom blade. It is the perspective view which showed a mode when the end surface of FIG. 2 was seen from the radial direction outer peripheral side of the base bottom blade. It is the side view which showed a mode when the side surface of the cutting-blade part of FIG. 2 was seen from the radial direction outer peripheral side of the bottom blade. It is the side view which showed a mode when the side surface of the cutting-blade part of FIG.
  • FIG. 6 is a sectional view taken along the line ee of FIG. 5.
  • FIG. 6 is a sectional view taken along line ff in FIG. 5.
  • FIG. 3 is a sectional view taken along line bb in FIG. 2.
  • FIG. 3 is a sectional view taken along line cc of FIG.
  • FIG. 3 is a dd line view (perspective view) of FIG. 2.
  • FIG. 6 is a view (perspective view) taken along line dd of FIG. 2 when a fourth gash is not formed.
  • FIG. 2 is a cross-sectional view taken along the line aa in FIG. 1. It is an enlarged view of the broken-line circle
  • FIG. 1 and FIG. 2 show a square end mill having a cutting edge portion 2 having a bottom edge and outer peripheral edges 15a to 15d continuous to the bottom edge from the radial center side to the outer peripheral side on the axial front end side of the tool body.
  • the cutting edge portion 2 includes at least one bottom edge 4a, 4c continuous from the end on the radially outer side to the center in the radial direction when the cutting edge 2 is viewed from the end surface side in the axial direction, and the cutting edge portion.
  • When 2 is viewed from the end face side in the axial direction, it has at least two bottom blades 4b and 4d that continue from the other end portion on the radially outer peripheral side to the middle in the radial direction.
  • the drawing shows an example of a four-blade consisting of two bottom blades 4a, 4c and two bottom blades 4b, 4d, but the number of cutting blades is 3-8. is there.
  • the number of cutting edges is 2 or less, high-efficiency machining is difficult, and when the number is 9 or more, a sufficient volume of gash cannot be secured, and chip clogging is likely to occur at the initial stage of cutting.
  • the high-efficiency machining targeted by the square end mill 1 of the present invention is the feed rate Vf and the axial cut so that the chip discharge amount Qr is 0.2 ⁇ D 2 (D: tool diameter) cm 3 / min or more.
  • the feed rate Vf is set to 450 mm / min
  • the axial depth of cut ap is set to 1 mm
  • the radial depth of cut ae is set to 0.5 mm.
  • the base material of the square end mill 1 of the present invention is preferably formed from a WC-based cemented carbide, ceramics or high-speed steel.
  • the surface of the cutting edge 2 part of the substrate is coated with an abrasion-resistant hard film.
  • the hard coating include TiSiN, TiAlN, TiAlSiN, CrSiN, and AlCrSiN. Specifically, it is selected from nitrides, carbonitrides and oxynitrides containing at least one element selected from the elements Al, Si and B of the periodic table 4A, 5A and 6A group metals. It is preferable to coat a single layer film or two or more kinds of laminated films to a thickness of 3 to 5 ⁇ m.
  • first boundary line 30a connecting the end of each bottom blade 4b, 4d on the center side in the radial direction (starting point b2, d2 of the bottom blade 4b, 4d) to the vicinity of the center in the radial direction.
  • 30b) to the respective base bottom blades 4a, 4c on the rear side in the rotation direction first gouaches 7a, 7b are formed.
  • Second gashes 8a and 8b and third gashes 10a and 10b are respectively formed on the rear side in the rotation direction and the front side in the rotation direction of the first gashes 7a and 7b.
  • the first gash 7a, 7b, the second gash 8a, 8b, and the third gash 10a, 10b are concavely curved toward the shank part 3 when the cutting edge part 2 is viewed from the axial end face side. It is formed.
  • the outer peripheral blades 15a and 15c are continuous from the ends (a1 and c1) on the radially outer peripheral side of the respective base bottom blades 4a and 4c shown in FIG.
  • outer peripheral blades 15b and 15d are continuous from the ends (b1, d1) on the outer peripheral side in the direction.
  • the intersections of the end portions on the outer peripheral side in the radial direction of the bottom blades 4a and 4c and the outer peripheral blades 15a and 15c are the connection points a1 and c1, the end portions on the outer peripheral side in the radial direction of the bottom blades 4b and 4d and the outer peripheral blade. Intersections with 15b and 15d are referred to as connection points b1 and d1.
  • the bottom edge 4a, 4c is a starting point a2, c2 of the bottom edge 4a, 4c near the radial center of the cutting edge 2 as shown in FIG. And continues to the bottom blades 4b and 4d.
  • Lines extending from the vicinity of the center in the radial direction of the bottom blades 4a, 4c (start points a2, c2 of the bottom blades 4a, 4c) to the bottom blades 4b, 4d are the first gash 7a, 7b and the third gash 10a, 10b. (First boundary lines 30a and 30b).
  • the starting points a2 and c2 of the base blades 4a and 4c are also intersections of the base blades 4a and 4c and the chisel edge 35, and the first boundary lines 30a and 30b are children from the starting points a2 and c2 of the base blades 4a and 4c.
  • the bottom blades 4b and 4d are continuous to the ends b2 and d2 on the center side in the radial direction, forming a convex ridgeline.
  • the third boundary 10a and 10b which are partitioned by the first boundary lines 30a and 30b and are relatively close to the blade grooves 17a and 17c, are the first boundary lines.
  • the lines 30a and 30b are recessed (recessed) toward the shank portion 3, and are relatively lower (deeper) than the first gashes 7a and 7b.
  • the chips present in the vicinity of the first boundary lines 30a and 30b in the first gash 7a and 7b can easily go around the second gash 8a and 8b on the rear side in the rotation direction, and at the same time, the third gash 10a on the front side in the rotation direction. 10b is also likely to enter (drop). For this reason, the chips in the first gash 7a, 7b are easily dispersed in the second gash 8a, 8b and the third gash 10a, 10b.
  • the surfaces (concave curved surfaces) of the first gashes 7a and 7b may also be recessed toward the shank portion 3 from the first boundary lines 30a and 30b.
  • connection points a1 and c1 of the respective bottom edge blades 4a and 4c and the rotation axis O that is the radial center of the cutting edge portion 2 are connected.
  • the angles ⁇ a and ⁇ c formed by the straight line indicated by the broken line and the straight line drawn by the base blades 4a and 4c are 0 to 4 °, preferably 0 to 2 °.
  • angles ⁇ b and ⁇ d formed by broken lines connecting the connection points b1 and d1 of the bottom blades 4b and 4d and the rotation axis O with straight lines drawn by the bottom blades 4b and 4d are also 0 to 4 °, 0 to 2 ° is preferable. If ⁇ a to ⁇ d are less than 0 ° (negative angle), the rigidity of the cutting edge is lowered, and if it exceeds 4 °, it becomes difficult to form a gash.
  • a second base surface 5a, 5c as a bottom blade clearance surface is continuously formed on the rear side in the rotational direction of each of the bottom blades 4a, 4c, and on the rear side in the rotational direction of each bottom blade 4b, 4d.
  • the bottom blade second surfaces 5b and 5d are continuously formed as a bottom blade flank.
  • the groove grooves 17a to 17d may be continuous on the rear side in the rotation direction of the secondary bottom blade second surfaces 5a and 5c and the secondary bottom blade second surfaces 5b and 5d, but in the drawing, the secondary bottom blade second surface 5a, 5c and the bottom blade second surfaces 5b, 5d so that the transition from the blade grooves 17a to 17d in a stepwise manner is performed continuously on the rear side in the rotation direction of the respective bottom blade second surfaces 5a, 5c.
  • the face surfaces 6a and 6c are formed, and the bottom blade third face 6b and 6d are formed continuously on the rear side in the rotation direction of the bottom blade second face 5b and 5d.
  • Boundary lines (fourth boundary lines 36a, 36b) between the bottom flank flank surfaces (second base blade second surfaces 5a, 5c and third base blade third surfaces 6a, 6c) and the third gash 10a, 10b are cutting edges.
  • 2 forms a convex ridge line toward the end face side, continues to the first boundary lines 30a and 30b via the vicinity of the center in the radial direction (fourth gashes 9a and 9b described later), branches at the same position, and is the base It continues to the extension line of blade 4a, 4c.
  • the fourth boundary lines 36a and 36b form convex ridge lines, so that the third gash 10a and 10b, which are gashes defined by the fourth boundary lines 36a and 36b, are closer to the shank portion 3 than the fourth boundary lines 36a and 36b. It is concave.
  • second peripheral surfaces 16a to 16d as peripheral blade flank surfaces are continuously formed on the rear side in the rotational direction of the peripheral blades 15a to 15d.
  • Grooves 17a to 17d are present.
  • the blade grooves 17a to 17d are formed between the outer peripheral blade second surfaces 16a to 16d and the outer peripheral blades 15b to 15a adjacent to the rear side in the rotation direction.
  • outer peripheral blade scoop surfaces 20a to 20d are formed on the front side in the rotational direction of the outer peripheral blades 15a to 15d.
  • the outer peripheral blade rake surfaces 20a to 20d constitute blade grooves 17d to 17a that face each other as shown in FIGS. 3 and 4, or are continuous with the blade grooves 17d to 17a. There is no clear boundary between them. In FIG. 4, the boundary line between the blade groove 17d and the outer peripheral rake face 20a is indicated by a broken line, but the broken line is not always visible.
  • the outer peripheral blade second surface 16a (to 16d) is minute in the circumferential direction from the outer peripheral blade 15a (to 15d) to the rear side in the rotational direction as shown in FIG. 13 which is an enlarged view of the broken-line circle portion in FIG. Secondary surface 16a1 ( ⁇ 16d1) having a wide width K, and the main secondary surface that continues from the rear to the blade groove 17a ( ⁇ 17d) and increases the distance from the work material toward the rear in the rotational direction. 16a2 ( ⁇ 16d2).
  • the minute second surface 16a1 ( ⁇ 16d1) and the main second surface 16a2 ( ⁇ 16d2) may be a flat surface or a curved surface protruding outward in the radial direction.
  • the bottom blade rake surfaces 11a and 11c and the bottom blade rake surface 11b, respectively. 11d are formed.
  • the first gashs 7b, 7a and the second gashs 8b, 8a are continuous on the front side in the rotation direction of the bottom edge rake surfaces 11a, 11c, and the rotation direction front of the bottom blade rake surfaces 11b, 11d.
  • the third gashes 10b and 10a are continuous.
  • the bottom blade scoop surfaces 11a and 11c are continuous with the first gashes 7b and 7a in the section near the center in the radial direction. In the close section, it continues to the second gashes 8b, 8a.
  • a section near the center in the radial direction of the bottom edge rake surfaces 11a and 11c and a first gash 7b and 7a form a concave curved surface.
  • the section near the outer periphery in the radial direction of the bottom edge scoop surfaces 11a and 11c and the second gash 8b and 8a form a discontinuous concave surface, and a clear boundary line appears between both surfaces.
  • the blade rake surfaces 11a and 11c and both gashes may form a continuous curved surface or a discontinuous curved surface.
  • the virtual boundary line 110 that is not clearly shown between the bottom edge scoop surfaces 11 a and 11 c and the first gash 7 b and 7 a is indicated by a broken line.
  • the bottom edge scoop surfaces 11b and 11d and the third gashes 10b and 10a form a discontinuous concave curved surface, but both surfaces may form a continuous curved surface.
  • the first boundary lines 30a and 30b are once linearly continuous toward the radial center side from the ends b2 and d2 on the radial center side of the bottom blades 4b and 4d. Then, a bent curve is drawn which protrudes to the third gash 10a, 10b side on the front side in the rotation direction and then returns to the second gash 8a, 8b side.
  • the first boundary lines 30a and 30b heading toward the third gash 10a and 10b pass through points c2 and a2 intersecting with the chisel edge 35 via the fourth gashes 9a and 9b, which will be described later, and continue to the base bottom blades 4c and 4a. To do.
  • the first boundary lines 30a and 30b starting from the start points b2 and d2 of the bottom blades 4b and 4d are once drawn straight from the start points b2 and d2 to the front in the rotational direction by drawing a straight line toward the center in the radial direction. From the case where it protrudes to the side, the fall of the chip
  • the first boundary lines 30a and 30b are drawn from the point on the radial center side of the straight line to the front side in the rotational direction, and then draw bent curves connected to the starting points a2 and c2 of the base blades 4c and 4a. It is also possible to enhance the induction effect of the chips in the first gash 7a, 7b to the third gash 10a, 10b.
  • the bottom blade flank surfaces (second bottom blade second surfaces 5b and 5d and bottom blade third surface 6b; 6d) and the first gashes 7b and 7a are partitioned, and sixth boundary lines 37a and 37b forming convex ridge lines are continuous.
