WO2020137336A1 - ポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法 - Google Patents

ポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法 Download PDF

Info

Publication number
WO2020137336A1
WO2020137336A1 PCT/JP2019/046551 JP2019046551W WO2020137336A1 WO 2020137336 A1 WO2020137336 A1 WO 2020137336A1 JP 2019046551 W JP2019046551 W JP 2019046551W WO 2020137336 A1 WO2020137336 A1 WO 2020137336A1
Authority
WO
WIPO (PCT)
Prior art keywords
microporous membrane
less
polyolefin
film
battery
Prior art date
Application number
PCT/JP2019/046551
Other languages
English (en)
French (fr)
Inventor
陳燕仔
金田敏彦
竹田健人
大友崇裕
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2020506288A priority Critical patent/JP7409301B2/ja
Priority to CN201980046976.3A priority patent/CN112424271A/zh
Publication of WO2020137336A1 publication Critical patent/WO2020137336A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/20Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a polyolefin microporous membrane and a method for producing the polyolefin microporous membrane.
  • Microporous membranes are used in various fields such as filters such as filtration membranes and dialysis membranes, separators for batteries and separators for electrolytic capacitors.
  • the microporous film made of polyolefin is excellent in chemical resistance, insulating property, mechanical strength and the like, and has a shutdown property, and therefore it is widely used as a separator for secondary batteries.
  • the separator When an external short circuit occurs in a battery, a large current may momentarily flow, generating heat and generating gas. Therefore, the separator is required to have a shutdown characteristic that the holes are closed when abnormal heat is generated and the battery reaction is blocked.
  • the secondary battery is subject to impact such as dropping or compression when used, and there is a risk that the battery will short circuit due to contact between the electrodes due to electrode deformation. A tensile elongation that is sufficient to follow
  • secondary batteries are required to have cycle characteristics that maintain the same level of capacity as when the batteries were initially used, even if the batteries were repeatedly charged and discharged many times. Therefore, the separator is required to have a high porosity.
  • Example 2 of Patent Document 2 two-stage simultaneous biaxial stretching is performed using a raw sheet from which a plasticizer has been extracted and removed, and a film thickness of 2.7 ⁇ m, air permeability resistance of 315 seconds/100 ml, porosity of 16 % And elongation of 36% are disclosed.
  • Example 6 of Patent Document 3 Mw of 5.6 ⁇ 10 5 high-density polyethylene and Mw of 1.6 ⁇ 10 6 polypropylene 50% by mass were used as raw materials for the intermediate layer of the three-layer separator. After performing wet stretching at 113° C. and then re-stretching TD 1.6 times at a temperature of 124° C., a multilayer separator having a film thickness of 6 ⁇ m and an air permeability resistance of 470 seconds/sec can be obtained. It is disclosed.
  • Example 1 60 wt% of a first polyethylene resin having a Mw of 7.5 ⁇ 10 5 and 40 wt% of a second polyethylene resin having a Mw of 1.9 ⁇ 10 6 are used as a three-layer separator. After being wet-stretched at 112.5° C. as a raw material for the intermediate layer, and then re-stretched 1.2 times at TD at a temperature of 122° C., the film thickness is 20 ⁇ m and the air resistance is 280. It is disclosed that a multilayer separator having a second/sec, a porosity of 49% and an elongation of 150% can be obtained.
  • JP, 2006-32246, A Japanese Patent Laid-Open No. 11-60790 International publication 2015/182689 Japanese Patent Publication No. 2013-517152
  • Secondary batteries such as lithium-ion secondary batteries, are widely used as batteries for personal computers, mobile phones, etc. because of their high energy density. Further, the secondary battery is expected as a power source for driving a motor of electric vehicles and hybrid vehicles.
  • the thinner the thickness of the separator the smaller the amount of resin that is formed, so that the shutdown function is less likely to occur as compared with a separator having a large thickness.
  • the porosity is a physical property that requires a design change according to the ease with which ions pass and the required properties regarding dendrites.
  • the thinner the film the weaker the strength of the film itself, and the more difficult it is to use it as a self-supporting film. Therefore, the range of adjustment for achieving high porosity is limited. Therefore, the thinner the separator, the more difficult it is to achieve both the shutdown function and the porosity.
  • thinning and high porosity are adjusted by increasing the stretching ratio, but the tensile elongation of the obtained separator becomes small because the crystallization of the polyolefin resin proceeds due to the high stretching.
  • Patent Documents 1 to 4 do not refer to the thin film separator having an excellent shutdown function and a good balance between tensile elongation and porosity.
  • An object of the present invention is to provide a polyolefin microporous film excellent in the balance of shutdown characteristics, cycle characteristics and impact resistance by having a specific air permeability resistance, porosity and tensile elongation even though it is a thin film of less than 6 ⁇ m. And a method for manufacturing the same.
  • the temperature at which shutdown is performed is evaluated, and it is said that it is preferable to stop the current flow at the earliest possible stage (low temperature).
  • the present inventors cannot sufficiently exhibit the function only by lowering the shutdown temperature, and in the thin film separator, by setting the air permeation resistance to a certain constant range, the temperature rising rate of the battery is moderate. It was found that a sufficient shutdown function can be expressed by (1) Permeation resistance is 300 seconds/100 cm 3 or more and 500 seconds/100 cm 3 or less, porosity is 18% or more and 30% or less, tensile elongation in the width direction is 105% or more, and film thickness is less than 6 ⁇ m. Microporous polyolefin membrane.
  • the polyolefin microporous membrane according to (1) which contains 50% by mass or more of long-chain branched polyethylene having a molecular weight distribution of 10 or more and 20 or less.
  • the polyolefin microporous membrane according to (1) or (2) which has a tensile strength in the machine direction of 230 MPa or more.
  • the polyolefin microporous membrane according to (1) to (3) which has a tensile elongation in the width direction of 150% or more.
  • a step of extracting a plasticizer from the gel-like sheet after the wet stretching and drying A method for producing a microporous polyolefin membrane, comprising: (8) The method for producing a polyolefin microporous membrane according to (7), which has a step of second heat setting at a surface magnification of 1.0 times at 130° C. or lower after the drying step.
  • the present invention it is possible to provide a polyolefin microporous membrane having a specific air permeability resistance, porosity and tensile elongation, which has a shutdown function promptly, even though it is a thin film of less than 6 ⁇ m.
  • the polyolefin microporous membrane of the present invention is capable of imparting rapid shutdown performance, cycle characteristics and excellent balance characteristics of impact resistance to a battery using the same, and is a thin film suitable for increasing the capacity of the battery. And is a film capable of ensuring high safety.
  • Example 1 and Comparative Example 5 The curve of the air permeation resistance with respect to temperature and the linear approximation line in the microporous membranes obtained in Example 1 and Comparative Example 5 are shown.
  • the curve of the air permeation resistance with respect to temperature and the linear approximation line in the microporous membranes obtained in Example 2 and Comparative Examples 1 and 6 are shown.
  • the curve of the air permeation resistance with respect to temperature and the linear approximation line in the microporous membranes obtained in Example 3 and Comparative Example 3 are shown.
  • the curve of the air permeation resistance with respect to temperature and the linear approximation line in the microporous membranes obtained in Example 4 and Comparative Examples 2 and 4 are shown.
  • 5 is a characteristic diagram showing a DSC curve obtained in Example 1.
  • FIG. 7 is a characteristic diagram showing a DSC curve obtained in Comparative Example 1.
  • the microporous membrane of the present invention has an air permeability resistance of 300 seconds/100 cm 3 or more and 500 seconds/100 cm 3 or less, a porosity of 18% or more and 30% or less, and a tensile elongation in the width direction of 105%.
  • the polyolefin microporous film has a thickness of less than 6 ⁇ m.
  • the present invention can be obtained by using the raw materials described below and adjusting the stretching so that the melting endotherm of the microporous film obtained by DSC measurement is easily melted and the film strength is not significantly reduced.
  • the lower limit of the air permeation resistance of the microporous membrane of less than 6 ⁇ m is 300 seconds/100 cm 3 or more, and the upper limit thereof is 500 seconds/100 cm 3 or less. If the air permeation resistance of the microporous membrane is below the lower limit, the shutdown function will be impaired. Further, if the air permeation resistance of the microporous membrane exceeds the upper limit, it becomes difficult for ions to move back and forth between the electrodes, which leads to an increase in impedance and a decrease in battery cycle characteristics and rate characteristics.
  • the lower limit of the air permeation resistance of the microporous membrane is preferably 350 seconds/100 cm 3 or more.
  • the upper limit is preferably 450 seconds/100 cm 3 or less, and more preferably 420 seconds/100 cm 3 or less.
  • the air permeation resistance can be adjusted to the above range by adjusting the melting endothermic amount of the microporous film obtained by the DSC measurement described later in a range that easily melts and does not significantly reduce the film strength.
  • the air permeation resistance of the thick film secondary battery separator obtained by converting the air permeation resistance of the microporous membrane of less than 6 ⁇ m into 10 ⁇ m or more is within a range that is said to be preferable from the viewpoint of maintaining output characteristics and cycle characteristics. Out of the upper limit. It is not preferable to use the present invention in a thick film separator because it makes it difficult for ions to move in the battery. Since the microporous film is a thin film, the battery safety can be improved without impairing the output characteristics of the battery, and the above range is effective.
  • the reason why the air permeation resistance is intentionally set in such a range is that it is difficult for air to pass through the microporous film in the film thickness direction, in other words, ions pass through the microporous film.
  • the flow path is long (the residence time is long) and the hole diameter is small.
  • the time required for ions to pass through the microporous film is set as long as possible, whereby the temperature rising rate of the battery can be suppressed when an external short circuit occurs. And even a thin film can exhibit a shutdown function before a melted film of the separator occurs due to the temperature rise of the battery.
  • the air permeation resistance of the microporous membrane can be obtained by converting the value measured by a method according to JIS P-8117 using an air permeability meter (EGO-1T manufactured by Asahi Seiko Co., Ltd.) to 6 ⁇ m. ..
  • the lower limit of the porosity of the microporous membrane is 18% or more and the upper limit thereof is 30% or less. If the porosity of the microporous membrane is less than 18%, the cycle characteristics will deteriorate. Moreover, when the porosity of the microporous membrane exceeds 30%, the shutdown function is deteriorated.
  • a long-chain branched polyethylene having a long branched chain is used as a raw material for the microporous membrane, and even if the low molecular weight component in this long-chain branched polyethylene is inside the microporous membrane after production. I make it easy to move.
  • the long-chain branched polyethylene contributes to pore formation and melting behavior by adjusting the melting endotherm of the microporous film obtained by the DSC measurement described below to a range that facilitates melting and does not significantly reduce the film strength. Therefore, a large number of small pores are formed by the long-chain branched polyethylene, and as a result, a high porosity is achieved. Therefore, it is possible to obtain a thin film in which ions can sufficiently pass through the microporous film and which has excellent cycle characteristics, but also has a quick shutdown function.
  • the porosity can be calculated from the film thickness, area, mass, and density of the microporous film (for example, in the case of polyethylene only, it is 0.99 g/cm 3 ).
  • the film thickness, area, and mass of the microporous film were measured, and the porosity was calculated by the following formula.
  • Porosity (%) 1-mass/(film thickness x area x density)
  • the density of the polyolefin microporous film can be determined by a method based on K7112:1999.
  • the lower limit of the tensile elongation in the width direction (TD) of the microporous film is 105% or more. If the TD tensile elongation of the microporous film is less than the lower limit, the safety such as impact resistance will decrease.
  • the lower limit of the TD tensile elongation of the microporous film is preferably 150% or more, more preferably 180% or more.
  • the upper limit of the TD tensile elongation of the microporous film is preferably 300% or less, and more preferably 200% or less.
  • the microporous film When the battery is impacted by being dropped or compressed, the microporous film needs to stretch well in TD in order to follow the deformation of the electrode and suppress the short circuit of the battery. Is as described above.
  • the MD of the microporous membrane is the same as the winding direction of the battery, and the TD dimension of the microporous membrane corresponds to the widthwise dimension of the battery. Therefore, when a shock is applied to the battery, if the balance between strength and elongation (toughness) is adjusted so that the tensile elongation is high, so that the TD of the microporous membrane has a sufficient tensile elongation, the impact will be increased. Even if the electrode is deformed accordingly, the deformation can be followed by the microporous membrane, so that the electrode is not exposed at both ends of the battery in the width direction, and a short circuit is prevented.
  • the separator can follow the unevenness of the electrodes, the deformation of the battery, the generation of internal stress due to the heat generation of the battery, and the like.
  • the lower limit of the MD tensile elongation of the microporous membrane is preferably 50% or more, more preferably 100% or more, and further preferably 110% or more.
  • the upper limit of MD tensile elongation of the microporous membrane is preferably 200%, more preferably 150% or less, and further preferably 120% or less.
  • Tensile elongation can be measured at room temperature of 25°C using a strip-shaped microporous membrane with a chuck distance of 20 mm and a width of 10 mm, according to the method according to ASTM D-882A.
  • the upper limit of the film thickness of the microporous film is less than 6 ⁇ m. If it exceeds the upper limit, the energy density per unit volume of the battery incorporated will decrease.
  • the upper limit of the film thickness of the microporous film is preferably 5 ⁇ m or less, and the lower limit is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more.
  • the film thickness of the microporous film is within the above range, when the microporous film is used as a battery separator, the number of windings of the positive electrode, the negative electrode and the laminate composed of the separator can be increased inside the battery package. Battery capacity is improved. That is, the energy density per unit volume of the battery can be increased by using the thin film separator.
  • the film thickness of the microporous film can be measured by a contact thickness meter.
  • the lower limit of the tensile strength in the machine direction (MD) of the microporous membrane is preferably 230 MPa or more, more preferably 250 MPa or more.
  • the upper limit of the MD tensile strength of the microporous membrane is preferably 400 MPa or less, and more preferably 300 MPa or less.
  • a microporous membrane having excellent strength as described above when used as a separator, it is possible to suppress a short circuit during battery production or during battery use, and it is possible to wind the separator while applying high tension, resulting in a high battery capacity. Can be promoted. Further, when forming a coating layer on at least one surface of the thinned microporous membrane, higher MD tensile strength is required. Therefore, from the viewpoint of improving the coating property of the coating layer, when the MD tensile strength is in the above range, it can be suitably used as a base material for coating.
  • the lower limit of the TD tensile strength of the microporous membrane is preferably 100 MPa or more, more preferably 150 MPa or more.
  • the upper limit of the TD tensile strength of the microporous membrane is preferably 300 MPa or less.
  • the upper limit of the melting endotherm ( ⁇ H) of the microporous film is preferably 200 J/g or less, more preferably 190 J/g or less, and further preferably 180 J/g or less.
  • the melting endotherm ( ⁇ H) of the microporous membrane is the melting endotherm per unit weight of the microporous membrane when the area of the melting heat curve obtained by measurement with a differential scanning calorimeter is the melting absorption.
