WO2016104789A1 - ポリオレフィン微多孔膜、その製造方法および電池用セパレータ - Google Patents

ポリオレフィン微多孔膜、その製造方法および電池用セパレータ Download PDF

Info

Publication number
WO2016104789A1
WO2016104789A1 PCT/JP2015/086415 JP2015086415W WO2016104789A1 WO 2016104789 A1 WO2016104789 A1 WO 2016104789A1 JP 2015086415 W JP2015086415 W JP 2015086415W WO 2016104789 A1 WO2016104789 A1 WO 2016104789A1
Authority
WO
WIPO (PCT)
Prior art keywords
microporous membrane
polyolefin
polyolefin microporous
less
resin
Prior art date
Application number
PCT/JP2015/086415
Other languages
English (en)
French (fr)
Inventor
佐藤 剛
敏彦 金田
河野 公一
Original Assignee
東レバッテリーセパレータフィルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レバッテリーセパレータフィルム株式会社 filed Critical 東レバッテリーセパレータフィルム株式会社
Priority to EP15873357.6A priority Critical patent/EP3239222B1/en
Priority to CN201580070826.8A priority patent/CN107223147B/zh
Priority to KR1020177020964A priority patent/KR102432328B1/ko
Priority to JP2016566570A priority patent/JP6729391B2/ja
Priority to US15/539,972 priority patent/US10507436B2/en
Publication of WO2016104789A1 publication Critical patent/WO2016104789A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/041Microporous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/12Melt flow index or melt flow ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/054Precipitating the polymer by adding a non-solvent or a different solvent
    • C08J2201/0542Precipitating the polymer by adding a non-solvent or a different solvent from an organic solvent-based polymer composition
    • C08J2201/0543Precipitating the polymer by adding a non-solvent or a different solvent from an organic solvent-based polymer composition the non-solvent being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a polyolefin microporous membrane, a method for producing the same, and a battery separator, and more specifically, a polyolefin microporous membrane that is excellent in oxidation resistance, impedance characteristics, and withstand voltage characteristics and can be suitably used for a battery separator, and the production thereof.
  • the present invention relates to a method and a battery separator.
  • JP-A-5-222237 discloses a gel composition by cooling a nucleating agent, a mixed solvent of a good solvent for polyolefin and a solvent excellent in dispersibility of the nucleating agent, and a polyolefin solution obtained by melting and mixing the polyolefin.
  • a polyolefin microporous membrane produced by forming a product, heating and stretching the gel composition, and then removing the remaining solvent is described. Since such a polyolefin microporous membrane uses a mixed solvent, the solvent is not uniformly dispersed in the polyolefin solution, and the maximum pore size and average flow pore size of the resulting polyolefin microporous membrane due to the porometer increase. Qi resistance also decreases. For this reason, in order to use as a battery separator, it was necessary to further improve the withstand voltage characteristics.
  • JP 2010-215901 A and JP-T 2009-527633 A disclose a polypropylene porous film produced by a production method known as a dry method. Specifically, it is a method of forming a void by adopting a low-temperature extrusion and a high draft ratio at the time of melt extrusion, controlling a lamella structure in a film before stretching and stretching it.
  • the pore structure tends to be non-uniform, and there is a concern that a structure containing voids locally occurs.
  • the pore diameter on the surface of the microporous membrane is increased and the distribution thereof is non-uniform, resulting in a problem of poor dielectric breakdown resistance.
  • JP-A-6-223802 describes a microporous membrane formed from a mixture of high molecular weight polyethylene and high molecular weight polypropylene.
  • a microporous membrane has a low impedance, most of it is made of polyethylene, so that further improvement in oxidation resistance is required.
  • An object of the present invention is to provide a polyolefin microporous membrane and a battery separator having excellent oxidation resistance and voltage resistance characteristics.
  • a first aspect of the present invention comprises a polyolefin resin comprising 80% by mass or more of a polypropylene resin, and has a maximum pore diameter of less than 30.0 nm and an average flow pore diameter of less than 20.0 nm as measured by a porometer. It is a microporous membrane.
  • the polyolefin resin preferably contains 90% by mass or more of polypropylene resin, and the weight average molecular weight of the polypropylene resin is preferably 1 ⁇ 10 5 or more and 1 ⁇ 10 8 or less.
  • the maximum pore diameter of the surface pores of the polyolefin microporous membrane is preferably 300 nm or less.
  • the polyolefin microporous membrane preferably has a porosity of 20 to 80%, preferably an impedance of 15 ⁇ ⁇ cm 2 or less, and an air permeability resistance of 300 sec / 100 cc when the film thickness is 20 ⁇ m. The above is preferable.
  • the second aspect of the present invention is a battery separator comprising the polyolefin microporous membrane
  • the third aspect of the present invention is a secondary battery using the separator.
  • a microporous polyolefin membrane having a maximum pore size of less than 30.0 nm and an average flow pore size of less than 20.0 nm, comprising the following steps (1) to (5): Is the method.
  • Stretching step of stretching the gel-like sheet (4) Removing the film-forming solvent from the stretched gel-like sheet (5) Drying the film after removal of the film-forming solvent Process
  • the polyolefin microporous membrane of the present invention is mainly composed of polypropylene and has a fine and uniform porous structure, and therefore has good impedance characteristics, excellent oxidation resistance and voltage resistance characteristics.
  • the method for producing a polyolefin microporous membrane of the present invention can efficiently produce a polyolefin microporous membrane having good impedance characteristics, excellent oxidation resistance and withstand voltage characteristics. Since the battery separator of the present invention comprises a polyolefin microporous membrane having good impedance characteristics, excellent oxidation resistance and voltage resistance characteristics, when used in a battery such as a lithium ion secondary battery, Life expectancy, improved charge / discharge cycle characteristics, and improved safety can be expected.
  • FIG. 1 is an SEM image of the microporous membrane obtained in Example 4 of the present application.
  • FIG. 2 is an SEM image of the microporous membrane obtained in Example 7 of the present application.
  • FIG. 3 is an SEM image of the microporous film obtained in Comparative Example 1 of the present application.
  • FIG. 4 is an SEM image of the microporous film obtained in Comparative Example 2 of the present application.
  • polyolefin microporous membrane of the present invention comprises a polyolefin resin.
  • the present invention will be described for each item.
  • Polyolefin resin has a polypropylene resin as a main component.
  • the content of the polypropylene resin in the polyolefin resin is preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, and most preferably 100% by mass.
  • the content of the polypropylene resin in the polyolefin resin is less than the above range, the oxidation resistance of the polyolefin microporous membrane of the present invention is deteriorated.
  • the polypropylene resin preferably has a weight average molecular weight of 1 ⁇ 10 5 or more and 1 ⁇ 10 8 or less, and more preferably 1 ⁇ 10 6 or more and 1 ⁇ 10 8 or less.
  • the molecular weight distribution of the polypropylene resin is preferably about 5 or more and 10 or less.
  • the melting point of the polypropylene resin is not particularly limited, but is preferably 180 ° C. or lower.
  • the polypropylene resin may be a copolymer with another olefin, but is preferably a homopolymer.
  • Examples of the copolymer of polypropylene and other olefins include a propylene-ethylene copolymer, a propylene-butene copolymer, and a propylene-hexene copolymer.
  • polyolefin resin other than polypropylene may contain a small amount of polyolefin other than polypropylene, such as polyethylene and polybutene, as the polyolefin resin.
  • polystyrene resin examples include polyethylene, polypropylene, polyethylene, polyethylene, polypropylene, polyethylene, polyethylene, polypropylene, polyethylene, polyethylene, polypropylene, polyethylene, polypropylene, polyethylene, polypropylene, polyethylene, polypropylene, polyethylene, polypropylene, polyethylene, polypropylene, polyethylene, polypropylene, polyethylene, polypropylene, polyethylene, polypropylene, polystyrene-1, polystyrene-1, polystylene waxes having Mw of 1 ⁇ 10 3 to 1 ⁇ 10 4 may be used.
  • the content of the polyolefin other than the polypropylene resin in the polyolefin resin can be adjusted as appropriate as long as the effects of the present invention are not impaired, but in the polyolefin resin, it is preferably 20% by mass or less, more preferably 10% by mass or less. More preferably less than mass%.
  • the said polyolefin resin can contain other resin components other than the said polyolefin resin as needed.
  • the other resin component is preferably a heat-resistant resin, and examples of the heat-resistant resin include crystalline resins having a melting point of 150 ° C. or higher (including partially crystalline resins) and / or glass.
  • An amorphous resin having a point transfer (Tg) of 150 ° C. or higher is exemplified.
  • Tg is a value measured according to JIS K7121.
  • resin components include polyester, polymethylpentene [PMP or TPX (transparent polymer X), melting point: 230 to 245 ° C.], polyamide (PA, melting point: 215 to 265 ° C.), polyarylene sulfide ( Fluorine-containing resin such as PAS, polyvinylidene fluoride homopolymers such as polyvinylidene fluoride (PVDF), fluorinated olefins such as polytetrafluoroethylene (PTFE), and copolymers thereof; polystyrene (PS, melting point: 230 ° C.) ), Polyvinyl alcohol (PVA, melting point: 220-240 ° C.), polyimide (PI, Tg: 280 ° C.
  • the resin component is not limited to one composed of a single resin component, and may be composed of a plurality of resin components.
  • the preferred Mw of other resin components varies depending on the type of resin, but is generally 1 ⁇ 10 3 to 1 ⁇ 10 6 , more preferably 1 ⁇ 10 4 to 7 ⁇ 10 5 .
  • the content of other resin components in the polyolefin resin is appropriately adjusted within a range not departing from the gist of the present invention, but is contained in the polyolefin resin in a range of 20% by mass or less, preferably 5 It is less than mass%.
  • Crystallization control agent is an additive that promotes or suppresses crystallization of polyolefin resin by blending with polyolefin resin, and includes nucleating agent, clarifying agent, crystallization retarding agent, etc. can give. Of these, nucleating agents and crystallization retarders are preferred. By blending the crystallization control agent, it can be expected that the pore structure of the polyolefin microporous membrane of the present invention becomes uniform and fine.
  • nucleating agent As the nucleating agent, a nucleating agent for polypropylene resin can be suitably used, and carboxylic acid metal salts such as aromatic phosphate metal salt nucleating agents and benzoic acid metal salt nucleating agents. Those commonly used as polyolefin resin nucleating agents such as nucleating agents, sorbitol nucleating agents, and mixtures thereof can be used. Among them, from the viewpoint of dispersibility in a polyolefin resin solution described later, a carboxylic acid metal salt system such as an aromatic phosphate metal salt nucleating agent or a benzoic acid metal salt nucleating agent that basically does not contain a hydrosilyl group. A nucleating agent and a mixture thereof are preferred. In addition, as a nucleating agent for polypropylene resins, a commercially available nucleating agent master batch composed of a plurality of components may be used.
  • nucleating agent for polypropylene resin examples include an ⁇ crystal nucleating agent, a ⁇ crystal nucleating agent, and a ⁇ crystal nucleating agent, but the ⁇ crystal nucleating agent has a tendency to produce fine crystals. It is preferable that When a ⁇ crystal nucleating agent is used, coarse needle crystals may be formed.
  • aromatic phosphate metal salt nucleating agents examples include sodium bis (4-tert-butylphenyl) phosphate, sodium 2,2′-methylenebis (4,6-di-tert-butylphenyl) phosphate, and the like. Can be mentioned.
  • carboxylic acid metal salt nucleating agent examples include lithium benzoate, sodium benzoate, aluminum 4-tert-butylbenzoate, and sodium adipate.
  • sorbitol nucleating agent examples include dibenzylidene sorbitol, bis (4-methylbenzylidene) sorbitol, bis (3,4-dimethylbenzylidene) sorbitol, and the like.
  • the compounding amount of the nucleating agent is generally 0.01 to 5.00 parts by mass, more preferably 0.05 to 3.00 parts by mass with respect to 100 parts by mass of the polyolefin resin, but is not particularly limited. .
  • the nucleating agent may be blended directly with the polyolefin resin, or may be blended with the polyolefin resin as a master batch in which the polyolefin resin and the nucleating agent are mixed in advance.
  • Crystallization retarder As the crystallization retarder for polyolefin resin, amorphous polyolefin resin, low crystalline polyolefin resin, and the like can be used, and among them, low crystalline polypropylene resin and the like can be suitably used.
  • examples of the amorphous polyolefin resin include polystyrene and polycarbonate
  • examples of the low crystalline polyolefin resin include random copolymers such as ethylene-propylene and ethylene-butene, and atactic polypropylene. Examples include low stereoregular polyolefins.
  • the compounding amount of the crystallization retarder is generally 0.01 to 5.00 parts by mass, more preferably 0.05 to 3.00 parts by mass with respect to 100 parts by mass of the polyolefin resin, but it is particularly limited. Not.
  • the polyolefin microporous membrane of the present invention has excellent impedance characteristics and withstand voltage characteristics because the maximum pore diameter by a porometer is less than 30.0 nm and the average flow pore diameter is less than 20.0 nm. .
  • the maximum pore diameter of the polyolefin microporous membrane of the present invention is less than 30.0 nm, preferably less than 29.0 nm, and particularly preferably 28.9 nm or less.
  • the lower limit of the maximum pore diameter is not particularly limited, but may be 15.0 nm or less, and is preferably 15.0 nm.
  • the “maximum pore diameter” indicates the maximum pore diameter among all the through holes distributed in the polyolefin microporous membrane, and can be measured by a bubble point method using a porometer or the like.
  • the polyolefin microporous membrane of the present invention is used as a separator, since it has a small pore size, it has excellent withstand voltage performance in the battery, can prevent partial short circuit (micro short circuit) due to dendrid precipitation / growth, and the cycle characteristics of the battery. Improvement is expected.
  • the average flow pore size of the polyolefin microporous membrane of the present invention is less than 20.0 nm, preferably 18.0 nm or less, more preferably 16.0 nm or less, and particularly preferably 15. 0 nm or less.
  • the lower limit of the average flow hole diameter is not particularly limited, but may be less than the measurement range limit of the porometer.
