WO2013141306A1 - 多孔性フィルムおよび蓄電デバイス - Google Patents

多孔性フィルムおよび蓄電デバイス Download PDF

Info

Publication number
WO2013141306A1
WO2013141306A1 PCT/JP2013/058105 JP2013058105W WO2013141306A1 WO 2013141306 A1 WO2013141306 A1 WO 2013141306A1 JP 2013058105 W JP2013058105 W JP 2013058105W WO 2013141306 A1 WO2013141306 A1 WO 2013141306A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous film
temperature
film
stretching
porosity
Prior art date
Application number
PCT/JP2013/058105
Other languages
English (en)
French (fr)
Inventor
一馬 岡田
久万 琢也
大倉 正寿
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201380013622.1A priority Critical patent/CN104204051A/zh
Priority to KR1020147023804A priority patent/KR102147703B1/ko
Priority to JP2014506273A priority patent/JP6135665B2/ja
Publication of WO2013141306A1 publication Critical patent/WO2013141306A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a porous film and an electricity storage device. More specifically, the present invention relates to a porous film that can be suitably used for a separator used in an electricity storage device such as a non-aqueous solvent battery or a capacitor and has high output, process suitability, and excellent long-term storage.
  • Porous films are used in various applications such as separators for batteries and electrolytic capacitors, various separation membranes, clothing, and moisture-permeable waterproof membranes for medical applications. Particularly recently, it is widely used for separators of lithium ion secondary batteries.
  • One of the properties that should be provided as a separator for a lithium ion secondary battery is voltage resistance and high output power of the battery. Withstand voltage is an index indicating whether or not a separator can withstand a short-circuit when a constant voltage is applied to the separator. When the voltage resistance of the separator is low, when used in a battery, it tends to be difficult to effectively prevent self-discharge, and the battery may have poor long-term storage stability. In addition, since the short-circuit rate of the battery increases, the yield increases, and the process suitability may deteriorate.
  • a dry-stretched porous film (known as the CELGARD process) is disclosed.
  • the dry-stretching method uses a low temperature extrusion and a high draft ratio at the time of melt extrusion of the film material, thereby controlling the lamella structure in the film before stretching, which is uniaxially stretched in the longitudinal direction.
  • This is a method of generating a void at the interface (see Patent Documents 1 and 2).
  • This method is excellent in air permeability due to a specific linear through-hole structure, but has a problem that the voltage is small and electrons easily pass when voltage is applied, resulting in poor voltage resistance.
  • a biaxially stretched porous film in which a withstand voltage is improved by containing a crosslinked product obtained by crosslinking a polyolefin polymer and a polymer having a double bond (Patent Document 3). reference).
  • Patent Document 3 a crosslinked product obtained by crosslinking a polyolefin polymer and a polymer having a double bond
  • the main component is a polypropylene resin containing a ⁇ crystal nucleating agent, an ethylene / ⁇ -olefin copolymer is included, and the longitudinal and lateral stretching temperatures are adjusted to a predetermined range, thereby providing high permeability and an average pore diameter.
  • a method for producing a microporous membrane having a large thickness is disclosed (see Patent Document 4). However, in this case, although the porosity is high and the output characteristics are excellent, there are cases where coarse pores of a certain level or more exist in the film surface and the voltage resistance is inferior.
  • an object of the present invention is to solve the above-mentioned problems. That is, an object of the present invention is to provide a porous film and an electricity storage device that are excellent in output characteristics, process suitability, and long-term storage stability when used as a separator.
  • the dielectric breakdown strength Ea value defined by the following formula (A) is 160 kV / mm or more, It can be achieved by a porous film with a rate of 45-85%.
  • Ea V / T (A)
  • the present invention can be suitably used as a porous film excellent in output characteristics, process suitability and long-term storage stability when used as a separator.
  • the dielectric breakdown voltage is applied to the porous film while increasing the voltage stepwise, the number of breakdowns at each applied voltage is measured, and the voltage when the total exceeds 10 Say.
  • the dielectric breakdown strength is a numerical value obtained by dividing the dielectric breakdown voltage by the film thickness of the porous film. Since the film thickness of the porous film corresponds to the distance between the electrodes and greatly affects the dielectric breakdown voltage, the dielectric breakdown voltage is normalized by the film thickness. When the value of the dielectric breakdown strength is increased, a porous film having a thinner film and excellent voltage resistance can be obtained.
  • the Ea of the porous film of the present invention is preferably 170 kV / mm or more, and more preferably 180 kV / mm or more. From the viewpoint of process suitability and long-term storage stability, a higher value is preferable, but if it is too high, air permeability may be lowered, so 400 kV / mm is the upper limit.
  • the stretching conditions during transverse stretching such as preheating temperature, initial stretching temperature, late stretching temperature, stretching speed, heat treatment temperature, heat treatment time, and relaxation rate should be controlled within the ranges described below. Can be achieved.
  • the porous film of the present invention has a porosity of 45 to 85%.
  • the porosity is less than 45%, battery resistance increases when used as a separator, and output characteristics may be inferior.
  • the porosity exceeds 85% the puncture strength of the film, which is an index of dendrite resistance, becomes too low, and may be inferior in safety when used as a battery separator.
  • the porosity of the porous film of the present invention is preferably 50 to 85%, more preferably 57 to 85%, and more preferably 60 to 85%. If so, it is more preferable.
  • preheating temperature, initial stretching temperature, late stretching temperature, and stretching speed during transverse stretching, heat treatment temperature, heat treatment time, relaxation rate, and stretching temperature and magnification during longitudinal stretching Can be achieved by controlling to a range described later.
  • the present applicant can set the film withstand voltage and high porosity.
  • the preheating temperature and the initial stretching temperature by increasing the preheating temperature and the initial stretching temperature by 3 ° C. or more, the stress at the time of fibril cleavage can be relaxed and controlled by making the holes more uniform.
  • the temperature in the initial stretching section during transverse stretching was defined as the initial stretching temperature
  • the temperature in the section until the end of subsequent stretching (before heat treatment) was defined as the late stretching temperature.
  • through holes are formed by cleaving fibrils uniaxially oriented in the machine direction during longitudinal stretching and transversely stretching the fibrils. Therefore, relieving the stress at the time of fibril cleavage is very important for uniform pore generation.
  • the horizontal stretching temperature is generally carried out at the same temperature from preheating to the end of stretching, but in this case, the temperature is high from preheating to the initial stage of stretching, and then the temperature from the end to the end of stretching is low. A specific method will be described later.
  • the preheating temperature is set higher than the stretching temperature in the stretching process in the transverse direction, hot air with temperature spots in the width direction generated in the preheating zone flows into the stretching zone, and stretching spots easily occur in the width direction during stretching. In some cases, the spots and physical properties were worsened.
  • the pore formation may become uneven and the withstand voltage may be reduced. If the temperature is high, the stress at the time of fibril cleavage is relieved, but In some cases, the output characteristics deteriorate due to a decrease in porosity.
  • the preheating temperature and the initial stretching temperature by 3 ° C. or more with respect to the latter stretching temperature at the time of transverse stretching, it is excellent in thickness unevenness and physical property unevenness, and further has both voltage resistance and output characteristics. It came to.
  • the porous film of the present invention preferably has a curvature of 2.0 to 3.0.
  • the curvature is less than 2.0, the continuous pore structure is substantially close to a linear structure, electrons are easy to pass when voltage is applied, the withstand voltage is low, battery process suitability, and long-term storage. May be inferior.
  • the curvature exceeds 3.0, the air permeability is insufficient.
  • the curvature of the porous film of the present invention is more preferably from 2.0 to 2.6, and even more preferably from 2.2 to 2.6.
  • Controlling the curvature in such a range can be achieved by controlling the preheating temperature, initial stretching temperature, late stretching temperature, stretching speed, heat treatment temperature, heat treatment time, and relaxation rate during transverse stretching.
  • calculation of the curvature ⁇ in the present invention can be obtained from the following relational expression.
  • the relationship between the fluid permeation rate and the porosity, the pore diameter, or the fluid viscosity is expressed by the equation (1).
  • u (d 2 ⁇ ⁇ / 100) ⁇ P / (2 ⁇ T 1 ⁇ 2 ) (1)
  • u (m / sec) is the fluid permeation rate
  • d (m) is the pore diameter
  • ⁇ (%) is the porosity
  • ⁇ P (Pa) is the pressure difference
  • ⁇ (Pa ⁇ sec) is the fluid viscosity
  • T 1 (m) is the film thickness
  • ⁇ (dimensionless) is the curvature.
  • the porous film of the present invention preferably has a product of a curvature and a porosity of 120% or more. If it is less than 120%, it is difficult to satisfy a high curvature and a high porosity at the same time. Therefore, the withstand voltage is low due to the low curvature, and there are cases where the process suitability and long-term storage stability are degraded, and the output characteristics are degraded due to the low porosity.
  • the product of the curvature and porosity is preferably 130% or more, and more preferably 150% or more. Higher values are preferable from the viewpoint of process suitability, long-term storage properties, and output characteristics, but if it is too high, the upper limit is 300% because safety may be insufficient due to a decrease in air permeability or insufficient strength.
  • the preheating temperature, the initial stretching temperature, the later stretching temperature, and the stretching speed during transverse stretching, the heat treatment temperature, the heat treatment time, the relaxation rate, and This can be achieved by controlling the stretching temperature and magnification during longitudinal stretching to the ranges described below.
  • the porous film of the present invention is per resin thickness defined by the following formula (B).
  • the dielectric breakdown strength Er is preferably 400 (kV / mm) or more. If Er is less than 400 (kV / mm), it indicates that the high voltage resistance and the high porosity are not satisfied at the same time, the process suitability due to the low voltage resistance, the deterioration of long-term storage stability, the porosity In some cases, there is a problem in that the output characteristics are lowered due to the low film thickness and the safety is lowered due to the thin film thickness.
  • the porous film of the present invention preferably has a heat shrinkage rate of 0 to 5% at 120 ° C. for 60 minutes in both the longitudinal direction and the width direction. If the thermal shrinkage rate exceeds 5%, the separator may shrink and lead to a short circuit when the environmental temperature rises during use of the battery or when the temperature inside the battery rises due to a slight short circuit. From the viewpoint of improving safety as a battery separator, the thermal shrinkage rate in the longitudinal direction and the width direction at 120 ° C. for 60 minutes is preferably 4% or less, more preferably 3% or less.
  • Controlling the heat shrinkage to such a range is achieved by controlling the preheating temperature, initial stretching temperature, late stretching temperature, stretching speed, heat treatment temperature, heat treatment time, and relaxation rate during transverse stretching to the ranges described below. Is possible.
  • the porous film of the present invention preferably has an air resistance of 50 to 1,000 seconds / 100 ml. More preferred is 100 to 600 seconds / 100 ml, and even more preferred is 150 to 400 seconds / 100 ml. If the air permeation resistance is less than 50 seconds / 100 ml, the puncture strength of the film, which is an index of dendrite resistance, becomes too low, which may be inferior in safety. When the air resistance exceeds 1,000 seconds / 100 ml, the output characteristics may be deteriorated particularly when used as a separator for a high-power battery.
  • the preheating temperature, the initial stretching temperature, the latter stretching temperature, and the stretching speed during transverse stretching, the heat treatment temperature, the heat treatment time, the relaxation rate, and the longitudinal stretching temperature and magnification will be described later. This can be achieved by controlling the range.