  • the amount of heat absorbed by the microporous membrane is in the above range, it means that softening or melting easily occurs even if the resin forming the microporous membrane absorbs a very small amount of heat. Therefore, the shutdown function is promptly generated, and the microporous film is easily stretched.
  • the long-chain branched polyethylene described below is used as a raw material, and the production conditions such as the stretching temperature and the stretching ratio are set so that the resin is not crystallized as much as possible. It is necessary.
  • the polyethylene contributes to the formation of fibrils, so that the tensile elongation in TD is ensured so that the polyethylene has resistance to impact.
  • the porosity it is possible to ensure the porosity until good cycle characteristics are obtained.
  • the resin may not flow to a level that closes the pores even if the resin softens and melts, and therefore the lower limit of the melting endotherm is 100 J/g or more.
  • the upper limit of the maximum pore size is preferably 50 nm or less, more preferably 40 nm or less, and further preferably 35 nm or less.
  • the lower limit of the maximum pore size is preferably 15 nm or more, more preferably 20 nm or more.
  • the upper limit of the average flow pore size is preferably 40 nm or less, more preferably 30 nm or less, and further preferably 25 nm or less.
  • the lower limit of the average flow pore size is preferably 10 nm or more, more preferably 15 nm or more, and further preferably 20 nm or more.
  • the reason for setting in this way is related to the shutdown function and air permeability resistance described above. That is, as described above, by setting the air permeability resistance to a high value, the shutdown function is easily expressed and the time until shutdown is sufficiently secured, but in the present invention, the pore size of the entire membrane is further increased.
  • the small hole diameter reduces the size of the hole to be closed at shutdown. Therefore, not only the flow path through which the ions pass through the microporous membrane due to the high air permeation resistance becomes thin, but also the maximum pore diameter and the average pore diameter in the entire microporous membrane are set to be small. Shutdown occurs even if the resin forming the microporous film is slightly softened or melted.
  • This pore size can also be adjusted to the above range by adjusting the melting endothermic amount of the microporous film obtained by the DSC measurement described later to a range that facilitates melting and does not significantly reduce the film strength. That is, the fact that the resin forming the microporous film is easy to move even at a temperature below the melting point means that the resin has not been stretched so much, and therefore small holes are formed.
  • the average flow pore diameter and the maximum pore diameter can be determined by the following method in which a Perm porometer (trade name, model: CFP-1500A) manufactured by PMI Co. is used to measure Dry-up and Wet-up in this order.
  • a Perm porometer (trade name, model: CFP-1500A) manufactured by PMI Co. is used to measure Dry-up and Wet-up in this order.
  • Dry-up pressure is applied to the polyolefin microporous membrane, and the air flow rate through the membrane is measured.
  • Wet-up pressure is applied to a polyolefin microporous membrane sufficiently immersed in Galwick (trade name), and the pore diameter converted from the pressure at which air begins to penetrate is maximized.
  • the average flow rate diameter can be converted from the pressure at the point where the curve obtained by the Dry-up measurement and the curve showing the half slope of the flow rate curve and the curve obtained by the Wet-up measurement intersect.
  • the following formula is used to convert the pressure and the pore size.
  • d C ⁇ /P (where, d ( ⁇ m) is the pore diameter of the microporous membrane, ⁇ (dynes/cm) is the surface tension of the liquid, P (Pa) is the pressure, and C is the pressure constant (2860). is there.) [Puncture strength]
  • the lower limit of the puncture strength of the microporous membrane is preferably 1.4 N or higher, more preferably 1.7 N or higher, and even more preferably 1.9 N or higher.
  • the upper limit of the puncture strength is preferably 3.8 N or less, more preferably 2.8 N or less, and even more preferably 2.4 N or less.
  • the puncture strength can be determined by, for example, adding ultra-high molecular weight polyethylene or adjusting the weight average molecular weight (Mw) or the stretching ratio of the polyolefin resin forming the microporous membrane when the microporous membrane is produced. It can be a range.
  • the heat shrinkage of MD after heating the microporous membrane at 105° C. for 8 hours is preferably 10% or less, more preferably 7% or less, and further preferably 5% or less.
  • the heat shrinkage rate of TD of the microporous membrane at 105° C. for 8 hours is preferably 10% or less, more preferably 8% or less, and further preferably 4% or less.
  • the lower limit of the MD heat shrinkage ratio and the lower limit of the TD heat shrinkage ratio are preferably 0.5% or more.
  • the heat shrinkage resistance of MD and the heat shrinkage ratio of TD are in the above ranges, the heat shrinkage resistance is excellent, and when the microporous membrane is used as a separator, expansion and shrinkage due to heat can be suppressed.
  • the characteristics relating to DSC described later contribute. That is, the small amount of heat absorption of the microporous film means that the microporous film is not subjected to such a large stretching stress, and when heat is applied, the heat is softening of the resin rather than shrinkage of the microporous film, Since it is easily consumed for melting, the heat shrinkage rate of the microporous film can be suppressed to be small.
  • the rate of increase of the air permeation resistance up to 120° C. is preferably 1.2 or more, more preferably 1.5 or more, and further preferably 1.8 or more.
  • Such an increase rate of air permeation resistance can be obtained by using the raw materials described below and adjusting the DSC characteristics.
  • FIG. 2 is a graph in which the characteristic example in FIG. 1 is extracted. In FIGS. 1 and 2, the linear expression of the approximate curve obtained in each example and its slope are shown on the right side of the legend.
  • the polyolefin microporous membrane refers to a microporous membrane containing polyolefin as a main component, and the “main component” is based on the total amount of the microporous membrane. That is, it contains 90% by mass or more of polyolefin.
  • the microporous membrane of this embodiment will be described below.
  • the microporous membrane contains a polyolefin resin as a main component.
  • Polyethylene can be used as the polyolefin resin.
  • 50% by mass or more of polyethylene can be contained with respect to the total amount of the microporous membrane.
  • polyethylene high density polyethylene (HDPE), medium density polyethylene, branched polyethylene, linear low density polyethylene, etc. are used.
  • the polyethylene may be a homopolymer of ethylene or a copolymer of ethylene and another ⁇ -olefin.
  • ⁇ -olefin examples include propylene, butene-1, hexene-1, pentene-1, 4-methylpentene-1, octene, vinyl acetate, methyl methacrylate and styrene.
  • the high-density polyethylene (density: 0.920 g/m 3 or more and 0.970 g/m 3 or less) is a long-chain branched polyethylene.
  • a long-chain branched polyethylene is a polyethylene in which a carbon chain serving as a main chain is branched, another carbon chain is extended as a branched chain, and another carbon chain is further extended from the branched chain.
  • the molecular weight (Mw) is, for example, about 1 ⁇ 10 4 or more and less than 1 ⁇ 10 6 .
  • the intrinsic viscosity (dl/g) of the long-chain branched polyethylene is 16, for example.
  • the lower limit of the molecular weight distribution (MwD) of long-chain branched polyethylene is 7 or more, preferably 10 or more.
  • the upper limit of the molecular weight distribution (MwD) of the long-chain branched polyethylene is 20 or less, preferably 15 or less.
  • a long-chain branched polyethylene containing a component of 1 ⁇ 10 4 or more and less than 1 ⁇ 10 5 and having a molecular weight distribution (MwD) in the above range quickly softens when exposed to a high temperature environment to the extent that the battery shuts down, While having the role of melting and closing the hole, it plays the role of forming the hole. That is, as will be described later, in the present invention, the low-molecular weight component is stretched at a low temperature at which it does not melt or is difficult to melt, and thus the low-molecular weight component is applied to fibrils formed by another resin.
  • MwD molecular weight distribution
  • the Mw is a value measured by gel permeation chromatography (GPC).
  • the content of the high-density polyethylene, which is long-chain branched polyethylene is preferably 50% by mass or more, more preferably 60% by mass or more, and 70% by mass or more with respect to 100% by mass of the entire polyolefin resin. More preferably, The upper limit of the content of the high-density polyethylene is preferably 100% by mass or less, and other components may be contained.
  • the microporous membrane may also include ultra high molecular weight polyethylene (UHMwPE).
  • UHMwPE ultra high molecular weight polyethylene
  • the ultrahigh molecular weight polyethylene used as a raw material has a weight average molecular weight (Mw) of 1 ⁇ 10 6 or more, preferably 1 ⁇ 10 6 or more and 8 ⁇ 10 6 or less. When the Mw is in the above range, the moldability becomes good.
  • the ultrahigh molecular weight polyethylenes may be used alone or in combination of two or more kinds, and two or more kinds of ultrahigh molecular weight polyethylenes having different Mw may be mixed and used.
  • Ultra-high molecular weight polyethylene can be contained in an amount of 0% by mass or more and 70% by mass or less based on 100% by mass of the entire polyolefin resin.
  • the content of the ultra high molecular weight polyethylene is 10% by mass or more and 60% by mass or less, the Mw of the obtained microporous membrane is easily controlled within a specific range, and the productivity such as extrusion kneadability tends to be excellent. is there.
  • the ultra high molecular weight polyethylene is contained, high mechanical strength can be obtained even when the microporous membrane is thinned.
  • melt-knead the polyolefin resin and the film-forming solvent to prepare a resin solution.
  • the melt-kneading method for example, the method using a twin-screw extruder described in the specifications of Japanese Patent No. 2132327 and Japanese Patent No. 3347835 can be used. Since the melt-kneading method is known, the description is omitted.
  • the resin solution may contain components other than the above-mentioned polyolefin resin and film-forming solvent, and may contain, for example, an antioxidant.
  • the molten resin is extruded and cooled to form a gel-like sheet.
  • the resin solution prepared above is fed from an extruder to one die and extruded into a sheet to obtain a formed body.
  • a gel-like sheet is formed by cooling the obtained molded body.
  • Cooling is preferably performed at a rate of 50° C./min or more up to at least the gelation temperature. Cooling is preferably performed to 25° C. or lower.
  • the micro phase of the polyolefin separated by the film-forming solvent can be fixed.
  • the gel-like sheet is stretched.
  • the stretching of the gel-like sheet is also called wet stretching.
  • the gel-like sheet is stretched by the simultaneous biaxial stretching method, for example, by a tenter method. Since the gel-like sheet contains the film-forming solvent, it is uniformly stretched.
  • the final area draw ratio (area magnification) in the wet drawing is 25 times or less.
  • the stretching ratio is 5 times or less in both the machine direction (MD) and the width direction (TD).
  • the draw ratio is an index of how large the gel-like sheet is made into a film.
  • it is the area of the obtained microporous membrane, and therefore leads to productivity.
  • the larger the stretched area ratio the larger the area of the obtained microporous membrane and the higher the productivity.
  • the stretching surface magnification is reduced to 25 times or less to reduce the area of the obtained microporous membrane and sacrifice the productivity, but the physical properties of the obtained microporous membrane, that is, The shutdown function and the hole diameter are set within the target range.
  • the upper limit of the wet drawing temperature is 120°C or lower. If the wet stretching temperature exceeds the above upper limit, the pore size of the film becomes large, and the air permeation resistance decreases.
  • the upper limit of the wet stretching temperature is preferably 115°C or lower, more preferably 110°C or lower.
  • the lower limit of the stretching temperature is preferably 100°C or higher.
  • the low-melting-point component can contribute to the formation of fibrils together with the high-melting-point component, instead of being attached to the fibrils formed by the high-melting-point component. Therefore, a large number of holes are formed and the porosity can be set within the range described above.
  • the stretching temperature is set within a range in which the high melting point component can be stretched (softened).
  • the stretching can be carried out uniformly and film breakage can be prevented.
  • the component having a melting point lower than the stretching temperature is melted into a lump and is attached to the fibril formed by the high melting point component. In such a state, if the melt of the low melting point resin adheres to the gap between the fibrils formed by the high melting point component, the porosity decreases and the air permeation resistance exceeds the design range.
  • the stretching temperature is not adjusted to the resin whose melting point is high, but the resin whose melting point is low I dare to match. Then, as described above, the stretching ratio is set to be low. Therefore, the resin having a lower melting point contributes to the fibril formation while the resin having a higher melting point is stretched at a level that does not cause film breakage. Therefore, even a thin film can be stretched without rupturing, and a microporous film having a complicated porosity and internal structure (high air permeability resistance) as described above can be obtained.
  • the microporous membrane of the present invention is suitable for a safer and higher-performance battery separator.
  • heat treatment is applied to the stretched gel sheet.
  • the heat treatment stabilizes the crystals.
  • heat setting treatment (first heat setting) is performed.
  • the first heat setting treatment is a heat treatment for heating while maintaining the MD and TD dimensions of the microporous membrane so that they do not change (face magnification 1.0 times).
  • face magnification 1.0 times face magnification 1.0 times.
  • the temperature of the heat setting treatment is preferably 120°C or lower, more preferably 110°C or lower.
  • the lower limit is preferably 100° C. or higher.
  • the film-forming solvent is removed from the stretched gel-like sheet to form a microporous film.
  • the removal of the film-forming solvent is performed by cleaning with a cleaning solvent. Since the polyolefin phase is phase-separated from the film-forming solvent phase, it is composed of fibrils that form a fine three-dimensional network structure when the film-forming solvent is removed. A quality film is obtained. Since the cleaning solvent and the method for removing the film-forming solvent using the cleaning solvent are known, the description thereof will be omitted. For example, the method disclosed in Japanese Patent No. 2132327 or Japanese Patent Laid-Open No. 2002-256099 can be used.
  • the microporous film from which the film-forming solvent has been removed is dried by a heat drying method or an air drying method.
  • the drying temperature is preferably equal to or lower than the crystal dispersion temperature (Tcd) of the polyolefin resin, and particularly preferably lower than Tcd by 5° C. or more.
  • the drying is preferably performed until the residual washing solvent is 5% by mass or less, more preferably 3% by mass or less, with the microporous membrane film being 100% by mass (dry weight).
  • the crystal dispersion temperature (Tcd) means a value obtained by measuring a temperature characteristic of dynamic viscoelasticity based on ASTM D4065.
  • heat treatment is performed on the dried microporous membrane.
  • the heat treatment stabilizes the crystals and makes the lamella uniform.
  • heat relaxation treatment (second heat fixation treatment) is performed after heat relaxation treatment.
  • the thermal relaxation treatment is a heat treatment for heating while narrowing the dimension between the end portions in the width direction so as to forcibly reduce the TD dimension of the microporous membrane.
  • the temperature of the thermal relaxation treatment is preferably 140°C or lower, more preferably 130°C or lower.
  • the thermal relaxation rate (the ratio of the TD shrinkage dimension of the microporous membrane after the thermal relaxation treatment to the TD dimension of the microporous membrane before the thermal relaxation treatment) is preferably 10% or less, more preferably 5% or less. ..
  • the second heat setting treatment is a heat treatment for heating while maintaining the MD and TD dimensions of the microporous membrane so that they do not change (area magnification 1.0 times). By this heat setting treatment, the resin crystals are fixed, and the microporous film is less likely to undergo heat shrinkage.
  • the temperature of the heat setting treatment is preferably 130°C or lower, more preferably 110°C or lower.
  • so-called dry stretching is not performed after the film-forming solvent is removed.