  • the sixth boundary lines 37a and 37b intersect at the intersections b3 and d3 with the boundary line between the bottom blade flank face (bottom blade third surface 6b and 6d) and the blade grooves 17b and 17d on the rear side in the rotation direction, Second intersection lines 31a and 31b, which will be described later, and third boundary lines 32a and 32b intersect at the intersection points b3 and d3.
  • the second boundary lines 31a which divide the first gash 7b, 7a and the second gash 8b, 8a and form a convex ridgeline, 31b intersects, and the second boundary lines 31a and 31b are continuous with the bottom edge scoop surfaces 11a and 11c or the bottom edge blades 4c and 4a. Since the sixth boundary lines 37a and 37b form convex ridge lines, the first gashs 7a and 7b, which are gashes defined by the sixth boundary lines 37a and 37b, are closer to the shank portion 3 than the sixth boundary lines 37a and 37b. It is concave.
  • the second boundary lines 31a and 31b form convex ridge lines so that the second boundary lines 31a and 31b are partitioned by the second boundary lines 31a and 31b, and the second caches 8b and 8a, which are relatively close to the blade grooves 17b and 17d, are also first.
  • the two boundary lines 31a and 31b are recessed (recessed) toward the shank portion 3 side.
  • the second gashes 8a and 8b and the blade grooves 17b and 17d are connected to the base blades 4a and 4c.
  • the third boundary lines 32a and 32b that divide and form convex ridge lines start and continue to the bottom edge scoop surfaces 11a and 11c or the bottom edge blades 4a and 4c as shown in FIGS.
  • the second gashes 8a and 8b are partitioned by the second boundary lines 31a and 31b, the third boundary lines 32a and 32b, and the bottom edge scoop surfaces 11a and 11c, or the bottom edge blades 4a and 4c.
  • the blade grooves 17b and 17d defined by the third boundary lines 32a and 32b are recessed toward the shank portion 3 side from the third boundary lines 32a and 32b. (Dented).
  • the fifth boundary lines 34a and 34b form convex ridge lines to divide the third gash 10a and 10b and the blade grooves 17a and 17c. As shown in FIG. 4, the bottom blade rake faces 11b and 11d or the bottom blade It continues to 4b and 4d.
  • the third gash 10a, 10b is defined by the first boundary lines 30a, 30b, the fourth boundary lines 36a, 36b and the fifth boundary lines 34a, 34b and the bottom blade rake face 11b, 11d, or the bottom blades 4b, 4d. Is done. Since the fifth boundary lines 34a and 34b form convex ridgelines, the blade grooves 17a and 17c defined by the fifth boundary lines 34a and 34b are recessed toward the shank portion 3 side from the fifth boundary lines 34a and 34b. (Dented).
  • a protruding portion z is formed so as to be convex toward the surface side of the cutting edge portion 2. Since this protrusion z may be lost due to contact with the work material during digging, the region including the protrusion z is ground as shown in FIG. As a result, the fourth gashs 9a and 9b are formed, and the protruding portion z is absent.
  • first boundary lines 30a, 30b which are the boundary lines of the first gash 7a, 7b and the third gash 10a, 10b, toward the front in the rotational direction or toward the center in the radial direction
  • Fourth gashs 9a and 9b are formed in a region up to the second bottom surface 5a and 5c on the rear side in the rotation direction of the bottom blades 4a and 4c located on the front side in the rotation direction.
  • the “region from the bending point of the first boundary lines 30a, 30b to the second base surface 5a, 5c” is the second base surface 5a
  • 5c is the first gash 7a, 7b and the third gash 10a, 10b. It becomes an area that intersects.
  • the flat area (region) of the fourth gash 9a, 9b is small in comparison with the first to third gash, so the chips discharged from the fourth gash 9a, 9b are discharged.
  • the fourth gash 9a, 9b is also formed with a concave curved surface when the cutting edge portion 2 is viewed from the end surface side in the same manner as the first to third gashes, so that the work material It is possible to reduce the possibility of contact with the metal and to contribute to the improvement of chip discharge.
  • the degree of curvature of the first gash 7a is, for example, when the surface of the first gash 7a forms a cylindrical surface, when the cutting edge portion 2 is cut along a plane perpendicular to the rotation axis O as shown in FIG.
  • intersections S1 and S2 of a circle having a diameter of 0.1D (D: tool diameter) and the edge of the first gash 7a centered on the apex T1 of the curved surface including a curve convex toward the rotation axis O of the gash 7a Can be obtained as the ratio (n1 / m1) of the length n1 of the perpendicular line from T1 to the line segment (middle point V1) with respect to the length m1 of the line segment connecting.
  • the degree of curvature n1 / m1 decreases as n1 decreases.
  • the degree of curvature n1 / m1 of the first gash 7a is appropriately 20 to 50%, preferably 25 to 45%, particularly 30 in terms of securing the rigidity of the base bottom blades 4a and 4c and securing the volume of the first gash 7a. ⁇ 40% is reasonable. If the degree of curvature n1 / m1 is less than 20%, the rigidity of the base bottom blades 4a and 4c is reduced. If it exceeds 50%, the volume of the first gash 7a is reduced and the chip discharge capacity is reduced.
  • the curvature of the second gash 8a includes a curve that is convex toward the rotation axis O of the second gash 8a, and the cutting edge portion 2 is cut by a cutting plane orthogonal to the rotation axis O.
  • the length n2 ratio (n2 / m2) can be obtained.
  • the degree of curvature n2 / m2 of the second gash 8a and the degree of curvature n3 (length from T3 to V3) / m3 of the third gash 10a, 10b ensure the rigidity of the bottom blades 4a, 4c and bottom blades 4b, 4d, respectively.
  • 10 to 40% is appropriate, preferably 15 to 35%, particularly 20 to 30%.
  • top bottom blades 4a and 4c are cut so that the chips that have entered the first gash 7a and 7b are smoothly discharged without delay to the blade grooves 17b and 17d via the second gash 8a and 8b. Then, it is better that the degree of curvature becomes gradually (smaller) gradually from the first gash 7a, 7b to the blade grooves 17b, 17d.
  • the curvature degree of the fourth gash 9b is a line segment connecting the intersection X1 of the fourth gash 9b and the first gash 7b and the intersection X2 of the fourth gash 9b and the third gash 10b.
  • the degree of curvature of the fourth gash 9b is suitably 7 to 37%, preferably 12 to 32%, from the viewpoint of securing the rigidity of the base bottom blades 4a and 4c and avoiding contact with the work material in the fourth gash 9b. In particular, 17 to 27% is appropriate.
  • the detailed relationship between the length of 9b in the direction along the bottom blades 4b and 4d and the tool diameter D is as follows.
  • h3 If h3 is out of this range, the chip capacity in the third gash 10a, 10b is reduced, or the flow of smooth chip discharge to the blade grooves 17a, 17c through the third gash 10a, 10b is hindered. There is a possibility that. If h4 is out of the above range, there is a possibility that the periphery of the fourth gash 9a, 9b may come into contact with the work material, or there is a possibility that the chip holding capacity in the third gash 10a, 10b will be reduced. is there.
  • FIG. 9 which is a cross-sectional view taken along the line bb of FIG. 2, the formation angle of the first gash 7a, 7b (the boundary line between the first gash 7a, 7b and the second gash 8a, 8b (second boundary line 31a )
  • An angle between the surface of the first gash 7a, 7b in the vicinity and a plane orthogonal to the rotation axis O) ⁇ 1 is suitably about 15 to 35 °. If ⁇ 1 is less than 15 °, the chip storage capacity in the first gash 7a, 7b is reduced, and if it exceeds 35 °, the rigidity of the base bottom blades 4a, 4c may be reduced.
  • the formation angle of the second gashes 8a and 8b shown in the same figure (the surface and rotation of the second gashes 8a and 8b near the boundary line (second boundary line 31a) between the first gashes 7a and 7b and the second gashes 8a and 8b)
  • An angle ⁇ 1 formed with a plane orthogonal to the axis O is suitably about 40 to 60 °. If ⁇ 1 is less than 40 °, the chip storage capacity in the second gash 8a, 8b is lowered, and if it exceeds 60 °, the rigidity of the base bottom blades 4a, 4c may be lowered.
  • the cutting speed is low and the radius relative to the first gashes 7a and 7b is secured while ensuring the rigidity of the base blades 4a and 4c in the vicinity of the rotation axis O where chipping is likely to occur. Since the area
  • FIG. 10 which is a cross-sectional view taken along the line cc of FIG. 2, the formation angles of the fourth gashes 9a and 9b (the boundary lines between the third gashes 10a and 10b and the fourth gashes 9a and 9b (the seventh boundary line 33a )
  • the angles ⁇ 2 between the surfaces of the third gashes 10a and 10b and the plane orthogonal to the rotation axis O in the vicinity of the boundary line (seventh boundary line 33a) are about 15 to 35 ° and about 40 to 60 °, respectively. is there. If ⁇ 2 and ⁇ 2 are within this range, the third gash 10a, 10b can be widely secured while securing the rigidity of the base blades 4a, 4c in the vicinity of the rotation axis O. The chip discharging performance at 10b can be improved.
  • the size of the chips generated by the bottom blades 4b and 4d is determined by the bottom blades 4a and 4c. It is relatively smaller than the size of the generated chips. Therefore, the rotation axes of the third gashes 10a and 10b formed on the front side in the rotation direction of the bottom blades 4b and 4d are from the second gashes 8a and 8b formed on the front side in the rotation direction of the bottom blades 4a and 4c. Even if the length in the O direction is reduced, it can be said that the chip discharge property via the third gashes 10a and 10b is sufficiently ensured.
  • the end Q on the radially outer side of the third gash 10a, 10b is positioned closer to the bottom blades 4a-4d than the end P on the radially outer side of the second gash 8a, 8b.
  • the length of the third gash 10a, 10b in the direction of the rotation axis O can be suppressed, and the third gash 10a, 10b does not need to be given an unnecessarily large volume.
  • the distance H in the rotation axis O direction between the end portion P of the second gash 8a, 8b and the end Q of the third gash 10a, 10b is 0. It is appropriate to be about 0.01 to 0.2D (D: tool diameter).
  • H is less than 0.01D, there is no substantial difference between the positions of the end portion P and the end portion Q. Therefore, the rigidity of the square end mill 1 or a part thereof is likely to decrease. There is a possibility that the grindstone may come into contact with the base bottom blades 4a and 4c when the bottom blades 4b and 4d are ground.
  • the square end mill 1 of the present invention also has a circumferential direction (rotational direction) for suppressing chatter vibration due to resonance during cutting of the work material as shown in FIG. 12 which is a cross-sectional view taken along line aa of FIG. It is preferable that the center angles connecting the outer peripheral blades 15a and 15b (15b and 15c) adjacent to each other are not equally divided.
  • the central angles (division angles) ⁇ and ⁇ at the point-symmetrical positions with respect to the rotation axis O are the same, and the sum of the adjacent central angles ⁇ and ⁇ is 180 °, but the total central angles are different.
  • FIG. 12 is a cross-sectional view taken along line aa of FIG. It is preferable that the center angles connecting the outer peripheral blades 15a and 15b (15b and 15c) adjacent to each other are not equally divided.
  • the central angles (division angles) ⁇ and ⁇ at the point-symmetrical positions with respect to the rotation axis O are the same, and the sum of
  • the central angle ⁇ is mainly set within a range of about 2 to 20% increase of 90 ° (reference angle) obtained by equally dividing the central angle of the circle into four, and preferably within a range of about 4 to 12% increase. .
  • the central angle ⁇ is about 92 °, and the adjacent central angle ⁇ is 88 °.
  • the central angle ⁇ is 108 °, and the adjacent central angle ⁇ is 88 °.
  • center angle ⁇ is less than 2% of the reference angle, the chatter vibration suppression effect cannot be obtained, and if it exceeds 20%, the volume of the blade groove forming the center angle ⁇ becomes too large, and chipping tends to occur on the outer peripheral blade. .
  • boundary lines between the third and fourth gashes (seventh boundary line), 34a, 34b ... boundary line between the third gash and the groove (fifth boundary line), 35 ?? chisel edge
  • 36a, 36b boundary lines (fourth boundary line) between the third gash and the flank face of the base blade, 37a, 37b ... boundary lines (sixth boundary line) between the first gash and the bottom blade flank, 110 « A virtual boundary line between the rake face of the base blade and the first gash, a1, c1... end portion on the outer peripheral side in the radial direction of the base blade (the connection point between the base blade and the outer blade), a2, c2...
  • Rotation axis P Radial outer edge of the second gash
  • Q Radial outer edge of the third gash
  • R Direction of rotation

