WO2016088883A1 - 炭化珪素単結晶の製造方法及び炭化珪素単結晶基板 - Google Patents

炭化珪素単結晶の製造方法及び炭化珪素単結晶基板 Download PDF

Info

Publication number
WO2016088883A1
WO2016088883A1 PCT/JP2015/084185 JP2015084185W WO2016088883A1 WO 2016088883 A1 WO2016088883 A1 WO 2016088883A1 JP 2015084185 W JP2015084185 W JP 2015084185W WO 2016088883 A1 WO2016088883 A1 WO 2016088883A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
growth
crystal
silicon carbide
carbide single
Prior art date
Application number
PCT/JP2015/084185
Other languages
English (en)
French (fr)
Inventor
佐藤 信也
藤本 辰雄
勝野 正和
弘志 柘植
正史 中林
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to US15/532,791 priority Critical patent/US10711369B2/en
Priority to KR1020177014566A priority patent/KR101936007B1/ko
Priority to JP2016562698A priority patent/JP6584428B2/ja
Priority to CN201580064424.7A priority patent/CN107002281B/zh
Priority to EP15865728.8A priority patent/EP3228733B1/en
Publication of WO2016088883A1 publication Critical patent/WO2016088883A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/025Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • C01B32/963Preparation from compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Definitions