  • dry stretching is carried out, the strength of the microporous membrane is improved, and the area of the microporous membrane is also increased, which leads to an improvement in productivity, but in the present invention, by intentionally not performing such dry stretching.
  • the fibrils formed by wet stretching remain as they are and the pore size remains small, and since the pore size remains small, the flow of the through-holes from the one surface to the other surface in the thickness direction of the microporous membrane flows. The path is complicated and therefore the high air resistance is maintained.
  • the fibrils constituting the microporous membrane become thin and the strength of the microporous membrane decreases as the pore size increases, but in the present invention, it is a thin film and has a high strength.
  • the dry porous film is not intentionally drawn, and a microporous film having an excellent porosity and a shutdown function is obtained.
  • the microporous membrane in the present invention is a so-called single layer membrane composed of one layer.
  • the weight average molecular weight (Mw) of the polyolefin resin was determined by gel permeation chromatography (GPC) method under the following conditions.
  • GPC gel permeation chromatography
  • ⁇ Measuring device GPC-150C manufactured by Waters Corporation
  • Column Shodex UT806M manufactured by Showa Denko KK
  • Column temperature 135°C -Solvent
  • mobile phase o-dichlorobenzene-Solvent flow rate: 1.0 ml/min-Sample concentration: 0.1 wt% (dissolution condition: 135°C/1 h)
  • RI detector Differential Refractometer manufactured by Waters Corporation -Calibration curve: Created using a predetermined conversion constant from a calibration curve obtained using a monodisperse polystyrene standard sample.
  • a contact thickness meter (Lightmatic manufactured by Mitutoyo Corporation) was used to measure the film thickness of a sample (95 mm ⁇ 95 mm) cut out from the microporous film at 5 points, and the average value was taken as the film thickness.
  • Air resistance (sec/100 cm 3 ) The air permeation resistance (sec/100 cm 3 ) of the microporous membrane was measured using an air permeability meter (EGO-1T manufactured by Asahi Seiko Co., Ltd.) according to JIS P-8117.
  • Porosity (%) This is a method of calculating the volume ratio of pores from the film thickness, area, mass and density of the microporous membrane (for example, in the case of polyethylene only, it is 0.99 g/cm 3 ).
  • the film thickness and mass of the sample (95 mm ⁇ 95 mm) cut out from the microporous film were measured, and the porosity was calculated by the following formula.
  • Porosity (%) 1-mass/(film thickness x area x density)
  • the density of the polyolefin microporous film was determined by a method based on K7112:1999.
  • the MD heat shrinkage ratio and the TD heat shrinkage ratio at 105° C. for 8 hours were measured as follows. (1) The length of a microporous membrane test piece (95 mm ⁇ 95 mm) at room temperature (25° C.) is measured for both MD and TD. (2) The test piece of the microporous membrane is equilibrated for 8 hours at a temperature of 105° C. without applying a load. (3) Measure the length of the microporous membrane for both MD and TD. (4) The heat shrinkage to MD and TD was calculated by dividing the measurement result (3) by the measurement result (1), subtracting the obtained value from 1, and expressing the value as a percentage (%).
  • the average flow rate diameter was converted from the pressure at the point where the curve obtained by the Dry-up measurement and the curve showing the half of the flow rate curve intersect with the curve obtained by the Wet-up measurement.
  • the melting point and the melting endotherm ⁇ H of the microporous membrane were determined by differential scanning calorimetry (DSC measurement) using a Diamond DSC manufactured by PerkinElmer.
  • the microporous membrane was punched out into a circle with a diameter of 5 mm, and several 5 to 10 mg of measurement samples that were stacked were placed in an open sample pan made of aluminum with a diameter of 5 mm, and a clamping cover was mounted and fixed in the aluminum pan with a sample sealer. .. Then, the aluminum pan was allowed to stand in a nitrogen atmosphere at 30° C. for 1 minute and then heated from 30° C. to 230° C. at a heating rate of 10° C./min.
  • the maximum temperature in the melting endothermic curve at this time was defined as the melting point of the microporous membrane. From the area under the curve, the melting endotherm per unit weight of the measurement sample was defined as the melting endotherm ⁇ H of the microporous membrane.
  • An impedance measuring device manufactured by Solartron, SI1250, SI1287 was used for measuring the impedance.
  • a glass plate 50 mm (W) x 80 mm (L) x 3 mm (T)
  • Ni foil (30 mm x 20 mm
  • microporous membrane (30 mm (W) x 20 mm (L)
  • Ni foil (30 mm x 20 mm) in this order
  • the impedance was evaluated as follows. Very good (A): Less than 1.00 ⁇ /cm 2 Good (B): 1.00 ⁇ /cm 2 or more, less than 1.50 ⁇ /cm 2 Failure (C): 1.50 ⁇ /cm 2 or more.
  • the battery used for the evaluation was lithium cobalt composite oxide LiCoO 2 as a positive electrode active material, graphite as a negative electrode active material, and 1 mol/L LiPF 6 prepared in a mixed solvent of EC/EMC/DMC as an electrolytic solution.
  • a wound electrode body was prepared by a conventional method, inserted into a battery can, impregnated with an electrolytic solution, sealed, and prepared. .. The details of the method for manufacturing the evaluation battery will be described below.
  • Lithium-cobalt composite oxide LiCoO 2 as the positive electrode active material, acetylene black as the conductive material, and polyvinylidene fluoride (PVDF) as the binder were mixed in a mass ratio of 93.5:4.0:2.5 to prepare a solvent N.
  • -Methylpyrrolidone (NMP) was mixed and dispersed to prepare a slurry. This slurry was applied to both sides of a 12 ⁇ m-thick aluminum foil serving as a positive electrode current collector, dried, and then rolled by a roll press. The rolled product was slit into a width of 30 mm to obtain a positive electrode.
  • a flat wound electrode body (height 2.2 mm x width 36 mm x depth 29 mm) was produced. A tab with a sealant was welded to each electrode of the flat wound electrode body to form a positive electrode lead and a negative electrode lead.
  • the flat wound electrode body part is sandwiched between aluminum laminated films and sealed with some openings remaining, and this is dried in a vacuum oven at 80°C for 6 hours, and after drying, 0.7 mL of electrolytic solution is poured promptly. The solution was poured, sealed with a vacuum sealer, and press-molded at 80° C. and 1 MPa for 1 hour. Then, charging/discharging was implemented.
  • the charging/discharging conditions were a current value of 300 mA, and after constant current charging to a battery voltage of 4.2 V, constant voltage charging was performed at a battery voltage of 4.2 V to 15 mA. After 10 minutes of rest, constant current discharge was performed at a current value of 300 mA to a battery voltage of 3.0 V, and then 10 minutes of rest. The above charging/discharging was performed 3 cycles, and the test secondary battery of battery capacity 300mAh was produced.
  • volume energy density The volume energy density was measured by the following formula.
  • Volume energy density (Wh/L) average operating voltage (V) ⁇ battery capacity (Ah)/battery volume (L)
  • V volume energy density
  • Ah battery capacity
  • L battery volume
  • the rate characteristic was evaluated by the following method.
  • the test secondary battery produced in the above (Method for producing evaluation battery) was used. After constant current charging of this battery to a battery voltage of 4.2V at a current value of 1.0C, constant voltage charging was performed at a battery voltage of 4.2V to a current value of 0.05C at a current value of 0.2C. The battery was discharged until the battery voltage reached 3.0 V (constant current discharge), and the discharge capacity was measured. Subsequently, the battery was charged again to 4.2 V by the above procedure, and then discharged (constant current discharge) at a current value of 5 C until the battery voltage became 3.0 V, and the discharge capacity was measured.
  • discharge capacity ratio (%) was calculated by the following formula.
  • discharge capacity ratio (discharge capacity at 5 C/discharge capacity at 0.2 C) ⁇ 100
  • the rate characteristics were evaluated as follows. Very good (A): 90% or more, good (B): 85% or more, less than 90% Poor (C): less than 85%.
  • the cycle characteristics were evaluated as follows. Very good (A): 90% or more, good (B): 85% or more, less than 90% Poor (C): less than 85%.
  • the crush test was evaluated by the following method. For the measurement of the crush test, the test secondary battery produced in the above (Production of evaluation battery) was used. The battery was pressed with two flat plates, and the temperature rise of the battery was confirmed in 5 cells. The crush test was evaluated as follows. Very good (A): Surface temperature rise is 80° C. or less in all 5 cells Good (B): Surface temperature rise is 80° C. over 120° C. in the 1 to 2 cells, and the surface temperature rise of the remaining cells is 80°C or less Normal (C): Surface temperature rise in more than 80°C is 120°C or less in 3 to 5 cells, and surface temperature rise in the remaining cells is 80°C or less (D): Surface in 1 to 5 cells Temperature rise exceeds 120°C.
  • the external short circuit test was evaluated by the following method.
  • the test secondary battery produced in the above Production of evaluation battery
  • the positive electrode terminal and the negative electrode terminal were connected to an external resistor, and the temperature rise of the battery was confirmed in 5 cells.
  • the external short circuit test was evaluated as follows. Very good (A): Surface temperature rise is 80° C. or less in all 5 cells Good (B): Surface temperature rise is 80° C. over 120° C.
  • Example 1 40% by weight of ultrahigh molecular weight polyethylene having a weight average molecular weight of 2.2 ⁇ 10 6 g/mol, a molecular weight distribution of 6, and an intrinsic viscosity of 16 dl/g shown in Table 1, and a weight average molecular weight of 4.1 ⁇ 10 5 g/mol and a molecular weight.
  • a polyolefin composition consisting of 60% by mass of high-density polyethylene (long-chain branched polyethylene) having a distribution of 13.5 and an intrinsic viscosity of 4.0 dl/g, tetrakis (methylene-3-(3,5) was used as an antioxidant.
  • This polyolefin solution was extruded from the T-die of a twin-screw extruder and cooled by taking it with a cooling roller to form a gel-like sheet.
  • the obtained gel-like sheet was simultaneously biaxially wet-stretched at a temperature of 112° C. in MD and TD by 5 times in a biaxial stretching machine and fixed to the biaxial stretching machine as it was so that there was no dimensional change in both MD and TD directions.
  • the first heat setting treatment was performed at a temperature of 110°C.
  • the stretched gel-like sheet was immersed in a washing tank of a methylene chloride bath to remove liquid paraffin and washed to obtain a microporous membrane, which was dried with a drier.
  • the obtained microporous membrane was subjected to thermal relaxation treatment at TD of the microporous membrane at a relaxation rate of 2% at 128°C without being dry-stretched, and fixed so that there was no dimensional change in both MD and TD.
  • the second heat setting process was performed.
  • the microporous membrane was cooled to room temperature to obtain a polyolefin microporous membrane.
  • Table 1 shows the manufacturing conditions for the microporous membrane
  • Table 2 shows the evaluation results.
  • the curve of the air permeation resistance with respect to the temperature in the polyolefin microporous membrane of Example 1 and its linear approximation line are shown in FIG.
  • the DSC curve of the polyolefin microporous film obtained in Example 1 is shown in FIG.
  • Example 2 A polyolefin microporous membrane was obtained in the same manner as in Example 1 except that the resin composition and manufacturing conditions shown in Table 1 were used.
  • the curves of the air permeation resistance against temperature in the microporous polyolefin membranes of Examples 2, 3, and 4 are shown in FIGS.
  • the first-order approximation straight line is also shown by a thin solid line in the curves of Examples 1 to 4.
  • the mathematical formula of the linear approximation line is added to the legend.
  • Comparative Example 1 40 mass% of ultra-high molecular weight polyethylene having a weight average molecular weight of 2.2 ⁇ 10 6 g/mol, a molecular weight distribution of 6, and an intrinsic viscosity of 16 dl/g shown in Table 1, and a weight average molecular weight of 3.0 ⁇ 10 5 g/mol and a molecular weight.
  • a polyolefin composition consisting of 60% by mass of high-density polyethylene having a distribution of 6.0 and an intrinsic viscosity of 3.7 dl/g
  • tetrakis(methylene-3-(3,5-ditertiarybutyl-4) was used as an antioxidant.
  • the obtained gel-like sheet was simultaneously biaxially wet-stretched at a temperature of 112° C. in MD and TD by 5 times in a biaxial stretching machine and fixed to the biaxial stretching machine as it was so that there was no dimensional change in both MD and TD directions. Then, the first heat setting treatment was performed at a temperature of 110°C.
  • the stretched gel-like sheet was immersed in a washing tank of a methylene chloride bath to remove liquid paraffin and washed to obtain a microporous membrane, which was dried with a drier.
  • the obtained microporous membrane was subjected to thermal relaxation treatment at TD of the microporous membrane at a relaxation rate of 2% at 128° C. without being dry-stretched, and fixed so that there was no dimensional change in both MD and TD, and 132° C.
  • the second heat setting process was performed.
  • the microporous membrane was cooled to room temperature to obtain a polyolefin microporous membrane.
  • Example 2 A polyolefin microporous membrane was obtained in the same manner as in Example 1 except that the resin composition and manufacturing conditions shown in Table 1 were used.
  • (Comparative example 3) 18% by weight of ultrahigh molecular weight polyethylene having a weight average molecular weight of 2.2 ⁇ 10 6 g/mol, a molecular weight distribution of 6, and an intrinsic viscosity of 16 dl/g shown in Table 1, and a weight average molecular weight of 4.1 ⁇ 10 5 g/mol and a molecular weight.
  • a polyolefin composition consisting of 82% by mass of high-density polyethylene having a distribution of 13.5 and an intrinsic viscosity of 4.0 dl/g
  • tetrakis(methylene-3-(3,5-ditertiarybutyl-4) was used as an antioxidant.
  • This polyolefin solution was extruded from the T-die of a twin-screw extruder and cooled by taking it with a cooling roller to form a gel-like sheet.
  • the obtained gel-like sheet was simultaneously biaxially wet-stretched at a temperature of 112° C. in MD and TD by 5 times in a biaxial stretching machine and fixed to the biaxial stretching machine as it was so that there was no dimensional change in both MD and TD directions. Then, the first heat setting treatment was performed at a temperature of 110°C.
  • the stretched gel-like sheet was immersed in a washing tank of a methylene chloride bath to remove liquid paraffin and washed to obtain a microporous membrane, which was dried with a drier.
  • the obtained microporous membrane was dry-stretched 1.40 times at TD at 132° C. by a stretching machine, and also subjected to thermal relaxation treatment at TD at 132° C. with a relaxation rate of 2% to obtain dimensions in both MD and TD directions. It was fixed so that there was no change and subjected to a second heat setting treatment at 128°C. Then, the microporous membrane was cooled to room temperature to obtain a polyolefin microporous membrane.
  • Example 4 A microporous membrane was obtained in the same manner as in Example 1 except that the resin composition and manufacturing conditions shown in Table 1 were used.
  • Comparative example 5 A microporous membrane was obtained in the same manner as in Comparative Example 3 except that the resin composition and manufacturing conditions shown in Table 1 were not used, and the heat relaxation and the second heat setting were not performed.
  • Example 6 A microporous membrane was obtained in the same manner as in Example 1 except that the resin composition and manufacturing conditions shown in Table 1 were used.
  • Example 7 A microporous membrane was obtained in the same manner as in Example 1 except that the resin composition and manufacturing conditions shown in Table 1 were not used, and the heat relaxation and the second heat setting were not performed.
  • Table 2 shows the evaluation results of the obtained microporous membrane. The curves that are the basis for the rate of increase in air permeation resistance up to 120° C. obtained in each comparative example are shown in each figure. The DSC curve obtained in Comparative Example 1 is shown in FIG.
  • the microporous membranes of Examples 1 to 4 were extremely thin, they had high porosity and air permeation resistance, indicating that they are excellent in battery characteristics. 1 and 2, it can be seen that in each example, the air permeation resistance tends to increase as the temperature rises in the temperature range of 120° C. or less. Therefore, it is understood that the passage of ions is easily obstructed at a low temperature until the shutdown is completed, and the battery temperature does not rise so much at the completion of the shutdown. On the other hand, in the comparative example, the rate of increase in air permeability resistance up to 120° C. is small, and a large number of ions flow between the electrodes until a shutdown is completed after a short circuit occurs. It was found that the temperature was likely to rise.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Cell Separators (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