  • the porous film of the present invention is preferably made of a thermoplastic resin.
  • the thermoplastic resin include polyolefin resins, polycarbonate resins, polyamide resins, polyimide resins, polyamideimides, aromatic polyamide resins, and fluorine resins.
  • polyolefin resins are preferred from the viewpoints of heat resistance, moldability, reduction in production cost, chemical resistance, oxidation resistance, and reduction resistance.
  • Examples of the monomer component constituting the polyolefin resin here include ethylene, propylene, 1-butene, 1-pentene, 3-methylpentene-1, 3-methyl-1-butene, 1-hexene, 4 -Methyl-1-pentene, 5-ethyl-1-hexene, 1-heptene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-eicosene Vinylcyclohexene, styrene, allylbenzene, cyclopentene, norbornene, 5-methyl-2-norbornene and the like.
  • copolymers chosen from these homopolymers and the said monomer component, the blend of these homopolymers and a copolymer, etc. can be used.
  • vinyl alcohol, maleic anhydride, acrylic acid compounds and the like may be copolymerized and graft polymerized with the above monomer components, but are not limited thereto. is not.
  • polypropylene resin is preferably used because of excellent properties such as permeability and low specific gravity.
  • the polypropylene resin used is isotactic with a melt flow rate (hereinafter referred to as MFR) of 2 to 30 g / 10 min.
  • MFR melt flow rate
  • a polypropylene resin is preferable from the viewpoint of extrusion moldability and uniform formation of pores.
  • MFR is an index indicating the melt viscosity of a resin defined in JIS K 7210 (1995), and is a physical property value indicating the characteristics of a polyolefin resin. In the present invention, it refers to a value measured at 230 ° C. and 2.16 kg.
  • the polypropylene resin used in the present invention preferably has an isotactic index in the range of 90 to 99.9%.
  • the isotactic index is less than 90%, the crystallinity of the resin is lowered, and the film-forming property may be lowered, or the strength of the film may be insufficient.
  • the porous film in the present invention has a plurality of through holes penetrating both surfaces of the film and having air permeability.
  • a method for forming the through-hole in the film either a wet method or a dry method may be used, but a dry method is desirable because the process can be simplified.
  • the through holes of the porous film of the present invention are preferably formed in the film by at least uniaxial or biaxial stretching.
  • the porous film is obtained by stretching in the uniaxial direction, the obtained porous film is bent.
  • the road ratio becomes too small, and the voltage resistance may be inferior.
  • the ⁇ resin forming ability of the polypropylene resin to be used is 60% or more. If the ⁇ -crystal forming ability is less than 60%, the amount of ⁇ -crystal is small at the time of film production, so the number of voids formed in the film is reduced by utilizing the transition to ⁇ -crystal. It may not be obtained.
  • the upper limit of ⁇ -crystal forming ability is not particularly limited, but it exceeds 99.9% by adding a large amount of the ⁇ -crystal nucleating agent described later or the stereoregulation of the polypropylene resin to be used. The industrial practical value is low, for example, the film forming stability is lowered. Industrially, the ⁇ -crystal forming ability is preferably 65 to 99.9%, particularly preferably 70 to 95%.
  • a polypropylene resin with a high isotactic index is used, or a ⁇ crystal is selectively formed by adding it to a polypropylene resin called a ⁇ crystal nucleating agent.
  • the crystallization nucleating agent to be used is preferably used as an additive.
  • Examples of ⁇ crystal nucleating agents include alkali or alkaline earth metal salts of carboxylic acids such as calcium 1,2-hydroxystearate and magnesium succinate, and N, N′-dicyclohexyl-2,6-naphthalenedicarboxyamide.
  • Amide compounds such as 3,9-bis [4- (N-cyclohexylcarbamoyl) phenyl] -2,4,8,10-tetraoxaspiro [5.5] undecane, benzenesulfonic acid
  • aromatic sulfonic acid compounds such as sodium and sodium naphthalene sulfonate, imide carboxylic acid derivatives, phthalocyanine pigments, and quinacridone pigments.
  • amides disclosed in JP-A-5-310665 are preferred.
  • the addition amount (content) of the ⁇ crystal nucleating agent is preferably 0.05 to 0.5% by mass, and preferably 0.1 to 0.3% by mass, based on the whole polypropylene resin. More preferable. If it is less than 0.05% by mass, formation of ⁇ crystals becomes insufficient, and the air permeability of the porous polyolefin film may be lowered. When it exceeds 0.5 mass%, when a coarse hole is formed and it uses for the separator for electrical storage devices, safety
  • security may fall.
  • polypropylene resin used in the present invention it is possible to use a homopolypropylene resin, as well as from the viewpoint of stability in the film-forming process, film-forming properties, and uniformity of physical properties, polypropylene with an ethylene component or butene, A resin obtained by copolymerizing an ⁇ -olefin component such as hexene or octene in an amount of 5% by mass or less, more preferably 2.5% by mass or less can also be used.
  • the form of introduction of the comonomer (copolymerization component) into polypropylene may be either random copolymerization or block copolymerization.
  • the above-mentioned polypropylene resin it is preferable for the above-mentioned polypropylene resin to contain a high-molecular-weight polypropylene resin, a low-melting-point polypropylene resin, a high-melting-strength polypropylene resin, or the like as long as the effects of the present invention are not hindered from the viewpoint of improving safety and improving film-forming properties.
  • the high molecular weight polypropylene resin is a polypropylene resin having an MFR of 0.1 to 2 g / 10 min
  • the low melting point polypropylene resin is a polypropylene resin having a melting point lower than 153 ° C.
  • polypropylene resins for example, ethylene component, butene, Polypropylene resins copolymerized with ⁇ -olefin components such as hexene and octene
  • high melt tension polypropylene resins are mixed with high molecular weight components or components having a branched structure in polypropylene, or long-chain branched components are combined with polypropylene. It is a polypropylene resin in which the tension in the molten state is increased by polymerization.
  • the polypropylene resin used in the present invention is composed of 80 to 99 parts by mass of homopolypropylene resin and ethylene from the viewpoint of improving the void formation efficiency during biaxial stretching, and improving the air permeability due to the uniform opening of the holes and the expansion of the hole diameter.
  • ⁇ -olefin copolymer is preferably a mixture having a mass ratio of 20 to 1 part by mass.
  • examples of the ethylene / ⁇ -olefin copolymer include linear low-density polyethylene and ultra-low-density polyethylene. Among them, ethylene / ⁇ is copolymerized with octene-1 and has a melting point of 60 to 90 ° C.
  • An olefin copolymer (copolymerized PE resin) can be preferably used.
  • Examples of the ethylene / ⁇ -olefin copolymer include commercially available resins such as “Engage (registered trademark)” (type names: 8411, 8452, 8100, etc.) manufactured by Dow Chemical.
  • the ethylene / ⁇ -olefin copolymer is preferably contained in an amount of 1 to 10% by mass when the total resin constituting the porous film of the present invention is 100% by mass from the viewpoint of improving the mechanical properties. More preferably, it is 1 to 7% by mass, and further preferably 1 to 5% by mass.
  • the resin forming the porous film of the present invention includes an antioxidant, a heat stabilizer, a neutralizing agent, an antistatic agent, and further an anti-blocking agent and a filler, as long as the effects of the present invention are not impaired.
  • Various additives such as a soluble polymer may be contained.
  • an antioxidant for the purpose of suppressing the oxidative deterioration due to the thermal history of the polypropylene resin to be used, but the amount of the antioxidant added is 100 parts by mass or less with respect to 100 parts by mass of the polypropylene resin. Is more preferably 0.5 parts by mass or less, still more preferably 0.3 parts by mass or less.
  • the manufacturing method of the porous film in this invention is demonstrated, the manufacturing method of the film of this invention is not limited to this.
  • the polypropylene resin constituting the base film is supplied to an extruder and melted at a temperature of 200 to 320 ° C., passed through a filtration filter, extruded from a slit-shaped base, cast into a cooling metal drum, and formed into a sheet. Cool and solidify to make an unstretched sheet.
  • the melt extrusion temperature is preferably low, but if it is less than 200 ° C., an unmelted material is generated in the molten polymer discharged from the die. , It may cause a process failure such as tearing in the subsequent stretching process. Moreover, when it exceeds 320 degreeC, the thermal decomposition of a polypropylene resin will become intense, and it may be inferior to the film characteristics, for example, Young's modulus, breaking strength, etc. of the obtained porous film.
  • the temperature of the cooling metal drum is 105 to 130 ° C., and ⁇ crystals are produced uniformly in large quantities, and a highly permeable porous film is obtained after stretching. If the temperature of the cooling metal drum is lower than 105 ° C, the ⁇ -crystal fraction of the first run of the unstretched sheet obtained may decrease. If the temperature exceeds 130 ° C, the solidification of the sheet on the drum is insufficient. Thus, it may be difficult to uniformly separate the sheet from the cooling metal drum.
  • the amount of ⁇ crystals in the unstretched sheet corresponds to the ⁇ crystal fraction obtained from the first run caloric curve obtained by using the unstretched sheet as a sample and using a differential scanning calorimeter.
  • the end portion is sprayed with spot air to be in close contact with the drum. Further, air may be blown over the entire surface using an air knife as necessary based on the state of close contact of the entire sheet on the drum. Moreover, you may laminate
  • the obtained unstretched sheet is biaxially stretched to form pores (through holes) in the film.
  • a biaxial stretching method it is preferable to stretch in the width direction after stretching in the longitudinal direction.
  • an unstretched sheet is controlled to a temperature at which it can be stretched in the longitudinal direction.
  • a temperature control method a method using a temperature-controlled rotating roll, a method using a hot air oven, or the like can be adopted.
  • the stretching temperature in the longitudinal direction it is preferable to employ a temperature of 110 to 140 ° C., more preferably 120 to 135 ° C., from the viewpoint of film characteristics and uniformity.
  • the draw ratio is preferably 1.1 to 8 times, more preferably 1.5 to 6 times, still more preferably 2 to 5 times. If the draw ratio is less than 1.1 times, the air permeability may be lowered, and the productivity may be lowered. As the draw ratio is increased, the air permeability is improved. However, if the draw ratio is more than 8 times, the film may be easily broken in the next transverse drawing step.
  • the end of the film uniaxially stretched in the longitudinal direction is introduced by being held by a tenter type stretching machine, and stretched in the width direction to obtain a biaxially stretched film.
  • the preheating temperature and the initial stretching temperature during transverse stretching are increased by 3 ° C. or more with respect to the latter stretching temperature. It is preferable to increase the temperature by 5 ° C. or more.
  • the temperature difference is less than 3 ° C., it cannot be said that the stress relaxation at the time of fibril cleavage is sufficient, uneven pore formation occurs, and the voltage resistance may be inferior. In addition, the film may be broken. If the preheating temperature or the initial stretching temperature is too high with respect to the later stretching temperature, the uneven thickness or physical properties of the porous film cannot be suppressed, so the upper limit of the temperature difference is about 10 ° C.
  • the preheating temperature during transverse stretching and the initial stretching temperature are preferably 133 to 158 ° C, more preferably 143 to 158 ° C.
  • the late stretching temperature is preferably 130 to 155 ° C, more preferably 140 to 155 ° C.
  • the preheating time during transverse stretching is preferably 10 to 70 seconds, more preferably 15 to 50 seconds. If the preheating time is less than 10 seconds, the film may not be sufficiently warmed and may cause film breakage. Moreover, when preheating time exceeds 70 second, productivity may be inferior.
  • the initial draw ratio is preferably 1.02 to 2.0 times, more preferably 1.05 to 1.5 times.
  • the initial draw ratio is less than 1.02, the stress relaxation at the time of fibril cleavage cannot be said to be sufficient, and uneven hole formation may occur, resulting in poor voltage resistance.
  • an initial stretch ratio exceeds 2.0 times, the physical property spot and thickness spot of a porous film may become large.
  • the latter draw ratio is preferably 1.05 to 10 times, more preferably 3 to 7 times.
  • the latter draw ratio is less than 1.05, pore formation due to fibril cleavage is insufficient, the porosity may be lowered, and output characteristics may be inferior.
  • the latter draw ratio exceeds 10 times, the film may be easily broken.