  • the present invention relates to a method for producing a silicon carbide single crystal in which a silicon carbide raw material is sublimated to grow a bulk silicon carbide single crystal on a seed crystal, and a silicon carbide single crystal substrate.
  • Silicon carbide is a wide bandgap semiconductor with a wide forbidden bandwidth, and has characteristics that far surpass conventional silicon (Si) in terms of voltage resistance and heat resistance. Research and development is ongoing.
  • SiC single crystal One technique for growing a silicon carbide single crystal (SiC single crystal) is a sublimation recrystallization method.
  • this method also called the modified Rayleigh method, attaches a seed crystal made of SiC to the crucible lid, places the SiC raw material on the crucible container body, and sublimates the SiC raw material, so that the bulk form is formed on the seed crystal.
  • the SiC single crystal is grown.
  • impurity doping into the growing single crystal is also possible.
  • nitrogen (N 2 ) gas can be added to the growing atmospheric gas.
  • a SiC single crystal substrate is manufactured and used in the field of power electronics, etc. Then, it is used for the production of SiC devices.
  • the crystal growth by the sublimation recrystallization method requires a temperature exceeding 2000 ° C., and the crystal growth is performed by providing a temperature gradient in the crucible in which the seed crystal and the SiC raw material are arranged.
  • a crystal always includes crystal defects such as dislocation defects and stacking faults.
  • dislocation defects include threading edge dislocations, basal plane dislocations, and screw dislocations.
  • screw dislocations are 8 ⁇ 10 2 to 3 ⁇ 10 3 (pieces).
  • Non-Patent Documents 2 and 3 In recent years, research and investigation on SiC crystal defects and device performance have progressed, and the effects of various defects are becoming apparent. In particular, it has been reported that screw dislocation causes a leakage current of the device and reduces the lifetime of the gate oxide film (see Non-Patent Documents 2 and 3), and a high-performance SiC device is manufactured. For this, at least a SiC single crystal substrate with reduced screw dislocations is required.
  • Patent Document 1 a plane whose offset angle (off angle) is within 60 ° from the ⁇ 0001 ⁇ plane is used as the growth plane, and screw dislocations are generated in the growing SiC single crystal at a higher density than the surroundings.
  • a bulk SiC single crystal is grown using a dislocation control seed crystal having a region capable of generating screw dislocations in a region of 50% or less of the growth plane, and the region capable of generating screw dislocations is c-axis during the growth.
  • a method for producing a SiC single crystal is disclosed in which a silicon carbide single crystal is grown such that a region projected in the direction overlaps with a c-plane facet.
  • Patent Document 1 discloses that an SiC single crystal having a region having a high screw dislocation density and a region having a screw dislocation density lower than this region can be produced by the manufacturing method.
  • Patent Document 2 discloses that the thickness is at least 0 at a first growth atmosphere pressure of 3.9 kPa to 39.9 kPa and a first growth temperature of 2100 ° C. to less than 2300 ° C.
  • a first growth step of growing a .5 mm silicon carbide single crystal, a second growth atmosphere pressure of 0.13 kPa to 2.6 kPa, and the temperature of the seed crystal is higher than the first growth temperature at 2400 ° C.
  • Patent Document 2 discloses a method of obtaining a silicon carbide single crystal substrate that is cut from a bulk silicon carbide single crystal grown by the SiC single crystal manufacturing method and has less screw dislocations in the peripheral portion than in the central portion of the substrate. Disclosure.
  • the screw dislocation in the SiC single crystal is converted into a stacking fault in the first growth step.
  • a structural transformation is more likely to occur in the peripheral part than in the central part of the growth surface in the process of growing the SiC single crystal, and the screw dislocation density in the peripheral part is higher than in the central part of the substrate. It can be reduced to about 1/10. Therefore, it is extremely effective as a method for reducing screw dislocation.
  • the region where the screw dislocation is reduced is a donut-shaped peripheral region excluding the central portion of the substrate, there is room for consideration in terms of further increasing the device yield.
  • Patent Document 3 describes that the angle between 0.1 ° and 10 ° in the ⁇ 11-20> direction (or ⁇ 1-100> direction) with respect to the (0001) plane
  • the manufacturing method of the SiC single crystal ingot which forms the (0001) facet surface in the edge part of a SiC single crystal ingot is made using the base substrate which has the off-angle of this as a seed crystal.
  • Patent Document 3 since nitrogen is easily taken in a portion below the surface where the facet surface is formed, a region having a relatively low nitrogen concentration is formed on the center side of the SiC single crystal ingot, thereby causing variations in the nitrogen concentration. It discloses that a suppressed SiC single crystal substrate can be obtained.
  • the obtained ingot is supposed to reduce dislocations in substantially the entire region, but the detailed mechanism for reducing dislocations is not clear, and the etch pit density (1 ⁇ 10 4 ⁇ 5 ⁇ 10 4 cm -2 ), the SiC single crystal substrate obtained can be reduced to 1/2 to 1/20, but how is the dislocation actually in the substrate? It is unknown whether it is distributed in
  • Patent Document 4 discloses a silicon carbide single crystal at a first growth atmosphere pressure of 3.9 kPa to 39.9 kPa and a first growth temperature of 2100 ° C. to less than 2300 ° C. A first growth step to be grown, a second growth atmosphere pressure of 0.13 kPa to 2.6 kPa, and a second growth temperature at which the temperature of the seed crystal is higher than the first growth temperature and lower than 2400 ° C. And a second growth step of growing a silicon carbide single crystal thicker than the first growth step.
  • Patent Document 4 discloses that a high-quality silicon carbide single crystal is obtained by structurally converting screw dislocations into stacking faults in the first growth step and increasing the temperature of the seed crystal in the second growth step. Discloses that high-speed growth with good productivity can be performed.
  • Patent Document 5 discloses that a silicon carbide single crystal is used in a state where an impurity for controlling volume resistivity is added using a seed crystal whose crystal growth surface has an offset angle of 2 ° to 15 ° from the ⁇ 0001 ⁇ plane. A manufacturing method for crystal growth of crystals is disclosed. Patent Document 5 discloses that if a SiC single crystal substrate cut out from such a crystal is used, a high-performance semiconductor element with extremely low power loss can be manufactured with high yield.
  • Patent Document 6 a plurality of suppression layers having different nitrogen concentrations and suppressing basal plane dislocation density are formed on the substrate, and then an active layer of a silicon carbide single crystal thin film is formed on the suppression layer.
  • the manufacturing method of the epitaxial silicon carbide single crystal substrate characterized by this is disclosed.
  • Patent Document 6 by changing the nitrogen concentration in a stepwise manner, an appropriate crystal distortion that does not cause new crystal dislocation is generated at the interface between the suppression layers or the interface between the suppression layer and the active layer. It is disclosed that strain can be concentrated on the interface, and as a result, it effectively acts on suppression of basal plane dislocations.
  • Patent Document 7 has grown by sublimation growth of a SiC single crystal boule on a SiC single crystal seed while changing the temperature, changing the temperature gradient, and changing the composition and pressure of the atmospheric gas. Disclosed is a method in which the threading dislocation density of a SiC single crystal boule is converted from threading dislocations to basal plane dislocations during the growth of a SiC single crystal boule to substantially decrease from the first growing portion of the boule to the last growing portion of the boule. is doing.
  • U.S. Patent No. 6,099,077 discloses minimizing the propagation of threading dislocations during growth from seeds to grown crystals.
  • Patent Documents 1 to 7 it is possible to efficiently reduce screw dislocations and secure a wide range of reduced screw dislocations in spite of using spiral growth centering on screw dislocations.
  • a method for producing a silicon carbide single crystal is not disclosed. Further, the nitrogen partial pressure in the growth atmosphere and the supply of the step from the facet have no influence on the reduction of the screw dislocation density, and neither of Patent Documents 1 to 7 discloses nor suggests.
  • an object of the present invention is to obtain an SiC single crystal substrate that efficiently reduces the screw dislocations of the SiC single crystal obtained by the sublimation recrystallization method and secures a wide range of reduced screw dislocations.
  • An object of the present invention is to provide a method for producing a SiC single crystal that can be used.
  • Another object of the present invention is to provide a SiC single crystal substrate in which a region where screw dislocations are reduced is secured in a wide range.
  • the present inventors can efficiently reduce the screw dislocation of the SiC single crystal obtained by the sublimation recrystallization method, and further consider the yield of the SiC device, etc.
  • the means for obtaining the SiC single crystal substrate that can be secured by the above-mentioned method have been studied earnestly.
  • the inventors of the present invention have grown a SiC single crystal so that a facet ⁇ 0001 ⁇ plane is formed at the peripheral edge of the crystal end face on which the bulk SiC single crystal is grown, and a main growth process for performing main crystal growth.
  • a bulk SiC single crystal that solves the above problems can be obtained by including a growth sub-process in which crystal growth is performed under a predetermined pressure and temperature under a high nitrogen concentration. Completed the invention.
  • the gist of the present invention is as follows. (1) A seed crystal made of silicon carbide is placed in a crucible lid body of a crucible having a crucible container body and a crucible lid body, a silicon carbide raw material is placed in the crucible container body, and the silicon carbide raw material is sublimated to seed.
  • a silicon carbide single crystal characterized by including a growth sub-process in which crystal growth is performed at a higher nitrogen concentration, a growth atmosphere pressure of 3.9 kPa to 39.9 kPa, and a seed crystal temperature of 2100 ° C. to less than 2300 ° C.
  • the main growth step is that the nitrogen concentration in the crystal is 1 ⁇ 10 18 cm ⁇ 3 or more and 1 ⁇ 10 20 cm ⁇ 3 or less, the growth atmosphere pressure is 0.13 kPa or more and 2.6 kPa or less, and the temperature of the seed crystal is The method for producing a silicon carbide single crystal according to any one of (1) to (3), wherein the temperature is higher than that of the growth substep and less than 2400 ° C. (5) The bulk shape so that the growth surface in the process of growing the bulk silicon carbide single crystal has a curved surface at the growth peripheral portion and is flat compared to the growth peripheral portion at the growth central portion.
  • a method for producing a silicon carbide single crystal is forming the silicon carbide single crystal of claim 1 on the main surface of the seed crystal.
  • a silicon carbide single crystal substrate having an off angle from the ⁇ 0001 ⁇ plane to the off orientation, and having a facet ⁇ 0001 ⁇ plane at the substrate peripheral portion of the substrate surface on the end point side of the vector indicating the off orientation, In the distribution of the screw dislocation density along the substrate diameter from the facet ⁇ 0001 ⁇ plane toward the starting point of the vector indicating the off orientation, there exists a distribution boundary of the screw dislocation density where the decrease rate of the screw dislocation density increases rapidly.
  • a silicon carbide single crystal substrate characterized by the above.
  • a complex helix is transmitted from a basal plane dislocation propagating in the basal plane with a Burgers vector of 1/3 ⁇ 11-20> (0001). It is known that dislocations are generated (D. Nakamura et al. Journal of Crystal Growth 304 (2007) 57-3), and in the present invention, these complex screw dislocations are referred to as helical dislocations.
  • the method for producing a SiC single crystal of the present invention it is possible to efficiently reduce the screw dislocations of the SiC single crystal, and to obtain a SiC single crystal substrate in which a region where the screw dislocations are reduced is secured in a wide range. Can do.
  • the SiC single crystal substrate of the present invention since a region where screw dislocations are reduced is secured in a wide range, a high-quality SiC device can be obtained with a high yield.
  • FIG. 1 It is a schematic block diagram of the single crystal growth apparatus used in order to manufacture the SiC single crystal of this invention. It is a schematic longitudinal cross-sectional view which shows the process in which a facet ⁇ 0001 ⁇ plane is formed in the crystal peripheral part in the crystal
  • (A) is a longitudinal section schematically showing a structure in which a heat removal hole having a sufficiently small diameter ⁇ compared to the diameter ⁇ of the SiC seed crystal is provided in the heat insulating material covering the lid of the crucible to which the SiC seed crystal is attached.
  • (b) is a longitudinal cross-sectional view which shows typically the positional relationship of the heat removal hole of the heat insulating material of the single crystal growth apparatus shown by (a) figure, the surface shape of a SiC single crystal, and a facet.
  • (A) is the longitudinal block diagram which shows typically the structure where the diameter of the heat removal hole of the heat insulating material which covers the cover body of the crucible which attaches a SiC seed crystal was expanded
  • (b) is a figure (a). It is a longitudinal cross-sectional view which shows typically the heat removal hole of the heat insulating material of the shown single crystal growth apparatus, the surface shape of a SiC single crystal, and the positional relationship of a facet.
  • 3 is a schematic plan view showing dislocation distribution measurement points and a screw dislocation density distribution boundary in the SiC single crystal substrate according to Example 1; 3 is a schematic cross-sectional view schematically showing the state of dislocation defects and stacking faults in the (1-100) longitudinal section of the SiC single crystal according to Example 1.
  • a seed crystal (SiC seed crystal) made of silicon carbide is disposed in a crucible lid body of a crucible having a crucible container body and a crucible lid body, and an SiC raw material is disposed in the crucible container body.
  • a SiC single crystal is grown by sublimating a SiC raw material to grow a bulk SiC single crystal on a SiC seed crystal.
  • the ⁇ 0001 ⁇ plane and the main surface form a predetermined off angle such that the normal line of the ⁇ 0001 ⁇ plane is directed to a predetermined off orientation on the main surface (or surface). It has been cut out.
  • the manufacturing method of the present invention is characterized in that the facet ⁇ 0001 ⁇ plane is formed at the crystal peripheral portion of the crystal end face on which the bulk SiC single crystal has grown, and the growth main process is performed prior to the main growth process for performing the main crystal growth.
  • a growth sub-process adopting a growth condition different from the process is included.
  • the facet ⁇ 0001 ⁇ plane is a smooth surface generated only in a region having an angle perpendicular to the ⁇ 0001> direction that is the c-axis of the crystal when a SiC single crystal is grown. Therefore, a SiC seed crystal sliced so that the normal of the ⁇ 0001 ⁇ plane has a predetermined off orientation and forms a predetermined off angle with respect to the main surface is used to facet the crystal peripheral portion of the crystal end face.
  • the growth surface in the process of growing the bulk SiC single crystal 12 has a curved surface at the growth peripheral portion.
  • the center portion may be crystal grown while being flatter than the growth peripheral portion.
  • the obtained SiC single crystal 12 has a flat crystal central portion of the crystal end face 12a and a curved crystal peripheral portion, and has a gentle convex shape.
  • the off orientation of the SiC seed crystal 1 A facet ⁇ 0001 ⁇ plane is formed at the end of the vector indicating dW and at the crystal peripheral portion of the crystal end face 12a of the SiC single crystal 12.
  • the off direction dW and the off angle ⁇ W are not particularly limited. However, in view of the current situation of device fabrication, the off direction dW is preferably in the ⁇ 11-20> direction or ⁇ 1-100. > Either direction. Further, the off angle ⁇ W should be more than 0 ° and not more than 16 °, and more preferably not less than 2 ° and not more than 8 °, because most of the substrates used for device fabrication are 4 ° off substrates. There should be.
  • the off angle ⁇ W is an angle formed between the normal line n of the main surface (or surface) of the SiC seed crystal 1 and the ⁇ 0001> direction (c-axis direction).
  • the off orientation dW is the direction of the n ′′ vector obtained by projecting the normal vector n ′ of the ⁇ 0001 ⁇ plane of the SiC seed crystal 1 onto the main surface (or surface) of the SiC seed crystal 1.
  • the growth surface at the growth peripheral portion has a curved surface in the process of growing the SiC single crystal 12.
  • the means for making the growth surface at the growth center portion flatter than the growth peripheral portion is a method of controlling the shape of the growth surface of the SiC single crystal by adjusting the diameter of the heat removal hole of the heat insulating material covering the lid of the crucible to which the SiC seed crystal is attached.
  • the ingot surface shape of the SiC single crystal is a convex shape, and the facet ⁇ 0001 ⁇ plane is formed substantially at the center of the crystal end surface of the SiC single crystal.
  • the diameter ⁇ of the heat removal hole of the heat insulating material is preferably 40% or more of the diameter ⁇ of the SiC seed crystal. % Or less, more preferably 60% or more and 80% or less.
  • the growth surface at the growth peripheral portion have a curved surface and the growth surface at the growth central portion flatter than the growth peripheral portion
  • a heat insulating material covering the crucible lid Compared with the part corresponding to the growth peripheral part, the thermal conductivity of the crucible lid made of a graphite member or the like corresponding to the thin part of the heat insulating material corresponding to the growth central part corresponds to the growth peripheral part.
  • a method for controlling the surface shape of the ingot can be exemplified by adjusting the temperature distribution during crystal growth by increasing the height of the portion corresponding to the center of growth compared to the portion.
  • the facet ⁇ 0001 ⁇ plane is formed at the crystal peripheral portion of the crystal end face where the bulk SiC single crystal has grown as described above, and the growth is performed prior to the main growth process for performing the main crystal growth.
  • a growth sub-process that uses different growth conditions from the main process. That is, a growth sub-process with a growth atmosphere pressure of 3.9 kPa to 39.9 kPa and a seed crystal temperature of 2100 ° C. to less than 2300 ° C. is included after the nitrogen concentration is higher than that of the main growth step.
  • the reason for including such a growth sub-process is to reduce the screw dislocation by structurally converting a part of the screw dislocation in the SiC single crystal into a stacking fault. Details are as described below.
  • SiC crystal growth in the sublimation recrystallization method generally includes “step flow growth centering on facets” and “spiral growth centering on threading screw dislocations”. That is, as shown in FIG. 5, the main crystal growth is step flow growth, but in order to increase the growth rate in the growth direction indicated by the arrow in FIG. 5 (that is, the macro growth direction). In addition to step flow growth at facets, spiral growth centering on threading screw dislocations is required.
  • the screw dislocations are reduced because, as shown in FIG. 6A, the screw dislocations are covered with high steps, so that the extension direction of the dislocations is deflected by 90 degrees and converted into stacking faults. It is thought to do.
  • the step overlap occurs by inhibiting the lateral extension of the step (step bunching), and the high step. Is formed.