透気抵抗度が300秒/100cm3以上500秒/100cm3以下、空孔率が18%以上30%以下及びTDにおける引張伸度が105%以上、膜厚が6μm未満であるポリオレフィン微多孔膜。

Description

ポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法
 本発明はポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法に関する。
 微多孔膜は、ろ過膜、透析膜などのフィルター、電池用セパレータや電解コンデンサー用のセパレータなどの種々の分野に用いられる。これらの中でも、ポリオレフィンを材料とする微多孔膜は、耐薬品性、絶縁性、機械的強度などに優れ、シャットダウン特性を有するため、二次電池用セパレータとして広く用いられる。
 電池は外部短絡が発生すると瞬間的に大電流が流れ、発熱やガスが発生するおそれがある。そこで、セパレータには異常発熱時に孔が閉塞し、電池反応を遮断するシャットダウン特性が求められる。また、二次電池は使用時に落下や圧縮などの衝撃が加わることが想定され、電極の変形による電極間の接触により電池が短絡するおそれがあり、これを抑制するためにセパレータには電極の変形に追随できる程度の引張伸度が求められる。さらに、近年の携帯電話や電気自動車の長寿命化に伴って、二次電池は多数回に亘って充放電が繰り返されても電池使用初期と同レベルの容量を維持するサイクル特性が求められており、セパレータには高い空孔率が要求されている。
 特許文献1の参考実験2において、膜厚が4μmであり、透気抵抗度が380秒あるいは420秒のポリエチレン製セパレータが開示されている。
 特許文献2の実施例2では、可塑剤を抽出除去した原反シートを用いて2段の同時二軸延伸を行い、膜厚2.7μm、透気抵抗度315秒/100ml、空孔率16%及び伸び36%のセパレータが開示されている。
 特許文献3の実施例6では、Mwが5.6×10の高密度ポリチレン及びMwが1.6×10のポリプロピレン50質量%を三層セパレータのうちの中間層の原料として用いて、113℃にて湿式延伸を行った後、124℃の温度でTDに1.6倍に再延伸を行うことにより、膜厚6μm、透気抵抗度470秒/secの多層セパレータが得られることが開示されている。
 特許文献4においても、実施例1では、7.5×10のMwの第一のポリエチレン樹脂60重量%と、1.9×10のMw第二のポリエチレン樹脂40重量%を三層セパレータの中間層の原料として用いて、112.5℃にて湿式延伸を行った後、122℃の温度でTDに1.2倍に再延伸を行うことにより、膜厚20μm、透気抵抗度280秒/sec、空孔率49%及び伸び150%の多層セパレータが得られることが開示されている。
特開2006-32246号公報 特開平11-60790号公報 国際公開2015/182689号 特表2013-517152号公報
 二次電池、例えばリチウムイオン二次電池は、エネルギー密度が高いため、パーソナルコンピュータ、携帯電話などに用いる電池として広く使用されている。また、二次電池は、電気自動車やハイブリッド自動車のモータ駆動用電源としても期待されている。
 近年、二次電池のエネルギー密度の高密度化による電極の体積の増加に伴い、セパレータの薄膜化が要求されている。しかしながら、セパレータの膜厚が薄くなると構成する樹脂量が少なくなるため、膜厚が厚いセパレータと比べてシャットダウン機能が起こりにくくなる。また、空孔率はイオンの通りやすさやデンドライトに関する要求特性に応じて設計変更が求められる物性であるが、膜厚が薄くなるほど膜そのものの強度が弱くなり自立した膜としての使用が困難になるため高い孔空率とする調整の範囲に限りがある。そのためセパレータが薄膜化すればする程、シャットダウン機能と空孔率の両立が困難になる。更に、一般的には薄膜化と高い空孔率は延伸倍率を高くすることで調整されるが、高延伸によりポリオレフィン樹脂の結晶化が進行するため得られるセパレータは引張伸度が小さくなる。
 以上のように薄膜のセパレータではシャットダウン機能、高い引張伸度と高い空孔率のバランスをとるのがより難しくなる。上述した特許文献1~4には、シャットダウン機能、引張伸度と空孔率のバランスに優れた薄膜セパレータには言及されていない。
 本発明の目的は、6μm未満の薄膜でありながら、特定の透気抵抗、空孔率と引張伸度とを有することでシャットダウン特性、サイクル特性及び耐衝撃性のバランスに優れたポリオレフィン微多孔膜およびその製造方法を提供することである。
 従来のシャットダウン機能というと、シャットダウンする温度を評価しており、できるだけ早い段階(低い温度)で電流の流れを停止させることが好ましいとされている。本発明者らは薄膜セパレータの場合にはシャットダウン温度を低くするだけでは十分に機能を発揮できず、薄膜セパレータにおいては、透気抵抗度をある一定範囲にすることで電池の昇温速度を緩やかにすることで十分なシャットダウン機能を発現できることを見出した。
(1)透気抵抗度が300秒/100cm以上500秒/100cm以下、空孔率が18%以上30%以下及び幅方向における引張伸度が105%以上、膜厚が6μm未満であるポリオレフィン微多孔膜。
(2)前記ポリオレフィン微多孔膜は分子量分布10以上20以下の長鎖分岐ポリエチレンを50質量%以上含む(1)に記載のポリオレフィン微多孔膜。
(3)機械方向の引張強度が230MPa以上である(1)または(2)に記載のポリオレフィン微多孔膜。
(4)幅方向の引張伸度が150%以上である(1)~(3)に記載のポリオレフィン微多孔膜。
(5)示差走査熱量計で測定した融解吸熱量が200J/g以下である(1)~(4)のいずれかに記載のポリオレフィン微多孔膜。
(6)(1)~(5)のいずれかに記載のポリオレフィン微多孔膜を含むセパレータを用いてなる電池。
(7)長鎖分岐ポリエチレンを含むポリオレフィン樹脂を可塑剤と共に溶融混練して樹脂溶液を得る工程と、
前記樹脂溶液をダイから吐出して冷却し、ゲル状シートを形成する工程と、
前記ゲル状シートを120℃以下にて面倍率25倍以下にて同時二軸湿式延伸する工程と、
前記湿式延伸後のゲル状シートから可塑剤を抽出して乾燥する工程と、
を含むことを特徴とするポリオレフィン微多孔膜の製造方法。
(8)前記乾燥工程の後に、130℃以下にて面倍率1.0倍で第二熱固定する工程を有する(7)に記載のポリオレフィン微多孔膜の製造方法。
 本発明によれば、6μm未満の薄膜でありながら、特定の透気抵抗、空孔率と引張伸度とを有するシャットダウン機能が速やかに働くポリオレフィン微多孔膜を提供できる。本発明のポリオレフィン微多孔膜は、これを用いた電池に速やかなシャットダウン性能、サイクル特性及び耐衝撃性の優れたバランス特性を付与することができるものであり、電池の高容量化に適した薄膜であり、且つ高い安全性を担保可能な膜である。
実施例1及び比較例5にて得られる微多孔膜における温度に対する透気抵抗度の曲線と一次近似直線を示す。 実施例2及び比較例1、6にて得られる微多孔膜における温度に対する透気抵抗度の曲線と一次近似直線を示す。 実施例3及び比較例3にて得られる微多孔膜における温度に対する透気抵抗度の曲線と一次近似直線を示す。 実施例4及び比較例2、4にて得られる微多孔膜における温度に対する透気抵抗度の曲線と一次近似直線を示す。 実施例1にて得られるDSC曲線を示す特性図である。 比較例1にて得られるDSC曲線を示す特性図である。
以下、本発明の本実施形態について説明する。なお、本発明は以下説明する実施形態に限定されるものではない。
 1.ポリオレフィン微多孔膜
 本発明の微多孔膜は、透気抵抗度が300秒/100cm以上500秒/100cm以下、空孔率が18%以上30%以下及び幅方向における引張伸度が105%以上、膜厚が6μm未満であるポリオレフィン微多孔膜である。本発明は後述する原料を用いると共に延伸調整により、DSC測定で得られる微多孔膜の融解吸熱量を融解しやすく、かつ膜強度を著しく低下させない範囲に調整することで得ることができる。
 [透気抵抗度]
 6μm未満の微多孔膜の透気抵抗度の下限は、300秒/100cm以上であり、上限は、500秒/100cm以下である。微多孔膜の透気抵抗度が前記下限より下回るとシャットダウン機能が低下してしまう。また、微多孔膜の透気抵抗度が前記上限を上回るとイオンが電極間において行き来しにくくなり、インピーダンスの増加につながり電池サイクル特性やレート特性が低下してしまう。
 微多孔膜の透気抵抗度の下限は350秒/100cm以上であることが好ましい。上限は450秒/100cm以下であることが好ましく、420秒/100cm以下であることがより好ましい。透気抵抗度が上記範囲である場合、微多孔膜を二次電池用セパレータとして用いた際、イオン透過性に優れるので、二次電池のインピーダンスが低位にて推移して電池出力が良好となる。透気抵抗度は、後述するDSC測定で得られる微多孔膜の融解吸熱量を融解しやすく、かつ膜強度を著しく低下させない範囲に調節することにより、上記範囲とすることができる。
 上記6μm未満の微多孔膜の透気抵抗度を10μm以上で換算した厚膜の二次電池用セパレータの透気抵抗度は、出力特性やサイクル特性の保持の観点から好ましいといわれている範囲の上限を外れる。厚膜セパレータにおいては本発明を用いることは電池内でのイオンの移動がしにくくなるため好ましくない。微多孔膜が薄膜だからこそ電池の出力特性などを損なわない状態で電池安全性を向上させることができるため、上記範囲が有効である。
 本発明では、敢えてこのような範囲に透気抵抗度に設定している理由としては、微多孔膜を膜厚方向に空気が通りにくいということであり、言い換えるとイオンが当該微多孔膜を通り抜ける際の流路が長く(滞留時間が長く)且つ孔径が細いということである。これにより上記微多孔膜を電池に組み込んだ時、イオンが微多孔膜を通り抜けるにあたって要する時間をできるだけ長く設定することにより、外部短絡するときに、電池の温度上昇速度を抑えることができる。そして、薄膜であっても電池の温度上昇によるセパレータの熔融破膜が起こる前にシャットダウン機能を発現することができる。
 微多孔膜の透気抵抗度は透気度計(旭精工株式会社製、EGO-1T)を用いて、JIS P-8117に準拠した方法で測定した値を6μm換算することで求めることができる。
 [空孔率]
 微多孔膜の空孔率の下限は18%以上で上限は30%以下である。微多孔膜の空孔率が18%より下回るとサイクル特性が低下する。また、微多孔膜の空孔率が30%を上回るとシャットダウン機能が低下する。本発明では、後述するように、分岐鎖の長い長鎖分岐ポリエチレンを微多孔膜の原料として使用すると共に、この長鎖分岐ポリエチレンにおける低分子量成分が製造後の微多孔膜の内部であっても動きやすいようにしている。後述のDSC測定で得られる微多孔膜の融解吸熱量を融解しやすく、かつ膜強度を著しく低下させない範囲に調節して、長鎖分岐ポリエチレンが孔形成と融解挙動に寄与するようにしている。そのため、長鎖分岐ポリエチレンによって多数の小さな孔が形成されるので、結果として高い空孔率を達成している。従って、イオンが十分に微多孔膜を通り抜け可能で優れたサイクル特性を持ちつつも、シャットダウン機能が速やかに働く薄膜を得ることができる。
 空孔率は、微多孔膜の膜厚、面積、質量、密度(例えばポリエチレンのみの場合、0.99g/cmとする)から算出することができる。微多孔膜の膜厚、面積、質量を測定し、以下の式によって空孔率を算出した。
空孔率(%)=1-質量/(膜厚×面積×密度)
ポリオレフィン微多孔膜の密度はK7112:1999に準拠した方法により求めることができる。
 [引張伸度]
 微多孔膜の幅方向(TD)の引張伸度の下限は、105%以上である。微多孔膜のTDの引張伸度が前記下限を下回ると耐衝撃性など安全性が低下してしまう。微多孔膜のTDの引張伸度の下限は、150%以上であることが好ましく、180%以上であることがより好ましい。微多孔膜のTDの引張伸度の上限は、300%以下であることが好ましく、200%以下であることがより好ましい。
 落下や圧縮などで電池に衝撃が加わったとき、電極の変形に微多孔膜が追随して電池の短絡を抑制するためには、微多孔膜はTDにおいて良好に伸びる必要があり、その範囲としては上記の通りである。
 電池の内部において微多孔膜のMDは電池捲回方向と同じであり、微多孔膜のTDの寸法は電池の幅方向の寸法に相当している。従って、電池に衝撃が加わった時、微多孔膜のTDにおいて十分な引張伸度を持たせるよう、強度と伸度のバランス(タフネス)を引張伸度が高めになるように調整すると、衝撃に伴って電極が変形しても、その変形に微多孔膜が追随できるので、電池の幅方向両端部において電極が露出しなくなり、短絡が防止される。また、このような範囲の伸度に設定することにより、微多孔膜をセパレータとして用いた場合、電極の凹凸、電池の変形、電池発熱による内部応力発生等に対して、セパレータが追随できる。
 微多孔膜のMDの引張伸度の下限は、50%以上が好ましく、100%以上であることがより好ましく、110%以上であることがさらに好ましい。微多孔膜のMDの引張伸度の上限は、200%であることが好ましく、150%以下であることがより好ましく、120%以下であることがさらに好ましい。微多孔膜のMDの破断伸度が上記の範囲である場合、コート層を塗工する時に高い張力が加わった場合も変形しにくく、シワも発生しにくいので塗工欠陥が抑制され塗工表面の平面性が良いので好ましい。
 引張伸度は室温25℃にてチャック間距離20mm、幅10mmの短冊状の微多孔膜を用いて、ASTM D-882Aに準拠した方法で測定できる。
 [膜厚]