  • the average flow pore size is more preferably below the measurement limit to 17.0 nm, and particularly preferably below the measurement limit to 15.0 nm.
  • the “average flow pore size” refers to the average flow pore size of all through holes distributed in the polyolefin microporous membrane, and can be measured with a porometer.
  • a crystallization control agent is blended in a polyolefin resin, and the stretching temperature during film formation ranges from the crystal dispersion temperature (Tcd) of the polyolefin resin to Tcd + 30 ° C.
  • Tcd crystal dispersion temperature
  • the stretching stress at the time of stretching acts uniformly on the structure constituting the membrane by the above means, and the pore structure of the microporous membrane can be controlled.
  • the maximum pore size and average flow pore size of the polyolefin microporous membrane of the present invention can be measured by the following method using a porometer.
  • a porometer is used for each of a dry sample (hereinafter also simply referred to as “dry sample”) and a wet sample (hereinafter also simply referred to as “wet sample”) filled with the measurement liquid in the pores.
  • dry sample a dry sample
  • wet sample hereinafter also simply referred to as “wet sample”
  • the relationship between the air pressure and the air flow rate is measured, and the aeration curve (Dry Curve) of the dry sample and the aeration curve (Wet Curve) of the wet sample are obtained.
  • the wet sample in which the measurement liquid is filled in the pores shows the same characteristics as the capillary filled with the liquid.
  • the air pressure overcomes the surface tension of the measurement liquid in the pores in order from the large diameter pores, and the measurement liquid is pushed out of the pores.
  • the air flow rate gradually increases, and the sample finally becomes dry. Therefore, the pore diameter can be calculated by measuring the pressure when the liquid is pushed out of the pore. Assuming that the shape of the pores is substantially cylindrical, the conditions for air of pressure P to enter the pores of diameter D are that the surface tension of the measurement liquid is ⁇ and the contact angle of the measurement liquid is ⁇ . It is expressed by the Washburn formula shown in the following formula 1.
  • a measurement point (measurement point indicating the maximum pore diameter) at which bubble generation is first detected is referred to as a bubble point.
  • a standard method for measuring the bubble point for example, the method described in ASTM F316-86 can be mentioned.
  • the average flow pore size of the polyolefin microporous membrane of the present invention is determined by the half dry method defined in ASTM E1294-89 using the above-mentioned dry sample aeration curve (Dry Curve) and wet sample aeration curve (Wet Curve). Can be determined based on The mean flow diameter pressure (Mean Flow Pressure) is the pressure at the point where the half-curve curve (Half-Dry Curve) of the dry sample aeration curve (Dry Curve) and the wet sample aeration curve (Wet Curve) intersect. By substituting this average flow diameter pressure into the above (Equation 1), the mean flow pore diameter (Mean Flow Pore Diameter) of the microporous membrane is calculated.
  • the polyolefin microporous membrane of the present invention preferably has an impedance of 15.0 ⁇ ⁇ cm 2 or less, more preferably 13.0 ⁇ ⁇ cm 2 or less, when the film thickness is 20 ⁇ m.
  • the impedance I2 calculated by This is because when the impedance of the polyolefin microporous membrane is within the above range, it can be expected that the cycle characteristics of the battery will be improved when used as a battery separator.
  • the polyolefin microporous membrane of the present invention preferably has a dielectric breakdown voltage of 0.10 to 0.30 kV / ⁇ m, more preferably 0.15 to 0.25 kV / ⁇ m, It is particularly preferably 0.18 to 0.21 kV / ⁇ m. This is because when the dielectric breakdown voltage of the polyolefin microporous membrane is within the above range, the battery can be expected to have good durability and withstand voltage performance when used as a battery separator.
  • the dielectric breakdown voltage of the polyolefin microporous membrane of the present invention can be measured in accordance with, for example, a method defined in JIS C2110 or ASTM D149.
  • the porosity of the microporous polyolefin membrane of the present invention is preferably 20 to 80%. It is preferable for the porosity to be in the above range since the impedance and strength of the microporous membrane will be good.
  • the porosity is more preferably 30 to 65%, and particularly preferably 40 to 45%.
  • the polyolefin microporous membrane of the present invention preferably has an air resistance of 300 sec / 100 cc or more and 5000 sec / 100 cc or less, more preferably 4000 sec / 100 cc or less when the film thickness is 20 ⁇ m. 3500 sec / 100 cc or less is particularly preferable.
  • the air resistance when formed into a 20 ⁇ m thickness, the microporous film having a thickness T 1 ( ⁇ m) the air resistance was measured in accordance with JIS P 8117 (2009) P 1
  • the air permeation resistance of the polyolefin microporous membrane is within the above range, it is advantageous from the viewpoint of withstand voltage characteristics and impedance characteristics.
  • the oxidation resistance of the polyolefin microporous membrane of the present invention can be evaluated by the degree of blackening of the separator.
  • the blackening of the battery separator is considered to be caused by the polyeneization of the polymer due to the radical chain oxidation reaction of the polymer that occurs in parallel with the reduction of cobalt of the positive electrode in the battery. As the blackening progresses, the film strength deteriorates and a short circuit occurs.
  • Polyethylene undergoes an oxidation reaction in a chain from the molecular structure, whereas polypropylene has the property of stopping the chain reaction and can be expected to prevent blackening (oxidation) from proceeding.
  • the polyolefin microporous membrane of the present invention preferably has a maximum pore diameter of 300 nm or less, more preferably 200 nm or less, and more preferably 150 nm or less, on the surface thereof.
  • the maximum pore diameter of the above surface pores is the longest pore diameter of the pore opening recognized when observing the surface of the polyolefin microporous membrane in the range of 5 ⁇ m ⁇ 5 ⁇ m by SEM, and the longest pore diameter is 1 in the direction perpendicular to the major axis. When the long pore diameter is taken as the major axis 2, the maximum major axis 1 of the observed pore opening can be measured.
  • the maximum pore diameter of the pores opened on the surface of the polyolefin microporous membrane is within the above range, the dielectric breakdown voltage becomes high, which is advantageous for the withstand voltage characteristics.
  • the polyolefin microporous membrane of the present invention has a heat of crystal melting derived from ⁇ crystal of polypropylene resin in differential thermal analysis using a differential scanning calorimeter. Does not have a peak.
  • the “crystal melting heat peak” indicates a curve having a maximum value obtained by a differential scanning calorimeter.
  • a ⁇ crystal nucleating agent is blended, a ⁇ crystal-derived crystal melting heat peak of a polypropylene resin is detected, but in that case, the maximum pore size and average flow pore size of the polyolefin microporous membrane may become coarse. .
  • the crystal melting heat peak derived from the ⁇ crystal of the polypropylene resin is observed on the low temperature side of the crystal melting heat peak derived from the ⁇ crystal of the polypropylene resin.
  • the crystal melting heat peak derived from the ⁇ crystal of the polypropylene resin is observed on the low temperature side of the crystal melting heat peak derived from the ⁇ crystal of the polypropylene resin.
  • a polypropylene homopolymer it is observed at 140 ° C. or more and less than 160 ° C.
  • a random propylene ethylene copolymer copolymerized with 1 to 4 mol% of ethylene it is in the range of 120 ° C. or more and less than 140 ° C. Is recognized. A specific measurement method will be described later.
  • the production method of the polyolefin microporous membrane of the present invention is not particularly limited as long as the polyolefin microporous membrane having the above-described characteristics can be produced, and a conventionally known method can be used.
  • a conventionally known method can be used.
  • methods described in Japanese Patent No. 2132327, Japanese Patent No. 3347835, International Publication No. 2006/137540, and the like can be used.
  • the following steps (1) to (5) are preferably included, the following step (6) may be further included, and the following step (7) may be further included.
  • a step of melt-kneading the polyolefin resin, a crystallization control agent and a film-forming solvent to prepare a polyolefin solution (2) A step of extruding the polyolefin solution and cooling to form a gel-like sheet (3) The gel (4) Step of removing the film-forming solvent from the stretched gel-like sheet (5) Step of drying the sheet after removal of the film-forming solvent (6) Drying Second Stretching Step for Stretching Later Sheet (7) Step for Heat-treating Sheet After Drying
  • a step of melt-kneading the polyolefin resin, a crystallization control agent and a film-forming solvent to prepare a polyolefin solution
  • a step of extruding the polyolefin solution and cooling to form a gel-like sheet (3)
  • the gel (4) Step of removing the film-forming solvent from the stretched gel-like sheet (5) Step of drying the sheet after removal of the film-forming solvent (6) Drying Second Stretching Step for Stretching Later Sheet (7)
  • melt-kneading After blending a polyolefin resin with a crystallization control agent and a suitable film-forming solvent, melt-kneading to prepare a polyolefin solution.
  • a melt-kneading method for example, a method using a twin-screw extruder described in Japanese Patent No. 2132327 and Japanese Patent No. 3347835 can be used. Since the melt-kneading method is known, the description thereof is omitted.
  • the blending ratio of the polyolefin resin and the film forming solvent in the polyolefin solution is not particularly limited, but is preferably 50 to 80 parts by weight of the film forming solvent with respect to 20 to 50 parts by weight of the polyolefin resin.
  • the film forming solvent is preferably 55 to 70 parts by mass with respect to 45 parts by mass.
  • a crystallization control agent such as a nucleating agent or a crystallization retarder is added to the polyolefin solution.
  • the blending amount is preferably 0.01 to 5 parts by mass, more preferably 0.05 to 3 parts by mass with respect to 100 parts by mass of the polyolefin resin.
  • a polyolefin solution is fed from an extruder to a die and extruded into a sheet.
  • a plurality of polyolefin solutions having the same or different compositions may be fed from an extruder to a single die, where they are laminated in layers and extruded into sheets.
  • the extrusion method may be either a flat die method or an inflation method.
  • the extrusion temperature is preferably 140 to 250 ° C.
  • the extrusion speed is preferably 0.2 to 15 m / min.
  • the film thickness can be adjusted by adjusting each extrusion amount of the polyolefin solution.
  • a gel-like sheet is formed by cooling the obtained extruded product.
  • a method for forming the gel-like sheet for example, methods disclosed in Japanese Patent No. 2132327 and Japanese Patent No. 3347835 can be used. Cooling is preferably performed at a rate of 50 ° C./min or more at least up to the gelation temperature. Cooling is preferably performed to 25 ° C. or lower.
  • seat is extended
  • the gel-like sheet is preferably stretched at a predetermined ratio after heating by a tenter method, a roll method, an inflation method, or a combination thereof.
  • the stretching may be uniaxial stretching or biaxial stretching, but biaxial stretching is preferred. In the case of biaxial stretching, any of simultaneous biaxial stretching, sequential stretching and multistage stretching (for example, a combination of simultaneous biaxial stretching and sequential stretching) may be used.
  • the stretching ratio (area stretching ratio) in this step is preferably 2 times or more, more preferably 3 to 30 times in the case of uniaxial stretching. In the case of biaxial stretching, 9 times or more is preferable, 16 times or more is more preferable, and 25 times or more is particularly preferable. Further, it is preferably 3 times or more in both the longitudinal direction and the transverse direction (MD and TD directions), and the draw ratios in the MD direction and the TD direction may be the same or different. When the draw ratio is 9 times or more, improvement of puncture strength can be expected.
  • the draw ratio in this process means the area draw ratio of the microporous film immediately before being used for the next process on the basis of the microporous film immediately before this process.
  • the stretching temperature in this step is preferably in the range of the crystal dispersion temperature (Tcd) to Tcd + 30 ° C. of the polyolefin resin, and in the range of crystal dispersion temperature (Tcd) + 5 ° C. to crystal dispersion temperature (Tcd) + 25 ° C. It is more preferable that the temperature be within the range of Tcd + 10 ° C. to Tcd + 20 ° C.
  • the stretching temperature is within the above range, membrane breakage due to stretching of the polyolefin resin is suppressed, stretching at a high magnification can be performed, and the pore structure of the resulting polyolefin microporous membrane is refined and homogenized.
  • the crystal dispersion temperature (Tcd) is determined by measuring the dynamic viscoelastic temperature characteristics according to ASTM D4065. Since the polyolefin resin of the present invention has a crystal dispersion temperature of about 110 to 130 ° C., the stretching temperature is preferably 110 to 160 ° C., more preferably 115 to 155 ° C., and further preferably 120 to 150 ° C. It is.
  • Fibrils form a very fine network structure that is irregularly connected three-dimensionally.
  • the film may be stretched by providing a temperature distribution in the film thickness direction, whereby a microporous film having further excellent mechanical strength can be obtained. Details of the method are described in Japanese Patent No. 3347854.
  • the film-forming solvent is removed (washed) using a cleaning solvent. Since the polyolefin phase is phase-separated from the film-forming solvent phase, removing the film-forming solvent consists of fibrils that form a fine three-dimensional network structure, and pores (voids) that communicate irregularly in three dimensions. A porous membrane having the following is obtained. Since the cleaning solvent and the method for removing the film-forming solvent using the same are known, the description thereof is omitted. For example, the methods disclosed in Japanese Patent No. 2132327 and Japanese Patent Application Laid-Open No. 2002-256099 can be used.
  • the microporous film from which the film-forming solvent has been removed is dried by a heat drying method or an air drying method.
  • the drying temperature is preferably not higher than the crystal dispersion temperature (Tcd) of the polyolefin resin, and particularly preferably 5 ° C. or more lower than Tcd. Drying is preferably performed until the residual cleaning solvent is 5% by mass or less, more preferably 3% by mass or less, with the microporous membrane being 100% by mass (dry weight).