  • the method of inhibiting the horizontal extension of a step was used by increasing the amount of nitrogen (N) on a terrace. That is, in order to increase the amount of N on the terrace, in addition to increasing the nitrogen partial pressure in the growth atmosphere, the growth rate should be suppressed so that step flow growth due to the progress of the terrace becomes the dominant condition. To do.
  • N nitrogen
  • FIG. 7B not only a high step is formed by overlapping of steps, but also a wide terrace is formed, and the amount of N increases on the wide terrace.
  • the extension of is further inhibited. Therefore, it is considered that as the distance from the facet increases, that is, the distance from the facet increases, a higher step is easily formed, and the reduction of the screw dislocation is remarkably exhibited.
  • the nitrogen concentration in the growth sub-process is 3.9 kPa to 39.9 kPa (30 Torr to 300 Torr), preferably 13.3 kPa or more.
  • the temperature is 39.9 kPa or less (100 Torr or more and 300 Torr or less), and the temperature of the seed crystal is 2100 ° C. or more and less than 2300 ° C., preferably 2200 ° C. or more and less than 2300 ° C.
  • the growth atmospheric pressure of the growth sub-process is less than 3.9 kPa, the growth rate becomes faster and spiral growth becomes dominant, and the reduction of screw dislocation does not appear effectively. On the contrary, if it exceeds 39.9 kPa, growth occurs. There is a problem with productivity because the speed is significantly reduced.
  • the temperature of the seed crystal is lower than 2100 ° C., the growth rate is lowered, which causes a problem in productivity. On the other hand, if the temperature is 2300 ° C. or higher, the growth rate is increased. Not expressed.
  • the nitrogen concentration in the growth sub-process is preferably 2 ⁇ 10 19 cm ⁇ from the viewpoint of suppressing the formation of two-dimensional nuclei on a large terrace while more reliably inhibiting the lateral extension of the step. 3 to 1 ⁇ 10 20 cm ⁇ 3 , more preferably 4 ⁇ 10 19 cm ⁇ 3 to 1 ⁇ 10 20 cm ⁇ 3 and higher than the nitrogen concentration in the main growth step. To adjust.
  • the crystal growth rate in the growth sub-process is preferably grown so that the crystal growth rate is 0.1 mm / h or less, more preferably 0.05 mm / h or less. It is good.
  • the nitrogen concentration in the crystal obtained in the growth subprocess is higher than that in the main growth process, it is not suitable as a product when considered for general device applications.
  • the shorter time is desirable from the viewpoint of productivity, and the crystal growth rate in the growth sub-process is preferably 0.01 mm / h or more.
  • the thickness of the crystal grown in the growth sub-process is preferably 1 mm or more, more preferably 3 mm in order to more reliably obtain the effect of reducing the screw dislocation by the structural transformation as described above. That's it.
  • the thickness of the crystal grown in this growth sub-process By increasing the thickness of the crystal grown in this growth sub-process, the structural transformation from screw dislocations to stacking faults can be made more reliably, so the thickness is not limited, but the effect is saturated and productivity etc.
  • the upper limit of the thickness of the crystal grown in the growth sub-process can be 10 mm.
  • the crystal growth is performed by the main growth process in which the main crystal growth is performed.
  • the main growth step for performing the main crystal growth is a step for performing main crystal growth in the method of the present invention, and specifically, a step for obtaining a thickness of more than 50% of the obtained SiC single crystal. Or a process that occupies more than 50% of the crystal growth time in the growth time of the SiC single crystal, or a process in which the crystal growth rate is the fastest among the processes of growing the SiC single crystal, Any one or more of the above are satisfied.
  • the SiC single crystal is mainly grown by lowering the growth atmosphere pressure and increasing the temperature of the seed crystal by increasing the crystal growth rate as compared with the growth sub-process.
  • Specific growth conditions can be the same as the growth conditions of a SiC single crystal by a general sublimation recrystallization method.
  • the growth atmosphere pressure is preferably 0.13 kPa to 2.6 kPa (1 Torr to 20 Torr), more preferably 0.65 kPa to 1.95 kPa (5 Torr to 15 Torr).
  • the temperature of the seed crystal in the main growth step is higher than the temperature of the seed crystal in the growth sub-step, but it is lower than 2400 ° C., more preferably 2200 ° C. or higher and 2400 ° C. or lower.
  • the nitrogen concentration in the growth main process can be appropriately set except that it is lower than the nitrogen concentration in the growth sub-process.
  • the nitrogen concentration in the crystal is 2 ⁇ 10 18 cm ⁇ 3 or more. It is preferable to set it to 1 ⁇ 10 20 cm ⁇ 3 or less.
  • the semi-insulating SiC single crystal may be obtained by cutting off the nitrogen supply.
  • the crystal growth rate in this main growth step is preferably 0.1 mm or more per hour, and more preferably 0.3 mm / hr or more.
  • the thickness of the SiC single crystal grown in the main growth process is preferably at least 10 mm in consideration of producing a SiC single crystal ingot according to the present invention and taking out the SiC single crystal substrate from this. Preferably it is 30 mm or more.
  • the upper limit of the crystal growth rate in the main growth process is about 1.0 mm / hr, and the upper limit of the thickness of the SiC single crystal grown in the main growth process is about 100 mm. It is.
  • the pressure when switching from the growth sub-process to the growth main process, the pressure is preferably reduced at a pressure change rate of 12 kPa or less per hour, and more preferably 1 kPa or less per hour. Good.
  • the larger the change width per unit time the larger the amount of change in the growth rate over time, and it is possible that the crystal growth during that time becomes unstable. It can be reliably excluded.
  • the temperature when switching the growth temperature, the temperature is preferably increased at a temperature change rate of 40 ° C. or less per hour, and more preferably 10 ° C. or less per hour.
  • the screw dislocation is reduced by using the structural transformation of dislocations, there is no limitation on the polytype of the obtained SiC single crystal, and typical polytypes of 4H type, 6H type, and 3C type are available. It can be applied as a method for obtaining a silicon carbide single crystal. In particular, it is advantageous in that it can be applied to the 4H type, which is considered to be promising as a power device application.
  • the screw dislocations in the present invention can be reduced by controlling the growth conditions by the sublimation recrystallization method, there is no limitation on the crystal diameter of the obtained SiC single crystal. Therefore, the present invention can be applied to a crystal growth process having a diameter of 50 mm or more and 300 mm or less, which is considered most promising at the present time.
  • part of the screw dislocations in the SiC single crystal is converted into stacking faults in the growth sub-process, so that the crystal end face of the SiC single crystal obtained in the main growth process
  • a facet ⁇ 0001 ⁇ plane is formed at the peripheral edge of the crystal, and the screw dislocation density is reduced in a region having a predetermined distance from the facet ⁇ 0001 ⁇ plane.
  • the SiC single crystal substrate has a facet ⁇ 0001 ⁇ plane at the substrate peripheral portion of the substrate surface on the end point side of the vector indicating the off orientation.
  • the SiC single crystal substrate has a steep dislocation density when the distribution of the screw dislocation density is determined along the substrate diameter away from the facet ⁇ 0001 ⁇ plane toward the start point of the off-direction vector. Has a decreasing distribution boundary. That is, at the distribution boundary, the reduction rate of the screw dislocation density increases rapidly.
  • the SiC single crystal substrate of the present invention has a dislocation distribution boundary where the screw dislocation density suddenly decreases, as shown in the examples described later. More specifically, the SiC single crystal substrate according to an embodiment of the present invention has a screw dislocation density distribution when the distribution of screw dislocation density is determined along the substrate diameter starting from the center of the facet ⁇ 0001 ⁇ plane. It has a dislocation distribution boundary whose value is 75% or less with respect to the value of the screw dislocation density in the facet ⁇ 0001 ⁇ plane of the SiC single crystal substrate.
  • a more preferred embodiment of the SiC single crystal substrate of the present invention has a screw dislocation density distribution determined along a straight line having an angle of + 45 ° to the substrate diameter in a direction away from the center of the facet ⁇ 0001 ⁇ plane.
  • Any distribution of the screw dislocation density obtained along a straight line having an angle of ⁇ 45 ° with respect to the substrate diameter in the direction away from the center of the facet ⁇ 0001 ⁇ plane has a distribution boundary at which the screw dislocation density drops sharply.
  • the screw dislocation is reduced in the region opposite to the facet ⁇ 0001 ⁇ plane across the distribution boundary of the screw dislocation density, and the screw dislocation density is preferably about 1 to 300 / cm 2 . Can be reduced. If such a SiC single crystal substrate is used, a high-quality SiC device can be obtained with a high yield.
  • FIG. 1 is an apparatus for producing a bulk SiC single crystal used to obtain the SiC single crystal of the present invention, and shows an example of an apparatus for growing a single crystal by an improved Rayleigh method (sublimation recrystallization method). Crystal growth is performed by sublimating the SiC raw material 2 by induction heating and recrystallizing it on the SiC seed crystal 1.
  • the SiC seed crystal 1 is attached to the inner surface of a crucible lid 4 that forms a graphite crucible, and the SiC raw material 2 is filled in a crucible container body 3 that also forms a graphite crucible.
  • This graphite crucible is installed on a graphite support rod 6 inside a double quartz tube 5 by covering both the crucible container body 3 and the crucible lid 4 with a graphite felt (heat insulating material) 7 for heat shielding. Then, after the inside of the double quartz tube 5 is evacuated by the evacuation device 11, high purity Ar gas and nitrogen gas are introduced into the quartz tube via the pipe 9 while being controlled by the mass flow controller 10, and the pressure inside the quartz tube (growth atmosphere) is increased. While adjusting the pressure) with the vacuum evacuation device 11, a high-frequency current was passed through the work coil 8 to heat the graphite crucible, and crystal growth was performed.
  • an optical path having a diameter of 2 to 4 mm is provided at the center of the crucible lid 4 so that the radiation light can be extracted, and the temperature of the SiC seed crystal 1 is measured using a two-color thermometer (not shown). It was set as the growth temperature.
  • Example 1 First, from a previously obtained SiC single crystal having a 100 mm diameter (0001) plane as a main surface, the off-direction of the (0001) plane is the ⁇ 11-20> direction, and the off-angle of the (0001) plane is 4H SiC single crystal substrate was cut out so as to be 4 degrees, and the cut surface was mirror-polished to prepare a seed crystal.
  • the SiC seed crystal 1 was attached to the inner surface of the crucible lid 4 of the single crystal growth apparatus described above, set in the crucible container body 3 of the graphite crucible filled with the SiC raw material 2, and covered with the graphite felt 7.
  • the graphite felt 7 covering the crucible lid 4 is provided with a heat removal hole (not shown) having a diameter of 50 mm so as to be concentric with the SiC single crystal attached to the inner surface of the crucible lid 4.
  • the growth surface in the process of growing the SiC single crystal 12 has a curved surface at the growth peripheral portion, and is flatter than the growth peripheral portion at the growth central portion. I did it.
  • the graphite crucible (the crucible container body 3 and the crucible lid body 4) covered with the graphite felt 7 was placed on the graphite support rod 6 and installed inside the double quartz tube 5.
  • the pressure is reduced at a pressure change rate of 1.2 kPa / hr, and the temperature is increased at a temperature change rate of 10 ° C./hr, the growth atmosphere pressure is 1.3 kPa, the temperature of the SiC seed crystal 1 is 2300 ° C.
  • Crystal growth was performed for 100 hours while maintaining the nitrogen concentration of about 1 ⁇ 10 19 cm ⁇ 3 (growth main process).
  • the nitrogen concentration (nitrogen atom number density) in the crystal was determined by secondary ion mass spectrometry (SIMS) described in Jpn. J. Appl. Phys. Vol. 35 (1996) pp. 2240-2243.
  • the bulk SiC single crystal (ingot) obtained by the growth sub-process and the growth main process has a flat crystal center part at the crystal end face, a curved surface at the crystal peripheral part, and a smooth ingot outer shape. A convex shape was shown, the diameter was about 100 mm, and the highest crystal height was about 33 mm.
  • the thickness (height) of the single crystal grown in the growth sub-process is 3 mm when estimated from the results of other production examples grown under the same conditions for each process, and the single crystal grown in the growth main process The thickness (height) is considered to be 30 mm.
  • this dark brown region is a facet ⁇ 0001 ⁇ plane, has a major axis of approximately 15 mm and a minor axis of approximately 10 mm, and the center of the facet at which the major axis and minor axis intersect is It was located at a distance of about 5 mm from the outer periphery of the crystal end face of the SiC single crystal to the center side along the crystal end face.
  • SiC single crystal having a thickness of 400 ⁇ m, a diameter of 100 mm, a main surface formed such that the off orientation of the (0001) plane is the ⁇ 11-20> direction and the off angle of the (0001) plane is 4 degrees A substrate was obtained.
  • This SiC single crystal substrate is immersed in molten KOH at 520 ° C.
  • the dislocation density at the measurement point on the direction (ii) from the center of the facet 13a toward the opposite circumferential portion at an angle of 45 ° clockwise from the direction (i) which is the diameter direction of the substrate i)
  • the dislocation density at the measurement point on the (iii) direction from the center of the facet 13a toward the opposite circumferential portion at an angle of 45 ° in the counterclockwise direction from the direction is the same as that in the (i) direction.
  • the dislocation density was obtained and the dislocation distribution was examined. Note that the measurement points are shown as black circles in the figure.
  • the dislocation density at each measurement point was determined from the number of etch pits in a 4 mm ⁇ 3 mm region from the center.
  • the screw dislocation density is measured at the measurement point whose distance from the facet 13a is 50 mm. It decreases to about 1/2 to 2/3 of the screw dislocation density at the boundary. Since the screw dislocation density decreases steeply in this way, it is considered that the region between the measurement point having a distance of 40 mm and the measurement point having a distance of 50 mm from the facet 13a corresponds to the distribution boundary of the screw dislocation density. Further, as shown in FIG. 8, it can be said that the region 13b opposite to the facet 13a across the distribution boundary 14 of the screw dislocation density is a region in which screw dislocations are extremely reduced.
  • the (1-100) plane substrate 15 is cut out using the SiC single crystal 12 cut out from the SiC single crystal substrate 13 so as to include the approximate center of the facet 13a at the crystal end face 12a of the SiC single crystal 12.
  • dislocation defects and stacking faults were observed by X-ray topography. That is, the longitudinal section of the SiC single crystal 12 obtained in Example 1 was observed with an X-ray topograph.
  • Example 2 The nitrogen concentration in the crystal in the growth sub-process was set to about 1 ⁇ 10 20 cm ⁇ 3, and the nitrogen concentration in the crystal in the main growth step was set to about 1 ⁇ 10 19 cm ⁇ 3 .
  • a bulk SiC single crystal (ingot) according to Example 2 was obtained in the same manner as Example 1 except for the above.
  • the bulk SiC single crystal (ingot) obtained by the growth sub-process and the growth main process has a flat crystal center part at the crystal end face, a curved surface at the crystal peripheral part, and a smooth ingot outer shape. A convex shape was shown, the diameter was about 100 mm, and the highest crystal height was about 33 mm.
  • the thickness (height) of the single crystal grown in the growth sub-process is 3 mm when estimated from the results of other production examples grown under the same conditions for each process, and the single crystal grown in the growth main process The thickness (height) is considered to be 30 mm.
  • this dark brown region is a facet ⁇ 0001 ⁇ plane, has a major axis of approximately 15 mm and a minor axis of approximately 10 mm, and the center of the facet at which the major axis and minor axis intersect is It was located at a distance of about 5 mm from the outer periphery of the crystal end face of the SiC single crystal to the center side along the crystal end face.
  • SiC single crystal having a thickness of 400 ⁇ m, a diameter of 100 mm, a main surface formed such that the off orientation of the (0001) plane is the ⁇ 11-20> direction and the off angle of the (0001) plane is 4 degrees A substrate was obtained.
  • the screw dislocation density was measured by the same method as in Example 1.
  • Comparative Example 1 The nitrogen concentration in the crystal in the growth sub-process was set to about 5 ⁇ 10 18 cm ⁇ 3, and the nitrogen concentration in the crystal in the main growth step was set to about 1 ⁇ 10 19 cm ⁇ 3 .
  • a bulk SiC single crystal (ingot) according to Comparative Example 1 was obtained in the same manner as Example 1 except for the above.
  • the shape and height of the obtained bulk SiC single crystal are almost the same as those in Examples 1 and 2, and the thickness (height) of each single crystal grown in the growth sub-process and the growth main process. ) Is considered the same. Further, the facet ⁇ 0001 ⁇ plane at the crystal end face of the obtained SiC single crystal was also the same as in Examples 1 and 2 in terms of size and position.
  • a SiC single crystal substrate having a thickness of 400 ⁇ m, a diameter of 100 mm, an off orientation of the (0001) plane being the ⁇ 11-20> direction, and an off angle of the (0001) plane of 4 degrees was obtained.
  • the screw dislocation density was measured by the same method as in Example 1.
  • the SiC single crystal 12 left after cutting out the SiC single crystal substrate 13 is used so as to include the approximate center of the facet 13a on the crystal end face 12a of the SiC single crystal 12 (1- 100)
  • the surface substrate 15 was cut out and mirror-polished, and then dislocation defects and stacking faults were observed by X-ray topography, and an X-ray topography photograph was taken with the diffraction surface of the X-ray topograph as the (0004) plane. From the X-ray topographic photograph, it was observed that threading screw dislocations extended parallel to the growth direction, and almost no conversion into stacking faults was observed.
  • Example 2 A heat removal hole having a diameter of 20 mm is provided so as to be concentric with the SiC single crystal attached to the inner surface of the crucible lid 4, and the nitrogen concentration in the crystal in the growth sub-process is about 1 ⁇ 10 20 cm ⁇ 3.
  • the bulk SiC according to Comparative Example 2 is used. A single crystal (ingot) was obtained.
  • the bulk SiC single crystal (ingot) obtained by the growth sub-process and the growth main process had a curved surface from the center of the crystal to the periphery of the crystal, and the ingot had a gentle convex shape.
  • the shape and height of the obtained bulk SiC single crystal (ingot) are almost the same as those in Example 1, and the thickness (height) of each single crystal grown in the growth sub-process and the growth main process is also the same. The same is considered. Further, when the end face (crystal end face) in the crystal growth direction of the obtained SiC single crystal was observed, an area having a strong dark brown contrast was confirmed at the crystal peripheral portion of the crystal end face.
  • this dark brown region is a facet ⁇ 0001 ⁇ plane, has a major axis of approximately 15 mm and a minor axis of approximately 10 mm, and the center of the facet at which the major axis and minor axis intersect is
  • the SiC single crystal was located approximately at the center of the crystal end face at a distance of about 45 mm from the outer periphery of the crystal end face to the center side along the crystal end face.
  • SiC single crystal having a thickness of 400 ⁇ m, a diameter of 100 mm, a main surface formed such that the off orientation of the (0001) plane is the ⁇ 11-20> direction and the off angle of the (0001) plane is 4 degrees A substrate was obtained.
  • the screw dislocation density was measured by the same method as in Example 1.