  • the initial stretching speed is preferably 500 to 3,000% / min, more preferably 700 to 2,500% / min. It is particularly preferable that the initial stretching speed is as low as 2,000% / min or less. When the initial stretching speed is less than 500% / min, productivity may be inferior. Further, when the initial stretching speed exceeds 3,000% / min, the hole formation becomes non-uniform and the voltage resistance may be inferior.
  • the late stretching speed is preferably 500 to 6,000% / min, more preferably 1,000 to 5,000% / min. If the late stretching speed is less than 500% / min, the productivity may be inferior. Further, when the late stretching speed exceeds 6,000% / min, the porosity is lowered and the output characteristics may be inferior.
  • the hot air blowing nozzle in the preheating zone during transverse stretching as close as possible to the porous film, or to use a nozzle that is wide in the width direction.
  • the draw ratio in the transverse draw width direction is preferably 1.1 to 10 times, more preferably 1.5 to 8 times.
  • the transverse stretching speed at this time is preferably 500 to 6,000% / min, more preferably 1,000 to 5,000% / min. It is particularly preferable that the stretching speed is as low as 2,000% / min or less.
  • the heat treatment step includes a first heat treatment, a relaxation treatment, and a second heat treatment (heat setting treatment). Further, in the heat treatment step of the present invention, the relaxation treatment and the second heat treatment (heat setting treatment) may be performed without performing the first heat treatment.
  • the heat treatment temperature is preferably 140 to 165 ° C. If the temperature is lower than 140 ° C., the heat setting may not be sufficient, and the tensile strength in the width direction may decrease. If the temperature exceeds 165 ° C., the polymer around the pores melts due to the high temperature, the air resistance increases, and the output characteristics may deteriorate. 140 to 150 ° C.
  • the heat treatment time is preferably 0.1 second or longer and 10 seconds or shorter, more preferably 3 seconds or longer and 8 seconds or shorter, from the viewpoint of achieving both the Young's modulus in the width direction and productivity.
  • the relaxation rate is preferably 8 to 35%. If the relaxation rate is less than 8%, the thermal contraction rate in the width direction may increase. If it exceeds 35%, the air permeability may be reduced to deteriorate the output characteristics, or the thickness unevenness or flatness in the width direction may be deteriorated. From the viewpoint of achieving both output characteristics and safety, it is more preferably 10 to 25%.
  • the relaxation temperature is preferably 155 to 170 ° C. When the relaxation temperature is less than 155 ° C., the shrinkage stress for relaxation is lowered, and the above-described high relaxation rate may not be achieved, or the thermal shrinkage rate in the width direction may be increased. If the temperature exceeds 170 ° C., the polymer around the pores may melt at a high temperature and the air permeability may be lowered. From the viewpoint of output characteristics and safety, 160 to 165 ° C. is more preferable.
  • the film after heat treatment is removed by slitting the ears gripped by the tenter clip and wound around the core with a winder.
  • the porous film of the present invention has a high porosity and excellent voltage resistance, it is used for packaging products, sanitary products, agricultural products, building products, medical products, separation membranes, light diffusion plates, and reflective sheet applications. However, since it is particularly excellent in output characteristics, process suitability and long-term storage stability, it can be preferably used as a separator for an electricity storage device.
  • the electricity storage device include a non-aqueous electrolyte secondary battery represented by a lithium ion secondary battery, and an electric double layer capacitor such as a lithium ion capacitor. Since such an electricity storage device can be repeatedly used by charging and discharging, it can be used as a power supply device for industrial devices, household equipment, electric vehicles, hybrid electric vehicles, and the like.
  • Dielectric breakdown strength Ea (kV / mm)
  • the dielectric breakdown strength Ea (kV / mm) is obtained by the following formula (A) where the dielectric breakdown voltage is V (kV) and the film thickness is T (mm).
  • Ea V / T (A)
  • the method for obtaining the dielectric breakdown voltage V is as follows. A porous film for measurement cut into 60 cm ⁇ 70 cm is placed on a copper plate of 60 cm ⁇ 70 cm, and a biaxially stretched polypropylene film deposited with aluminum of 50 cm ⁇ 60 cm is placed on it. SDH-1020P DC type pressure resistance made by Kasuga Electric A tester was connected.
  • the starting voltage is 0.5 kV
  • the voltage is stepped up by 0.1 kV at a step-up rate of 0.01 kV / second
  • the number of dielectric breakdowns is held for 30 seconds at each applied voltage. I counted.
  • the applied voltage when the number of breakdowns exceeded 10 was defined as the breakdown voltage.
  • the measurement was performed 5 times and the average value was evaluated.
  • this measurement method is not a generally well-known measurement method, it is a very important measurement method because it can evaluate the voltage resistance in an area of 50 cm ⁇ 60 cm by a single measurement.
  • a generally well-known method for evaluating withstand voltage is a method shown in (8) described later. However, since the electrode area is small in this method, it is difficult to evaluate the withstand voltage over a wide range. Therefore, the dielectric breakdown voltage was measured and evaluated by the above method.
  • Dielectric breakdown strength per resin thickness Er (kV / mm)
  • the dielectric breakdown strength Er (kV / mm) per resin thickness is obtained by the following formula (B), where the porosity is ⁇ (%), the film thickness is T (mm), and the dielectric breakdown voltage is V (kV).
  • Er V / [ ⁇ (100 ⁇ ) / 100 ⁇ ⁇ T] (B) The measurement was performed 5 times and the average value was evaluated.
  • d C ⁇ / P ⁇ 10 ⁇ 6 [However, d: pore diameter (m), C: constant, ⁇ : surface tension of fluorinate (16 mN / m), P: pressure (Pa). ]
  • the average pore diameter was calculated from the 1/2 half-wetting curve using the data analysis software attached to the apparatus.
  • the measurement limit was set to 37 nm due to the problem of the upper limit of pressure during measurement. The same measurement was performed for the same sample five times at different locations, and the average value of the average pore diameters obtained was taken as the pore diameter of the through holes in the sample.
  • ⁇ crystal fraction, ⁇ crystal forming ability 5 mg of a resin or film to be measured is sampled and loaded into an aluminum pan as a sample, and a differential scanning calorimeter (DSC, RDC220 manufactured by Seiko Denshi Kogyo Co., Ltd.) is used. Measured. First, the temperature is raised from room temperature to 240 ° C. at 40 ° C./min (first run) in a nitrogen atmosphere, held for 10 minutes, and then cooled to 30 ° C. at 40 ° C./min. The melting peak observed when the temperature is raised (second run) again at 40 ° C./min after holding for 5 minutes is the melting peak of the ⁇ crystal at the melting temperature of 145 to 157 ° C., 158 ° C.
  • DSC differential scanning calorimeter
  • the melting at which the peak is observed is defined as the melting peak of the ⁇ crystal, and the amount of heat of fusion is determined from the base line drawn on the high temperature side flat portion of the DSC curve and the area of the region surrounded by the peak.
  • the value calculated by the following formula is the ⁇ crystal forming ability.
  • calibration of the heat of fusion was performed using indium. The measurement was carried out with 5 samples and evaluated with an average value.
  • Air permeability resistance A square having a size of 100 mm ⁇ 100 mm was cut out from the porous film and used as a sample. Using a JIS P 8117 (1998) B-type Gurley tester, the permeation time of 100 ml of air was measured at 23 ° C. and a relative humidity of 65%. The measurement was performed 5 times and the average value was evaluated.
  • Electrode breakdown strength A porous film cut to a diameter of 30 mm is placed on a 150 mm square aluminum plate, and a brass cylindrical electrode having a diameter of 25 mm is placed on it. SDH-1020P DC type manufactured by Kasuga Electric A pressure tester was connected. A voltage was applied at a boosting rate of 0.2 kV / sec, and the value when dielectric breakdown occurred was read. The value converted per cross-sectional film thickness of 1 mm was defined as the electrode dielectric breakdown strength (kV / mm). The measurement was carried out 20 times and the average value was evaluated. The porous films of Example 1 and Comparative Example 1 described later were evaluated.
  • the container and the lid are insulated, the container is in contact with the negative electrode copper foil, and the lid is in contact with the positive electrode aluminum foil.
  • a battery was produced for each example and comparative example.
  • Each of the fabricated secondary batteries was subjected to a charge / discharge operation in a 25 ° C. atmosphere at a charge of 3 mA to 4.2 V for 1.5 hours and a discharge of 3 mA to 2.7 V, and the discharge capacity was examined.
  • a charging / discharging operation was performed in which charging was performed at 3 mA up to 4.2 V for 1.5 hours, and discharging was performed at 30 mA up to 2.7 V, and the discharge capacity was examined.
  • the value obtained by the formula of [(30 mA discharge capacity) / (3 mA discharge capacity)] ⁇ 100 was evaluated according to the following criteria. In addition, 20 test pieces were measured, and the average value was evaluated. ⁇ : 90% or more ⁇ : 85% or more and less than 90% ⁇ : 80% or more and less than 85% ⁇ : less than 80%
  • Example 1 95 parts by mass of homopolypropylene resin FLX80E4 manufactured by Sumitomo Chemical Co., Ltd. as a raw material resin for a porous film, “Enage (registered trademark)” 8411 (MFR: 18 g, manufactured by Dow Chemical Co., which is an ethylene / ⁇ -olefin copolymer) / 10 minutes, melting point: 163 ° C.) is added to 3 parts by mass, and N, N′-dicyclohexyl-2,6-naphthalenedicarboxyamide (Nippon Rika Co., Ltd., Nu-100) is a ⁇ crystal nucleating agent ), 0.2 parts by weight, and the antioxidants “IRGANOX (registered trademark)” 1010 and “IRGAFOS (registered trademark)” 168 manufactured by Ciba Specialty Chemicals, respectively.
  • Enage registered trademark
  • MFR 18 g, manufactured by Dow Chemical Co., which is an ethylene / ⁇ -ole
  • the raw material is supplied from the weighing hopper to the twin screw extruder so as to be mixed in the melt, kneaded at 300 ° C., discharged from the die in a strand shape, and 2 At °C water bath was cooled and solidified to obtain a chip raw material and cut into chips.
  • This chip is supplied to a single screw extruder and melt extruded at 220 ° C. After removing foreign matter with a 30 ⁇ m cut sintered filter, it is discharged from a T-die to a cast drum whose surface temperature is controlled at 120 ° C. An unstretched sheet was obtained by casting for 15 seconds. Next, preheating was performed using a ceramic roll heated to 120 ° C., and the film was stretched 5 times in the longitudinal direction of the film at 120 ° C. Next, the end portion is gripped with a clip and preheated at a preheating temperature of 155 ° C. for 25 seconds. The initial drawing temperature is 155 ° C., and the initial drawing speed is 1000% / min.
  • the film was stretched in the width direction so that the final stretching speed was 1500% / min.
  • heat treatment was performed at 160 ° C. for 5 seconds while maintaining the distance between the clips after stretching, and further relaxation was performed at a relaxation rate of 17% at 163 ° C., and finally at 163 ° C. while maintaining the distance between the clips after relaxation.
  • the film was heat-treated for 5 seconds, and then the ear portion of the film held by the clip was cut and removed to obtain a porous film having a thickness of 17 ⁇ m.
  • the film forming conditions and film characteristics are shown in Table 1.
  • Example 2 In Example 1, except that the preheating temperature in the transverse stretching and the initial stretching temperature were set to 153 ° C., the same operation as in Example 1 was performed to obtain a porous film, and each physical property value is shown in Table 1.
  • Example 3 In Example 1, except that the preheating temperature in the transverse stretching and the initial stretching temperature were set to 157 ° C., the same operation as in Example 1 was performed to obtain a porous film, and each physical property value is shown in Table 1.
  • Example 4 In Example 1, except that the preheating temperature in transverse stretching, the initial stretching temperature was 160 ° C., and the late stretching temperature was 155 ° C., the same operation as in Example 1 was performed to obtain a porous film. Is shown in Table 1.
  • Example 1 (Comparative Example 1) In Example 1, except that the preheating temperature in transverse stretching and the initial stretching temperature were 150 ° C., the same operation as in Example 1 was performed to obtain a porous film, and each physical property value is shown in Table 1.
  • Example 2 (Comparative Example 2) In Example 1, except that the preheating temperature in transverse stretching, the initial stretching temperature was 157 ° C., and the late stretching temperature was 157 ° C., the same operation as in Example 1 was performed to obtain a porous film. Is shown in Table 1.
  • the porous film of the present invention has high voltage resistance while maintaining a high porosity, when used as a separator, it can be provided as a porous film excellent in output characteristics, process suitability, and long-term storage stability. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)