  • the dried microporous membrane may be stretched in at least a uniaxial direction.
  • the microporous membrane can be stretched by the tenter method or the like in the same manner as described above while heating.
  • the stretching may be uniaxial stretching or biaxial stretching. In the case of biaxial stretching, either simultaneous biaxial stretching or sequential stretching may be used.
  • the stretching temperature in this step is not particularly limited, but is usually 90 to 150 ° C, more preferably 95 to 145 ° C.
  • the lower limit of the stretching ratio (area stretching ratio) in the uniaxial direction of stretching of the microporous membrane in this step is preferably 1.0 or more, more preferably 1.1 or more, and still more preferably 1.2. It is more than double.
  • the upper limit is preferably 1.8 times or less. In the case of uniaxial stretching, it is 1.0 to 2.0 times in the MD direction or TD direction.
  • the lower limit of the area stretching ratio is preferably 1.0 times or more, more preferably 1.1 times or more, and still more preferably 1.2 times or more.
  • the upper limit is preferably 3.5 times or less, and 1.0 to 2.0 times in each of the MD direction and the TD direction, and the draw ratios in the MD direction and the TD direction may be the same or different.
  • the draw ratio in this process means the draw ratio of the microporous film just before being provided to the next process on the basis of the microporous film immediately before this process.
  • the microporous film after drying can be heat-treated.
  • the crystal is stabilized by heat treatment, and the lamella is made uniform.
  • heat setting treatment and / or heat relaxation treatment can be used.
  • the heat setting treatment is a heat treatment in which heating is performed while keeping the dimensions of the film unchanged.
  • the thermal relaxation treatment is a heat treatment that heat-shrinks the film in the MD direction or the TD direction during heating.
  • the heat setting treatment is preferably performed by a tenter method or a roll method.
  • a thermal relaxation treatment method a method disclosed in Japanese Patent Application Laid-Open No. 2002-256099 can be given.
  • the heat treatment temperature is preferably within the range of Tcd to Tm of the polyolefin resin, more preferably within the range of the stretching temperature ⁇ 5 ° C. of the microporous membrane, and particularly preferably within the range of the second stretching temperature ⁇ 3 ° C. of the microporous membrane.
  • a porous layer may be provided on at least one surface of the polyolefin microporous membrane to form a laminated porous membrane.
  • the porous layer formed using the filler containing resin solution and heat resistant resin solution containing a filler and a resin binder can be mentioned, for example.
  • the filler examples include inorganic fillers such as alumina, silica, titania and zirconia, and organic fillers such as fluororesin particles and cross-linked polymer fillers, which have a melting point of 200 ° C. or higher, high electrical insulation, and lithium ions. Those that are electrochemically stable in the range of use of the secondary battery are preferred. These can be used alone or in combination of two or more.
  • the average particle diameter of the filler is not particularly limited, but is preferably 0.1 ⁇ m or more and 3.0 ⁇ m or less, for example.
  • the proportion (mass fraction) of the filler in the porous layer is preferably 50% or more and 99.99% or less from the viewpoint of heat resistance.
  • polyolefins and heat resistant resins described in the section of other resin components contained in the above-described polyolefin resin can be suitably used.
  • the proportion of the resin binder in the total amount of the filler and the resin binder is preferably 0.5% or more and 8% or less in terms of volume fraction from the viewpoint of the binding property of both.
  • heat resistant resin those similar to the heat resistant resin described in the section of other resin components contained in the polyolefin resin can be suitably used.
  • the method for applying the filler-containing resin solution or the heat-resistant resin solution to the surface of the polyolefin microporous membrane is not particularly limited as long as it can achieve the required layer thickness and application area, such as a gravure coater method.
  • the solvent for the filler-containing solution and the heat-resistant resin solution is preferably a solvent that can be removed from the solution applied to the polyolefin microporous membrane, and is not particularly limited. Specific examples include N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, water, ethanol, toluene, hot xylene, methylene chloride and hexane.
  • the method for removing the solvent is not particularly limited as long as it does not adversely affect the polyolefin microporous membrane. Specifically, for example, a method of drying a polyolefin microporous film while fixing it at a temperature below its melting point, a method of drying under a reduced pressure, a resin binder and a poor solvent such as a heat-resistant resin, and simultaneously solidifying the resin The method of extracting is mentioned.
  • the thickness of the porous layer is preferably from 0.5 ⁇ m to 100 ⁇ m from the viewpoint of improving heat resistance.
  • the ratio of the thickness of the porous layer to the thickness of the laminated porous membrane can be appropriately adjusted according to the purpose. Specifically, for example, it is preferably 15% or more and 80% or less, and more preferably 20% or more and 75% or less.
  • porous layer may be formed on one surface of the laminated porous film or on both surfaces.
  • the polyolefin microporous membrane of the present invention can be suitably used for both a battery using an aqueous electrolyte and a battery using a non-aqueous electrolyte. Specifically, it can be preferably used as a separator for secondary batteries such as nickel-hydrogen batteries, nickel-cadmium batteries, nickel-zinc batteries, silver-zinc batteries, lithium secondary batteries, and lithium polymer secondary batteries. Especially, it is preferable to use as a separator of a lithium ion secondary battery using a non-aqueous electrolyte.
  • a positive electrode and a negative electrode are laminated via a separator, and the separator contains an electrolytic solution (electrolyte).
  • the structure of the electrode is not particularly limited, and a conventionally known structure can be used.
  • an electrode structure coin type in which a disk-shaped positive electrode and a negative electrode are opposed to each other, a plate-shaped positive electrode and a negative electrode
  • An electrode structure laminate type in which layers are stacked alternately, an electrode structure in which laminated strip-like positive and negative electrodes are wound (winding type), and the like can be used.
  • the current collector, the positive electrode, the positive electrode active material, the negative electrode, the negative electrode active material, and the electrolyte used for the lithium ion secondary battery are not particularly limited, and conventionally known materials can be used in appropriate combination.
  • this invention is not limited to said embodiment, It can implement in various deformation
  • Porosity (%) (w 2 ⁇ w 1 ) / w 2 ⁇ 100
  • Air permeability resistance (sec / 100cc)
  • d C ⁇ ⁇ / P (In the above formula, “d ( ⁇ m)” is the pore diameter of the microporous membrane, “ ⁇ (mN / m)” is the surface tension of the liquid, “P (Pa)” is the pressure, and “C” is a constant.
  • Dielectric breakdown voltage On a square aluminum plate with a side of 150 mm, a microporous film having a thickness of T1 cut into a circle with a diameter of 60 mm is placed, on which a brass diameter of 50 mm, a height of 30 mm, and a weight of 500 g
  • the TOS5051A dielectric breakdown resistance tester manufactured by Kikusui Electronics Co., Ltd. was connected.
  • a voltage V1 was applied at a boosting rate of 0.2 kV / sec, and a value V1 when the dielectric breakdown occurred was read.
  • the dielectric breakdown voltage was measured 15 times, and the maximum value, average value, and minimum value were obtained.
  • Oxidation resistance In order to evaluate the oxidation resistance of the polyolefin microporous membrane, an accelerated overcharge test was conducted by incorporating it as a separator in a battery chemical cell comprising an anode, a cathode, a separator and an electrolyte.
  • An anode in which natural graphite having a density of 1.65 g / cm 3 was laminated on a 10 ⁇ m thick copper film substrate at a unit area mass of 5.5 mg / cm 2 was used. The anode and cathode were used after drying in a 120 ° C. vacuum oven.
  • a polyolefin microporous film having a length of 50 mm and a width of 60 mm was dried in a vacuum oven at 50 ° C. and used.
  • the electrolyte was prepared by dissolving 1M LiPF 6 in a mixture of ethylene carbonate and ethyl methyl carbonate (3/7, V / V).
  • An anode, a separator, and a cathode were stacked, the separator was impregnated with an electrolyte, and the obtained laminate was vacuum-sealed and sealed in an aluminum laminate to produce an electrochemical cell.
  • the prepared electrochemical cell was charged with a constant current to a voltage of 4.3 V at a current of 0.5 C, and then charged with a constant voltage of 4.3 V at a temperature of 60 ° C. for 200 hours.
  • the separator was taken out and washed with diethyl carbonate, ethanol, N-methylpyrrolidone and 1N hydrochloric acid for 1 hour each to remove deposits. Then, it dried in the air, the discoloration in the cathode (positive electrode) contact surface of a separator was visually confirmed, and oxidation resistance evaluation was performed. The evaluation was made by the ratio of the area of the discolored portion per the entire area of the separator. The evaluation results are shown as follows. Less than 5%: ⁇ 5% to less than 10%: ⁇ 10% to 20%: ⁇ 20% or more: ⁇
  • the crystal melting heat peak derived from ⁇ crystal of the polyolefin microporous film is obtained by heating the polyolefin microporous film from 25 ° C. to 240 ° C. at a scanning temperature of 10 ° C./min with a differential scanning calorimeter. Hold for 1 minute, then lower the temperature from 240 ° C. to 25 ° C. at a scanning rate of 10 ° C./minute, hold for 1 minute, and further raise the temperature from 25 ° C. to 240 ° C. at a scanning rate of 10 ° C./minute. The change over time in the amount of heat with respect to the temperature was recorded and measured. The case where the crystal melting heat peak derived from the ⁇ crystal was observed on the low temperature side of the crystal melting heat peak derived from the ⁇ crystal was evaluated as “Yes”, and the case where it was not recognized was evaluated as “None”.
  • Example 1 24.75 parts by weight of ultra high molecular weight polypropylene (UHMWPP) having a weight average molecular weight (Mw) of 2.6 ⁇ 10 6 and a molecular weight distribution (Mw / Mn) of 6.2, and a nucleating agent NA-11 (A DEKA Co., Ltd .: aromatic phosphate ester metal salt nucleating agent) 0.25 part by mass is charged into a twin screw extruder, and 75.00 parts by mass of liquid paraffin is supplied from the side feeder of the twin screw extruder.
  • a polypropylene resin solution was prepared in a twin screw extruder by melt-kneading under the conditions of 200 ° C. and 200 ° C.
  • the polypropylene resin solution was extruded from a sheet forming die installed at the tip of the twin-screw extruder, and a gel-like sheet was formed while taking the obtained sheet-like extrudate with a 25 ° C. cooling roll.
  • the gel-like sheet was biaxially stretched at 120 ° C. to 5 ⁇ 5 times, then immersed in methylene chloride at 25 ° C. to remove liquid paraffin, air-dried at room temperature, and then heat-treated at 125 ° C. for 10 minutes.
  • a polypropylene microporous membrane was prepared. The characteristics of the obtained microporous membrane are shown in Table 1.
  • Example 2 A polypropylene microporous membrane was obtained in the same manner as in Example 1 except that the temperatures during simultaneous biaxial stretching were 130 ° C, 140 ° C, and 145 ° C, respectively. The characteristics of the obtained microporous membrane are shown in Table 1.
  • the weight average molecular weight (Mw) is 2.60 ⁇ 10 6
  • the molecular weight distribution (Mw / Mn) is 6.2
  • the ultrahigh molecular weight polypropylene (UHMWPP) is 23.50 parts by mass
  • the weight average molecular weight (Mw) is 5.72.
  • a molecular weight distribution (Mw / Mn) of high density polyethylene (HDPE) 1.25 parts by mass is 4.81, and, (manufactured by ADEKA Corporation) nucleating agent NA-11
  • a polyolefin microporous membrane was obtained in the same manner as in Example 1 except that 0.25 part by mass was charged into a twin screw extruder and 75 parts by mass of liquid paraffin was supplied from the side feeder of the twin screw extruder. The characteristics of the obtained microporous membrane are shown in Table 1.
  • Example 6 Weight average molecular weight (Mw) 2.60 ⁇ 10 6 , molecular weight distribution (Mw / Mn) 6.2 ultrahigh molecular weight polypropylene (UHMWPP) 24.25 parts by mass, and El Modu (Idemitsu Kosan Co., Ltd.) as a crystallization retarder 0.75 part by mass was charged into a twin screw extruder, 75 parts by mass of liquid paraffin was supplied from the side feeder of the twin screw extruder, and the stretching temperature was 130 ° C. Similarly, a polyolefin microporous membrane was obtained. The characteristics of the obtained microporous membrane are shown in Table 2.
  • Example 7 A polyolefin microporous membrane was obtained in the same manner as in Example 6 except that the stretching temperature was 140 ° C. The characteristics of the obtained microporous membrane are shown in Table 2.
  • the average flow pore diameter of the microporous membranes obtained in Examples 1, 2, 3, 5, 6, and 7 was less than the measurement limit (14.2 nm) of the porometer. In Table 1 and Table 2, it was described as 14.2 nm or less.
  • [Comparative Example 2] 30.00 parts by weight of ultra high molecular weight polyethylene (UHMWPE) having a weight average molecular weight Mw of 2.89 ⁇ 10 6 and a molecular weight distribution Mw / Mn of 5.28, and a weight average molecular weight Mw of 5.72 ⁇ 10 5
  • UHMWPE ultra high molecular weight polyethylene
  • HDPE high-density polyethylene
  • a microporous polyolefin membrane was obtained in the same manner as in Example 1 except that 70.00 parts by mass of liquid paraffin was supplied from the side feeder and the stretching temperature was 115 ° C.
  • the characteristics of the obtained microporous membrane are shown in Table 2.
  • a polyolefin microporous membrane was obtained in the same manner as in Example 1 except that it was put into a twin screw extruder and 75.00 parts by mass of liquid paraffin was supplied from the side feeder of the twin screw extruder. The characteristics of the obtained microporous membrane are shown in Table 2.
  • the polyolefin microporous membrane according to the present invention has good impedance characteristics, excellent oxidation resistance and withstand voltage characteristics, it is particularly like a non-aqueous electrolyte secondary battery represented by a lithium ion secondary battery. It can be suitably used for a secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Cell Separators (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Secondary Cells (AREA)