Abstract

 本発明は、らせん転位の減少した領域を広い範囲で確保したSiC単結晶基板が得られるようになるSiC単結晶の製造方法、及びSiC単結晶基板を提供する。前記SiC単結晶基板は、{0001}面からオフ方位にオフ角を有する種結晶を用いて、前記バルク状の炭化珪素単結晶が成長した結晶端面の結晶周縁部にファセット{0001}面を形成すると共に、得られるSiC単結晶の50%超の厚みを得る結晶成長を行う成長主工程に先駆けて、前記成長主工程よりも窒素濃度を高めて、成長雰囲気圧力が3.9kPa以上39.9kPa以下、種結晶の温度が2100℃以上2300℃未満で結晶成長させる成長副工程を含める製造方法によって製造される。

Description

炭化珪素単結晶の製造方法及び炭化珪素単結晶基板
 この発明は、炭化珪素原料を昇華させて種結晶上にバルク状の炭化珪素単結晶を成長させる炭化珪素単結晶の製造方法、及び炭化珪素単結晶基板に関する。
 炭化珪素(SiC)は、広い禁制帯幅を有するワイドバンドギャップ半導体であり、耐電圧性や耐熱性等で従来のシリコン(Si)をはるかに凌ぐ特性を有することから、次世代の半導体材料として研究開発が進められている。
 炭化珪素単結晶(SiC単結晶)を成長させる技術のひとつとして、昇華再結晶法がある。すなわち、改良レーリー法とも呼ばれるこの方法は、坩堝の蓋体にSiCからなる種結晶を取り付け、坩堝の容器本体にSiC原料を配置して、SiC原料を昇華させることで、種結晶上にバルク状のSiC単結晶を成長させる。その際、成長する単結晶中への不純物ドーピングも可能であり、例えば、n型SiC単結晶の場合には、成長中の雰囲気ガスへ窒素(N2)ガスを添加することができる。そして、略円柱状をしたバルク状のSiC単結晶(インゴット)を得た後、一般には、300~600μm程度の厚さに切り出した上で、SiC単結晶基板を製造し、パワーエレクトロニクス等の分野でSiCデバイスの作製に供される。
 この昇華再結晶法による結晶成長には、2000℃を超える温度が必要であり、しかも、種結晶とSiC原料を配した坩堝内では温度勾配を設けて結晶成長を行うことから、得られるSiC単結晶には、如何しても転位欠陥、積層欠陥等の結晶欠陥が含まれてしまう。このうち、転位欠陥としては、貫通刃状転位、基底面転位、及びらせん転位が含まれ、例えば、市販されているSiC単結晶基板では、らせん転位が8×102~3×103(個/cm2)、貫通刃状転位が5×103~2×104(個/cm2)、基底面転位が2×103~2×104(個/cm2)程度存在するという報告がある(非特許文献1参照)。
 近年、SiCの結晶欠陥とデバイス性能に関する研究・調査が進み、各種欠陥の及ぼす影響が明らかになりつつある。なかでも、らせん転位がデバイスのリーク電流の原因となることや、ゲート酸化膜の寿命を低下させることなどが報告されており(非特許文献2及び3参照)、高性能なSiCデバイスを作製するには、少なくとも、らせん転位を低減させたSiC単結晶基板が求められる。
 そこで、特許文献1は、{0001}面よりオフセット角(オフ角)が60°以内の面を成長面とし、かつ、成長中のSiC単結晶にらせん転位を周囲よりも高密度で発生させることができるらせん転位発生可能領域を成長面の50%以下の領域に有する転位制御種結晶を用いて、バルク状のSiC単結晶を成長させ、その成長の際に、らせん転位発生可能領域をc軸方向に投影した領域がc面ファセットと重なるように炭化ケイ素単結晶を成長させるSiC単結晶の製造方法を開示している。特許文献1は、前記製造方法によって、らせん転位密度の高い領域と、この領域よりもらせん転位密度の低い領域とを有するSiC単結晶を作製できることを開示している。
 しかしながら、この製造方法では、上記のような転位制御種結晶を得るために、c軸方向に成長させるc面成長とこれに垂直な方向に成長させるa面成長とを行わなければならない。しかも、この方法に従ってらせん転位密度の低い領域を多く備えるSiC単結晶を得るには、上記のようなc面成長とa面成長とを繰り返して、らせん転位発生可能領域をより小さくした転位制御種結晶を準備した上で、SiC単結晶を成長させる必要がある。そのため、この製造方法は、生産性が問題となる。
 また、特許文献2は、3.9kPa以上39.9kPa以下の第1の成長雰囲気圧力、及び、種結晶の温度が2100℃以上2300℃未満である第1の成長温度にて、少なくとも厚さ0.5mmの炭化珪素単結晶を成長させる第1の成長工程と、0.13kPa以上2.6kPa以下の第2の成長雰囲気圧力、及び、種結晶の温度が第1の成長温度より高くて2400℃未満である第2の成長温度にて、第1の成長工程より厚く炭化珪素単結晶を成長させる第2の成長工程とを含むSiC単結晶の製造方法を開示している。特許文献2は、前記SiC単結晶の製造方法によって成長させたバルクの炭化珪素単結晶から切り出して、基板の中心部に比べて周辺部でのらせん転位が少ない炭化珪素単結晶基板を得る方法を開示している。
 この方法によれば、第1の成長工程においてSiC単結晶中のらせん転位が積層欠陥に構造変換する。特に、このような構造変換は、SiC単結晶が成長していく過程での成長表面の中央部に比べて周辺部で発生し易く、基板の中心部に比べて周辺部でのらせん転位密度を約10分の1にまで減少させることが可能である。そのため、らせん転位を減らす方法として極めて効果的ではある。しかし、らせん転位が低減する領域が基板の中央部を除いたドーナツ状の周辺領域になるため、デバイスの歩留まりをより高める点で検討の余地がある。
 なお、先の特許文献1の方法に関連して、特許文献3は、(0001)面に対して<11-20>方向(又は<1-100>方向)に0.1°以上10°以下のオフ角を有するベース基板を種結晶として、SiC単結晶インゴットの端部に(0001)ファセット面を形成させるSiC単結晶インゴットの製造方法を開示している。特許文献3は、当該ファセット面が形成された表面下の部分では窒素が取り込まれ易いので、相対的に窒素濃度の低い領域がSiC単結晶インゴットの中心側に形成されて、窒素濃度のばらつきを抑えたSiC単結晶基板が得られることを開示している。ちなみに、この方法によれば、得られるインゴットは実質的に全領域で転位が低減するとしているが、転位が減少する詳細なメカニズムは定かではなく、また、ベース基板のエッチピット密度(1×104~5×104cm-2)に比べて、得られたSiC単結晶基板のそれを1/2~1/20まで減少させることができたとするものの、基板中で実際に転位がどのように分布しているのか不明である。
 また、特許文献4は、3.9kPa以上39.9kPa以下の第1の成長雰囲気圧力、及び、種結晶の温度が2100℃以上2300℃未満である第1の成長温度にて炭化珪素単結晶を成長させる第1の成長工程と、0.13kPa以上2.6kPa以下の第2の成長雰囲気圧力、及び、種結晶の温度が第1の成長温度より高くて2400℃未満である第2の成長温度にて、第1の成長工程より厚く炭化珪素単結晶を成長させる第2の成長工程とを含む製造方法を開示している。特許文献4は、前記第1の成長工程によってらせん転位を積層欠陥に構造変換させて、前記第2の成長工程で種結晶の温度を高くすることで、高品質の炭化珪素単結晶を得ながら、生産性の良い高速成長を行うことができることを開示している。
 また、特許文献5は、結晶成長面が{0001}面から2°以上15°以下のオフセット角を有する種結晶を用いて、体積抵抗率を制御するための不純物を添加した状態で炭化珪素単結晶の結晶成長を行う製造方法を開示している。特許文献5は、このような結晶から切り出したSiC単結晶基板を用いれば、電力損失の極めて小さい高性能の半導体素子を歩留り良く作製することができることを開示している。
 また、特許文献6は、異なる窒素濃度を有して基底面転位密度を抑制する複数の抑制層を前記基板上に形成した後、該抑制層上に炭化珪素単結晶薄膜の活性層を形成することを特徴とするエピタキシャル炭化珪素単結晶基板の製造方法を開示している。特許文献6は、階段状に窒素濃度を変化させることによって、抑制層の各層間の界面もしくは抑制層と活性層との界面に、新たな結晶転位を生じさせない適度な結晶歪みを生じさせ、その界面に歪みを集中させることができ、結果として、基底面転位の抑制に有効に作用することを開示している。
 また、特許文献7は、温度の変更と、温度勾配の変更と、雰囲気ガスの組成及び圧力の変更とを行いつつ、SiC単結晶種上にSiC単結晶ブールを昇華成長させることによって、成長したSiC単結晶ブールの貫通転位密度を、SiC単結晶ブール成長中の貫通転位から基底面転位へ変換させて、ブールの最初の成長部分からブールの最後の成長部分にかけて実質的に低下する方法を開示している。特許文献7は、前記方法によって、種から成長結晶への成長中の貫通転位の伝播を最小限にすることを開示している。
 しかし、特許文献1~7のいずれにも、らせん転位を中心としたスパイラル成長を利用するにも関わらず、らせん転位を効率的に低減させて、らせん転位が減少した領域を広い範囲で確保できる炭化珪素単結晶の製造方法を開示していない。また、成長雰囲気中の窒素分圧及びファセットからのステップの供給は、らせん転位密度の低減に影響を与えることも、特許文献1~7のいずれにも開示も示唆も無い。
特開2004-323348号公報 WO2013/031856号パンフレット 特開2012-240892号公報 特開2014-28757号公報 特開2008-1532号公報 特開2008-74661号公報 特開2014-208590号公報
大谷昇、SiC及び関連ワイドギャップ半導体研究会第17回講演会予稿集、2008、p8 坂東ら、SiC及び関連ワイドギャップ半導体研究会第19回講演会予稿集、2010、p140-141 山本ら、SiC及び関連ワイドギャップ半導体研究会第19回講演会予稿集、2010、p11-12
 したがって、本発明の目的は、昇華再結晶法により得られるSiC単結晶のらせん転位を効率的に低減させて、しかも、らせん転位の減少した領域を広い範囲で確保したSiC単結晶基板を得ることが可能なSiC単結晶の製造方法を提供することにある。また、本発明の別の目的は、らせん転位の減少した領域が広い範囲で確保されたSiC単結晶基板を提供することにある。
 そこで、本発明者らは、昇華再結晶法により得られるSiC単結晶のらせん転位を効率的に低減でき、しかも、SiCデバイスの歩留まり等を考慮して、らせん転位の減少した領域をより広い範囲で確保可能なSiC単結晶基板を得るための手段について鋭意検討した。本発明者らは、バルク状のSiC単結晶が成長した結晶端面の結晶周縁部にファセット{0001}面が形成されるようにSiC単結晶を成長させると共に、主たる結晶成長を行う成長主工程に先駆けて、高窒素濃度下で、所定の圧力及び温度条件で結晶成長を行う成長副工程を含めることで、上記課題を解決するバルク状のSiC単結晶が得られるようになることを見出し、本発明を完成した。
 すなわち、本発明の要旨は次のとおりである。
(1)坩堝容器本体と坩堝蓋体とを有した坩堝の坩堝蓋体に炭化珪素からなる種結晶を配置し、坩堝容器本体に炭化珪素原料を配置して、炭化珪素原料を昇華させて種結晶上にバルク状の炭化珪素単結晶を成長させる炭化珪素単結晶の製造方法であって、前記種結晶が{0001}面からオフ方位にオフ角を有しており、前記バルク状の炭化珪素単結晶が成長した結晶端面の結晶周縁部にファセット{0001}面を形成すると共に、得られるSiC単結晶の50%超の厚みを得る結晶成長を行う成長主工程に先駆けて、前記成長主工程よりも窒素濃度を高めて、成長雰囲気圧力が3.9kPa以上39.9kPa以下、種結晶の温度が2100℃以上2300℃未満で結晶成長させる成長副工程を含めることを特徴とする炭化珪素単結晶の製造方法。
(2)成長副工程での結晶成長速度が0.1mm/h以下であることを特徴とする(1)に記載の炭化珪素単結晶の製造方法。
(3)成長副工程での結晶中の窒素濃度が2×1019cm-3以上1×1020cm-3以下であることを特徴とする(1)又は(2)に記載の炭化珪素単結晶の製造方法。
(4)成長主工程は、結晶中での窒素濃度が1×1018cm-3以上1×1020cm-3以下、成長雰囲気圧力が0.13kPa以上2.6kPa以下、種結晶の温度が成長副工程よりも高くて2400℃未満であることを特徴とする(1)~(3)のいずれかに記載の炭化珪素単結晶の製造方法。
(5)バルク状の炭化珪素単結晶が成長していく過程での成長表面が、成長周縁部では曲面を有し、成長中央部では成長周縁部に比べて平坦となるように、前記バルク状の炭化珪素単結晶を前記種結晶の主面上に形成することによって、前記ファセット{0001}面を形成することを特徴とする(1)~(4)のいずれかに記載の炭化珪素単結晶の製造方法。
(6)前記成長副工程において、前記バルク状の炭化珪素単結晶の厚みが1mm以上増加するまで前記バルク状の炭化珪素単結晶を成長させることによって、成長副工程において炭化珪素単結晶中のらせん転位の一部が積層欠陥に構造変換し、炭化珪素単結晶の結晶端面におけるファセット{0001}面から離隔した領域でのらせん転位密度が減少する(1)~(5)のいずれかに記載の炭化珪素単結晶の製造方法。
(7){0001}面からオフ方位へオフ角を有する炭化珪素単結晶基板であって、オフ方位を示すベクトルの終点側において基板表面の基板周縁部にファセット{0001}面を有し、前記ファセット{0001}面から前記オフ方位を示すベクトルの始点方向への基板直径に沿ったらせん転位密度の分布において、らせん転位密度の減少率が急激に大きくなるらせん転位密度の分布境界が存在することを特徴とする炭化珪素単結晶基板。
(8)前記基板直径に対して+45°の角度を有する直線に沿ったらせん転位密度の分布と、前記基板直径に対して-45°の角度を有する直線に沿ったらせん転位密度の分布には、いずれもらせん転位密度が急峻に落ち込むらせん転位密度の分布境界が存在することを特徴とする(7)に記載の炭化珪素単結晶基板。
 なお、昇華再結晶法では、<0001>のバーガースベクトルを持つらせん転位のほか、1/3<11-20>(0001)のバーガースベクトルを持って基底面内を伝播する基底面転位から複合らせん転位が生成することが知られており(D. Nakamura et al. Journal of Crystal Growth 304 (2007) 57-3)、本発明では、この複合らせん転位を含めてらせん転位と呼ぶものとする。
 本発明のSiC単結晶の製造方法によれば、SiC単結晶のらせん転位を効率的に低減させることができ、しかも、らせん転位が減少した領域を広い範囲で確保したSiC単結晶基板を得ることができる。また、本発明のSiC単結晶基板によれば、らせん転位の減少した領域が広い範囲で確保されることから、高品質のSiCデバイスを歩留まり良く得ることができる。
本発明のSiC単結晶を製造するために用いた単結晶成長装置の概略的な構成図である。 本発明のSiC単結晶の結晶端面における結晶周縁部にファセット{0001}面が形成される過程を示す概略縦断面図である。 (a)は、SiC種結晶を取り付ける坩堝の蓋体を覆う断熱材に、SiC種結晶の口径Φに比べて十分に小さい口径φを有する抜熱孔を設けた構造を模式的に示す縦断面図であり、(b)は、(a)図に示された単結晶成長装置の断熱材の抜熱孔とSiC単結晶の表面形状及びファセットの位置関係を模式的に示す縦断面図である。 (a)は、SiC種結晶を取り付ける坩堝の蓋体を覆う断熱材の抜熱孔の口径が広げられた構造を模式的に示す縦構成図であり、(b)は、(a)図に示された単結晶成長装置の断熱材の抜熱孔と、SiC単結晶の表面形状及びファセットの位置関係を模式的に示す縦断面図である。 ステップフロー成長及びスパイラル成長によるSiCの結晶の成長の様子を模式的に示す説明図である。 (a)及び(b)は、高いステップに覆われたらせん転位が積層欠陥に構造変換する様子を模式的に示す説明図である。 (a)及び(b)は、テラス上のN量の増加によるステップの形成メカニズムと、ステップの高さとファセットの位置との関係を模式的に示す説明図である。 実施例1に係るSiC単結晶基板における転位の分布の測定点と、らせん転位密度の分布境界を示す概略平面図である。 実施例1に係るSiC単結晶の(1‐100)縦断面での転位欠陥と積層欠陥の状態を模式的に示す概略断面図である。