 微多孔膜の膜厚の上限は、6μm未満である。上限以上になると組み込まれた電池体積あたりのエネルギー密度が低下してしまう。微多孔膜の膜厚の上限は、好ましくは5μm以下であり、下限は、好ましくは1μm以上、より好ましくは3μm以上である。微多孔膜の膜厚が上記範囲内であると、微多孔膜を電池用セパレータとして使用する際、電池パッケージの内部において正極、負極及びセパレータからなる積層体の捲回数を増やすことができるので、電池容量が向上する。即ち、薄膜セパレータを用いることにより、電池の単位体積あたりのエネルギー密度を増加することができる。微多孔膜の膜厚は、接触厚み計により測定することができる。
 [引張強度]
 微多孔膜の機械方向(MD)の引張強度の下限は、230MPa以上が好ましく、より好ましくは250MPa以上である。微多孔膜のMDの引張強度の上限は、400MPa以下であることが好ましく、300MPa以下であることがより好ましい。微多孔膜のMDの引張強度が上記範囲である場合、高い張力が加えられた場合においても破断しにくく、高い耐久性が要求される用途に用いることができる。例えば、上記のような強度に優れた微多孔膜をセパレータとして用いた場合、電池作製時や電池使用時における短絡を抑制するとともに、高い張力を加えながらセパレータを捲回可能となり、電池の高容量化を図ることができる。また、薄膜化した微多孔膜の少なくとも一方の表面にコーティング層を形成する場合、より高いMDの引張強度が要求される。よって、コーティング層の塗工性を向上させるという観点から、MDの引張強度が上記範囲である場合、塗工用の基材として好適に用いることができる。
 微多孔膜のTDの引張強度の下限は、好ましくは100MPa以上であり、より好ましくは150MPa以上である。微多孔膜のTDの引張強度の上限は、好ましくは300MPa以下である。
 [微多孔膜の融解吸熱量(ΔH)]
 微多孔膜の融解吸熱量(ΔH)の上限は200J/g以下となることが好ましく、190J/g以下であることがより好ましく、180J/g以下であることがさらに好ましい。ここで微多孔膜の融解吸熱量(ΔH)とは示差走査熱量計による測定で得られる融解熱曲線の面積を融解吸収量としたときの微多孔膜の重量当たりの融解吸熱量である。
 微多孔膜が吸収する熱量が上記範囲の場合には、微多孔膜を構成する樹脂が極わずかな熱量を吸収しただけでも軟化や溶融が起こりやすいということになる。そのため、シャットダウン機能が速やかに起こることに繋がり、また微多孔膜が伸びやすい。このような特性を示す微多孔膜を得るためには、後述の長鎖分岐ポリエチレンを原料として使用すると共に、この樹脂ができるだけ結晶化しないように、延伸温度や延伸倍率などの製造条件を設定することが必要である。従って、長鎖分岐ポリエチレンがそのような状態を保つことにより、当該ポリエチレンがフィブリルの形成に寄与するので、電池に対して衝撃が加わった時の耐性を持つようにTDにおける引張伸度を確保しながら、良好なサイクル特性が得られるまでの空孔率を担保できる。一方、上記融解吸熱量が小さすぎる場合には、樹脂が軟化、溶融しても孔を塞ぐレベルまで樹脂が流れにくいことがあり、従って融解吸熱量の下限は、100J/g以上である。
 [最大細孔径と平均流量孔径]
 最大細孔径の上限は、50nm以下であることが好ましく、40nm以下であることがより好ましく、35nm以下であることがさらに好ましい。最大細孔径の下限は、15nm以上であることが好ましく、20nm以上あることがより好ましい。
 平均流量孔径の上限は、40nm以下であることが好ましく、30nm以下であることがより好ましく、25nm以下であることがさらに好ましい。平均流量孔径の下限は、10nm以上であることが好ましく、15nm以上であることがより好ましく、20nm以上であることがさらに好ましい。
 このような範囲の平均流量孔径は、一般的には小さいレベルの値と言えるが、このように設定した理由としては、既述のシャットダウン機能や透気抵抗度と関連している。即ち、既述のように透気抵抗度を高めに設定することによってシャットダウン機能を発現しやすくすると共にシャットダウンするまでの時間を十分に確保しているが、本発明では、更に膜全体の孔径を小孔径にすることでシャットダウン時に塞ぐべき孔のサイズを小さくしている。そのため、透気抵抗度が高いことによってイオンが微多孔膜を通過する流路が細くなるだけでなく、微多孔膜全体における最大の孔径や平均孔径についても小さくなるように設定しているため、微多孔膜を構成する樹脂が僅かに軟化あるいは溶融しただけでシャットダウンが起こる。
 そして、微多孔膜の孔径を小さくすることにより、微多孔膜を組み込んだ電池を使用した時、デンドライト(固形異物)が発生しても微多孔膜を通過しにくくなる。この孔径についても、後述のDSC測定で得られる微多孔膜の融解吸熱量を融解しやすく、かつ膜強度を著しく低下させない範囲に調節することにより、上記範囲とすることができる。即ち、微多孔膜を構成する樹脂が融点以下でも動きやすいということは、当該樹脂がそれ程大きく延伸されていないということであり、従って小さな孔が形成されていることになる。
 平均流量孔径及び最大細孔径はPMI社のパームポロメータ(商品名、型式:CFP-1500A)を用いてDry-up、Wet-upの順で測定する下記の方法で求めることができる。Dry-upではポリオレフィン微多孔質膜に圧力をかけ、貫通した空気流量を測定する。Wet-upではGalwick(商品名)に十分に浸したポリオレフィン微多孔質膜に圧力をかけ、空気が貫通し始める圧力から換算される孔径を最大孔径する。Dry-up測定で得られる圧力、流量曲線の1/2の傾きを示す曲線と、Wet-up測定で得られる曲線が交わる点の圧力から平均流量径を換算できる。圧力と孔径の換算は下記の数式を用いる。
d=C・γ/P(式中、d(μm)は微多孔質膜の孔径、γ(dynes/cm)は液体の表面張力、P(Pa)は圧力、Cは圧力定数(2860)である。)
 [突刺強度]
 微多孔膜の突刺強度の下限は、1.4N以上であることが好ましく、1.7N以上であることがより好ましく、1.9N以上であることがさらに好ましい。突刺強度の上限は、3.8N以下であることが好ましく、2.8N以下であることがより好ましく、2.4N以下であることがさらに好ましい。突刺強度が上記範囲である場合、微多孔膜の膜強度に優れる。また、この微多孔膜をセパレータとして用いた二次電池は、電極の短絡の発生や自己放電が抑制される。突刺強度は、微多孔膜を製造する際、例えば、超高分子量ポリエチレンを含有させたり、微多孔膜を構成するポリオレフィン樹脂の重量平均分子量(Mw)や延伸倍率を調整したりすることにより、上記範囲とすることができる。
 [熱収縮率]
 微多孔膜の105℃にて8時間加熱した後におけるMDの熱収縮率は、10%以下であることが好ましく、7%以下であることがより好ましく、5%以下であることがさらに好ましい。微多孔膜の105℃、8時間におけるTDの熱収縮率は、10%以下であることが好ましく、8%以下であることがより好ましく、4%以下であることがさらに好ましい。MDの熱収縮率の下限、及びTDの熱収縮率の下限は、0.5%以上であることが好ましい。MDの熱収縮率、及びTDの熱収縮率が上記範囲である場合、耐熱収縮性に優れ、微多孔膜をセパレータとして用いたときに、熱による膨張・収縮を抑制することができる。このように微多孔膜の熱収縮を調整するにあたっては、後述のDSCに関する特性が寄与している。即ち、微多孔膜の吸熱量が小さいということは、微多孔膜がそれ程大きな延伸応力を受けていないということであり、熱が加わった時にはその熱は微多孔膜の収縮よりも樹脂の軟化、溶融に消費されやすくなるため、微多孔膜の熱収縮率が小さく抑えられる。
 [120℃までにおける透気抵抗度の上昇割合(傾き)((Sec/100cm)/℃)]
 120℃までにおける透気抵抗度の上昇割合が大きい場合には、シャットダウンが完了する前段階の温度域において、微多孔膜の温度がシャットダウン完了温度に向かって高くなるにつれて、イオンが微多孔膜を通過しにくくなっていく。そのため、短絡時であっても、電池の温度は緩やかに上昇していくため、微多孔膜のシャットダウンが完了したとき、電池の温度はそれ程高くならない。言い換えると、120℃までにおける透気抵抗度の上昇割合を大きくすることによって、短絡が起こった時に安全に低温状態にて電池を無害化(シャットダウン完了)させることができる。120℃までにおける透気抵抗度の上昇割合は、1.2以上であることが好ましく、より好ましくは1.5以上であり、更に好ましくは1.8以上である。このような透気抵抗度の上昇割合は、後述の原料を用いると共にDSC特性を調整することにより得ることとができる。なお、図2は、図1における特徴的な例を抜き出したグラフである。図1及び図2において、凡例の右側に各例にて得られた近似曲線の一次式及びその傾きを併記している。
 2.微多孔膜の製造方法
 以下、微多孔膜の製造方法について説明する。なお、以下の説明は、製造方法の一例であって、この方法に限定されるものではない。
 [組成]
 本明細書において、ポリオレフィン微多孔膜(以下、単に「微多孔膜」とも言う)とは、ポリオレフィンを主成分として含む微多孔膜をいい、「主成分」とは、微多孔膜全量に対してポリオレフィンを90質量%以上含むことである。以下、本実施形態の微多孔膜について説明する。
 微多孔膜は、ポリオレフィン樹脂を主成分として含む。ポリオレフィン樹脂としては、ポリエチレンを用いることができる。例えば、微多孔膜全量に対して、ポリエチレンを50質量%以上含むことができる。ポリエチレンとしては、高密度ポリエチレン(HDPE)、中密度ポリエチレン、分岐ポリエチレン、直鎖状低密度ポリエチレン等が用いられる。なお、ポリエチレンは、エチレンの単独重合体であってもよく、エチレンと他のα-オレフィンとの共重合体であってもよい。α-オレフィンとしては、プロピレン、ブテン-1、ヘキセン-1、ペンテン-1、4-メチルペンテン-1、オクテン、酢酸ビニル、メタクリル酸メチル、スチレン等が挙げられる。
 ここで、上記高密度ポリエチレン(密度:0.920g/m以上0.970g/m以下)は、長鎖分岐ポリエチレンとなっている。長鎖分岐ポリエチレンとは、主鎖となる炭素鎖から分岐して他の炭素鎖が分岐鎖として伸び出し、その分岐鎖から更に別の炭素鎖が伸びている状態のポリエチレンであり、その重量平均分子量(Mw)は、例えば1×10以上1×106未満程度である。長鎖分岐ポリエチレンの極限粘度(dl/g)は、例えば16である。
 長鎖分岐ポリエチレンの分子量分布(MwD)の下限は、7以上、好ましくは10以上である。長鎖分岐ポリエチレンの分子量分布(MwD)の上限は20以下、好ましくは15以下である。このように分子量分布の広い樹脂を用いることにより、比較的低分子量成分が多くなる。ポリエチレンの分子量分布はゲルパーミエーションクロマトグラフィー法により求めることができる。
 1×10以上1×10未満の成分を含み、かつ分子量分布(MwD)が上記範囲の長鎖分岐ポリエチレンは、電池がシャットダウンを起こす程度の高温環境に晒された時、速やかに軟化、溶融して孔を塞ぐ役割を持ちながら、当該孔を形成する役割を果たしている。即ち、後述するように、本発明では、この低分子量成分が溶融しないあるいは溶融しにくい低温にて微多孔膜の延伸を行っており、従って当該低分子量成分は他の樹脂により形成されるフィブリルに単に溶融して付着した状態ではなく、そのようなフィブリルの一部を構成しており、そのため多数の孔が形成されること、言い換えると微多孔膜が高い空孔率を持つことに寄与している。そして、このような低分子量成分が含まれていることにより、後述の超高分子量ポリエチレンのような低温での延伸が困難な高融点樹脂が含まれていても、当該高融点樹脂の間にて延伸の補助的役割を担い、即ち低融点成分の樹脂が伸びにくい高融点樹脂の分までも延伸されることにより、薄膜であっても延伸時の破膜が防止される。そして、このような長鎖分岐ポリエチレンは、延伸されても結晶化しにくく、孔を形成して(延伸を受けて)も依然として軟化、溶融しやすいため、伸びやすく、しかも微多孔膜の孔を速やかに塞ぐ役割を果たす。なお、Mwは、ゲルパーミエーションクロマトグラフィー(GPC)により測定される値である。長鎖分岐ポリエチレンである高密度ポリエチレンの含有量は、ポリオレフィン樹脂全体100質量%に対して、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることが更に好ましい。高密度ポリエチレンの含有量は、その上限が、100質量%以下が好ましく、他の成分を含んでもよい。
 また、微多孔膜は、超高分子量ポリエチレン(UHMwPE)を含むことができる。原料として用いられる超高分子量ポリエチレンは、重量平均分子量(Mw)が1×10以上であり、好ましくは1×10以上8×10以下である。Mwが上記範囲である場合、成形性が良好となる。超高分子量ポリエチレンは1種を単独で、または2種以上を併用して用いることができ、Mwの異なる二種以上の超高分子量ポリエチレン同士を混合して用いてもよい。
 超高分子量ポリエチレンは、ポリオレフィン樹脂全体100質量%に対して、0質量%以上70質量%以下含むことができる。超高分子量ポリエチレンの含有量が10質量%以上60質量%以下である場合、得られる微多孔膜のMwを特定の範囲に容易に制御しやすく、かつ押出し混練性などの生産性に優れる傾向がある。また、超高分子量ポリエチレンを含有した場合、微多孔膜を薄膜化した際にも高い機械的強度を得ることができる。
 まず、ポリオレフィン樹脂と成膜用溶剤とを溶融混練して樹脂溶液を調製する。溶融混練方法としては、例えば日本国特許第2132327号および日本国特許第3347835号の明細書に記載の二軸押出機を用いる方法を利用することができる。溶融混練方法は公知であるので説明を省略する。なお、樹脂溶液は、上記のポリオレフィン樹脂及び成膜用溶剤以外の成分を含んでもよく、例えば酸化防止剤などを含んでもよい。
 次いで、溶融樹脂を押出し、冷却してゲル状シートを形成する。例えば、上記で調整した樹脂溶液を押出機から1つのダイに送給し、シート状に押し出し、形成体を得る。得られた成形体を冷却することにより、ゲル状シートを形成する。