Abstract

 高空孔率を維持しながら、耐電圧性に優れる多孔性フィルムを提供すること。本発明の多孔性フィルムは、絶縁破壊電圧をV(kV)、膜厚をT(mm)としたときに、下記式(A)で定義される絶縁破壊強度Ea値が160kV/mm以上であり、空孔率が45~85%であることを特徴とする。 Ea=V/T ・・・(A)

Description

多孔性フィルムおよび蓄電デバイス
 本発明は、多孔性フィルムおよび蓄電デバイスに関する。さらに詳しくは、非水溶媒電池、またはキャパシタなどの蓄電デバイスに用いられるセパレータに好適に使用できる、高出力かつ工程適性、長期保存性に優れる多孔性フィルムに関する。
 多孔性フィルムは、電池や電解コンデンサーのセパレータや各種分離膜、衣料、医療用途における透湿防水膜など多様な用途で使用されている。特に最近では、リチウムイオン二次電池のセパレータ用途に広く用いられている。リチウムイオン二次電池用セパレータとして備えるべき性質の一つに、耐電圧性や電池の高出力性が挙げられる。耐電圧性とは、セパレータに一定電圧を印加した場合に、セパレータがショートせずに耐えられるか否かを表す指標である。セパレータの耐電圧性が低いと、電池に使用した場合に、自己放電を有効に防止することが困難となる傾向があり、電池の長期保存性に劣る場合がある。また、電池のショート率が増大するために歩留まりが多くなり、工程適性が悪化する場合がある。
 従来の技術において、例えば、乾燥-延伸法(CELGARDプロセスとして知られている)の多孔性フィルムが開示されている。乾燥-延伸法は、フィルム材料の溶融押出時に低温押出、高ドラフト比を採用することにより、シート化した延伸前のフィルム中のラメラ構造を制御し、これを長手方向に一軸延伸することでラメラ界面での開裂を発生させ、空隙を形成する方法である(特許文献1、2参照)。この方法は特異的な直線状貫通孔構造から透気性能に優れる反面、曲路率が小さいため、電圧印加時に電子が通りやすく、耐電圧性に劣る問題があった。
 また、ポリオレフィン系重合体と二重結合を有する重合体とが架橋してなる架橋物を含有することにより、耐電圧性を高めている二軸延伸多孔性フィルムが開示されている(特許文献3参照)。しかしながら、この多孔性フィルムは空孔率が低いことから、電池の出力特性に劣る問題があった。
 また、β晶核剤を含有するポリプロピレン樹脂を主成分とし、エチレン・α―オレフィン共重合体を含有し、縦・横延伸温度を所定の範囲に調整することで、透過性が高く、平均孔径の大きい微多孔膜の製造方法が開示されている(特許文献4参照)。しかしながら、この場合には空孔率が高く出力特性に優れるものの、フィルム面内に一定以上の粗大孔が存在し、耐電圧性に劣る場合があった。
 非水溶媒電池、またはキャパシタに用いられるセパレータに使用する観点から、電池の高出力性、工程適性、長期保存性を同時に満たすことは非常に重要であるが、上記のような多孔性フィルムでは、これらの特性を両立することは困難であった。
特公昭55-32531号公報 特表2009-527633号公報 特開2002-141049号公報 国際公開第2007/046225号
 本発明の課題は上記した問題を解決することにある。すなわち、本発明はセパレータとして用いた際に、出力特性、工程適性、長期保存性に優れる多孔性フィルムおよび蓄電デバイスを提供することを目的とする。
 上記した課題は、絶縁破壊電圧をV(kV)、膜厚をT(mm)としたときに、下記式(A)で定義される絶縁破壊強度Ea値が160kV/mm以上であり、空孔率が45~85%である多孔性フィルムによって達成することができる。
  Ea=V/T  ・・・(A)
 本発明はセパレータとして用いた際に、出力特性、工程適性、長期保存性に優れる多孔性フィルムとして好適に使用することができる。
 以下に本発明の多孔性フィルムについて説明する。
 本発明の多孔性フィルムは、絶縁破壊電圧をV(kV)、膜厚をT(mm)としたときに、下記式(A)で定義される絶縁破壊強度Ea値が160kV/mm以上であることを特徴とする。
  Ea=V/T  ・・・(A)
 本発明において、絶縁破壊電圧とは、多孔性フィルムに段階的に電圧を昇圧させながら印加していき、各印加電圧での絶縁破壊個数を計測し、その総計が10個を超えた時の電圧をいう。また、絶縁破壊強度とは、前記の絶縁破壊電圧を多孔性フィルムの膜厚で除した数値である。多孔性フィルムの膜厚は電極間距離に相当し、絶縁破壊電圧に大きく影響するため、絶縁破壊電圧を膜厚で規格化している。絶縁破壊強度の値が大きくなると、より薄いフィルムで耐電圧性に優れた多孔性フィルムを得ることができる。
 Eaが160kV/mm未満であると、耐電圧性が低くなり、電池の工程適性、長期保存性が劣る場合がある。電池セパレータとして工程適性、長期保存性の観点から、本発明の多孔性フィルムのEaは、170kV/mm以上が好ましく、180kV/mm以上であれば、さらに好ましい。工程適性、長期保存性の観点からは高い方が好ましいが、高すぎると透気性が低下する場合があるため400kV/mmが上限である。
 Eaをかかる範囲に制御するためには、横延伸時の延伸条件、例えば、予熱温度、初期延伸温度、後期延伸温度、延伸速度、熱処理温度、熱処理時間、リラックス率を後述する範囲に制御することにより達成可能である。
 本発明の多孔性フィルムは、空孔率が45~85%である。空孔率が45%未満であると、セパレータとして用いた場合に電池抵抗が大きくなり、出力特性に劣る場合がある。一方、空孔率が85%を超えると、耐デンドライト性の指標とされるフィルムの突刺強度が低くなりすぎてしまい、電池用セパレータとして用いた場合に安全性に劣る場合がある。電池セパレータとして使用する際の出力特性、安全性の観点から、本発明の多孔性フィルムの空孔率は50~85%であれば好ましく、57~85%であればより好ましく、60~85%であれば、さらに好ましい。
 空孔率をかかる範囲に制御するには、横延伸時の予熱温度、初期延伸温度、後期延伸温度、および延伸速度や、熱処理温度、熱処理時間、リラックス率、ならびに縦延伸時の延伸温度や倍率を後述する範囲に制御することにより達成可能である。
 多孔性フィルムの耐電圧性を高めるためには種々の方法があるが、欠点部分を減らすため、フィルターの濾過精度を高める方法がある。しかし、欠点として検出されない部分でも、絶縁破壊する場合があった。また、別の方法として、フィルム中の絶縁体量を増やすために、セパレータの空孔率を低下させる方法が用いられる。しかしながら、空孔率を低下させると、電池の出力特性が劣る場合があった。また、電子を通りにくくするために、多孔性フィルムの孔径を小さくする方法も用いられる。しかしながら、孔径を小さくすると、電池の出力特性が劣る場合があり、耐電圧性と出力特性とを両立させることは困難であった。両者を両立させるためには、電子が通りやすく、かつ耐電圧性を悪化させる粗大孔が少なく、均一に孔形成していることが重要である。そうすることにより、高空孔率を維持しながら、耐電圧性の高い多孔性フィルムを得ることができる。
 本出願人は、フィルムの耐電圧性、高空孔率性を両立し、セパレータに用いた時に電池の長期保存性、工程適性、高出力性を両立させる方法として、横延伸時の後期延伸温度に対して、予熱温度、及び初期延伸温度を3℃以上高くすることにより、フィブリル開裂時の応力を緩和させ、より均一に開孔させることで制御可能であることを見出した。ここで、横延伸時の延伸初期の区間の温度を初期延伸温度と定義し、その後の延伸終了(熱処理前)までの区間の温度を後期延伸温度と定義した。β晶法では、縦延伸時により機械方向に一軸配向したフィブリルを、横延伸によりフィブリルを開裂させて貫通孔を形成する。よって、フィブリル開裂時の応力を緩和させることは、均一な孔生成において非常に重要である。
 横延伸温度は予熱から延伸終了まで同一温度で行うことが一般的であるが、本件では予熱から延伸初期まで温度が高く、その後延伸終了までの温度が低いことに特徴がある。具体的な方法は後述する。不均一な孔形成となった場合、粗大孔部分では電子が通りやすく、耐電圧性が低下するため、耐電圧性向上の観点で、均一開孔させることが非常に重要である。横方向の延伸工程において、予熱温度を延伸温度よりも高くした場合、予熱ゾーンで発生した幅方向に温度斑のある熱風が延伸ゾーンに流れ込み、延伸時に幅方向で延伸斑が起きやすくなり、厚み斑、物性斑の悪化を招く場合があった。一方、予熱から横延伸終了まで同一温度とすると、温度が低い場合、孔形成が不均一となり耐電圧性が低下する場合があり、温度が高い場合、フィブリル開裂時の応力は緩和するものの、空孔率が低下して出力特性が悪化する場合があった。本発明では、横延伸時の後期延伸温度に対して、予熱温度、及び初期延伸温度を3℃以上高くすることにより、厚み斑や物性斑に優れ、更には耐電圧性と出力特性を両立するに至った。
 本発明の多孔性フィルムは、曲路率が2.0~3.0であることが好ましい。曲路率が2.0未満であると、連続する孔構造が実質的に直線状構造に近くなり、電圧印加時に電子が通りやすく、耐電圧性が低くなり、電池の工程適性、長期保存性が劣る場合がある。また、曲路率が3.0を超えると、透気性が不足し、例えば蓄電デバイス用のセパレータとして用いた場合に電池の出力特性が十分でなく、性能の劣った電池となる傾向がある。電池セパレータとして出力特性、工程適性、長期保存性の観点から、本発明の多孔性フィルムの曲路率は2.0~2.6がより好ましく、2.2~2.6がさらに好ましい。
 曲路率をかかる範囲に制御するには、横延伸時の予熱温度、初期延伸温度、後期延伸温度、および延伸速度や、熱処理温度、熱処理時間、リラックス率を制御することにより達成可能である。
 なお、本発明における曲路率τの算出は次の関係式から求めることができる。
 多孔質体における細孔モデルにおいて、流体の透過速度と空孔率や孔径や流体の粘度との関係は、式(1)で表される。
  u=(d・ε/100)ΔP/(2ηTτ)  ・・・(1)
 ここで、u(m/sec)は流体の透過速度、d(m)は孔径、ε(%)は空孔率、ΔP(Pa)は圧力差、η(Pa・sec)は流体の粘度、T(m)は膜厚、τ(無次元)は曲路率である。なお、本式を変形すると、曲路率は式(2)のように表され、上記各パラメータを代入することで求めることができる。
  τ=d(εΔP/200ηTu)0.5  ・・・(2)
 本発明の多孔性フィルムは、曲路率と空孔率の積の値が120%以上であることが好ましい。120%未満であると、高曲路率と高空孔率を同時に満たすことが困難である。よって、曲路率が低いために耐電圧性が低くなり、工程適性、長期保存性の低下や、空孔率が低いことによる出力特性の低下の問題が起こる場合がある。電池セパレータとして出力特性、工程適性、長期保存性の観点から、曲路率と空孔率の積の値は130%以上であれば好ましく、150%以上であればさらに好ましい。工程適性、長期保存性、出力特性の観点からは高い方が好ましいが、高すぎると透気性の低下や強度不足により安全性が不足する場合があるため300%が上限である。
 曲路率と空孔率の積の値をかかる範囲に制御するには、横延伸時の予熱温度、初期延伸温度、後期延伸温度、および延伸速度や、熱処理温度、熱処理時間、リラックス率、ならびに縦延伸時の延伸温度や倍率を後述する範囲に制御することにより達成可能である。