 以下、本発明について詳しく説明する。
 本発明の製造方法は、坩堝容器本体と坩堝蓋体とを有した坩堝の坩堝蓋体に炭化珪素からなる種結晶(SiC種結晶)を配置し、坩堝容器本体内にSiC原料を配置して、SiC原料を昇華させてSiC種結晶上にバルク状のSiC単結晶を成長させるSiC単結晶の製造方法である。また、前記SiC種結晶は、{0001}面の法線が主面(或いは表面)上において所定のオフ方位へ向くように前記{0001}面と前記主面とが所定のオフ角を形成するように切り出されている。また、本発明の製造方法は、前記バルク状のSiC単結晶が成長した結晶端面の結晶周縁部にファセット{0001}面を形成すると共に、主たる結晶成長を行う成長主工程に先駆けて、成長主工程とは異なる成長条件を採用した成長副工程を含めるようにする。
 ここで、ファセット{0001}面とは、SiC単結晶を成長させる際に、結晶のc軸である<0001>方向に垂直な角度を持つ領域のみに発生する平滑面である。そのため、{0001}面の法線が所定のオフ方位を有し且つ主面に対して所定のオフ角を形成するようにスライスされたSiC種結晶を用いて、結晶端面の結晶周縁部にファセット{0001}面が形成されるようにするには、前記オフ方位及び前記オフ角からなる3次元のベクトル方向と同一方向において前記結晶周縁部の少なくとも一部を形成する必要がある。
 このようなファセット{0001}面を形成するには、図2に示したように、バルク状のSiC単結晶12が成長していく過程での成長表面を成長周縁部では曲面を有し、成長中央部では成長周縁部に比べて平坦となるようにしながら、結晶成長させればよい。これによって、得られるSiC単結晶12は、結晶端面12aの結晶中央部がフラットであり、結晶周縁部が曲面を有して、なだらかな凸形状を呈し、このうち、SiC種結晶1のオフ方位dWを示すベクトルの終点側であって、かつ、SiC単結晶12の結晶端面12aにおける結晶周縁部にファセット{0001}面が形成される。
 前記したようにSiC単結晶の結晶端面における結晶周縁部にファセット{0001}面が形成されるようにするため、{0001}面が主面に対してオフ角を有するSiC種結晶を用いる。その際、そのオフ方位dWやオフ角θWの角度については特に制限はないが、現状のデバイス作製の実情等を鑑みると、好ましくは、オフ方位dWは<11-20>方向又は<1-100>方向のいずれかであるのがよい。また、オフ角θWの角度については、デバイス作製に使用される基板の多くが4°オフ基板であることなどから0°超16°以下であるのがよく、好ましくは2°以上8°以下であるのがよい。
 ここで、図2に示されるように、オフ角θWとは、SiC種結晶1の主面(或いは表面)の法線nと<0001>方向(c軸方向)とのなす角度である。また、オフ方位dWとは、SiC種結晶1の{0001}面の法線ベクトルn’をSiC種結晶1の主面(或いは表面)に投影したn''ベクトルの方向である。
 また、SiC単結晶の結晶端面の結晶周縁部にファセット{0001}面が形成されるようにする上で、SiC単結晶12が成長していく過程で成長周縁部での成長表面が曲面を有し、成長中央部での成長表面が成長周縁部に比べて平坦となるようにするための手段について特に制限はない。尚、このような手段の一例として、SiC種結晶を取り付ける坩堝の蓋体を覆う断熱材の抜熱孔の口径を調整して、SiC単結晶の成長表面の形状を制御する方法がある。
 すなわち、図3(a)に示したように、SiC種結晶1の口径Φ100に比べて抜熱孔18’の口径φ20が十分に小さい場合(例えばφ≦1/3Φ程度)、上側に抜熱孔が存在する結晶中央部の温度は等しく、前記結晶中央部と比較して周辺部の温度は高くなる。そのため、図3(b)に示すようにSiC単結晶のインゴット表面形状は凸形状となり、ファセット{0001}面はSiC単結晶の結晶端面の略中央に形成される。
 それに対して、図4(a)に示したように、抜熱孔18の口径を拡げると(図4(a)のΦ80)、上側に抜熱孔18が存在して温度が等しくなる結晶領域が広くなるために、表面形状は結晶中央部が平坦となり、結晶周辺部のみが曲面を有するように、SiC単結晶のインゴットは成長する。そのために、図4(b)に示すように、ファセット{0001}面はSiC単結晶の結晶端面の結晶周縁部に形成される。この図4(a)、(b)では、SiC種結晶の口径Φ100(=100mm)に対して、SiC種結晶の口径Φ100と同心円状にした断熱材の抜熱孔18の口径をφ80(=80mm)にした例を示しているが、ファセット{0001}面を結晶周縁部に形成する上で、好ましくは、断熱材の抜熱孔の口径φをSiC種結晶の口径Φの40%以上80%以下にするのがよく、より好ましくは60%以上80%以下にするのがよい。
 また、成長周縁部での成長表面が曲面を有し、成長中央部での成長表面が成長周縁部に比べて平坦となるようにするその他の手段としては、例えば、坩堝蓋体を覆う断熱材について、成長周辺部に対応する部分に比べて、成長中央部に対応する部分の断熱材を薄くすることや、黒鉛部材等からなる坩堝蓋体について、その熱伝導率を成長周辺部に対応する部分に比べて、成長中央部に対応する部分の方を高くする、などによって結晶成長中の温度分布を調整することで、インゴット表面形状を制御する方法を挙げることができる。
 そして、本発明においては、上記のようにバルク状のSiC単結晶が成長した結晶端面の結晶周縁部にファセット{0001}面を形成すると共に、主たる結晶成長を行う成長主工程に先駆けて、成長主工程とは異なる成長条件を採用した成長副工程を含めるようにする。すなわち、成長主工程よりも窒素濃度を高めた上で、成長雰囲気圧力が3.9kPa以上39.9kPa以下、種結晶の温度が2100℃以上2300℃未満の成長副工程を含めるようにする。このような成長副工程を含める理由は、SiC単結晶中のらせん転位の一部を積層欠陥に構造変換させて、らせん転位の低減を図るためである。詳しくは、次に説明するとおりである。
 先ず、昇華再結晶法におけるSiCの結晶成長には、一般に、「ファセットを中心としたステップフロー成長」と「貫通らせん転位を中心としたスパイラル成長」とがある。すなわち、図5に示したように、主要な結晶成長はステップフロー成長であるが、図5中に矢印で示した成長方向(すなわち、マクロな成長方向)への成長速度をより速くするには、ファセットにおけるステップフロー成長に加えて、貫通らせん転位を中心としたスパイラル成長が必要となる。
 ここで、本発明においてらせん転位が減少するのは、図6(a)に示したように、らせん転位が高いステップに覆われることで、転位の伸展方向が90度偏向し、積層欠陥に変換するためと考えられる。このとき、図6(b)に示したように、ファセットからは緻密なステップが供給されるため、ステップの横方向の伸展を阻害させることで、ステップの重なり合いが生じ(ステップバンチング)、高いステップが形成される。
 そして、本発明では、図7(a)に示したように、テラス上の窒素(N)量を増やすことで、ステップの横方向の伸展を阻害する手法を用いた。すなわち、テラス上のN量を増やすには、成長雰囲気中の窒素分圧を高くすることに加えて、テラスの進行によるステップフロー成長が支配的な条件となるように、成長速度を抑えるようにする。このとき、図7(b)に示したように、ステップの重なり合いによって高いステップが形成されるだけではなく、広いテラスも形成され、広いテラス上ではN量が増加することから、ステップの横方向の伸展は更に阻害される。そのため、ファセットから離れるほど、すなわち、ファセットから遠くなるほど、高いステップが形成され易くなり、らせん転位の低減化が顕著に発現すると考えられる。
 そこで、本発明では、成長副工程において、成長主工程よりも窒素濃度を高めると共に、成長速度を抑えて結晶成長させる。すなわち、成長速度を抑えてステップフロー成長が支配的となるようにするために、成長副工程の成長雰囲気圧力は3.9kPa以上39.9kPa以下(30Torr以上300Torr以下)、好ましくは13.3kPa以上39.9kPa以下(100Torr以上300Torr以下)とし、種結晶の温度は2100℃以上2300℃未満、好ましくは2200℃以上2300℃未満とする。成長副工程の成長雰囲気圧力が3.9kPa未満であると成長速度が速くなるためにスパイラル成長が支配的となり、らせん転位の低減が効果的に発現せず、反対に39.9kPaを超えると成長速度が著しく低下するために生産性に問題が出る。また、種結晶の温度が2100℃未満であると成長速度が低下するために生産性に問題があり、反対に2300℃以上になると成長速度が速くなるために、らせん転位の低減が効果的に発現しない。
 また、ステップの横方向の伸展をより確実に阻害しながらも、広大なテラス上での2次元核の形成を抑制する観点から、成長副工程における窒素濃度は、好ましくは2×1019cm-3以上1×1020cm-3以下の範囲内であり、より好ましくは4×1019cm-3以上1×1020cm-3以下であって且つ成長主工程における窒素濃度よりも高くなるように調整することである。
 そして、これらの成長条件を採用しながら、好ましくは、成長副工程での結晶成長速度が0.1mm/h以下となるように結晶成長させ、より好ましくは0.05mm/h以下で結晶成長させるのがよい。ここで、成長副工程で得られる結晶中の窒素濃度は成長主工程よりも高い値となるため、一般的なデバイス用途で考えた場合に製品としては適していないことから、成長副工程の成長時間はできるだけ短い方が生産性の観点で望ましく、成長副工程での結晶成長速度は0.01mm/h以上であるのが好ましい。また、成長副工程で成長させる結晶の厚みについては、上記のような構造変換によるらせん転位の低減効果がより確実に得られるようにするために、1mm以上であるのが好ましく、より好ましくは3mm以上である。この成長副工程で成長させる結晶の厚みを増すことで、らせん転位から積層欠陥への構造変換はより確実になされるため、その厚みに制限はないが、効果が飽和することや生産性等を考慮すると、成長副工程で成長させる結晶の厚みは10mmを上限とすることができる。
 このような成長副工程によりSiC単結晶中のらせん転位を積層欠陥に構造変換させた上で、本発明では、主たる結晶成長を行う成長主工程により結晶成長させる。ここで、主たる結晶成長を行う成長主工程とは、本発明の方法において主要な結晶成長を行う工程であり、具体的には、得られるSiC単結晶の50%超の厚みを得る工程であるか、SiC単結晶の成長時間のなかで50%超の結晶成長時間を占める工程であるか、或いは、SiC単結晶が成長する工程のうち最も結晶成長速度が速い工程であるか、これらのうちのいずれか1以上を満たすものである。
 すなわち、成長主工程では、成長副工程に比べて成長雰囲気圧力を下げ、かつ、種結晶の温度を高くして結晶成長速度を上げて、SiC単結晶を主立って成長させるようにするのがよい。具体的な成長条件については一般的な昇華再結晶法によるSiC単結晶の成長条件と同様にすることができる。但し、好ましくは、成長雰囲気圧力は0.13kPa以上2.6kPa以下(1Torr以上20Torr以下)、より好ましくは0.65kPa以上1.95kPa以下(5Torr以上15Torr以下)である。また、成長主工程における種結晶の温度は成長副工程時の種結晶の温度よりも高い温度とするが、2400℃未満であり、より好ましくは2200℃以上2400℃以下である。
 また、成長主工程の窒素濃度は、成長副工程時の窒素濃度よりも低いことを除き、適宜設定可能である。例えば、デバイス応用を考慮して体積電気抵抗率0.005~0.05Ωcm(5~50mΩcm)程度のn型SiC単結晶を得るには、結晶中の窒素濃度が2×1018cm-3以上1×1020cm-3以下となるようにするのがよい。或いは、必要に応じて、窒素供給を遮断して半絶縁性のSiC単結晶を得るようにしてもよい。
 また、この成長主工程における結晶成長速度は1時間あたり0.1mm以上となるようにするのが好ましく、より好ましくは0.3mm/hr以上である。更に、成長主工程で成長させるSiC単結晶の厚みについては、本発明によってSiC単結晶インゴットを製造し、これよりSiC単結晶基板を取り出すことなどを勘案すれば、少なくとも10mmとするのが望ましく、好適には30mm以上であるのがよい。なお、既存の設備を用いることなどを考慮すると、成長主工程における結晶成長速度は1.0mm/hr程度が上限であり、また、成長主工程で成長させるSiC単結晶の厚みの上限は100mm程度である。
 また、本発明においては、成長副工程から成長主工程へと切り替える際に、好ましくは1時間当たり12kPa以下の圧力変化速度で減圧させるのがよく、より好ましくは1時間当たり1kPa以下であるのがよい。単位時間あたりの変更幅が大きいほど成長速度の時間変化量は大きくなり、その間の結晶成長が不安定となることも考えられるが、上記のようにすることで異種ポリタイプの混在等のおそれを確実に排除することができる。同様の理由から、成長温度を切り替える際、好ましくは1時間当たり40℃以下の温度変化速度で昇温させるのがよく、より好ましくは1時間当たり10℃以下に調整するのがよい。
 本発明では、転位の構造変換を利用したらせん転位の低減化であることから、得られるSiC単結晶のポリタイプによる制限はなく、代表的なポリタイプである4H型、6H型及び3C型の炭化珪素単結晶を得る方法として適用可能である。特に、パワーデバイス応用として有力視されている4H型にも適用可能である点で有利である。加えて、本発明におけるらせん転位の低減は、昇華再結晶法による成長条件の制御により可能となることから、得られるSiC単結晶の結晶口径の制限もない。そのため、現時点で最も有力視されている口径50mm以上300mm以下の結晶成長プロセスへの適用が可能である。
 そして、本発明では、上述したようなメカニズムにより、成長副工程においてSiC単結晶中のらせん転位の一部が積層欠陥に構造変換することから、成長主工程で得られたSiC単結晶の結晶端面には、結晶周縁部にファセット{0001}面が形成されると共に、該ファセット{0001}面から所定の距離を有した領域ではらせん転位密度が低減される。
 すなわち、本発明の方法によって得られたバルク状のSiC単結晶の{0001}面から所定のオフ方位へオフ角を有するSiC単結晶基板を、前記バルク状のSiC単結晶から切り出すと、切り出されたSiC単結晶基板は、オフ方位を示すベクトルの終点側における基板表面の基板周縁部にファセット{0001}面を有する。
 また、前記SiC単結晶基板は、オフ方位を示すベクトルの始点に向けてファセット{0001}面から離れるように基板直径に沿ってらせん転位密度の分布を求めたときに、らせん転位密度が急峻に減少する分布境界を持つ。すなわち、前記分布境界において、らせん転位密度の減少率が急激に大きくなる。具体的には、本発明のSiC単結晶基板は、後述する実施例に示すように、らせん転位密度が突如低下する転位分布境界を有する。より具体的には、本発明の一実施形態に係るSiC単結晶基板は、ファセット{0001}面の中心を起点として基板直径に沿ってらせん転位密度の分布を求めたときに、らせん転位密度の値がSiC単結晶基板のファセット{0001}面におけるらせん転位密度の値に対して75%以下となる転位分布境界を有する。
