WO2021065585A1 - ポリオレフィン微多孔膜、電池用セパレータ及び二次電池 - Google Patents

ポリオレフィン微多孔膜、電池用セパレータ及び二次電池 Download PDF

Info

Publication number
WO2021065585A1
WO2021065585A1 PCT/JP2020/035606 JP2020035606W WO2021065585A1 WO 2021065585 A1 WO2021065585 A1 WO 2021065585A1 JP 2020035606 W JP2020035606 W JP 2020035606W WO 2021065585 A1 WO2021065585 A1 WO 2021065585A1
Authority
WO
WIPO (PCT)
Prior art keywords
stretching
polyolefin microporous
polyolefin
microporous membrane
battery
Prior art date
Application number
PCT/JP2020/035606
Other languages
English (en)
French (fr)
Inventor
石原 毅
光隆 坂本
豊田 直樹
龍太 中嶋
聡士 藤原
大倉 正寿
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2020551444A priority Critical patent/JPWO2021065585A1/ja
Publication of WO2021065585A1 publication Critical patent/WO2021065585A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a microporous polyolefin membrane, a battery separator and a secondary battery.
  • thermoplastic resin microporous membranes are widely used as substance separation membranes, selective permeation membranes, isolation membranes, and the like.
  • Specific applications of thermoplastic resin microporous membranes include, for example, battery separators used in lithium-ion secondary batteries, nickel-hydrogen batteries, nickel-cadmium batteries, polymer batteries, separators for electric double-layer capacitors, and back-penetration filtration.
  • Various filters such as membranes, ultrafiltration membranes, microfiltration membranes, moisture permeable and waterproof clothing, medical materials, supports for fuel cells, etc.
  • polyethylene microporous membranes are widely used as separators for lithium-ion secondary batteries. Its features include excellent mechanical strength that greatly contributes to battery safety and productivity, as well as ion permeability through the electrolytic solution that has penetrated into the micropores while ensuring electrical insulation. .. Further, the polyethylene microporous membrane has a pore closing function of suppressing an excessive temperature rise by automatically blocking the permeation of ions at about 120 to 150 ° C. at the time of an abnormal reaction inside / outside the battery.
  • Lithium-ion batteries are used in applications that require large and large capacities, such as power tools, storage batteries for automobiles / bicycles, and large storage equipment, in addition to so-called small consumer applications such as conventional mobile phone and PC batteries. It is spreading. Further, when using a large-capacity battery, there is a demand for a battery capable of emitting or taking in a large amount of electric power in a short time, that is, a battery having excellent charge / discharge characteristics. Due to its excellent charge / discharge characteristics, such a battery can be charged in a short time, and can meet the demands in fields such as power tools and drones that use a large amount of energy in a short time.
  • a separator having a thickness of 15 ⁇ m or more has been used especially for automobiles. Further, in some fields, a separator having such a thickness is used.
  • the separator is required to have the same safety and battery productivity as a separator having a thickness of 15 ⁇ m or more.
  • the strength (piercing strength, tensile strength) generally decreases, so that (1a) short circuit due to foreign matter derived from the electrode is likely to occur, and (1b) charge / discharge when used as a battery member.
  • (1c) deformation of the battery when it receives an impact from the outside and an increased possibility of film rupture in some cases.
  • a high-capacity battery is required to have higher safety than the conventional one, and (1c) is required to have a higher level of strength than the conventional one.
  • Patent Document 1 A technique that can suppress deformation (curl) of the separator end during coating treatment is disclosed (Patent Document 1). At the same time, Patent Document 1 pays attention to the optical characteristics of the porous substrate, and shows that the denser the structure, the better the ion permeability.
  • Patent Document 2 In addition, with the aim of improving the balance of transmittance, strength, heat shrinkage, and porosity of the separator, we focused on the total light transmittance of the separator and disclosed a separator with an improved balance of physical properties by controlling the pore size of the separator. (Patent Document 2).
  • a method of increasing the draw ratio can be considered as a means of increasing the strength, but such a method may cause defects inside the separator. Defects inside the separator scatter light and tend to increase the haze value of the separator. Patent Document 3 proposes to achieve both contradictory characteristics by devising the raw material formulation and stretching conditions.
  • Patent Document 1 only shows that the density of the surface and internal structures is controlled by controlling the brightness within a certain range, and that the ion permeability is excellent, and the pore structure on the surface or inside is excellent.
  • the effect on strength such as impact strength due to the difference in the above has not been examined as a technical issue.
  • Patent Document 2 shows that the balance of physical properties is improved by controlling the total light transmittance, and good air permeability, that is, ion permeability, is exhibited even under the heating and pressurizing conditions that the separator is expected to receive during the battery cycle test. , A separator having an excellent balance between permeability and puncture strength is disclosed. However, Patent Document 2 does not consider the surface or internal structure and the impact resistance of the separator at high speed.
  • Patent Document 3 uses the haze value as an index for improving the strength and self-discharge characteristics, which are important for thinning the separator. However, Patent Document 3 does not consider the scattering behavior derived from the pore structure on the surface or inside and improve the high-speed impact characteristics.
  • the present invention has been made in view of the above-mentioned conventional circumstances, and by precisely controlling the surface structure, it has an excellent capacity retention rate during high-speed charging and discharging when used as a separator for a secondary battery, and has a high speed. It is an issue to be solved to provide a polyolefin microporous membrane exhibiting high impact resistance in an impact test.
  • the present invention is as follows.
  • the ratio S (500_40 °) / S (500_20 °) of the reflected light to the reflectance S (500_20 °) of the S wave is R (500)
  • the ratio R (800) / R (500) of R (800) and R (500) and the number of SEM surface holes satisfy the following (Equation 4) on the at least one surface, [1] to The polyolefin microporous membrane according to any one of [3].
  • the polyolefin microporous membrane of the present invention has an excellent capacity retention rate during high-speed charging and discharging when used as a separator for a secondary battery, exhibits high impact resistance in a high-speed impact test, and contributes to the safety of large batteries in particular. To do.
  • FIG. 1 is a diagram showing the relationship between the capacity retention rate and the high-speed toughness in Examples and Comparative Examples.
  • FIG. 2 is a diagram showing the relationship between S (800_60 °) / S (500_60 °) and the capacity retention rate in Examples and Comparative Examples.
  • FIG. 3 is a diagram showing the relationship between S (800_60 °) / S (500_60 °) and high-speed toughness in Examples and Comparative Examples.
  • FIG. 4 is a diagram showing the relationship between S (800_60 °) / S (500_60 °) and the number of SEM surface holes in Examples and Comparative Examples.
  • FIG. 1 is a diagram showing the relationship between the capacity retention rate and the high-speed toughness in Examples and Comparative Examples.
  • FIG. 2 is a diagram showing the relationship between S (800_60 °) / S (500_60 °) and the capacity retention rate in Examples and Comparative Examples.
  • FIG. 3 is a diagram showing the relationship between S (800_60
  • FIG. 5 is a diagram showing the relationship between P (800_20 °) / P (500_20 °) and high-speed toughness in Examples and Comparative Examples.
  • FIG. 6 is a diagram showing the relationship between P (800_20 °) / P (500_20 °) and the capacity retention rate in Examples and Comparative Examples.
  • FIG. 7 is a diagram showing the relationship between P (800_20 °) / P (500_20 °) and the number of SEM surface holes in Examples and Comparative Examples.
  • FIG. 8 is a diagram showing the relationship between P (800_20 °) / P (500_20 °) and the number of SEM surface holes in Examples and Comparative Examples.
  • FIG. 9 is a diagram showing the relationship between R (800) / R (500) and the number of SEM surface holes in Examples and Comparative Examples.
  • FIG. 10 is a diagram showing the relationship between R (800) / R (500) and the capacity retention rate in Examples and Comparative Examples.
  • FIG. 11 is a diagram showing the relationship between R (800) / R (500) and high-speed toughness in Examples and Comparative Examples.
  • the present invention controls the molding conditions under certain conditions to control the surface, preferably the surface and the inside.
  • the pore structure can be controlled to a constant structure, which makes it possible to obtain a polyolefin microporous membrane that has excellent capacity retention during high-speed charging and discharging when used as a separator for secondary batteries and exhibits high impact resistance in high-speed impact tests. It was found that it can be obtained (Fig. 1).
  • the polyolefin microporous film according to one embodiment (first embodiment) of the present invention has a reflectance S (800_60) of S wave of reflected light when light having a wavelength of 800 nm is incident on the surface at an incident angle of 60 °. °) and the ratio S (800_60 °) / S (500_60 °) of the reflected light S wave reflectance S (500_60 °) when light with a wavelength of 500 nm is incident on the surface at an incident angle of 60 °.
  • the polyolefin microporous film according to another embodiment (second embodiment) of the present invention has a reflectance P of P waves of reflected light when light having a wavelength of 800 nm is incident on the surface at an incident angle of 20 ° (2nd embodiment).
  • the first embodiment and the second embodiment described above may be collectively referred to as "the embodiment of the present invention”.
  • microporous polyolefin membrane according to the embodiment of the present invention may satisfy the P (800/500) and the number of SEM surface pores below (Formula 3). Number of SEM surface holes ⁇ 58.7 ⁇ P (800/500) + 21.3 (Equation 3)
  • the microporous polyolefin film according to the embodiment of the present invention has the same wavelength as the S wave reflectance S (800_40 °) of the reflected light when light having a wavelength of 800 nm is incident on the surface at an incident angle of 40 °.
  • R (800) is the ratio S (800_40 °) / S (800_20 °) of the reflected light to the reflectance S (800_20 °) of the S wave when the light is incident on the surface at an incident angle of 20 °, and the wavelength is 500 nm.
  • the ratio S (500_40 °) / S (500_20 °) with the reflectance S (500_20 °) of the S wave of light is R (500)
  • the ratio R (800) between R (800) and R (500) ) / R (500) and the number of SEM surface holes may satisfy the following (Equation 4). Number of SEM surface holes ⁇ 150 ⁇ R (800) / R (500) -97 ... (Equation 4)
  • the range of reflectance that satisfies each of the above relational expressions can be set by adjusting the composition of the polyolefin raw material constituting the microporous film to the range described later and setting the film forming conditions to the range described later. .. Further, the reflectance can be measured by the method and conditions described later.
  • the present invention has been found that a unique effect can be obtained by satisfying a predetermined requirement for a dense structure on the surface of a microporous polyolefin membrane. Therefore, if any surface of the polyolefin microporous membrane meets the requirements of the present invention, the polyolefin microporous membrane is within the scope of the present invention even if the other surface does not meet the requirements of the present invention. ..
  • the polyolefin microporous membrane according to the embodiment of the present invention contains a polyolefin resin.
  • a polyethylene resin or a polypropylene resin is preferable.
  • the polyolefin resin may be a single material or a mixture of two or more different polyolefin resins. Examples of the mixture of two or more different polyolefin resins include a mixture of polyolefin resins selected from polyethylene, polypropylene, polybutene, and poly4-methyl-1-pentene.
  • the mixture of two or more different polyolefin resins a mixture of polyethylene and another polyolefin resin is preferable.
  • the polyolefin resin is not limited to the homopolymer, and may be a copolymer of different olefins.
  • polyethylene-based resins are particularly preferable from the viewpoint of excellent pore closing performance.
  • the ratio of the polyethylene-based resin in the polyolefin resin is preferably 30% or more, more preferably 50% or more, further preferably 60% or more, particularly preferably 70% or more, and most preferably 80% or more.
  • the higher the ratio of the polyethylene-based resin the better the balance between ion permeability and strength tends to be.
  • the melting point (softening point) of the polyethylene resin is preferably 70 to 150 ° C. from the viewpoint of pore closing performance.
  • polyethylene-based resin examples include ultra-high molecular weight polyethylene, high-density polyethylene, medium-density polyethylene, and low-density polyethylene.
  • low-density polyethylene examples include branched low-density polyethylene and linear low-density polyethylene.
  • the polymerization catalyst of the polyethylene resin is not particularly limited, and a Ziegler-Natta catalyst, a Philips catalyst, a metallocene catalyst, etc. can be used.
  • polyethylene-based resins may be not only ethylene homopolymers but also copolymers containing a small amount of other ⁇ -olefins.
  • ⁇ -olefins other than ethylene include esters of propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, (meth) acrylic acid, and (meth) acrylic acid. , Styrene and the like are suitable.
  • (meth) acrylic means acrylic or methacrylic.
  • the polyethylene-based resin may be a single material or a polyethylene mixture composed of two or more types of polyethylene-based resins.
  • the polyethylene mixture a mixture of two or more kinds of ultra-high density polyethylene having different weight average molecular weights (Mw), a mixture of high density polyethylene, a mixture of medium density polyethylene, or a mixture of low density polyethylene may be used.
  • a mixture of two or more polyethylenes selected from the group consisting of ultra-high density polyethylene, high density polyethylene, medium density polyethylene and low density polyethylene may be used.
  • the polyethylene mixture polyethylene mixture preferably comprising ultra-high molecular weight polyethylene, Mw of mixture consisting of 1 ⁇ 10 6 or more ultra-high molecular weight polyethylene and Mw of 1 ⁇ 10 4 or more 7 ⁇ 10 5 less than polyethylene is more preferred.
  • ultra high molecular weight polyethylene When using an ultra high molecular weight polyethylene as the polyethylene resin, ultra high molecular weight polyethylene, 5.0 ⁇ 10 5 or more at a weight-average molecular weight, preferably 1.0 ⁇ 10 7 or less.
  • the lower limit of the weight average molecular weight is more preferably 7.0 ⁇ 10 5 or more, more preferably 9.0 ⁇ 10 5 or more, the more preferably 1.0 ⁇ 10 6 or more.
  • the upper limit of the weight average molecular weight is more preferably 8.0 ⁇ 10 6 or less, more preferably 6.0 ⁇ 10 6 or less, particularly preferably 5.0 ⁇ 10 6 or less, and most preferably 4.0 ⁇ 10 It is 6 or less.
  • weight average molecular weight of 5.0 ⁇ 10 5 or more it is possible to achieve high pin puncture strength. Further, by a weight average molecular weight of 1.0 ⁇ 10 6 or more, entanglement density is increased in the amorphous region, preferably in both of tensile strength and elongation.
  • the molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) of ultra-high molecular weight polyethylene is preferably in the range of 3.0 to 100 from the viewpoint of mechanical strength.
  • the lower limit of the molecular weight distribution is preferably 4.0 or more, more preferably 5.0 or more, particularly preferably 6.0 or more, and most preferably 8.0 or more.
  • the upper limit of the molecular weight distribution is preferably 80 or less, more preferably 50 or less, particularly preferably 20 or less, and most preferably 17 or less.
  • the ultra-high molecular weight polyethylene may be used in the above polyethylene mixture, or may be used alone as a single substance.
  • workability is likely to improve if the molecular weight distribution is 3.0 or more, and low molecular weight components are unlikely to increase if the molecular weight distribution is 100 or less, which is a drawback during processing. It is easy to suppress the occurrence of such.
  • the melting point (Tm) of ultra-high molecular weight polyethylene is preferably 122 ° C. or higher and 140 ° C. or lower.
  • Tm melting point
  • the polyolefin microporous membrane can have good permeability.
  • the melting point of the ultra-high molecular weight polyethylene it is possible to obtain a polyolefin microporous membrane having excellent shutdown characteristics in which the pores of the polyolefin microporous membrane are closed when an abnormal state occurs when the battery is used.
  • the lower limit of the melting point of ultra-high molecular weight polyethylene is more preferably 124 ° C. or higher, still more preferably 126 ° C. or higher.
  • the upper limit of the melting point of the ultra-high molecular weight polyethylene is more preferably 138 ° C. or lower, further preferably 136 ° C. or lower, still more preferably 134 ° C. or lower, and most preferably 133 ° C. or lower.
  • the melting point can be measured according to JIS K7122: 2012. That is, a measurement sample (a molded product having a thickness of 0.5 mm melt-pressed at 210 ° C.) is placed in a sample holder of a differential scanning calorimeter (Pyris Diamond DSC manufactured by PerkinElmer) at an ambient temperature, and is placed in a nitrogen atmosphere. Heat-treat at 230 ° C. for 3 minutes, cool to 30 ° C. at a rate of 10 ° C./min, hold at 30 ° C. for 3 minutes, and heat to 230 ° C. at a rate of 10 ° C./min.
  • a polyethylene-based resin having a lower molecular weight may be used.
  • the polyethylene-based resin having a lower molecular weight includes one or more selected from high-density polyethylene (HPDE), medium-density polyethylene, branched low-density polyethylene, and linear low-density polyethylene.
  • HPDE high-density polyethylene
  • high-density polyethylene may be used if desired.
  • More polyethylene resin is a low molecular weight, 131.0 ° C. or higher (e.g., 131.0 ° C. ⁇ range of 135 ° C.) Tm, and 1.0 ⁇ 10 below 6 (e.g. 1.0 ⁇ 10 5 1.0 ⁇ 10 than 6, preferably has a weight average molecular weight in the range of 2 ⁇ 10 5 ⁇ 9.5 ⁇ 10 5). Tm is measured in the same manner as ultra-high molecular weight polyethylene.
  • polyethylene resin is a lower molecular weight, e.g. 50.0 or less, preferably such a range from 3.0 to 20.0 may have 1.0 ⁇ 10 2 or less in molecular weight distribution (MWD) ..
  • the polyethylene-based resin may be a polyethylene-based resin having a terminal unsaturated group.
  • the polyethylene-based resin has 0.20 or more terminals per 10,000 carbon atoms, for example, 5.0 or more per 10,000 carbon atoms, preferably 10.0 or more per 10,000 carbon atoms. It may have a saturated group amount. The amount of terminal unsaturated groups can be measured, for example, according to the procedure described in International Publication No. 1997/023554. In another embodiment, the polyethylene-based resin may have less than 0.20 terminal unsaturated groups per 10,000 carbon atoms.
  • the content of ultra-high molecular weight polyethylene in the polyethylene mixture is preferably 1 to 99% by mass from the viewpoint of tensile strength.
  • the content of ultra-high molecular weight polyethylene in the polyethylene mixture is more preferably 5 to 99% by mass, still more preferably 20 to 99% by mass.
  • the ultra-high molecular weight polyethylene is present in the polyethylene mixture in an amount of 1% by mass or more, high puncture strength can be obtained.
  • Productivity is improved when the content of ultra-high molecular weight polyethylene in the polyethylene mixture is 99% by mass or less.
  • the ultra-high molecular weight polyethylene is present in the polyethylene mixture in an amount of 20% by mass or more, whereby the polyolefin microporous membrane can achieve both high tensile strength and tensile elongation.
  • the amount of the polyethylene-based resin other than the ultra-high molecular weight polyethylene in the polyethylene mixture is, for example, 5.0% by mass to 99.0% by mass, 30.0% by mass to 95, based on the mass of the layer in which it is present. It is 99.0% by mass or less, such as 0.0% by mass or a range of 40.0% by mass to 85.0% by mass.
  • the molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) of the polyethylene mixture is preferably in the range of 3.0 to 200 from the viewpoint of mechanical strength.
  • the lower limit of the molecular weight distribution is more preferably 4.0 or more, still more preferably 5.0 or more, more preferably 6.0 or more, and most preferably 8.0 or more.
  • the upper limit of the molecular weight distribution is more preferably 180 or less, further preferably 150 or less, still more preferably 120 or less, and most preferably 100 or less.
  • One of the means for forming a polyolefin microporous membrane having excellent high-speed impact characteristics is to include a component having a high molecular weight in a constant ratio in the polyolefin microporous membrane.
  • the content of the component having a molecular weight exceeding 2.33 million in the polyolefin microporous membrane is preferably 10% by mass or more, more preferably 11% by mass or more, particularly preferably 11.5% by mass or more, and most preferably 12% by mass. % Or more.
  • a component having a high molecular weight in the microporous polyolefin membrane controls the crystallization rate on the outermost surface, and in combination with stretching conditions, a structure in which a certain amount of a dense structure and a relatively coarse structure are present. Is easy to form. Further, since the structural difference between the surface and the inside having different cooling rates can be controlled within a certain range, it becomes easy to exhibit high impact resistance in a high-speed impact test.
  • the polyolefin microporous film may be formed of a polyethylene mixture containing an ultra-high molecular weight polyethylene component having a weight average molecular weight of 1 million or more in an amount of more than 2% by mass, or a polyethylene mixture containing the ultra-high molecular weight polyethylene component in an amount of 5% by mass or more. preferable. More preferably, it is formed from a polyethylene mixture containing the ultra-high molecular weight polyethylene component in an amount of 10% by mass or more.
  • the microporous polyolefin membrane contains the ultra-high molecular weight polyethylene component because it can achieve high tensile elongation while having high puncture strength and tensile strength, and can achieve both battery productivity and high safety. ..
  • the polyolefin microporous membrane according to the embodiment of the present invention may contain a solvent (diluent).
  • the diluent is not particularly limited as long as it is a substance that can be mixed with the polyolefin resin or a substance that can dissolve the polyolefin resin. Although it is miscible with the polyolefin resin in the melt-kneaded state with the polyolefin resin, a solvent that forms a solid state at room temperature may be mixed with the diluent.
  • Examples of such a solid diluent include stearyl alcohol, ceryl alcohol, paraffin wax and the like.
  • liquid diluent examples include aliphatic, cyclic aliphatic or aromatic hydrocarbons such as nonane, decane, decalin, paraxylene, undecane, dodecane, and liquid paraffin, and these aliphatic or cyclic hydrocarbons having a boiling point.
  • Mineral oil distillates corresponding to or similar to the boiling point of aliphatic or aromatic hydrocarbons, as well as phthalates, soybean oil, sunflower oil, sunflower oil that are liquid at room temperature such as dibutylphthalate and dioctylphthalate.
  • Vegetable oils such as cotton oil, and other fatty acid esters. It is more preferable to use a non-volatile diluent such as liquid paraffin in order to obtain a gel-like sheet (gel-molded product) having a stable content of the liquid diluent.
  • the viscosity of the liquid diluent is preferably 20 to 500 cSt at 40 ° C., more preferably 30 to 400 cSt, and even more preferably 50 to 350 cSt.
  • the viscosity of the liquid diluent is less than 20 cSt, the discharge from the mouthpiece is non-uniform, and kneading tends to be difficult.
  • the viscosity of the liquid diluent exceeds 500 cSt, it tends to be difficult to remove the diluent.
  • the blending ratio of the polyolefin resin is preferably 1 to 60% by mass when the total of the polyolefin resin and the diluent is 100% by mass.
  • the blending ratio is more preferably 10 to 55% by mass, still more preferably 15 to 50% by mass.
  • the uniform melt-kneading process of the polyolefin resin solution is not particularly limited, and examples thereof include a process using a calendar, various mixers, and an extruder with a screw.
  • the method for producing a microporous polyolefin film according to the embodiment of the present invention includes, for example, (1) a step of adding a film-forming solvent (diluting agent) to the above-mentioned polyolefin resin and then melt-kneading to prepare a polyolefin resin solution. (2) A step of extruding the polyolefin resin solution from the die lip and then cooling to form a gel-like molded product, (3) a step of stretching the gel-like molded product in at least one axial direction (first stretching step), (4).
  • a step of removing the film-forming solvent (5) a step of drying the obtained film, (6) a step of re-stretching the dried film in at least the uniaxial direction (second stretching step), and (7) heat treatment.
  • any one of a heat fixing treatment step, a heat roll treatment step, and a heat solvent treatment step may be provided before the solvent removal step for film formation in (4). Further, after the steps (1) to (7), a drying step, a heat treatment step, a cross-linking treatment step by ionizing radiation, a hydrophilization treatment step, a surface coating treatment step and the like can be provided.
  • melt-kneading method for example, a method using a twin-screw extruder described in Japanese Patent No. 2132327 and Japanese Patent No. 3347835 can be used.
  • the content ratio of the polyolefin resin in the polyolefin resin solution is preferably 10 to 60% by mass, more preferably 15 to 50% by mass, when the total of the polyolefin resin and the film-forming solvent is 100% by mass.
  • the content ratio of the polyolefin resin is 10% by mass or more, the productivity is good.
  • the content ratio of the polyolefin resin is 60% by mass or less, the moldability of the gel-like molded product is improved.
  • the ratio (L / D) of the screw length (L) to the diameter (D) of the twin-screw extruder is preferably in the range of 20 to 100, more preferably in the range of 35 to 70. If the L / D is less than 20, melt kneading tends to be insufficient. When the L / D exceeds 100, the residence time of the polyolefin resin solution tends to increase too much.
  • the shape of the screw is not particularly limited and may be a known one.
  • the cylinder inner diameter of the twin-screw extruder is preferably 40 to 200 mm.
  • the ratio Q / Ns of the input amount Q (kg / h) of the polyolefin resin solution to the screw rotation speed Ns (rpm) is set to 0.03 to 2.0 kg / h / rpm. Is preferable. If the Q / Ns is less than 0.03 kg / h / rpm, the polyolefin resin is excessively shear-broken, which tends to lead to a decrease in strength and meltdown temperature.
  • the ratio Q / Ns is more preferably 0.05 to 1.8 kg / h / rpm.
  • the screw rotation speed Ns is preferably 50 rpm or more.
  • the upper limit of the screw rotation speed Ns is not particularly limited, but is preferably 500 rpm or less.
  • the preferable range of the temperature of the polyolefin resin solution in the extruder differs depending on the polyolefin resin. For example, 140 to 250 ° C. is preferable when polyethylene is contained, and 160 to 270 ° C. is preferable when polypropylene is contained.
  • the temperature of the polyolefin resin solution in the extruder is indirectly grasped by installing a thermometer inside the extruder or in the cylinder, and the heater temperature, rotation speed, and discharge amount of the cylinder are adjusted appropriately so that the target temperature is reached. It can be adjusted by.
  • the solvent may be added before the start of kneading, or may be added in the middle during kneading.
  • antioxidant in order to prevent oxidation of the polyolefin resin.
  • examples of the antioxidant include 2,6-di-t-butyl-p-cresol (BHT: molecular weight 220.4), 1,3,5-trimethyl-2,4,6-tris (3,5-tris).
  • Di-t-butyl-4-hydroxybenzyl) benzene eg, BASF's "Irganox”® 1330: molecular weight 775.2
  • It is preferable to use one or more selected from [phenyl) propionate] methane for example, "Irganox” (registered trademark) 1010: molecular weight 1177.7 manufactured by BASF).
  • Step of Forming Gel-like Molded Polyolefin resin solution melted and kneaded in an extruder is cooled to form a resin composition containing a solvent.
  • a mouthpiece die
  • the so-called inflation method is solidified by extruding from a mouthpiece for a blow film having a circular opening.
  • the extrusion temperature is preferably 140 to 250 ° C, more preferably 160 to 240 ° C, and even more preferably 180 to 230 ° C. By setting the extrusion temperature to 140 ° C.
  • the extrusion speed is preferably 0.2 to 20 m / min.
  • a gel-like sheet is formed by cooling the polyolefin resin solution extruded into a sheet-like shape.
  • a cooling method a method of contacting with a refrigerant such as cold air or cooling water, a method of contacting with a cooling roll, or the like can be used, and it is preferable to contact with a roll cooled with the refrigerant for cooling.
  • an unstretched gel-like sheet can be formed by bringing a polyolefin resin solution extruded into a sheet into contact with a rotating cooling roll whose surface temperature is set to 20 ° C. to 40 ° C. with a refrigerant.
  • the extruded polyolefin resin solution is preferably cooled to 25 ° C. or lower.
  • the cooling rate at this time is preferably 50 ° C./min or higher.
  • a cooling method for the purpose of improving the cooling efficiency of the sheet and the flatness of the sheet, two or more kinds of rolls are brought close to each other, and the resin solution discharged on one roll is pressed by one or more rolls to obtain a polyolefin resin.
  • a method of cooling the solution may be used.
  • a chamber in which the sheet is brought into close contact with the roll may be used.
  • the film thickness can be adjusted by adjusting each extrusion amount of the polyolefin resin solution.
  • the extrusion method for example, the methods disclosed in Japanese Patent Publication No. 06-104736 and Japanese Patent No. 3347835 can be used.
  • the obtained sheet-shaped gel-like molded product is stretched at least in the uniaxial direction.
  • the first stretching causes cleavage between the polyolefin crystal lamellar layers, the polyolefin phase becomes finer, and a large number of fibrils are formed.
  • the resulting fibril forms a three-dimensional network structure, that is, a three-dimensionally irregularly connected network structure. Since the gel-like molded product contains a solvent for film formation, it can be uniformly stretched.
  • the stretching method it is preferable to stretch in two or more steps in a state containing a solvent.
  • the stretching method at each stage is not particularly limited.
  • uniaxial stretching / simultaneous biaxial stretching and simultaneous biaxial stretching / uniaxial stretching are also preferable.
  • uniaxial extension / uniaxial extension is also preferable.
  • the stretching direction includes a sheet transporting direction (MD) and a sheet width direction (TD), but the order may be MD / TD or TD / MD.
  • MD sheet transporting direction
  • TD sheet width direction
  • the gel-like sheet can be stretched after heating by a tenter method, a roll method, a rolling method, or a method combining these.
  • the draw ratio varies depending on the thickness of the gel-like molded product, but in uniaxial stretching, it is preferably 2 times or more, and more preferably 3 to 30 times. In biaxial stretching, it is preferable to make it at least 3 times or more in any direction, that is, 9 times or more in area magnification because the puncture strength is improved. When the area magnification is 9 times or more, the stretching is sufficient, and a polyolefin microporous film having high elasticity and high strength can be easily obtained.
  • the area magnification is preferably 12 times or more, more preferably 16 times or more, still more preferably 18 times or more, and most preferably 20 times or more.
  • the area magnification is 400 times or less, restrictions are less likely to occur in terms of the stretching device, stretching operation, and the like.
  • the area magnification is preferably 200 times or less, more preferably 190 times or less, more preferably 180 times or less, and most preferably 150 times or less.
  • the temperature of the first stretching is preferably in the range of the crystal dispersion temperature or higher of the polyolefin resin to the crystal dispersion temperature + 30 ° C, more preferably in the range of the crystal dispersion temperature + 10 ° C to the crystal dispersion temperature + 25 ° C. It is particularly preferable that the crystal dispersion temperature is in the range of + 15 ° C. to the crystal dispersion temperature + 20 ° C.
  • this stretching temperature is the crystal dispersion temperature + 30 ° C. or lower, the orientation of the molecular chains after stretching is good.
  • the temperature is equal to or higher than the crystal dispersion temperature, the resin is sufficiently softened, film breakage due to stretching is prevented, and stretching at a high magnification is possible.
  • the crystal dispersion temperature refers to a value obtained by measuring the temperature characteristics of dynamic viscoelasticity based on ASTM D4065.
  • the crystal dispersion temperature thereof is generally 90 to 100 ° C. Therefore, when the polyolefin resin is 90% by mass or more and is made of a polyethylene resin, the stretching temperature is usually in the range of 90 to 130 ° C., preferably in the range of 100 to 125 ° C., and more preferably in the range of 105 to 120 ° C. To.
  • the sheet When the sheet is preheated before stretching, it may be set to a temperature higher than the stretching temperature in the subsequent stage.
  • the actual temperature of the sheet can be raised in a short time, which contributes to the improvement of productivity.
  • the difference in stretching temperature between the first stage and the second stage is preferably 5 ° C. or more.
  • the temperature When raising the temperature of the film from the first stage to the second stage, (a) the temperature may be raised while continuing the stretching, or (b) the stretching is stopped while the temperature is raised to reach a predetermined temperature, and then the stretching of the latter stage is performed. It may be started, but the former (a) is preferable. In either case, it is preferable to heat rapidly when the temperature rises. Specifically, it is preferable to heat at a heating rate of 0.1 ° C./sec or more, and more preferably to heat at a heating rate of 1 to 5 ° C./sec or more. Needless to say, it is preferable that the stretching temperature and the total stretching ratio of the first stage and the second stage are within the above ranges.
  • a temperature distribution may be provided in the film thickness direction for stretching.
  • a polyolefin microporous membrane having even higher mechanical strength can be obtained.
  • the method for example, the method disclosed in Japanese Patent No. 3347854 can be used.
  • the stretching direction may be increased to the maximum ratio and then decreased.
  • the structure of the final polyolefin microporous film in the film thickness direction can be controlled, and as a result, the impact strength against high-speed deformation can be improved. ..
  • the final magnification preferably 70% or more, more preferably 75% or more, and most preferably 80% or more with respect to the maximum magnification in the TD direction, excellent ion permeability can be exhibited.
  • the structure control in the film thickness direction is effective.
  • stretching may be carried out in two or more stages.
  • the stretching order may be any of MD / TD and TD / MD.
  • a sequential stretching method of roll stretching in the MD direction and then stretching in the TD direction by a tenter method will be described.
  • the stretching ratio before solvent extraction varies depending on the thickness of the gel-like sheet, but stretching in the MD direction (MD stretching (MDO)) is preferably performed at 2 to 12 times.
  • the MD stretching ratio before solvent extraction is more preferably 3 to 12 times, still more preferably more than 5 times and 11 times or less.
  • MD stretching twice or more before solvent extraction uniform stretching can be performed, so that the expression of non-uniform structure in the MD direction can be suppressed in the stretching in the TD direction (TD stretching) following the MD stretching.
  • TD stretching TD stretching
  • MD stretching can be performed in two or more stages.
  • the region where MD stretching is performed is composed of a preheating portion, a stretching portion, and a heat fixing portion, and the temperature of the gel-like sheet (or the film being stretched) is controlled by heating / cooling with a roll in the region. ..
  • the stretched portion can be stretched by utilizing the difference in peripheral speed between the rolls, and can be stretched by using the stretched sections divided into a plurality of stages. That is, the peripheral speed of the roll adjacent to the downstream side (winding side) of the roll is increased with respect to the roll on the most upstream side (die side) in the stretched portion, and the peripheral speed difference between these two rolls is used. Then, the gel-like sheet is stretched.
  • MD stretching in two or more stages multi-stage
  • MD stretching will be performed in two stages, and when three sets of the rolls are arranged in the stretching portion, MD stretching will be performed in three stages.
  • the downstream roll in any set and the upstream roll in the roll set adjacent to the downstream side of the arbitrary set are shared, for example, by three rolls.
  • a two-stage stretching section may be configured.
  • the draw ratio in each roll set can be the same or different.
  • the draw ratio at each stage is more preferably a different ratio, and by increasing the draw ratio toward the downstream side, it is possible to further suppress an increase in air permeability during heat compression.
  • stretching at the same magnification stretching at a relatively high magnification is performed at the initial stage of stretching.
  • stretching ratio is increased at different magnifications, it is presumed that the fine pore structure formed by MD stretching tends to be uniform and the compressibility is improved.
  • the magnification of stretching in the TD direction following MD stretching is preferably 2 to 12 times, more preferably 3 to 12 times, still more preferably 5 times to 5 times. It is 10 times.
  • the draw ratio in the TD direction is preferably 2 times or more, and the physical properties (air permeability, strength (piercing strength) in the TD direction). , Tensile strength) and heat shrinkage), the draw ratio in the TD direction is more preferably 5 times or more.
  • the draw ratio in the TD direction is more preferably 10 times or less.
  • the magnification may be changed in multiple steps along with the temperature.
  • the method for changing the draw ratio is not particularly limited, but the ratio may be reduced in multiple steps after the maximum draw ratio is applied.
  • the structure may be further made uniform by reducing the magnification after passing through the maximum magnification.
  • the stretching magnification after the completion of TD stretching is preferably a preferable magnification, specifically 2 to 12 times.
  • the total area magnification of MD stretching and TD stretching before solvent extraction is preferably 25 times or more, more preferably 30 times or more, and most preferably 40 times or more.
  • the stretching before solvent extraction is preferably 25 times or more in terms of area magnification.
  • the area magnification of stretching before solvent extraction is preferably 200 times or less, more preferably 180 times, and most preferably 150 times or less.
  • the stretching temperature is preferably equal to or lower than the melting point of the polyolefin resin in both MD stretching (MDO) and TD stretching (TDO), and more preferably (polyolefin resin crystal dispersion temperature Tcd) to (polyolefin resin melting point-). 5 ° C.), more preferably in the range of (polyolefin resin crystal dispersion temperature Tcd + 5 ° C.) to (polyolefin resin melting point ⁇ 5 ° C.).
  • the stretching temperature is about 90 to 130 ° C., preferably 100 to 127 ° C., and more preferably 105 to 125 ° C.
  • the stretching temperature is equal to or higher than the crystal dispersion temperature of the polyolefin resin, the generation of microcracks during stretching can be suppressed, so that the coarsening of the pore size (particularly the maximum pore size, BP) can be finally suppressed, and ion permeation can be suppressed. Lidendrite is less likely to occur due to the uniformity of the temperature, and the battery performance is maintained well. Further, when the stretching temperature is equal to or lower than the melting point of the polyolefin resin, stretching occurs uniformly, so that the occurrence of wrinkles and sagging is suppressed, and the productivity of the separator is ensured.
  • the stretching speed in TD stretching can be obtained from the film forming speed and the position of the clip (the part holding the gel-like sheet (film)) in the width direction (TD direction).
  • the stretching speed is preferably controlled to a constant speed in a region of preferably 80% or more, more preferably 85% or more, still more preferably 90% or more in the total stretching stage of the TD stretching.
  • the stretching speed of the TD stretching set to a constant speed in this way is preferably 200% / sec or less, more preferably 150% / sec or less, still more preferably 130% / sec or less. Residual stress in the separator can be suppressed by setting the stretching speed of TD stretching to 200% / sec or less. In addition, stable production is possible with a low possibility of production interruption due to film rupture or the like.
  • the stretching speed of TD stretching is preferably 10% / sec or more, more preferably 15% / sec or more, still more preferably 45% / sec or more.
  • the deviation of the stretching rate of TD stretching is preferably 70% / sec or less, more preferably 50% / sec or less, still more preferably 20% / sec or less, and most preferably 5% / sec. It is as follows. By controlling the deviation of the stretching rate of TD stretching below a certain value, the entanglement of the ultra-high molecular weight components develops uniformly, and the obtained polyolefin microporous film can have high impact absorption.
  • Solvent removal step for film formation A washing solvent is used for removing (cleaning) the film forming solvent. Since the polyolefin phase is phase-separated from the film-forming solvent, a porous film can be obtained by removing the film-forming solvent. Since the cleaning solvent and the method for removing the film-forming solvent using the cleaning solvent are known, the description thereof will be omitted. For example, the method disclosed in Japanese Patent No. 2132327 and Japanese Patent Application Laid-Open No. 2002-256099 can be used.
  • the polyolefin microporous film obtained by removing the solvent for film formation is dried by a heat drying method, an air drying method, or the like.
  • the dried film may be stretched again in at least the uniaxial direction.
  • the second stretching can be performed by the tenter method or roll stretching in the same manner as the first stretching while heating the film.
  • the second stretching may be uniaxial stretching or biaxial stretching.
  • the stretching direction includes a sheet conveying direction (MD) and a sheet width direction (TD), and the stretching order may be any of MD / TD and TD / MD.
  • the temperature of the second stretching is preferably in the range of crystal dispersion temperature or higher to crystal dispersion temperature + 40 ° C. or lower of the polyolefin resin constituting the microporous film, and crystal dispersion temperature + 10 ° C. to crystal dispersion temperature + 40 ° C. or lower. It is more preferable to keep it within the range of.
  • the temperature of the second stretching is set to a crystal dispersion temperature of more than + 40 ° C., the permeability is lowered, and the variation in physical properties in the sheet width direction when stretched in the lateral direction (width direction: TD direction) becomes large. In particular, the variation in the air permeability in the width direction of the stretched sheet becomes large.
  • the stretching temperature is usually in the range of 90 to 140 ° C, preferably in the range of 100 to 140 ° C.
  • the uniaxial magnification of the second stretching is preferably 1.1 to 3.0 times.
  • the length is increased 1.1 to 3.0 times in the longitudinal direction (mechanical direction: MD direction) or the TD direction.
  • MD direction longitudinal direction
  • TD direction TD direction
  • the number is 1.1 to 3.0 times in each of the MD direction and the TD direction.
  • the stretching ratios in the MD direction and the TD direction may be different from each other in each direction as long as they are 1.1 to 3.0 times. If this magnification is less than 1.1 times, the productivity of the microporous membrane per hour is inferior.
  • the second stretching ratio is more preferably 1.2 to 2.0 times.
  • the second stretching speed is preferably 3% / sec or more in the stretching axial direction.
  • the ratio is set to 3% / sec or more in the MD direction or the TD direction.
  • the ratio should be 3% / sec or more in the MD direction and the TD direction, respectively.
  • the stretching speed (% / sec) in the stretching axis direction is the ratio of the length stretched per second in the region where the film (sheet) is restretched, with the length in the stretching axis direction before restretching as 100%. Represents.
  • the second stretching rate is preferably 5% / sec or higher, more preferably 10% / sec or higher.
  • the stretching speeds in the MD direction and the TD direction are 3% / sec or more, they may be different from each other in the MD direction and the TD direction, but are preferably the same.
  • the upper limit of the second stretching speed is not particularly limited, but is preferably 300% / sec or less from the viewpoint of preventing breakage.
  • Heat treatment step The second stretched film is heat-treated.
  • a heat fixing treatment and / or a heat relaxation treatment may be used.
  • the heat-fixing treatment stabilizes the crystals of the film. Therefore, a network structure made of fibrils formed by the second stretching is retained, and a polyolefin microporous film having a large pore diameter and excellent strength can be produced.
  • the heat fixing treatment is preferably carried out within a temperature range from the crystal dispersion temperature of the polyolefin resin constituting the polyolefin microporous film to the melting point or lower.
  • the heat fixing treatment is preferably performed by a tenter method, a roll method or a rolling method.
  • the heat fixing treatment temperature is preferably within the range of the temperature of the second stretching ⁇ 5 ° C., which stabilizes the physical properties. This temperature is more preferably within the range of the temperature of the second stretching ⁇ 3 ° C.
  • the heat relaxation treatment method for example, the method disclosed in Japanese Patent Application Laid-Open No. 2002-256099 can be used.
  • the polyolefin microporous membrane may be a single-layer membrane, or may have a layer structure consisting of two or more layers having different molecular weights or average pore diameters. In the case of a layer structure composed of two or more layers, it is preferable that the molecular weight and the molecular weight distribution of at least one outermost layer of the polyolefin resin satisfy the above range.
  • each polyolefin resin constituting the A layer and the B layer is heat-melted and kneaded with a molding solvent, and each resin solution obtained is subjected to one die from each extruder.
  • Any of the methods of supplying to the resin, integrating and coextruding, laminating the gel-like sheets constituting each layer and heat-sealing, heat-sealing after stretching, and heat-sealing after removing the solvent. can be made.
  • the coextrusion method is preferable because it is easy to obtain adhesive strength between layers, it is easy to form communication holes between layers, it is easy to maintain high permeability, and it is also excellent in productivity.
  • the pore structure of the surface preferably the surface and the inside can be controlled to a constant structure, and when the pore structure parameter described later is set to a specific range and used as a separator for a secondary battery. It is possible to obtain a microporous membrane that has an excellent capacity retention rate during high-speed charging and discharging and exhibits high impact resistance in high-speed impact tests.
  • an in-line method in which the first stretching, the solvent removal for film formation, the drying treatment, the second stretching and the heat treatment are continuously performed on a series of lines.
  • an offline method may be adopted in which the film after the drying treatment is once wound into a film, and the second stretching and heat treatment are performed while rewinding the film.
  • (I) Heat-fixing treatment The method for heat-fixing the stretched gel-like molded product before and / or after washing and the film during the second stretching step may be the same as the heat-fixing treatment in the above-mentioned (7) heat treatment step.
  • thermal roll treatment may be performed in which a thermal roll is brought into contact with at least one surface of the stretched gel-like molded product before cleaning.
  • a method of heat roll treatment for example, the method described in Japanese Patent Application Laid-Open No. 2007-106992 can be used.
  • the stretched gel-like molded product is brought into contact with a heating roll whose temperature is adjusted to a crystal dispersion temperature of the polyolefin resin of + 10 ° C. or higher and lower than the melting point of the polyolefin resin.
  • the contact time between the heating roll and the stretched gel-like molded product is preferably 0.5 seconds to 1 minute.
  • the heated oil may be brought into contact with the surface of the roll while being held.
  • the heating roll may be either a smoothing roll or an uneven roll that may have a suction function.
  • Thermal solvent treatment step A treatment may be performed in which the stretched gel-like molded product before cleaning is brought into contact with a thermal solvent.
  • a thermal solvent treatment method for example, the method disclosed in International Publication No. 2000/204093 can be used.
  • the microporous polyolefin film after heat treatment may be crosslinked by ionizing radiation using ⁇ -rays, ⁇ -rays, ⁇ -rays, electron beams, etc., whereby the meltdown temperature Can be improved.
  • This process can be performed, for example, under the conditions of an electron dose of 0.1 to 100 Mrad and an acceleration voltage of 100 to 300 kV.
  • the microporous polyolefin membrane after heat treatment may be hydrophilized by monomer graft treatment, surfactant treatment, corona discharge treatment, plasma treatment, or the like.
  • the microporous polyolefin membrane after heat treatment is a fluororesin porous material such as polyphenylene sulfide or polytetrafluoroethylene, or PA (polyamide), PAI (polyamideimide), PI (polyimide), etc.
  • a porous material such as PPS (polyphenylene sulfide)
  • PPS polyphenylene sulfide
  • a coating layer containing PP may be formed on at least one surface of the second stretched polyolefin microporous film. Examples of the covering PP include those disclosed in International Publication No. 2005/054350.
  • a raw material made of ultra-high molecular weight polyethylene containing 11.5% or more of a component having a molecular weight of more than 2.33 million is used, and a wet type and a dry type are used.
  • the polyolefin microporous membrane according to the preferred embodiment of the present invention has the following physical properties.
  • a layer containing an inorganic or organic filler is formed on any surface of the polyolefin microporous film. It may be formed. In that case, after removing the layer, the following physical properties can be measured and specified.
  • a method for removing a layer composed of an inorganic filler and a resin for example, alcohol (ethanol, isopropanol, etc.), ketone (acetone, methyl ethyl ketone, etc.), ether (diethyl ether, etc.), cyclic organic compound (N-methylpyrrolidone, ⁇ , etc.) -Impregnate it in an organic solvent such as butyrolactone) or a mixture of these and water, and leave it for 24 hours or more.
  • the cleaning efficiency may be increased by an ultrasonic cleaner to the extent that the structure of the polyolefin microporous membrane does not change.
  • the film thickness of the polyolefin microporous membrane is preferably 3 to 25 ⁇ m, more preferably 3 to 22 ⁇ m, still more preferably 5 to 20 ⁇ m, and most preferably 5 to 12 ⁇ m because the high density and high capacity of the battery have been increasing in recent years. Is. By setting the film thickness to 3 ⁇ m or more, a separator with guaranteed insulating properties can be obtained. By reducing the film thickness to 25 ⁇ m or less, the film is highly safe and suitable for high output and high capacity.
  • the normalized air permeability (Garley value) is preferably 100 sec / 100 cm 3 / ⁇ m or less.
  • the polyolefin microporous membrane has good ionic conductivity when used in a battery.
  • the air permeability is preferably 20 sec / 100 cm 3 or more.
  • the air permeability is preferably 20 sec / 100 cm 3 or more because the discharge tends to proceed during storage even in the case of the above.
  • the air permeability and normalized air permeability are the resin composition (melting point and molecular weight distribution of polyethylene mixture such as ultra-high molecular weight polyethylene), stretching temperature and stretching ratio before solvent extraction, dry stretching temperature and drying ratio after washing, and resin. It can be adjusted according to the composition.
  • the porosity is preferably 25 to 80%. When the pore ratio is 25% or more, good air permeability and normalized air permeability can be obtained. When the porosity is 80% or less, the strength when the polyolefin microporous film is used as a battery separator is sufficient, and a short circuit can be suppressed.
  • the porosity is more preferably 25 to 60%, still more preferably 25 to 50%. With such a porosity, it is suitable for both tensile strength and tensile elongation.
  • the puncture strength is preferably 2000 mN (204 gf) or more, and more preferably 3500 mN (357 gf) or more in terms of film thickness of 10 ⁇ m. It is more preferably 4000 mN (408 gf) or more, and most preferably 5000 mN (510 gf) or more.
  • the puncture strength in terms of film thickness of 10 ⁇ m is 2000 mN or more, when a polyolefin microporous membrane is incorporated into a battery as a battery separator, it is necessary to suppress a decrease in yield during battery manufacturing and to ensure storage stability. preferable.
  • the tensile strength is preferably 80 MPa or more in both the MD direction and the TD direction. If the tensile strength is in this range, the concern about film rupture can be suppressed.
  • the tensile strength in the MD direction and the TD direction is more preferably 110 MPa or more, further preferably 140 MPa or more, and particularly preferably 160 MPa or more. When the tensile strength is in the above-mentioned preferable range, the film tends to be difficult to break when an impact is applied to the battery.
  • the tensile elongation at break (tensile elongation) is preferably 30% or more in both the MD direction and the TD direction. As a result, the possibility of film breakage of the separator is reduced during battery manufacturing and when an external force acts on the battery.
  • the tensile elongation in the MD direction and the TD direction is more preferably 40% or more, further preferably 45% or more, and particularly preferably 50% or more. When the tensile elongation is in the above-mentioned preferable range, energy tends to be easily absorbed when an impact is applied to the battery.
  • Toughness which is a measure of impact resistance obtained from tensile strength and tensile elongation, is the tensile strength in the MD direction (MD tensile strength), the tensile elongation in the MD direction (MD tensile elongation), and the tensile strength in the TD direction (TD tension). It can be calculated from the following formula (Equation 5) using the strength) and the tensile elongation in the TD direction (TD tensile elongation).
  • Toughness (MPa%) MD tensile strength (MPa) x MD tensile elongation (%) + TD tensile strength (MPa) x TD tensile elongation (%) ... (Equation 5)
  • the toughness is preferably 20000 MPa% or more, more preferably 25000 MPa% or more, further preferably 30,000 MPa% or more, and most preferably 40,000 MPa% or more from the viewpoint of impact resistance.
  • the upper limit of toughness is preferably 500,000 MPa% or less, more preferably 400,000 MPa% or less, still more preferably 300,000 MPa% or less, and most preferably 200,000 MPa% or less because other physical properties such as ion permeability deteriorate.
  • the high-speed tensile strength, high-speed tensile elongation, and high-speed toughness shown below show the test results at a deformation speed of 500 mm / min, as will be described later.
  • the high-speed tensile strength is preferably 100 MPa or more in both the MD direction and the TD direction. When the high-speed tensile strength is within this range, the concern about film rupture can be suppressed when an impact having a high deformation rate is applied in the battery.
  • the tensile strength in the MD direction and the TD direction is more preferably 110 MPa or more, further preferably 140 MPa or more, and particularly preferably 160 MPa or more. When the tensile strength is in the above-mentioned preferable range, the film tends to be difficult to break when an impact is applied to the battery.
  • the high-speed tensile elongation at break is preferably 20% or more in both the MD direction and the TD direction.
  • the high-speed tensile elongation in the MD direction and the TD direction is more preferably 30% or more, further preferably 35% or more, and particularly preferably 40% or more.
  • the polyolefin microporous membrane tends to easily absorb energy when an impact is applied to the battery.
  • High-speed toughness which is a measure of impact resistance obtained from high-speed tensile strength and high-speed tensile elongation, is high-speed tensile strength in the MD direction (MD high-speed tensile strength), high-speed tensile elongation in the MD direction (MD high-speed tensile elongation), and TD. It can be calculated from the following formula (Equation 5') using the high-speed tensile strength in the direction (TD high-speed tensile strength) and the high-speed tensile elongation in the TD direction (TD high-speed tensile elongation).
  • High-speed toughness MD high-speed tensile strength (MPa) x MD high-speed tensile elongation (%) + TD high-speed tensile strength (MPa) x TD high-speed tensile elongation (%) ... (Equation 5')
  • the high-speed toughness is preferably 15,000 MPa% or more, more preferably 17,000 MPa% or more, further preferably 18,000 MPa% or more, and most preferably 19000 MPa% or more from the viewpoint of impact resistance.
  • the upper limit is 500,000 MPa% or less, more preferably 400,000 MPa% or less, further preferably 300,000 MPa% or less, and most preferably 200,000 MPa% or less because other physical properties, for example, ion permeability deteriorate.
  • a polyolefin microporous membrane that achieves both these contradictory piercing strengths and high-speed toughness and satisfies the relationship of the following (Equation 6) is obtained.
  • is preferably 40,000, more preferably 41,000, more preferably 43,000, still more preferably 44,000, and most preferably 45,000.
  • the polyolefin microporous membrane preferably satisfies the above (Equation 6).
  • the average pore size and the maximum pore size of the polyolefin microporous membrane can be measured by the following method using a polomerometer. First, for each of a dry sample (hereinafter, also simply referred to as “dry sample”) and a wet sample in which the measurement liquid is filled in the pores (hereinafter, also simply referred to as “wet sample”). The relationship between the air pressure and the air flow rate is measured using a polo meter, and the aeration curve (Dry Curve) of the dry sample and the aeration curve (Wet Curve) of the wet sample are obtained.
  • dry sample also simply referred to as “dry sample”
  • wet sample in which the measurement liquid is filled in the pores
  • the wet sample filled with the measurement liquid in the pores shows the same characteristics as the capillaries filled with the liquid.
  • the air pressure overcomes the surface tension of the measurement liquid in the pores in order from the pores having the largest diameter, and the measurement liquid is pushed out from the pores.
  • the air flow rate gradually increases, and finally the sample becomes dry. Therefore, the pore diameter can be calculated by measuring the pressure at which the liquid is extruded from the pores.
  • the measurement point at which the generation of bubbles is first detected (the measurement point indicating the maximum pore diameter) is called a bubble point.
  • the measurement point indicating the maximum pore diameter is called a bubble point.
  • the average pore size of the polyolefin microporous membrane is determined based on the half-dry method specified in ASTM E1294-89 using the above-mentioned ventilation curve (Dry Curve) of the dry sample and the ventilation curve (Wet Curve) of the wet sample. be able to.
  • the average flow diameter pressure is the pressure at the intersection of the half-inclined curve (Half-Dry Curve) of the dry sample ventilation curve (Dry Curve) and the wet sample ventilation curve (Wet Curve). By substituting this average flow diameter pressure into the above (Equation 7), the average pore size (Mean Pore Diameter) of the polyolefin microporous film is calculated.
  • the average pore size is preferably 5 nm or more, more preferably 10 nm or more, still more preferably 13 nm or more, and most preferably 15 nm or more from the viewpoint of ion permeability. From the viewpoint of battery life, the average pore diameter is preferably 80 nm or less, more preferably 70 nm or less, still more preferably 60 nm or less, particularly preferably 50 nm or less, and most preferably 30 nm or less.
  • the maximum pore diameter is equal to or larger than the average pore diameter, preferably 15 nm or more, more preferably 18 nm or more, further preferably 20 nm or more, and most preferably 23 nm or more from the viewpoint of ion permeability. Further, the maximum pore diameter is required to have a high level of insulating property because the film thickness is thinner than before, and is preferably 150 nm or less, more preferably 100 nm or less, further preferably 80 nm or less, and most preferably 60 nm or less. Is.
  • the ratio of the maximum pore diameter to the average pore diameter and the maximum pore diameter / average pore diameter are preferably 1.05 or more, more preferably 1.1 or more, still more preferably 1.15 or more, and most preferably 1.2 or more from the viewpoint of ion permeability.
  • the maximum pore diameter / average pore diameter is preferably 3.0 or less, more preferably 2.5 or less, still more preferably 2.5 or less, because the battery life may be shortened due to the local flow of ions due to the widening of the pore diameter distribution. It is 2.2 or less, most preferably 2.0 or less.
  • the average number of SEM surface holes can be calculated by the following formula (10).
  • the vapor-deposited polyolefin microporous film was observed with a differential scanning electron microscope (SEM) at an acceleration voltage of 2 kV.
  • SEM differential scanning electron microscope
  • vacancies were extracted, and the number of surface pores per unit area, the surface aperture ratio, and the surface pore diameter were calculated.
  • the binarization process was carried out using an acceleration voltage of 2 kV, a magnification of 10000 times, an image of 11.7 ⁇ m ⁇ 9.4 ⁇ m (1280 pixels ⁇ 1024 pixels), and an 8-bit (256 gradations) gray scale image.
  • a dynamic binary value is set to -30 gradations from the image averaged by 21 pixels x 21 pixels.
  • the number of surface holes observed by SEM is preferably 40 / ⁇ m 2 or more, more preferably 60 / ⁇ m 2 or more, further preferably 80 / ⁇ m 2 or more, and 90 / ⁇ m 2 or more. Is most preferable, and 100 pieces / ⁇ m 2 or more is remarkably preferable.
  • the number of SEM surface holes is preferably 180 / ⁇ m 2 or less, and more preferably 170 / ⁇ m 2 or less.
  • the polyolefin microporous film according to the embodiment of the present invention has the reflectance S (800_60 °) of the S wave of the reflected light and the light having a wavelength of 500 nm when light having a wavelength of 800 nm is incident on the surface at an incident angle of 60 °.
  • the ratio S (800_60 °) / S (500_60 °) of the reflected light to the reflectance S (500_60 °) of the S wave when the light is incident on the surface at the same incident angle is 0.5 or more and 1.20 or less. Is preferable.
  • the reflected light with different incident angles was analyzed, and the surface and internal structure of the polyolefin microporous film were evaluated.
  • Angle dependence evaluation Any model may be used as long as the spectrophotometric degree can be measured by changing the incident angle (angle formed by the incident light and the normal), and evaluation can be performed using, for example, U-4100 manufactured by Hitachi High-Technologies Corporation.
  • the spectrophotometricity can be measured according to the method specified in JIS K0115: 2004. Specifically, for example, it can be performed under the following conditions. Measurement wavelength range: 400nm-1500nm Scanning speed: 750 nm / min Angle: 20 °, 40 °, 60 ° (relative to normal direction) Observed reflection wavelength: P wave and S wave The reflectances of the P wave and S wave at 500 nm and 800 nm were measured, respectively.
  • the surface structure of the polyolefin microporous membrane whose pore structure parameters are in a specific range is precisely controlled, and when used as a separator for a secondary battery, it has an excellent capacity retention rate during high-speed charging and discharging, and is used in high-speed impact tests. Demonstrates high impact resistance. Further, it is preferable to control the internal structure of the polyolefin microporous membrane.
  • the pore structure parameter defines information on the surface and internal structure of the polyolefin microporous film by optical characteristics, and serves as an index of the abundance ratio of the coarse structure and the dense structure.
  • the surface and internal structure of the polyolefin microporous film are the composition of the polyolefin resin (melting point, molecular weight distribution, content, etc. of polyethylene resin such as ultra-high molecular weight polyethylene), cooling rate at the time of solidification of the polyolefin resin solution, take-up rate and solvent extraction. It can be adjusted by the previous stretching temperature and stretching ratio, the dry stretching temperature after washing, the dry stretching ratio, and the like.
  • the problem to be solved in the present application is both improvement of output characteristics when used in a lithium ion battery and impact resistance, which is an index of safety.
  • it is expected to try to increase the number of surface pores of the polyolefin microporous membrane.
  • As a method for increasing the number of pores for example, an increase in the solvent ratio in a mixture of a solvent and a resin as a diluent and an application of stretching conditions for increasing the porosity in the first stretching step can be considered. As the number increases, the structure tends to become non-uniform. It is presumed that it is difficult to control uniform structural changes during stretching.
  • Patent Document 1 there has been a proposal to improve the output characteristics by aligning the structures.
  • the scattering intensity was high, there was no consideration of the size of the structure. Since we are looking at the scattering intensity at all wavelengths, we are measuring the scattering of various structures. Therefore, it was found that there is room for improvement in output characteristics because the distribution of the structure has not been considered, only showing that the structure that can cause scattering is close to uniform regardless of the surface or the inside.
  • the following parameters were used to specify the pore structure.
  • the pore structure parameters related to the surface of the polyolefin microporous film the reflectance S (800_60 °) of the S wave of the reflected light and the light having a wavelength of 500 nm when light having a wavelength of 800 nm is incident on the surface at an incident angle of 60 ° are used.
  • the ratio S (800_60 °) / S (500_60 °) of the reflected light to the reflectance S (500_60 °) of the S wave when it was incident on the surface at an incident angle of 60 ° was used.
  • the reflectance at an incident angle of 60 ° By using the reflectance at an incident angle of 60 °, information on the pore structure on the surface of the polyolefin microporous film can be obtained.
  • the ratio S (800_60 °) / S (500_60 °) at an incident angle of 60 ° is preferably 1.20 or less, more preferably 1.18 or less, still more preferably 1.15 or less, still more preferably 1.10 or less. Is.
  • the ratio S (800_60 °) / S (500_60 °) is 1.20 or less, a coarse pore structure and a dense pore structure are appropriately present on the surface, and the stress on the surface is dispersed during high-speed deformation. It is possible to suppress the destruction of the hole structure.
  • the ratio S (800_60 °) / S (500_60 °) is preferably 0.50 or more, more preferably 0.60 or more, still more preferably 0.70 or more, and even more preferably 0.80 or more.
  • a polyolefin microporous membrane having a pore structure with excellent ion permeability can be formed.
  • Equation 1 the reason why the problem to be solved in the present application can be solved by satisfying (Equation 1) is presumed as follows.
  • S (800/500) is considered to be a physical property related to the surface structure of the polyolefin microporous membrane.
  • S (800/500) is presumed to be related to the ratio of the dense structure that scatters light at 500 nm to the coarse structure that scatters light at 800 nm.
  • the polyolefin microporous membrane according to the first embodiment of the present invention forms a more dense structure, which is considered to have led to an improvement in the capacity retention rate.
  • the impact resistance was unexpectedly improved as the number of coarse structures increased (Fig. 3).
  • the impact resistance is improved as the coarse structure ratio increases, but the prior art has the same coarse / dense ratio.
  • the polyolefin microporous film according to the first embodiment of the present invention Comparing the polyolefin microporous film according to the first embodiment of the present invention with the polyolefin microporous film according to the first embodiment of the present invention, the polyolefin microporous film according to the first embodiment of the present invention has higher impact resistance than the conventional polyolefin microporous film. Showed sex.
  • the number of surface holes increased as the coarse structure increased, and it is presumed that the coarse structure contributed to the increase in the number of holes (Fig. 4).
  • the number of holes increases as the ratio of dense structures increases, and it can be seen that the surface structure differs from that of the prior art.
  • there are many holes in the dense structure but it can be understood that the prior art has many holes in the coarse structure. It can be inferred that the reason why the high-speed impact resistance is different even if the coarse / dense structure ratio is the same is that the impact resistance is greatly affected by the location of the holes.
  • the larger the ratio P (800_20 °) / P (500_20 °) the more coarse pore structure exists from the surface to the inside of the microporous membrane.
  • the ratio P (800_20 °) / P (500_20 °) is preferably 1.20 or less, more preferably 1.15 or less, still more preferably 1.12 or less, still more preferably 1.10 or less, most preferably 1. It is less than or equal to 0.0.
  • P (800_20 °) / P (500_20 °) is preferably 0.60 or more, more preferably 0.70 or more, still more preferably 0.80 or more.
  • P (800_20 °) / P (500_20 °) is 0.60 or more, the ion resistance is small during rapid charging / discharging, so that the capacity that can be used as a battery during rapid charging / discharging, that is, the capacity retention rate is high.
  • the ratio P (800_20 °) / P (500_20 °) of the reflected light to the reflectance P (500_20 °) of the P wave and the number of SEM surface holes shown above satisfy the following (Equation 2) (second).
  • the present invention also achieves high impact resistance for obtaining high safety expected when used in a large battery, and high-speed charge / discharge characteristics, that is, a measure of ion permeability. It is possible to exhibit excellent characteristics in rate characteristics.
  • P (800/500) P (800_20 °) / P (500_20 °).
  • P (800/500) shown above averages the structure from the surface to the inside to evaluate the structure. The smaller this value is, the stronger the scattering derived from the dense structure is.
  • the polyolefin microporous membrane according to the second embodiment of the present invention has a dense structure, it has a large number of surface pores, so that it achieves both the rate characteristics that have been difficult in the past (FIG. 6).
  • the present invention could be achieved by increasing the number of surface pores while improving the structure of the microporous membrane.
  • a coarse structure and a dense structure exist at a constant ratio on both the surface and the whole.
  • the polyolefin microporous membrane according to the second embodiment of the present invention showed a tendency to improve when the coarse structure slightly increased, similar to the surface structure (Fig. 5).
  • the coarse structure ratio is uniformly large as a whole (example: Comparative Example 2)
  • the area where the coarse structure and the dense structure are in contact with each other is reduced.
  • the impact resistance is improved by advancing the same level of structural densification as in the present application (Example: Comparative Example 1).
  • the number of dense structures having a small number of holes is increased, which is presumed to be disadvantageous to the output characteristics. As described above, it has been difficult to achieve both output characteristics and impact resistance with the prior art.
  • the total scattering intensity including the internal structure and the number of surface holes are used.
  • the internal structure was also specified by the scattering intensity, and the number of surface holes was used as the surface structure information (Fig. 7).
  • the output characteristics are improved by increasing the proportion of the coarse structure as a whole (Example: Comparative Example 2).
  • the impact resistance the more dense the structure is, the better the overall structure is (Fig. 5), and it is difficult to achieve both.
  • the polyolefin microporous membrane according to the second embodiment of the present invention is preferable because a microporous membrane having more excellent output characteristics can be obtained by satisfying (Equation 3) as well. It is presumed that this is because a dense structure having a larger number of holes can be achieved by satisfying (Equation 3) (Fig. 8). Number of SEM surface holes ⁇ 58.7 ⁇ P (800/500) + 21.3 (Equation 3)
  • R (800) When light with a wavelength of 800 nm is incident on the surface at an incident angle of 40 °, the reflectance S (800_40 °) of the S wave of the reflected light and light with a wavelength of 800 nm are applied to the surface at an incident angle of 20 °.
  • R (500) The reflectance S (500_40 °) of the S wave of the reflected light when light with a wavelength of 500 nm is incident on the surface at an incident angle of 40 °, and light with a wavelength of 500 nm is applied to the surface at an incident angle of 20 °.
  • R (800) and R (500) show the structural uniformity of the entire microporous film (reflectance at an incident angle of 20 °) and the vicinity of the surface (reflectance at an incident angle of 40 °) observed at 800 nm and 500 nm, respectively. Represents. The closer they are to 1, the more uniform the pore structure is in the entire microporous membrane and in the vicinity of the surface.
  • R (800) reflects a coarse pore structure and R (500) reflects a dense pore structure, indicating the distribution specificity of each pore structure.
  • R (800) reflects the abundance ratio of the coarse pore structure (reflectance at an incident angle of 40 °) near the surface to the pore structure (reflectance at an incident angle of 20 °) of the entire microporous membrane. .. When R (800) exceeds 1, it means that there are many coarse pore structures in the vicinity of the surface as compared with the whole.
  • R (500) shows the characteristics of the hole structure near the surface for the dense hole structure.
  • the ratio R (800) / R (500) is preferably 0.50 or more, more preferably 0.60 or more, still more preferably 0.70 or more, and most preferably 0.80 or more. Further, it is preferably 1.30 or less, more preferably 1.20 or less, still more preferably 1.15 or less, still more preferably 1.12 or less, and most preferably 1.10 or less.
  • the ratio R (800) / R (500) is 0.5 or more, the dense structure is maintained as a whole, so that the output characteristics are excellent.
  • the ratio R (800) / R (500) is 1.30 or less, the ratio of the coarse pore structure / dense pore structure in the vicinity of the surface and the entire microporous membrane is highly uniform and is partial during rapid deformation. It has the characteristic that the destruction of the hole structure does not proceed easily.
  • the R (800) is preferably 0.6 or more, more preferably 0.7 or more, further preferably 0.8 or more, still more preferably 0.9 or more, and most preferably 1.0 or more. is there.
  • the R (800) is preferably 2.2 or less, more preferably 2.1 or less, still more preferably 2.0 or less, still more preferably 1.90 or less, and most preferably 1.85 or less.
  • the R (500) is preferably 0.6 or more, more preferably 0.7 or more, still more preferably 0.8 or more, still more preferably 0.9 or more, and most preferably 1.0 or more. ..
  • the R (500) is preferably 2.3 or less, more preferably 2.2 or less, still more preferably 2.0 or less, still more preferably 1.9 or less, and most preferably 1.85 or less.
  • the polyolefin microporous membrane according to the embodiment of the present invention achieves both output characteristics and impact resistance with a dense structure on the surface layer and a more dense structure existing inside.
  • a technique of adopting a coarse structure for the surface layer to improve the output characteristics and a dense structure for maintaining the strength inside (Structure 1, Example: Comparative Example 1). )
  • Structure 2, Example: Comparative Example 2 In order to improve the output characteristics, there has been a technique (Structure 2, Example: Comparative Example 2) that uses a structure having an overall uniform coarse structure / dense structure ratio.
  • the number of holes increased by introducing a coarse structure (Fig. 4), but in the present application, a structure with a large number of holes could be achieved despite the dense structure (Fig. 4), which was achieved by the prior art. It seems that both output characteristics and impact resistance, which could not be achieved, were achieved.
  • the change rate (R (800)) of the coarse structure may be large.
  • the ratio of the coarse structure is large as a whole like the structure 2, since the structure is uniform, the structural change from the inside to the surface may have a feature that there is no difference between the coarse / dense structure.
  • the structure 2 has better output characteristics than the structure 1 (FIGS. 2 and 6)
  • the rate of change of the coarse structure and the rate of change (R (800) / R (500)) of the coarse structure and the dense structure are more equal in the prior art. That is, when R (800) / R (500) is closer to 1, the capacity retention rate tends to improve (FIG. 10).
  • the polyolefin microporous membrane according to the embodiment of the present invention changes from a more dense internal structure to a dense surface structure from the inside to the surface. Therefore, the change in the coarse structure (R (800)) becomes relatively large. Therefore, the larger the rate of structural change from the inside to the surface (R (800) / R (500)), the more dense the structure inside.
  • the polyolefin microporous membrane according to the embodiment of the present invention has a feature that the number of pores is increased due to a dense structure. It seems that the capacity retention rate tends to improve because the number of paths through which ions pass in the internal structure, which is more dense than the surface, increases.
  • the surface layer has a coarse structure and the inside has many dense structures as in structure 1.
  • the impact is concentrated in a small number of places, and it is considered that the impact resistance is inferior. Therefore, the larger the rate of change (R (800) / R (500)) of the coarse structure as in the structure 1, the better the impact resistance.
  • the rate of change (R (800)) of the coarse structure is relatively large.
  • FIG. 5 In the prior art, when the microporous membrane as a whole has a large coarse structure (P (800/500) is large), it is disadvantageous in impact resistance (FIG. 5). In that case, by adopting a structure having a large rate of change (R (800) / R (500)) from the inside to the surface, the difference between the inside and the surface structure is shown as in the structure 1 which is advantageous for impact resistance. However, it is considered that the microporous membrane composed of the coarse structure inside and the coarser structure on the surface cannot improve the impact resistance by transferring the impact from the coarse structure to the dense structure as in structure 1.
  • the relationship between the ratio of each structural change rate (R (800) / R (500)) and the number of surface holes was used.
  • the denser the surface structure, the larger the number of pores, and the larger the rate of change (R (800) / R (500)) the more dense the inside and the inside. Shows a tendency for the number of passes to increase. As a whole, it has a dense structure, and by making it denser inside, both impact resistance and output characteristics can be improved.
  • the impact resistance is improved by making the structure denser inside (the rate of change (R (800) / R (500)) is larger than that of the surface having many coarse structures). Since it has a feature that the number of holes is larger in a coarse structure than in a dense structure, which is a feature of the above, it is considered that the passage of ions is reduced inside the densified structure, which is disadvantageous to the output characteristics.
  • the output characteristics are improved by making the entire microporous film a uniform coarse / dense structure, but the rate of change from the inside to the surface (R (800) / R (500)) is small, and the impact resistance is reduced. Is inferior. Therefore, by defining the number of surface pores, which is characteristic of the number of pores in the microporous membrane, and the structural change from the inside to the surface layer, it seems that a structure that can achieve both impact resistance and output characteristics is specified.
  • the 60 ° mirror surface gloss is measured in accordance with JIS Z8741: 1997. Using the digital variable angle gloss meter UGV-5D manufactured by Suga Test Instruments Co., Ltd., the average value measured three times is used to obtain a 60 ° mirror gloss.
  • a solidified solution of polyethylene-solvent is called a cast sheet. Since the cast sheet contains a solvent, the solvent may seep out from the surface of the solidified cast sheet depending on the molding conditions, which may make it difficult to handle in the production process.
  • the amount of solvent exuded from the unit cast volume is obtained and evaluated as a ratio to the cast sheet mass.
  • the cast sheet is cut out to a thickness of 1 mm and a size of 10 cm ⁇ 10 cm, the LP raised on the surface is wiped off, and the mass of the cast sheet is measured at room temperature.
  • the rate at which energy is released per hour is defined as the rate.
  • the speed at which the battery capacity of the used battery is consumed in 1 hour is described as 1C.
  • the speed at which the battery capacity of the used battery is consumed in 5 minutes is 12C.
  • the capacity measured at 0.2C is defined as 1, and the relative value is defined as the capacity retention rate (%).
  • a charge / discharge test is performed by incorporating it as a separator in a non-aqueous electrolyte secondary battery consisting of a positive electrode, a negative electrode, a separator and an electrolyte.
  • a cathode laminated with NMC532 lithium nickel-manganese-cobalt composite oxide (Li 1.05 Ni 0.50 Mn 0.29 Co 0.21 O 2 )) and an anode laminated with natural graphite are used.
  • the separator is used by drying a polyolefin microporous membrane in a vacuum oven at room temperature.
  • the electrolytic solution is prepared by dissolving 0.5% by mass of vinylene carbonate (VC) and 1 mol / L of LiPF 6 in a mixture of ethylene carbonate, ethyl methyl carbonate, and dimethyl carbonate.
  • a non-aqueous electrolyte secondary battery is manufactured by stacking a positive electrode, a separator, and a negative electrode, arranging the obtained laminate in a laminate pouch, injecting an electrolytic solution into the laminate pouch, and vacuum-sealing the laminate pouch. To do.
  • the produced non-aqueous electrolyte secondary battery is used as the initial charge, and the initial charge / discharge treatment described later is performed to set the initial non-aqueous electrolyte secondary battery.
  • CC-CV constant current-constant voltage
  • the discharge rate is set at a predetermined temperature. Change and perform a rate test of the non-aqueous electrolyte secondary battery.
  • the temperature is 15 ° C., and the discharge rate is selected from 1 C (18 mA, 1.44 mA / cm 2 ) to 20 C at 3 levels or more at each temperature and evaluated.
  • the capacity retention rate (capacity retention rate) at each rate is defined as in (Equation 11).
  • Capacity retention rate at each rate (capacity retention rate) (%) (capacity at each rate / capacity at 0.2C) ⁇ 100 ... (Equation 11)
  • the present inventors are related to permeability such as air permeability, pore ratio, average pore diameter, and average number of pores. I focused on physical properties. In addition, in view of the expansion and contraction of the electrodes that occur in the battery during rapid charging and discharging, we focused on physical properties related to strength such as puncture strength and tensile strength.
  • the battery separator according to the embodiment of the present invention can be produced by a known method using the polyolefin microporous membrane according to the embodiment of the present invention.
  • the film thickness of the battery separator according to the embodiment of the present invention is preferably 3 ⁇ m to 30 ⁇ m from the viewpoint of mechanical strength and battery capacity.
  • the film thickness of the battery separator is within the above range, it is suitable for producing a high-capacity battery, and deflection due to its own weight is unlikely to occur.
  • the width of the battery separator is not particularly limited, but is preferably 10 mm or more, more preferably 60 mm or more, further preferably 100 mm or more, preferably 2000 mm or less, more preferably 1000 mm or less, still more preferably 800 mm or less.
  • the length of the battery separator is preferably 500 m or more, more preferably 1000 m or more, and further preferably 2000 m or more.
  • the length of the battery separator is preferably 10,000 m or less, more preferably 8,000 m or less, still more preferably 7,000 m or less.
  • the battery separator is preferably stored in a dry state, but when it is difficult to store it in an absolutely dry state, it is preferable to perform a vacuum drying treatment at 100 ° C. or lower immediately before use.
  • the secondary battery according to the embodiment of the present invention can be manufactured by a known method using a battery separator.
  • the secondary battery examples include a nickel-hydrogen battery, a nickel-cadmium battery, a nickel-zinc battery, a silver-zinc battery, a lithium ion secondary battery, a lithium polymer secondary battery, and the like. Secondary batteries are preferred.
  • the lithium ion secondary battery contains an electrode body in which a positive electrode and a negative electrode are laminated via a separator, and an electrolytic solution (electrolyte).
  • the structure of the electrode body is not particularly limited, and may be a known structure.
  • the structure of the electrode body is an electrode structure (coin type) in which disk-shaped positive electrodes and negative electrodes are arranged so as to face each other, an electrode structure in which flat plate-shaped positive electrodes and negative electrodes are alternately laminated (laminated type), and a band shape.
  • the positive electrode and the negative electrode of the above can be overlapped and wound to form an electrode structure (winding type) or the like.
  • Example 1 Manufacture of polyolefin microporous membrane
  • the weight average molecular weight 1.69 ⁇ 10 6 6
  • molecular weight distribution 5.6 the ultra-high molecular weight polyethylene 100 parts by weight of a melting point of 133 ° C., tetrakis [methylene as an antioxidant-3- (3,5-ditertiary butyl-4 -Hydroxyphenyl) -propionate] 0.375 parts by mass of methane was dry-blended to prepare a polyethylene composition.
  • a polyethylene resin solution was extruded from a die installed at the tip of this extruder at 210 ° C., and an unstretched gel-like sheet was formed while being taken up by a cooling roll kept at an internal cooling water temperature of 25 ° C.
  • stretching is performed by a tenter under the condition that the width is changed to 10 times in the heat fixing process. It was.
  • the maximum stretching speed deviation was set to 2%.
  • the stretched gel sheet was immersed in a methylene chloride tank at 25 ° C. and then dried by blowing air at 25 ° C.
  • the dried polyolefin microporous film was heat-fixed at 125 ° C. for 40 seconds to form the final polyolefin microporous film.
  • Example 2 The weight average molecular weight 1.69 ⁇ 10 6, molecular weight distribution 5.6, the ultra-high molecular weight polyethylene 100 parts by weight of a melting point of 133 ° C., tetrakis [methylene as an antioxidant-3- (3,5-ditertiary butyl-4 -Hydroxyphenyl) -propionate] 0.375 parts by mass of methane was dry-blended to prepare a polyethylene composition.
  • a polyethylene resin solution was extruded from a die installed at the tip of this extruder at 210 ° C., and an unstretched gel-like sheet was formed while being taken up by a cooling roll kept at an internal cooling water temperature of 25 ° C.
  • the cooled extrude was first stretched by roll in the MD direction.
  • Preheating temperature / stretching temperature / heat fixing temperature 116 ° C./113 ° C./50 ° C., stretching was performed in three stages (1.9 times / 2.3 times / 2.3 times, total 10 times).
  • Preheating temperature / stretching temperature / heat fixing temperature 115 ° C / 117 ° C / 110 ° C expanded in the TD direction to a stretching ratio of 11.5 times, and then changed to 10 times in the heat fixing process by a tenter. Stretching was performed.
  • the maximum stretching speed deviation was set to 2%.
  • the stretched gel sheet was immersed in a methylene chloride tank at 25 ° C. and then dried by blowing air at 25 ° C.
  • the dried polyolefin microporous film was heat-fixed at 125 ° C. for 40 seconds to form the final polyolefin microporous film.
  • Example 3 The weight average molecular weight 1.69 ⁇ 10 6, molecular weight distribution 5.6, the ultra-high molecular weight polyethylene 100 parts by weight of a melting point of 133 ° C., tetrakis [methylene as an antioxidant-3- (3,5-ditertiary butyl-4 -Hydroxyphenyl) -propionate] 0.375 parts by mass of methane was dry-blended to prepare a polyethylene composition.
  • a polyethylene resin solution was extruded from a die installed at the tip of this extruder at 210 ° C., and an unstretched gel-like sheet was formed while being taken up by a cooling roll kept at an internal cooling water temperature of 25 ° C.
  • Preheating temperature / stretching temperature / heat fixing temperature 116 ° C / 116 ° C / 119 ° C
  • the stretching ratio was expanded to 9.0 times in the TD direction, and then the heat fixing process was changed to 8 times by the tenter. Stretching was performed.
  • the maximum stretching speed deviation was set to 2%.
  • the stretched gel sheet was immersed in a methylene chloride tank at 25 ° C. and then dried by blowing air at 25 ° C.
  • the dried polyolefin microporous film was heat-fixed at 125 ° C. for 40 seconds to form the final polyolefin microporous film.
  • Example 4 The weight average molecular weight 1.69 ⁇ 10 6, molecular weight distribution 5.6, the ultra-high molecular weight polyethylene 100 parts by weight of a melting point of 133 ° C., tetrakis [methylene as an antioxidant-3- (3,5-ditertiary butyl-4 -Hydroxyphenyl) -propionate] 0.375 parts by mass of methane was dry-blended to prepare a polyethylene composition.
  • a polyethylene resin solution was extruded from a die installed at the tip of this extruder at 210 ° C., and an unstretched gel-like sheet was formed while being taken up by a cooling roll kept at an internal cooling water temperature of 25 ° C.
  • Simultaneous biaxial stretching was performed in which the magnification was returned to 10 times only in the direction.
  • the stretched gel sheet was immersed in a methylene chloride tank at 25 ° C and then dried by blowing air at 25 ° C.
  • the dried polyolefin microporous film was heat-fixed at 124 ° C. for 40 seconds to form the final polyolefin microporous film.
  • Examples 5 and 6 The conditions were changed to the conditions shown in Table 2 in the same procedure as in Examples 1 to 3.
  • Comparative Examples 1, 2, 3 The resin composition, stretching conditions, and the like were changed to the conditions shown in Table 2, and a polyolefin microporous film was obtained according to the methods described in Examples 1 and 4.
  • the weight average molecular weight, molecular weight distribution, and melting point of the polyethylene resin used were measured as follows.
  • the weight average molecular weight and molecular weight distribution of the polyethylene resin used were determined by the gel permeation chromatography (GPC) method under the following conditions.
  • -Measuring device Agilent's high-temperature GPC device PL-GPC220 -Column: Agilent PL1110-6200 (20 ⁇ m MIXED-A) x 2-Column temperature: 160 ° C -Solvent (mobile phase): 1,2,4-trichlorobenzene-Solvent flow rate: 1.0 mL / min-Sample concentration: 0.1 wt% (dissolution condition: 160 ° C / 3.5H) ⁇ Injection amount: 500 ⁇ L -Detector: Differential refractive index detector (RI detector) manufactured by Agilent. -Viscometer: Viscosity detector manufactured by Agilent.-Calibration curve: Prepared by the universal calibration curve method using monodisperse polystyrene standard sample.
  • RI detector Differential refractive index detector
  • the temperature was raised from 30 ° C. to 230 ° C. at 10 ° C./min, held at 230 ° C. for 3 minutes, and lowered to 30 ° C. at 10 ° C./min.
  • the same measurement was repeated twice more, and the melting point was determined from the endothermic peak at the time of temperature rise.
  • f1 means a component amount (mass%) having a molecular weight of 2.33 million or more.
  • MDO means sequential stretching in the MD direction
  • TDO means sequential stretching in the TD direction
  • TDDO means dry stretching in the TD direction.
  • Air permeability (sec / 100 cm 3 ) The air permeability (Garley value) was measured according to JIS P 8117: 2009. In the embodiment of the present invention, the gas used when measuring the air permeability is air.
  • the pore diameter was converted from the pressure at the intersection of the pressure and the half slope of the flow rate curve in the Dry-up measurement and the pressure at the intersection of the Wet-up measurement curve.
  • Equation 12 was used for conversion of pressure and hole diameter.
  • d C ⁇ ⁇ / P ...
  • Equation 12 Equation 12
  • the average number of SEM surface holes can be calculated by the following formula (10).
  • the vapor-deposited polyolefin microporous film was observed with a differential scanning electron microscope (SEM) at an acceleration voltage of 2 kV.
  • SEM differential scanning electron microscope
  • vacancies were extracted, and the number of surface pores per unit area, the surface aperture ratio, and the surface pore diameter were calculated.
  • the binarization process was carried out using an acceleration voltage of 2 kV, a magnification of 10000 times, an image of 11.7 ⁇ m ⁇ 9.4 ⁇ m (1280 pixels ⁇ 1024 pixels), and an 8-bit (256 gradations) gray scale image.
  • a dynamic binary value is set to -30 gradations from the image averaged by 21 pixels x 21 pixels.
  • the microporous polyolefin membrane is unwound from a wound body pre-slitted so that the TD dimension is the same as the width when stored in the battery, and then the required battery wound material or stack amount. It will be disconnected at the point where. Therefore, when the microporous membrane is taken out from the battery, it has a rectangular shape, and two of its four sides are parallel to the longitudinal direction (MD) of the microporous membrane in the original microporous membrane wound body, and the rest. The two sides are parallel to the direction perpendicular to the longitudinal direction (TD). In the scattering measurement, the measurement was performed by irradiating light from a direction parallel to MD or TD.
  • Equation 2 Number of SEM surface holes ⁇ 58.7 ⁇ P (800/500) + 21.3 (Equation 3) Number of SEM surface holes ⁇ 150 ⁇ R (800) / R (500) -97 ... (Equation 4)
  • the brightness and white index were measured with a spectrophotometer.
  • the brightness was measured by SCI (including specularly reflected light) using D65 as a light source.
  • the brightness was measured according to JIS Z8781-4: 2013, and the white index was measured according to ASTM E313-73.
  • the 60 ° mirror surface gloss was measured according to JIS Z8741: 1997. Using a digital variable angle gloss meter UGV-5D manufactured by Suga Test Instruments Co., Ltd., the average value measured three times was used to obtain a 60 ° mirror gloss.
  • the positive electrode and the negative electrode were dried in a vacuum oven at 120 ° C. and used.
  • a microporous polyolefin membrane having a length of 50 mm and a width of 50 mm was dried in a vacuum oven at room temperature and used.
  • the electrolytic solution was prepared by dissolving 0.5% by mass of vinylene carbonate (VC) and 1 mol / L of LiPF 6 in a mixture of ethylene carbonate, ethyl methyl carbonate and dimethyl carbonate (volume ratio: 30/35/35).
  • a non-aqueous electrolyte secondary battery was produced by injecting an electrolytic solution into the laminated pouch and vacuum-sealing the laminated pouch.
  • the prepared non-aqueous electrolyte secondary battery was charged for 10 to 15% at a temperature of 35 ° C. and 0.1 C, and left at 35 ° C. overnight (12 hours or more) for degassing.
  • the temperature is 35 ° C.
  • the voltage range is 2.75 to 4.2V
  • the charging current value is 0.1C
  • the constant current-constant voltage (CC-CV) charging terminal current condition 0.02C
  • the discharge current value is 0.1C.
  • Constant current (CC) discharge was carried out.
  • CC-CV charging with a temperature of 35 ° C., a voltage range of 2.75 to 4.2 V, a charging current value of 0.2 C (termination current condition of 0.05 C), and CC discharge with a discharge current value of 0.2 C are performed for 3 cycles.
  • the time point was defined as the initial stage of the non-aqueous electrolyte secondary battery.
  • CC-CV charging with a temperature of 35 ° C., a voltage range of 2.75 to 4.2 V, a charging current value of 0.2 C (termination current condition of 0.05 C), and CC discharge with a discharge current value of 0.2 C are performed.
  • the discharge capacity at that time was set to 0.2 C capacity.
  • the discharge rate is changed at the following temperature to non-charge.
  • the rate test of the water electrolyte secondary battery was performed. The temperature was 15 ° C., respectively.
  • the discharge rate was selected from 1 C (18 mA, 1.44 mA / cm 2 ) to 20 C at 3 levels or more at each temperature and evaluated. The evaluation results are shown in Table 3 as the capacity retention rate (%) at 12C.
  • the polyolefin microporous film having constant optical characteristics is excellent in battery characteristics during high-speed charging and discharging, and excellent in impact resistance during high-speed deformation.
  • the pore structure of the microporous membrane cannot be controlled, so that the surface structure is dominated by a coarse structure (S (800_60 °) / S (500_60 °)). 1.2 or more), or the structure of the entire microporous membrane tends to have a slightly large number of coarse pore structures (P (800_20 °) / P (500_20 °) is 1.15 or more). .. Further, in the region located slightly inside the surface (40 ° reflection region), a coarse pore structure (800 nm scattering component) is present more than a dense pore structure (500 nm scattering component) with respect to the entire polyolefin microporous film.
  • the polyolefin microporous membrane of the example can precisely control the pore structure in the microporous membrane, and as a result, the impact resistance at the time of high-speed deformation is improved. It was excellent, had a large average number of pores, and satisfied high ion permeability at the same time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本発明は、波長800nmの光を入射角60°で表面に入射させたときの、反射光のS波の反射率S(800_60°)と、波長500nmの光を同入射角で表面に入射させたときの、反射光のS波の反射率S(500_60°)との比率S(800_60°)/S(500_60°)と、走査型電子顕微鏡での観察により測定されるSEM表面孔数が少なくとも一つの表面において、下記(式1)を満たす、ポリオレフィン微多孔膜に関する。 SEM表面孔数≧366×S(800/500)-380・・・・・・(式1) このとき、S(800/500)=S(800_60°)/S(500_60°)である。

Description

ポリオレフィン微多孔膜、電池用セパレータ及び二次電池
 本発明はポリオレフィン微多孔膜、電池用セパレータ及び二次電池に関する。
 熱可塑性樹脂微多孔膜は物質の分離膜、選択透過膜、及び隔離膜等として広く用いられている。熱可塑性樹脂微多孔膜の具体的な用途は、例えば、リチウムイオン二次電池、ニッケル-水素電池、ニッケル-カドミウム電池、ポリマー電池に用いる電池用セパレータや、電気二重層コンデンサ用セパレータ、逆浸透濾過膜、限外濾過膜、精密濾過膜等の各種フィルター、透湿防水衣料、医療用材料、燃料電池用支持体などである。
 特にリチウムイオン二次電池用セパレータとして、ポリエチレン製微多孔膜が広く採用されている。その特徴として、電池の安全性、生産性に大きく寄与する機械的強度に優れることに加え、電気絶縁性を担保しつつ、微細孔に浸透した電解液を通じたイオン透過性を併せ持つことが挙げられる。さらにポリエチレン製微多孔膜は、電池の外部/内部の異常反応時には120~150℃程度において自動的にイオンの透過を遮断することにより、過度の温度上昇を抑制する孔閉塞機能を備えている。
 リチウムイオン電池はその利用分野が、従来の携帯電話、PC用電池など、いわゆる小型民生用途に加え、電動工具、自動車/自転車用蓄電池、大型蓄電設備など、大型、大容量が求められる用途へと広がってきている。また、大容量の電池を使用する際には、短時間で大量の電力を放出する又は取り入れることが可能な電池、即ち充放電特性に優れた電池が求められている。かかる電池は、充放電特性に優れることにより短時間で充電を完了させることができ、また短時間に多くのエネルギーを使用する電動工具やドローンといった分野での要求を満たすことができるようになる。
 電池の高容量化を達成する一つの手段として、セパレータの厚みを減らし、電極材料をより多く使用することが検討されている。従来、15μm以上の厚みのセパレータが、特に車載向けにて使用されてきた。また一部の分野ではかかる厚みのセパレータが使用されている。
 しかし電池の高容量化が進み、15μm以下の厚みのセパレータを使用する機会が増え、セパレータは今後更に薄膜化が進行すると予想されている。その場合においてもセパレータは15μm以上の厚みのセパレータと同等の安全性、電池生産性が求められる。
 セパレータの厚みが薄くなることにより、一般に強度(突刺強度、引張強度)が低下するため、(1a)電極由来の異物による短絡が生じやすくなる、(1b)電池用部材として使用した場合に充放電に伴う電極の膨張収縮に追従しにくくなる、(1c)電池が外部から衝撃を受けた場合に変形する、場合により破膜する可能性が高くなる、といった不具合が生じるリスクが高まってくる。特に高容量の電池では、従来よりも高い安全性が求められており、(1c)に対して、従来よりも高いレベルの強度が要求されつつある。
 充放電特性の優れたセパレータを得るためには、一般には(2a)空孔率を上げる、(2b)細孔径を大きくする、(2c)膜厚を薄くする、(2d)細孔の屈曲性を下げる、即ち、イオンの移動を妨げないような“まっすぐな”細孔構造を採用する、(2e)孔数を増やす、といった手段が考えられる。
 (2a)、(2c)ではいずれも強度が低下する可能性が高く、また(2b)、(2d)では電池の充放電に伴い、電極表面にリチウムイオンが針状構造を形成する、デンドライトが生成しやすく、電池としての寿命が短くなるという欠点を引き起こすことがわかっている。
 また、電池特性として、小型の民生用途、例えばPC向けやスマートフォン向けの場合に比べて、大型用途、特に車載向けの場合はより厳しい安全性が求められている。例えば、強い衝撃を受けた場合におけるセパレータの強度、耐衝撃性の改善が重要視されるようになってきた。特に変形速度が上昇した急速衝撃性の改善は車載向けにおいて重要な特性となりつつある。
 コーティング処理時にセパレータ端部の変形(カール)を抑制できる技術が開示されている(特許文献1)。特許文献1では、同時に多孔質基材の光特性に着目し、緻密構造ほどイオン透過性に優れることが示されている。
 また、セパレータの透過性、強度、熱収縮率及び空孔率のバランスの改善を目指し、セパレータの全光透過率に着目し、セパレータの孔径を制御することで物性バランスが改善されたセパレータが開示されている(特許文献2)。
 薄膜化したセパレータを用いた場合に充電後に経時で電池の容量が低下(自己放電)することが懸念されている。薄膜化により電極間距離が短くなるために徐々に放電現象が進行すると考えられる。また電極由来の異物への耐性や電池生産性の観点から、セパレータは薄膜化してもこれまでと同等の強度を求められており、膜厚あたりの高強度が必要となっている。セパレータの透過散乱光に着目し、イオン透過性を悪化させることなく、自己放電特性の改善と高強度化の両立を果たせる方策が提案されている(特許文献3)。高強度化の手段として延伸倍率を上げる方法が考えられるが、かかる方法はセパレータ内部に欠陥を発生させる恐れがある。セパレータ内部の欠陥は光を散乱させるために、セパレータのヘイズ値を高くしやすい傾向にある。特許文献3では、原料処方、延伸条件を工夫することで矛盾する特性の両立をはかる提案がなされている。
日本国特開2017-226117号公報 日本国特開2003-253026号公報 国際公開第2018/164054号
 しかし、特許文献1には、明度を一定の範囲に制御することで表面及び内部の構造の緻密度が制御され、イオン透過性に優れると示されているのみであり、表面又は内部の孔構造の違いによる衝撃強度などの強度への影響を技術課題とした検討はされていない。
 特許文献2には、全光透過率を制御することで物性バランスが改善され、電池サイクル試験時にセパレータが受けると思われる加熱加圧条件後においても良好な透気度、即ちイオン透過性を示し、透過性-突刺強度バランスに優れたセパレータが開示されている。しかし、特許文献2では、表面又は内部の構造への考察や高速でのセパレータの耐衝撃性については検討されていない。
 特許文献3には、セパレータの薄膜化で重要となる強度と自己放電特性の改善の指標としてヘイズ値を用いている。しかし、特許文献3では、表面、内部の孔構造に由来する散乱挙動への考察や高速衝撃特性の改善には至っていなかった。
 このように、リチウムイオン電池の大型化に対応すべく、薄膜にて高速衝撃試験への耐性とレート特性を両立させるには改良の余地があった。
 本発明は、上記従来の実情に鑑みてなされたものであって、表面構造を精密に制御することで、二次電池用セパレータとして使用した場合に高速充放電時の容量維持率に優れ、高速衝撃試験において高い耐衝撃性を発揮するポリオレフィン微多孔膜を提供することを解決すべき課題としている。
 本発明者らは、前記問題点を解決する為に鋭意検討を重ねた結果、以下の構成によって解決が可能であることを見出し、本発明に至った。すなわち、本発明は以下のとおりである。
〔1〕 
 波長800nmの光を入射角60°で表面に入射させたときの、反射光のS波の反射率S(800_60°)と、波長500nmの光を入射角60°で表面に入射させたときの、反射光のS波の反射率S(500_60°)との比率S(800_60°)/S(500_60°)と、
 走査型電子顕微鏡での観察により測定される表面孔数(SEM表面孔数)と、が少なくとも一つの表面において、下記(式1)を満たす、ポリオレフィン微多孔膜。
 SEM表面孔数≧366×S(800/500)-380・・・・・・(式1)
 このとき、S(800/500)=S(800_60°)/S(500_60°)である。
〔2〕
 波長800nmの光を入射角20°で表面に入射させたときの、反射光のP波の反射率P(800_20°)と、波長500nmの光を入射角20°で表面に入射させたときの、反射光のP波の反射率P(500_20°)との比率P(800_20°)/P(500_20°)と、
 走査型電子顕微鏡での観察により測定される表面孔数(SEM表面孔数)と、が少なくとも一つの表面において、下記(式2)を満たす、ポリオレフィン微多孔膜。
 SEM表面孔数≧-88×P(800/500)+157・・・・・・(式2)
 このとき、P(800/500)=P(800_20°)/P(500_20°)である。
〔3〕
 前記P(800/500)と、
 前記SEM表面孔数と、が前記少なくとも一つの表面において、下記(式3)を満たす、〔2〕に記載のポリオレフィン微多孔膜。
 SEM表面孔数≧58.7×P(800/500)+21.3・・・・・・(式3)
〔4〕
 波長800nmの光を入射角40°で表面に入射させたときの、反射光のS波の反射率S(800_40°)と、同波長の光を入射角20°で表面に入射させたときの、反射光のS波の反射率S(800_20°)との比率S(800_40°)/S(800_20°)をR(800)とし、
 波長500nmの光を入射角40°で表面に入射させたときの、反射光のS波の反射率S(500_40°)と、同波長の光を入射角20°で表面に入射させたときの、反射光のS波の反射率S(500_20°)との比率S(500_40°)/S(500_20°)をR(500)としたとき、
 R(800)とR(500)との比率R(800)/R(500)と、前記SEM表面孔数と、が前記少なくとも一つの表面において、下記(式4)を満たす、〔1〕~〔3〕のいずれか一項に記載のポリオレフィン微多孔膜。
 SEM表面孔数≧150×R(800)/R(500)-97・・・・・・(式4)
〔5〕
 前記少なくとも一つの表面において、前記SEM表面孔数が80個/μm以上である、〔1〕~〔4〕のいずれか一項に記載のポリオレフィン微多孔膜。
〔6〕
 10μm換算突刺強度が3.5N以上である、〔1〕~〔5〕のいずれか一項に記載のポリオレフィン微多孔膜。
〔7〕
 平均孔径が30nm以下である、〔1〕~〔6〕のいずれか一項に記載のポリオレフィン微多孔膜。
〔8〕
 前記ポリオレフィン微多孔膜が含有するポリオレフィン樹脂がポリエチレン系樹脂を含む、〔1〕~〔7〕のいずれか一項に記載のポリオレフィン微多孔膜。
〔9〕
 〔1〕~〔8〕のいずれか一項に記載のポリオレフィン微多孔膜を具備する電池用セパレータ。
〔10〕
 〔9〕に記載の電池用セパレータを用いた二次電池。
 本発明のポリオレフィン微多孔膜は、二次電池用セパレータとして使用した場合に高速充放電時の容量維持率に優れ、高速衝撃試験において高い耐衝撃性を発揮し、特に大型電池の安全性に寄与する。
図1は、実施例および比較例における、容量維持率と高速タフネスの関係を示す図である。 図2は、実施例および比較例における、S(800_60°)/S(500_60°)と容量維持率の関係を示す図である。 図3は、実施例および比較例における、S(800_60°)/S(500_60°)と高速タフネスの関係を示す図である。 図4は、実施例および比較例における、S(800_60°)/S(500_60°)とSEM表面孔数の関係を示す図である。 図5は、実施例および比較例における、P(800_20°)/P(500_20°)と高速タフネスの関係を示す図である。 図6は、実施例および比較例における、P(800_20°)/P(500_20°)と容量維持率の関係を示す図である。 図7は、実施例および比較例における、P(800_20°)/P(500_20°)とSEM表面孔数の関係を示す図である。 図8は、実施例および比較例における、P(800_20°)/P(500_20°)とSEM表面孔数の関係を示す図である。 図9は、実施例および比較例における、R(800)/R(500)とSEM表面孔数の関係を示す図である。 図10は、実施例および比較例における、R(800)/R(500)と容量維持率の関係を示す図である。 図11は、実施例および比較例における、R(800)/R(500)と高速タフネスの関係を示す図である。
 本発明は、電池生産性と安全性に優れたポリオレフィン微多孔膜を得るべく本発明者らが鋭意検討した結果、成形条件を一定の条件で制御することで、表面、好ましくは表面及び内部の孔構造を一定の構造に制御でき、これにより、二次電池用セパレータとして使用した場合に高速充放電時の容量維持率に優れ、高速衝撃試験において高い耐衝撃性を発揮するポリオレフィン微多孔膜が得られることを見出したものである(図1)。
 以下、本発明について詳細に説明する。なお本明細書において、質量基準の割合(百分率、部など)は、重量基準の割合(百分率、部など)と同じである。
 本発明の一実施形態(第1の実施形態)に係るポリオレフィン微多孔膜は、波長800nmの光を入射角60°で表面に入射させたときの、反射光のS波の反射率S(800_60°)と、波長500nmの光を入射角60°で表面に入射させたときの、反射光のS波の反射率S(500_60°)との比率S(800_60°)/S(500_60°)と、走査型電子顕微鏡での観察により測定される表面孔数(SEM表面孔数)と、が少なくとも一つの面において、下記(式1)を満たす。
 SEM表面孔数≧366×S(800/500)-380・・・・・・(式1)
 このとき、S(800/500)=S(800_60°)/S(500_60°)である。
 本発明の他の実施形態(第2の実施形態)に係るポリオレフィン微多孔膜は、波長800nmの光を入射角20°で表面に入射させたときの、反射光のP波の反射率P(800_20°)と、波長500nmの光を入射角20°で表面に入射させたときの、反射光のP波の反射率P(500_20°)との比率P(800_20°)/P(500_20°)と、走査型電子顕微鏡での観察により測定される表面孔数(SEM表面孔数)と、が少なくとも一つの面において、下記(式2)を満たしてもよい。
 SEM表面孔数≧-88×P(800/500)+157・・・・・・(式2)
 このとき、P(800/500)=P(800_20°)/P(500_20°)である。
 なお、以下において、上記した第1の実施形態及び第2の実施形態をまとめて、「本発明の実施形態」ということがある。
 本発明の実施形態に係るポリオレフィン微多孔膜は、前記P(800/500)と、前記SEM表面孔数が下記(式3)を満たしてもよい。
 SEM表面孔数≧58.7×P(800/500)+21.3・・・・・・(式3)
 本発明の実施形態に係るポリオレフィン微多孔膜は、波長800nmの光を入射角40°で表面に入射させたときの、反射光のS波の反射率S(800_40°)と、同波長の光を入射角20°で表面に入射させたときの、反射光のS波の反射率S(800_20°)との比率S(800_40°)/S(800_20°)をR(800)とし、波長500nmの光を入射角40°で表面に入射させたときの、反射光のS波の反射率S(500_40°)と、同波長の光を入射角20°で表面に入射させたときの、反射光のS波の反射率S(500_20°)との比率S(500_40°)/S(500_20°)をR(500)としたとき、R(800)とR(500)との比率R(800)/R(500)と、前記SEM表面孔数と、が下記(式4)を満たしてもよい。
 SEM表面孔数≧150 × R(800)/R(500)-97・・・・・・(式4)
 上記した各関係式を満たすような反射率の範囲とすることは、微多孔膜を構成するポリオレフィン原料の組成を後述する範囲に調整し、製膜条件を後述する範囲とすることで可能である。
 また、反射率は、後述の方法及び条件にて測定することができる。本発明は、ポリオレフィン微多孔膜表面の緻密構造が所定の要件を満たすことで特異な効果が得られることを見出した発明である。従って、ポリオレフィン微多孔膜のいずれかの表面が本発明の要件を満たすようであれば、他方の表面が本発明の要件を満たさなくても、そのポリオレフィン微多孔膜は本発明の範囲内である。
(原料)
 (樹脂種)
 本発明の実施形態に係るポリオレフィン微多孔膜は、ポリオレフィン樹脂を含有する。
 ポリオレフィン樹脂としては、ポリエチレン系樹脂やポリプロピレン系樹脂が好ましい。ポリオレフィン樹脂は、単一物であってもよいし、2種以上の異なるポリオレフィン樹脂の混合物であってもよい。2種以上の異なるポリオレフィン樹脂の混合物としては、例えば、ポリエチレン、ポリプロピレン、ポリブテン、ポリ4-メチル-1-ペンテンから選ばれるポリオレフィン樹脂の混合物が挙げられる。2種以上の異なるポリオレフィン樹脂の混合物としては、ポリエチレンと他のポリオレフィン樹脂との混合物が好ましい。またポリオレフィン樹脂は、単独重合物に限らず、異なるオレフィンの共重合体でもよい。
 このようなポリオレフィン樹脂のなかでも、優れた孔閉塞性能の観点から、ポリエチレン系樹脂が、特に好ましい。ポリオレフィン樹脂中のポリエチレン系樹脂の比率は、好ましくは30%以上、より好ましくは50%以上、更に好ましくは60%以上、特に好ましくは70%以上、最も好ましくは80%以上である。ポリエチレン系樹脂の比率が高いほど、イオン透過性と強度とのバランスに優れる傾向にある。
 ポリエチレン系樹脂の融点(軟化点)は孔閉塞性能の観点から70~150℃が好ましい。
 以下、本発明の実施形態で用いるポリオレフィン樹脂としてポリエチレン系樹脂を例に詳述する。
 ポリエチレン系樹脂としては、例えば、超高分子量ポリエチレン、高密度ポリエチレン、中密度ポリエチレン及び低密度ポリエチレンなどが挙げられる。低密度ポリエチレンとしては例えば、分岐状低密度ポリエチレンや直鎖状低密度ポリエチレンが挙げられる。
 ポリエチレン系樹脂の重合触媒には特に制限はなく、チーグラー・ナッタ系触媒、フィリップス系触媒、メタロセン系触媒などを用いることができる。
 これらのポリエチレン系樹脂はエチレンの単独重合体のみならず、他のα-オレフィンを少量含有する共重合体であってもよい。エチレン以外のα-オレフィンとしては、例えば、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、(メタ)アクリル酸、(メタ)アクリル酸のエステル、スチレン等が好適である。なお、本発明の実施形態において、(メタ)アクリルとはアクリル又はメタクリルを意味する。
 ポリエチレン系樹脂としては、単一物でも、2種以上のポリエチレン系樹脂からなるポリエチレン混合物でもよい。
 ポリエチレン混合物としては、重量平均分子量(Mw)が互いに異なる2種類以上の超高分子量ポリエチレンの混合物、高密度ポリエチレンの混合物、中密度ポリエチレンの混合物、又は低密度ポリエチレンの混合物を用いてもよいし、超高分子量ポリエチレン、高密度ポリエチレン、中密度ポリエチレン及び低密度ポリエチレンからなる群から選ばれた2種以上のポリエチレンの混合物を用いてもよい。ポリエチレン混合物としては、超高分子量ポリエチレンを含むポリエチレン混合物が好ましく、Mwが1×10以上の超高分子量ポリエチレンとMwが1×10以上7×10未満のポリエチレンからなる混合物がより好ましい。
 ポリエチレン系樹脂として超高分子量ポリエチレンを用いる場合、超高分子量ポリエチレンは、重量平均分子量において5.0×10以上、1.0×10以下が好ましい。重量平均分子量の下限は、より好ましくは7.0×10以上、更に好ましくは9.0×10以上、もっと好ましくは1.0×10以上である。また、重量平均分子量の上限は、より好ましくは8.0×10以下、更に好ましくは6.0×10以下、特に好ましくは5.0×10以下、最も好ましくは4.0×10以下である。
 重量平均分子量が5.0×10以上であることで、高い突刺強度を達成することができる。更に重量平均分子量が1.0×10以上であることで、非晶部領域の絡み合い密度が上昇し、引張強度と伸度の両立に好ましい。
 超高分子量ポリエチレンの分子量分布(重量平均分子量(Mw)/数平均分子量(Mn))は機械的強度の観点から3.0~100の範囲内であることが好ましい。分子量分布の下限は好ましくは4.0以上、更に好ましくは5.0以上、特に好ましくは6.0以上、最も好ましくは8.0以上である。また分子量分布の上限は好ましくは80以下、より好ましくは50以下、特に好ましくは20以下、最も好ましくは17以下である。
 超高分子量ポリエチレンは、上記ポリエチレン混合物に用いてもよいし、単独で単一物として用いてもよい。例えば、超高分子量ポリエチレンを単独で用いた場合において分子量分布が3.0以上であれば加工性が向上しやすく、また分子量分布が100以下であれば低分子量成分が増加しにくいため加工時に欠点等の発生を抑制しやすい。
 超高分子量ポリエチレンの融点(Tm)は122℃以上、140℃以下が好ましい。超高分子量ポリエチレンの融点を122℃以上とすることでポリオレフィン微多孔膜は良好な透過性を有することができる。また超高分子量ポリエチレンの融点を140℃以下にすることで、電池使用時に異常状態となった場合、ポリオレフィン微多孔膜の孔が閉塞するシャットダウン特性に優れたポリオレフィン微多孔膜を得ることができる。
 超高分子量ポリエチレンの融点の下限は、より好ましくは124℃以上、更に好ましくは126℃以上である。また超高分子量ポリエチレンの融点の上限は、より好ましくは138℃以下、更に好ましくは136℃以下、もっと好ましくは134℃以下、最も好ましくは133℃以下である。
 なお融点はJIS K7122:2012に従って測定することができる。
 すなわち、測定試料(210℃にて溶融プレスされた厚さ0.5mmの成形物)を、周囲温度にて示差走査熱量計(パーキンエルマー社製Pyris Diamond DSC)の試料ホルダーに入れ、窒素雰囲気中にて3分間230℃で熱処理し、10℃/分の速度で30℃に冷却し、30℃で3分間保持し、10℃/分の速度で230℃に加熱する。
 超高分子量ポリエチレン以外に、より低分子量であるポリエチレン系樹脂を用いてもよい。例えばより低分子量であるポリエチレン系樹脂としては、高密度ポリエチレン(HPDE)、中密度ポリエチレン、分岐状低密度ポリエチレン、及び直鎖状低密度ポリエチレンから選ばれる1つ又は複数が挙げられる。より低分子量であるポリエチレン系樹脂としては、所望により高密度ポリエチレンを用いてもよい。
 より低分子量であるポリエチレン系樹脂は、131.0℃以上(例えば131.0℃~135℃の範囲)のTm、及び1.0×10未満(例えば1.0×10以上1.0×10未満、好ましくは2×10~9.5×10の範囲)の重量平均分子量を有する。Tmは、超高分子量ポリエチレンと同じ方法で測定する。
 所望によりより低分子量であるポリエチレン系樹脂は、例えば50.0以下、好ましくは3.0~20.0の範囲といった、1.0×10以下の分子量分布(MWD)を有してもよい。
 所望により、ポリエチレン系樹脂は末端不飽和基を有するポリエチレン系樹脂であってもよい。ポリエチレン系樹脂は、例えば炭素原子10,000個当たり5.0個以上、好ましくは炭素原子10,000個当たり10.0個以上といった、炭素原子10,000個当たり0.20個以上の末端不飽和基量を有してもよい。末端不飽和基量は、例えば国際公開第1997/023554号に記載の手順に従って測定することができる。別の実施形態においては、ポリエチレン系樹脂は、炭素原子10,000個当たり0.20個未満の末端不飽和基量を有してもよい。
 ポリエチレン混合物中の超高分子量ポリエチレンの含有量は引張強度の観点から1~99質量%が好ましい。ポリエチレン混合物中の超高分子量ポリエチレンの含有量はより好ましくは5~99質量%、更に好ましくは20~99質量%である。超高分子量ポリエチレンがポリエチレン混合物中に1質量%以上存在することで、高い突刺強度を得ることができる。ポリエチレン混合物中の超高分子量ポリエチレンの含有量が99質量%以下であることで生産性が改善する。また、超高分子量ポリエチレンがポリエチレン混合物中に20質量%以上存在することが最も好ましく、それにより、ポリオレフィン微多孔膜は高い引張強度と引張伸度を両立することができる。
 所望によりポリエチレン混合物中の超高分子量ポリエチレン以外のポリエチレン系樹脂の量は、それが存在する層の質量を基準として、例えば5.0質量%~99.0質量%、30.0質量%~95.0質量%、又は40.0質量%~85.0質量%の範囲といった、99.0質量%以下である。
 ポリエチレン混合物の分子量分布(重量平均分子量(Mw)/数平均分子量(Mn))は機械的強度の観点から3.0~200の範囲内であることが好ましい。分子量分布の下限はより好ましくは4.0以上、更に好ましくは5.0以上、もっと好ましくは6.0以上、最も好ましくは8.0以上である。また分子量分布の上限はより好ましくは180以下、更に好ましくは150以下、もっと好ましくは120以下、最も好ましくは100以下である。
 高速衝撃特性に優れるポリオレフィン微多孔膜とする手段の一つとして、ポリオレフィン微多孔膜中、分子量が高い成分を一定の割合含有させることが挙げられる。
 例えば、ポリオレフィン微多孔膜中、分子量が233万を超える成分の含有量が、好ましくは10質量%以上、更に好ましくは11質量%以上、特に好ましくは11.5質量%以上、最も好ましくは12質量%以上である。ポリオレフィン微多孔膜中に、分子量の高い成分が存在することで、最表面における結晶化速度を制御し、延伸条件との組み合わせにより、緻密な構造と比較的粗大な構造が一定量、存在する構造を形成しやすくなる。また冷却速度の異なる表面と内部の構造差についても、一定の範囲に制御できるため、高速衝撃試験における高い衝撃性を発揮しやすくなる。
 また、ポリオレフィン微多孔膜は、重量平均分子量として100万以上の超高分子量ポリエチレン成分を2質量%を超えて含む、又は当該超高分子量ポリエチレン成分を5質量%以上含むポリエチレン混合物により形成することが好ましい。さらに好ましくは、当該超高分子量ポリエチレン成分を10質量%以上含むポリエチレン混合物により形成する。ポリオレフィン微多孔膜が当該超高分子量ポリエチレン成分を含むことで、高い突刺強度、引張強度を有しながら、高い引張伸度を達成でき、電池生産性と高い安全性を両立することができるため好ましい。
 (溶媒種)
 本発明の実施形態に係るポリオレフィン微多孔膜は、溶媒(希釈剤)を含有してもよい。
 希釈剤としては、ポリオレフィン樹脂に混合できる物質又はポリオレフィン樹脂を溶解できる物質であれば特に限定されない。ポリオレフィン樹脂との溶融混練状態ではポリオレフィン樹脂と混和するが、室温では固体状態をなす溶媒を希釈剤に混合してもよい。
 このような固体状の希釈剤として、例えば、ステアリルアルコール、セリルアルコール、パラフィンワックス等が挙げられる。
 液体状の希釈剤としては、例えば、ノナン、デカン、デカリン、パラキシレン、ウンデカン、ドデカン、流動パラフィン等の脂肪族、環式脂肪族又は芳香族の炭化水素、及び沸点がこれら脂肪族、環式脂肪族又は芳香族の炭化水素の沸点に対応する、すなわち沸点が同じあるいは同程度である鉱油留分、並びにジブチルフタレート、ジオクチルフタレート等の室温では液状のフタル酸エステル、大豆油、ひまし油、ひまわり油、綿油といった植物性油、その他脂肪酸エステルが挙げられる。液体状の希釈剤の含有量が安定なゲル状シート(ゲル状成形物)を得るために、流動パラフィンのような不揮発性の希釈剤を用いるのが更に好ましい。
 例えば、液体状の希釈剤の粘度は40℃において20~500cStが好ましく、より好ましくは30~400cSt、更に好ましくは50~350cStである。液体希釈剤の粘度が20cStより小さい場合には口金からの吐出が不均一であり、混練も困難となりやすい。液体状の希釈剤の粘度が500cStを超える場合には希釈剤の除去が困難となりやすい。
 ポリオレフィン樹脂の配合割合は、押出物の成形性を良好にする観点から、ポリオレフィン樹脂と希釈剤との合計を100質量%とした場合に、ポリオレフィン樹脂の配合割合が1~60質量%が好ましい。上記配合割合は、より好ましくは10~55質量%、更に好ましくは15~50質量%である。上記配合割合を1質量%以上とすることにより、押出し時における口金出口でのスウェルやネックインを抑制することができるので、ゲル状シートの製膜性が向上する。一方で上記配合割合を60質量%以下にすることにより、口金部での差圧を小さく保つことができるので、ゲル状シートを安定して生産できる。
 ポリオレフィン樹脂溶液の均一な溶融混練工程は特に限定されないが、カレンダー、各種ミキサーの他、スクリューを伴う押出機などを用いる工程が挙げられる。
(製造方法)
 本発明の実施形態に係るポリオレフィン微多孔膜の製造方法は、例えば、(1)上記ポリオレフィン樹脂に成膜用溶媒(希釈剤)を添加した後、溶融混練し、ポリオレフィン樹脂溶液を調製する工程、(2)ポリオレフィン樹脂溶液をダイリップより押し出した後、冷却してゲル状成形物を形成する工程、(3)ゲル状成形物を少なくとも一軸方向に延伸する工程(第一の延伸工程)、(4)成膜用溶媒を除去する工程、(5)得られた膜を乾燥する工程、(6)乾燥した膜を少なくとも一軸方向に再び延伸する工程(第二の延伸工程)、及び(7)熱処理する工程を含む。
 必要に応じて、(4)の成膜用溶媒除去工程の前に熱固定処理工程、熱ロール処理工程及び熱溶媒処理工程のいずれかを設けてもよい。更に(1)~(7)の工程の後、乾燥工程、熱処理工程、電離放射による架橋処理工程、親水化処理工程、表面被覆処理工程等を設けることができる。
(1)ポリオレフィン樹脂溶液の調製工程
 ポリオレフィン樹脂に適当な成膜用溶媒(希釈剤)を添加した後、溶融混練し、ポリオレフィン樹脂溶液を調製する。溶融混練方法は公知であるので説明を省略する。
 溶融混練方法として、例えば日本国特許第2132327号明細書及び日本国特許第3347835号公報に記載の二軸押出機を用いる方法を利用することができる。
 ただしポリオレフィン樹脂溶液中のポリオレフィン樹脂の含有割合は、ポリオレフィン樹脂と成膜用溶媒の合計を100質量%とした場合に、10~60質量%が好ましく、より好ましくは15~50質量%である。ポリオレフィン樹脂の含有割合を10質量%以上とすると、生産性が良好である。一方ポリオレフィン樹脂の含有割合を60質量%以下とすると、ゲル状成形物の成形性が改善する。
 また二軸押出機のスクリューの長さ(L)と直径(D)の比(L/D)は20~100の範囲が好ましく、35~70の範囲がより好ましい。L/Dを20未満にすると、溶融混練が不十分となりやすい。L/Dを100超にすると、ポリオレフィン樹脂溶液の滞留時間が増大し過ぎる傾向がある。スクリューの形状は特に制限されず、公知のものでよい。
 二軸押出機のシリンダ内径は40~200mmであることが好ましい。ポリオレフィン樹脂を二軸押出機に入れる際、スクリュー回転数Ns(rpm)に対するポリオレフィン樹脂溶液の投入量Q(kg/h)の比Q/Nsを0.03~2.0kg/h/rpmにすることが好ましい。Q/Nsを0.03kg/h/rpm未満にすると、ポリオレフィン樹脂が過度にせん断破壊されてしまい、強度やメルトダウン温度の低下につながりやすい。一方Q/Nsを2.0kg/h/rpm超にすると、均一に混練しにくい。比Q/Nsは0.05~1.8kg/h/rpmであることがより好ましい。スクリュー回転数Nsは50rpm以上にすることが好ましい。スクリュー回転数Nsの上限は特に制限されないが、500rpm以下が好ましい。
 押出機内のポリオレフィン樹脂溶液の温度の好ましい範囲はポリオレフィン樹脂によって異なり、例えば、ポリエチレンを含む場合は140~250℃、ポリプロピレンを含む場合は160~270℃が好ましい。押出機内のポリオレフィン樹脂溶液の温度については押出機内部もしくはシリンダ部に温度計を設置することで間接的に把握し、目標温度となるようシリンダ部のヒーター温度や回転数、吐出量を適宜調整することで調整できる。溶媒は混練開始前に加えてもよく、混練中に途中から添加する事もできる。溶融混練にあたってはポリオレフィン樹脂の酸化を防ぐために酸化防止剤を加えることが好ましい。酸化防止剤としては、例えば、2,6-ジ-t-ブチル-p-クレゾール(BHT:分子量220.4)、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン(例えば、BASF社製“Irganox”(登録商標)1330:分子量775.2)、テトラキス[メチレン-3(3,5-ジターシャリーブチル-4-ヒドロキシフェニル)プロピオネート]メタン(例えば、BASF社製“Irganox”(登録商標)1010:分子量1177.7)等から選ばれる1種類以上を用いることが好ましい。
(2)ゲル状成形物の形成工程
 押出機内で溶融、混練されたポリオレフィン樹脂溶液は冷却されることにより溶媒を含んだ樹脂組成物を形成する。この際、スリット状の開口部を持つ口金(ダイ)から押出し、シート状の樹脂組成物を作ることが好ましいが、円形の開口部を持つブロウフィルム用口金からの押出しにより固化させる、いわゆるインフレーション法も用いることができる。押出し温度は140~250℃が好ましく、より好ましくは160~240℃、更に好ましくは180~230℃である。押し出し温度を140℃以上とすることにより口金部での圧力が上昇しすぎることを抑制でき、一方250℃以下とすることにより材料の劣化を抑制できる。押出速度は0.2~20m/分が好ましい。
 シート状に押し出されたポリオレフィン樹脂溶液を冷却することによりゲル状シートが形成される。冷却方法としては冷風、冷却水等の冷媒に接触させる方法、冷却ロールに接触させる方法等を用いることができ、冷媒で冷却したロールに接触させて冷却させることが好ましい。
 例えば、冷媒で表面温度20℃から40℃に設定した回転する冷却ロールにシート状に押し出されたポリオレフィン樹脂溶液を接触させることにより未延伸ゲル状シートを形成することができる。押出されたポリオレフィン樹脂溶液は25℃以下まで冷却することが好ましい。この時の冷却速度は50℃/分以上の速度で行うことが好ましい。このように冷却することでポリオレフィン相が溶媒からミクロ相分離することができる。このことにより未延伸ゲル状シートが密な構造を取りやすくなり、また結晶化度が過度に上昇しすぎることを抑制でき、未延伸ゲル状シートが延伸に適した構造になる。
 また冷却する方法として、シートの冷却効率向上、シート平面性向上を目的に、2種以上のロールを近接させ、一つのロール上に吐出した樹脂溶液を一つ以上のロールで押さえて、ポリオレフィン樹脂溶液を冷却する方法を用いてもよい。また高速製膜でのゲル状シート形成を行うために、シートをロールに密着させるチャンバーを用いてもよい。ポリオレフィン樹脂溶液の各押出量を調節することにより、膜厚を調節することができる。押出方法としては、例えば、日本国特公平06-104736号公報及び日本国特許第3347835号公報に開示の方法を利用することができる。
(3)第一の延伸工程
 得られたシート状のゲル状成形物を少なくとも一軸方向に延伸する。第一の延伸によりポリオレフィン結晶ラメラ層間の開裂が起こり、ポリオレフィン相が微細化し、多数のフィブリルが形成される。得られるフィブリルは三次元網目構造、すなわち三次元的に不規則に連結したネットワーク構造を形成する。ゲル状成形物は成膜用溶媒を含むので、均一に延伸できる。
 延伸方法として溶媒を含んだ状態での2段階以上の延伸が好ましい。各段階での延伸方法は特に限定されない。例えば、一軸延伸/同時二軸延伸、同時二軸延伸/一軸延伸も好ましい。生産性、投下投資コストの観点からは、一軸延伸/一軸延伸も好ましい。延伸する方向としてシート搬送方向(MD)とシート幅方向(TD)があるが、MD/TD、TD/MDの順序のいずれでもよい。ゲル状シートは、加熱後にテンター方式、ロール法、圧延法やこれらを組み合わせた方法により延伸することができる。
 延伸倍率はゲル状成形物の厚さにより異なるが、一軸延伸では2倍以上にするのが好ましく、3~30倍にするのがより好ましい。二軸延伸ではいずれの方向でも少なくとも3倍以上、すなわち面積倍率で9倍以上にすることにより、突刺強度が向上するため好ましい。面積倍率が9倍以上であれば延伸が十分であり、高弾性及び高強度のポリオレフィン微多孔膜が得られやすい。面積倍率は、好ましくは12倍以上、もっと好ましくは16倍以上、更に好ましくは18倍以上、最も好ましくは20倍以上である。一方面積倍率が400倍以下であれば、延伸装置、延伸操作等の点で制約が生じにくい。面積倍率は、好ましくは200倍以下、更に好ましくは190倍以下、もっと好ましくは180倍以下、最も好ましくは150倍以下である。
 第一の延伸の温度はポリオレフィン樹脂の結晶分散温度以上~結晶分散温度+30℃の範囲内にするのが好ましく、結晶分散温度+10℃~結晶分散温度+25℃の範囲内にするのがより好ましく、結晶分散温度+15℃~結晶分散温度+20℃の範囲内にするのが特に好ましい。この延伸温度を結晶分散温度+30℃以下であれば、延伸後の分子鎖の配向性が良好となる。一方結晶分散温度以上であれば樹脂の軟化が十分で、延伸による破膜を防ぎ、高倍率の延伸ができる。ここで結晶分散温度とは、ASTM D4065に基づいて動的粘弾性の温度特性測定により求められる値を言う。
 ポリオレフィン樹脂としてポリエチレン系樹脂を主成分として用いる場合、その結晶分散温度は、一般的に90~100℃である。よってポリオレフィン樹脂が90質量%以上、ポリエチレン系樹脂からなる場合、延伸温度を通常90~130℃の範囲内にし、好ましくは100~125℃の範囲内にし、より好ましくは105~120℃の範囲内にする。
 延伸前にシートを予熱する場合には、後段の延伸温度よりも高温に設定してもよい。シートの実質温度を短時間で上昇させることができ、生産性向上に寄与する。
 第一の延伸時に、温度の異なる多段階の延伸を施してもよい。この場合、前段の温度より後段の温度が高い二段階の異なる温度で延伸するのが好ましい。その結果、強度低下や幅方向の物性低下を伴わずに、細孔径が大きく、高透過性を示す高次構造の微多孔膜が得られる。限定的ではないが、前段と後段の延伸温度の差は5℃以上にするのが好ましい。
 前段から後段にかけて膜の温度を上げる際、(a)延伸を継続しながら昇温してもよいし、(b)昇温する間は延伸を止めて所定の温度に到達したのち後段の延伸を開始してもよいが、前者(a)が好ましい。いずれの場合でも、昇温の際に急熱するのが好ましい。具体的には0.1℃/秒以上の昇温速度で加熱するのが好ましく、1~5℃/秒の昇温速度で加熱するのがより好ましい。言うまでもないが、前段及び後段の延伸温度並びにトータル延伸倍率は各々上記範囲内とすることが好ましい。
 所望の物性に応じて、膜厚方向に温度分布を設けて延伸してもよい。これにより一層機械的強度に優れたポリオレフィン微多孔膜が得られる。その方法としては、例えば日本国特許第3347854号公報に開示の方法を用いることができる。
 延伸する方向としてシート搬送方向(MD)とシート幅方向(TD)がある。TD方向の延伸倍率は最高倍率まで上昇させた後、倍率を低下させてもよい。TD方向の延伸倍率を最高倍率より最終倍率へ低下させることにより、最終的なポリオレフィン微多孔膜の膜厚方向の構造を制御することができ、結果、高速変形に対する衝撃強度を改善することができる。TD方向の最高倍率に対して、最終倍率を好ましくは70%以上、より好ましくは75%以上、最も好ましくは80%以上に保つことにより、優れたイオン透過性を発揮させることができる。また、TD方向の最高倍率に対して、最終倍率を好ましくは98%以下、より好ましくは95%以下、最も好ましくは92%以下にすることにより、膜厚方向の構造制御に効果を発揮する。
 延伸方式として、延伸は二段階以上に実施してもよい。延伸順序はMD/TD、TD/MDの順序のいずれでもよい。ここでは例としてMD方向にロール延伸し、その後、TD方向にテンター式で延伸する逐次延伸方法について説明する。
 溶媒抽出前の延伸倍率は、ゲル状シートの厚さによって異なるが、MD方向の延伸(MD延伸(MDO))は2倍~12倍で行うことが好ましい。溶媒抽出前のMD延伸倍率は、より好ましくは3倍~12倍、更に好ましくは5倍を超えて11倍以下である。溶媒抽出前に2倍以上にMD延伸することにより、均一な延伸を行うことができるため、MD延伸に続くTD方向の延伸(TD延伸)においてMD方向における不均一構造の発現を抑制できる。溶媒抽出前に5倍を超えてMD延伸することでMD方向の膜厚分布がより均一となり、後加工にて重要となる膜品位を保つ観点、例えばしわ、たるみを抑制する上で、より好ましい。
 また、MD延伸は二段階以上にて行うこともできる。MD延伸においては、MD延伸を行う領域を予熱部、延伸部、熱固定部により構成すると共に、前記領域にてロールによる加熱/冷却によりゲル状シート(又は延伸中のフィルム)の温度制御を行う。延伸部はロール間の周速差を利用して延伸を行い、複数段に分けた延伸区間を利用して延伸を行うことができる。すなわち、延伸部における最上流側(ダイ側)のロールに対して、当該ロールの下流側(巻取側)に隣接するロールの周速を速めて、これら2つのロール間の周速差を利用してゲル状シートが延伸される。このように上流側のロールよりも周速の速いロールを順次後段側に配置することにより、二段階以上(多段)のMD延伸が行われる。
 具体的には、互いに周速の異なるロールの組(下流側のロールが上流側のロールよりも周速が速くなるように設定されたロールの組)を延伸部に2組配置した場合には、MD延伸が二段階行われることになり、前記ロールの組を延伸部に3つ配置した場合には、MD延伸が三段階行われることになる。なお、これらロールの組のうち、任意の組における下流側のロールと、当該任意の組に対して下流側に隣接するロールの組における上流側のロールとを共通化して、例えば3つのロールにより二段階の延伸区間を構成してもよい。
 各ロールの組における延伸倍率は等倍率でも、異倍率でも可能である。各段階での延伸倍率は、より好ましくは異倍率にて、下流側に向かうにつれて延伸倍率を上げて行うことで、加熱圧縮時の透気度の上昇をより抑制することができる。理由は定かではないが、等倍率にて延伸を行う場合では延伸初期に比較的高倍率の延伸を行うことになる。異倍率にて延伸倍率を上げて行う場合には、MD延伸により形成される微細な孔構造が均一になりやすく、耐圧縮性が改善されると推測される。
 シート幅方向の強度向上や生産性向上のために、MD延伸に続けて行うTD方向の延伸の倍率は、2~12倍が好ましく、より好ましくは3倍~12倍、更に好ましくは5倍~10倍である。
 TD方向における膜構造を均一化する(孔が均一に形成されるようにする)ためには、TD方向の延伸倍率は2倍以上が好ましく、TD方向の物性(透気度、強度(突刺強度、引張強度)、熱収縮率)をより均一にするためには、TD方向の延伸倍率は5倍以上がさらに好ましい。TD方向の延伸倍率を12倍以下にすることにより、高延伸倍率に基づく物性ばらつきの発生を抑制できる。また、生産安定性の観点から、すなわち、生産性を安定させつつTD方向における均一な物性を得るためには、TD方向の延伸倍率は10倍以下であると更に好ましい。
 また、TD方向の延伸において、温度と共に倍率を多段階で変更しても良い。延伸倍率の変更方法は特に限定しないが、最大延伸倍率を適用後に多段階で倍率を低減しても良い。最大倍率を経た後に倍率を低減することで更に構造の均一化を進めても良い。倍率を低減させる場合にはTD延伸終了後の延伸倍率が、好ましい倍率、具体的には2~12倍となることが好ましい。
 溶媒抽出前におけるMD延伸とTD延伸との合計の面積倍率は25倍以上が好ましく、さらに好ましくは30倍以上、最も好ましくは40倍以上である。強度向上のためには溶媒抽出前の延伸は面積倍率で25倍以上であることが好ましい。一方、溶媒抽出前における延伸の面積倍率は、200倍以下が好ましく、より好ましくは180倍、最も好ましくは150倍以下である。溶媒抽出前における延伸の面積倍率は、200倍以下の場合には製膜時の安定性が得られてポリオレフィン微多孔膜の生産上好ましい。
 延伸温度は、MD延伸(MDO)、TD延伸(TDO)の双方において、ポリオレフィン樹脂の融点以下にすることが好ましく、より好ましくは、(ポリオレフィン樹脂の結晶分散温度Tcd)~(ポリオレフィン樹脂の融点-5℃)、更に好ましくは(ポリオレフィン樹脂の結晶分散温度Tcd+5℃)~(ポリオレフィン樹脂の融点-5℃)の範囲である。例えば、ポリエチレン系樹脂の場合の延伸温度は90~130℃程度であり、好ましくは100~127℃であり、更に好ましくは105~125℃である。
 延伸温度がポリオレフィン樹脂の結晶分散温度以上の場合には、延伸時における微小クラックの発生を抑制できるので、最終的に孔径(特に最大孔径、BP)の粗大化を抑えることができ、イオンの透過が均一化するためにLiデンドライトが発生しにくくなり、電池性能が良好に維持される。また延伸温度がポリオレフィン樹脂の融点以下の場合には、延伸が均一に起こるので、シワやたるみの発生が抑制されて、セパレータの生産性が担保される。
 TD延伸(TDO)における延伸速度は、製膜速度及び幅方向(TD方向)へのクリップ(ゲル状シート(フィルム)を保持する部位)位置から求めることができる。炉内におけるレール位置をTD方向で制御することでTD方向の拡幅速度、すなわち延伸速度を制御することができる。延伸速度は、当該TD延伸における全延伸段階の好ましくは80%以上、より好ましくは85%以上、更に好ましくは90%以上の領域で、一定の速度に制御されることが好ましい。このように一定の速度に設定されるTD延伸の延伸速度は好ましくは200%/秒以下、より好ましくは150%/秒以下、更に好ましくは130%/秒以下である。TD延伸の延伸速度を200%/秒以下とすることでセパレータ中の残留応力を抑制することができる。また破膜等による生産中断の可能性が低い安定した生産が可能となる。
 またTD延伸の延伸速度は、好ましくは10%/秒以上、より好ましくは15%/秒以上、更に好ましくは45%/秒以上である。TD延伸の延伸速度を10%/秒以上とすることで設備投資額を抑制することができ、経済的に有用なセパレータの生産が可能になる。TD延伸の延伸速度の偏差(最大延伸速度-最小延伸速度)は好ましくは70%/秒以下、より好ましくは50%/秒以下、更に好ましくは20%/秒以下、最も好ましくは5%/秒以下である。TD延伸の延伸速度の偏差を一定の値以下で制御することで、超高分子量成分の絡み合いが均一に発達し、得られるポリオレフィン微多孔膜は高い衝撃吸収性を有することができる。
(4)成膜用溶媒除去工程
 成膜用溶媒の除去(洗浄)には洗浄溶媒を用いる。ポリオレフィン相は成膜用溶媒と相分離しているので、成膜用溶媒を除去すると多孔質の膜が得られる。洗浄溶媒及びこれを用いた成膜用溶媒の除去方法は公知であるので説明を省略する。例えば日本国特許第2132327号明細書や日本国特開2002-256099号公報に開示の方法を利用することができる。
(5)膜の乾燥工程
 成膜用溶媒除去により得られたポリオレフィン微多孔膜は、加熱乾燥法、風乾法等により乾燥する。
(6)第二の延伸工程
 乾燥後の膜を再び少なくとも一軸方向に延伸してもよい。第二の延伸は、膜を加熱しながら、第一の延伸と同様にテンター法やロール延伸により行うことができる。第二の延伸は一軸延伸でも二軸延伸でもよい。延伸する方向としてシート搬送方向(MD)とシート幅方向(TD)があるが、延伸順序はMD/TD、TD/MDの順序のいずれでもよい。
 第二の延伸の温度は、微多孔膜を構成するポリオレフィン樹脂の結晶分散温度以上~結晶分散温度+40℃以下の範囲内にすることが好ましく、結晶分散温度+10℃以上~結晶分散温度+40℃以下の範囲内にすることがより好ましい。第二の延伸の温度を結晶分散温度+40℃超にすると、透過性が低下したり、横方向(幅方向:TD方向)に延伸した場合のシート幅方向の物性のばらつきが大きくなったりする。特に透気度の延伸シート幅方向のばらつきが大きくなる。一方第二の延伸の温度が結晶分散温度未満ではポリオレフィン樹脂の軟化が不十分で、延伸において破膜しやすく、均一に延伸できない。ポリオレフィン樹脂がポリエチレン系樹脂からなる場合、延伸温度を通常90~140℃の範囲内にし、好ましくは100~140℃の範囲内にする。
 第二の延伸の一軸方向への倍率は1.1~3.0倍にすることが好ましい。例えば一軸延伸の場合、長手方向(機械方向:MD方向)又はTD方向に1.1~3.0倍にする。二軸延伸の場合、MD方向及びTD方向に各々1.1~3.0倍にする。二軸延伸の場合、MD方向及びTD方向の各延伸倍率は1.1~3.0倍である限り、各方向で互いに異なってもよい。この倍率を1.1倍未満とすると、微多孔膜の時間あたりの生産性が劣る。一方この倍率を3.0倍超とすると、微多孔膜生産時に破膜しやすくなり、また孔径が大きくなり、電池に用いた場合に耐電圧性に課題が生じる場合がある。第二の延伸の倍率は1.2~2.0倍にすることがより好ましい。
 第二の延伸の速度は延伸軸方向に3%/秒以上にすることが好ましい。例えば一軸延伸の場合、MD方向又はTD方向に3%/秒以上にする。二軸延伸の場合、MD方向及びTD方向に各々3%/秒以上にする。
 延伸軸方向における延伸速度(%/秒)とは、膜(シート)が再延伸される領域において再延伸前の延伸軸方向の長さを100%とし、1秒間当りに伸ばされる長さの割合を表す。
 この延伸速度を3%/秒未満にすると、透過性が低下したり、TD方向に延伸した場合にシート幅方向における物性のばらつきが大きくなったりする。特に延伸シート幅方向における透気度のばらつきが大きくなる。第二の延伸の速度は5%/秒以上にすることが好ましく、10%/秒以上にすることがより好ましい。
 二軸延伸の場合、MD方向及びTD方向の各延伸速度は3%/秒以上である限り、MD方向とTD方向で互いに異なってもよいが、同じであることが好ましい。第二の延伸の速度の上限に特に制限はないが、破断防止の観点から300%/秒以下であることが好ましい。
(7)熱処理工程
 第二の延伸後の膜を熱処理する。熱処理方法としては、熱固定処理及び/又は熱緩和処理を用いればよい。特に熱固定処理により膜の結晶が安定化する。そのため第二の延伸により形成されたフィブリルからなる網状組織が保持され、細孔径が大きく、強度に優れたポリオレフィン微多孔膜を作製できる。熱固定処理は、ポリオレフィン微多孔膜を構成するポリオレフィン樹脂の結晶分散温度以上~融点以下の温度範囲内で行うことが好ましい。熱固定処理は、テンター方式、ロール方式又は圧延方式により行うことが好ましい。
 熱固定処理温度は、第二の延伸の温度±5℃の範囲内であることが好ましく、これにより物性が安定化する。この温度は第二の延伸の温度±3℃の範囲内であることがより好ましい。熱緩和処理方法としては、例えば日本国特開2002-256099号公報に開示の方法を利用できる。
 ポリオレフィン微多孔膜は単層膜であってもよいし、分子量あるいは平均細孔径が互いに異なる二層以上からなる層構成であってもよい。二層以上からなる層構成の場合、少なくとも一つの最外層のポリオレフィン樹脂の分子量、及び分子量分布が前記範囲を満足することが好ましい。
 二層以上からなる多層ポリオレフィン微多孔膜は、例えば、A層及びB層を構成する各ポリオレフィン樹脂を成形用溶媒と加熱溶融混練し、得られた各樹脂溶液をそれぞれの押出機から1つのダイに供給し、一体化させて共押出する方法や各層を構成するゲル状シートを重ね合わせて熱融着する方法、それぞれ延伸後に熱融着させる方法、溶媒除去後に熱融着させる方法のいずれでも作製できる。共押出法の方が、層間の接着強度を得やすく、層間に連通孔を形成しやすいため高い透過性を維持しやすく、生産性にも優れているため好ましい。
 以上のような製造方法により、表面、好ましくは表面及び内部の孔構造を一定の構造に制御することができ、後述の孔構造パラメータを特定の範囲とし、二次電池用セパレータとして使用した場合に高速充放電時の容量維持率に優れ、高速衝撃試験において高い耐衝撃性を発揮する微多孔膜を得ることができる。
 限定的ではないが、第一の延伸、成膜用溶媒除去、乾燥処理、第二の延伸及び熱処理を一連のライン上で連続的に施すインライン方式を採用することが好ましい。ただし必要に応じて乾燥処理後の膜を一旦巻きフィルムとし、これを巻き戻しながら第二の延伸及び熱処理を施すオフライン方式を採用してもよい。
(8)その他の工程
(a)洗浄前、洗浄後及び第二の延伸工程中の熱固定処理工程、熱ロール処理工程並びに熱溶媒処理工程
 第一の延伸を施したゲル状成形物から成膜用溶媒を除去する前に、熱固定処理工程、熱ロール処理工程及び熱溶媒処理工程のいずれかを設けてもよい。また洗浄後や第二の延伸工程中の膜に対して熱固定処理する工程を設けてもよい。
(i)熱固定処理
 洗浄前及び/又は後の延伸ゲル状成形物、並びに第二の延伸工程中の膜を熱固定処理する方法は上記(7)熱処理工程における熱固定処理と同じでよい。
(ii)熱ロール処理工程
 洗浄前の延伸ゲル状成形物の少なくとも一面に熱ロールを接触させる処理(熱ロール処理)を施してもよい。熱ロール処理の方法として、例えば日本国特開2007-106992号公報に記載の方法を利用できる。日本国特開2007-106992号公報に記載の方法を利用すると、ポリオレフィン樹脂の結晶分散温度+10℃以上、ポリオレフィン樹脂の融点未満に温調した加熱ロールに、延伸ゲル状成形物を接触させる。加熱ロールと延伸ゲル状成形物との接触時間は0.5秒~1分間が好ましい。ロール表面に加熱オイルを保持した状態で接触させてもよい。加熱ロールとしては、平滑ロール又は吸引機能を有してもよい凹凸ロールのいずれでもよい。
(iii)熱溶媒処理工程
 洗浄前の延伸ゲル状成形物を熱溶媒に接触させる処理を施してもよい。熱溶媒処理方法としては、例えば国際公開第2000/020493号に開示の方法を利用できる。
(b)膜の架橋処理工程
 熱処理後のポリオレフィン微多孔膜に対して、α線、β線、γ線、電子線等を用いた電離放射による架橋処理を施してもよく、これによりメルトダウン温度を向上させることができる。この処理は、例えば、0.1~100Mradの電子線量及び100~300kVの加速電圧の条件により行うことができる。
(c)親水化処理工程
 熱処理後のポリオレフィン微多孔膜を、モノマーグラフト処理、界面活性剤処理、コロナ放電処理、プラズマ処理等により親水化してもよい。
(d)表面被覆処理工程
 熱処理後のポリオレフィン微多孔膜は、ポリビニリデンフルオライド、ポリテトラフルオロエチレン等のフッ素樹脂多孔質体、又はPA(ポリアミド)、PAI(ポリアミドイミド)、PI(ポリイミド)、PPS(ポリフェニレンサルファイド)等の多孔質体を表面に被覆することにより、電池用セパレータとして用いた場合のメルトダウン特性が向上する。第二の延伸後のポリオレフィン微多孔膜の少なくとも一面にPP(ポリプロピレン)を含む被覆層を形成してもよい。被覆用PPとして、例えば国際公開第2005/054350号に開示のものが挙げられる。
 ある態様として、孔数が多く、タフネスに優れたポリオレフィン微多孔膜の製造例としては、分子量が233万を超える成分を11.5%以上含む超高分子量ポリエチレンからなる原料を用い、湿式及び乾式延伸における総合面積倍率にて25倍を超える高延伸倍率、例えば100倍以上に延伸し、湿式延伸におけるTD方向の延伸において、最大延伸倍率まで延伸後、最大延伸倍率の80%以上の倍率まで変形を戻す延伸方法が挙げられる。これにより、レート特性と高速変形時における耐衝撃性に優れた微多孔膜を得ることができる。
 本発明の好ましい実施態様によるポリオレフィン微多孔膜は、次の物性を有する。なお、上述の(d)表面被覆処理工程を行った場合や、樹脂や無機粒子を含む耐熱層を形成した場合等、ポリオレフィン微多孔膜のいずれかの面に無機及び又は有機フィラーを含む層が形成されている場合がある。その場合には、その層を除去した後に下記の物性を測定し、特定することができる。例えば、無機フィラーと樹脂から構成される層を除去する方法として、アルコール(エタノール、イソプロパノールなど)やケトン(アセトン、メチルエチルケトンなど)、エーテル(ジエチルエーテルなど)、環状有機化合物(N-メチルピロリドン、γ-ブチロラクトンなど)などの有機溶剤や、これらと水の混合物中に含浸させ、24時間以上、放置することが挙げられる。洗浄が不十分な場合には、ポリオレフィン微多孔膜の構造が変化しない程度に、超音波洗浄機にてその洗浄効率を高めても良い。
〔膜厚(μm)〕 
 ポリオレフィン微多孔膜の膜厚は、近年は電池の高密度高容量化が進んでいるため、3~25μmが好ましく、より好ましくは3~22μm、さらに好ましくは5~20μm、もっとも好ましくは5~12μmである。膜厚を3μm以上とすることにより、絶縁性を担保したセパレータを得ることができる。膜厚を25μm以下にすることで安全性が高く高出力、高容量化に適した膜となる。
〔透気度(sec/100cm)及び正規化透気度(sec/100cm/μm)〕
 正規化透気度(ガーレー値)は、100sec/100cm/μm以下が好ましい。正規化透気度が100sec/100cm/μm以下であれば、ポリオレフィン微多孔膜を電池に用いたときに、良好なイオン伝導性を有する。
 また透気度は、20sec/100cm以上が好ましい。ポリオレフィン微多孔膜が電池内に用いられた場合に、膜厚に依存せずに透気度が低すぎる、即ち透過性が高すぎる場合には、電池製造時に短絡が発生しやすく、電池として使用した場合においても保存時に放電が進行しやすいため、透気度は、20sec/100cm以上が好ましい。
 透気度及び正規化透気度は、樹脂組成(超高分子量ポリエチレンなどポリエチレン混合物の融点、分子量分布)、溶媒抽出前における延伸温度や延伸倍率、洗浄後の乾式延伸温度や乾式延伸倍率、樹脂組成により調整することが可能である。
〔空孔率(%)〕
 空孔率は25~80%が好ましい。空孔率が25%以上であると良好な透気度、正規化透気度が得られる。空孔率が80%以下であると、ポリオレフィン微多孔膜を電池のセパレータとして用いた場合の強度が十分であり、短絡を抑えることができる。空孔率は、より好ましくは25~60%、更に好ましくは25~50%である。このような空孔率にあるとき、引張強度と引張伸度の両立に適している。
〔膜厚10μm換算突刺強度(mN)〕
 突刺強度は膜厚10μm換算で2000mN(204gf)以上であることが好ましく、3500mN(357gf)以上であることがより好ましい。4000mN(408gf)以上であることが更に好ましく、5000mN(510gf)以上であることがもっとも好ましい。膜厚10μm換算の突刺強度が2000mN以上であれば、ポリオレフィン微多孔膜を電池用セパレータとして電池に組み込んだ場合に、電池製造時の収率低下を抑制するためや保存安定性を確保する上で好ましい。
 引張強度、引張伸度、タフネスについては後述するように変形速度100mm/分における試験結果を示す。
〔引張強度(MPa)〕
 引張強度はMD方向及びTD方向のいずれにおいても80MPa以上であることが好ましい。引張強度がこの範囲であれば、破膜の心配が抑えられる。
 MD方向及びTD方向における引張強度は110MPa以上がより好ましく、更に好ましくは140MPa以上、特に好ましくは160MPa以上である。引張強度が上記好ましい範囲であると、電池に衝撃が加わった場合に破膜しにくい傾向がある。
〔引張伸度(%)〕
 引張破断伸度(引張伸度)はMD方向及びTD方向のいずれにおいても30%以上であることが好ましい。これにより電池製造時、及び電池に外力が働いた場合にセパレータの破膜の可能性が低くなる。MD方向及びTD方向における引張伸度はより好ましくは40%以上、更に好ましくは45%以上、特に好ましくは50%以上である。引張伸度が上記好ましい範囲にあると、電池に衝撃が加わった場合にエネルギーを吸収し易い傾向にある。
〔タフネス(MPa%)〕
 引張強度及び引張伸度から求める耐衝撃性の尺度であるタフネスは、MD方向の引張強度(MD引張強度)、MD方向の引張伸度(MD引張伸度)、TD方向の引張強度(TD引張強度)、TD方向の引張伸度(TD引張伸度)を用いて下記計算式(式5)より算出することができる。
 タフネス(MPa%)=MD引張強度(MPa)×MD引張伸度(%)+TD引張強度(MPa)×TD引張伸度(%)・・・(式5)
 タフネスは、耐衝撃性の観点から20000MPa%以上が好ましく、より好ましくは25000MPa%以上、更に好ましくは30000MPa%以上、最も好ましくは40000MPa%以上である。他の物性、例えばイオン透過性が悪化することからタフネスの上限は好ましくは500000MPa%以下、より好ましくは400000MPa%以下、更に好ましくは300000MPa%以下、最も好ましくは200000MPa%以下である。
 以下に示す高速引張強度、高速引張伸度、高速タフネスは後述するように変形速度500mm/分における試験結果を示す。
〔高速引張強度(MPa)〕
 高速引張強度はMD方向及びTD方向のいずれにおいても100MPa以上であることが好ましい。高速引張強度がこの範囲であれば、電池内にて変形速度が速い衝撃が加えられた時に破膜の心配が抑えられる。
 MD方向及びTD方向における引張強度は110MPa以上がより好ましく、更に好ましくは140MPa以上、特に好ましくは160MPa以上である。引張強度が上記好ましい範囲であると、電池に衝撃が加わった場合に破膜しにくい傾向がある。
〔高速引張伸度(%)〕
 高速引張破断伸度はMD方向及びTD方向のいずれにおいても20%以上であることが好ましい。これにより外部より電池に変形速度の速い衝撃が加えられた場合にポリオレフィン微多孔膜が衝撃を吸収しやすく、セパレータの破膜の可能性が低くなる。MD方向及びTD方向における高速引張伸度はより好ましくは30%以上、更に好ましくは35%以上、特に好ましくは40%以上である。引張伸度が上記好ましい範囲にあると、電池に衝撃が加わった場合にポリオレフィン微多孔膜がエネルギーを吸収し易い傾向にある。
〔高速タフネス(MPa%)〕
 高速引張強度及び高速引張伸度から求める耐衝撃性の尺度である高速タフネスは、MD方向の高速引張強度(MD高速引張強度)、MD方向の高速引張伸度(MD高速引張伸度)、TD方向の高速引張強度(TD高速引張強度)、TD方向の高速引張伸度(TD高速引張伸度)を用いて下記計算式(式5’)より算出することができる。
 高速タフネス(MPa%)=MD高速引張強度(MPa)×MD高速引張伸度(%)+TD高速引張強度(MPa)×TD高速引張伸度(%)・・・(式5’)
 高速タフネスは、耐衝撃性の観点から15000MPa%以上が好ましく、より好ましくは17000MPa%以上、更に好ましくは18000MPa%以上、最も好ましくは19000MPa%以上である。他の物性、例えばイオン透過性が悪化することから上限は500000MPa%以下、より好ましくは400000MPa%以下、更に好ましくは300000MPa%以下、最も好ましくは200000MPa%以下である。
 なお、ポリオレフィン微多孔膜に関する強度の指標として、突刺強度、(高速)引張強度及び引張測定から得られる(高速)タフネスがある。突刺強度と引張強度の間に一定の相関があることは広く認められているが、(高速)タフネスは突刺強度、引張強度と必ずしも正の相関が成立するわけではない。(高速)タフネスには引張伸度も影響する。引張強度と引張伸度は負の相関が強く、引張強度が上昇する条件では引張伸度は低下することが多い。従って、突刺強度、引張強度と(高速)タフネスの両立は技術課題となっている。例えば電池内に異物が混入した場合に短絡を防止するためにはポリオレフィン微多孔膜は高突刺強度が望ましい。一方、電池の耐衝撃性を改善するには電極間に挟まれるポリオレフィン微多孔膜にも高い衝撃性が求められ、引張強度だけでなく伸度も重要となり、高いタフネスが必要となる。特に高速での耐衝撃性を向上するには短時間での変形追従性が要求され、高速タフネスと突刺強度の両立は極めて困難なものであった。一方、本発明では、これら矛盾する突刺強度と高速タフネスを両立しており、下記(式6)の関係を満たすポリオレフィン微多孔膜が得られている。
 高速タフネス(MPa%)≧-4700×換算突刺強度(N、10ミクロン換算)+α・・・(式6)
 このとき、αは、好ましくは40000、より好ましくは41000、もっと好ましくは43000、更に好ましくは44000、最も好ましくは45000である。
 この関係を満たすことで、突刺強度が高く、異物耐性に優れることから、例えば電極由来の異物による短絡を防止することができ、電池生産時の収率を改善することができ、かつ、大型電池におけるより厳しい安全性試験で求められる、高速衝突時の変形追従性を上げることが可能となる。したがって、高速タフネスと突刺強度を両立する観点からは、ポリオレフィン微多孔膜は上記(式6)を満たすことが好ましい。
〔平均孔径(nm)〕
 ポリオレフィン微多孔膜の平均孔径及び最大孔径は、ポロメータを用いて以下の方法で測定することができる。
 まず、乾燥状態の試料(以下、単に「乾燥試料」とも記す。)と、測定液が細孔内に充填された湿潤状態の試料(以下、単に「湿潤試料」とも記す。)のそれぞれについて、ポロメータを用いて空気圧と空気流量の関係を測定し、乾燥試料の通気曲線(Dry Curve)及び湿潤試料の通気曲線(Wet Curve)を得る。
 測定液が細孔内に充填された湿潤試料は、液体を満たした毛細管と同様の特性を示す。湿潤試料をポロメータにセットして空気圧を徐々に高めてゆくと、径の大きい細孔から順に、空気圧が細孔内の測定液の表面張力に打ち勝って測定液が当該細孔内から押し出され、それに伴って空気流量が徐々に増加し、最終的に試料は乾燥状態となる。従って、液体がその細孔から押し出される際の圧力を測定する事によって、細孔直径を算出できる。
 ここで、細孔の形状が略円柱状であると仮定すると、直径Dの細孔内に圧力Pの空気が侵入する条件は、測定液の表面張力をγ、測定液の接触角をθとして、下記の(式7)に示すWashburnの式で表される。
 PD=4γcosθ・・・(式7)
 特に、気泡の発生が最初に検出される測定点(最大孔径を示す測定点)をバブルポイント(Bubble Point)と呼ぶ。バブルポイントの標準的な測定方法としては、例えばASTM F316-86に記載の方法が挙げられる。
 また、ポリオレフィン微多孔膜の平均孔径は、上述の乾燥試料の通気曲線(Dry Curve)及び湿潤試料の通気曲線(Wet Curve)を用いて、ASTM E1294-89に規定するハーフドライ法に基づいて求めることができる。乾燥試料の通気曲線(Dry Curve)の1/2の傾きの曲線(Half-Dry Curve)と、湿潤試料の通気曲線(Wet Curve)とが交わる点の圧力を平均流量径圧力(Mean Flow Pressure)として求め、この平均流量径圧力を上記(式7)に代入することにより、ポリオレフィン微多孔膜の平均孔径(Mean Pore Diameter)が算出される。
 一方、圧力Pjにおける湿潤試料の空気流量をFw,j、乾燥試料の空気流量をFd,jとするとき、累積フィルター流量(CFF:Cumulative Filter Flow,単位:%)及び細孔径分布(PSF:Pore Size Frequency,単位:%)は、それぞれ以下の(式8)、(式9)によって算出される。
 なお、(式9)中の(CFF)jは、圧力Pjにおける累積フィルター流量を示す。
 CFF=[(Fw,j/Fd,j)×100]・・・(式8)
 PSF=(CFF)j+1-(CFF)j・・・(式9)
 平均孔径は、イオン透過性の観点から5nm以上が好ましく、より好ましくは10nm以上、更に好ましくは13nm以上、最も好ましくは15nm以上である。また平均孔径は、電池の寿命の観点から、80nm以下が好ましく、より好ましくは70nm以下、更に好ましくは60nm以下、特に好ましくは50nm以下、最も好ましくは30nm以下である。
 最大孔径は、平均孔径以上であり、イオン透過性の観点から15nm以上が好ましく、より好ましくは18nm以上、更に好ましくは20nm以上、最も好ましくは23nm以上である。また最大孔径は、膜厚が従来より薄くなったことから、高いレベルでの絶縁性が求められており、150nm以下が好ましく、より好ましくは100nm以下、更に好ましくは80nm以下、最も好ましくは60nm以下である。
 最大孔径と平均孔径の比、最大孔径/平均孔径はイオン透過性の観点から1.05以上が好ましく、より好ましくは1.1以上、更に好ましくは1.15以上、最も好ましくは1.2以上である。孔径分布が広がることで局所的にイオンが流れるために電池寿命が短くなる恐れがあることから、最大孔径/平均孔径は、3.0以下が好ましく、より好ましくは2.5以下、更に好ましくは2.2以下、最も好ましくは2.0以下である。最大孔径/平均孔径を上記範囲に調整することで絶縁性を確保しつつ、高いイオン透過性を発揮することができる。
〔SEM表面平均孔数(個/μm)〕
 SEM表面平均孔数(SEM表面孔数)は、以下の式(10)より算出することができる。
 蒸着したポリオレフィン微多孔膜を示差走査型電子顕微鏡(SEM)にて加速電圧2kVで観察した。撮影したSEM画像を二値化処理することで、空孔を抽出し、単位面積当たりの表面孔数、表面開口率、表面孔径を算出した。二値化処理は加速電圧2kV、倍率10000倍、11.7μm×9.4μm(1280画素×1024画素)、8bit(256階調)グレースケールの画像を用いて実施した。画像処理方法としては、上記SEM画像に対して、3画素×3画素平均にてノイズ除去を行った後に、21画素×21画素平均した画像から-30階調をしきい値として動的二値化処理をすることで、暗部を抽出し、二値化処理を行った。独立した暗部が1μmあたりに存在する数からSEM表面平均孔数(SEM表面孔数)を算出した。さらに、1μmあたりに存在する独立した孔の合計面積から、下式に基づき、SEM表面平均孔径を算出した。
 SEM表面平均孔径=(独立した孔の合計面積/表面孔数/3.14)0.5×2・・・(式10)
 SEMで観察される表面孔数(SEM表面孔数)は40個/μm以上が好ましく、60個/μm以上がより好ましく、80個/μm以上がさらに好ましく、90個/μm以上が最も好ましく、100個/μm以上が著しく好ましい。SEMで観察される表面孔数が多いと空隙部が増加し、機械的強度が低下する傾向にある。そのためSEM表面孔数は180個/μm以下が好ましく、170個/μm以下がより好ましい。
〔光学特性〕
 ポリオレフィン微多孔膜の光学特性を評価することにより、孔構造の解析をすることができる。
 本発明の実施形態に係るポリオレフィン微多孔膜は、波長800nmの光を入射角60°で表面に入射させたときの、反射光のS波の反射率S(800_60°)と、波長500nmの光を同入射角で表面に入射させたときの、反射光のS波の反射率S(500_60°)との比率S(800_60°)/S(500_60°)が0.5以上、1.20以下であることが好ましい。
 光学特性を評価する方法として入射角度違いの反射光を解析し、ポリオレフィン微多孔膜の表面及び内部構造の評価を行った。
(角度依存性評価)
 入射角度(入射光と法線とのなす角)を変えて分光光度を測定できればいかなる機種でも構わないが、例えば株式会社日立ハイテクノロジーズ製U-4100を用いて評価することができる。分光光度はJIS K0115:2004に規定された方法に従って測定することができる。具体的には例えば、下記の条件にて行える。
 測定波長域:400nm-1500nm
 スキャン速度:750nm/分
 角度:20°、40°、60°(法線方向に対する)
 観察反射波長:P波、S波
 500nm及び800nmにおけるP波、S波の反射率をそれぞれ計測した。
 入射角度が小さいほど、ポリオレフィン微多孔膜内部の構造も反映した反射光となる。例えば、入射角が60°であれば、ポリオレフィン微多孔膜の最表面の構造を反映した反射光となり、入射角が40°であれば、ポリオレフィン微多孔膜の表面近傍の構造も反映した反射光となり、入射角が20°であれば、ポリオレフィン微多孔膜の内部を含めた全体の構造(内部構造)も反映した反射光となる。
 また波長が大きいほど、大きな構造由来の反射率が高いと考えられる。例えば、800nm付近の散乱光は、ポリオレフィン微多孔膜中の約1μm程度の大きさの構造単位の影響を受けていると推測される。
 孔構造パラメータが特定の範囲にあるポリオレフィン微多孔膜は、表面構造が精密に制御されており、二次電池用セパレータとして使用した場合に高速充放電時の容量維持率に優れ、高速衝撃試験において高い耐衝撃性を発揮する。更に、ポリオレフィン微多孔膜の内部構造を制御することが好ましい。
 孔構造パラメータは、ポリオレフィン微多孔膜の表面及び内部構造に関する情報を、光学特性により規定したものであり、粗大構造と緻密構造の存在比率の指標となる。
 ポリオレフィン微多孔膜の表面及び内部構造は、ポリオレフィン樹脂の組成(超高分子量ポリエチレンなどポリエチレン系樹脂の融点、分子量分布、含有量等)、ポリオレフィン樹脂溶液の固化時の冷却速度、引き取り速度や溶媒抽出前における延伸温度や延伸倍率、洗浄後の乾式延伸温度や乾式延伸倍率等により調整することが可能である。
 本願の解決すべき課題は、リチウムイオン電池に用いた場合の出力特性の改善と、安全性の指標である耐衝撃性の両立である。
 レート特性を改善するにはポリオレフィン微多孔膜の表面孔数を増加させることを試みることが予想される。孔数を増やす手法として、例えば希釈剤である溶媒と樹脂の混合物における溶媒比率の上昇、第一の延伸工程において空孔率を増やす延伸条件の適用が考えられるが、これらの手段だけでは表面孔数の増加と共に構造が不均一となりやすい。延伸時において均一な構造変化を制御することが困難なためと推測している。それを改良する目的で、ポリオレフィン微多孔膜表面のみ、大孔径化し、空孔率を上げる提案がなされている。この手法を用いることで、ポリオレフィン微多孔膜中心部分で強度を確保することが可能となるが、表面近傍が粗大構造が多い、不均一構造を取りやすくなる。
 一方、構造をそろえることで出力特性が改善する提案もなされている(特許文献1)。しかし技術内容を精査すると、散乱強度が高いが、構造の大きさについての考察はなかった。全波長での散乱強度を見ているため、様々な構造の散乱を計測している。従って散乱を生じうる構造が表面、内部に因らず、均一に近いことを示しているだけで、構造の分布については考察がなされておらず、出力特性改善に余地があることがわかった。
 ポリオレフィン微多孔膜の構造について、表面と内部、内部から表面への構造変化の観点から、検討したところ、出力特性と耐衝撃性の改良を同時に達成できる構造を見いだした。
 本発明の第1の実施形態において、孔構造を特定するために以下のパラメータを用いた。
 ポリオレフィン微多孔膜の表面に関する孔構造パラメータとして、波長800nmの光を入射角60°で表面に入射させたときの、反射光のS波の反射率S(800_60°)と、波長500nmの光を入射角60°で表面に入射させたときの、反射光のS波の反射率S(500_60°)との比率S(800_60°)/S(500_60°)を用いた。
 入射角60°における反射率を用いることでポリオレフィン微多孔膜の表面の孔構造に関する情報が得られる。この比率S(800_60°)/S(500_60°)が小さいほど、表面に緻密な孔構造が形成されていることになる。
 表面が適度に緻密な孔構造を有することにより、リチウムイオンが偏ることなく平均的に移動することになり、例えばデンドライト生成など、電池寿命を短くする現象を抑制できる傾向にある。また高速変形時に表面からの孔構造の破壊も起こりにくく、均一変形による高い衝撃吸収能力を発現する。
 入射角60°における比率S(800_60°)/S(500_60°)は、1.20以下が好ましく、より好ましくは1.18以下、更に好ましくは1.15以下、より更に好ましくは1.10以下である。比率S(800_60°)/S(500_60°)が1.20以下であることで、表面に粗大な孔構造と緻密な孔構造が適度に存在し、高速変形時に表面での応力を分散させることで孔構造の破壊を抑制することができる。また、比率S(800_60°)/S(500_60°)は0.50以上が好ましく、より好ましくは0.60以上、更に好ましくは0.70以上、より更に好ましくは0.80以上である。比率S(800_60°)/S(500_60°)が0.50以上であることでイオン透過性の優れた孔構造を有するポリオレフィン微多孔膜を形成できる。
 先に示したSEM表面平均孔数とS(800_60°)/S(500_60°)(以下、S(800/500)と表記する)の間に、下記(式1)の関係を満たすとき(第1の実施形態)に、本発明が達成したい、大型電池に用いられた場合に期待される高い安全性を得るための高い耐衝撃性と、高速充放電特性、すなわちイオン透過性の尺度であるレート特性に優れた特性を発揮する。なおレート特性の評価基準として、例えば、高速充放電時の電池として使用可能な電池容量、いわゆる電池容量維持率が挙げられ、電池容量維持率は高いことが望ましい。
 SEM表面孔数≧366×S(800/500)-380・・・・・・(式1)
 必ずしも理由が明らかとなっていないが、(式1)を満たすことで本願にて解決すべき課題を解決できる理由は、下記のように推察される。S(800/500)は、ポリオレフィン微多孔膜の表面構造に関連する物性であると考えられる。S(800/500)は、500nmの光を散乱する緻密な構造と800nmの光で散乱する粗大な構造の比率に関係すると推測される。
 表面構造においては、緻密構造が形成されているほど、出力特性の尺度である容量維持率が改善されることを見いだした(図2)。従来技術に比べて、本発明の第1の実施形態に係るポリオレフィン微多孔膜はより緻密な構造を形成しており、容量維持率の改善につながったと考えられる。一方、耐衝撃性は予想に反して粗大な構造が多いほど、改善した(図3)。従来技術のポリオレフィン微多孔膜と、本発明の第1の実施形態に係るポリオレフィン微多孔膜のそれぞれにおいて、粗大構造比率が増えるにつれて耐衝撃性が改善するが、同じ粗大/緻密比率において従来技術のポリオレフィン微多孔膜と本発明の第1の実施形態に係るポリオレフィン微多孔膜とを比較すると、本発明の第1の実施形態に係るポリオレフィン微多孔膜は従来技術のポリオレフィン微多孔膜より高い耐衝撃性を示した。
 従来技術では、粗大構造が増えることで表面孔数が増加し、粗大構造が孔数増加に寄与したと推測される(図4)。一方、本願は緻密構造比率が増加するに従い、孔数が増えており、従来技術と表面構造が異なることがわかる。本願では緻密構造に孔が多く存在するが、従来技術は粗大構造に孔が多く存在すると理解できる。粗大/緻密構造比が同じでも耐高速衝撃性が異なる理由は、耐衝撃性が孔の存在箇所に大きく影響を受けているためと推測できる。
 以上のことから、出力特性と耐衝撃性を両立するためには、表面構造の粗大/緻密構造比率と表面孔数が一定の関係を満たす時に達成できることを見いだした。
 また、本発明の第2の実施形態において、内部まで含めた孔構造パラメータとして、波長800nmの光を入射角20°で表面に入射させたときの、反射光のP波の反射率P(800_20°)と、波長500nmの光を入射角20°で表面に入射させたときの、反射光のP波の反射率P(500_20°)との比率P(800_20°)/P(500_20°)を用いた。
 比率P(800_20°)/P(500_20°)が大きいほど、粗大な孔構造が微多孔膜の表面から内部に存在することになる。
 ポリオレフィン微多孔膜の表面構造だけでなく内部構造についても精密に制御することにより、二次電池用セパレータとして使用した場合に高速充放電時の容量維持率に優れ、高速衝撃試験においてより高い耐衝撃性を発揮しやすくなる。
 比率P(800_20°)/P(500_20°)は、好ましくは1.20以下、より好ましくは1.15以下、更に好ましくは1.12以下、より更に好ましくは1.10以下、最も好ましくは1.0以下である。1.20以下であることで、緻密な孔構造と粗大な孔構造が適度に分散して表面から内部まで形成されており、高速変形時に一部にて孔構造の破壊が進行しにくい(部分的な破壊が進行しにくい)特徴がある。また、P(800_20°)/P(500_20°)は、好ましくは0.60以上、より好ましくは0.70以上、更に好ましくは0.80以上である。P(800_20°)/P(500_20°)が0.60以上であれば急速充放電時にイオン抵抗が小さいために、急速充放電時に電池として使える容量、すなわち容量維持率が高くなる。
 波長800nmの光を入射角20°で表面に入射させたときの、反射光のP波の反射率P(800_20°)と、波長500nmの光を入射角20°で表面に入射させたときの、反射光のP波の反射率P(500_20°)との比率P(800_20°)/P(500_20°)と、先に示したSEM表面孔数が下記(式2)を満たすこと(第2の実施形態)によっても、本発明が達成したい、大型電池に用いられた場合に期待される高い安全性を得るための高い耐衝撃性と、高速充放電特性、すなわちイオン透過性の尺度であるレート特性に優れた特性を発揮することができる。
 SEM表面孔数≧-88×P(800/500)+157・・・・・・(式2)
 ここで、P(800/500)=P(800_20°)/P(500_20°)である。
 このような関係を満たす理由について明らかとなっていないが、下記のように考えられる。機械的強度を改善するには、欠陥のない均一構造であることが望ましいと一般的には考えられる。先に示したP(800/500)は、表面から内部までの構造を平均化して構造を評価している。この数値が小さいほど、緻密構造由来の散乱が強いことを示している。比較例が示すように従来技術では、P(800/500)が小さいほど、高速耐衝撃性が優れる(図5)。しかし比較例では、P(800/500)が小さいほど、高速充放電に関係するレート特性は劣る結果となる(図6)。本発明の第2の実施形態に係るポリオレフィン微多孔膜は緻密構造でありながら、表面孔数が多いことで、従来困難であったレート特性との両立を果たしている(図6)。微多孔膜の構造緻密化を図りつつ、表面孔数を増加させることで本発明を達成することができた。
 内部構造に着目した場合、本発明の第2の実施形態に係るポリオレフィン微多孔膜は表面(図2、S(800_60)/S(500_60)=1~1.2)よりも更に緻密な構造の比率が増加(図6、P(800_20)/P(500_20)=0.7~1.1)し、表面及び全体の構造が緻密化する時に出力特性が改善している。従来技術では、比較例2に示したように、粗大構造と緻密構造が表面、全体共に一定の割合で存在する。このように粗大構造と緻密構造が均質化された構造においては、透過性改善のために必要な粗大構造が存在するため、本発明の第2の実施形態に係るポリオレフィン微多孔膜に比べて構造緻密化に改良の余地があった(図6)。
 耐衝撃性については、本発明の第2の実施形態に係るポリオレフィン微多孔膜は表面構造と同じく、粗大構造が若干増加する時に改善する傾向を示した(図5)。従来技術では、全体として均一に粗大構造比率が多い場合(例:比較例2)においては、粗大構造と緻密構造が接する面積が減少する。結果、粗大/緻密構造間に存在する応力集中箇所が少なくなるため、少ない箇所に大きな応力がかかり、耐衝撃性が劣ると考えられる(図5)。従来技術においても、本願と同じレベルの構造緻密化が進行することで、耐衝撃性は改善する(例:比較例1)。しかし、従来技術では孔数が少ない特徴を持つ緻密構造が増加することになり、出力特性に不利であると推測される。このように従来技術では出力特性と耐衝撃性の両立が困難であった。
 本発明において、出力特性と耐衝撃性の両立が可能になった構造を特定する方法として、内部構造を含む全体の散乱強度と表面孔数を用いた。散乱強度にて内部の構造も特定し、表面構造情報として表面孔数を用いた(図7)。
 従来技術では全体として粗大構造の割合が多くなることで、出力特性が改善している(例:比較例2)。耐衝撃性には全体構造としては緻密構造が多い方が優れており(図5)、両立が困難であった。
 本発明の第2の実施形態に係るポリオレフィン微多孔膜では、表面構造よりも構造全体が緻密化していることから、内部構造を表面よりも更に緻密化された状態で出力特性が改善している。耐衝撃性のためには、構造全体として粗大構造を導入する必要がある(図5)。一方、本発明の第2の実施形態に係るポリオレフィン微多孔膜の構造の特徴である、緻密構造に孔がより多く存在する特徴(図4)を考慮すると、全体構造がより緻密な構造となることで出力特性は改善すると考えられる。表面構造に粗大構造を必要最小限、導入する時に(式2)を満たすことが好ましい。(式2)を満たすことで、従来技術よりも出力特性と耐衝撃性に優れた微多孔膜を得ることができる。
 また、本発明の第2の実施形態に係るポリオレフィン微多孔膜は、(式3)も満たすことで、より出力特性に優れた微多孔膜を得ることができ好ましい。これは、(式3)を満たすことで、より孔数の多い緻密構造を達成できるためと推測している(図8)。
 SEM表面孔数≧58.7×P(800/500)+21.3・・・・・・(式3)
 また、以下の値、R(800)、R(500)を用いた比率R(800)/R(500)を用いて、構造均一性を定義した。
 R(800):波長800nmの光を入射角40°で表面に入射させたときの、反射光のS波の反射率S(800_40°)と、波長800nmの光を入射角20°で表面に入射させたときの、反射光のS波の反射率S(800_20°)との比率S(800_40°)/S(800_20°)。
 R(500):波長500nmの光を入射角40°で表面に入射させたときの、反射光のS波の反射率S(500_40°)と、波長500nmの光を入射角20°で表面に入射させたときの、反射光のS波の反射率S(500_20°)との比率S(500_40°)/S(500_20°)。
 R(800)、及びR(500)はそれぞれ800nm、500nmに観察される微多孔膜全体(入射角20°における反射率)と、表面近傍(入射角40°における反射率)の構造均一性を表している。それぞれ1に近いほど微多孔膜全体と表面近傍の孔構造が均一であることを示している。R(800)は粗大な孔構造、R(500)は緻密な孔構造を反映しており、それぞれの孔構造の分布特異性を示している。
 例えば、R(800)は、微多孔膜全体の孔構造(入射角20°における反射率)に対する、表面近傍における粗大な孔構造(入射角40°における反射率)の存在比率を反映している。R(800)が1を超える場合には表面近傍には全体に比べて粗大な孔構造が多く存在することを意味する。
 これに対してR(500)は緻密な孔構造についての表面近傍の孔構造の特徴を現すことになる。
 これらの比率R(800)/R(500)を用いることで、粗大な孔構造(R(800))と緻密な孔構造(R(500))の、微多孔膜全体と表面近傍における存在割合を表現でき、比率R(800)/R(500)が1に近いほど、粗大な孔構造と緻密な孔構造が全体と同じ傾向で表面近傍にも存在していることになる。
 比率R(800)/R(500)は好ましくは0.50以上、より好ましくは0.60以上、更に好ましくは0.70以上、最も好ましくは0.80以上である。また1.30以下が好ましく、より好ましくは1.20以下、更に好ましくは1.15以下、もっと好ましくは1.12以下、最も好ましくは1.10以下である。比率R(800)/R(500)が0.5以上であれば全体として緻密構造が保たれているため、出力特性に優れている。比率R(800)/R(500)が1.30以下であることで表面近傍と微多孔膜全体の粗大な孔構造/緻密な孔構造の割合は均一性が高く、急速変形時に部分的な孔構造の破壊が進行しにくい特徴がある。
 このとき、R(800)としては、好ましくは0.6以上、より好ましくは0.7以上、更に好ましくは0.8以上、より更に好ましくは0.9以上、最も好ましくは1.0以上である。またR(800)は2.2以下が好ましく、より好ましくは2.1以下、更に好ましくは2.0以下、より更に好ましくは1.90以下、最も好ましくは1.85以下である。
 また、R(500)としては、好ましくは0.6以上、より好ましくは0.7以上、更に好ましくは0.8以上、より更に好ましくは0.9以上、最も好ましくは1.0以上である。またR(500)は2.3以下が好ましく、より好ましくは2.2以下、更に好ましくは2.0以下、より更に好ましくは1.9以下、最も好ましくは1.85以下である。
 このとき、R(800)/R(500)とSEM表面孔数が下記(式4)の関係を満たすことによっても、本発明が達成したい、大型電池に用いられた場合に期待される高い安全性を得るための高い耐衝撃性と、高速充放電特性、すなわちイオン透過性の尺度であるレート特性に優れた特性を発揮することができる(図9)。
 SEM表面孔数≧150×R(800)/R(500)-97・・・・・・(式4) 
 本発明の実施形態に係るポリオレフィン微多孔膜は、表層の緻密構造及び内部に存在するより緻密な構造にて、出力特性と耐衝撃性の両立を達成している。一方、出力特性を改善する従来技術の代表的な例として、表層は出力特性を改善するために粗大構造、内部は強度を保つために緻密構造を採用する技術(構造1、例:比較例1)、出力特性の改善のために、全体的に均一な粗大構造/緻密構造比率を有する構造を用いる技術(構造2、例:比較例2)があった。従来は、粗大構造を導入することで、孔数が増加した(図4)が、本願では緻密構造でありながら、孔数の多い構造を達成できた(図4)ことで、従来技術で達成できなかった、出力特性と耐衝撃性の両立ができたと思われる。
 従来技術のうち、構造1のように、緻密な内部構造から粗大構造が多くなる表面構造へ変化する場合には、粗大構造の変化率(R(800))が大きい特徴を示す場合がある。一方で、構造2のように全体的に粗大構造の比率が多いが、構造が均一なため、内部から表面への構造変化は、粗大/緻密構造で差が生じない特徴を有する場合もある。構造1よりも構造2のほうが出力特性に優れる(図2、図6)ことから、従来技術では変化率として粗大構造と緻密構造の変化率(R(800)/R(500))がより等しい、すなわちR(800)/R(500)が1に近いほうが、容量維持率が改善する傾向を示した(図10)。
 本発明の実施形態に係るポリオレフィン微多孔膜は内部から表面に向かって、より緻密な内部構造から緻密な表面構造へと変化する。そのため、相対的に粗大構造の変化(R(800))が大きくなる。このため、内部から表面への構造変化率(R(800)/R(500))が大きいほど、内部により緻密な構造が多くなる。本発明の実施形態に係るポリオレフィン微多孔膜は緻密構造にて孔数が増える特徴を有する。表面よりも更に緻密な内部構造内のイオンが通るパスが増えるために、容量維持率が改善する傾向となると思われる。
 一方、耐衝撃性については、構造1のように表層は粗大構造が、内部は緻密構造が多い構成が優れている。構造2のように、全体的に粗大構造と緻密構造の比率が一定に近い構造では、少ない箇所に衝撃が集中し、耐衝撃性に劣ると考えられる。従って、構造1のように粗大構造の変化率(R(800)/R(500))が大きいほど、耐衝撃性は改善する。本発明の実施形態に係るポリオレフィン微多孔膜でも、粗大構造の変化率(R(800))が相対的に大きい方が耐衝撃性は改良される。粗大構造の変化率(R(800))であって、粗大構造の密度を意味しない。図6に示すように本発明の実施形態に係るポリオレフィン微多孔膜の全体構造は、従来技術より緻密構造を取りやすく、内部から表面に向かっての変化率(R(800)/R(500))が従来技術とおおよそ等しい(図11)ことから、粗大構造自体は本発明の実施形態に係るポリオレフィン微多孔膜のほうが少ないと理解できる。変化率(R(800)/R(500))において、耐衝撃性と相関が見られない(図11)理由としては微多孔膜全体の構造が耐衝撃性に対する影響が大きいためと考えられる(図5)。従来技術においては微多孔膜全体として粗大構造が多い(P(800/500)が大きい)場合は耐衝撃性に不利となる(図5)。その場合に内部から表面に向かっての変化率(R(800)/R(500))が大きい構造を取ることで、耐衝撃性に有利な構造1のように内部と表面構造の差を示すことができるが、内部の粗大構造と表面のより粗大な構造からなる微多孔膜では、構造1のような粗大構造から緻密構造への衝撃受け渡しによる耐衝撃性改善を達成できないと考えられる。
 このような特徴を規定する方法として、それぞれの構造変化率の比率(R(800)/R(500))と表面孔数の関係を用いた。本発明の実施形態に係るポリオレフィン微多孔膜は、表面構造が緻密であるほど、孔数が多く、変化率(R(800)/R(500))が大きいほど、内部は更に緻密化し、内部パス数が増える傾向を示す。全体として、緻密構造を持ち、内部ほど緻密になることで耐衝撃性と出力特性を共に改善できている。従来技術でも、粗大構造の多い表面よりも内部にて構造が緻密化する(変化率(R(800)/R(500))が大きい)ことで、耐衝撃性は改善されるが、従来技術の特徴である、緻密構造よりも粗大構造にて孔数が多くなる特徴を有するため、緻密化する内部ではイオンの通り道が減少し、出力特性に不利に働くと考えられる。構造2では微多孔膜全体を均一な粗大/緻密構造にすることで出力特性は改善するものの、内部から表面への変化率(R(800)/R(500))は小さくなり、耐衝撃性は劣る。従って、微多孔膜の孔数の特徴を表す表面孔数と内部から表層への構造変化を規定することで、耐衝撃性と出力特性を両立しうる構造を特定していると思われる。
(明度(L)、ホワイトインデックス(WI))
 後述するように、明度はJIS Z8781-4:2013に、ホワイトインデックスは、ASTM E313-73に準拠して測定を行う。
(鏡面光沢度)
 60°鏡面光沢度はJIS Z8741:1997に準拠して測定を行う。スガ試験機株式会社製 デジタル変角光沢計 UGV-5Dを用いて、3回測定した平均値を用いて、60°鏡面光沢度とする。
〔キャストシート溶媒保持性〕
 ポリエチレン-溶媒を溶解した融液を固化させたものをキャストシートと呼ぶ。溶媒を含むことから、固化したキャストシートは成形条件によっては溶媒が表面から滲出し、生産プロセスにおいて取り扱いにくくなる可能性がある。溶媒の滲出量の指標として、単位キャスト体積(厚み、面積を規定)からの溶媒滲出量を求め、キャストシート質量に対する比率にて評価する。LP保持性を評価する手法として、キャストシート1mm厚み、10cm×10cmの大きさに切り抜き、表面に浮き出たLPを拭い取り、室温にてキャストシート質量を測定する。仕込みのキャストシート質量から測定したキャストシート質量を差し引いた分を流出LP量(g)とする。下記式で求められる、仕込みのキャストシート単位質量あたりの流出LP量の割合が10%以上なら「標準以下」、5%以上10%未満の場合には「標準」、5%未満ならば「良」とする。
 キャストシート溶媒保持性(%)={(仕込みのキャストシート質量)-(室温下でLPを拭い取ったキャストシート質量)}/(仕込みのキャストシート質量)×100
〔電池評価方法〕
 1時間当たりにエネルギーを放出する速度をレートと定義する。用いた電池の電池容量を1時間で消費する速度は1Cと表記され、例えば用いた電池の電池容量を5分間で消費する速度は12Cとなる。レートを変えて電池として使用可能な容量を求める。0.2Cにて計測した容量を1として、相対的に表現した値を容量維持率(%)と定義する。
 ポリオレフィン微多孔膜のレート特性を評価するために、正極、負極、セパレータ及び電解質からなる非水電解液二次電池にセパレータとして組み込んで、充放電試験を行う。
 NMC532(リチウムニッケルマンガンコバルト複合酸化物(Li1.05Ni0.50Mn0.29Co0.21))を積層したカソード、及び、天然黒鉛を積層したアノードを用いる。セパレータは、ポリオレフィン微多孔膜を室温の真空オーブンで乾燥して使用する。電解液はエチレンカーボネートとエチルメチルカーボネート、ジメチルカーボネートの混合物中に、ビニレンカーボネート(VC)0.5質量%、LiPFを1mol/L溶解させて調製する。正極、セパレータ及び負極を積み重ね、得られた積層体をラミネートパウチ内に配置し、ラミネートパウチ内に電解液を注液、当該ラミネートパウチを真空シールすることにより、非水電解液二次電池を作製する。
 作製した非水電解液二次電池を初回充電として、後に述べる初期充放電処理を行い、非水電解液二次電池の初期とする。
 次に、所定温度、電圧範囲にて、充電電流値0.2Cの定電流-定電圧(CC-CV)充電(終止電流条件0.05C)、放電電流値0.2Cの定電流(CC)放電をして、その時の放電容量を0.2C容量とする。
 次に、同温条件にて、電圧範囲;2.75~4.2V、充電電流値;0.5CでCC-CV充電(終止電流条件0.05C)した後に、所定の温度で放電速度を変えて、非水電解液二次電池のレート試験を行う。
 温度は15℃にて行い、放電速度は1C(18mA、1.44mA/cm)から20Cの間で各温度において3水準以上選び、評価を行う。それぞれの温度水準にて、各レートにおける容量保持率(容量維持率)を(式11)のように定義する。
 各レートにおける容量保持率(容量維持率)(%)=(各レートにおける容量/0.2Cにおける容量)×100・・・(式11)
 本発明者らは、イオンが透過する孔構造がイオン透過性に影響を与える可能性が高いと予想されるので、透気度、空孔率、平均孔径、平均孔数など透過性に関連する物性に着目した。また急速充放電時の電池内にて起こる電極の膨張収縮に鑑み、突刺強度、引張強度など強度に関係する物性に着目した。
(電池用セパレータ)
 本発明の実施形態に係る電池用セパレータは、本発明の実施形態に係るポリオレフィン微多孔膜を用いて公知の方法によって作製することができる。
 本発明の実施形態に係る電池用セパレータの膜厚は、機械的強度、電池容量の観点から3μm~30μmが好ましい。電池用セパレータの膜厚が上記範囲であると、高容量の電池作製に適し、自重によるたわみが生じにくい。
 電池用セパレータの幅は特に制限はないが、10mm以上が好ましく、より好ましくは60mm以上、さらに好ましくは100mm以上であり、2000mm以下が好ましく、より好ましくは1000mm以下、さらに好ましくは800mm以下である。
 電池用セパレータの長さは、500m以上が好ましく、より好ましくは1000m以上、さらに好ましくは2000m以上である。電池用セパレータの長さは、10000m以下が好ましく、より好ましくは8000m以下、さらに好ましくは7000m以下である。電池用セパレータの長さの長さが上記範囲であると、生産性を向上させ、捲回体とした場合に自重によりたわみが生じにくい。
 電池用セパレータは、乾燥状態で保存することが好ましいが、絶乾状態での保存が困難な場合は、使用の直前に100℃以下の減圧乾燥処理を行うことが好ましい。
(二次電池)
 本発明の実施形態に係る二次電池は、電池用セパレータを用いて公知の方法によって作製することができる。
 二次電池としては、例えば、ニッケル-水素電池、ニッケル-カドミウム電池、ニッケル-亜鉛電池、銀-亜鉛電池、リチウムイオン二次電池、リチウムポリマー二次電池等が挙げられ、これらの中でも、リチウムイオン二次電池が好ましい。
 以下にリチウムイオン二次電池を例にとって説明する。
 リチウムイオン二次電池は、正極と負極がセパレータを介して積層された電極体と電解液(電解質)を含有している。電極体の構造は特に限定されず、公知の構造であってよい。
 例えば、電極体の構造は、円盤状の正極及び負極が対向するように配設された電極構造(コイン型)、平板状の正極及び負極が交互に積層された電極構造(積層型)、帯状の正極及び負極が重ねられて巻回された電極構造(巻回型)等の構造とすることができる。
 本発明を以下の実施例によりさらに詳細に説明するが、本発明はこれらの例に限定されるものではない。
(ポリオレフィン微多孔膜の製造)
〔実施例1〕
 重量平均分子量1.69×10、分子量分布5.6、融点が133℃の超高分子量ポリエチレン100質量部に、酸化防止剤としてテトラキス[メチレン-3-(3,5-ジターシャリーブチル-4-ヒドロキシフェニル)-プロピオネート]メタン0.375質量部をドライブレンドし、ポリエチレン組成物を作製した。
 得られたポリエチレン組成物20質量部を二軸押出機に投入した。さらに、流動パラフィン80質量部を二軸押出機のサイドフィーダーから供給し、溶融混練して、押出機中にてポリエチレン樹脂溶液を調製した。
 続いて、この押出機の先端に設置されたダイから210℃でポリエチレン樹脂溶液を押し出し、内部冷却水温度を25℃に保った冷却ロールで引き取りながら未延伸ゲル状シートを成形した。冷却された押出物はまず、MD方向にロールによる延伸がなされた。予熱温度/延伸温度/熱固定温度=120℃/119℃/50℃、三段階(2.2倍/2.4倍/1.9倍、トータル10倍)にて延伸を行った。予熱温度/延伸温度/熱固定温度=119℃/116℃/110℃でTD方向に延伸倍率11倍まで延伸後、熱固定過程で10倍へ幅を変更する条件にて、テンターによって延伸を行った。
 このとき、最大の延伸速度偏差を2%とした。延伸されたゲル状シートは25℃の塩化メチレン槽に浸漬された後、25℃の送風にて乾燥した。乾燥したポリオレフィン微多孔膜は125℃にて40秒、熱固定処理を行い、最終的なポリオレフィン微多孔膜が形成された。
〔実施例2〕
 重量平均分子量1.69×10、分子量分布5.6、融点が133℃の超高分子量ポリエチレン100質量部に、酸化防止剤としてテトラキス[メチレン-3-(3,5-ジターシャリーブチル-4-ヒドロキシフェニル)-プロピオネート]メタン0.375質量部をドライブレンドし、ポリエチレン組成物を作製した。
 得られたポリエチレン組成物23質量部を二軸押出機に投入した。さらに、流動パラフィン77質量部を二軸押出機のサイドフィーダーから供給し、溶融混練して、押出機中にてポリエチレン樹脂溶液を調製した。
 続いて、この押出機の先端に設置されたダイから210℃でポリエチレン樹脂溶液を押し出し、内部冷却水温度を25℃に保った冷却ロールで引き取りながら未延伸ゲル状シートを成形した。冷却された押出物はまず、MD方向にロールによる延伸がなされた。予熱温度/延伸温度/熱固定温度=116℃/113℃/50℃、三段階(1.9倍/2.3倍/2.3倍、トータル10倍)にて延伸を行った。予熱温度/延伸温度/熱固定温度=115℃/117℃/110℃でTD方向に延伸倍率11.5倍まで拡張し、その後、熱固定過程にて10倍まで変更した条件にて、テンターによって延伸を行った。
 このとき、最大の延伸速度偏差を2%とした。延伸されたゲル状シートは25℃の塩化メチレン槽に浸漬された後、25℃の送風にて乾燥した。乾燥したポリオレフィン微多孔膜は125℃にて40秒、熱固定処理を行い、最終的なポリオレフィン微多孔膜が形成された。
〔実施例3〕
 重量平均分子量1.69×10、分子量分布5.6、融点が133℃の超高分子量ポリエチレン100質量部に、酸化防止剤としてテトラキス[メチレン-3-(3,5-ジターシャリーブチル-4-ヒドロキシフェニル)-プロピオネート]メタン0.375質量部をドライブレンドし、ポリエチレン組成物を作製した。
 得られたポリエチレン組成物20質量部を二軸押出機に投入した。さらに、流動パラフィン80質量部を二軸押出機のサイドフィーダーから供給し、溶融混練して、押出機中にてポリエチレン樹脂溶液を調製した。
 続いて、この押出機の先端に設置されたダイから210℃でポリエチレン樹脂溶液を押し出し、内部冷却水温度を25℃に保った冷却ロールで引き取りながら未延伸ゲル状シートを成形した。冷却された押出物はまず、MD方向にロールによる延伸がなされた。予熱温度/延伸温度/熱固定温度=114℃/116℃/70℃、三段階(1.3倍/1.55倍/4.0倍、トータル8倍)にて延伸を行った。予熱温度/延伸温度/熱固定温度=116℃/116℃/119℃でTD方向に延伸倍率9.0倍まで拡張し、その後、熱固定過程にて8倍まで変更した条件にて、テンターによって延伸を行った。
 このとき、最大の延伸速度偏差を2%とした。延伸されたゲル状シートは25℃の塩化メチレン槽に浸漬された後、25℃の送風にて乾燥した。乾燥したポリオレフィン微多孔膜は125℃にて40秒、熱固定処理を行い、最終的なポリオレフィン微多孔膜が形成された。
〔実施例4〕
 重量平均分子量1.69×10、分子量分布5.6、融点が133℃の超高分子量ポリエチレン100質量部に、酸化防止剤としてテトラキス[メチレン-3-(3,5-ジターシャリーブチル-4-ヒドロキシフェニル)-プロピオネート]メタン0.375質量部をドライブレンドし、ポリエチレン組成物を作製した。
 得られたポリエチレン組成物20質量部を二軸押出機に投入した。さらに、流動パラフィン80質量部を二軸押出機のサイドフィーダーから供給し、溶融混練して、押出機中にてポリエチレン樹脂溶液を調製した。
 続いて、この押出機の先端に設置されたダイから210℃でポリエチレン樹脂溶液を押し出し、内部冷却水温度を25℃に保った冷却ロールで引き取りながら未延伸ゲル状シートを成形した。冷却されたゲル状シートは予熱温度/延伸温度/熱固定温度=114℃/114℃/112℃、ひずみ速度1000mm/分にて、MD方向に10倍、TD方向に11倍まで延伸し、TD方向のみ10倍まで倍率を戻す同時二軸延伸を行った。
 延伸されたゲル状シートは25℃の塩化メチレン槽に浸漬された後、25℃の送風にて乾燥した。乾燥したポリオレフィン微多孔膜は124℃にて、熱固定処理を40秒、行い、最終的なポリオレフィン微多孔膜が形成された。
〔実施例5、6〕
 実施例1~3と同じような手順にて、条件を表2に記載の条件に変更して行った。
〔比較例1、2、3〕
 樹脂組成、延伸条件などを表2に記載されている条件に変更し、実施例1、4に記載の方法に準じてポリオレフィン微多孔膜を得た。
 なお、用いたポリエチレン樹脂の重量平均分子量、分子量分布、融点は以下のようにして測定した。
(重量平均分子量、分子量分布測定)
 用いたポリエチレン樹脂の重量平均分子量及び分子量分布は以下の条件でゲルパーミエーションクロマトグラフィー(GPC)法により求めた。
 ・測定装置:Agilent社製高温GPC装置PL-GPC220
 ・カラム:Agilent製PL1110-6200(20μm MIXED-A)×2本
 ・カラム温度:160℃
 ・溶媒(移動相):1,2,4-トリクロロベンゼン
 ・溶媒流速:1.0mL/分
 ・試料濃度:0.1wt%(溶解条件:160℃/3.5H)
 ・インジェクション量:500μL
 ・検出器:Agilent社製示差屈折率検出器(RI検出器)
 ・粘度計:Agilent社製粘度検出器
 ・検量線:単分散ポリスチレン標準試料を用いたユニバーサル検量線法にて作成した。
(融点)
 ポリエチレン樹脂を測定パンに封入し、PARKING ELMER製 PYRIS DIAMOND DSCを用いて、230℃まで昇温して完全に溶融させたのち、230℃で3分間保持し、10℃/分で30℃まで降温させた。
 具体的には、30℃から230℃まで10℃/分で昇温させ、230℃で3分間保持し、10℃/分で30℃まで降温させた。これを1回目の昇温として、同じ測定を更に2度繰り返して、昇温時の吸熱ピークより融点を求めた。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
 なお、表1、2中、f1は分子量が233万以上の成分量(質量%)を意味する。
 また、表1、2中、MDOはMD方向における逐次延伸を意味し、TDOはTD方向における逐次延伸を意味し、TDDOはTD方向における乾式延伸を意味する。
[物性]
 上記で得られたポリオレフィン微多孔膜の物性は以下の方法により測定した。結果を表3に示す。
〔膜厚(μm)〕
 ポリオレフィン微多孔膜の95mm×95mmの範囲内における5点の膜厚を接触厚み計(株式会社ミツトヨ製ライトマチック)により測定し、膜厚の平均値を求めた。
〔透気度(sec/100cm)〕
 透気度(ガーレー値)は、JIS P 8117:2009に準拠して測定した。
 なお、本発明の実施形態において、透気度を測定する際に用いる気体は空気である。
〔空孔率(%)〕
 空孔率はポリオレフィン微多孔膜の質量w1と、ポリオレフィン微多孔膜と同じポリオレフィン組成物からなる同サイズの空孔のない膜の質量w2から、空孔率(%)=(w2-w1)/w2×100により算出した。
〔突刺強度(N)及び膜厚10μm換算突刺強度(N/10μm)〕
 突刺強度は、直径1mm(先端は0.5mmR)の針を用い、速度2mm/secでポリオレフィン微多孔膜を突刺したときの最大荷重値(P1)を測定した。
 膜厚10μm換算突刺強度(P2)は膜厚T1(μm)において、P2=(P1×10)/T1により換算し求めた。
〔引張強度(MPa)及び高速引張強度(MPa)〕
 幅10mmの短冊状試験片を用いて、引張強度は、変形速度100mm/分にて、高速引張強度は、変形速度500mm/分にてASTM D882により測定した。
〔引張伸度(%)及び高速引張伸度(%)〕
 幅10mmの短冊状試験片をポリオレフィン微多孔膜の幅方向の中心部分より3点取り、各々について引張伸度は、変形速度100mm/分にて、高速引張伸度は変形速度500mm/分にてASTM D882により測定した測定結果の平均値を算出することにより求めた。
〔タフネス(MPa%)、高速タフネス(MPa%)〕
 タフネスを上記(式5)、高速タフネスを上記(式5)’より算出した。
〔最大孔径及び平均孔径(nm)〕
 パームポロメータ(PMI社製、CFP-1500A)を用いて、Dry-up、Wet-upの順で、最大孔径及び平均孔径を測定した。
 Wet-upには表面張力が既知のPMI社製Galwick(商品名)で十分に浸したポリオレフィン微多孔膜に圧力をかけ、空気が貫通し始める圧力から換算される孔径を最大孔径とした。
 平均孔径については、Dry-up測定で圧力、流量曲線の1/2の傾きを示す曲線と、Wet-up測定の曲線が交わる点の圧力から孔径を換算した。圧力と孔径の換算は下記の(式12)を用いた。
  d=C・γ/P・・・(式12)
(上記式中、「d(μm)」はポリオレフィン微多孔膜の孔径、「γ(mN/m)」は液体の表面張力、「P(Pa)」は圧力、「C」は定数とした。
〔SEM表面平均孔数(個/μm)〕
 SEM表面平均孔数(SEM表面孔数)は、以下の式(10)より算出することができる。
 蒸着したポリオレフィン微多孔膜を示差走査型電子顕微鏡(SEM)にて加速電圧2kVで観察した。撮影したSEM画像を二値化処理することで、空孔を抽出し、単位面積当たりの表面孔数、表面開口率、表面孔径を算出した。二値化処理は加速電圧2kV、倍率10000倍、11.7μm×9.4μm(1280画素×1024画素)、8bit(256階調)グレースケールの画像を用いて実施した。画像処理方法としては、上記SEM画像に対して、3画素×3画素平均にてノイズ除去を行った後に、21画素×21画素平均した画像から-30階調をしきい値として動的二値化処理をすることで、暗部を抽出し、二値化処理を行った。独立した暗部が1μmあたりに存在する数からSEM表面平均孔数(SEM表面孔数)を算出した。さらに、1μmあたりに存在する独立した孔の合計面積から、下式に基づき、SEM表面平均孔径を算出した。
 SEM表面平均孔径=(独立した孔の合計面積/表面孔数/3.14)0.5×2・・・(式10)
〔光学特性評価〕
(角度依存性評価)
 株式会社日立ハイテクノロジーズ製U-4100を用いて評価した。なお、角度を変えて分光光度を測定できればいかなる機種を用いても構わない。分光光度はJIS K0115:2004に規定された方法に従って測定した。具体的には下記の条件にて行った。
 測定波長域:400nm-1500nm
 スキャン速度:750nm/分
 角度:20°、40°、60°(法線方向に対する)
 観察反射波長:P波、S波
 500nm及び800nmにおけるP波、S波の反射率をそれぞれ計測した。
 なお、ポリオレフィン微多孔膜は、TD寸法が電池内に格納されるときの幅と同じ寸法となるように事前にスリットされた捲回体から巻き出され、その後必要な電池捲回物あるいはスタック量となるところで切断される。従って、電池から微多孔膜を取り出すと、方形の形状となっており、その四辺のうち2辺が元の微多孔膜捲回体における微多孔膜の長手方向(MD)と平行になり、残り2辺が長手方向に垂直な方向(TD)と平行となる。散乱測定においては、MD若しくはTDに平行な方向から光を照射して測定を行った。
 また、ポリオレフィン微多孔膜の光学特性とSEM表面孔数との関係について評価した。各ポリオレフィン微多孔膜が、以下の(式1)~(式4)をそれぞれ満たす場合は「可」、満たさない場合は「不可」とした。結果を表3に示す。
 SEM表面孔数≧366×S(800/500)-380・・・・・・(式1)
 SEM表面孔数≧-88×P(800/500)+157・・・・・・(式2)
 SEM表面孔数≧58.7×P(800/500)+21.3・・・・・・(式3)
 SEM表面孔数≧150×R(800)/R(500)-97・・・・・・(式4)
(明度(L)、ホワイトインデックス(WI))
 明度、ホワイトインデックスは分光測色計にて測定を行った。明度は光源としてD65を用い、SCI(正反射光を含む)で測定を実施した。明度はJIS Z8781-4:2013に、ホワイトインデックスは、ASTM E313-73に準拠して測定を行った。
(鏡面光沢度)
 60°鏡面光沢度はJIS Z8741:1997に準拠して測定を行った。スガ試験機株式会社製 デジタル変角光沢計 UGV-5Dを用いて、3回測定した平均値を用いて、60°鏡面光沢度とした。
〔キャストシート溶媒保持性〕
 溶融したポリエチレン-溶媒溶液が固化したキャストシートは、製膜ラインにおいて搬送時にMD方向に応力を受けるため、表面に溶媒が滲出することで搬送性に課題が生じる場合がある。キャストシートの溶媒保持性を評価する手法として、キャストシート1mm厚み、10cm×10cmの大きさに切り抜き、表面に浮き出たLPを拭い取り、室温にてキャストシート質量を測定した。仕込みのキャストシート質量から測定したキャストシート質量を差し引いた分を流出LP量(g)とした。下記式で求められる、仕込みのキャストシート単位質量あたりの流出LP量の割合が10%以上なら「標準以下」、5%以上10%未満の場合には「標準」、5%未満ならば「良」とした。結果を表3に示す。
 キャストシート溶媒保持性(%)={(仕込みのキャストシート質量)-(室温下でLPを拭い取ったキャストシート質量)}/(仕込みのキャストシート質量)×100
〔電池評価〕
 ポリオレフィン微多孔膜のレート特性を評価するために、正極、負極、セパレータ及び電解質からなる非水電解液二次電池にセパレータとして組み込んで、充放電試験を行った。
 幅38mm×長さ33mm×厚さ20μmのアルミニウム箔上に目付け9.5mg/cmにてNMC532を積層したカソード、及び、幅40mm×長さ35mm×厚さ10μmの銅箔上に密度1.45g/cmの天然黒鉛を単位面積質量5.5mg/cmで積層したアノードを用いた。正極及び負極は120℃の真空オーブンで乾燥して使用した。セパレータは、長さ50mm、幅50mmのポリオレフィン微多孔膜を室温の真空オーブンで乾燥して使用した。電解液はエチレンカーボネート、エチルメチルカーボネート、ジメチルカーボネートの混合物(体積比:30/35/35)中に、ビニレンカーボネート(VC)0.5質量%、LiPFを1mol/L溶解させて調製した。
 正極、セパレータ及び負極を積み重ね、得られた積層体をラミネートパウチ内に配置した。ラミネートパウチ内に電解液を注液し、当該ラミネートパウチを真空シールすることにより、非水電解液二次電池を作製した。
 作製した非水電解液二次電池を初回充電として、温度35℃、0.1Cにて10~15%充電し、35℃にて1晩(12時間以上)放置し、ガス抜きを実施した。次に、温度35℃、電圧範囲2.75~4.2V、充電電流値0.1Cの定電流-定電圧(CC-CV)充電(終止電流条件0.02C)、放電電流値0.1Cの定電流(CC)放電を実施した。
 次に、温度35℃、電圧範囲2.75~4.2V、充電電流値0.2CのCC-CV充電(終止電流条件0.05C)、放電電流値0.2CのCC放電を3サイクル行った時点を非水電解液二次電池の初期とした。
 次に、温度35℃、電圧範囲2.75~4.2V、充電電流値0.2CのCC-CV充電(終止電流条件0.05C)、放電電流値0.2CのCC放電をして、その時の放電容量を0.2C容量とした。
 次に、温度35℃、電圧範囲2.75~4.2V、充電電流値0.5CでCC-CV充電(終止電流条件0.05C)した後に、以下の温度で放電速度を変えて、非水電解液二次電池のレート試験を行った。温度は15℃にてそれぞれ行った。放電速度は1C(18mA、1.44mA/cm)から20Cの間で各温度において3水準以上選び、評価を行った。
 評価結果を表3に12Cにおける容量維持率(%)として示す。
 これらの結果より、一定の光学特性を有するポリオレフィン微多孔膜は高速充放電時の電池特性に優れ、高速変形時の耐衝撃性に優れることが明らかとなった。
 比較例にも示したように、ある態様においては、微多孔膜の孔構造が制御できていないため、表面構造にて粗大な構造が支配的(S(800_60°)/S(500_60°)が1.2以上)となる場合や、微多孔膜全体の構造が粗大な孔構造がやや多い傾向(P(800_20°)/P(500_20°)が1.15以上)となる場合も見られた。また表面よりもやや内部に位置する領域(40°反射領域)において、ポリオレフィン微多孔膜全体に対して、粗大な孔構造(800nm散乱成分)が緻密な孔構造(500nm散乱成分)よりも多く存在する場合(R(800)/R(500)が1.2以上)が見られた。これらにおいては、高速変形時の耐衝撃性や電池に用いた場合に、高速充放電時における容量維持率や、微多孔膜の生産性において改善の余地が見られた。
 以上の結果を記載した表3に基づいて分かるように、実施例のポリオレフィン微多孔膜は、微多孔膜中の孔構造を精密に制御することができ、結果、高速変形時の耐衝撃性に優れ、平均孔数も多く、高いイオン透過性を同時に満たした。
 このような構造を取ることにより、急速充放電に対応しうる高出力用途、高速変形時の耐衝撃性が著しく改善したポリオレフィン微多孔膜を見出すことができた。
 本発明を詳細にまた特定の実施形態を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2019年9月30日出願の日本特許出願(特願2019-180239)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (10)

  1.  波長800nmの光を入射角60°で表面に入射させたときの、反射光のS波の反射率S(800_60°)と、波長500nmの光を入射角60°で表面に入射させたときの、反射光のS波の反射率S(500_60°)との比率S(800_60°)/S(500_60°)と、
     走査型電子顕微鏡での観察により測定される表面孔数(SEM表面孔数)と、が少なくとも一つの表面において、下記(式1)を満たす、ポリオレフィン微多孔膜。
     SEM表面孔数≧366×S(800/500)-380・・・・・・(式1)
     このとき、S(800/500)=S(800_60°)/S(500_60°)である。
  2.  波長800nmの光を入射角20°で表面に入射させたときの、反射光のP波の反射率P(800_20°)と、波長500nmの光を入射角20°で表面に入射させたときの、反射光のP波の反射率P(500_20°)との比率P(800_20°)/P(500_20°)と、
     走査型電子顕微鏡での観察により測定される表面孔数(SEM表面孔数)と、が少なくとも一つの表面において、下記(式2)を満たす、ポリオレフィン微多孔膜。
     SEM表面孔数≧-88×P(800/500)+157・・・・・・(式2)
     このとき、P(800/500)=P(800_20°)/P(500_20°)である。
  3.  前記P(800/500)と、
     前記SEM表面孔数と、が前記少なくとも一つの表面において下記(式3)を満たす、請求項2に記載のポリオレフィン微多孔膜。
     SEM表面孔数≧58.7×P(800/500)+21.3・・・・・・(式3)
  4.  波長800nmの光を入射角40°で表面に入射させたときの、反射光のS波の反射率S(800_40°)と、同波長の光を入射角20°で表面に入射させたときの、反射光のS波の反射率S(800_20°)との比率S(800_40°)/S(800_20°)をR(800)とし、
     波長500nmの光を入射角40°で表面に入射させたときの、反射光のS波の反射率S(500_40°)と、同波長の光を入射角20°で表面に入射させたときの、反射光のS波の反射率S(500_20°)との比率S(500_40°)/S(500_20°)をR(500)としたとき、
     R(800)とR(500)との比率R(800)/R(500)と、前記SEM表面孔数と、が前記少なくとも一つの表面において下記(式4)を満たす、請求項1~3のいずれか一項に記載のポリオレフィン微多孔膜。
     SEM表面孔数≧150×R(800)/R(500)-97・・・・・・(式4)
  5.  前記少なくとも一つの表面において、前記SEM表面孔数が80個/μm以上である、請求項1~4のいずれか一項に記載のポリオレフィン微多孔膜。
  6.  10μm換算突刺強度が3.5N以上である、請求項1~5のいずれか一項に記載のポリオレフィン微多孔膜。
  7.  平均孔径が30nm以下である、請求項1~6のいずれか一項に記載のポリオレフィン微多孔膜。
  8.  前記ポリオレフィン微多孔膜が含有するポリオレフィン樹脂がポリエチレン系樹脂を含む、請求項1~7のいずれか一項に記載のポリオレフィン微多孔膜。
  9.  請求項1~8のいずれか一項に記載のポリオレフィン微多孔膜を具備する電池用セパレータ。
  10.  請求項9に記載の電池用セパレータを用いた二次電池。
PCT/JP2020/035606 2019-09-30 2020-09-18 ポリオレフィン微多孔膜、電池用セパレータ及び二次電池 WO2021065585A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020551444A JPWO2021065585A1 (ja) 2019-09-30 2020-09-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-180239 2019-09-30
JP2019180239 2019-09-30

Publications (1)

Publication Number Publication Date
WO2021065585A1 true WO2021065585A1 (ja) 2021-04-08

Family

ID=75336445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035606 WO2021065585A1 (ja) 2019-09-30 2020-09-18 ポリオレフィン微多孔膜、電池用セパレータ及び二次電池

Country Status (2)

Country Link
JP (1) JPWO2021065585A1 (ja)
WO (1) WO2021065585A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043335A1 (ja) * 2016-08-29 2018-03-08 東レ株式会社 微多孔膜、リチウムイオン二次電池及び微多孔膜製造方法
WO2018180714A1 (ja) * 2017-03-31 2018-10-04 東レ株式会社 ポリオレフィン微多孔膜、非水電解液系二次電池用セパレータ、及び非水電解液系二次電池
WO2018180713A1 (ja) * 2017-03-30 2018-10-04 東レ株式会社 ポリオレフィン微多孔膜およびそれを用いた電池
WO2019151220A1 (ja) * 2018-02-01 2019-08-08 東レ株式会社 ポリオレフィン微多孔膜、コーティングフィルム及び電池、並びにポリオレフィン微多孔膜の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043335A1 (ja) * 2016-08-29 2018-03-08 東レ株式会社 微多孔膜、リチウムイオン二次電池及び微多孔膜製造方法
WO2018180713A1 (ja) * 2017-03-30 2018-10-04 東レ株式会社 ポリオレフィン微多孔膜およびそれを用いた電池
WO2018180714A1 (ja) * 2017-03-31 2018-10-04 東レ株式会社 ポリオレフィン微多孔膜、非水電解液系二次電池用セパレータ、及び非水電解液系二次電池
WO2019151220A1 (ja) * 2018-02-01 2019-08-08 東レ株式会社 ポリオレフィン微多孔膜、コーティングフィルム及び電池、並びにポリオレフィン微多孔膜の製造方法

Also Published As

Publication number Publication date
JPWO2021065585A1 (ja) 2021-04-08

Similar Documents

Publication Publication Date Title
TWI405671B (zh) 聚乙烯多層微多孔膜及其製法與電池用隔離材
JP5202949B2 (ja) ポリオレフィン多層微多孔膜及び電池用セパレータ
JP5548290B2 (ja) 多層微多孔膜、電池用セパレータ及び電池
TWI388598B (zh) 聚乙烯微多孔膜之製法及電池用隔離材
TWI423498B (zh) 微多孔膜、電池隔離材及電池
JP5312450B2 (ja) ポリオレフィン多層微多孔膜、その製造方法、電池用セパレータ及び電池
JP4902455B2 (ja) ポリオレフィン多層微多孔膜、その製造方法、電池用セパレータ及び電池
US8778525B2 (en) Multi-layer, microporous polyethylene membrane, battery separator formed thereby and battery
JP5202826B2 (ja) ポリエチレン微多孔膜及びその製造方法並びに電池用セパレータ
JP5596768B2 (ja) ポリエチレン微多孔膜及び電池用セパレータ
JP5450929B2 (ja) ポリオレフィン多層微多孔膜、その製造方法、電池用セパレータ及び電池
KR102386487B1 (ko) 미다공막, 리튬 이온 2차 전지, 및 미다공막 제조 방법
WO2007117006A1 (ja) ポリオレフィン多層微多孔膜、その製造方法、電池用セパレータ及び電池
KR20100082830A (ko) 폴리올레핀 미세 다공막, 그 제조 방법, 전지용 세퍼레이터 및 전지
KR102231395B1 (ko) 전지용 세퍼레이터, 전극체 및 비수 전해질 이차전지
JP7047382B2 (ja) ポリオレフィン微多孔膜、リチウムイオン二次電池及びポリオレフィン微多孔膜製造方法
KR20180132630A (ko) 폴리올레핀 미다공막 및 그 제조 방법, 전지용 세퍼레이터, 및 전지
JP2015208894A (ja) ポリオレフィン製積層微多孔膜
EP3950789A1 (en) Microporous polyolefin film, separator for battery, and secondary battery
WO2021065585A1 (ja) ポリオレフィン微多孔膜、電池用セパレータ及び二次電池
CN114516982A (zh) 聚烯烃微多孔膜、电池用隔膜及二次电池
JP2020164858A (ja) ポリオレフィン製微多孔膜、電池用セパレータ、及び二次電池
JP2023050126A (ja) ポリオレフィン微多孔膜、積層体、及び非水電解液二次電池
KR20220051331A (ko) 폴리올레핀 미다공막, 전지용 세퍼레이터, 및 이차전지

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020551444

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20872038

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20872038

Country of ref document: EP

Kind code of ref document: A1