 本発明の多孔性フィルムは、空孔率をε(%)、膜厚をT(mm)、絶縁破壊電圧をV(kV)としたときに、下記式(B)で定義される樹脂厚み当たりの絶縁破壊強度Erが400(kV/mm)以上であることが好ましい。Erが400(kV/mm)未満であれば、高耐電圧性、高空孔率を同時に満たしていないことを示し、耐電圧性が低いことによる工程適性、長期保存性の低下や、空孔率が低いことによる出力特性の低下、膜厚が薄いことによる安全性の低下の問題が起こる場合がある。電池セパレータとして出力特性、工程適性、長期保存性の観点から、Erは450(kV/mm)以上であれば好ましく、470(kV/mm)以上であればさらに好ましい。工程適性、長期保存性、出力特性の観点からは高い方が好ましいが、高すぎると透気性の低下や強度不足により安全性が不足する場合があるため2,000(kV/mm)が上限である。
  Er=V/[{(100-ε)/100}×T]  ・・・(B)
 本発明の多孔性フィルムは、長手方向および幅方向のいずれの方向についても、120℃、60分間の熱収縮率が0~5%であることが好ましい。熱収縮率が5%を超えると、電池を使用中に環境温度が上昇したり、微短絡により電池内部の温度が上昇したときなどに、セパレータが収縮し短絡に繋がる場合がある。電池セパレータとして安全性向上の観点から120℃、60分間の長手方向ならびに幅方向の熱収縮率は4%以下が好ましく、さらに好ましくは3%以下である。
 熱収縮率をかかる範囲に制御するには、横延伸時の予熱温度、初期延伸温度、後期延伸温度、および延伸速度や、熱処理温度、熱処理時間、リラックス率を後述する範囲に制御することにより達成可能である。
 本発明の多孔性フィルムは、透気抵抗が50~1,000秒/100mlが好ましい。より好ましくは100~600秒/100mlであり、さらに好ましくは150~400秒/100mlである。透気抵抗が50秒/100ml未満であると、耐デンドライト性の指標とされるフィルムの突刺強度が低くなりすぎてしまい、安全性に劣る場合がある。透気抵抗が1,000秒/100mlを超えると、特に高出力電池用のセパレータとして用いたとき出力特性が低下する場合がある。
 透気抵抗をかかる範囲に制御するには、横延伸時の予熱温度、初期延伸温度、後期延伸温度、および延伸速度や、熱処理温度、熱処理時間、リラックス率、ならびに縦延伸温度や倍率を後述する範囲に制御することにより達成可能である。
 本発明の多孔性フィルムは熱可塑性樹脂からなることが好ましく、熱可塑性樹脂としては、例えば、ポリオレフィン系樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド、芳香族ポリアミド樹脂、フッ素系樹脂などいずれでもかまわないが、耐熱性、成形性、生産コストの低減、耐薬品性、対酸化性および対還元性などの観点からポリオレフィン系樹脂が好ましい。
 ここでいうポリオレフィン系樹脂を構成する単量体成分としては、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、3-メチルペンテン-1、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、5-エチル-1-ヘキセン、1-ヘプテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-エイコセン、ビニルシクロヘキセン、スチレン、アリルベンゼン、シクロペンテン、ノルボルネン、5-メチル-2-ノルボルネンなどが挙げられる。また、これらの単独重合体や上記単量体成分から選ばれる少なくとも2種以上の共重合体、およびこれら単独重合体や共重合体のブレンド物などを用いることができる。もちろん、これらに限定されるわけではない。上記の単量体成分以外にも、例えば、ビニルアルコール、無水マレイン酸、アクリル酸系化合物などを、上記単量体成分と共重合、グラフト重合しても構わないが、これらに限定されるわけではない。上記で挙げた構成成分から得られるポリオレフィンの中でも、透過性や低比重などの優れた特性を持つことから、ポリプロピレン樹脂が好ましく用いられる。
 本発明の多孔性フィルムにおいて、多孔性フィルムを構成する樹脂としてポリプロピレン樹脂を用いる場合、用いるポリプロピレン樹脂としては、メルトフローレート(以下、MFRと表記する)が2~30g/10分のアイソタクチックポリプロピレン樹脂であることが押出成形性及び孔の均一な形成の観点から好ましい。ここで、MFRとはJIS K 7210(1995)で規定されている樹脂の溶融粘度を示す指標であり、ポリオレフィン樹脂の特徴を示す物性値である。本発明においては230℃、2.16kgで測定した値を指す。
 また、本発明において用いるポリプロピレン樹脂は、アイソタクチックインデックスが90~99.9%の範囲であることが好ましい。アイソタクチックインデックスが90%未満の場合、樹脂の結晶性が低くなってしまい、製膜性が低下したり、フィルムの強度が不十分となる場合がある。
 本発明における多孔性フィルムは、フィルムの両表面を貫通し、透気性を有する貫通孔を複数有している。フィルム中に貫通孔を形成する方法としては、湿式法、乾式法どちらでも構わないが、工程を簡略化できることから乾式法が望ましい。
 本発明の多孔性フィルムの貫通孔は、少なくとも一軸方向あるいは二軸延伸によりフィルム中に形成することが好ましいが、一軸方向に延伸して多孔性フィルムを得ると、得られた多孔性フィルムの曲路率が小さくなりすぎて、耐電圧性に劣る場合がある。高い生産性、均一物性、薄膜化を達成する観点からβ晶法による二軸延伸により製造することが好ましい。
 本発明において、β晶法を用いてフィルムに貫通孔を形成するためには、用いるポリプロピレン樹脂のβ晶形成能が60%以上であることが好ましい。β晶形成能が60%未満ではフィルム製造時にβ晶量が少ないために、α晶への転移を利用してフィルム中に形成される空隙数が少なくなり、その結果、透過性の低いフィルムしか得られない場合がある。一方、β晶形成能の上限は特に限定されるものではないが、99.9%を超えるようにするのは、後述するβ晶核剤を多量に添加したり、使用するポリプロピレン樹脂の立体規則性を極めて高くしたりする必要があり、製膜安定性が低下するなど工業的な実用価値が低い。工業的にはβ晶形成能は65~99.9%が好ましく、70~95%が特に好ましい。
 β晶形成能を60%以上に制御するためには、アイソタクチックインデックスの高いポリプロピレン樹脂を使用したり、β晶核剤と呼ばれる、ポリプロピレン樹脂中に添加することでβ晶を選択的に形成させる結晶化核剤を添加剤として用いたりすることが好ましい。β晶核剤としては、たとえば、1,2-ヒドロキシステアリン酸カルシウム、コハク酸マグネシウムなどのカルボン酸のアルカリあるいはアルカリ土類金属塩、N,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミドに代表されるアミド系化合物、3,9-ビス[4-(N-シクロヘキシルカルバモイル)フェニル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカンなどのテトラオキサスピロ化合物、ベンゼンスルホン酸ナトリウム、ナフタレンスルホン酸ナトリウムなどの芳香族スルホン酸化合物、イミドカルボン酸誘導体、フタロシアンニン系顔料、キナクリドン系顔料を好ましく挙げることができるが、特に特開平5-310665号公報に開示されているアミド系化合物を好ましく用いることができる。β晶核剤の添加量(含有量)としては、ポリプロピレン樹脂全体を基準とした場合に、0.05~0.5質量%であることが好ましく、0.1~0.3質量%であればより好ましい。0.05質量%未満では、β晶の形成が不十分となり、多孔性ポリオレフィンフィルムの透気性が低下する場合がある。0.5質量%を超えると、粗大孔を形成し、蓄電デバイス用セパレータに用いたとき、安全性が低下する場合がある。
 本発明で用いるポリプロピレン樹脂としては、ホモポリプロピレン樹脂を用いることができるのはもちろんのこと、製膜工程での安定性や造膜性、物性の均一性の観点から、ポリプロピレンにエチレン成分やブテン、ヘキセン、オクテンなどのα-オレフィン成分を5質量%以下、より好ましくは2.5質量%以下の範囲で共重合した樹脂を用いることもできる。なお、ポリプロピレンへのコモノマー(共重合成分)の導入形態としては、ランダム共重合でもブロック共重合でもいずれでも構わない。
 また、上記したポリプロピレン樹脂には本発明の効果を阻害しない範囲で高分子量ポリプロピレン樹脂、低融点ポリプロピレン樹脂、高溶融張力ポリプロピレン樹脂などを含有させることが安全性向上や製膜性向上の点で好ましい。ここで高分子量ポリプロピレン樹脂とはMFRが0.1~2g/10分のポリプロピレン樹脂であり、低融点ポリプロピレン樹脂とは融点153℃より低い融点を持つポリプロピレン樹脂であり(例えば、エチレン成分やブテン、ヘキセン、オクテンなどのα-オレフィン成分を共重合したポリプロピレン樹脂など)、高溶融張力ポリプロピレン樹脂とは高分子量成分や分岐構造を有する成分をポリプロピレン中に混合したり、ポリプロピレンに長鎖分岐成分を共重合させたりすることで溶融状態での張力を高めたポリプロピレン樹脂である。
 本発明で用いるポリプロピレン樹脂は、二軸延伸時の空隙形成効率の向上や、孔の均一な開孔、孔径が拡大することによる透気性向上の観点から、ホモポリプロピレン樹脂80~99質量部とエチレン・α-オレフィン共重合体20~1質量部の質量比率とした混合物とすることが好ましい。ここで、エチレン・α-オレフィン共重合体としては直鎖状低密度ポリエチレンや超低密度ポリエチレンを挙げることができ、中でも、オクテン-1を共重合した、融点が60~90℃のエチレン・α-オレフィン共重合体(共重合PE樹脂)を好ましく用いることができる。このエチレン・α-オレフィン共重合体は市販されている樹脂、たとえば、ダウ・ケミカル製“Engage(エンゲージ)(登録商標)”(タイプ名:8411、8452、8100など)を挙げることができる。
 上記のエチレン・α-オレフィン共重合体は、本発明の多孔性フィルムを構成する樹脂全体を100質量%としたときに、1~10質量%含有することが機械特性を向上させる観点で好ましい。より好ましくは1~7質量%、さらに好ましくは1~5質量%である。
 本発明の多孔性フィルムを形成する樹脂には、本発明の効果を損なわない範囲において、酸化防止剤、熱安定剤、中和剤、帯電防止剤、さらにはブロッキング防止剤や充填剤、非相溶性ポリマーなどの各種添加剤を含有させてもよい。特に、使用するポリプロピレン樹脂の熱履歴による酸化劣化を抑制する目的で、酸化防止剤を添加することが好ましいが、ポリプロピレン樹脂100質量部に対して酸化防止剤添加量は1質量部以下とすることが好ましく、より好ましくは0.5質量部以下、更に好ましくは0.3質量部以下である。
 以下、本発明における多孔性フィルムの製造方法を説明するが、本発明のフィルムの製造方法はこれに限定されるものではない。
 まず、基材フィルムを構成するポリプロピレン樹脂を押出機に供給して200~320℃の温度で溶融させ、濾過フィルターを経た後、スリット状口金から押し出し、冷却用金属ドラムにキャストしてシート状に冷却固化させて未延伸シートとする。
 ここで、未延伸シートに多量のβ晶を生成させるためには、溶融押出温度は低い方が好ましいが、200℃未満であると、口金から吐出された溶融ポリマー中に未溶融物が発生し、後の延伸工程で破れなどの工程不良を起こす原因となる場合がある。また、320℃を超えると、ポリプロピレン樹脂の熱分解が激しくなり、得られる多孔性フィルムのフィルム特性、例えば、ヤング率、破断強度などに劣る場合がある。
 冷却用金属ドラムの温度は105~130℃とし、多量かつ均一にβ晶を生成させて、延伸後に高透過性の多孔性フィルムとする。冷却用金属ドラムの温度が105℃未満であると、得られる未延伸シートのファーストランのβ晶分率が低下する場合があり、130℃を超えると、ドラム上でのシートの固化が不十分となり、冷却用金属ドラムからのシートの均一剥離が難しくなる場合がある。ここで、未延伸シート中のβ晶量は、未延伸シートをサンプルとし、示差走査熱量計を用いて得られるファーストランの熱量曲線から得られるβ晶分率に対応する。この際、特にシートの端部の成形が後の延伸性に影響するため、端部にスポットエアーを吹き付けてドラムに密着させることが好ましい。また、シート全体のドラム上への密着状態に基づき、必要に応じて全面にエアナイフを用いて空気を吹き付けてもよい。また、複数の押出機を用いて共押出による積層を行ってもよい。
 次に得られた未延伸シートを二軸延伸してフィルム中に空孔(貫通孔)を形成する。二軸延伸の方法としては、長手方向に延伸後、幅方向に延伸することが好ましい。
 具体的な延伸条件としては、まず未延伸シートを長手方向に延伸可能な温度に制御する。温度制御の方法は、温度制御された回転ロールを用いる方法、熱風オーブンを使用する方法などを採用することができる。長手方向の延伸温度としてはフィルム特性とその均一性の観点から、110~140℃、さらに好ましくは120~135℃の温度を採用することが好ましい。延伸倍率は1.1~8倍であることが好ましく、より好ましくは1.5~6倍、更に好ましくは2~5倍である。延伸倍率が1.1倍未満であると透気性が低下する場合があり、また生産性が低下する場合がある。延伸倍率を高くするほど透気性が良化するが、8倍を超えて延伸すると、次の横延伸工程でフィルム破れが起きやすくなってしまう場合がある。
 次に、長手方向に一軸延伸したフィルムの端部を、テンター式延伸機に把持させて導入し、幅方向に延伸して二軸延伸フィルムを得る。
 ここで、前述したように、多孔性フィルムの高空孔率性、高耐電圧性を両立させるために、横延伸時の予熱温度及び初期延伸温度を、後期延伸温度に対して、3℃以上高くすることが好ましく、5℃以上高くすることがより好ましい。温度差が3℃未満である場合、フィブリル開裂時の応力緩和が十分であるとはいえず、不均一な孔形成が起こり、耐電圧性に劣る場合がある。また、フィルム破れの原因になる場合がある。後期延伸温度に対して、予熱温度や初期延伸温度が高すぎると、多孔性フィルムの厚み斑や物性斑が抑えられなくなるため、温度差は10℃程度が上限である。
 本発明において、横延伸時の予熱温度、及び初期延伸温度は133~158℃が好ましく、143~158℃がより好ましい。後期延伸温度は130~155℃が好ましく、140~155℃がより好ましい。予熱温度、及び初期延伸温度が133℃未満、後期延伸温度が130℃未満である場合、フィブリル開裂時の応力が大きすぎるため、フィルム破れの原因となる場合や、不均一な孔形成が起こり、耐電圧性に劣る場合や、空孔率が高すぎるために、安全性に劣る場合がある。また、予熱温度、及び初期延伸温度が158℃より高く、後期延伸温度が155℃より高い場合、空孔率が低下し、出力特性が低下する場合がある。
 本発明において、横延伸時の予熱時間は10~70秒が好ましく、15~50秒がより好ましい。予熱時間が10秒未満である場合、フィルムが十分温まらず、フィルム破れの原因になる場合がある。また、予熱時間が70秒を超える場合、生産性に劣る場合がある。
 本発明において、初期延伸倍率は1.02~2.0倍が好ましく、1.05~1.5倍がより好ましい。初期延伸倍率が1.02倍未満である場合、フィブリル開裂時の応力緩和が十分であるとはいえず、不均一な孔形成が起こり、耐電圧性に劣る場合がある。また、初期延伸倍率が2.0倍を超える場合、多孔性フィルムの物性斑や厚み斑が大きくなる場合がある。
 本発明において、後期延伸倍率は1.05~10倍が好ましく、3~7倍がより好ましい。後期延伸倍率が1.05倍未満である場合、フィブリルの開裂による孔形成が不十分であり、空孔率が低下し出力特性に劣る場合がある。また、後期延伸倍率が10倍を超える場合、フィルム破れが起きやすくなってしまう場合がある。
 本発明において、初期延伸速度は500~3,000%/分で行うことが好ましく、700~2,500%/分であればより好ましい。初期延伸速度が2,000%/分以下と低速にすることが特に好ましい。初期延伸速度が500%/分未満である場合、生産性に劣る場合がある。また、初期延伸速度が3,000%/分を超える場合、孔形成が不均一となり、耐電圧性に劣る場合がある。
 本発明において、後期延伸速度は500~6,000%/分で行うことが好ましく、1,000~5,000%/分であればより好ましい。後期延伸速度が500%/分未満である場合、生産性に劣る場合がある。また、後期延伸速度が6,000%/分を超える場合、空孔率が低下し、出力特性に劣る場合がある。
 また、本発明において、多孔性フィルムの厚み斑、物性斑を抑制するために、予熱ゾーンでの幅方向の温度斑の抑制が重要である。そのために、横延伸時の予熱ゾーンの熱風吹き出しノズルを多孔性フィルムに極力近づけることや、幅方向に広いノズルを用いることが好ましい。
 本発明において、横延伸幅方向の延伸倍率は1.1~10倍が好ましく、より好ましくは1.5~8倍である。延伸倍率が1.1倍未満である場合、空孔率が低下して電池特性が低下する場合があり、また生産性が低下する場合がある。また、延伸倍率を高くするほど透気性が良化するが、10倍を超えて延伸すると、フィルム破れが起きやすくなってしまう場合がある。なお、このときの横延伸速度としては500~6,000%/分で行うことが好ましく、1,000~5,000%/分であればより好ましい。延伸速度が2,000%/分以下と低速にすることが特に好ましい。
 横延伸に続いて、テンター内で熱処理工程を行う。本発明において、熱処理工程は、第1の熱処理と、リラックス処理と、第2の熱処理(熱固定処理)とからなる。また、本発明の熱処理工程は、第1の熱処理を行なわずに、リラックス処理と、第2の熱処理(熱固定処理)とを行なってもよい。熱処理温度は、140~165℃であることが好ましい。140℃未満であると、熱固定が十分でなく、幅方向の引張強度が低下する場合がある。165℃を超えると、高温により孔周辺のポリマーが溶けて透気抵抗が大きくなり、出力特性が低下する場合がある。出力特性と安全性の両立の観点から140~150℃であればより好ましい。熱処理時間は、幅方向のヤング率と生産性の両立の観点から0.1秒以上10秒以下であることが好ましく、3秒以上8秒以下であるとより好ましい。
 本発明において、リラックス率は8~35%であることが好ましい。リラックス率が8%未満であると幅方向の熱収縮率が大きくなる場合がある。35%を超えると透気性が低下して出力特性が低下したり、幅方向の厚み斑や平面性が低下する場合がある。出力特性と安全性の両立の観点から、10~25%であるとより好ましい。リラックス温度は、155~170℃であることが好ましい。リラックス温度が155℃未満であると、弛緩の為の収縮応力が低くなり、上述した高いリラックス率を達成できなかったり、幅方向の熱収縮率が大きくなる場合がある。170℃を超えると、高温により孔周辺のポリマーが溶けて透気性が低下する場合がある。出力特性と安全性の観点から、160~165℃であるとより好ましい。
 熱処理後のフィルムは、テンターのクリップで把持した耳部をスリットして除去し、ワインダーでコアに巻き取って製品とする。
 本発明の多孔性フィルムは、高空孔率であり、耐電圧性に優れることから、包装用品、衛生用品、農業用品、建築用品、医療用品、分離膜、光拡散板、反射シート用途で用いることができるが、特に出力特性、工程適性と長期保存性に優れることから、蓄電デバイス用のセパレータとして好ましく用いることができる。ここで、蓄電デバイスとしては、リチウムイオン二次電池に代表される非水電解液二次電池や、リチウムイオンキャパシタなどの電気二重層キャパシタなどを挙げることができる。このような蓄電デバイスは充放電することで繰り返し使用することができるので、産業装置や生活機器、電気自動車やハイブリッド電気自動車などの電源装置として使用することができる。
 以下、実施例により本発明を詳細に説明する。なお、特性は以下の方法により測定、評価を行った。
 (1)膜厚:T(mm)
 (株)尾崎製作所製ピーコックアプライトダイヤルゲージ(測定子:10mmφ、荷重50g)による測定値を用いた。
 (2)絶縁破壊強度:Ea(kV/mm)
 絶縁破壊電圧をV(kV)、膜厚をT(mm)として、絶縁破壊強度Ea(kV/mm)は下記式(A)によって求められる。
  Ea=V/T  ・・・(A)
 絶縁破壊電圧Vの求め方は、以下の通りである。60cm×70cmの銅板上に60cm×70cmに切り出した測定用の多孔性フィルムを置き、その上に50cm×60cmのアルミ蒸着した2軸延伸ポリプロピレンフィルムを置いて、春日電機製SDH-1020P直流式耐圧試験器を接続した。0.5kVをスタート電圧とし、0.01kV/秒の昇圧速度で0.1kVずつ段階的に昇圧していき、各印加電圧において30秒間ホールドしている間の、絶縁破壊個数をそれぞれの印加電圧で数えていった。絶縁破壊個数が10個を超えたときの印加電圧を絶縁破壊電圧とした。測定は5回実施して平均値で評価を行った。
 本測定方法は一般的にあまり知られた測定方法でないが、一回の測定で50cm×60cmの面積における耐電圧性を評価することができるので非常に重要な測定手法である。一般的に良く知られた耐電圧性評価方法は後述の(8)に示す方法である。しかし、該方法では電極面積が小さいために、広範囲において耐電圧性を評価することが困難であるため、上記の方法で絶縁破壊電圧を測定し、評価を行なった。
 (3)樹脂厚み当たりの絶縁破壊強度:Er(kV/mm)
 空孔率をε(%)、膜厚をT(mm)、絶縁破壊電圧をV(kV)として、樹脂厚み当たりの絶縁破壊強度Er(kV/mm)は下記式(B)によって求められる。
  Er=V/[{(100-ε)/100}×T]  ・・・(B)
 測定は5回実施して平均値で評価を行った。
 (4)空孔率:ε(%)
 フィルムを30mm×40mmの大きさに切取り試料とした。電子比重計(ミラージュ貿易(株)製SD-120L)を用いて、室温23℃、相対湿度65%の雰囲気にて比重の測定を行った。測定を3回行い、平均値をそのフィルムの比重ρとした。
 次に、測定したフィルムを280℃、5MPaで熱プレスを行い、その後、25℃の水で急冷して、空孔を除去したシートを作成した。このシートの比重を上記した方法で同様に測定し、平均値を樹脂の比重(d)とした。なお、後述する実施例においては、いずれの場合も樹脂の比重dは0.91であった。フィルムの比重と樹脂の比重から、以下の式により空孔率を算出した。測定は5回実施して平均値で評価を行った。
 空孔率(%) = 〔( d - ρ ) / d 〕 × 100
 (5)曲路率:τ
 多孔質体における細孔モデルにおいて、流体の透過速度と空孔率や孔径や流体の粘度との関係は、式(1)で表される。
  u=(d・ε/100)ΔP/(2ηTτ)  ・・・(1)
 ここで、u(m/sec)は流体の透過速度、d(m)は孔径、ε(%)は空孔率、ΔP(Pa)は圧力差、η(Pa・sec)は流体の粘度、T(m)は膜厚、τ(無次元)は曲路率である。なお、本式を変形すると、曲路率は式(2)のように表される。
  τ=d(εΔP/200ηTu)0.5  ・・・(2)
 ここで、各パラメータは以下に従って求め、それぞれ式(2)に代入し、曲路率を求めた。
 <孔径d(m)>
 POROUS MATERIALS,Inc.製自動細孔径分布測定器“PERM-POROMETER”を用いて多孔層面を上側として測定した。なお、測定条件は以下の通りである。
 試験液:3M製“フロリナート”FC-40
 試験温度:25℃
 試験ガス:空気
 解析ソフト:Capwin
 測定条件:Capillary Flow Porometry-Wet up,Dry downのdefault条件による自動測定
 なお、孔径(細孔直径)と試験圧力の間には以下の関係式が成立する。
 d=Cγ/P×10-6
 [ただし、d:細孔直径(m)、C:定数、γ:フロリナートの表面張力(16mN/m)、P:圧力(Pa)である。]
 ここでは、上記に基づき、装置付属のデータ解析ソフトを用いて、1/2半濡れ曲線から平均孔径を算出した。但し、測定時の圧力上限の問題により、測定限界を37nmとした。同じサンプルについて同様の測定を、場所を変えて5回行い、得られた平均孔径の平均値を当該サンプルにおける貫通孔の孔径とした。
 <空孔率ε(%)>
 上記(4)に記載。
 <流体粘度η(Pa・sec)>
 測定装置はティー・エイ・インスツルメント・ジャパン(株)社製レオメーターAR1000を使用し、測定用ジオメトリーには、直径40mm 角度2°のコーンアンドプレートを使用した。測定は25℃でステップ状にせん断速度を変化させた定常流測定を行った。本実験で用いた流体(ジメチルカーボネート:エチレンカーボネート=7:3(質量比))。測定条件の詳細はせん断速度100s-1で予備せん断(30秒間)後、せん断速度100s-1から0.01s-1まで対数間隔で計16点(1,000s-1、10s-1、0.1s-1、0.01s-1の計4点を含む16点)の測定を行った。結果、流体粘度は0.001Pa・sec(25℃)であった。
 <圧力差ΔP(Pa)>
 0.2MPa(=2×10Pa)にて測定。
 <膜厚T(m)>
 上記(1)に記載の方法で得られた膜厚Tを1,000倍し用いた。
 <透過速度u(m/sec)>
 試料を円形に切り出し、アドバンテック東洋(株)社製タンク付きステンレスホルダーKST-47(濾過面積18.1cm)に取り付けた。ここにジメチルカーボネート:エチレンカーボネート=7:3(質量比、密度1.115g/cm)を入れ、圧力2×10Paで5g(=4.5cm)透過するのにかかる時間t(sec)を計測し、下記式(3)より透過速度u(m/sec)を算出した。
  u=0.01×4.5/(18.1×t)  ・・・(3)
 (5)熱収縮率
 フィルムの長手方向および幅方向について、幅10mm、長さ200mmの大きさの試料を5本切り出し、両端から25mmの位置に印を付けて試長150mm(l)とする。次に、荷重3gを付けて120℃に保温されたオーブン内に吊し、60分間加熱後に取り出して、室温で冷却後、寸法(l)を測定して下記式にて求め、5本の平均値を熱収縮率とした。
  熱収縮率={(l-l)/l}×100(%)
 (6)β晶分率、β晶形成能
 測定する樹脂またはフィルムを5mg採取し、試料としてアルミニウム製のパンに装填し、示差走査熱量計(DSC、セイコー電子工業(株)製RDC220)を用いて測定した。まず、窒素雰囲気下で室温から240℃まで40℃/分で昇温(ファーストラン)し、10分間保持した後、30℃まで40℃/分で冷却する。5分保持後、再度40℃/分で昇温(セカンドラン)した際に観察される融解ピークについて、145~157℃の温度領域にピークが存在する融解をβ晶の融解ピーク、158℃以上にピークが観察される融解をα晶の融解ピークとして、DSC曲線の高温側平坦部を基準に引いたベースラインとピークに囲まれた領域の面積から、それぞれの融解熱量を求める。α晶の融解熱量をΔHα、β晶の融解熱量をΔHβとしたとき、以下の式で計算される値をβ晶形成能とした。なお、融解熱量の較正はインジウムを用いて行った。測定は5サンプル実施して平均値で評価を行った。
 β晶形成能(%) = 〔 ΔHβ / ( ΔHα + ΔHβ )〕 × 100
 なお、ファーストランで観察される融解ピークから同様にβ晶の存在比率を算出した値を、その試料のβ晶分率とした。
 (7)透気抵抗
 多孔性フィルムから100mm×100mmの大きさの正方形を切り取り試料とした。JIS P 8117(1998)のB形ガーレー試験器を用いて、23℃、相対湿度65%にて、100mlの空気の透過時間の測定を行った。測定は5回実施して平均値で評価を行った。
 (8)電極絶縁破壊強度
 150mm四方のアルミニウム製の板状に、直径30mmに切り出した多孔性フィルムを置き、その上に真鍮製の直径25mm円柱電極を置いて、春日電機製SDH-1020P直流式耐圧試験器を接続した。0.2kV/秒の昇圧速度で電圧を加えていき、絶縁破壊したときの値を読みとった。断面膜厚1mm当たりに換算した値を電極絶縁破壊強度(kV/mm)とした。測定は20回実施して平均値で評価を行った。後述する実施例1および比較例1の多孔性フィルムについて評価を行なった。
 (9)出力特性
 宝泉(株)製のリチウムコバルト酸化物(LiCoO2)厚みが40μmの正極を使用し、直径15.9mmの円形に打ち抜き、また、宝泉(株)製の黒鉛厚みが50μmの負極を使用し、直径16.2mmの円形に打ち抜き、次に、各実施例・比較例の多孔性フィルムを直径24.0mmに打ち抜き、正極活物質と負極活物質面が対向するように、下から負極、多孔性フィルム、正極の順に重ね、蓋付ステンレス金属製小容器に収納した。容器と蓋とは絶縁され、容器は負極の銅箔と、蓋は正極のアルミ箔と接している。この容器内にエチレンカーボネート:ジメチルカーボネート=3:7(質量比)の混合溶媒に溶質としてLiPF6を濃度1M/Lとなるように溶解させた電解液を注入して密閉した。各実施例・比較例につき、電池を作製した。
 作製した各二次電池について、25℃の雰囲気下、充電を3mAで4.2Vまで1.5時間、放電を3mAで2.7Vまでとする充放電操作を行い、放電容量を調べた。さらに、充電を3mAで4.2Vまで1.5時間、放電を30mAで2.7Vまでとする充放電操作を行い、放電容量を調べた。
 [(30mAの放電容量)/(3mAの放電容量)]×100の計算式で得られる値を以下の基準で評価した。なお、試験個数は20個測定し、その平均値で評価した。
  ◎:90%以上
  ○:85%以上90%未満
  △:80%以上85%未満
  ×:80%未満
 (実施例1)
 多孔性フィルムの原料樹脂として、住友化学(株)製ホモポリプロピレン樹脂FLX80E4を95質量部、エチレン・α-オレフィン共重合体であるダウ・ケミカル社製 “Engage(登録商標)”8411(MFR:18g/10分、融点:163℃)を3質量部に加えて、β晶核剤であるN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド(新日本理化(株)製、Nu-100)を0.2質量部、さらに酸化防止剤であるチバ・スペシャリティ・ケミカルズ製“IRGANOX(登録商標)”1010、“IRGAFOS(登録商標)”168を各々0.15、0.1質量部の比率で混合されるように、計量ホッパーから二軸押出機に原料供給し、300℃で溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてチップ原料とした。
 このチップを単軸押出機に供給して220℃で溶融押出を行い、30μmカットの焼結フィルターで異物を除去後、Tダイから120℃に表面温度を制御したキャストドラムに吐出し、ドラムに15秒間接するようにキャストして未延伸シートを得た。ついで、120℃に加熱したセラミックロールを用いて予熱を行い、120℃でフィルム長手方向に5倍延伸を行った。次に端部をクリップで把持して予熱温度155℃で25秒間予熱を行い、初期延伸温度155℃、初期延伸速度1000%/分で1.05倍に、続いて後期延伸温度150℃、後期延伸速度1500%/分で最終的に8倍になる様に幅方向に延伸した。続く熱処理工程で、延伸後のクリップ間距離に保ったまま160℃で5秒間熱処理し、更に163℃で弛緩率17%リラックスを行い、最後に弛緩後のクリップ間距離に保ったまま163℃で5秒間熱処理を行い、その後、クリップで把持したフィルムの耳部をカットして除去し、厚み17μmの多孔性フィルムを得た。製膜条件、フィルム特性を表1に示す。
 (実施例2)
 実施例1において、横延伸での予熱温度、及び初期延伸温度を153℃とした以外は実施例1と同様の操作を行い、多孔性フィルムを得て、各物性値を表1に示した。
 (実施例3)
 実施例1において、横延伸での予熱温度、及び初期延伸温度を157℃とした以外は実施例1と同様の操作を行い、多孔性フィルムを得て、各物性値を表1に示した。
 (実施例4)
 実施例1において、横延伸での予熱温度、及び初期延伸温度を160℃、後期延伸温度を155℃とした以外は実施例1と同様の操作を行い、多孔性フィルムを得て、各物性値を表1に示した。
 (比較例1)
 実施例1において、横延伸での予熱温度、及び初期延伸温度を150℃とした以外は実施例1と同様の操作を行い、多孔性フィルムを得て、各物性値を表1に示した。
 (比較例2)
 実施例1において、横延伸での予熱温度、及び初期延伸温度を157℃、後期延伸温度を157℃とした以外は実施例1と同様の操作を行い、多孔性フィルムを得て、各物性値を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 本発明の要件を満足する実施例では、セパレータに適した高空孔率を維持しながら、耐電圧性に優れていることから、電池の出力特性、工程適性、長期保存性の両立を満足し、蓄電デバイス用セパレータとして好適に用いることができると考えられる。一方、比較例では、高空孔率性、耐電圧性を両立できていないことから、電池の出力特性、工程適性、長期保存性を両立しえないものであった。
 本発明の多孔性フィルムは、高空孔率を維持しながら、耐電圧性が高いため、セパレータとして用いた際に、出力特性、工程適性、長期保存性に優れる多孔性フィルムとして提供することができる。

Claims (8)

  1.  絶縁破壊電圧をV(kV)、膜厚をT(mm)としたときに、下記式(A)で定義される絶縁破壊強度Ea値が160kV/mm以上であり、空孔率が45~85%であることを特徴とする多孔性フィルム。
      Ea=V/T  ・・・(A)
  2.  前記空孔率をε(%)、膜厚をT(mm)、絶縁破壊電圧をV(kV)としたときに、下記式(B)で定義される樹脂厚み当たりの絶縁破壊強度Er値が400kV/mm以上であることを特徴とする、請求項1に記載の多孔性フィルム。
      Er=V/[{(100-ε)/100}×T]  ・・・(B)
  3.  曲路率が2.0~3.0であり、前記曲路率と前記空孔率の積が120以上であることを特徴とする、請求項1または2に記載の多孔性フィルム。
  4.  長手方向および幅方向のいずれの方向についても、120℃、60分間の熱収縮率が0~5%であることを特徴とする、請求項1~3のいずれかに記載の多孔性フィルム。
  5.  ポリオレフィン樹脂を含むことを特徴とする、請求項1~4のいずれかに記載の多孔性フィルム。
  6.  前記ポリオレフィン樹脂はポリプロピレン樹脂であることを特徴とする、請求項5に記載の多孔性フィルム。
  7.  蓄電デバイス用セパレータに使用されることを特徴とする、請求項1~6のいずれかに記載の多孔性フィルム。
  8.  請求項7に記載の多孔性フィルムをセパレータとして用いたことを特徴とする蓄電デバイス。
PCT/JP2013/058105 2012-03-23 2013-03-21 多孔性フィルムおよび蓄電デバイス WO2013141306A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380013622.1A CN104204051A (zh) 2012-03-23 2013-03-21 多孔性膜和蓄电装置
KR1020147023804A KR102147703B1 (ko) 2012-03-23 2013-03-21 다공성 필름 및 축전 디바이스
JP2014506273A JP6135665B2 (ja) 2012-03-23 2013-03-21 ポリオレフィン多孔性フィルムおよび蓄電デバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-066807 2012-03-23
JP2012066807 2012-03-23

Publications (1)

Publication Number Publication Date
WO2013141306A1 true WO2013141306A1 (ja) 2013-09-26

Family

ID=49222762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058105 WO2013141306A1 (ja) 2012-03-23 2013-03-21 多孔性フィルムおよび蓄電デバイス

Country Status (4)

Country Link
JP (1) JP6135665B2 (ja)
KR (1) KR102147703B1 (ja)
CN (1) CN104204051A (ja)
WO (1) WO2013141306A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135471A1 (ja) 2017-01-20 2018-07-26 ニッポン高度紙工業株式会社 アルミニウム電解コンデンサ用セパレータ及びアルミニウム電解コンデンサ

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107250234B (zh) * 2014-12-26 2020-09-18 东丽株式会社 聚烯烃微多孔膜、其制造方法以及电池用隔膜
CN107104007A (zh) * 2017-04-14 2017-08-29 苏州海凌达电子科技有限公司 一种超级电容器用聚碳酸酯隔膜
JP7215955B2 (ja) * 2019-04-16 2023-01-31 住友化学株式会社 非水電解液二次電池用多孔質層
US20240026089A1 (en) 2020-11-17 2024-01-25 Asahi Kasei Kabushiki Kaisha Polyethylene Powder and Molded Article

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141049A (ja) * 2000-11-06 2002-05-17 Nitto Denko Corp 非水電解液電池用セパレータ及び非水電解液電池
JP2010100845A (ja) * 2008-09-29 2010-05-06 Toray Ind Inc 多孔性ポリオレフィンフィルムの製造方法
JP2010135265A (ja) * 2008-12-08 2010-06-17 Nissan Motor Co Ltd 非水電解質二次電池
JP2011192528A (ja) * 2010-03-15 2011-09-29 Teijin Ltd ポリオレフィン微多孔膜、非水系二次電池用セパレータ及び非水系二次電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5532531A (en) 1978-08-28 1980-03-07 Ito Hiroshi Safety razor with oscillation device
JP5417685B2 (ja) 2005-10-18 2014-02-19 東レ株式会社 微多孔ポリプロピレンフィルムの製造方法
US8795565B2 (en) 2006-02-21 2014-08-05 Celgard Llc Biaxially oriented microporous membrane
JP2011187701A (ja) * 2010-03-09 2011-09-22 Fujifilm Corp コンデンサ用フィルム及びコンデンサ用フィルムの製造方法、並びにコンデンサ
JP2011184579A (ja) * 2010-03-09 2011-09-22 Fujifilm Corp コンデンサ用フィルム及びコンデンサ用フィルムの製造方法、並びにコンデンサ
JP5916498B2 (ja) * 2011-06-06 2016-05-11 日東電工株式会社 ポリイミド多孔質体及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141049A (ja) * 2000-11-06 2002-05-17 Nitto Denko Corp 非水電解液電池用セパレータ及び非水電解液電池
JP2010100845A (ja) * 2008-09-29 2010-05-06 Toray Ind Inc 多孔性ポリオレフィンフィルムの製造方法
JP2010135265A (ja) * 2008-12-08 2010-06-17 Nissan Motor Co Ltd 非水電解質二次電池
JP2011192528A (ja) * 2010-03-15 2011-09-29 Teijin Ltd ポリオレフィン微多孔膜、非水系二次電池用セパレータ及び非水系二次電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135471A1 (ja) 2017-01-20 2018-07-26 ニッポン高度紙工業株式会社 アルミニウム電解コンデンサ用セパレータ及びアルミニウム電解コンデンサ
US10964485B2 (en) 2017-01-20 2021-03-30 Nippon Kodoshi Corporation Separator for aluminum electrolytic capacitors, and aluminum electrolytic capacitor

Also Published As

Publication number Publication date
CN104204051A (zh) 2014-12-10
KR102147703B1 (ko) 2020-08-25
KR20140148371A (ko) 2014-12-31
JPWO2013141306A1 (ja) 2015-08-03
JP6135665B2 (ja) 2017-05-31

Similar Documents

Publication Publication Date Title
JP5907066B2 (ja) 多孔性ポリプロピレンフィルム、蓄電デバイス用セパレータおよび蓄電デバイス
CN107250234B (zh) 聚烯烃微多孔膜、其制造方法以及电池用隔膜
JP5672007B2 (ja) 多孔性ポリプロピレンフィルムロール
JP5736777B2 (ja) 多孔性ポリプロピレンフィルムおよびその製造方法
JP5807388B2 (ja) 多孔性ポリプロピレンフィルム
JP7283080B2 (ja) ポリオレフィン製微多孔膜、電池用セパレータおよび二次電池
JP6135665B2 (ja) ポリオレフィン多孔性フィルムおよび蓄電デバイス
JPWO2018164054A1 (ja) ポリオレフィン微多孔膜
JP5768599B2 (ja) 多孔性ポリプロピレンフィルムおよび蓄電デバイス
JP5724329B2 (ja) 多孔性ポリプロピレンフィルムロール
JP2009226746A (ja) 多孔性ポリオレフィンフィルム
WO2014103713A1 (ja) 多孔性ポリオレフィンフィルムおよびその製造方法、ならびにそれを用いてなる蓄電デバイス用セパレータ
JP2013032505A (ja) 多孔性ポリオレフィンフィルム、蓄電デバイス用セパレータおよび蓄電デバイス
JP5924263B2 (ja) 多孔性ポリプロピレンフィルムおよびその製造方法
KR20220069831A (ko) 폴리올레핀 미다공막, 전지용 세퍼레이터 및 이차 전지
JPWO2013054932A1 (ja) 多孔性ポリプロピレンフィルム、積層多孔性フィルムおよび蓄電デバイス
JP2013199511A (ja) 多孔性フィルムおよび蓄電デバイス
WO2013054931A1 (ja) 多孔性ポリプロピレンフィルムおよび蓄電デバイス
WO2021065585A1 (ja) ポリオレフィン微多孔膜、電池用セパレータ及び二次電池
JP2014062244A (ja) 多孔性フィルムおよび蓄電デバイス
JP2013100458A (ja) 多孔性ポリオレフィンフィルムおよび蓄電デバイス
JP2010100845A (ja) 多孔性ポリオレフィンフィルムの製造方法
JP2015110688A (ja) 多孔性フィルム、蓄電デバイス用セパレータおよび蓄電デバイス

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014506273

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764463

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147023804

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13764463

Country of ref document: EP

Kind code of ref document: A1