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)
  • Drilling Tools (AREA)

Abstract

切れ刃部に複数のギャッシュを形成することによりすくい面に存在する切屑を切屑排出溝に誘導する上で、各ギャッシュでの切屑の収容能力を高め、切屑排出性を向上させる。切れ刃部(2)を端面側から見たときの半径方向外周側の端部から半径方向中心寄りまで連続する少なくとも1本の親底刃(4a(4c))と、半径方向外周側の他の端部から半径方向中心側の中途まで連続する少なくとも2本の子底刃(4b、4d)から底刃を構成し、子底刃の半径方向中心側の端部と半径方向中心付近までを結ぶ線(第一境界線(30a、30b))から回転方向後方側の親底刃までの領域に第一ギャッシュ(7a、7b)を、第一ギャッシュの回転方向後方側と前方側に第二ギャッシュ(8a、8b)と第三ギャッシュ(10a、10b)をそれぞれ形成し、これらの全ギャッシュを切れ刃部(2)の軸方向反対側のシャンク部(3)側へ向かって凹曲面状に形成する。

Description

スクエアエンドミル
 本発明は例えばステンレス鋼等の難削材の切削加工に好適なスクエアエンドミルに関するものである。
 スクエアエンドミルは主に金型加工の側面切削や溝切削等に使用されるが、ステンレス鋼等の難削材(被削材)の部品加工では、切屑の刃先への溶着が生じ易いために工具の寿命が短くなる傾向がある。この点から、工具の寿命を長引かせる上で、スクエアエンドミルには加工能率を高め、加工時間を短縮させるための機能を持たせることが要請される。
 刃先への切屑の溶着は、切れ刃が切削した直後の切屑がすくい面から直ちに排出されないことにも起因するため、切れ刃すくい面からの切屑の排出性が十分に確保されれば、切屑の溶着を回避することは可能と考えられる。
 切れ刃すくい面からの切屑の排出性を良好にする手段として、すくい面と切屑排出溝に連続するギャッシュを構成するギャッシュ面を複数、形成することによりすくい面に存在する切屑を切屑排出溝に誘導する方法がある(特許文献1~5参照)。
 特許文献1~5ではいずれも底刃すくい面と共に、底刃すくい面に回転方向前方側に対向する複数のギャッシュ面からギャッシュを構成し、また切屑をギャッシュから切屑排出溝へ誘導できるよう、底刃すくい面に対向する複数のギャッシュ面を半径方向中心側から外周側へかけ、工具本体の回転軸に近い角度に傾斜させている。
特開2012-91306号公報(請求項1、段落0041~0042、図5) 特開2011-67928号公報(請求項2、段落0048、図8) 特開2006-110683号公報(段落0015~0032、図2~図4) 特開2007-296588号公報(請求項1、段落0006、図1) 特開2006-15418号公報(請求項1、段落0016~0018、図1)
 ギャッシュを利用した切屑の排出性に着目すれば、ギャッシュ自体の容積を確保することが有効であると考えられるが、特許文献1~5のいずれにおいてもギャッシュ面自体は平面であるため、ギャッシュの容積を増す形にはなっていない。その上、複数のギャッシュ面を工具先端部側からシャンク部側へかけて2段階に傾斜させることで、ギャッシュ自体が工具本体の半径方向外周側へ向かって凸の多角形状になっているため、ギャッシュの容積を大きく取ることができていない。
 ギャッシュ自体が凸の多角形状であることは、工具本体の剛性を高めることには寄与するものの、ギャッシュ自体の容積を稼ぐ(増す)ことにはならないため、複数のギャッシュ面を形成することによる切屑排出性向上の利点を生かせていない。
 本発明は上記背景より、切れ刃部に複数のギャッシュ(ギャッシュ面)を形成することによりすくい面に存在する切屑を切屑排出溝に誘導する上で、各ギャッシュでの切屑の収容能力を高め、切屑排出性を向上させることを可能にするスクエアエンドミルを提案するものである。
 請求項1に記載の発明のスクエアエンドミルは、工具本体の軸方向先端部側に、半径方向中心側から外周側へかけて底刃と、この底刃に連続する外周刃を有する切れ刃部を備え、前記底刃が前記切れ刃部を軸方向の端面側から見たときの半径方向外周側の端部から半径方向中心寄りまで連続する少なくとも1本の親底刃と、前記切れ刃部を軸方向の端面側から見たときの半径方向外周側の他の端部から半径方向中心側の中途まで連続する少なくとも2本の子底刃を持ち、
 前記各の半径方向中心側の端部と半径方向中心付近までを結ぶ線から回転方向後方側の前記各親底刃までの領域に第一ギャッシュが形成され、この第一ギャッシュの回転方向後方側と回転方向前方側にそれぞれ第二ギャッシュと第三ギャッシュが形成され、これらの第一ギャッシュと第二ギャッシュ、及び第三ギャッシュは前記切れ刃部を軸方向の端面側から見たときに、前記切れ刃部の軸方向反対側のシャンク部側へ向かって凹の曲面状に形成されていることを特徴とする。
 親底刃4a(4c)は図2に示すように切れ刃部2を軸方向の端面側から見たときに、底刃の半径方向中心側の端部が工具本体(スクエアエンドミル1)の回転軸Oの付近にまで到達する底刃を指し、子底刃4b、4dは底刃の半径方向中心側の端部が回転軸Oの付近にまで到達しない底刃を指す。ここで、「回転軸Oの付近にまで到達する底刃(親底刃4a、4c)の半径方向中心側の端部」は後述の「親底刃4a、4cの開始点(起点)a2、c2」であり、「回転軸Oの付近にまで到達しない底刃(4b、4d)の半径方向中心側の端部」は「子底刃4b、4dの開始点(起点)b2、d2」である。
 本発明のスクエアエンドミル1の親底刃4a(4c)は少なくとも1本であり、子底刃4b、4dは少なくとも2本であるから、スクエアエンドミル1は刃数で言えば、3枚刃以上の形態になる。図面では親底刃4a、4cと子底刃4b、4dが共に2枚ある4枚刃のスクエアエンドミル1の例を示している。「底刃の半径方向中心側の端部が回転軸の付近にまで到達する」とは、底刃(親底刃4a、4c)がチゼルエッジ35に交わるまで半径方向外周側の端部から半径方向中心寄りまで連続することを言う。
 子底刃4b、4dの開始点(起点)を特定する「半径方向外周側の他の端部b2、d2」は親底刃4a、4cの「半径方向外周側の端部」以外の端部を指しているが、親底刃4a、4cと子底刃4b、4dは共に底刃であり、複数本の底刃は工具本体の周方向(回転方向R)に均等に、またはほぼ均等に配列する。このことから、半径方向外周側の端部は周方向には「親底刃の半径方向外周側の端部」以外で、親底刃4a、4cと共に周方向に均等に、もしくはほぼ均等に配列する位置になる。「周方向に均等」とは、親底刃4a、4cと子底刃4b、4dの区別なく、周方向に隣接する底刃4a、4b(4b、4c)、もしくは外周刃15a、15b(15b、15c)のなす中心角が一定であることを言い、「周方向にほぼ均等」とは、図12に示すように周方向に隣接する底刃、もしくは外周刃のなす中心角α、βが一定でないことを言う。
 請求項1において「凹の曲面状に形成される第一ギャッシュ7a、7bと第二ギャッシュ8a、8b、及び第三ギャッシュ10a、10b」は図2に表れている、切れ刃部2の端面(先端)側を向いた各ギャッシュの表面を指している。「シャンク部側」は工具本体を軸方向に見たときの切れ刃部2とは反対側を指し、「シャンク部側へ向かって凹の曲面状」とは、各ギャッシュの表面が切れ刃部2を軸方向の端面側から見たときに、シャンク部3側へ向かって凹んでいることを言う。
 図2に示すように親底刃4a、4cの半径方向中心側の端部(親底刃4a、4cの開始点a2、c2)は工具本体の回転軸Oの付近に位置するが、子底刃4b、4dの半径方向中心側の端部(子底刃4b、4dの開始点b2、d2)は回転軸Oの付近にまで到達しない。この子底刃4b、4dの開始点b2、d2は子底刃4b、4dの回転方向後方側に連続して形成される子底刃逃げ面(子底刃二番面5b、5d)を区画する点になる。
 子底刃逃げ面(子底刃二番面5b、5d)は第一ギャッシュ7a、7bの半径方向外周側に位置する。「子底刃逃げ面」は子底刃4b、4dの回転方向R後方側に連続して形成される子底刃二番面5b、5dのみを指す場合と、子底刃二番面5b、5dの回転方向後方側に連続して形成される子底刃三番面6b、6dを含めて指す場合がある。
 切れ刃部2を軸方向の端面側から見たとき、子底刃4b、4dの開始点b2、d2からは、第一ギャッシュ7a、7bの回転方向R前方側の境界線(第一境界線30a、30b)が連続する。この境界線(第一境界線30a、30b)は一旦、半径方向中心側へ向かい、途中で回転方向前方側の第三ギャッシュ10a、10b側へ突出してから、回転方向後方側の第二ギャッシュ8a、8b側へ戻り、親底刃4a、4cの半径方向中心側の端部である開始点a2、c2にまで連続する(請求項3)。親底刃4a、4cはこの開始点a2、c2から半径方向外周側に向かって形成される。第一境界線30a、30bは第一ギャッシュ7a、7bと第三ギャッシュ10a、10bとの境界線である。
 このように第一ギャッシュ7a、7bと第三ギャッシュ10a、10bの境界線(第一境界線30a、30b)の一部が第三ギャッシュ10a、10b側へ突出した形をした場合には(請求項3)、第一ギャッシュ7a、7b内に存在する切屑の一部が直接、第三ギャッシュ10a、10b内に入り込み易くなるため、第三ギャッシュ10a、10bへの切屑の誘導効果が期待される。
 但し、特許文献2(図3)のように第一境界線30a、30bが子底刃4b、4dの開始点b2、d2から直接、第三ギャッシュ10a、10b側へ突出した形をした場合、切屑の第三ギャッシュ10a、10bへの誘導効果は特に高まると言える。反面、第三ギャッシュ10a、10bの容積を減少させるため、子底刃4b、4dが切削し、第三ギャッシュ10a、10bに入り込んだ切屑の収容能力を低下させ、第三ギャッシュ10a、10b内での切屑の停滞を誘発させ易くもなる。
 そこで、子底刃4b、4dの開始点b2、d2からの第一境界線30a、30bが一旦、半径方向中心側へ向かってから、第三ギャッシュ10a、10b側へ突出して第二ギャッシュ8a、8b側へ戻ることで(請求項3)、第三ギャッシュ10a、10bの容積の減少への影響を低減させることができるため、第三ギャッシュ10a、10bにおける切屑の収容能力を特許文献2より高めることが可能になる。この結果、子底刃4b、4dが切削した切屑の第三ギャッシュ10a、10bにおける収容能力を低下させず、ある程度維持しながらも、第一ギャッシュ7a、7b内の切屑の第三ギャッシュ10a、10bへの誘導効果を高めることが可能になる。
 この効果は特に第一境界線30a、30bが切れ刃部2の端面側へ向かって凸の稜線をなしている場合(請求項4)、または第三ギャッシュ10a、10bの、第一境界線30a、30b以外の面(表面)が第一境界線30a、30bより凹んでいる場合(請求項6)に、第一ギャッシュ7a、7b内の切屑が第三ギャッシュ10a、10b内に落下し易くなるため、顕著に発揮される。「第一境界線30a、30bが切れ刃部2の端面側へ向かって凸の稜線をなす」とは、切れ刃部2を端面側から見たとき、第一境界線30a、30bがそれを挟んだ両側の第三ギャッシュ10a、10bと第一ギャッシュ7a、7bの表面より相対的に端面側へ突出した線をなしていることを言う。但し、第一境界線30a、30b自体に着目すれば、第一境界線30a、30b自体は切れ刃部2の端面側から見たとき、凹の曲線を描いている。
 子底刃4b、4dの半径方向中心側の端部(子底刃4b、4dの開始点b2、d2)からは、回転方向後方側へ、子底刃逃げ面(子底刃二番面5b、5d、または子底刃二番面5b、5d及び子底刃三番面6b、6d)と第一ギャッシュ7a、7bとの境界線である第六境界線37a、37bが連続する。このことから、第一ギャッシュ7a、7bは「親底刃4a、4cのすくい面11a、11cの半径方向中心寄りの区間から回転方向前方側の、子底刃4b、4dの半径方向中心側の端部(b2、d2)を含み、各子底刃4b、4dの回転方向後方側に連続する子底刃逃げ面までの領域に形成される」と言い換えられる。
 第六境界線37a、37bと、子底刃逃げ面(子底刃二番面5b、5d、または子底刃三番面6b、6d)の回転方向後方側の境界線(刃溝17aとの境界線)との交点b3、d3からは、(親底刃4a、4cの)すくい面11a、11cに向かい、第一ギャッシュ7a、7bと第二ギャッシュ8a、8bとの境界線である第二境界線31a、31bが半径方向中心付近にまで連続する。その先は親底刃4a、4cに、またはすくい面11a、11cに連続する。第二ギャッシュ8a、8bは第二境界線31a、31bの回転方向後方側に、親底刃4a、4cのすくい面11a、11cの半径方向外周寄りの区間の、刃溝17aとの境界線(第三境界線32a、32b)にまで形成される。
 このことから、第二ギャッシュ8a、8bは「第一ギャッシュ7a、7bの回転方向後方側で、親底刃すくい面11a、11cまでの領域に、または子底刃逃げ面(子底刃二番面5b、5d、または子底刃三番面6b、6d)の回転方向後方側の(交点b3、d3を通る)境界線(第二境界線31a、31b)から回転方向後方側の親底刃4a、4c、もしくは親底刃すくい面11a、11c(第三境界線32a、32b)までの領域に形成される」と言い換えられる。また第一ギャッシュ7a、7bは「子底刃4b、4dの半径方向中心寄りの端部(b2、d2)を通る第一境界線30a、30bから子底刃逃げ面の回転方向後方側の(交点b3、d3を通る)第二境界線31a、31bまでの領域に亘って形成される」とも言い換えられる。
 第三ギャッシュ10a、10bは子底刃4b、4dの半径方向中心寄りの区間(子底刃4b、4dの開始点b2、d2を含む)とこれに連続する第一境界線30a、30bの回転方向前方側に、その側に位置する親底刃4a、4cの回転方向後方側に連続する親底刃逃げ面(親底刃二番面5a、5c、または親底刃三番面6a、6c)との境界(第四境界線36a、36b)にまで形成される。このことから、第三ギャッシュ10a、10bは「子底刃4b、4dのすくい面11b、11dの半径方向中心寄りの区間から第一ギャッシュ7a、7bの回転方向前方側までの領域に、または親底刃逃げ面の第三ギャッシュ10a、10b側の境界線(第四境界線36a、36b)から回転方向後方側の子底刃4b、4dと第一ギャッシュ7a、7bまでの領域に形成される」と言い換えられる。