 本発明のSiC単結晶基板のより好適な実施形態は、ファセット{0001}面の中心から離れる方向へ基板直径に対して+45°の角度を有する直線に沿って求められたらせん転位密度の分布と、ファセット{0001}面の中心から離れる方向へ基板直径に対して-45°の角度を有する直線に沿って求められたらせん転位密度の分布のいずれも、らせん転位密度が急峻に落ち込む分布境界を有する。そのため、らせん転位密度の前記分布境界をはさんでファセット{0001}面と反対側の領域は、らせん転位が低減しており、好適には、らせん転位密度を1~300個/cm2程度に低減することができる。このようなSiC単結晶基板を用いれば、高品質のSiCデバイスを歩留まり良く得ることができる。
 次に、実施例に基づきながら本発明をより具体的に説明する。なお、本発明はこれらの内容に制限されるものではない。
 図1は、本発明のSiC単結晶を得るのに用いたバルクSiC単結晶を製造するための装置であって、改良レーリー法(昇華再結晶法)による単結晶成長装置の一例を示す。結晶成長は、SiC原料2を誘導加熱により昇華させ、SiC種結晶1上に再結晶させることにより行われる。SiC種結晶1は黒鉛製坩堝を形成する坩堝蓋体4の内面に取り付けられており、SiC原料2は同じく黒鉛製坩堝を形成する坩堝容器本体3に充填される。この黒鉛製坩堝は、坩堝容器本体3及び坩堝蓋体4ともに熱シールドのために黒鉛製フェルト(断熱材)7で被覆して、二重石英管5内部の黒鉛支持棒6の上に設置される。そして、二重石英管5の内部を真空排気装置11によって真空排気した後、高純度Arガス及び窒素ガスを、配管9を介してマスフローコントローラ10で制御しながら流入させ、石英管内圧力(成長雰囲気圧力)を真空排気装置11で調整しながら、ワークコイル8に高周波電流を流し、黒鉛製坩堝を加熱することで結晶成長を行った。ここで、坩堝蓋体4の中央部に直径2~4mmの光路を設けて輻射光が取り出せるようにし、図示外の二色温度計を用いてSiC種結晶1の温度を測定し、以下で説明する成長温度とした。
(実施例1)
 先ず、予め得られた口径100mmの(0001)面を主面としたSiC単結晶から、前記(0001)面のオフ方位が<11-20>方向であって、前記(0001)面のオフ角が4度になるように、4H型のSiC単結晶基板を切り出し、切り出された面を鏡面研磨して種結晶を準備した。このSiC種結晶1を上記で説明した単結晶成長装置の坩堝蓋体4の内面に取り付け、SiC原料2を充填した黒鉛製坩堝の坩堝容器本体3にセットし、黒鉛製フェルト7で被覆した。その際、坩堝蓋体4を覆う黒鉛製フェルト7には、坩堝蓋体4の内面に取り付けたSiC単結晶と同心円状になるように、口径50mmの抜熱孔(図示外)を設けることで、図4(b)に示したように、SiC単結晶12が成長していく過程での成長表面が、成長周縁部では曲面を有し、成長中央部では成長周縁部に比べて平坦となるようにした。そして、黒鉛製フェルト7で被覆した黒鉛製坩堝(坩堝容器本体3及び坩堝蓋体4)を黒鉛支持棒6の上に載せて、二重石英管5の内部に設置した。
 次いで、二重石英管5の内部を真空排気した後、雰囲気ガスとして高純度Arガスを流入させ、石英管内圧力を約80kPaに保ちながら、ワークコイル8に電流を流して温度を上げ、SiC種結晶1の温度が2200℃になるまで上昇させた。そして、石英管内圧力を13.3kPaに減圧し、成長結晶中の窒素濃度が約3×1019cm-3となるようにしながら、50時間の結晶成長を行った(成長副工程)。引き続き、圧力変化速度1.2kPa/hrで減圧すると共に10℃/hrの温度変化速度で温度を上げて、成長雰囲気圧力を1.3kPa、SiC種結晶1の温度を2300℃にし、成長結晶中の窒素濃度が約1×1019cm-3となるようにしながら、100時間の結晶成長を行った(成長主工程)。なお、結晶中の窒素濃度(窒素原子数密度)については、Jpn.J.Appl.Phys.Vol.35(1996)pp.2240-2243に記載の2次イオン質量分析(SIMS)によって求めた。
 これらの成長副工程及び成長主工程により得られたバルク状のSiC単結晶(インゴット)は、結晶端面の結晶中央部がフラットであり、結晶周縁部が曲面を有して、インゴット外形がなだらかな凸形状を示し、口径は約100mm、最も高いところで結晶高さは約33mmであった。このうち、各工程について同様の条件で成長させた他の製造例の結果から見積もると、成長副工程で成長した単結晶の厚み(高さ)は3mmであり、成長主工程で成長した単結晶の厚み(高さ)は30mmであると考えられる。また、得られたSiC単結晶について、結晶成長方向の端面(結晶端面)を観察すると、結晶端面の結晶周縁部に濃茶色のコントラストが強い領域が確認された。すなわち、この濃茶色をした領域がファセット{0001}面であって、長径がおよそ15mm、短径がおよそ10mmの略楕円形状をしており、この長径と短径とが交わるファセットの中心は、SiC単結晶の結晶端面の外周から結晶端面に沿って中心側に約5mmの距離のところに位置していた。
 そして、上記で得られたSiC単結晶の結晶端面からSiC種結晶側に約10mmの深さの位置より(0001)面基板を切り出し、ダイヤモンドポリッシュによって表面荒さRa=1nm程度まで研磨して、厚さ400μm、直径100mmであって、(0001)面のオフ方位が<11-20>方向であり且つ前記(0001)面のオフ角が4度になるように主面が形成されたSiC単結晶基板を得た。このSiC単結晶基板について、520℃の溶融KOHに基板の全面が浸るように5分間浸して溶融KOHエッチングを行い、オフ角を有する基板の表面を光学顕微鏡(倍率:80倍)で観察してらせん転位密度を計測した。ここでは、J. Takahashi et al., Journal of Crystal Growth, 135, (1994), 61-70に記載されている方法に従い、小型の丸型ピットを貫通刃状転位、中型・大型の六角形ピットを貫通らせん転位(らせん転位)として、エッチピット形状による転位欠陥を分類し、転位密度を求めた。
 ここでは、図8に示したように、SiC単結晶基板13のファセット{0001}面13a(以下、単にファセット13aとする)から離れるように、ファセット13aの中心からオフ方位を示すベクトルの始点に向けて(すなわちファセット13aとは反対側の周縁部に向けて)、SiC単結晶基板13の直径上の測定点で転位密度を求め、転位の分布を調べた。また、この基板の直径方向である(i)方向から時計回りに45°の角度でファセット13aの中心から反対側の円周部に向けた(ii)方向上の測定点における転位密度と、(i)方向から時計反対回りに45°の角度でファセット13aの中心から反対側の円周部に向けた(iii)方向上の測定点における転位密度も、前記(i)方向と同様の手法にて転位密度を求めて、転位の分布を調べた。なお、測定点は図中で黒丸として示した箇所であり、(i)~(iii)方向ともにファセット13aの境目(ファセットからの距離=0mm)から10mm間隔で測定点を設け、各測定点を中心にして4mm×3mmの領域内のエッチピットの個数から、それぞれの測定点における転位密度を求めた。
 結果は、表1にまとめたとおりであり、(i)、(ii)、(iii)のいずれの方向においても、ファセット13aからの距離が50mmの測定点では、らせん転位密度が、前記ファセット13aの境目におけるらせん転位密度の1/2~2/3程度に落ち込みを示して減少している。らせん転位密度がこのように急峻な減少しているので、ファセット13aからの距離が40mmの測定点と50mmの測定点との間の領域は、らせん転位密度の分布境界に相当すると考えられる。また、図8に示したように、らせん転位密度の分布境界14をはさんでファセット13aと反対側の領域13bは、らせん転位が極めて低減した領域であると言える。
Figure JPOXMLDOC01-appb-T000001
 また、上記SiC単結晶基板13を切り出して残ったSiC単結晶12を用いて、SiC単結晶12の結晶端面12aにおけるファセット13aの略中心を含むようにしながら(1-100)面基板15を切り出し、鏡面研磨した上で、X線トポグラフによる転位欠陥及び積層欠陥の観察を行った。すなわち、実施例1で得たSiC単結晶12の縦断面をX線トポグラフで観察した。
 先ず、X線トポグラフの回折面を(0004)面としてX線トポグラフ写真を撮影したところ、図9に示したように、SiC単結晶12の成長方向に対して平行に伸びる貫通転位欠陥16がファセット13aの中心から50mm超の領域において、成長方向に対してほぼ垂直方向に伸展する欠陥17に変換している様子が観察された。また、別途行った高分解能X線トポグラフ観察より、成長方向に対して平行に伸びる欠陥はバーガースベクトルが<0001>成分を含む貫通らせん転位であり、成長方向に対してほぼ垂直方向に伸展する欠陥はフランク型積層欠陥であることが分かった。すなわち、ファセット13aの中心から50mm超離れた領域において、貫通複合転位は積層欠陥へ構造変換することによって、貫通複合転位が低減化されていることが分かった。
(実施例2)
 成長副工程での結晶中の窒素濃度が約1×1020cm-3となるようにすると共に、成長主工程での結晶中の窒素濃度が約1×1019cm-3となるようにした以外は実施例1と同様にして、実施例2に係るバルク状のSiC単結晶(インゴット)を得た。
 これらの成長副工程及び成長主工程により得られたバルク状のSiC単結晶(インゴット)は、結晶端面の結晶中央部がフラットであり、結晶周縁部が曲面を有して、インゴット外形がなだらかな凸形状を示し、口径は約100mm、最も高いところで結晶高さは約33mmであった。このうち、各工程について同様の条件で成長させた他の製造例の結果から見積もると、成長副工程で成長した単結晶の厚み(高さ)は3mmであり、成長主工程で成長した単結晶の厚み(高さ)は30mmであると考えられる。また、得られたSiC単結晶について、結晶成長方向の端面(結晶端面)を観察すると、結晶端面の結晶周縁部に濃茶色のコントラストが強い領域が確認された。すなわち、この濃茶色をした領域がファセット{0001}面であって、長径がおよそ15mm、短径がおよそ10mmの略楕円形状をしており、この長径と短径とが交わるファセットの中心は、SiC単結晶の結晶端面の外周から結晶端面に沿って中心側に約5mmの距離のところに位置していた。
 そして、上記で得られたSiC単結晶の結晶端面からSiC種結晶側に約10mmの深さの位置より(0001)面基板を切り出し、ダイヤモンドポリッシュによって表面荒さRa=1nm程度まで研磨して、厚さ400μm、直径100mmであって、(0001)面のオフ方位が<11-20>方向であり且つ前記(0001)面のオフ角が4度になるように主面が形成されたSiC単結晶基板を得た。このSiC単結晶基板について、実施例1と同じ方法でらせん転位密度を計測した。
 結果は表1にまとめたとおりである。(i)、(ii)、(iii)のいずれの方向においても、ファセット13aからの距離が50mmの測定点において、らせん転位密度が1/3程度に落ち込みを示して減少している。らせん転位密度のこのような落ち込みから、ファセット13aからの距離が40mmの測定点と50mmの測定点との間が、らせん転位密度の分布境界にあたると考えられる。
(比較例1)
 成長副工程での結晶中の窒素濃度が約5×1018cm-3となるようにすると共に、成長主工程での結晶中の窒素濃度が約1×1019cm-3となるようにした以外は実施例1と同様にして、比較例1に係るバルク状のSiC単結晶(インゴット)を得た。
 得られたバルク状のSiC単結晶(インゴット)の形状や高さは実施例1及び2の場合とほぼ同じであり、成長副工程や成長主工程で成長したそれぞれの単結晶の厚み(高さ)も同様と考えられる。また、得られたSiC単結晶の結晶端面におけるファセット{0001}面についても、サイズやその位置ともに実施例1及び2の場合と同様であった。
 そして、上記で得られたSiC単結晶の結晶端面からSiC種結晶側に約10mmの深さの位置より(0001)面基板を切り出し、ダイヤモンドポリッシュによって表面荒さRa=1nm程度まで研磨して、厚さ400μm、直径100mmであって、(0001)面のオフ方位が<11-20>方向であり且つ前記(0001)面のオフ角が4度になるようにSiC単結晶基板を得た。このSiC単結晶基板について、実施例1と同じ方法でらせん転位密度を計測した。
 結果は表1にまとめたとおりである。(i)、(ii)、(iii)のいずれの方向において、らせん転位密度が減少を示す領域は確認されず、らせん転位密度が落ち込みを示して減少するような規則性を見出すことはできなかった。
 また、実施例1と同様に、上記SiC単結晶基板13を切り出して残ったSiC単結晶12を用いて、SiC単結晶12の結晶端面12aにおけるファセット13aの略中心を含むようにしながら(1-100)面基板15を切り出し、鏡面研磨した上で、X線トポグラフによる転位欠陥及び積層欠陥の観察を行い、X線トポグラフの回折面を(0004)面としてX線トポグラフ写真を撮影した。前記X線トポグラフ写真から、貫通らせん転位は成長方向に対して平行に伸展する様子が観察され、積層欠陥への変換はほとんど観察されなかった。
(比較例2)
 坩堝蓋体4の内面に取り付けたSiC単結晶と同心円状になるように、口径20mmの抜熱孔を設け、また、成長副工程での結晶中の窒素濃度が約1×1020cm-3となるようにすると共に、成長主工程での結晶中の窒素濃度が約1×1019cm-3となるようにした以外は実施例1と同様にして、比較例2に係るバルク状のSiC単結晶(インゴット)を得た。
 これらの成長副工程及び成長主工程により得られたバルク状のSiC単結晶(インゴット)は、結晶中央部から結晶周縁部にかけて曲面を有して、インゴット外形がなだらかな凸形状を示していた。得られたバルク状のSiC単結晶(インゴット)の形状や高さは実施例1の場合とほぼ同じであり、成長副工程や成長主工程で成長したそれぞれの単結晶の厚み(高さ)も同様と考えられる。また、得られたSiC単結晶について、結晶成長方向の端面(結晶端面)を観察すると、結晶端面の結晶周縁部に濃茶色のコントラストが強い領域が確認された。すなわち、この濃茶色をした領域がファセット{0001}面であって、長径がおよそ15mm、短径がおよそ10mmの略楕円形状をしており、この長径と短径とが交わるファセットの中心は、SiC単結晶の結晶端面の外周から結晶端面に沿って中心側に約45mmの距離の結晶端面の略中央に位置していた。
 そして、上記で得られたSiC単結晶の結晶端面からSiC種結晶側に約10mmの深さの位置より(0001)面基板を切り出し、ダイヤモンドポリッシュによって表面荒さRa=1nm程度まで研磨して、厚さ400μm、直径100mmであって、(0001)面のオフ方位が<11-20>方向であり且つ前記(0001)面のオフ角が4度になるように主面が形成されたSiC単結晶基板を得た。このSiC単結晶基板について、実施例1と同じ方法でらせん転位密度を計測した。
 結果は表1にまとめたとおりである。(i)、(ii)、(iii)のいずれの方向において、らせん転位密度が減少を示す領域は確認されず、らせん転位密度が落ち込みを示して減少するような規則性を見出すことはできなかった。
 1:SiC種結晶、2:SiC原料、3:坩堝容器本体、4:坩堝蓋体、5:二重石英管、6:黒鉛支持棒、7:黒鉛製フェルト(断熱材)、8:ワークコイル、9:配管、10:マスフローコントローラ、11:真空排気装置、12:SiC単結晶、12a:結晶端面、13:SiC単結晶基板、13a:ファセット{0001}面、13b:らせん転位低減領域、14:らせん転位密度の分布境界、15:(1-100)面基板、18:抜熱孔。