Abstract

ポリプロピレン樹脂を80質量%以上含み、ポロメータによる最大孔径が30.0nm未満、平均流量孔径が20.0nm未満であることを特徴とするポリオレフィン微多孔膜および電池用セパレータ。このようなポリオレフィン微多孔膜は、優れた耐酸化性と耐電圧特性を有する。

Description

ポリオレフィン微多孔膜、その製造方法および電池用セパレータ
 本発明は、ポリオレフィン微多孔膜、その製造方法および電池用セパレータに関し、より詳しくは、耐酸化性、インピーダンス特性および耐電圧特性に優れ、電池用セパレータに好適に使用できるポリオレフィン微多孔膜、その製造方法および電池用セパレータに関するものである。
 近年のリチウムイオン二次電池の高出力密度化、高容量化に伴い、耐酸化性と耐電圧特性に優れたバッテリーセパレータフィルムが要望されている。
 特開平5-222237号公報には、造核剤、ポリオレフィンに対する良溶媒と造核剤の分散性に優れた溶媒との混合溶媒およびポリオレフィンを溶融混合してなるポリオレフィン溶液を冷却してゲル状組成物を形成し、ゲル状組成物を加熱延伸し、しかる後残存溶媒を除去することにより製造されるポリオレフィン微多孔膜が記載されている。このようなポリオレフィン微多孔膜は、混合溶媒を使用するため、上記ポリオレフィン溶液中で均一に溶媒が分散せず、得られるポリオレフィン微多孔膜のポロメータによる最大孔径、平均流量孔径がともに大きくなり、透気抵抗度も低下する。このため電池のセパレータとして使用するためには、耐電圧特性に更なる改良が必要であった。
 特開2010-215901号公報、特表2009-527633号公報には、乾式法として知られている製造方法によるポリプロピレン多孔性フィルムが開示されている。具体的には、溶融押出時に低温押出、高ドラフト比を採用して、シート化した延伸前のフィルム中のラメラ構造を制御し、これを延伸することで、空隙を形成する方法である。しかし、このような製造方法では、細孔構造が不均一になりやすく、局所的にボイドを含む構造が生じる懸念がある。中でも微多孔膜表面の細孔の孔径が大きくなり、その分布も不均一となることから、耐絶縁破壊特性に劣るといった問題があった。
 特開平6-223802号公報には高分子量ポリエチレンおよび高分子量ポリプロピレンの混合物から形成された微多孔膜が記載されている。しかし、このような微多孔膜は、インピーダンスは低いものの、大部分がポリエチレンにより構成されているため、耐酸化性に更なる改良が必要であった。
特開平5-222237号公報 特開2010-215901号公報 特表2009-527633号公報 特開平6-223802号公報
 本発明の目的は、優れた耐酸化性と耐電圧特性を有するポリオレフィン微多孔膜および電池用セパレータを提供することである。
 本発明の第1の態様は、ポリプロピレン樹脂を80質量%以上含んでなるポリオレフィン樹脂からなり、ポロメータによる最大孔径が30.0nm未満、平均流量孔径が20.0nm未満であることを特徴とするポリオレフィン微多孔膜である。
 前記ポリオレフィン樹脂は、ポリプロピレン樹脂を90質量%以上含むことが好ましく、ポリプロピレン樹脂の重量平均分子量は1×10以上1×10以下であることが好ましい。
 前記ポリオレフィン微多孔膜の表面細孔の最大孔径は、300nm以下であることが好ましい。
 前記ポリオレフィン微多孔膜は、空孔率が20~80%であることが好ましく、インピーダンスが15Ω・cm以下であることが好ましく、膜厚を20μmとした時の透気抵抗度が300sec/100cc以上であることが好ましい。
 本発明の第2の態様は、前記ポリオレフィン微多孔膜からなる電池用セパレータであり、本発明の第3の態様は、前記セパレータを用いた二次電池である。
 本発明の第4の態様は、下記(1)~(5)の工程を含むことを特徴とする、最大孔径が30.0nm未満、平均流量孔径が20.0nm未満のポリオレフィン微多孔膜の製造方法である。
(1)ポリプロピレン樹脂を80質量%以上含んでなるポリオレフィン樹脂、結晶化制御剤および成膜用溶剤を溶融混練し、ポリオレフィン溶液を調製する工程
(2)前記ポリオレフィン溶液を押出し、冷却しゲル状シートを形成する工程
(3)前記ゲル状シートを延伸する延伸工程
(4)前記延伸後のゲル状シートから成膜用溶剤を除去する工程
(5)前記成膜用溶剤除去後のシートを乾燥する工程
 本発明のポリオレフィン微多孔膜は、ポリプロピレンを主成分とし、微細で均一な多孔質構造を有するので、良好なインピーダンス特性、優れた耐酸化性および耐電圧特性を有する。本発明のポリオレフィン微多孔膜の製造方法は、良好なインピーダンス特性、優れた耐酸化性および耐電圧特性を有するポリオレフィン微多孔膜を効率よく製造することができる。本発明の電池用セパレータは、良好なインピーダンス特性、優れた耐酸化性および耐電圧特性を有するポリオレフィン微多孔膜からなるので、リチウムイオン二次電池のような電池に使用した際に、電池の長寿命化、良化した充放電サイクル特性および改善された安全性を付与することが期待できる。
図1は、本願実施例4で得られた微多孔膜のSEM像である。 図2は、本願実施例7で得られた微多孔膜のSEM像である。 図3は、本願比較例1で得られた微多孔膜のSEM像である。 図4は、本願比較例2で得られた微多孔膜のSEM像である。
1.ポリオレフィン微多孔膜
 本発明のポリオレフィン微多孔膜は、ポリオレフィン樹脂からなる。
 以下、本発明について、各項目毎に説明する。
(1)ポリオレフィン樹脂
 ポリオレフィン樹脂は、ポリプロピレン樹脂を主成分とする。ポリオレフィン樹脂中のポリプロピレン樹脂の含有量は、80質量%以上であることが好ましく、より好ましくは90質量%以上、さらに好ましくは95質量%以上、最も好ましくは100質量%である。ポリオレフィン樹脂中のポリプロピレン樹脂の含有量が上記範囲未満であると本発明のポリオレフィン微多孔膜の耐酸化性が悪化する。
(i)ポリプロピレン樹脂
 ポリプロピレン樹脂としては、その重量平均分子量が1×10以上1×10以下であることが好ましく、1×10以上1×10以下であることがさらに好ましい。ポリプロピレン樹脂の分子量分布は5以上10以下程度であることが好ましい。ポリオレフィン樹脂の重量平均分子量が上記範囲内であると、成膜用溶剤と溶融混練して押出す工程での取り扱い作業性が向上する。
 ポリプロピレン樹脂の融点は特に限定されないが、180℃以下であることが好ましい。
 ポリプロピレン樹脂は、他のオレフィンとの共重合体であってもよいが、ホモポリマーであることが好ましい。ポリプロピレンと他のオレフィンとの共重合体としては、プロピレン-エチレン共重合体、プロピレン-ブテン共重合体、プロピレン-ヘキセン共重合体等を挙げることができる。
(ii)ポリプロピレン以外のポリオレフィン樹脂
 本発明のポリオレフィン微多孔膜はポリオレフィン樹脂として、ポリエチレン、ポリブテン等のポリプロピレン以外のポリオレフィンを少量含んでもよい。このようなポリオレフィンとしては、Mwが1×10~1×10のポリエチレン、Mwが1×10~5×10の超高分子量ポリエチレン、Mwが1×10~4×10のポリブテン-1ポリブテン-1、ポリペンテン-1、ポリヘキセン-1、ポリオクテン-1およびMwが1×10~1×10のポリエチレンワックスからなる群から選ばれた少なくとも一種を用いてもよい。
 前記ポリプロピレン樹脂以外のポリオレフィンのポリオレフィン樹脂中の含有量は、本発明の効果を損なわない範囲で、適宜調節できるが、ポリオレフィン樹脂中、20質量%以下が好ましく、10質量%以下がより好ましく、5質量%未満がさらに好ましい。
(iii)その他の樹脂成分
 前記ポリオレフィン樹脂は、必要に応じて、前記ポリオレフィン樹脂以外のその他の樹脂成分を含むことができる。その他の樹脂成分としては、耐熱性樹脂であることが好ましく、耐熱性樹脂としては、例えば、融点が150℃以上の結晶性樹脂(部分的に結晶性である樹脂を含む)、および/又はガラス点移転(Tg)が150℃以上の非晶性樹脂が挙げられる。ここでTgはJIS K7121に準拠して測定した値である。
 その他の樹脂成分の具体例としては、ポリエステル、ポリメチルペンテン[PMP又はTPX(トランスパレントポリマーX)、融点:230~245℃]、ポリアミド(PA、融点:215~265℃)、ポリアリレンスルフィド(PAS)、ポリフッ化ビニリデン(PVDF)などのフッ化ビニリデン単独重合体やポリテトラフルオロエチレン(PTFE)などのフッ化オレフィンおよびこれらの共重合体などの含フッ素樹脂;ポリスチレン(PS、融点:230℃)、ポリビニルアルコール(PVA、融点:220~240℃)、ポリイミド(PI、Tg:280℃以上)、ポリアミドイミド(PAI、Tg:280℃)、ポリエーテルサルフォン(PES、Tg:223℃)、ポリエーテルエーテルケトン(PEEK、融点:334℃)、ポリカーボネート(PC、融点:220~240℃)、セルロースアセテート(融点:220℃)、セルローストリアセテート(融点:300℃)、ポリスルホン(Tg:190℃)、ポリエーテルイミド(融点:216℃)等が挙げられる。樹脂成分は、単一樹脂成分からなるものに限定されず、複数の樹脂成分からなるものでもよい。その他の樹脂成分の好ましいMwは、樹脂の種類により異なるが、一般的に1×10~1×10であり、より好ましくは1×10~7×10である。また、前記ポリオレフィン樹脂中のその他の樹脂成分の含有量は、本発明の趣旨を逸脱しない範囲で適宜、調節されるが、前記ポリオレフィン樹脂中、20質量%以下の範囲で含有され、好ましくは5質量%未満である。
(2)結晶化制御剤
 結晶化制御剤とは、ポリオレフィン樹脂に配合することでポリオレフィン樹脂の結晶化を促進または抑制する添加剤であり、造核剤、透明化剤、結晶化遅延剤等があげられる。中でも造核剤および結晶化遅延剤が好ましい。結晶化制御剤の配合により、本発明のポリオレフィン微多孔膜の細孔構造が均一に微細になることが期待できる。
(i)造核剤
 造核剤としては、ポリプロピレン樹脂用造核剤が好適に使用でき、芳香族リン酸エステル金属塩系造核剤、安息香酸金属塩系造核剤等のカルボン酸金属塩系造核剤、ソルビトール系造核剤およびこれらの混合物などポリオレフィン樹脂用造核剤として一般的に使用されるものが使用できる。中でも、後述するポリオレフィン樹脂溶液への分散性の観点から、基本的にヒドロシリル基を含有しない芳香族リン酸エステル金属塩系造核剤、安息香酸金属塩系造核剤等のカルボン酸金属塩系造核剤およびこれらの混合物であることが好ましい。なお、ポリプロピレン樹脂用造核剤としては市販の複数成分からなる造核剤マスターバッチを用いてもよい。
 ポリプロピレン樹脂用造核剤としては、α晶造核剤、β晶造核剤、γ晶造核剤が例示されるが、生成される結晶が微小となる傾向にある点からα晶造核剤であることが好ましい。β晶造核剤を使用した場合は、粗大化した針状結晶が形成される場合がある。
 芳香族リン酸エステル金属塩系造核剤としては、例えば、ナトリウムビス(4-tert-ブチルフェニル)ホスフェート、ナトリウム 2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)ホスフェート等が挙げられる。
 カルボン酸金属塩系造核剤としては、例えば、安息香酸リチウム塩、安息香酸ナトリウム塩、4-第三ブチル安息香酸アルミニウム塩、アジピン酸ナトリウム等が挙げられる。
 ソルビトール系造核剤としては、例えば、ジベンジリデンソルビトール、ビス(4-メチルベンジリデン)ソルビトール、ビス(3,4-ジメチルベンジリデン)ソルビトール等が挙げられる。
 造核剤の配合量は、一般的にポリオレフィン樹脂100質量部に対して0.01~5.00質量部であり、さらに好ましくは0.05~3.00質量部であるが、特に限定されない。造核剤は、ポリオレフィン樹脂に直接配合してもよく、ポリオレフィン樹脂と造核剤を予め混合したマスターバッチとして、ポリオレフィン樹脂に配合しても良い。
(ii)結晶化遅延剤
 ポリオレフィン樹脂の結晶化遅延剤としては、非晶性ポリオレフィン樹脂、低結晶性ポリオレフィン樹脂などが使用でき、中でも低結晶性ポリプロピレン樹脂などが好適に使用できる。
 具体的には、非晶性ポリオレフィン樹脂としては、例えば、ポリスチレン、ポリカーボネート等が挙げられ、低結晶性ポリオレフィン樹脂としては、エチレン-プロピレン、エチレン-ブテン等のランダム共重合体、アタクチックポリプロピレン等の低立体規則性ポリオレフィンが挙げられる。
 結晶化遅延剤の配合量は、一般的にポリオレフィン樹脂100質量部に対して0.01~5.00質量部であり、さらに好ましくは0.05~3.00質量部であるが、特に限定されない。
(3)ポリオレフィン微多孔膜の特性
 本発明のポリオレフィン微多孔膜は、ポロメータによる最大孔径が30.0nm未満であり、平均流量孔径が20.0nm未満であるため、インピーダンス特性および耐電圧特性に優れる。
(i)最大孔径
 本発明のポリオレフィン微多孔膜の最大孔径は、30.0nm未満であり、好ましくは29.0nm未満であり、特に好ましくは28.9nm以下である。最大孔径の下限は特に限定されないが、15.0nm以下であってもよく、15.0nmであることが好ましい。最大孔径を上記範囲内とすることで、ポリオレフィン微多孔膜に優れた絶縁破壊電圧を付与することができる。本明細書において、「最大孔径」とは、ポリオレフィン微多孔膜中に分布する全貫通孔の中で最大の孔径を示すものであり、ポロメータなどを用いたバブルポイント法により測定できる。
 本発明のポリオレフィン微多孔膜をセパレータとして利用した場合、小孔径であるため、電池内においては耐電圧性能に優れ、デンドライド析出・成長による部分短絡(マイクロショート)を防止でき、電池のサイクル特性の改善が期待される。
(ii)平均流量孔径
 本発明のポリオレフィン微多孔膜の平均流量孔径は、20.0nm未満であり、好ましくは18.0nm以下であり、より好ましくは16.0nm以下であり、特に好ましくは15.0nm以下である。平均流量孔径の下限は特に限定されないが、ポロメータの測定範囲限界以下であってもよい。中でも、平均流量孔径が測定限界以下~17.0nmであることがより好ましく、測定限界以下~15.0nmであることが特に好ましい。平均流量孔径を上記範囲内とすることで、ポリオレフィン微多孔膜の絶縁破壊電圧が高くなる。本明細書において、「平均流量孔径」とは、ポリオレフィン微多孔膜中に分布する全貫通孔の平均流量孔径を示すものであり、ポロメータにより測定できる。
 最大孔径および、平均流量孔径を上記範囲にする手段としては、例えば、ポリオレフィン樹脂に結晶化制御剤を配合し、成膜時の延伸温度をポリオレフィン樹脂の結晶分散温度(Tcd)~Tcd+30℃の範囲内にすることなどが挙げられる。前記手段により延伸の際の延伸応力が、膜を構成する構造に均一に作用し、微多孔膜の細孔構造を制御できると考えられる。
 また、ポリオレフィン樹脂と親和性の高い結晶化制御剤を使用したり、ポリオレフィン樹脂に予め結晶化制御剤を均一に分散したマスターバッチを使用したりすることも、ポリオレフィン微多孔膜の最大孔径および平均流量孔径を上記範囲に調整する点から好ましい。
 本発明のポリオレフィン微多孔膜の最大孔径および平均流量孔径は、ポロメータを用いて以下の方法で測定することができる。まず、乾燥状態の試料(以下、単に「乾燥試料」とも記す)と、測定液が細孔内に充填された湿潤状態の試料(以下、単に「湿潤試料」とも記す)のそれぞれについて、ポロメータを用いて空気圧と空気流量の関係を測定し、乾燥試料の通気曲線(Dry Curve)および湿潤試料の通気曲線(Wet Curve)を得る。