 第二ギャッシュ8a、8bは第一ギャッシュ7a、7bの回転方向後方側に位置しながら、図3に示すように第一ギャッシュ7a、7bと共に親底刃すくい面11a、11cに連続するように形成される。このため、第二ギャッシュ8a、8bは第一ギャッシュ7a、7bと共に親底刃4a、4cの稜線、もしくは親底刃すくい面11a、11cの面に沿って配置される。
 また図示するようにスクエアエンドミルが親子形の4枚刃の場合、切れ刃部2を軸方向の端面側から見たとき、親底刃4a、4cに子底刃4b、4dが垂直、もしくはそれに近い角度で交差する形になる。このため、図2に示すように第三ギャッシュ10a、10bは第一ギャッシュ7a、7bの回転方向前方側に位置しながら、親底刃4a、4c、もしくは親底刃すくい面11a、11cに沿い、第二ギャッシュ8a、8bと共に第一ギャッシュ7a、7bを親底刃4a、4cの稜線方向に、あるいは半径方向に挟むように配置される。
 結果的に第三ギャッシュ10a、10bと第二ギャッシュ8a、8bは第一ギャッシュ7a、7bを親底刃4a、4cの稜線方向に挟み、親底刃4a、4cの稜線に沿って配列する形になる(請求項2)。請求項2における「親底刃4a、4cに沿って」とは、「親底刃4a、4cの稜線に沿って」の意味である。第二ギャッシュ8a、8bと第三ギャッシュ10a、10bの回転方向後方側にはそれぞれ刃溝(切屑排出溝)17a、17b、17c、17dが連続する。
 第三ギャッシュ10a、10bと第二ギャッシュ8a、8bが第一ギャッシュ7a、7bを挟んで親底刃4a、4cの稜線に沿って配列し(請求項2)、第三ギャッシュ10a、10bと第二ギャッシュ8a、8bが親底刃4a、4cの稜線に沿って第一ギャッシュ7a、7bの両側に位置することで、親底刃4a、4cが切削し、第一ギャッシュ7a、7bに入り込んだ切屑は第二ギャッシュ8a、8bと第三ギャッシュ10a、10bに分散しようとする。第二ギャッシュ8a、8bと第三ギャッシュ10a、10bに分散した切屑はそれぞれの回転方向後方側に連続する刃溝17d、17b、17a、17cへ排出される。
 親底刃4a、4cが切削し、第二ギャッシュ8b、8aに入り込んだ切屑はその回転方向後方側に連続する刃溝17d、17bへ排出される。子底刃4b、4dが切削し、第三ギャッシュ10a、10bに入り込んだ切屑はその回転方向後方側に連続する刃溝17d、17bへ排出される。第一ギャッシュ7a、7bと第三ギャッシュ10a、10bの表面は図3、図4に示すように凹曲面をなした状態で、回転方向後方側の刃溝17b、17aへの切屑排出のために両ギャッシュの境界線(第一境界線30a、30b)から各ギャッシュの回転方向後方側の刃溝17b、17aへかけ、切れ刃部2からシャンク部3へ向かって傾斜している。
 ここで、第一ギャッシュ7a、7bの表面と第三ギャッシュ10a、10bの表面との間に格別の段差がなければ、第一ギャッシュ7a、7bに入り込んだ切屑は回転方向後方側に形成された第二ギャッシュ8a、8bを経由してその回転方向後方側の刃溝17b、17dへ排出されようとする傾向が強いと考えられる。そこで、第三ギャッシュ10a、10bと第一ギャッシュ7a、7bとの境界線(第一境界線30a、30b)を切れ刃部2の端面側へ向かって凸の稜線をなすように形成することで(請求項4)、第一ギャッシュ7a、7b内に入り込んだ切屑の一部がそのまま第三ギャッシュ10a、10bまで入り込み(落ち込み)易くすることができる。
 「第三ギャッシュ10a、10bと第一ギャッシュ7a、7bとの境界線(第一境界線30a、30b)が凸の稜線をなす」とは、境界線が切れ刃部2の端面側へ向かって凸状に突出することである。このことは前記のように相対的には「第三ギャッシュ10a、10bの、第一ギャッシュ7a、7bとの境界線(第一境界線30a、30b)以外の面(表面(凹曲面))が切れ刃部2を軸方向の端面側から見たとき、第一ギャッシュ7a、7bとの境界線より深く、この境界線より凹んでいる(奥に位置する)」(請求項6)と言い換えることができる。
 第三ギャッシュ10a、10bの面(凹曲面)が第一ギャッシュ7a、7bとの境界線(第一境界線30a、30b)より深く、凹んでいることで、第一ギャッシュ7a、7b内に存在する切屑の一部が第三ギャッシュ10a、10b内に入り込み(落ち込み)易くなるため、第一ギャッシュ7a、7bに入り込んだ切屑が第二ギャッシュ8a、8bと第三ギャッシュ10a、10bに分散しようとする傾向が強まる。この結果、第二ギャッシュ8a、8bと第三ギャッシュ10a、10bのいずれかに切屑が集中し、停滞することが回避される。
 第三ギャッシュ10a、10bと第一ギャッシュ7a、7bとの境界線(第一境界線30a、30b)から見たとき、上記の通り、図3に示すように第一ギャッシュ7a、7bの面(表面)と第三ギャッシュ10a、10bの面(表面)はこの稜線としての境界線から各ギャッシュの回転方向後方側の刃溝17b、17aへかけ、切れ刃部2からシャンク部3へ向かって傾斜している。この結果として、第一ギャッシュ7a、7b内の境界線(第一境界線30a、30b)付近に存在する切屑は回転方向前方側でありながらも、第三ギャッシュ10a、10bへも、回転方向後方側の第二ギャッシュ8a、8bと同等程度に入り込み易い状況にあるため、第一ギャッシュ7a、7b内の切屑は第二ギャッシュ8a、8bと第三ギャッシュ10a、10bに分散し易くなっている。
 各ギャッシュは切屑を刃溝17a~17dへ誘導する働きを持つことから、各ギャッシュの表面は回転方向後方側へ向かって全体的に切れ刃部2側からシャンク部3側へ傾斜するため、切れ刃部2を端面側から見たときには、相対的に回転方向前方側の表面より後方側の表面が深くなる。この関係で、切れ刃部2を端面側から見たときの各ギャッシュの表面の深さを直接、比較することはできないが、隣接するギャッシュ間の境界線とギャッシュ表面との深さの相対的な差により、第三ギャッシュ10a、10bの表面が第一ギャッシュ7a、7bとの境界線(第一境界線30a、30b)より深いことで、境界線(第一境界線30a、30b)上に存在する切屑の第三ギャッシュ10a、10bへの落下を誘発し易くなることが言える。
 前記のように第一ギャッシュ7a、7bと第三ギャッシュ10a、10bの境界線(第一境界線30a、30b)の一部が第三ギャッシュ10a、10b側へ突出した形をした場合(請求項3)、第一ギャッシュ7a、7b内に存在する切屑の第三ギャッシュ10a、10bへの誘導効果が期待される。このことから、請求項4乃至請求項6のいずれかにおいて請求項3の要件が満たされれば、第一ギャッシュ7a、7b内に存在する切屑の第三ギャッシュ10a、10bへの誘導効果が顕著になると言える。
 第一ギャッシュ7a、7bに入り込んだ切屑が第二ギャッシュ8a、8bと第三ギャッシュ10a、10bに分散し易くなることで、第一ギャッシュ7a、7b、または第二ギャッシュ8a、8bに切屑が集中し、停滞することが生じにくくなり、第一ギャッシュ7a、7bからは刃溝17a~17dへ切屑が円滑に排出され易くなる。この結果、第一ギャッシュ7a、7bからの切屑の排出性が向上し、切屑の停滞に起因する刃先への溶着が回避され易くなり、工具の寿命を長期化させることが可能になる。
 第二ギャッシュ8a、8bは第一ギャッシュ7a、7b内に入り込んだ切屑を受け入れ、回転方向後方側の刃溝17d、17bへ誘導する働きをするため、第二ギャッシュ8a、8bと第一ギャッシュ7a、7bとの境界線(第二境界線31a、31b)を切れ刃部2の端面側へ向かって凸の稜線をなすように形成すること、すなわち第二ギャッシュ8a、8bの、第一ギャッシュ7a、7bとの境界線(第二境界線31a、31b)以外の表面が第一ギャッシュ7a、7bとの境界線より深くなるように第二ギャッシュ8a、8bを形成することが合理的である(請求項5)。第二境界線31a、31bが切れ刃部2の端面側へ向かって凸の稜線をなすことで、第一ギャッシュ7a、7bから第二ギャッシュ8a、8b内に入り込んだ切屑の一部がそのまま刃溝17d、17bまで入り込み(落ち込み)易くすることが可能になる。
 「第二境界線31a、31bが切れ刃部2の端面側へ向かって凸の稜線をなす」とは、切れ刃部2を端面側から見たとき、第二境界線31a、31bがそれを挟んだ両側の第一ギャッシュ7a、7bと第二ギャッシュ8a、8bの表面より相対的に端面側へ突出した線をなしていることを言う。但し、第二境界線31a、31b自体に着目すれば、第二境界線31a、31b自体は切れ刃部2の端面側から見たとき、凹の曲線を描いている。
 また切れ刃部2を軸方向の端面側から見たときに、第一ギャッシュ7a、7b、第二ギャッシュ8a、8b、第三ギャッシュ10a、10bの面(表面)がシャンク部3側へ向かって凹の曲面状に形成されていることで(請求項1)、面(表面)が平坦な場合より各ギャッシュ自体の容積が大きくなるため、スクエアエンドミルに複数のギャッシュ(ギャッシュ面)を形成したときの各ギャッシュ内での切屑の収容能力が高められている。このことも各ギャッシュ内での切屑の停滞を回避し、各ギャッシュから刃溝17a~17dへの排出効率の向上に寄与しているため、ギャッシュを利用した切屑の排出性能が改善され、切屑の刃先への溶着の可能性がより低下する。
 本発明では前記のように子底刃4b、4dが切削した切屑が一旦、第三ギャッシュ10a、10bに入り込むことを想定している。但し、第三ギャッシュ10a、10bの回転方向後方側に連続する刃溝17a、17cとの境界線(第五境界線34a、34b)と子底刃4b、4dの半径方向中心側の端部b2、d2との関係で、必ずしも想定通りにならないこともあり得る。
 そこで、第三ギャッシュ10a、10bと刃溝17a、17cとの境界線(第五境界線34a、34b)を子底刃4b、4d、もしくは子底刃4b、4dのすくい面11b、11dに連続させ、切れ刃部2を軸方向の端面側から見たときに子底刃4b、4dの半径方向中心側の端部b2、d2を、第三ギャッシュ10a、10bと刃溝17c、17dとの境界線(第五境界線34a、34b)と、子底刃4b、4d、もしくは子底刃すくい面11b、11dとの交点b4、d4より半径方向中心側に位置させることで(請求項7)、子底刃4b、4dが切削した切屑が一旦、第三ギャッシュ10a、10bに入り込む状況を発生させ易くなる。
 この場合、図2に示すように子底刃4b、4dの半径方向中心側の端部b2、d2が第三ギャッシュ10a、10bと刃溝17a、17cとの境界線(第五境界線34a、34b)より半径方向中心側に位置していることで、子底刃4b、4dと第三ギャッシュ10a、10bが半径方向に重複するため、子底刃4b、4dが切削した切屑が第三ギャッシュ10a、10b内に入り込み易くなる。子底刃4b、4dが切削した切屑の半数は第三ギャッシュ10a、10bの回転方向後方側に連続する刃溝17a、17cに直接、入り込むが、切屑が刃溝17a、17cに直接、入り込む分と第三ギャッシュ10a、10bに入り込む分とに分散することで、刃溝17a、17cにおける切屑の集中と停滞が回避され、刃先への溶着の可能性の低下に寄与する。
 第一ギャッシュ7a、7b、第二ギャッシュ8a、8b、第三ギャッシュ10a、10bの各面(表面)はいずれも切れ刃部2を端面側から見たときに、シャンク部3側へ向かって凹の曲面状に形成されているため(請求項1)、第一ギャッシュ7a、7bと第三ギャッシュ10a、10bの境界線(第一境界線30a、30b)と、第三ギャッシュ10a、10bとその回転方向前方側に位置する親底刃逃げ面との境界線(第四境界線36a、36b)は切れ刃部2の端面側へ向かって凸の稜線になる。
 本発明では第一境界線30a、30bと第四境界線36a、36bが凸の稜線であり、これらの両境界線の交点には第一ギャッシュ7a、7bの半径方向中心側を区画する凸の稜線である親底刃4a、4cの延長線(開始点a2、c2から連続する稜線)が交わる。このため、これら3本の凸の稜線の交点、または交点を含む突出部zは図11-(b)に示すように切れ刃部2の端面側へ向かって凸に尖った領域になる。この関係で、スクエアエンドミル1が掘り込み加工をする際に、突出部zが被削材に接触し易くなるため、接触により欠損する可能性が生じる。
 そこで、第一ギャッシュ7a、7bと第三ギャッシュ10a、10bとの境界線(第一境界線30a、30b)の回転方向前方寄り、もしくは半径方向中心寄りの端部から、その回転方向前方側に位置する親底刃4a、4cの回転方向後方側(親底刃二番面5a、5c)までの領域に第四ギャッシュ9a、9bを形成することが考えられる(請求項8)。この場合、図11-(a)に示すように切れ刃部2の端面側へ向かって凸に尖った突出部zを不在にすることができるため、突出部zが被削材に接触することによる欠損の可能性が解消される。「第一ギャッシュ7a、7bと第三ギャッシュ10a、10bとの境界線(第一境界線30a、30b)の回転方向前方寄り、もしくは半径方向中心寄りの端部」は第一境界線30a、30bと第四境界線36a、36b、及び親底刃4a、4cからの延長線の交点であり、「親底刃4a、4cの回転方向後方側」は親底刃逃げ面(親底刃二番面5a、5c、または親底刃三番面6a、6c)の第三ギャッシュ10a、10b側(の境界線)を指す。
 また第四ギャッシュ9a、9bも第一~第三ギャッシュと同様に切れ刃部2を軸方向の端面側から見たときに、シャンク部3側へ向かって凹の曲面状に形成すれば、第四ギャッシュ9a、9bにも切屑の停滞を抑制する機能を持たせることができるため、第四ギャッシュ9a、9bにおける切屑の刃先への溶着の可能性も低下する。
 子底刃の半径方向中心側の端部から半径方向中心付近までを結ぶ線から回転方向後方側の親底刃までの領域に形成された第一ギャッシュと、第一ギャッシュの回転方向後方側と回転方向前方側に形成された第二ギャッシュ及び第三ギャッシュをシャンク部側へ向かって凹の曲面状に形成している。このため、スクエアエンドミルに複数のギャッシュを形成したときの各ギャッシュ自体の容積を大きくすることができ、各ギャッシュ内での切屑の収容能力を高めることができる。
 結果として各ギャッシュ内での切屑の停滞が回避され、各ギャッシュから刃溝への排出効率が向上するため、切屑の刃先への溶着の可能性を低下させることができ、工具の寿命を長期化させることが可能になる。