 ゲル状シートの形成方法として、例えば日本国特許第2132327号公報および日本国特許第3347835号公報に開示の方法を利用することができる。冷却は少なくともゲル化温度までは50℃/分以上の速度で行うのが好ましい。冷却は25℃以下まで行うのが好ましい。冷却により、成膜用溶剤によって分離されたポリオレフィンのミクロ相を固定化することができる。冷却速度が上記範囲内であると樹脂の結晶化を抑制することができ、極めて小さな孔の形成が可能となる。
 次いで、ゲル状シートを延伸する。ゲル状シートの延伸は、湿式延伸ともいう。ゲル状シートは、加熱後、例えばテンター法により、同時二軸延伸法を用いて延伸される。ゲル状シートは成膜用溶剤を含むので、均一に延伸される。湿式延伸における、最終的な面積延伸倍率(面倍率)は25倍以下である。また、延伸倍率は、機械方向(MD)及び幅方向(TD)のいずれでも5倍以下である。
 即ち、延伸倍率は、ゲル状シートをどの程度大きくフィルム化するかという指標であり、言い換えると得られる微多孔膜の面積となり、従って生産性につながる。延伸面倍率が大きければ大きいほど、得られる微多孔膜の面積が大きくなり、生産性が高くなると言える。一方、本発明では、上記のように延伸面倍率を25倍以下と小さくして、得られる微多孔膜の面積を少なくして生産性を犠牲にしながらも、得られる微多孔膜の物性、即ちシャットダウン機能や孔径を目的の範囲となるようにしている。25倍超えの面倍率で延伸した場合には、微多孔膜の強度が向上する一方、孔径が大きくなり、また熱収縮が大きくなる。
 湿式延伸温度の上限は、120℃以下である。湿式延伸温度が前記上限を超えるとフィルムの孔径が大きくなり、透気抵抗度が低下してしまう。湿式延伸温度の上限は115℃以下であることが好ましく、110℃以下であることがより好ましい。延伸温度の下限は100℃以上であることが好ましい。延伸温度が上記範囲内であると、原料として使用する樹脂のうち高融点成分(超高ポリエチレン)については延伸可能なレベルの最低限の温度範囲としながらも、原料の樹脂のうち低融点成分(長鎖分岐ポリエチレンにおける低融点成分)が溶融せずに延伸される。従って、前記低融点成分は、高融点成分により形成されるフィブリルに付着した状態ではなく、高融点成分と共にフィブリルの形成に寄与できる。そのため、多数の孔が形成されると共に空孔率も既述の範囲内に設定できる。
 即ち、一般的に、融点が互いに異なる樹脂を原料として延伸する時、高融点成分が延伸可能な(軟化可能な)範囲にて延伸温度が設定される。その理由としては、原料の樹脂全体が延伸可能な温度範囲であれば、延伸が均一に行われると共に、破膜が防止されるからである。その場合には、延伸温度よりも融点が低い成分は、溶融して塊状となり、高融点成分により形成されるフィブリルに付着した状態となる。そのような状態では、高融点成分により形成されるフィブリルの間隙に低融点樹脂の溶融物が付着すると、空孔率の減少や設計範囲を超えた透気抵抗度の上昇につながってしまう。
 一方、従来の融解開始温度以上での延伸と比べると低温での延伸は膜への荷重の負荷が大きいため破膜の危険性が高く、さらに膜厚が薄いほどその危険性は増す。本来、生産効率の観点において安定性が求められるが、本発明では生産性より本発明の特性を優先し、延伸温度について、融点が高温側の樹脂に合わせるのではなく、融点が低温側の樹脂に敢えて合わせている。そして、既述のように延伸倍率を低めに設定している。そのため、融点が高温側の樹脂に関しては破膜しないレベルで延伸されながら、融点が低温側の樹脂がフィブリル形成に寄与するようにしている。従って、薄膜であっても破膜せずに延伸可能であるし、上記のような空孔率及び内部構造が複雑な(透気抵抗度が高い)微多孔膜が得られる。
 以上のような延伸によりポリエチレンのラメラ間に開裂が起こり、ポリエチレン相が微細化し、多数のフィブリルが形成される。フィブリルは三次元的に不規則に連結した網目構造を形成する。延伸により機械的強度が向上するとともに細孔が拡大するが、上記のように延伸条件を設定しているので、貫通孔径を制御し、さらに薄い膜厚でも高い空孔率を有することが可能となる。このため、本発明の微多孔膜は、より安全で高性能な電池用セパレータに好適である。
 次いで、上記延伸後のゲル状シートに対して熱処理を行う。熱処理によって結晶が安定化される。熱処理方法としては、熱固定処理(第一熱固定)を行われる。第一熱固定処理とは、微多孔膜のMD、TDの寸法が変わらないように(面倍率1.0倍)保持しながら加熱する熱処理である。この熱固定処理により、樹脂の結晶が固定化されて、微多孔膜が熱収縮しにくくなる。熱固定処理の温度は120℃以下が好ましく、110℃以下が更に好ましい。下限は100℃以上であることが好ましい。
 次いで、上記延伸後のゲル状シートから成膜用溶剤を除去して微多孔膜とする。成膜用溶剤の除去は、洗浄溶媒を用いた洗浄により行う。ポリオレフィン相は成膜用溶剤相と相分離しているので、成膜用溶剤を除去すると、微細な三次元網目構造を形成するフィブリルからなり、三次元的に不規則に連通する孔を有する多孔質の膜が得られる。洗浄溶媒およびこれを用いた成膜用溶剤の除去方法は公知であるので説明を省略する。例えば日本国特許第2132327号明細書や特開2002-256099号公報に開示の方法を利用することができる。
 次いで、成膜用溶剤を除去した微多孔膜を、加熱乾燥法又は風乾法により乾燥する。乾燥温度はポリオレフィン樹脂の結晶分散温度(Tcd)以下であるのが好ましく、特にTcdより5℃以上低いのが好ましい。乾燥は、微多孔膜フィルムを100質量%(乾燥重量)として、残存洗浄溶媒が5質量%以下になるまで行うのが好ましく、3質量%以下になるまで行うのがより好ましい。残存洗浄溶媒が上記範囲内であると、後段の微多孔膜フィルムの延伸工程及び熱処理工程を行ったときに微多孔膜の空孔率が維持され、透過性の悪化が抑制される。ここで結晶分散温度(Tcd)とは、ASTM D4065に基づいて動的粘弾性の温度特性測定により求められる値をいう。
 次いで、乾燥後の微多孔膜に対して熱処理を行う。熱処理によって結晶が安定化し、ラメラが均一化される。熱処理方法としては、熱緩和処理に続いて熱固定処理(第二熱固定処理)が行われる。熱緩和処理とは、微多孔膜のTDの寸法を強制的に縮小させるように幅方向端部間の寸法を狭めながら加熱する熱処理である。熱緩和処理の温度は140℃以下が好ましく、130℃以下が更に好ましい。熱緩和率(熱緩和処理前の微多孔膜のTDの寸法に対して熱緩和処理後の微多孔膜のTDの収縮寸法の比)は、10%以下が好ましく、更には5%以下が好ましい。熱緩和処理により、微多孔膜に残存している応力が緩和されるので、処理後の微多孔膜は熱収縮率が小さくなる。また、微多孔膜のTDの寸法が熱収縮処理により低減することから、孔径が小さくなり、またTDにおける引張伸度が大きくなる(伸びやすくなる)。そして、孔径が小さくなるということは、透気抵抗度が大きくなるということであり、シャットダウン機能の速やかな発現に寄与することとなる。第二熱固定処理とは、微多孔膜のMD、TDの寸法が変わらないように(面倍率1.0倍)保持しながら加熱する熱処理である。この熱固定処理により、樹脂の結晶が固定化されて、微多孔膜が熱収縮しにくくなる。熱固定処理の温度は130℃以下が好ましく、110℃以下が更に好ましい。
 ところで、本発明では、製膜用溶剤を除去した後のいわゆる乾式延伸を行っていない。乾式延伸を行った場合には、微多孔膜の強度が向上し、また微多孔膜の面積も増加するので生産性向上につながるが、本発明では敢えてこのような乾式延伸を行わないようにしている。そのため、湿式延伸にて形成されたフィブリルがそのまま維持されて孔径が小さいままとなり、また孔径が小さいままなので微多孔膜の厚さ方向における一方側の面から他方側の面に向かう貫通孔の流路が複雑であり、従って透気抵抗度の高い状態が維持される。そして、乾式延伸を行って孔径を大きくすると、孔径が大きくなった分、微多孔膜を構成するフィブリルが細くなり、微多孔膜の強度が低下するが、本発明では、薄膜であり、強度をできるだけ担保するため、敢えて乾式延伸を行わずに、空孔率に加えてシャットダウン機能に優れた微多孔膜を得ている。
 本発明における微多孔膜は、一つの層からなるいわゆる単層膜である。
 以下、本発明を実施例によりさらに詳細に説明する。なお、本発明はこれらの例に限定されるものではない。
 1.測定方法と評価方法
 [重量平均分子量(Mw)]
 ポリオレフィン樹脂の重量平均分子量(Mw)は以下の条件でゲルパーミエーションクロマトグラフィー(GPC)法により求めた。
・測定装置:Waters Corporation製GPC-150C
・カラム:昭和電工株式会社製Shodex UT806M
・カラム温度:135℃
・溶媒(移動相):o-ジクロルベンゼン
・溶媒流速:1.0 ml/分
・試料濃度:0.1 wt%(溶解条件:135℃/1h)
・インジェクション量:500μl
・検出器:Waters Corporation製ディファレンシャルリフラクトメーター(RI検出器)
・検量線:単分散ポリスチレン標準試料を用いて得られた検量線から、所定の換算定数を用いて作成した。
 [膜厚(μm)]
 接触厚み計(株式会社ミツトヨ製ライトマチック)を用いて、微多孔膜から切り出したサンプル(95mm×95mm)の膜厚を5点測定し、平均値を膜厚とした。
 [透気抵抗度(sec/100cm)]
 透気度計(旭精工株式会社製、EGO-1T)を用いて、JIS P-8117に準拠して、微多孔膜の透気抵抗度(sec/100cm)を測定した。
 [空孔率(%)]
 空孔の体積率を微多孔膜の膜厚、面積、質量、密度(例えばポリエチレンのみ場合、0.99g/cmとする)から算出する方法である。微多孔膜から切り出したサンプル(95mm×95mm)の膜厚、質量を測定し、以下の式によって、空孔率算出した。
空孔率(%)=1-質量/(膜厚×面積×密度)
ポリオレフィン微多孔膜の密度はK7112:1999に準拠した方法により求めた。
 [突刺強度(N)]
 先端が球面(曲率半径R:0.5mm)の直径1mmの針で、微多孔膜を2mm/秒の速度で突刺したときの最大荷重を突刺強度とした。
[引張強度(Mpa)]
 MD引張強度およびTD引張強度について、室温25℃にてチャック間距離20mm、幅10mmの短冊状試験片を用いて、ASTM D882に準拠した方法により測定した。
 [引張伸度(%)]
 MD引張伸度およびTD引張伸度について、室温25℃にてチャック間距離20mm、幅10mmの短冊状試験片を用いて、ASTM D-882Aに準拠した方法により測定した。
 [熱収縮率(%)]
 105℃8時間のMD熱収縮率およびTD熱収縮率は、次のようにして測定した。
(1)室温(25℃)における微多孔膜の試験片(95mm×95mm)の長さをMDおよびTDの両方について測定する。
(2)微多孔膜の試験片を、荷重をかけずに8時間105℃の温度にて平衡化する。
(3)微多孔膜の長さをMDおよびTDの両方について測定する。
(4)MDおよびTDへの熱収縮を、測定結果(3)を測定結果(1)で割り、得られた値を1から引き、その値を百分率(%)で表して算出した。
 [孔径(平均流量孔径(nm)及び最大細孔径(nm))]
 ポリオレフィン微多孔膜の平均流量孔径及び最大細孔径(nm)は下記のように測定した。PMI社のパームポロメータ(商品名、型式:CFP-1500A)を用いて、Dry-up、Wet-upの順で測定した。Dry-upでは、ポリオレフィン微多孔質膜に圧力をかけ、貫通した空気流量を測定する。Wet-upでは表面張力が既知のGalwick(商品名)で十分に浸したポリオレフィン微多孔質膜に圧力をかけ、空気が貫通し始める圧力から換算される孔径を最大孔径とした。Dry-up測定で得られる圧力、流量曲線の1/2の傾きを示す曲線と、Wet-up測定で得られる曲線が交わる点の圧力から平均流量径を換算した。圧力と孔径の換算は下記の数式を用いた。
d=C・γ/P(式中、d(μm)は微多孔質膜の孔径、γ(dynes/cm)は液体の表面張力、P(Pa)は圧力、Cは圧力定数(2860)である。)。
 [DSC測定]
 PerkinElmer製Diamond DSCを使用して示差走査熱量測定(DSC測定)により微多孔膜の融点と融解吸熱量ΔHを求めた。微多孔膜を直径5mmの円形に打ち抜き、数枚重ね合わせた5~10mgの測定サンプルを、直径5mmのアルミ製オープンサンプルパンに置き、クランピングカバーを乗せてサンプルシーラーによりアルミパン内に固定した。そして、アルミパンを窒素雰囲気下にて30℃1分間静置した後、昇温速度10℃/分で30℃から230℃まで昇温させた。この時の融解吸熱曲線において、極大となる温度を微多孔膜の融点とした。曲線より下の面積から、測定サンプルの重量当たりの融解吸熱量を微多孔膜の融解吸熱量ΔHとした。
 [シャットダウン温度(℃)]
 透気抵抗度を測定した後、昇温を継続しながら微多孔膜の透気抵抗度が最初に100,000秒/100cmを超える時の温度を、微多孔膜のシャットダウン温度と定義した。
 [120℃までの透気抵抗度の上昇割合(Sec/100cm)/℃]
透気度計(旭精工株式会社製、EGO-1T)を用いて、微多孔膜を30℃の温度雰囲気中にさらした後、5℃/分の昇温速度で30℃から120℃まで加熱しながら透気抵抗度を測定した。得られた温度に対する透気抵抗度のデータから、図1に示すような温度及び透気抵抗度をそれぞれ横軸及び縦軸に設定した曲線のグラフを作成し、温度が120℃までの曲線を一次近似直線求めて、その傾きを120℃までにおける透気抵抗度の上昇割合とした。
 [インピーダンス]