Claims (8)

  1.  坩堝容器本体と坩堝蓋体とを有した坩堝の坩堝蓋体に炭化珪素からなる種結晶を配置し、坩堝容器本体に炭化珪素原料を配置して、炭化珪素原料を昇華させて種結晶上にバルク状の炭化珪素単結晶を成長させる炭化珪素単結晶の製造方法であって、
     前記種結晶が{0001}面からオフ方位にオフ角を有しており、
     前記バルク状の炭化珪素単結晶が成長した結晶端面の結晶周縁部にファセット{0001}面を形成すると共に、得られるSiC単結晶の50%超の厚みを得る結晶成長を行う成長主工程に先駆けて、前記成長主工程よりも窒素濃度を高めて、成長雰囲気圧力が3.9kPa以上39.9kPa以下、種結晶の温度が2100℃以上2300℃未満で結晶成長させる成長副工程を含めることを特徴とする炭化珪素単結晶の製造方法。
  2.  成長副工程での結晶成長速度が0.1mm/h以下であることを特徴とする請求項1に記載の炭化珪素単結晶の製造方法。
  3.  成長副工程での結晶中の窒素濃度が2×1019cm-3以上1×1020cm-3以下であることを特徴とする請求項1又は2に記載の炭化珪素単結晶の製造方法。
  4.  成長主工程は、結晶中での窒素濃度が1×1018cm-3以上1×1020cm-3以下、成長雰囲気圧力が0.13kPa以上2.6kPa以下、種結晶の温度が成長副工程よりも高くて2400℃未満であることを特徴とする請求項1~3のいずれか1項に記載の炭化珪素単結晶の製造方法。
  5.  バルク状の炭化珪素単結晶が成長していく過程での成長表面が、成長周縁部では曲面を有し、成長中央部では成長周縁部に比べて平坦となるように、前記バルク状の炭化珪素単結晶を前記種結晶の主面上に形成することによって、前記ファセット{0001}面を形成することを特徴とする請求項1~4のいずれか1項に記載の炭化珪素単結晶の製造方法。
  6.  前記成長副工程において、前記バルク状の炭化珪素単結晶の厚みが1mm以上増加するまで前記バルク状の炭化珪素単結晶を成長させることによって、成長副工程において炭化珪素単結晶中のらせん転位の一部が積層欠陥に構造変換し、炭化珪素単結晶の結晶端面におけるファセット{0001}面から離隔した領域でのらせん転位密度が減少する請求項1~5のいずれか1項に記載の炭化珪素単結晶の製造方法。
  7.  {0001}面からオフ方位へオフ角を有する炭化珪素単結晶基板であって、
     オフ方位を示すベクトルの終点側において基板表面の基板周縁部にファセット{0001}面を有し、
     前記ファセット{0001}面から前記オフ方位を示すベクトルの始点方向への基板直径に沿ったらせん転位密度の分布において、らせん転位密度の減少率が急激に大きくなるらせん転位密度の分布境界が存在することを特徴とする炭化珪素単結晶基板。
  8.  前記基板直径に対して+45°の角度を有する直線に沿ったらせん転位密度の分布と、前記基板直径に対して-45°の角度を有する直線に沿ったらせん転位密度の分布には、いずれもらせん転位密度が急峻に落ち込むらせん転位密度の分布境界が存在することを特徴とする請求項7に記載の炭化珪素単結晶基板。
PCT/JP2015/084185 2014-12-05 2015-12-04 炭化珪素単結晶の製造方法及び炭化珪素単結晶基板 WO2016088883A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/532,791 US10711369B2 (en) 2014-12-05 2015-12-04 Method for producing silicon carbide single crystal and silicon carbide single crystal substrate
KR1020177014566A KR101936007B1 (ko) 2014-12-05 2015-12-04 탄화규소 단결정의 제조 방법 및 탄화규소 단결정 기판
JP2016562698A JP6584428B2 (ja) 2014-12-05 2015-12-04 炭化珪素単結晶の製造方法及び炭化珪素単結晶基板
CN201580064424.7A CN107002281B (zh) 2014-12-05 2015-12-04 碳化硅单晶的制造方法及碳化硅单晶基板
EP15865728.8A EP3228733B1 (en) 2014-12-05 2015-12-04 Method for producing silicon carbide single crystal, and silicon carbide single crystal substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-246912 2014-12-05
JP2014246912 2014-12-05