底刃が4枚の場合のスクエアエンドミルを示した側面図である。 図1の切れ刃部側の端面を示した端面図である。 図2の端面を子底刃の半径方向外周側から見たときの様子を示した斜視図である。 図2の端面を親底刃の半径方向外周側から見たときの様子を示した斜視図である。 図2の切れ刃部の側面を子底刃の半径方向外周側から見たときの様子を示した側面図である。 図2の切れ刃部の側面を外周刃の半径方向外周側から見たときの様子を示した側面図である。 図5のe-e線断面図である。 図5のf-f線断面図である。 図2のb-b線断面図である。 図2のc-c線断面図である。 図2のd-d線矢視図(斜視図)である。 第四ギャッシュが形成されていない場合の図2のd-d線矢視図(斜視図)である。 図1のa-a線断面図である。 図7における破線円部分の拡大図である。
 図1、図2は工具本体の軸方向先端部側に、半径方向中心側から外周側へかけて底刃と底刃に連続する外周刃15a~15dを有する切れ刃部2を備えたスクエアエンドミル1の製作例を示す。切れ刃部2は切れ刃部2を軸方向の端面側から見たとき、半径方向外周側の端部から半径方向中心寄りまで連続する少なくとも1本の親底刃4a、4cと、切れ刃部2を軸方向の端面側から見たときの半径方向外周側の他の端部から半径方向中心側の中途まで連続する少なくとも2本の子底刃4b、4dを持つ。
 図面では底刃が2本の親底刃4a、4cと2本の子底刃4b、4dからなる4枚刃の例を示しているが、切れ刃の刃数は3~8枚が妥当である。切れ刃の枚数が2枚以下では高能率加工が困難であり、9枚以上では十分な容積のギャッシュを確保できないために、切削加工の初期に切り屑詰まりを発生させ易くなる。
 本発明のスクエアエンドミル1が対象とする高能率加工とは、切り屑排出量Qrが0.2×D(D:工具径)cm/min以上となるように送り速度Vf、軸方向切込み量ap及び径方向切込み量aeの条件を設定した加工を意味する。切り屑排出量Qrは条件式(1):Qr=(ap×ae)D×Vf/1000より求められる。例えばD=10mmの4枚刃スクエアエンドミrルでは、送り速度Vfを450mm/min、軸方向切込み量apを1mm、径方向切込み量aeを0.5mmに設定することで、切り屑排出量Qrは22.5)cm/minとなり、0.2×10=20cm/min以上の切り屑排出量を示し、高能率加工条件となる。
 実用性の面からは、本発明のスクエアエンドミル1の基材はWC基超硬合金、セラミックス又は高速度鋼から成形されることが好ましい。必要に応じ、前記基材の切れ刃2部の表面には耐摩耗性硬質皮膜が被覆される。硬質皮膜としては、例えば、TiSiN、TiAlN、TiAlSiN、CrSiN、またはAlCrSiN等が挙げられる。具体的には、周期律表4A、5A、6A族金属のAl、Si及びBの元素から選択される少なくとも1種の元素を含有する窒化物、炭窒化物及び酸窒化物の内から選択される単層皮膜又は2種以上の積層皮膜を3~5μmの厚さに被覆することが好ましい。
 図2に示すように各子底刃4b、4dの半径方向中心側の端部(子底刃4b、4dの開始点b2、d2)から半径方向中心付近までを結ぶ線(第一境界線30a、30b)から回転方向後方側の各親底刃4a、4cまでの領域には第一ギャッシュ7a、7bが形成される。第一ギャッシュ7a、7bの回転方向後方側と回転方向前方側にはそれぞれ第二ギャッシュ8a、8bと第三ギャッシュ10a、10bが形成される。第一ギャッシュ7a、7bと第二ギャッシュ8a、8b、及び第三ギャッシュ10a、10bは切れ刃部2を軸方向の端面側から見たときに、シャンク部3側へ向かって凹の曲面状に形成される。
 図2に示す各親底刃4a、4cの半径方向外周側の端部(a1、c1)からは図4に示すように外周刃15a、15cが連続し、各子底刃4b、4dの半径方向外周側の端部(b1、d1)からは図3に示すように外周刃15b、15dが連続する。以下、親底刃4a、4cの半径方向外周側の端部と外周刃15a、15cとの交点を連結点a1、c1と、子底刃4b、4dの半径方向外周側の端部と外周刃15b、15dとの交点を連結点b1、d1と言う。
 切れ刃部2を軸方向の端面側から見たとき、親底刃4a、4cは図2に示すように切れ刃部2の半径方向中心付近の親底刃4a、4cの開始点a2、c2を通り、子底刃4b、4dに連続する。親底刃4a、4cの半径方向中心付近(親底刃4a、4cの開始点a2、c2)から子底刃4b、4dまで連続する線は第一ギャッシュ7a、7bと第三ギャッシュ10a、10bとの境界線(第一境界線30a、30b)である。
 親底刃4a、4cの開始点a2、c2は親底刃4a、4cとチゼルエッジ35との交点でもあり、第一境界線30a、30bは親底刃4a、4cの開始点a2、c2から子底刃4b、4dの半径方向中心側の端部b2、d2まで連続し、凸の稜線をなす。第一境界線30a、30bが凸の稜線をなすことで、第一境界線30a、30bで区画され、相対的に刃溝17a、17cに近いギャッシュである第三ギャッシュ10a、10bは第一境界線30a、30bよりシャンク部3側へ凹になって(凹んで)おり、相対的に第一ギャッシュ7a、7bより低く(深く)なっている。
 この結果、第一ギャッシュ7a、7b内の第一境界線30a、30b付近に存在する切屑は回転方向後方側の第二ギャッシュ8a、8bへ回り込み易いと同時に、回転方向前方側の第三ギャッシュ10a、10bへも入り込み(落ち込み)易い状態にある。このため、第一ギャッシュ7a、7b内の切屑は第二ギャッシュ8a、8bと第三ギャッシュ10a、10bに分散し易い。第一ギャッシュ7a、7bの表面(凹曲面)も第一境界線30a、30bよりシャンク部3側へ凹になることもある。
 ここで、切れ刃部2を軸方向の端面側から見たとき、各親底刃4a、4cの連結点a1、c1と切れ刃部2の半径方向中心である回転軸Oを結ぶ、図2に破線で示す直線と、親底刃4a、4cが描く直線とのなす角度θa、θcは0~4°、好ましくは0~2°が適切である。同様に各子底刃4b、4dの連結点b1、d1と回転軸Oを結ぶ、破線で示す直線と、子底刃4b、4dが描く直線とのなす角度θb、θdも0~4°、好ましくは0~2°が適切である。θa~θdが0°未満(負角)であれば刃先の剛性が低下し、4°を超えればギャッシュの形成が難しくなることによる。
 各親底刃4a、4cの回転方向後方側には親底刃逃げ面としての親底刃二番面5a、5cが連続して形成され、各子底刃4b、4dの回転方向後方側には子底刃逃げ面としての子底刃二番面5b、5dが連続して形成される。これら親底刃二番面5a、5c、子底刃二番面5b、5dの回転方向後方側には刃溝17a~17dが連続することもあるが、図面では親底刃二番面5a、5cと子底刃二番面5b、5dから刃溝17a~17dへの移行が段階的になるよう、各親底刃二番面5a、5cの回転方向後方側に連続して親底刃三番面6a、6cを形成し、子底刃二番面5b、5dの回転方向後方側に連続して子底刃三番面6b、6dを形成している。
 親底刃逃げ面(親底刃二番面5a、5cと親底刃三番面6a、6c)と第三ギャッシュ10a、10bとの境界線(第四境界線36a、36b)は切れ刃部2の端面側へ向かって凸の稜線をなし、半径方向中心付近(後述の第四ギャッシュ9a、9b)を経由して第一境界線30a、30bに連続し、同一位置で分岐して親底刃4a、4cの延長線にも連続する。第四境界線36a、36bが凸の稜線をなすことで、第四境界線36a、36bで区画されるギャッシュである第三ギャッシュ10a、10bは第四境界線36a、36bよりシャンク部3側へ凹になって(凹んで)いる。
 各外周刃15a~15dの回転方向後方側には図3、図4に示すように外周刃逃げ面としての外周刃二番面16a~16dが連続して形成され、その回転方向後方側に刃溝17a~17dが存在する。刃溝17a~17dは各外周刃二番面16a~16dとそれぞれの回転方向後方側に隣接する外周刃15b~15aとの間に形成される。各外周刃15a~15dの回転方向前方側には図12に示すように外周刃すくい面20a~20dが形成される。この外周刃すくい面20a~20dは図3、図4に示すようにそれぞれが面する刃溝17d~17aを構成するか、あるいは刃溝17d~17aに連続するため、刃溝17d~17aとの間には必ずしも明確な境界線は表れない。図4では刃溝17dと外周刃すくい面20aとの境界線を破線で示しているが、ここの破線は必ずしも見えるとは限らない。
 外周刃二番面16a(~16d)は詳細には、図7における破線円部分の拡大図である図13に示すように外周刃15a(~15d)から回転方向後方側へ、周方向に微小な幅Kを持つ微小二番面16a1(~16d1)と、その後方から刃溝17a(~17d)まで連続し、回転方向後方側へかけて被削材からの距離が拡大する主二番面16a2(~16d2)とに区分される。ここで、図12に示す回転軸Oと外周刃15a(~15d)を結ぶ直線に垂直な、図13に一点鎖線で示す直線と、外周刃15a(~15d)における微小二番面16a1(~16d1)の接線とのなす角度をη、主二番面16a2(~16d2)の接線とのなす角度をλとすると、目安としては3.5°≦η≦5.0°、8°≦λ≦15°程度が妥当である。微小二番面16a1(~16d1)と主二番面16a2(~16d2)は平面の場合と半径方向外周側へ凸の曲面の場合がある。
 図3、図4に示すように親底刃4a、4cの回転方向前方側と子底刃4b、4dの回転方向前方側にはそれぞれ親底刃すくい面11a、11c、子底刃すくい面11b、11dが形成される。親底刃すくい面11a、11cの回転方向前方側には図3に示すように第一ギャッシュ7b、7aと第二ギャッシュ8b、8aが連続し、子底刃すくい面11b、11dの回転方向前方側には図4に示すように第三ギャッシュ10b、10aが連続する。親底刃4a、4cは半径方向中心付近(開始点a2、c2)を通ることから、親底刃すくい面11a、11cは半径方向中心寄りの区間において第一ギャッシュ7b、7aに連続し、外周寄りの区間において第二ギャッシュ8b、8aに連続する。
 図3では親底刃すくい面11a、11cの半径方向中心寄りの区間と第一ギャッシュ7b、7aが連続した凹曲面をなしている。これに対し、親底刃すくい面11a、11cの半径方向外周寄りの区間と第二ギャッシュ8b、8aが不連続な凹曲面をなし、両面間に明確な境界線が表れているが、親底刃すくい面11a、11cと両ギャッシュは連続した曲面をなす場合と不連続な曲面をなす場合がある。図3では親底刃すくい面11a、11cと第一ギャッシュ7b、7aの、明確に表れない仮想境界線110を破線で示している。図4では子底刃すくい面11b、11dと第三ギャッシュ10b、10aが不連続な凹曲面をなしているが、両面は連続した曲面をなす場合もある。
 図2に示すように子底刃4b、4dの半径方向中心側の端部b2、d2からは第一境界線30a、30bが一旦、半径方向中心側へ向かって直線状に連続した後、途中で回転方向前方側の第三ギャッシュ10a、10b側へ突出してから第二ギャッシュ8a、8b側へ戻る屈曲した曲線を描く。第三ギャッシュ10a、10b側へ向かった第一境界線30a、30bは後述の第四ギャッシュ9a、9bを経由し、チゼルエッジ35と交わる点c2、a2を通過して親底刃4c、4aに連続する。
 子底刃4b、4dの開始点b2、d2を起点とする第一境界線30a、30bは一旦、半径方向中心側へ向かって直線を描くことで、開始点b2、d2から直接、回転方向前方側へ突出する場合より、第三ギャッシュ10a、10b内での切屑の収容能力の低下を回避している。また第一境界線30a、30bは直線の半径方向中心側の点から、回転方向前方側へ突出した後に、親底刃4c、4aの開始点a2、c2に繋がる屈曲した曲線を描くことで、第一ギャッシュ7a、7b内にある切屑の第三ギャッシュ10a、10bへの誘導効果を高めることも可能にしている。
 子底刃4b、4dの半径方向中心側の端部b2、d2からはまた、回転方向後方側へ子底刃逃げ面(子底刃二番面5b、5d及び子底刃三番面6b、6d)と第一ギャッシュ7b、7aを区画し、凸の稜線をなす第六境界線37a、37bが連続する。この第六境界線37a、37bは、子底刃逃げ面(子底刃三番面6b、6d)とその回転方向後方側の刃溝17b、17dとの境界線と交点b3、d3において交わり、この交点b3、d3には後述の第二境界線31a、31bと第三境界線32a、32bが交わる。
 第六境界線37a、37bの刃溝17b、17d寄りの交点b3、d3には、第一ギャッシュ7b、7aと第二ギャッシュ8b、8aを区画し、凸の稜線をなす第二境界線31a、31bが交わり、第二境界線31a、31bは親底刃すくい面11a、11c、もしくは親底刃4c、4aに連続する。第六境界線37a、37bが凸の稜線をなすことで、第六境界線37a、37bで区画されるギャッシュである第一ギャッシュ7a、7bは第六境界線37a、37bよりシャンク部3側へ凹になって(凹んで)いる。同様に第二境界線31a、31bが凸の稜線をなすことで、第二境界線31a、31bで区画され、相対的に刃溝17b、17dに近いギャッシュである第二ギャッシュ8b、8aも第二境界線31a、31bよりシャンク部3側へ凹になって(凹んで)いる。
 子底刃逃げ面の回転方向後方側の、親底刃4a、4c寄りの交点b3、d3からはまた、親底刃4a、4cへ向かい、第二ギャッシュ8a、8bと刃溝17b、17dを区画し、凸の稜線をなす第三境界線32a、32bが開始し、図2、図3に示すように親底刃すくい面11a、11c、もしくは親底刃4a、4cまで連続する。第二ギャッシュ8a、8bは第二境界線31a、31bと第三境界線32a、32bと親底刃すくい面11a、11c、もしくは親底刃4a、4cとで区画される。第三境界線32a、32bが凸の稜線をなすことで、第三境界線32a、32bで区画される刃溝17b、17dは第三境界線32a、32bよりシャンク部3側へ凹になって(凹んで)いる。
 親底刃逃げ面(親底刃二番面5a、5c及び親底刃三番面6a、6c)の回転方向後方側の、子底刃4b、4d寄りの点、すなわち第四境界線36a、36bと親底刃逃げ面の回転方向後方側の境界線との交点a3、c3からは、子底刃4b、4dへ向かう第五境界線34a、34bが開始する。この第五境界線34a、34bは凸の稜線をなして第三ギャッシュ10a、10bと刃溝17a、17cを区画し、図4に示すように子底刃すくい面11b、11d、もしくは子底刃4b、4dまで連続する。第三ギャッシュ10a、10bは第一境界線30a、30bと第四境界線36a、36b及び第五境界線34a、34bと子底刃すくい面11b、11d、もしくは子底刃4b、4dとで区画される。第五境界線34a、34bが凸の稜線をなすことで、第五境界線34a、34bで区画される刃溝17a、17cは第五境界線34a、34bよりシャンク部3側へ凹になって(凹んで)いる。