 測定液が細孔内に充填された湿潤試料は、液体を満たした毛細管と同様の特性を示す。湿潤試料をポロメータにセットして空気圧を徐々に高めてゆくと、径の大きい細孔から順に、空気圧が細孔内の測定液の表面張力に打ち勝って測定液が当該細孔内から押し出され、それに伴って空気流量が徐々に増加し、最終的に試料は乾燥状態となる。従って、液体がその細孔から押し出される際の圧力を測定する事によって、細孔直径を算出できる。ここで、細孔の形状が略円柱状であると仮定すると、直径Dの細孔内に圧力Pの空気が侵入する条件は、測定液の表面張力をγ、測定液の接触角をθとして、下記の式1に示すWashburnの式で表される。
  PD=4γcosθ  ……(式1)
 特に、気泡の発生が最初に検出される測定点(最大孔径を示す測定点)をバブルポイント(Bubble Point)と呼ぶ。バブルポイントの標準的な測定方法としては、例えばASTM F316-86に記載の方法が挙げられる。
 また、本発明のポリオレフィン微多孔膜の平均流量孔径は、上述の乾燥試料の通気曲線(Dry Curve)および湿潤試料の通気曲線(Wet Curve)を用いて、ASTM E1294-89に規定するハーフドライ法に基づいて求めることができる。乾燥試料の通気曲線(Dry Curve)の1/2の傾きの曲線(Half-Dry Curve)と、湿潤試料の通気曲線(Wet Curve)とが交わる点の圧力を平均流量径圧力(Mean Flow Pressure)として求め、この平均流量径圧力を上記(式1)に代入することにより、微多孔膜の平均流量孔径(Mean Flow Pore Diameter)が算出される。
 一方、圧力Pjにおける湿潤試料の空気流量をFw,j、乾燥試料の空気流量をFd,jとするとき、累積フィルタ流量(CFF:Cumulative Filter Flow,単位:%)および細孔径分布(PSF:Pore Size Frequency,単位:%)は、それぞれ以下の式によって算出される。
  CFF=[(Fw,j/Fd,j)×100]  ……(式2)
  PSF=(CFF)j+1-(CFF)j  ……(式3)
(iii)インピーダンス
 本発明のポリオレフィン微多孔膜は、膜厚を20μmとしたときのインピーダンスが 15.0Ω・cm以下であることが好ましく、13.0Ω・cm以下であることがより好ましい。ここで、膜厚を20μmとしたときのインピーダンス(I2)とは、膜厚T1(μm)の微多孔膜において、測定したインピーダンスをI1とするとき、式:I2=(I1×20)/T1によって算出されるインピーダンスI2のことを指す。ポリオレフィン微多孔膜のインピーダンスが上記範囲内であると、バッテリーセパレータとして使用した際、電池のサイクル特性が良好になることが期待できるからである。
 本発明のポリオレフィン微多孔膜のインピーダンスは、インピーダンス測定装置(ソーラトロン製、SI1250、SI1287)を用いて測定することができる。具体的には、Ni箔(30mm×20mm)をガラス板(50mm(W)×80mm(L)×3mm(T))の上に設けた電極間に、微多孔膜(30mm(W)×20mm(L))、および、溶媒としてエチレンカーボネート:エチルメチルカーボネート=(4:6)1mol/LのLiPFを用いた、電解液0.02mlを挟み測定を行い、10mAの測定条件で、1.0kHzのインピーダンスを求めた(Ω・cm)。
(iv)絶縁破壊電圧
 本発明のポリオレフィン微多孔膜は、絶縁破壊電圧が0.10~0.30kV/μmであることが好ましく、0.15~0.25kV/μmであることがより好ましく、0.18~0.21kV/μmであることが特に好ましい。ポリオレフィン微多孔膜の絶縁破壊電圧が上記範囲内であると、バッテリーセパレータとして使用した際、電池の耐久性、耐電圧性能が良好になることが期待できるからである。
 本発明のポリオレフィン微多孔膜の絶縁破壊電圧は、例えば、JIS C2110やASTM D149に規定される方法に準じて測定することができる。
(v)空孔率
 本発明のポリオレフィン微多孔膜の空孔率は20~80%であることが好ましい。空孔率が上記範囲内であると、微多孔膜のインピーダンスと強度が良好になるので好ましい。空孔率は30~65%であることがより好ましく、40~45%であることが特に好ましい。
(vi)透気抵抗度
 本発明のポリオレフィン微多孔膜は、膜厚を20μmとしたときの透気抵抗度が300sec/100cc以上、5000sec/100cc以下が好ましく、さらに4000sec/100cc以下がより好ましく、3500sec/100cc以下が特に好ましい。ここで、膜厚を20μmとしたときの透気抵抗度とは、膜厚T(μm)の微多孔膜において、JIS P 8117(2009)に準拠して測定した透気抵抗度をPするとき、式:P=(P×20)/Tによって算出される透気抵抗度Pのことを指す。ポリオレフィン微多孔膜の透気抵抗度が上記範囲内であると、耐電圧特性、インピーダンス特性の観点から有利である。
(vii)耐酸化性
 本発明のポリオレフィン微多孔膜の耐酸化性は、セパレータの黒色化の程度により評価できる。電池用セパレータの黒色化は電池内の正極のコバルトの還元と並行して発生するポリマーのラジカル連鎖的酸化反応に起因するポリマーのポリエン化が原因と考えられている。黒色化が進行すると膜強度の劣化、短絡が引き起こされる。ポリエチレンは分子構造から連鎖的に酸化反応が進行するのに対し、ポリプロピレンは、連鎖反応を止める性質を持ち黒色化(酸化)の進行を防ぐ効果が期待できる。
(viii)表面細孔の最大孔径(表面最大孔径)
 本発明のポリオレフィン微多孔膜は、その表面に開いた細孔の最大孔径が300nm以下であることが好ましく、200nm以下であることがさらに好ましく、150nm以下であることがより好ましい。上記表面細孔の最大孔径は、SEMにより5μm×5μmの範囲でポリオレフィン微多孔膜表面を観察した際に認められる細孔開口部の最も長い孔径を長径1とし、前記長径に直行する方向で最も長い孔径を長径2としたとき、観察された細孔開口部の有する最大の長径1として測定できる。ポリオレフィン微多孔膜の表面に開いた細孔の最大孔径が上記範囲内であると、絶縁破壊電圧が高くなるため耐電圧特性に有利である。
(ix)ポリプロピレン樹脂のβ晶に由来する結晶融解熱ピーク
 本発明のポリオレフィン微多孔膜は、好ましくは、示差走査型熱量計を用いた示差熱分析においてポリプロピレン樹脂のβ晶に由来する結晶融解熱ピークを有さない。本明細書において、「結晶融解熱ピーク」とは、示差走査型熱量計で得られる極大値を有する曲線を示す。一般にβ晶造核剤を配合すると、ポリプロピレン樹脂のβ晶由来結晶融解熱ピークが検出されるが、その場合、ポリオレフィン微多孔膜の最大孔径や平均流量孔径が粗大化する場合があるからである。
一般に、上記ポリプロピレン樹脂のβ晶に由来する結晶融解熱ピークは、ポリプロピレン樹脂のα晶に由来する結晶融解熱ピークの低温側に認められる。具体的には、例えば、ポリプロピレンホモポリマーの場合140℃以上160℃未満に認められ、エチレンが1~4モル%共重合されたランダムプロピレンエチレン共重合体の場合120℃以上140℃未満の範囲に認められる。具体的な測定方法は後述する。
2.ポリオレフィン微多孔膜の製造方法
 本発明のポリオレフィン微多孔膜の製造方法としては、上述した特性を有するポリオレフィン微多孔膜が製造できれば、特に限定されず、従来公知の方法を用いることができる。例えば、日本国特許第2132327号および日本国特許第3347835号公報、国際公開2006/137540号等に記載された方法を用いることができる。具体的には、下記の工程(1)~(5)を含むことが好ましく、下記の工程(6)をさらに含んでもよく、さらに下記の工程(7)を含むこともできる。
 (1)前記ポリオレフィン樹脂、結晶化制御剤および成膜用溶剤を溶融混練し、ポリオレフィン溶液を調製する工程
 (2)前記ポリオレフィン溶液を押出し、冷却しゲル状シートを形成する工程
 (3)前記ゲル状シートを延伸する第1の延伸工程
 (4)前記延伸後のゲル状シートから成膜用溶剤を除去する工程
 (5)前記成膜用溶剤除去後のシートを乾燥する工程
 (6)前記乾燥後のシートを延伸する第2の延伸工程
 (7)前記乾燥後のシートを熱処理する工程
 以下、各工程についてそれぞれ説明する。
(1)ポリオレフィン溶液の調製工程 
 ポリオレフィン樹脂に、結晶化制御剤および適当な成膜用溶剤を配合した後、溶融混練し、ポリオレフィン溶液を調製する。溶融混練方法として、例えば日本国特許第2132327号および日本国特許第3347835号公報に記載の二軸押出機を用いる方法を利用することができる。溶融混練方法は公知であるので説明を省略する。
 ポリオレフィン溶液中、ポリオレフィン樹脂と成膜用溶剤との配合割合は、特に限定されないが、ポリオレフィン樹脂20~50質量部に対して、成膜溶剤50~80質量部であることが好ましく、ポリオレフィン樹脂30~45質量部に対して、成膜溶剤55~70質量部であることが好ましい。
 上記のポリオレフィン溶液を経てポリオレフィン微多孔膜を製造すると、膜成形加工性に優れるので、膜物性の制御の観点から好ましい。
 押出し成形体の成形性を改善するために、ポリオレフィン溶液に造核剤、結晶化遅延剤などの結晶化制御剤を配合する。その配合量としては、ポリオレフィン樹脂100質量部に対し0.01~5質量部が好ましく、さらに好ましくは0.05~3質量部である。結晶化制御剤の配合量が上記範囲内であると押出し成形体の取り扱い作業性が良好であり、均一な延伸フィルムを得ることができる。
(2)ゲル状シートの形成工程
 ポリオレフィン溶液を押出機からダイに送給し、シート状に押し出す。同一または異なる組成の複数のポリオレフィン溶液を、押出機から一つのダイに送給し、そこで層状に積層し、シート状に押出してもよい。
 押出方法はフラットダイ法およびインフレーション法のいずれでもよい。押出し温度は140~250℃好ましく、押出速度は0.2~15m/分が好ましい。ポリオレフィン溶液の各押出量を調節することにより、膜厚を調節することができる。
 押出方法としては、例えば日本国特許第2132327号公報および日本国特許第3347835号公報に開示の方法を利用することができる。
 得られた押出し成形体を冷却することによりゲル状シートを形成する。ゲル状シートの形成方法として、例えば日本国特許第2132327号公報および日本国特許第3347835号公報に開示の方法を利用することができる。冷却は少なくともゲル化温度までは50℃/分以上の速度で行うのが好ましい。冷却は25℃以下まで行うのが好ましい。
(3)第1の延伸工程
 次に、得られたゲル状シートを少なくとも一軸方向に延伸する。ゲル状シートは、結晶化制御剤および成膜用溶剤を含むので、均一に延伸できる。ゲル状シートは、加熱後、テンター法、ロール法、インフレーション法、又はこれらの組合せにより所定の倍率で延伸するのが好ましい。延伸は一軸延伸でも二軸延伸でもよいが、二軸延伸が好ましい。二軸延伸の場合、同時二軸延伸、逐次延伸および多段延伸(例えば同時二軸延伸および逐次延伸の組合せ)のいずれでもよい。
 本工程における延伸倍率(面積延伸倍率)は、一軸延伸の場合、2倍以上が好ましく、3~30倍がより好ましい。二軸延伸の場合、9倍以上が好ましく、16倍以上がより好ましく、25倍以上が特に好ましい。また、長手および横手方向(MDおよびTD方向)のいずれでも3倍以上が好ましく、MD方向とTD方向での延伸倍率は、互いに同じでも異なってもよい。延伸倍率を9倍以上とすると、突刺強度の向上が期待できる。なお、本工程における延伸倍率とは、本工程直前の微多孔膜を基準として、次工程に供される直前の微多孔膜の面積延伸倍率のことをいう。
 本工程の延伸温度は、ポリオレフィン樹脂の結晶分散温度(Tcd)~Tcd+30℃の範囲内にするのが好ましく、結晶分散温度(Tcd)+5℃~結晶分散温度(Tcd)+25℃の範囲内にするのがより好ましく、Tcd+10℃~Tcd+20℃の範囲内にするのが特に好ましい。延伸温度が上記範囲内であるとポリオレフィン樹脂延伸による破膜が抑制され、高倍率の延伸ができ、得られるポリオレフィン微多孔膜の細孔構造が微細化、均一化される。
 結晶分散温度(Tcd)は、ASTM D4065による動的粘弾性の温度特性測定により求められる。本発明のポリオレフィン樹脂は、約110~130℃の結晶分散温度を有するので、延伸温度は110~160℃であることが好ましく、より好ましくは115~155℃であり、さらに好ましくは120~150℃である。
 以上のような延伸によりポリプロピレンラメラ間に開裂が起こり、ポリプロピレン相が微細化し、多数のフィブリルが形成される。フィブリルは三次元的に不規則に連結した極めて微細な網目構造を形成する。
 所望の物性に応じて、膜厚方向に温度分布を設けて延伸してもよく、これにより一層機械的強度に優れた微多孔膜が得られる。その方法の詳細は日本国特許第3347854号に記載されている。
(4)成膜用溶剤の除去
 洗浄溶媒を用いて、成膜用溶剤の除去(洗浄)を行う。ポリオレフィン相は成膜用溶剤相と相分離しているので、成膜用溶剤を除去すると、微細な三次元網目構造を形成するフィブリルからなり、三次元的に不規則に連通する孔(空隙)を有する多孔質の膜が得られる。洗浄溶媒およびこれを用いた成膜用溶剤の除去方法は公知であるので説明を省略する。例えば日本国特許第2132327号公報や特開2002-256099号公報に開示の方法を利用することができる。
(5)乾燥
 成膜用溶剤を除去した微多孔膜を、加熱乾燥法又は風乾法により乾燥する。乾燥温度はポリオレフィン樹脂の結晶分散温度(Tcd)以下であるのが好ましく、特にTcdより5℃以上低いことが好ましい。乾燥は、微多孔膜を100質量%(乾燥重量)として、残存洗浄溶媒が5質量%以下になるまで行うのが好ましく、3質量%以下になるまで行うのがより好ましい
(6)第2の延伸工程
 必要に応じて、乾燥後の微多孔膜を、少なくとも一軸方向に延伸してもよい。微多孔膜の延伸は、加熱しながら上記と同様にテンター法等により行うことができる。延伸は一軸延伸でも二軸延伸でもよい。二軸延伸の場合、同時二軸延伸および逐次延伸のいずれでもよい。
 本工程における延伸温度は、特に限定されないが、通常90~150℃であり、より好ましくは95~145℃である。
 本工程における微多孔膜の延伸の一軸方向への延伸倍率(面積延伸倍率)は、下限が1.0倍以上であるのが好ましく、より好ましくは1.1倍以上、さらに好ましくは1.2倍以上である。また、上限が1.8倍以下とするのが好ましい。一軸延伸の場合、MD方向又はTD方向に1.0~2.0倍とする。二軸延伸の場合、面積延伸倍率は、下限が1.0倍以上であるのが好ましく、より好ましくは1.1倍以上、さらに好ましくは1.2倍以上である。上限は、3.5倍以下が好適であり、MD方向およびTD方向に各々1.0~2.0倍とし、MD方向とTD方向での延伸倍率が互いに同じでも異なってもよい。なお、本工程における延伸倍率とは、本工程直前の微多孔膜を基準として、次工程に供される直前の微多孔膜の延伸倍率のことをいう。
(7)熱処理
 また、乾燥後の微多孔膜は、熱処理を行うことができる。熱処理によって結晶が安定化し、ラメラが均一化される。熱処理方法としては、熱固定処理および/又は熱緩和処理を用いることができる。熱固定処理とは、膜の寸法が変わらないように保持しながら加熱する熱処理である。熱緩和処理とは、膜を加熱中にMD方向やTD方向に熱収縮させる熱処理である。熱固定処理は、テンター方式又はロール方式により行うのが好ましい。例えば、熱緩和処理方法としては特開2002-256099号公報に開示の方法があげられる。熱処理温度はポリオレフィン樹脂のTcd~Tmの範囲内が好ましく、微多孔膜の延伸温度±5℃の範囲内がより好ましく、微多孔膜の第2の延伸温度±3℃の範囲内が特に好ましい。
3.積層多孔膜
 また、前記ポリオレフィン微多孔膜の少なくとも一方の表面に、多孔層を設け、積層多孔膜としてもよい。多孔層としては、例えば、フィラーと樹脂バインダとを含むフィラー含有樹脂溶液や耐熱性樹脂溶液を用いて形成される多孔層を挙げることができる。
 前記フィラーとしては、アルミナ、シリカ、チタニア、ジルコニアなどの無機フィラーやフッ素樹脂粒子、架橋高分子フィラーなどの有機フィラーが挙げられ、200℃以上の融点をもち、電気絶縁性が高く、かつリチウムイオン二次電池の使用範囲で電気化学的に安定であるものが好ましい。これらは1種を単独で、又は2種以上を併用することができる。
 前記フィラーの平均粒径は特に限定されないが、例えば、好ましくは0.1μm以上3.0μm以下である。
 前記フィラーが、前記多孔層中に占める割合(質量分率)としては、耐熱性の点から、好ましくは50%以上99.99%以下である。
 前記樹脂バインダとしては、前述のポリオレフィン樹脂に含まれるその他の樹脂成分の項で記載したポリオレフィンや耐熱性樹脂が好適に使用できる。
 前記樹脂バインダが、前記フィラーと前記樹脂バインダとの総量に占める割合としては、両者の結着性の点から、体積分率で0.5%以上8%以下であることが好ましい。
 前記耐熱性樹脂としては、前述のポリオレフィン樹脂に含まれるその他の樹脂成分の項で記載した耐熱性樹脂と同様のものが好適に使用できる。
 前記フィラー含有樹脂溶液や耐熱性樹脂溶液をポリオレフィン微多孔膜の表面に塗布する方法としては、グラビアコーター法など、必要とする層厚や塗布面積を実現できる方法であれば特に限定されない。
 前記フィラー含有溶液や耐熱性樹脂溶液の溶媒としては、ポリオレフィン微多孔膜に塗布した溶液から除去され得る溶媒であることが好ましく、特に限定されない。具体的には、例えば、N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、水、エタノール、トルエン、熱キシレン、塩化メチレン、ヘキサンが挙げられる。
 溶媒を除去する方法としては、ポリオレフィン微多孔膜に悪影響を及ぼさない方法であれば特に限定することない。具体的には、例えば、ポリオレフィン微多孔膜を固定しながらその融点以下の温度で乾燥する方法、減圧乾燥する方法、樹脂バインダや耐熱性樹脂の貧溶媒に浸漬して樹脂を凝固させると同時に溶媒を抽出する方法が挙げられる。
 前記多孔層の厚さとしては、耐熱性向上の観点から、好ましくは0.5μm以上100μm以下である。
 本発明の積層多孔膜において、前記多孔層の厚さが、積層多孔膜の厚さに占める割合は、目的に応じて適宜調整して使用できる。具体的には、例えば15%以上80%以下であることが好ましく、20%以上75%以下がより好ましい。
 また、前記多孔層は、積層多孔膜の一方の表面に形成されてもよく、両面に形成されてもよい。
4.電池用セパレータ
 本発明のポリオレフィン微多孔膜は、水系電解液を使用する電池、非水系電解質を使用する電池のいずれにも好適に使用できる。具体的には、ニッケル-水素電池、ニッケル-カドミウム電池、ニッケル-亜鉛電池、銀-亜鉛電池、リチウム二次電池、リチウムポリマー二次電池等の二次電池のセパレータとして好ましく用いることができる。中でも、非水系電解質を使用するリチウムイオン二次電池のセパレータとして用いることが好ましい。
 リチウムイオン二次電池は、正極と負極がセパレータを介して積層されており、セパレータが電解液(電解質)を含有している。電極の構造は特に限定されず、従来公知の構造を用いることができ、例えば、円盤状の正極および負極が対向するように配設された電極構造(コイン型)、平板状の正極および負極が交互に積層された電極構造(積層型)、積層された帯状の正極および負極が巻回された電極構造(捲回型)等にすることができる。
 リチウムイオン二次電池に使用される、集電体、正極、正極活物質、負極、負極活物質および電解液は、特に限定されず、従来公知の材料を適宜組み合わせて用いることができる。
 なお、本発明は、上記の実施の形態に限定されるものでなく、その要旨の範囲内で種々変形して実施することができる。
 本発明を実施例により、さらに詳細に説明するが、本発明の実施態様は、これらの実施例に限定されるものではない。なお、実施例で用いた評価法、分析の各法および材料は、以下の通りである。
[評価方法、分析方法]
(1)膜厚(μm)
 微多孔膜の95mm×95mmの範囲内における5点の膜厚を接触厚み計(株式会社ミツトヨ製ライトマチック)により測定し、膜厚の平均値を求めた。
(2)空孔率(%)
 微多孔膜の重量wとそれと等価な空孔のないポリマーの重量w(幅、長さ、組成の同じポリマー)とを比較した、以下の式によって、空孔率を測定した。
 空孔率(%)=(w-w)/w×100
(3)透気抵抗度(sec/100cc)
 膜厚T1の微多孔膜に対して透気度計(旭精工株式会社製、EGO-1T)で透気抵抗度P1を測定した。また、式:P2=(P1×20)/T1により、膜厚を20μmとしたときの透気抵抗度P2を算出した。
(4)最大孔径および平均流量孔径(nm)
 パームポロメータ(PMI社製、CFP-1500A)を用いて、Dry-up、Wet-upの順で、最大孔径および平均流量孔径を測定した。Wet-upには表面張力が既知のPMI社製Galwick(商品名)で十分に浸した微多孔膜に圧力をかけ、空気が貫通し始める圧力から換算される孔径を最大孔径とした。
 平均流量孔径については、Dry-up測定で圧力、流量曲線の1/2の傾きを示す曲線と、Wet-up測定の曲線が交わる点の圧力から孔径を換算した。圧力と孔径の換算は下記の数式を用いた。
  d=C・γ/P
(上記式中、「d(μm)」は微多孔膜の孔径、「γ(mN/m)」は液体の表面張力、「P(Pa)」は圧力、「C」は定数とした。
(5)インピーダンス(Ω・cm
 インピーダンスは、インピーダンス測定装置(ソーラトロン製、SI1250、SI1287)を用いて測定した。Ni箔(30mm×20mm)をガラス板(50mm(W)×80mm(L)×3mm(T))の上に設けた電極間に、微多孔膜(30mm(W)×20mm(L))、および、溶媒としてエチレンカーボネート:エチルメチルカーボネート=(4:6)1mol/LのLiPFを用いた電解液0.02mlを挟み測定を行い、10mAの測定条件で、1.0kHzのインピーダンスを求めた(Ω・cm)。
(6)重量平均分子量(Mw)
 PP、UHMWPEおよびHDPEのMwは以下の条件でゲルパーミエーションクロマトグラフィー(GPC)法により求めた。
 ・測定装置:Waters Corporation製GPC-150C
 ・カラム:昭和電工株式会社製Shodex UT806M
 ・カラム温度:135℃
 ・溶媒(移動相):o-ジクロルベンゼン
 ・溶媒流速:1.0 ml/分
 ・試料濃度:0.1 wt%(溶解条件:135℃/1h)
 ・インジェクション量:500μl
 ・検出器:Waters Corporation製ディファレンシャルリフラクトメーター(RI検出器)
 ・検量線:単分散ポリスチレン標準試料を用いて得られた検量線から、所定の換算定数を用いて作成した。
(7)絶縁破壊電圧
 一辺150mmの正方形のアルミニウム板上に、直径60mmの円状に切り出した膜厚T1の微多孔膜を置き、その上に真鍮製の直径50mm、高さ30mm、重さ500gの円柱電極を置いて、菊水電子工業製TOS5051A耐絶縁破壊特性試験器を接続した。0.2kV/秒の昇圧速度で電圧を加え、絶縁破壊したときの値V1を読み取った。絶縁破壊電圧の測定はそれぞれ15回行い、最大値、平均値および最小値を得た。
(8)耐酸化性
 ポリオレフィン微多孔膜の耐酸化性を評価するために、アノード、カソード、セパレータおよび電解質からなる電池化学セルにセパレータとして組み込んで、加速過充電試験を行った。
 幅40mm×長さ40mm×厚さ15μmのアルミニウム基板上に密度3.55g/cmのLiCoOを単位面積質量13.4mg/cmで積層したカソード、および、幅45mm×長さ45mm×厚さ10μmの銅フィルム基板上に密度1.65g/cmの天然黒鉛を単位面積質量5.5mg/cmで積層したアノードを用いた。アノードおよびカソードは120℃の真空オーブンで乾燥して使用した。セパレータは、長さ50mm、幅60mmのポリオレフィン微多孔膜を50℃の真空オーブンで乾燥して使用した。電解質はエチレンカーボネートとエチルメチルカーボネートの混合物(3/7、V/V)中にLiPFを1M溶解させて調製した。アノード、セパレータおよびカソードを積み重ね、セパレータに電解質を含浸させ、得られた積層体をアルミラミネート内で真空シールして密封して、電気化学セルを作製した。
 作成した電気化学セルを0.5Cの電流で電圧4.3Vまで定電流充電した後に、温度60℃下で4.3V定電圧充電を200時間行った。
 電池解体後、セパレータを取出し、ジエチルカーボネート、エタノール、N-メチルピロリドン、1規定の塩酸中で各1時間洗浄を行って付着物を除去した。その後、空気中で乾燥させ、セパレータのカソード(正極)接触面における変色を目視確認し、耐酸化性評価を行った。評価はセパレータの全体の面積当たりの変色部分の面積の割合で評価した。評価結果は下記の通りに表記した。
5%未満:◎
5%~10%未満:○
10%~20%:△
20%以上:×
(9)微多孔膜表面細孔開口部の孔径(表面最大孔径)
 日本電子製 JSM-6701F 走査電子顕微鏡(SEM)を用いて、ポリオレフィン微多孔膜表面をSEM観察し、5μm×5μmの範囲で観察された細孔開口部について、前記開口部の最も長い孔径を長径1とし、前記長径に直行する方向で最も長い孔径を長径2としてそれぞれの長さを測定した。 測定した長径1のうち最大の値のものを表面最大孔径とした。併せて、前記表面最大孔径と対になる長径2も計測した。
(10)β晶融解熱ピーク
 ポリオレフィン微多孔膜のβ晶由来の結晶融解熱ピークは、示差走査型熱量計でポリオレフィン微多孔膜を25℃から240℃まで走査温度10℃/分で昇温後1分間保持し、次に240℃から25℃まで走査速度10℃/分で降温後1分間保持し、更に25℃から240℃まで走査速度10℃/分で再昇温させ、再昇温の際の温度に対する熱量の時間変化を記録して測定した。α晶由来の結晶融解熱ピークの低温側にβ晶由来の結晶融解熱ピークが認められた場合を“あり”、認められなった場合を“なし”と評価した。
[実施例1]
 重量平均分子量(Mw)が2.6×10、分子量分布(Mw/Mn)が6.2の超高分子量ポリプロピレン(UHMWPP)24.75質量部、および、造核剤NA-11(A
DEKA社製:芳香族リン酸エステル金属塩系造核剤) 0.25質量部を二軸押出機に投入し、二軸押出機のサイドフィーダーから流動パラフィン75.00質量部を供給し、180℃、200rpmの条件で溶融混練して、ポリプロピレン樹脂溶液を二軸押出機中で調製した。続いて、ポリプロピレン樹脂溶液を、二軸押出機の先端に設置されたシート形成ダイから押し出し、得られたシート状押出物を25℃の冷却ロールで引き取りながら、ゲル状シートを形成した。次いで、ゲル状シートを120℃で5×5倍になるように二軸延伸した後、25℃の塩化メチレンに浸漬して流動パラフィンを除去し、室温で風乾後、125℃で10分間熱処理してポリプロピレン微多孔膜を調整した。得られた微多孔膜の特性を表1に示した。
[実施例2、3、4]
 同時二軸延伸時の温度をそれぞれ130℃、140℃、145℃としたこと以外は、実施例1と同様にしてポリプロピレン微多孔膜を得た。得られた微多孔膜の特性を表1に示した。
[実施例5]
 重量平均分子量(Mw)が2.60×10、分子量分布(Mw/Mn)が6.2の超高分子量ポリプロピレン(UHMWPP)23.50質量部、および重量平均分子量(Mw)が5.72×10であり、分子量分布(Mw/Mn)が4.81である高密度ポリエチレン(HDPE)1.25質量部、および、造核剤NA-11(ADEKA社製) 
0.25質量部を二軸押出機に投入し、二軸押出機のサイドフィーダーから流動パラフィン75質量部を供給したこと以外は実施例1と同様にしてポリオレフィン微多孔膜を得た。得られた微多孔膜の特性を表1に示した。
[実施例6]
 重量平均分子量(Mw)が2.60×10、分子量分布(Mw/Mn)6.2の超高分子量ポリプロピレン(UHMWPP)24.25質量部、および、結晶化遅延剤としてエルモーデュ(出光興産社製)0.75質量部を二軸押出機に投入し、二軸押出機のサイドフィーダーから流動パラフィン75質量部を供給したこと、および、延伸温度を130℃としたこと以外は実施例1と同様にしてポリオレフィン微多孔膜を得た。得られた微多孔膜の特性を表2に示した。
[実施例7] 
 延伸温度を140℃としたこと以外は実施例6と同様にしてポリオレフィン微多孔膜を得た。得られた微多孔膜の特性を表2に示した。
 なお、実施例1,2,3,5,6,7で得られた微多孔膜の平均流量孔径は、ポロメータの測定限界(14.2nm)以下であった。表1および表2には14.2nm以下と記載した。
[比較例1]
 乾式一軸延伸法により製造されたポリプロピレン製単層微多孔膜を評価し、その特性を表2に示した。
[比較例2]
 重量平均分子量Mwが2.89×10であり、分子量分布Mw/Mnが5.28である超高分子量ポリエチレン(UHMWPE)30.00質量部 と、重量平均分子量Mwが5.72×10であり、分子量分布Mw/Mnが4.81である高密度ポリエチレン(HDPE)70.00質量部とからなるポリエチレン樹脂組成物30.00質量部を二軸押出機に投入し、二軸押出機のサイドフィーダーから流動パラフィン70.00質量部を供給したこと、および、延伸温度を115℃としたこと以外は実施例1と同様にしてポリオレフィン微多孔膜を得た。得られた微多孔膜の特性を表2に示した。
[比較例3]
 重量平均分子量(Mw)が2.60×10、分子量分布(Mw/Mn)が6.2の超高分子量ポリプロピレン(UHMWPP)17.33質量部、および重量平均分子量(Mw)が5.72×10であり、分子量分布(Mw/Mn)が4.81である高密度ポリエチレン(HDPE)7.42質量部、および、造核剤NA-11(ADEKA社製)0.25質量部を二軸押出機に投入し、二軸押出機のサイドフィーダーから流動パラフィン75.00質量部を供給したこと以外は実施例1と同様にしてポリオレフィン微多孔膜を得た。得られた微多孔膜の特性を表2に示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明に係るポリオレフィン微多孔膜は、良好なインピーダンス特性、優れた耐酸化性および耐電圧特性を有するので、特に、リチウムイオン二次電池に代表される非水電解液系二次電池のような二次電池に好適に使用することができる。

Claims (15)

  1. ポリプロピレン樹脂を80質量%以上含んでなるポリオレフィン樹脂からなり、ポロメータによる最大孔径が30.0nm未満、平均流量孔径が20.0nm未満であることを特徴とするポリオレフィン微多孔膜。
  2. 前記ポリオレフィン樹脂がポリプロピレン樹脂を90質量%以上含み、前記ポリオレフィン微多孔膜のインピーダンスが15.0Ω・cm以下であることを特徴とする請求項1に記載のポリオレフィン微多孔膜。
  3. 前記ポリオレフィン微多孔膜の表面細孔の最大孔径が300nm以下であることを特徴とする請求項1または請求項2に記載のポリオレフィン微多孔膜。
  4. 前記ポリオレフィン微多孔膜中のポリプロピレン樹脂の重量平均分子量が1×10以上1×10以下であることを特徴とする請求項1~3いずれか一項に記載のポリオレフィン微多孔膜。
  5. 前記ポリオレフィン微多孔膜の空孔率が20~80%であることを特徴とする請求項1~4いずれか一項に記載のポリオレフィン微多孔膜。
  6. 前記ポリオレフィン微多孔膜の膜厚を20μmとした時の透気抵抗度が300sec/100cc以上であることを特徴とする請求項1~5いずれか一項に記載のポリオレフィン微多孔膜。
  7. 請求項1~6のいずれか一項に記載のポリオレフィン微多孔膜からなる電池用セパレータ。
  8. 非水電解液系二次電池用であることを特徴とする請求項7に記載の電池用セパレータ。
  9. 請求項7に記載の電池用セパレータを用いた二次電池。
  10. 下記(1)~(5)の工程を含むことを特徴とする、最大孔径が30.0nm未満、平均流量孔径が20.0nm未満のポリオレフィン微多孔膜の製造方法。
    (1)ポリプロピレン樹脂を80質量%以上含んでなるポリオレフィン樹脂、結晶化制御剤および成膜用溶剤を溶融混練し、ポリオレフィン溶液を調製する工程
    (2)前記ポリオレフィン溶液を押出し、冷却しゲル状シートを形成する工程
    (3)前記ゲル状シートを延伸する延伸工程
    (4)前記延伸後のゲル状シートから成膜用溶剤を除去する工程
    (5)前記成膜用溶剤除去後のシートを乾燥する工程
  11. 使用される結晶化制御剤が造核剤または結晶化遅延剤であることを特徴とする請求項10に記載のポリオレフィン微多孔膜の製造方法。
  12. ポリオレフィン微多孔膜のインピーダンスが15.0Ω・cm以下であることを特徴とする請求項10または請求項11に記載のポリオレフィン微多孔膜の製造方法。
  13. 前記ポリプロピレン樹脂の重量平均分子量が1×10以上1×10以下であることを特徴とする請求項10~12のいずれか一項に記載のポリオレフィン微多孔膜の製造方法
  14. 110℃~160℃でゲル状シートを延伸することを特徴とする請求項10~13のいずれか一項に記載のポリオレフィン微多孔膜の製造方法。
  15. さらに、下記工程を含むことを特徴とすることを特徴とする請求項10~14のいずれか一項に記載のポリオレフィン微多孔膜の製造方法。
    (7)120℃~130℃でポリオレフィン微多孔膜を熱処理する工程
PCT/JP2015/086415 2014-12-26 2015-12-25 ポリオレフィン微多孔膜、その製造方法および電池用セパレータ WO2016104789A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15873357.6A EP3239222B1 (en) 2014-12-26 2015-12-25 Polyolefin microporous membrane, method for producing same, and battery separator
CN201580070826.8A CN107223147B (zh) 2014-12-26 2015-12-25 聚烯烃微多孔膜、其制造方法以及电池用隔膜
KR1020177020964A KR102432328B1 (ko) 2014-12-26 2015-12-25 폴리올레핀 미세 다공막, 이의 제조 방법 및 전지용 세퍼레이터
JP2016566570A JP6729391B2 (ja) 2014-12-26 2015-12-25 ポリオレフィン微多孔膜、その製造方法および電池用セパレータ
US15/539,972 US10507436B2 (en) 2014-12-26 2015-12-25 Polyolefin microporous membrane, method for producing same, and battery separator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-266009 2014-12-26
JP2014266009 2014-12-26
JP2015115091 2015-06-05
JP2015-115091 2015-06-05