Publications (1)

Publication Number Publication Date
WO2016088883A1 true WO2016088883A1 (ja) 2016-06-09

Family

ID=56091818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084185 WO2016088883A1 (ja) 2014-12-05 2015-12-04 炭化珪素単結晶の製造方法及び炭化珪素単結晶基板

Country Status (6)

Country Link
US (1) US10711369B2 (ja)
EP (1) EP3228733B1 (ja)
JP (1) JP6584428B2 (ja)
KR (1) KR101936007B1 (ja)
CN (1) CN107002281B (ja)
WO (1) WO2016088883A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018140903A (ja) * 2017-02-28 2018-09-13 昭和電工株式会社 炭化珪素単結晶インゴットの製造方法
WO2019130873A1 (ja) * 2017-12-27 2019-07-04 信越半導体株式会社 炭化珪素単結晶の製造方法
JP7452276B2 (ja) 2019-08-30 2024-03-19 株式会社レゾナック 単結晶製造装置及びSiC単結晶の製造方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102250161B1 (ko) 2017-06-16 2021-05-07 주식회사 엘지화학 안전성이 향상된 배터리 모듈 및 배터리 팩
JP7030506B2 (ja) 2017-12-22 2022-03-07 昭和電工株式会社 炭化珪素単結晶インゴットの製造方法
JP6960866B2 (ja) 2018-01-24 2021-11-05 昭和電工株式会社 単結晶4H−SiC成長用種結晶及びその加工方法
JP6879236B2 (ja) * 2018-03-13 2021-06-02 信越半導体株式会社 炭化珪素単結晶の製造方法
JP2019156698A (ja) * 2018-03-15 2019-09-19 信越半導体株式会社 炭化珪素単結晶の製造方法
JP6881365B2 (ja) * 2018-03-16 2021-06-02 信越半導体株式会社 炭化珪素単結晶の製造方法及び製造装置
JP7255089B2 (ja) * 2018-05-25 2023-04-11 株式会社デンソー 炭化珪素単結晶製造装置および炭化珪素単結晶の製造方法
CN110592672B (zh) * 2018-12-14 2020-09-18 北京天科合达半导体股份有限公司 一种低基面位错密度的碳化硅晶体生长方法
TWI766133B (zh) * 2018-12-14 2022-06-01 環球晶圓股份有限公司 碳化矽晶體及其製造方法
JP7393900B2 (ja) * 2019-09-24 2023-12-07 一般財団法人電力中央研究所 炭化珪素単結晶ウェハ及び炭化珪素単結晶インゴットの製造方法
KR102340110B1 (ko) 2019-10-29 2021-12-17 주식회사 쎄닉 탄화규소 잉곳, 웨이퍼 및 이의 제조방법
KR102276450B1 (ko) * 2019-10-29 2021-07-12 에스케이씨 주식회사 탄화규소 잉곳의 제조방법, 탄화규소 웨이퍼의 제조방법 및 이의 성장 시스템
KR102195325B1 (ko) 2020-06-16 2020-12-24 에스케이씨 주식회사 탄화규소 잉곳, 웨이퍼 및 이의 제조방법
CN111501094A (zh) * 2020-05-15 2020-08-07 南通大学 一种减少莫桑石中针状包裹体的莫桑石制备方法
KR102192518B1 (ko) 2020-07-14 2020-12-17 에스케이씨 주식회사 웨이퍼 및 웨이퍼의 제조방법
JP7298940B2 (ja) * 2020-09-22 2023-06-27 セニック・インコーポレイテッド 炭化珪素ウエハ及びその製造方法
KR102236397B1 (ko) * 2020-11-27 2021-04-02 에스케이씨 주식회사 탄화규소 웨이퍼 및 이를 적용한 반도체 소자
CN112779603A (zh) * 2020-12-23 2021-05-11 北京天科合达半导体股份有限公司 一种高质量低缺陷碳化硅单晶、其制备方法及应用
CN113638047B (zh) * 2021-08-18 2022-04-12 山东天岳先进科技股份有限公司 一种阻挡碳化硅晶体边缘位错向内滑移的方法及其晶体
CN113622031B (zh) * 2021-08-18 2022-04-12 山东天岳先进科技股份有限公司 一种阻挡碳化硅晶体边缘小角晶界向内延伸的方法及晶体
CN113957533B (zh) * 2021-08-18 2023-10-27 山东天岳先进科技股份有限公司 一种低位错密度的碳化硅衬底及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031856A1 (ja) * 2011-08-29 2013-03-07 新日鐵住金株式会社 炭化珪素単結晶基板及びその製造方法
JP2014040357A (ja) * 2012-08-23 2014-03-06 Toyota Central R&D Labs Inc SiC単結晶の製造方法及びSiC単結晶
JP2014043369A (ja) * 2012-08-26 2014-03-13 Nagoya Univ SiC単結晶の製造方法およびSiC単結晶

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3764462B2 (ja) 2003-04-10 2006-04-05 株式会社豊田中央研究所 炭化ケイ素単結晶の製造方法
JP4926556B2 (ja) * 2006-06-20 2012-05-09 新日本製鐵株式会社 炭化珪素単結晶インゴットの製造方法及び炭化珪素単結晶基板
JP4937685B2 (ja) 2006-09-21 2012-05-23 新日本製鐵株式会社 エピタキシャル炭化珪素単結晶基板及びその製造方法
EP2069557A2 (en) 2006-09-27 2009-06-17 II-VI Incorporated Sic single crystals with reduced dislocation density grown by step-wise periodic perturbation technique
JP2010095397A (ja) 2008-10-15 2010-04-30 Nippon Steel Corp 炭化珪素単結晶及び炭化珪素単結晶ウェハ
JP5276068B2 (ja) * 2010-08-26 2013-08-28 株式会社豊田中央研究所 SiC単結晶の製造方法
JP5803265B2 (ja) 2011-05-20 2015-11-04 住友電気工業株式会社 炭化珪素基板および炭化珪素インゴットの製造方法
JP5750363B2 (ja) 2011-12-02 2015-07-22 株式会社豊田中央研究所 SiC単結晶、SiCウェハ及び半導体デバイス
EP2889397B1 (en) 2012-08-26 2019-04-03 National University Corporation Nagoya University Sic single crystal producing method
US9017804B2 (en) * 2013-02-05 2015-04-28 Dow Corning Corporation Method to reduce dislocations in SiC crystal growth

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031856A1 (ja) * 2011-08-29 2013-03-07 新日鐵住金株式会社 炭化珪素単結晶基板及びその製造方法
JP2014040357A (ja) * 2012-08-23 2014-03-06 Toyota Central R&D Labs Inc SiC単結晶の製造方法及びSiC単結晶
JP2014043369A (ja) * 2012-08-26 2014-03-13 Nagoya Univ SiC単結晶の製造方法およびSiC単結晶

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3228733A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018140903A (ja) * 2017-02-28 2018-09-13 昭和電工株式会社 炭化珪素単結晶インゴットの製造方法
WO2019130873A1 (ja) * 2017-12-27 2019-07-04 信越半導体株式会社 炭化珪素単結晶の製造方法
JP2019116405A (ja) * 2017-12-27 2019-07-18 信越半導体株式会社 炭化珪素単結晶の製造方法
US11149357B2 (en) 2017-12-27 2021-10-19 Shin-Etsu Handotai Co., Ltd. Method for manufacturing a silicon carbide single crystal by adjusting the position of a hole in a top of the growth container relative to the off angle of the silicon carbide substrate
JP7452276B2 (ja) 2019-08-30 2024-03-19 株式会社レゾナック 単結晶製造装置及びSiC単結晶の製造方法

Also Published As

Publication number Publication date
CN107002281B (zh) 2019-06-04
JPWO2016088883A1 (ja) 2017-09-14
US10711369B2 (en) 2020-07-14
EP3228733A1 (en) 2017-10-11
KR101936007B1 (ko) 2019-01-07
EP3228733B1 (en) 2021-09-29
US20170342593A1 (en) 2017-11-30
EP3228733A4 (en) 2017-11-22
CN107002281A (zh) 2017-08-01
KR20170076763A (ko) 2017-07-04
JP6584428B2 (ja) 2019-10-02

Similar Documents

Publication Publication Date Title
JP6584428B2 (ja) 炭化珪素単結晶の製造方法及び炭化珪素単結晶基板
KR101530057B1 (ko) 탄화규소 단결정 기판 및 그 제조 방법
JP5304713B2 (ja) 炭化珪素単結晶基板、炭化珪素エピタキシャルウェハ、及び薄膜エピタキシャルウェハ
JP5068423B2 (ja) 炭化珪素単結晶インゴット、炭化珪素単結晶ウェハ及びその製造方法
JP4585359B2 (ja) 炭化珪素単結晶の製造方法
WO2010044484A1 (ja) 炭化珪素単結晶及び炭化珪素単結晶ウェハ
JP6594146B2 (ja) 炭化珪素単結晶インゴットの製造方法
WO2016133172A1 (ja) 炭化珪素単結晶インゴットの製造方法及び炭化珪素単結晶インゴット
JP2008074661A (ja) エピタキシャル炭化珪素単結晶基板及びその製造方法
JP6233058B2 (ja) 炭化珪素半導体基板の製造方法
JP6239490B2 (ja) バルク炭化珪素単結晶
JP2006225232A (ja) 炭化珪素単結晶の製造方法、炭化珪素単結晶インゴット、炭化珪素単結晶基板、炭化珪素エピタキシャルウェハ、および薄膜エピタキシャルウェハ
JP2008290895A (ja) 炭化珪素単結晶の製造方法
JP5614387B2 (ja) 炭化珪素単結晶の製造方法、及び炭化珪素単結晶インゴット
JP6645409B2 (ja) シリコン単結晶製造方法
JP6594148B2 (ja) 炭化珪素単結晶インゴット
JP6748613B2 (ja) 炭化珪素単結晶基板
JP6628557B2 (ja) 炭化珪素単結晶の製造方法
KR20190092417A (ko) 실리콘 단결정 제조방법 및 실리콘 단결정 웨이퍼
WO2017043215A1 (ja) SiC単結晶の製造方法
JP2018058749A (ja) 炭化珪素単結晶育成用の種結晶基板及びその製造方法並びに炭化珪素単結晶の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865728

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177014566

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016562698

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15532791

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015865728

Country of ref document: EP