 第一境界線30a、30bが第四境界線36a、36bと交わる点、すなわち第一境界線30a、30bから親底刃4a、4cの開始点a2、c2に移行(屈曲)する点は本来、図11-(b)に示すように切れ刃部2の表面側に凸に尖った突出部zになる。この突出部zは掘り込み加工時に被削材への接触により欠損する可能性があることから、欠損を防止する目的で、突出部zを含む領域は図11-(a)に示すように研削されて第四ギャッシュ9a、9bが形成され、突出部zは不在化される。
 具体的には第一ギャッシュ7a、7bと第三ギャッシュ10a、10bの境界線である第一境界線30a、30bの、回転方向前方寄り、もしくは半径方向中心寄りの端部(屈曲点)から、その回転方向前方側に位置する親底刃4a、4cの回転方向後方側の親底刃二番面5a、5cまでの領域に第四ギャッシュ9a、9bが形成される。「第一境界線30a、30bの屈曲点からの親底刃二番面5a、5cまでの領域」は親底刃二番面5a、5cが第一ギャッシュ7a、7b及び第三ギャッシュ10a、10bと交わる領域になる。
 切れ刃部2を軸方向の端面側から見たとき、第四ギャッシュ9a、9bの平面積(領域)は第一~第三ギャッシュとの対比では小さいため、第四ギャッシュ9a、9bの切屑排出性向上への寄与度は小さいが、第四ギャッシュ9a、9bも第一~第三ギャッシュと同様に切れ刃部2を端面側から見たときに凹曲面状に形成することで、被削材への接触の可能性を低下させ、また切屑の排出性向上に寄与させることができる。
 ここで、シャンク部3側へ凹曲面になっている第一ギャッシュ7a、7b、第二ギャッシュ8b、8a、第三ギャッシュ10a、10b、及び第四ギャッシュ9a、9bの凹曲面の適切な湾曲度を検討する。第一ギャッシュ7aの湾曲度は例えば第一ギャッシュ7aの表面が円筒面をなすとした場合に、図7に示すように切れ刃部2を回転軸Oに直交する平面で切断したときに、第一ギャッシュ7aの回転軸O寄りに凸になった曲線を含む曲面の頂点T1を中心とし、直径0.1D(D:工具径)の円と第一ギャッシュ7aの縁との交点S1、S2とを結ぶ線分の長さm1に対する、T1から線分(中点V1)までの垂線の長さn1の比(n1/m1)として求めることができる。
 この場合、m1が一定であれば、n1が小さい程、湾曲度n1/m1(曲率)が小さくなる。第一ギャッシュ7aの湾曲度n1/m1は親底刃4a、4cの剛性確保と第一ギャッシュ7aの容積確保の面から、20~50%が適切であり、好ましくは25~45%、特に30~40%が妥当である。湾曲度n1/m1が20%未満では親底刃4a、4cの剛性低下を招き、50%を超えると第一ギャッシュ7aの容積が小さくなり、切屑の排出能力が低下することによる。
 第二ギャッシュ8aの湾曲度も図8に示すように第二ギャッシュ8aの回転軸O寄りに凸になった曲線を含む、回転軸Oに直交する切断面で切れ刃部2を切断したときの曲面の頂点T2を中心とし、直径0.1Dの円と第二ギャッシュ8aの縁との交点S3、S4とを結ぶ線分の長さm2に対する、T2から線分(中点V2)までの垂線の長さn2の比(n2/m2)として求めることができる。第三ギャッシュ10a、10bの湾曲度も同様である。第二ギャッシュ8aの湾曲度n2/m2と第三ギャッシュ10a、10bの湾曲度n3(T3からV3までの長さ)/m3はそれぞれ親底刃4a、4cと子底刃4b、4dの剛性確保と第二ギャッシュ8a及び第三ギャッシュ10aの容積確保の面から、10~40%が適切であり、好ましくは15~35%、特に20~30%が妥当である。
 また親底刃4a、4cが切削し、第一ギャッシュ7a、7b内に入り込んだ切屑が第二ギャッシュ8a、8bを経由し、刃溝17b、17dへ円滑に滞りなく排出されるようにする上では、第一ギャッシュ7a、7bから刃溝17b、17dへかけて次第に湾曲度が緩く(小さく)なる方がよい。
 第四ギャッシュ9bの湾曲度は図11-(a)に示すように第四ギャッシュ9bと第一ギャッシュ7bとの交点X1と、第四ギャッシュ9bと第三ギャッシュ10bとの交点X2を結ぶ線分の長さm4に対する、回転軸O寄りに凸になった曲線の頂点T4から線分(中点V4)までの垂線の長さn4の比(n4/m4)として求めることができる。第四ギャッシュ9bの湾曲度は親底刃4a、4cの剛性確保と第四ギャッシュ9bにおける被削材への接触回避の面から、7~37%が適切であり、好ましくは12~32%、特に17~27%が妥当である。
 第一ギャッシュ7a、7bと第二ギャッシュ8a、8bの、親底刃4a、4cに沿った方向の長さと工具径Dとの詳細な関係、及び第三ギャッシュ10a、10bと第四ギャッシュ9a、9bの、子底刃4b、4dに沿った方向の長さと工具径Dとの詳細な関係は以下の通りである。
 図2において第一ギャッシュ7bの第四ギャッシュ9bと接触する点をAとし、点Aから一点鎖線で示す親底刃4aに平行な直線を引き、第二境界線31b、第三境界線32bとの交点をそれぞれB、Cとしたとき、線分AB、BCの長さをそれぞれ第一ギャッシュ7b、第二ギャッシュ8bの長さh1、h2とすれば、h1=0.13~0.33D、h2=0.07~0.27D程度が適切である。h1、h2がこの範囲外であれば、各ギャッシュ内での切屑の収容能力が低下するか、第一ギャッシュ7a、7bから第二ギャッシュ8a、8bを通じた刃溝17b、17dへの円滑な切屑排出の流れが阻害される可能性がある。
 また図2において第四ギャッシュ9bの回転方向前方側の親底刃4c寄りの点をLとし、点Lから一点鎖線で示す子底刃4dに平行な直線を引き、第七境界線33b、第五境界線34bとの交点をそれぞれM、Nとしたとき、線分LM、MNの長さをそれぞれ第四ギャッシュ9b、第三ギャッシュ10bの長さh4、h3とすれば、h4=0.005~0.07D、h3=0.13~0.33D程度が適切である。h3がこの範囲外であれば、第三ギャッシュ10a、10b内での切屑の収容能力が低下するか、第三ギャッシュ10a、10bを通じた刃溝17a、17cへの円滑な切屑排出の流れが阻害される可能性がある。h4が上記の範囲外であれば、第四ギャッシュ9a、9bの周辺が被削材に接触する可能性があるか、第三ギャッシュ10a、10b内での切屑の収容能力が低下する可能性がある。
 図2のb-b線断面図である図9に示すように第一ギャッシュ7a、7bの形成角(第一ギャッシュ7a、7bと第二ギャッシュ8a、8bとの境界線(第二境界線31a)付近における第一ギャッシュ7a、7bの表面と回転軸Oに直交する平面とのなす角度)δ1は15~35°程度が適切である。δ1が15°未満では第一ギャッシュ7a、7b内での切屑の収容能力が低下し、35°を超えれば、親底刃4a、4cの剛性が低下する可能性がある。
 同図に示す第二ギャッシュ8a、8bの形成角(第一ギャッシュ7a、7bと第二ギャッシュ8a、8bとの境界線(第二境界線31a)付近における第二ギャッシュ8a、8bの表面と回転軸Oに直交する平面とのなす角度)ε1は40~60°程度が適切である。ε1が40°未満では第二ギャッシュ8a、8b内での切屑の収容能力が低下し、60°を超えれば、親底刃4a、4cの剛性が低下する可能性がある。δ1とε1が上記の範囲内にあれば、切削速度が遅く、チッピングが発生し易い回転軸O近傍の親底刃4a、4cの剛性を確保しながら、第一ギャッシュ7a、7bに対して半径方向外周側に位置する第二ギャッシュ8a、8bの領域を広く確保することができるため、両ギャッシュでの切り屑排出性能を向上させることができる。
 また図2のc-c線断面図である図10に示すように第四ギャッシュ9a、9bの形成角(第三ギャッシュ10a、10bと第四ギャッシュ9a、9bの境界線(第七境界線33a)付近における第四ギャッシュ9a、9bの表面と回転軸Oに直交する平面とのなす角度)δ2と、第三ギャッシュ10a、10bの形成角(第三ギャッシュ10a、10bと第四ギャッシュ9a、9bの境界線(第七境界線33a)付近における第三ギャッシュ10a、10bの表面と回転軸Oに直交する平面とのなす角度)ε2はそれぞれ15~35°程度、40~60°程度が適切である。δ2とε2がこの範囲内にあれば、回転軸O近傍の親底刃4a、4cの剛性を確保しながら、第三ギャッシュ10a、10bの領域を広く確保することができるため、第三ギャッシュ10a、10bでの切り屑排出性能を向上させることができる。
 更に図6に示すように刃溝17b~17aに連続する第二ギャッシュ8a、8bと第三ギャッシュ10a、10bの半径方向外周側の端部P、Qの位置に着目すれば、回転軸Oの方向には、第二ギャッシュ8a、8bの端部Pより第三ギャッシュ10a、10bの端部Qが底刃4a~4d寄りに位置することが適切である(請求項9)。
 切れ刃部2における親底刃4a、4cと子底刃4b、4dの形成位置とそれぞれの働きの相違から、子底刃4b、4dが生成する切屑の大きさは親底刃4a、4cが生成する切屑の大きさより相対的に小さい。このため、親底刃4a、4cの回転方向前方側に形成される第二ギャッシュ8a、8bより、子底刃4b、4dの回転方向前方側に形成される第三ギャッシュ10a、10bの回転軸O方向の長さを小さくしても、第三ギャッシュ10a、10bを経由した切屑の排出性は十分に確保されることが言える。
 一方、第三ギャッシュ10a、10bの半径方向外周側の端部Qを第二ギャッシュ8a、8bの半径方向外周側の端部Pより底刃4a~4d寄りに位置させることで(請求項9)、第三ギャッシュ10a、10bの回転軸O方向の長さを抑えることができ、第三ギャッシュ10a、10bに必要以上の容積を与えずに済むことになる。この結果、スクエアエンドミル1自体の、あるいは切れ刃部2、もしくは子底刃4b、4dの剛性の低下を抑えることが可能になる。
 なお、スクエアエンドミル1を半径方向外周側から見た図6において、第二ギャッシュ8a、8bの端部Pと第三ギャッシュ10a、10bの端部Qとの、回転軸O方向の距離Hは0.01~0.2D(D:工具径)程度であることが適切である。Hが0.01D未満では端部Pと端部Qの位置に実質的な差がないため、スクエアエンドミル1の、もしくはその一部の剛性が低下し易く、0.2Dを超えれば、砥石による子底刃4b、4dの研削時に砥石が親底刃4a、4cに接触する可能性が生じ易くなる。
 本発明のスクエアエンドミル1はまた、図1のa-a線の断面図である図12に示すように被削材の切削時の共振によるびびり振動を抑制する上では、周方向(回転方向)に隣接する外周刃15a、15b(15b、15c)を結ぶ中心角が同一でない不等分割型であることが好ましい。図12は回転軸Oに関して点対称位置にある中心角(分割角度)α、βを同一にし、隣接する中心角α、βの和が180°になるようにしているが、全中心角が相違することもある。
 切れ刃が4枚の場合を示す図12のように隣接する中心角α、βの和が180°になるように円の中心角360°を切れ刃の数で分割する場合、相対的に大きい中心角βは主に円の中心角を4等分した90°(基準角度)の2~20%増し程度の範囲内で設定され、好ましくは4~12%増し程度の範囲内で設定される。2%増しのときの中心角βは約92°、隣接する中心角αは88°になる。20%増しのときの中心角βは108°、隣接する中心角αは88°になる。中心角βが基準角度の2%増し未満ではびびり振動の抑制効果が得られず、20%増し超えでは中心角βをなす刃溝の容積が大きくなり過ぎ、外周刃にチッピングが発生し易くなる。
 1……スクエアエンドミル(エンドミル本体)、
 2……切れ刃部、3……シャンク部、
 4a、4c……親底刃、4b、4d……子底刃、
 5a、5c……親底刃二番面、5b、5d……子底刃二番面、
 6a、6c……親底刃三番面、6b、6d……子底刃三番面、
 7a、7b……第一ギャッシュ、8a、8b……第二ギャッシュ、
 9a、9b……第四ギャッシュ、10a、10b……第三ギャッシュ、
 11a、11c……親底刃すくい面、11b、11d……子底刃すくい面、
 15a、15b、15c、15d……外周刃、
 16a、16b、16c、16d……外周刃二番面、
 16a1、16b1、16c1、16d1……外周刃の微小二番面、
 16a2、16b2、16c2、16d2……外周刃の主二番面、
 17a、17b、17c、17d……刃溝、
 20a、20b、20c、20d……外周刃すくい面、
 30a、30b……第一ギャッシュと第三ギャッシュとの境界線(第一境界線)、
 31a、31b……第一ギャッシュと第二ギャッシュとの境界線(第二境界線)、
 32a、32b……第二ギャッシュと刃溝との境界線(第三境界線)、
 33a、33b……第三ギャッシュと第四ギャッシュとの境界線(第七境界線)、
 34a、34b……第三ギャッシュと刃溝との境界線(第五境界線)、
 35……チゼルエッジ、
 36a、36b……第三ギャッシュと親底刃逃げ面との境界線(第四境界線)、
 37a、37b……第一ギャッシュと子底刃逃げ面との境界線(第六境界線)、
 110……親底刃のすくい面と第一ギャッシュとの仮想境界線、
 a1、c1……親底刃の半径方向外周側の端部(親底刃と外周刃との連結点)、
 a2、c2……親底刃の半径方向中心側の端部、
 a3、c3……第四境界線と親底刃逃げ面の回転方向後方側の境界線との交点、
 b1、d1……子底刃の半径方向外周側の端部(子底刃と外周刃との連結点)、
 b2、d2……子底刃の半径方向中心側の端部(第一境界線と子底刃との境界)、
 b3、d3……第六境界線と子底刃逃げ面の回転方向後方側の境界線との交点、
 b4、d4……第三ギャッシュと刃溝との境界線(第五境界線)と、子底刃、もしくは子底刃すくい面との交点、
 D……工具の直径、
 H……第二ギャッシュの端部Pと第三ギャッシュの端部Qとの、回転軸方向の距離、
 K……微小二番面の周方向の幅、
 m1、m2、m3、m4:凸曲面の長さ、
 n1、n2、n3、n4……凸曲面の高さ、
 O……回転軸、
 P……第二ギャッシュの半径方向外周側の端部、
 Q……第三ギャッシュの半径方向外周側の端部、
 R……回転方向、
 S1、S2、S3、S4、S5、S6……仮想円とギャッシュとの交点、
 T1、T2、T3、T4……ギャッシュの曲面の頂点、
 X1……第四ギャッシュと第一ギャッシュとの交点、X2……第四ギャッシュと第三ギャッシュとの交点、
 z……突出部、
 α、β……隣接する外周刃間の中心角(分割角度)、
 δ1……第一ギャッシュの形成角、δ2……第三ギャッシュの形成角、
 ε1……第二ギャッシュの形成角、ε2……第四ギャッシュの形成角、
 η……微小二番角、λ……主二番角、
 θa、θb、θc、θd……回転軸Oと各連結点とを結ぶ直線に対する底刃の角度。
 