 インピーダンスの測定には、インピーダンス測定装置(ソーラトロン製、SI1250、SI1287)を用いた。をガラス板(50mm(W)×80mm(L)×3mm(T))の上にNi箔(30mm×20mm)、微多孔膜(30mm(W)×20mm(L))、Ni箔(30mm×20mm)の順に重ね、微多孔膜に典型的な電解質(1mol/LのLiPF、リチウム塩、エチレンカーボネート(EC):炭酸エチルメチル(EMC)=40:60vol%からなる)をセパレータに約0.02ml含侵させ、1.0kV印加(定電圧)し、10秒後の値をインピーダンス(Ω/cm)とした。
インピーダンスを以下のように評価した。
極めて良好(A):1.00Ω/cm未満
良好(B):1.00Ω/cm以上、1.50Ω/cm未満
不良(C):1.50Ω/cm以上。
 [評価用電池の作製方法]
 評価に用いた電池(評価用電池)は、正極活物質としてリチウムコバルト複合酸化物LiCoO、負極活物質として黒鉛、電解液としてEC/EMC/DMCの混合溶媒に調製した1mol/LのLiPFを使用し、正極、微多孔膜からなるセパレータ、及び、負極を積層した後、常法により巻回電極体を作製し、電池缶に挿入し、電解液を含浸させ、封口して、作製した。以下に、評価用電池の製造方法の詳細を説明する。
 [正極の作製]
 正極活物質としてリチウムコバルト複合酸化物LiCoO、導電材としてアセチレンブラック、バインダーであるポリフッ化ビニリデン(PVDF)とを93.5:4.0:2.5の質量比で混合して、溶媒N-メチルピロリドン(NMP)に混合分散させてスラリーを調製した。このスラリーを正極集電体となる厚さ12μmのアルミニウム箔の両面に塗布し、乾燥後、ロールプレス機で圧延した。圧延後のものを30mm幅にスリットして正極とした。
 [負極の作製]
 負極活物質として人造黒鉛、バインダーとしてカルボキシメチルセルロース、スチレン-ブタジエン共重合体ラテックスとを98:1:1の質量比となるように、精製水に混合分散させてスラリーを調製した。このスラリーを負極集電体となる厚さ10μmの銅箔の両面に塗布し、乾燥後、ロールプレス機で圧延した。圧延後のものを33mm幅にスリットして負極とした。
 [非水電解液]
 エチレンカーボネート:エチルメチルカーボネート:ジメチルカーボネート=3:5:2(体積比)の混合溶媒に、溶質としてLiPFを濃度1.15mol/リットルとなるように溶解させた。さらに、非水電解液100質量%に対して0.5質量%のビニレンカーボネートを添加し、非水電解液を調製した。
 [電池の作製]
 上記の正極、微多孔膜及び上記の負極を積層した後、扁平状の巻回電極体(高さ2.2mm×幅36mm×奥行29mm)を作製した。この扁平状の巻回電極体の各電極へ、シーラント付タブを溶接し、正極リード、負極リードとした。扁平状の巻回電極体部分をアルミラミネートフィルムで挟み、一部開口部を残してシールし、これを真空オーブンにて80℃で6時間乾燥、乾燥後は速やかに電解液を0.7mL注液し、真空シーラーでシールし、80℃、1MPaで1時間プレス成型した。続いて、充放電を実施した。充放電条件は300mA電流値で、電池電圧4.2Vまで定電流充電した後、電池電圧4.2Vで15mAになるまで定電圧充電を行った。10分の休止後、300mAの電流値で電池電圧3.0Vまで定電流放電を行い、10分休止した。以上の充放電を3サイクル実施し、電池容量300mAhの試験用二次電池を作製した。
 [体積エネルギー密度]
 体積エネルギー密度は、以下の式によって、測定した。
体積エネルギー密度(Wh/L)=平均作動電圧(V)×電池容量(Ah)/電池の体積(L)
体積エネルギー密度を以下のように評価した。
極めて良好(A):490Wh/L以上
良好(B):480Wh/L以上、490Wh/L未満
不良(C):480Wh/L未満。
 [レート特性]
 レート特性は以下の方法で評価を行った。レート特性の測定には上記(評価用電池の作製方法)にて作製した試験用二次電池を用いた。この電池を電池電圧4.2Vまで1.0Cの電流値で定電流充電した後、電池電圧4.2Vで0.05Cの電流値になるまで定電圧充電を行い、0.2Cの電流値で電池電圧が3.0Vになるまで放電(定電流放電)して放電容量を測定した。続いて、前述の手順にて再度4.2Vまで充電した後、5Cの電流値で電池電圧が3.0Vになるまで放電(定電流放電)して放電容量を測定した。下記の式により放電容量比(%)を算出した。
式:放電容量比=(5Cでの放電容量/0.2Cでの放電容量)×100
レート特性を以下のように評価した。
極めて良好(A):90%以上
良好(B):85%以上、90%未満
不良(C):85%未満。
 [サイクル特性]
 サイクル特性は以下の方法で評価を行った。サイクル特性の測定には上記(評価用電池の作製)にて作製した試験用二次電池を用いた。その電池を電池電圧4.2Vまで1.0Cの電流値で定電流充電した後、電池電圧4.2Vで0.05Cの電流値になるまで定電圧充電を行った。10分の休止後、1.0Cの電流値で電池電圧が3.0Vになるまで定電流放電を行い、10分休止した。この充放電を1サイクルとして、500回充放電を繰り返し行った。
下記の式により残存容量比を算出した。
式:残存容量比=500サイクル目放電容量×100/1サイクル目放電容量
サイクル特性は以下のように評価した。
極めて良好(A):90%以上
良好(B):85%以上、90%未満
不良(C):85%未満。
 [圧壊試験]
 圧壊試験は以下の方法で評価を行った。圧壊試験の測定には上記(評価用電池の作製)にて作製した試験用二次電池を用いた。2枚の平板で電池を加圧し、電池の温度上昇の確認を5セルで実施した。
圧壊試験は以下のように評価した。
極めて良好(A):5セル全てにおいて、表面温度上昇が80℃以下
良好(B):1~2セルにおいて、表面温度上昇が80℃超過120℃以下であり、残りのセルの表面温度上昇が80℃以下
普通(C):3~5セルにおいて、表面温度上昇が80℃超過120℃以下であり、残りのセルの表面温度上昇が80℃以下
不良(D):1~5セルにおいて、表面温度上昇が120℃超過。
 [外部短絡試験]
 外部短絡試験は以下の方法で評価を行った。外部短絡試験の測定には上記(評価用電池の作製)にて作製した試験用二次電池を用いた。正極端子および負極端子を、外部抵抗に接続して、電池の温度上昇の確認を5セルで実施した。
外部短絡試験は以下のように評価した。
極めて良好(A):5セル全てにおいて、表面温度上昇が80℃以下
良好(B):1~2セルにおいて、表面温度上昇が80℃超過120℃以下であり、残りのセルの表面温度上昇が80℃以下
普通(C):3~5セルにおいて、表面温度上昇が80℃超過120℃以下であり、残りのセルの表面温度上昇が80℃以下
不良(D):1~5セルにおいて、表面温度上昇が120℃超過。
 (実施例1)
 表1に示す重量平均分子量2.2×10g/mol、分子量分布6、極限粘度16dl/gの超高分子量ポリエチレン40質量%と、重量平均分子量4.1×10g/mol、分子量分布13.5、極限粘度4.0dl/gの高密度ポリエチレン(長鎖分岐ポリエチレン)60質量%からなるポリオレフィン組成物100質量%に対し、酸化防止剤としてテトラキス(メチレン-3-(3,5-ジターシャリーブチル-4-ヒドロキシフェニル)-プロピオネート)メタン0.2質量%をドライブレンドして得られた原料を二軸押出機に投入し、さらに二軸押出機のサイドフィーダーから流動パラフィンを供給し、二軸押出機内でポリオレフィン組成物が25質量%、流動パラフィンが75質量%となるように混合したものを溶融混練して、ポリオレフィン溶液を調製した。
 このポリオレフィン溶液を二軸押出機のTダイから押し出し、冷却ローラで引き取りながら冷却し、ゲル状シートを形成した。得られたゲル状シートを、二軸延伸機により112℃でMDおよびTDともに5倍に同時二軸湿式延伸し、そのまま二軸延伸機に固定してMDおよびTDの両方向に寸法変化が無いように、110℃の温度で第一熱固定処理した。次いで延伸したゲル状シートを塩化メチレン浴の洗浄槽中に浸漬して流動パラフィンを除去し洗浄して得られた微多孔膜を乾燥機にて乾燥した。得られた微多孔膜を、乾式延伸せず、128℃で微多孔膜のTDに緩和率2%で熱緩和処理を行い、MDおよびTDの両方向に寸法変化が無いように固定し、128℃で第二熱固定処理した。次いで、微多孔膜を室温まで冷却してポリオレフィン微多孔膜を得た。
 表1に微多孔膜の製造条件、表2に評価結果を記載した。実施例1のポリオレフィン微多孔膜における温度に対する透気抵抗度の曲線とその一次近似直線を図1に示した。また、実施例1にて得られたポリオレフィン微多孔膜のDSC曲線を図5に示した。
 (実施例2~4)
 表1に示す樹脂組成と製造条件とした以外は実施例1と同様にポリオレフィン微多孔膜を得た。実施例2、3、4のポリオレフィン微多孔膜における温度に対する透気抵抗度の曲線を図2、3,4にそれぞれ示した。各実施例1~4の曲線に細い実線で一次近似直線を併記した。また、その一次近似直線の数式を凡例に付記した。
 (比較例1)
 表1に示す重量平均分子量2.2×10 g/mol、分子量分布6、極限粘度16dl/gの超高分子量ポリエチレン40質量%と、重量平均分子量3.0×10g/mol、分子量分布6.0、極限粘度3.7dl/gの高密度ポリエチレン60質量%からなるポリオレフィン組成物100質量%に対し、酸化防止剤としてテトラキス(メチレン-3-(3,5-ジターシャリーブチル-4-ヒドロキシフェニル)-プロピオネート)メタン0.2質量%をドライブレンドして得られた原料を二軸押出機に投入し、さらに二軸押出機のサイドフィーダーから流動パラフィンを供給し、二軸押出機内でポリオレフィン組成物が25質量%、流動パラフィンが75質量%となるように混合したものを溶融混練して、ポリオレフィン溶液を調製した。このポリオレフィン溶液を二軸押出機のTダイから押し出し、冷却ローラで引き取りながら冷却し、ゲル状シートを形成した。得られたゲル状シートを、二軸延伸機により112℃でMDおよびTDともに5倍に同時二軸湿式延伸し、そのまま二軸延伸機に固定してMDおよびTDの両方向に寸法変化が無いように、110℃の温度で第一熱固定処理した。
 次いで延伸したゲル状シートを塩化メチレン浴の洗浄槽中に浸漬して流動パラフィンを除去し洗浄して得られた微多孔膜を乾燥機にて乾燥した。得られた微多孔膜を、乾式延伸せず、128℃で微多孔膜のTDに緩和率2%で熱緩和処理を行い、MDおよびTDの両方向に寸法変化が無いように固定し、132℃で第二熱固定処理した。次いで、微多孔膜を室温まで冷却してポリオレフィン微多孔膜を得た。
 (比較例2)
 表1に示す樹脂組成と製造条件とした以外は実施例1と同様にポリオレフィン微多孔膜を得た。
 (比較例3)
 表1に示す重量平均分子量2.2×10 g/mol、分子量分布6、極限粘度16dl/gの超高分子量ポリエチレン18質量%と、重量平均分子量4.1×10g/mol、分子量分布13.5、極限粘度4.0dl/gの高密度ポリエチレン82質量%からなるポリオレフィン組成物100質量%に対し、酸化防止剤としてテトラキス(メチレン-3-(3,5-ジターシャリーブチル-4-ヒドロキシフェニル)-プロピオネート)メタン0.2質量%をドライブレンドして得られた原料を二軸押出機に投入し、さらに二軸押出機のサイドフィーダーから流動パラフィンを供給し、二軸押出機内でポリオレフィン組成物が30質量%、流動パラフィンが70質量%となるように混合したものを溶融混練して、ポリオレフィン溶液を調製した。
 このポリオレフィン溶液を二軸押出機のTダイから押し出し、冷却ローラで引き取りながら冷却し、ゲル状シートを形成した。得られたゲル状シートを、二軸延伸機により112℃でMDおよびTDともに5倍に同時二軸湿式延伸し、そのまま二軸延伸機に固定してMDおよびTDの両方向に寸法変化が無いように、110℃の温度で第一熱固定処理した。
 次いで延伸したゲル状シートを塩化メチレン浴の洗浄槽中に浸漬して流動パラフィンを除去し洗浄して得られた微多孔膜を乾燥機にて乾燥した。得られた微多孔膜を延伸機により132℃でTDに1.40倍に乾式延伸し、また132℃でTDに緩和率2%で熱緩和処理を行い、MD方向およびTD方向の両方向に寸法変化が無いように固定し、128℃で第二熱固定処理した。次いで、微多孔膜を室温まで冷却してポリオレフィン微多孔膜を得た。
 (比較例4)
 表1に示す樹脂組成と製造条件とした以外は実施例1と同様に微多孔膜を得た。
 (比較例5)
 表1に示す樹脂組成と製造条件とし、熱緩和及び第二熱固定を行わなかったこと以外は比較例3と同様に微多孔膜を得た。
 (比較例6)
 表1に示す樹脂組成と製造条件とした以外は実施例1と同様に微多孔膜を得た。
 (比較例7)
 表1に示す樹脂組成と製造条件とし、熱緩和及び第二熱固定を行わなかったこと以外は実施例1と同様に微多孔膜を得た。
 得られた微多孔膜の評価結果等を表2に記載した。各比較例にて得られた、120℃までにおける透気抵抗度の上昇割合の根拠となる曲線を各図に記載した。比較例1にて得られたDSC曲線を図6に示した。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
 [評価]
 実施例1~4の微多孔膜は、極めて薄膜でありながら、空孔率及び透気抵抗度が高くなっており、電池特性に優れることが示された。図1及び図2では、各実施例において、120℃以下の温度範囲において透気抵抗度が温度上昇に伴って高くなりやすいことが分かる。そのため、シャットダウンが完了するまでの低温においてイオンの通過を妨げやすく、シャットダウン完了時には電池の温度がそれ程上昇しないことが分かる。一方、比較例では、そのような120℃までの透気抵抗度の上昇割合が小さくなっており、短絡が発生した後、シャットダウンが完了するまでの間に多数のイオンが電極間にて流れて温度上昇しやすいことが分かった。
 そして、DSCに関する実施例の結果を示す図5と比較例の結果を示す図6を比べると、既述のように、実施例では微多孔膜を構成する樹脂の吸熱量が比較例よりも小さいことが分かる。そのため、実施例では微多孔膜が軟化、溶融しやすいことが分かる。
 