Publications (1)

Publication Number Publication Date
WO2016104789A1 true WO2016104789A1 (ja) 2016-06-30

Family

ID=56150800

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/086415 WO2016104789A1 (ja) 2014-12-26 2015-12-25 ポリオレフィン微多孔膜、その製造方法および電池用セパレータ
PCT/JP2015/086418 WO2016104792A1 (ja) 2014-12-26 2015-12-25 ポリオレフィン微多孔膜、その製造方法および電池用セパレータ

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/086418 WO2016104792A1 (ja) 2014-12-26 2015-12-25 ポリオレフィン微多孔膜、その製造方法および電池用セパレータ

Country Status (6)

Country Link
US (1) US10507436B2 (ja)
EP (1) EP3239222B1 (ja)
JP (2) JP6729392B2 (ja)
KR (2) KR102432328B1 (ja)
CN (2) CN107223147B (ja)
WO (2) WO2016104789A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180101249A (ko) * 2017-03-03 2018-09-12 스미또모 가가꾸 가부시키가이샤 비수 전해액 이차 전지용 세퍼레이터
KR101918445B1 (ko) 2017-03-03 2018-11-13 스미또모 가가꾸 가부시키가이샤 비수전해액 이차 전지용 세퍼레이터
US10566594B2 (en) 2017-03-03 2020-02-18 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery separator
JP2021154586A (ja) * 2020-03-26 2021-10-07 三菱ケミカル株式会社 多孔フィルム
JP2023536551A (ja) * 2020-11-16 2023-08-25 青島藍科途膜材料有限公司 リチウムイオン電池用セパレータ、その製造方法及びそれによって製造されたリチウムイオン電池

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6682942B2 (ja) * 2016-03-24 2020-04-15 三菱ケミカル株式会社 ポリプロピレン系樹脂多孔性フィルム及びその製造方法
JP6782788B2 (ja) * 2016-11-04 2020-11-11 旭化成メディカル株式会社 多孔膜及び多孔膜の製造方法
CN113024881A (zh) * 2017-03-31 2021-06-25 东丽株式会社 聚烯烃微多孔膜、非水电解液系二次电池用隔膜及非水电解液系二次电池
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
CN108123086A (zh) * 2017-11-16 2018-06-05 深圳市博盛新材料有限公司 一种制备锂离子电池隔膜的方法及锂离子电池隔膜
JP6430623B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
JP6430621B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
JP6430617B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
JP6430618B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
US11158907B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11205799B2 (en) 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP7103715B2 (ja) * 2018-10-26 2022-07-20 帝人株式会社 ポリオレフィン微多孔膜、フィルター、クロマトグラフィー担体及びイムノクロマトグラフ用ストリップ
JP7463704B2 (ja) * 2018-12-10 2024-04-09 東レ株式会社 ポリオレフィン微多孔膜、電池用セパレータ及びポリオレフィン微多孔膜の製造方法
WO2020137336A1 (ja) * 2018-12-26 2020-07-02 東レ株式会社 ポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法
JP7338234B2 (ja) * 2019-05-21 2023-09-05 株式会社Gsユアサ 非水電解質蓄電素子
CN110247006A (zh) * 2019-06-11 2019-09-17 溧阳月泉电能源有限公司 锂离子二次电池隔膜的生产方法
US11976177B2 (en) 2020-07-01 2024-05-07 Celanese International Corporation Polymer composition and membranes made therefrom with improved mechanical strength
RU2750669C1 (ru) * 2020-11-17 2021-06-30 Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ) Способ получения полимерного материала с открытыми порами
CN112615105B (zh) * 2020-12-23 2022-10-14 江苏澳盛复合材料科技有限公司 用于电池多孔薄膜的制备方法、多孔薄膜、电池隔膜以及电池
CN114733360A (zh) * 2021-01-07 2022-07-12 杭州费尔新材料有限公司 一种聚烯烃中空纤维膜的制备方法
KR102574111B1 (ko) * 2021-03-22 2023-09-01 도레이배터리세퍼레이터필름 한국유한회사 폴리올레핀 미세 다공막
KR20230115100A (ko) * 2022-01-26 2023-08-02 주식회사 엘지화학 전기화학소자용 분리막 및 이를 포함하는 전기화학소자
KR102566179B1 (ko) * 2022-02-23 2023-08-11 주식회사 엘지에너지솔루션 전기화학소자용 분리막 기재, 상기 기재를 포함하는 분리막 및 전지 셀 분리막 형성방법
WO2024077927A1 (zh) 2022-10-12 2024-04-18 中材锂膜(南京)有限公司 一种聚烯烃多孔膜及其制备方法、电池隔膜、电化学装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222237A (ja) * 1992-02-13 1993-08-31 Tonen Chem Corp ポリオレフィン微多孔膜の製造方法
JPH05222236A (ja) * 1992-02-13 1993-08-31 Tonen Chem Corp ポリオレフィン微多孔膜の製造方法
JPH0812799A (ja) * 1991-06-21 1996-01-16 Tonen Corp ポリオレフィン微多孔膜及びその製造方法
JP2007518832A (ja) * 2003-06-30 2007-07-12 スリーエム イノベイティブ プロパティズ カンパニー 難燃剤を含有する微孔質物品;フィルムおよびその多層フィルム
WO2010079799A1 (ja) * 2009-01-07 2010-07-15 株式会社プライムポリマー 微多孔膜形成用ポリプロピレン樹脂組成物

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3342755B2 (ja) 1992-10-28 2002-11-11 旭化成株式会社 円筒型電気部品用セパレ−タ−
JP3347835B2 (ja) 1993-08-13 2002-11-20 東燃化学株式会社 ポリオレフィン微多孔膜の製造方法
JP3347854B2 (ja) 1993-12-27 2002-11-20 東燃化学株式会社 ポリオレフィン微多孔膜、その製造方法、それを用いた電池用セパレーター及びフィルター
JP4734520B2 (ja) 2001-03-02 2011-07-27 東レ東燃機能膜合同会社 熱可塑性樹脂微多孔膜の製造方法
KR100470314B1 (ko) * 2003-06-17 2005-02-07 (주)삼신크리에이션 전기화학소자용 복합막, 그 제조방법 및 이를 구비한전기화학소자
CN101208198A (zh) 2005-06-24 2008-06-25 东燃化学株式会社 聚乙烯多层多微孔膜以及使用其的电池用隔板以及电池
US8795565B2 (en) 2006-02-21 2014-08-05 Celgard Llc Biaxially oriented microporous membrane
CN102089901B (zh) * 2008-07-16 2015-07-01 东丽株式会社 蓄电装置用隔膜
CN102942706A (zh) * 2008-12-19 2013-02-27 旭化成电子材料株式会社 聚烯烃制微多孔膜及锂离子二次电池用分隔件
JP2010215901A (ja) 2009-02-17 2010-09-30 Toray Ind Inc 多孔性ポリプロピレンフィルム
PL2672546T3 (pl) * 2009-03-09 2018-08-31 Asahi Kasei Kabushiki Kaisha Mikroporowata membrana poliolefinowa
CN102395623B (zh) * 2009-06-19 2013-11-06 三菱树脂株式会社 多孔性聚丙烯膜
WO2013141306A1 (ja) * 2012-03-23 2013-09-26 東レ株式会社 多孔性フィルムおよび蓄電デバイス
JP2014141644A (ja) 2012-12-26 2014-08-07 Toray Ind Inc 二軸配向多孔性ポリプロピレンフィルム、蓄電デバイス用セパレータフィルムおよび蓄電デバイス

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812799A (ja) * 1991-06-21 1996-01-16 Tonen Corp ポリオレフィン微多孔膜及びその製造方法
JPH05222237A (ja) * 1992-02-13 1993-08-31 Tonen Chem Corp ポリオレフィン微多孔膜の製造方法
JPH05222236A (ja) * 1992-02-13 1993-08-31 Tonen Chem Corp ポリオレフィン微多孔膜の製造方法
JP2007518832A (ja) * 2003-06-30 2007-07-12 スリーエム イノベイティブ プロパティズ カンパニー 難燃剤を含有する微孔質物品;フィルムおよびその多層フィルム
WO2010079799A1 (ja) * 2009-01-07 2010-07-15 株式会社プライムポリマー 微多孔膜形成用ポリプロピレン樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3239222A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180101249A (ko) * 2017-03-03 2018-09-12 스미또모 가가꾸 가부시키가이샤 비수 전해액 이차 전지용 세퍼레이터
KR101909859B1 (ko) 2017-03-03 2018-10-18 스미또모 가가꾸 가부시키가이샤 비수 전해액 이차 전지용 세퍼레이터
KR101918445B1 (ko) 2017-03-03 2018-11-13 스미또모 가가꾸 가부시키가이샤 비수전해액 이차 전지용 세퍼레이터
US10566594B2 (en) 2017-03-03 2020-02-18 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery separator
US10693115B2 (en) 2017-03-03 2020-06-23 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery separator
JP2021154586A (ja) * 2020-03-26 2021-10-07 三菱ケミカル株式会社 多孔フィルム
JP7480550B2 (ja) 2020-03-26 2024-05-10 三菱ケミカル株式会社 多孔フィルム
JP2023536551A (ja) * 2020-11-16 2023-08-25 青島藍科途膜材料有限公司 リチウムイオン電池用セパレータ、その製造方法及びそれによって製造されたリチウムイオン電池

Also Published As

Publication number Publication date
CN107250234A (zh) 2017-10-13
KR20170101288A (ko) 2017-09-05
WO2016104792A1 (ja) 2016-06-30
CN107250234B (zh) 2020-09-18
KR20170101290A (ko) 2017-09-05
KR102432328B1 (ko) 2022-08-11
JP6729392B2 (ja) 2020-07-22
EP3239222B1 (en) 2021-09-29
JPWO2016104789A1 (ja) 2017-10-05
EP3239222A1 (en) 2017-11-01
JPWO2016104792A1 (ja) 2017-10-05
JP6729391B2 (ja) 2020-07-22
KR102432330B1 (ko) 2022-08-11
US20170341035A1 (en) 2017-11-30
CN107223147A (zh) 2017-09-29
EP3239222A4 (en) 2017-11-29
CN107223147B (zh) 2021-02-26
US10507436B2 (en) 2019-12-17

Similar Documents

Publication Publication Date Title
WO2016104789A1 (ja) ポリオレフィン微多孔膜、その製造方法および電池用セパレータ
US10680224B2 (en) Polyolefin multilayer microporous film, method for producing same, and cell separator
US10686175B2 (en) Polyolefin microporous membrane, production method therefor, and battery separator
WO2019093184A1 (ja) ポリオレフィン複合多孔質膜及びその製造方法、並びに電池用セパレータ及び電池
WO2017170289A1 (ja) ポリオレフィン微多孔膜及びその製造方法、電池用セパレータ並びに電池
JP7283080B2 (ja) ポリオレフィン製微多孔膜、電池用セパレータおよび二次電池
JP7088162B2 (ja) ポリオレフィン微多孔膜
WO2017170288A1 (ja) ポリオレフィン微多孔膜及びその製造方法、電池用セパレータ並びに電池
WO2016104791A1 (ja) ポリオレフィン樹脂組成物およびポリオレフィン微多孔膜の製造方法
JP5295857B2 (ja) 非水電解液電池用セパレータ及び非水電解液電池
JP6988880B2 (ja) ポリオレフィン微多孔膜
JP2017080977A (ja) 多層微多孔膜及び蓄電デバイス用セパレータ
JP7306200B2 (ja) 多孔性ポリオレフィンフィルム
WO2022059744A1 (ja) 蓄電デバイス用セパレータ及び蓄電デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873357

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016566570

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15539972

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015873357

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177020964

Country of ref document: KR

Kind code of ref document: A