Claims (9)

  1.  工具本体の軸方向先端部側に、半径方向中心側から外周側へかけて底刃と、この底刃に連続する外周刃を有する切れ刃部を備え、
     前記底刃は前記切れ刃部を軸方向の端面側から見たときの半径方向外周側の端部から半径方向中心寄りまで連続する少なくとも1本の親底刃と、前記切れ刃部を軸方向の端面側から見たときの半径方向外周側の他の端部から半径方向中心側の中途まで連続する少なくとも2本の子底刃を持ち、
     前記各子底刃の半径方向中心側の端部と半径方向中心付近までを結ぶ線から回転方向後方側の前記各親底刃までの領域に第一ギャッシュが形成され、この第一ギャッシュの回転方向後方側と回転方向前方側にそれぞれ第二ギャッシュと第三ギャッシュが形成され、これらの第一ギャッシュと第二ギャッシュ、及び第三ギャッシュは前記切れ刃部を軸方向の端面側から見たときに、前記切れ刃部の軸方向反対側のシャンク部側へ向かって凹の曲面状に形成されていることを特徴とするスクエアエンドミル。
  2.  前記第三ギャッシュと前記第二ギャッシュは前記第一ギャッシュを挟み、前記親底刃に沿って配列していることを特徴とする請求項1に記載のスクエアエンドミル。
  3.  前記切れ刃部を軸方向の端面側から見たとき、前記子底刃の半径方向中心側の端部から連続する、前記第一ギャッシュの回転方向R前方側の境界線が一旦、半径方向中心側へ向かってから、前記第三ギャッシュ側へ突出して前記第二ギャッシュ側へ戻り、前記親底刃の半径方向中心側の端部にまで連続していることを特徴とする請求項1、もしくは請求項2に記載のスクエアエンドミル。
  4.  前記第三ギャッシュと前記第一ギャッシュとの境界線は前記切れ刃部の端面側へ向かって凸の稜線をなしていることを特徴とする請求項1乃至請求項3のいずれかに記載のスクエアエンドミル。
  5.  前記第二ギャッシュと前記第一ギャッシュとの境界線は前記切れ刃部の端面側へ向かって凸の稜線をなしていることを特徴とする請求項1乃至請求項4のいずれかに記載のスクエアエンドミル。
  6.  前記第三ギャッシュの、前記第一ギャッシュとの境界線以外の面は前記切れ刃部を軸方向の端面側から見たとき、前記第一ギャッシュとの境界線より深く、この境界線より凹んでいることを特徴とする請求項4、もしくは請求項5に記載のスクエアエンドミル。
  7.  前記第三ギャッシュの回転方向後方側に連続する刃溝との境界線が前記子底刃、もしくは前記子底刃のすくい面に連続し、前記切れ刃部を軸方向の端面側から見たときに前記子底刃の半径方向中心側の端部が、前記第三ギャッシュと前記刃溝との前記境界線と、前記子底刃、もしくは前記のすくい面との交点より半径方向中心側に位置していることを特徴とする請求項1乃至請求項6のいずれかに記載のスクエアエンドミル。
  8.  前記第一ギャッシュと前記第三ギャッシュとの境界線の回転方向前方寄り、もしくは半径方向中心寄りの端部から、その回転方向前方側に位置する前記親底刃の回転方向後方側までの領域に第四ギャッシュが形成されていることを特徴とする請求項1乃至請求項7のいずれかに記載のスクエアエンドミル。
  9.  前記第三ギャッシュの半径方向外周側の端部Qは前記第二ギャッシュの半径方向外周側の端部Pより前記底刃寄りに位置していることを特徴とする請求項1乃至請求項8のいずれかに記載のスクエアエンドミル。
     