Claims (8)

  1.  透気抵抗度が300秒/100cm以上500秒/100cm以下、空孔率が18%以上30%以下及び幅方向における引張伸度が105%以上、膜厚が6μm未満であるポリオレフィン微多孔膜。
  2.  前記ポリオレフィン微多孔膜は分子量分布10以上20以下の長鎖分岐ポリエチレンを50質量%以上含む請求項1に記載のポリオレフィン微多孔膜。
  3.  機械方向の引張強度が230MPa以上である請求項1または2に記載のポリオレフィン微多孔膜。
  4.  幅方向の引張伸度が150%以上である請求項1~3に記載のポリオレフィン微多孔膜。
  5.  示差走査熱量計で測定した融解吸熱量が200J/g以下である請求項1~4に記載のポリオレフィン微多孔膜。
  6.  請求項1~5に記載のポリオレフィン微多孔膜を含むセパレータを用いてなる電池。
  7.  長鎖分岐ポリエチレンを含むポリオレフィン樹脂を可塑剤と共に溶融混練して樹脂溶液を得る工程と、
     前記樹脂溶液をダイから吐出して冷却し、ゲル状シートを形成する工程と、
     前記ゲル状シートを120℃以下にて面倍率25倍以下にて同時二軸湿式延伸する工程と、
     前記湿式延伸後のゲル状シートから可塑剤を抽出して乾燥する工程と、
    を含むことを特徴とするポリオレフィン微多孔膜の製造方法。
  8.  前記乾燥工程の後に、130℃以下にて面倍率1.0倍で第二熱固定する工程を有する請求項7に記載のポリオレフィン微多孔膜の製造方法。
PCT/JP2019/046551 2018-12-26 2019-11-28 ポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法 WO2020137336A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020506288A JP7409301B2 (ja) 2018-12-26 2019-11-28 ポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法
CN201980046976.3A CN112424271A (zh) 2018-12-26 2019-11-28 聚烯烃微多孔膜及聚烯烃微多孔膜的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018242785 2018-12-26
JP2018-242785 2018-12-26

Publications (1)

Publication Number Publication Date
WO2020137336A1 true WO2020137336A1 (ja) 2020-07-02

Family

ID=71127077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046551 WO2020137336A1 (ja) 2018-12-26 2019-11-28 ポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法

Country Status (3)

Country Link
JP (1) JP7409301B2 (ja)
CN (1) CN112424271A (ja)
WO (1) WO2020137336A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022127224A1 (zh) * 2020-12-15 2022-06-23 上海恩捷新材料科技有限公司 一种聚烯烃微多孔膜及其生产系统、电池隔膜、电化学装置
WO2024019069A1 (ja) * 2022-07-20 2024-01-25 東レ株式会社 ポリオレフィン微多孔膜、電池用セパレータおよび電池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115207562B (zh) * 2022-08-29 2024-06-18 江苏恩捷新材料科技有限公司 一种隔膜拉伸固定装置、固定系统、拉伸装置、隔膜以及隔膜制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172420A (ja) * 1999-12-22 2001-06-26 Tonen Chem Corp ポリオレフィン微多孔膜及びその製造方法
JP2003003007A (ja) * 2001-06-19 2003-01-08 Tonen Chem Corp 熱可塑性樹脂微多孔膜の製造方法
JP2006179485A (ja) * 2004-12-23 2006-07-06 Toray Saehan Inc 二次電池セパレータ用ポリエチレン微多孔膜及びその製造方法
JP2013035293A (ja) * 2006-08-31 2013-02-21 Toray Battery Separator Film Co Ltd 多層微多孔膜及びその製造方法、並びに電池用セパレータ及び電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2443685B1 (en) * 2009-06-19 2014-07-16 Toray Battery Separator Film Co., Ltd. Microporous membranes, methods for making such membranes, and the use of such membranes as battery separator film
CN103762326B (zh) * 2014-01-17 2016-08-17 苏州鼎机新能源材料科技有限公司 一种超薄锂离子电池隔膜及其生产工艺
WO2016104792A1 (ja) * 2014-12-26 2016-06-30 東レバッテリーセパレータフィルム株式会社 ポリオレフィン微多孔膜、その製造方法および電池用セパレータ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172420A (ja) * 1999-12-22 2001-06-26 Tonen Chem Corp ポリオレフィン微多孔膜及びその製造方法
JP2003003007A (ja) * 2001-06-19 2003-01-08 Tonen Chem Corp 熱可塑性樹脂微多孔膜の製造方法
JP2006179485A (ja) * 2004-12-23 2006-07-06 Toray Saehan Inc 二次電池セパレータ用ポリエチレン微多孔膜及びその製造方法
JP2013035293A (ja) * 2006-08-31 2013-02-21 Toray Battery Separator Film Co Ltd 多層微多孔膜及びその製造方法、並びに電池用セパレータ及び電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022127224A1 (zh) * 2020-12-15 2022-06-23 上海恩捷新材料科技有限公司 一种聚烯烃微多孔膜及其生产系统、电池隔膜、电化学装置
WO2024019069A1 (ja) * 2022-07-20 2024-01-25 東レ株式会社 ポリオレフィン微多孔膜、電池用セパレータおよび電池

Also Published As

Publication number Publication date
JPWO2020137336A1 (ja) 2021-11-11
JP7409301B2 (ja) 2024-01-09
CN112424271A (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
JP4753446B2 (ja) ポリオレフィン製微多孔膜
JP5213443B2 (ja) ポリオレフィン微多孔膜
JP6680206B2 (ja) ポリオレフィン微多孔質膜、電池用セパレータ及び電池
CN110431176B (zh) 聚烯烃微多孔膜、非水电解液系二次电池用隔膜及非水电解液系二次电池
JP5572334B2 (ja) ポリオレフィン製微多孔膜
JP6988881B2 (ja) ポリエチレン微多孔膜を含む二次電池用セパレータ
JP6823718B2 (ja) ポリオレフィン微多孔膜、蓄電デバイス用セパレータ、及び蓄電デバイス
WO2020137336A1 (ja) ポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法
JP6756902B2 (ja) ポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法
JP4220329B2 (ja) ポリオレフィン微多孔膜及びその製造方法
EP3960813A1 (en) Heat-resistant polyolefin-based microporous film and method for producing same
JP5295857B2 (ja) 非水電解液電池用セパレータ及び非水電解液電池
JP2019102126A (ja) 電池用セパレータ及び非水電解液二次電池
JP6988880B2 (ja) ポリオレフィン微多孔膜
WO2021065283A1 (ja) ポリオレフィン微多孔膜、非水電解液系二次電池用セパレータ、及び非水電解液系二次電池
JP6781565B2 (ja) 蓄電デバイス用セパレータ
JP2022048518A (ja) ポリオレフィン微多孔膜、それを用いたコーティングフィルム及び二次電池
JPWO2019151220A1 (ja) ポリオレフィン微多孔膜、コーティングフィルム及び電池、並びにポリオレフィン微多孔膜の製造方法
KR101103125B1 (ko) 폴리올레핀제 미다공막
TW200830616A (en) Electrode assembly and non-aqueous electrolyte battery

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020506288

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904503

Country of ref document: EP

Kind code of ref document: A1