PCT/JP2016/057928 2015-03-20 2016-03-14 スクエアエンドミル WO2016152611A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680011271.4A CN107249798B (zh) 2015-03-20 2016-03-14 方头立铣刀
US15/558,120 US10307839B2 (en) 2015-03-20 2016-03-14 End mill
EP16768514.8A EP3272446A4 (en) 2015-03-20 2016-03-14 Square end mill
KR1020177025979A KR102463681B1 (ko) 2015-03-20 2016-03-14 엔드밀
JP2017508236A JP6711348B2 (ja) 2015-03-20 2016-03-14 エンドミル

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015058400 2015-03-20
JP2015-058400 2015-03-20

Publications (1)

Publication Number Publication Date
WO2016152611A1 true WO2016152611A1 (ja) 2016-09-29

Family

ID=56979192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057928 WO2016152611A1 (ja) 2015-03-20 2016-03-14 スクエアエンドミル

Country Status (6)

Country Link
US (1) US10307839B2 (ja)
EP (1) EP3272446A4 (ja)
JP (1) JP6711348B2 (ja)
KR (1) KR102463681B1 (ja)
CN (1) CN107249798B (ja)
WO (1) WO2016152611A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110167702A (zh) * 2016-12-26 2019-08-23 三菱日立工具株式会社 立铣刀
WO2020195663A1 (ja) * 2019-03-28 2020-10-01 三菱日立ツール株式会社 エンドミル
WO2021172414A1 (ja) * 2020-02-28 2021-09-02 京セラ株式会社 エンドミル及び切削加工物の製造方法
WO2022064699A1 (ja) 2020-09-28 2022-03-31 株式会社Moldino エンドミル
JP7460905B2 (ja) 2020-07-07 2024-04-03 株式会社Moldino エンドミル
JP7491105B2 (ja) 2020-07-10 2024-05-28 三菱マテリアル株式会社 ボールエンドミル
JP7491104B2 (ja) 2020-07-10 2024-05-28 三菱マテリアル株式会社 ボールエンドミル

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101863015B1 (ko) * 2014-10-28 2018-05-30 미츠비시 히타치 쓰루 가부시키가이샤 다날 볼 엔드밀
JP6473761B2 (ja) * 2014-11-27 2019-02-20 京セラ株式会社 エンドミルおよび切削加工物の製造方法
US11000906B2 (en) * 2016-06-30 2021-05-11 Ngk Spark Plug Co., Ltd. Endmill body and radius end mill
KR101953386B1 (ko) 2018-05-25 2019-02-28 홍승렬 소프트 챔퍼 엔드밀
CN111168132B (zh) * 2018-11-13 2024-07-19 上海名古屋精密工具股份有限公司 铣加工工具
KR102202320B1 (ko) 2019-03-29 2021-01-13 송헌 복합 엔드밀
WO2021260774A1 (ja) 2020-06-22 2021-12-30 住友電工ハードメタル株式会社 回転切削工具
KR102648787B1 (ko) * 2023-12-15 2024-03-19 주식회사 와이지-원 다중 여유면이 구비된 볼 엔드밀

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004276142A (ja) * 2003-03-13 2004-10-07 Nisshin Kogu Kk エンドミル
JP2006015418A (ja) * 2004-06-30 2006-01-19 Mitsubishi Materials Kobe Tools Corp 縦送り加工用エンドミル
JP2012091306A (ja) * 2010-10-29 2012-05-17 Hitachi Tool Engineering Ltd 超硬合金製エンドミル
WO2013099954A1 (ja) * 2011-12-27 2013-07-04 京セラ株式会社 ラジアスエンドミル
WO2014069265A1 (ja) * 2012-10-29 2014-05-08 三菱マテリアル株式会社 クーラント穴付きエンドミル

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4721421A (en) * 1986-10-03 1988-01-26 Brubaker Tool Corporation Cutting tool with chip breakers
US5173014A (en) * 1992-02-07 1992-12-22 General Motors Corporation Four flute center cutting drill
US5467670A (en) 1994-08-15 1995-11-21 General Motors Corporation Method of manufacture for rotary cutting tool
JPH11216609A (ja) * 1998-01-30 1999-08-10 Hitachi Tool Eng Ltd ラジアス刃エンドミル
US6435780B1 (en) * 2000-07-07 2002-08-20 Talbot Holdings Ltd. Rotary cutting tool
US6846135B2 (en) * 2002-03-25 2005-01-25 Hitachi Tool Engineering Ltd. Radius end mill having radius edge enhanced in resistance to chipping and fracture
US7402004B2 (en) * 2002-12-26 2008-07-22 Mitsubishi Materials Corporation Radius end mill
FR2875722A1 (fr) * 2004-09-27 2006-03-31 Alsameca Sa Fraise de coupe
JP2006110683A (ja) 2004-10-15 2006-04-27 Mitsubishi Materials Kobe Tools Corp エンドミル
JP2007296588A (ja) 2006-04-28 2007-11-15 Hitachi Tool Engineering Ltd 高硬度用エンドミル
DE102006026853A1 (de) 2006-06-09 2007-12-13 Franken GmbH + Co KG Fabrik für Präzisionswerkzeuge Spanabhebendes Werkzeug
US9227253B1 (en) * 2009-03-30 2016-01-05 Steven M. Swift Rotary cutter for machining materials
JP2011062807A (ja) * 2009-09-18 2011-03-31 Hitachi Tool Engineering Ltd 超硬合金製エンドミル
JP5644084B2 (ja) 2009-09-24 2014-12-24 日立ツール株式会社 超硬合金製エンドミル
JP5577771B2 (ja) 2010-03-15 2014-08-27 三菱マテリアル株式会社 エンドミル
JP2010264592A (ja) * 2010-08-30 2010-11-25 Hitachi Tool Engineering Ltd 高硬度材用エンドミル
WO2012172710A1 (ja) * 2011-06-17 2012-12-20 日立ツール株式会社 多刃エンドミル
US9682434B2 (en) * 2011-09-26 2017-06-20 Kennametal Inc. Milling cutter for cutting a ninety-degree shoulder in a workpiece
JP5870734B2 (ja) * 2012-02-15 2016-03-01 三菱マテリアル株式会社 クーラント穴付きエンドミル
JP2013188843A (ja) * 2012-03-14 2013-09-26 Mitsubishi Materials Corp クーラント穴付きボールエンドミル
US9555486B2 (en) * 2012-07-27 2017-01-31 Mitsubishi Hitachi Tool Engineering, Ltd. Multi-flute endmill
JP5981301B2 (ja) 2012-10-29 2016-08-31 日立オートモティブシステムズ株式会社 熱式ガスセンサ
JP5974940B2 (ja) * 2013-03-14 2016-08-23 三菱マテリアル株式会社 交換式切削ヘッド
JP6015527B2 (ja) * 2013-03-29 2016-10-26 三菱マテリアル株式会社 エンドミル
JP2015047655A (ja) * 2013-08-30 2015-03-16 三菱マテリアル株式会社 クーラント穴付きエンドミル
JP5925250B2 (ja) * 2014-07-07 2016-05-25 ユニオンツール株式会社 スクエアエンドミル
JP6473761B2 (ja) * 2014-11-27 2019-02-20 京セラ株式会社 エンドミルおよび切削加工物の製造方法
JP6384385B2 (ja) * 2015-03-31 2018-09-05 三菱マテリアル株式会社 ラフィングエンドミル

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004276142A (ja) * 2003-03-13 2004-10-07 Nisshin Kogu Kk エンドミル
JP2006015418A (ja) * 2004-06-30 2006-01-19 Mitsubishi Materials Kobe Tools Corp 縦送り加工用エンドミル
JP2012091306A (ja) * 2010-10-29 2012-05-17 Hitachi Tool Engineering Ltd 超硬合金製エンドミル
WO2013099954A1 (ja) * 2011-12-27 2013-07-04 京セラ株式会社 ラジアスエンドミル
WO2014069265A1 (ja) * 2012-10-29 2014-05-08 三菱マテリアル株式会社 クーラント穴付きエンドミル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3272446A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11458551B2 (en) 2016-12-26 2022-10-04 Moldino Tool Engineering, Ltd. End mill
CN110167702A (zh) * 2016-12-26 2019-08-23 三菱日立工具株式会社 立铣刀
WO2020195663A1 (ja) * 2019-03-28 2020-10-01 三菱日立ツール株式会社 エンドミル
JP7473818B2 (ja) 2019-03-28 2024-04-24 株式会社Moldino エンドミル
JPWO2021172414A1 (ja) * 2020-02-28 2021-09-02
JP7417707B2 (ja) 2020-02-28 2024-01-18 京セラ株式会社 エンドミル及び切削加工物の製造方法
WO2021172414A1 (ja) * 2020-02-28 2021-09-02 京セラ株式会社 エンドミル及び切削加工物の製造方法
JP7460905B2 (ja) 2020-07-07 2024-04-03 株式会社Moldino エンドミル
JP7491105B2 (ja) 2020-07-10 2024-05-28 三菱マテリアル株式会社 ボールエンドミル
JP7491104B2 (ja) 2020-07-10 2024-05-28 三菱マテリアル株式会社 ボールエンドミル
WO2022064699A1 (ja) 2020-09-28 2022-03-31 株式会社Moldino エンドミル
KR20230073179A (ko) 2020-09-28 2023-05-25 가부시키가이샤 몰디노 엔드밀
JP7498406B2 (ja) 2020-09-28 2024-06-12 株式会社Moldino エンドミル

Also Published As

Publication number Publication date
JP6711348B2 (ja) 2020-06-17
JPWO2016152611A1 (ja) 2018-01-18
KR20170128318A (ko) 2017-11-22
EP3272446A4 (en) 2018-11-21
CN107249798B (zh) 2020-03-10
US20180036809A1 (en) 2018-02-08
CN107249798A (zh) 2017-10-13
US10307839B2 (en) 2019-06-04
EP3272446A1 (en) 2018-01-24
KR102463681B1 (ko) 2022-11-07

Similar Documents

Publication Publication Date Title
WO2016152611A1 (ja) スクエアエンドミル
JP5762547B2 (ja) ドリル
JP5266813B2 (ja) エンドミル
JP6412022B2 (ja) エンドミルおよび切削加工物の製造方法
JP5535315B2 (ja) エンドミル
JP6344481B2 (ja) 多刃ボールエンドミル
JP6221660B2 (ja) ラフィングエンドミル
JP6473761B2 (ja) エンドミルおよび切削加工物の製造方法
WO2017038763A1 (ja) エンドミル及び切削加工物の製造方法
JP5956705B1 (ja) エンドミル
JP4125909B2 (ja) スクエアエンドミル
JP2010264592A (ja) 高硬度材用エンドミル
JP5585107B2 (ja) ラフィングエンドミル
JP2018164946A (ja) ラジアスエンドミル
WO2016039347A1 (ja) 切削インサート及び刃先交換式回転切削工具
JP2019202378A (ja) エンドミル
WO2013015404A1 (ja) 刃先交換式回転切削工具およびこれに用いる切削インサート
JP7473818B2 (ja) エンドミル
JP2001277033A (ja) エンドミル
JPH06218616A (ja) エンドミル
JP2000107925A (ja) 高性能エンドミル
JPWO2023042405A5 (ja)
JP2018075658A (ja) ラフィングエンドミル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768514

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017508236

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016768514

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15558120

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177025979

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE