WO2016084568A1 - ポリエステルフィルム - Google Patents

ポリエステルフィルム Download PDF

Info

Publication number
WO2016084568A1
WO2016084568A1 PCT/JP2015/081140 JP2015081140W WO2016084568A1 WO 2016084568 A1 WO2016084568 A1 WO 2016084568A1 JP 2015081140 W JP2015081140 W JP 2015081140W WO 2016084568 A1 WO2016084568 A1 WO 2016084568A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polyester
layer
polyester film
temperature
Prior art date
Application number
PCT/JP2015/081140
Other languages
English (en)
French (fr)
Inventor
鈴木維允
堀江将人
川原慎也
東大路卓司
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020177010869A priority Critical patent/KR102402833B1/ko
Priority to CN201580064505.7A priority patent/CN107001666B/zh
Priority to JP2015556280A priority patent/JP6565683B2/ja
Publication of WO2016084568A1 publication Critical patent/WO2016084568A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films

Definitions

  • the present invention relates to a polyester film having a low heat shrinkage even at a high temperature.
  • Polyester resins especially polyethylene terephthalate (hereinafter sometimes abbreviated as PET) and polyethylene 2,6-naphthalene dicarboxylate (hereinafter sometimes abbreviated as PEN) are mechanical properties, thermal properties, chemical resistance, electrical properties, It has excellent moldability and is used for various purposes.
  • Polyester films made from polyester, especially biaxially oriented polyester films, are used in solar cell backsheets, water heater motor electrical insulation materials, and hybrid vehicles because of their excellent mechanical and electrical properties. Electrical insulation materials for car air conditioner motors and drive motors, magnetic recording materials, capacitor materials, packaging materials, building materials, photographic applications, graphic applications, thermal transfer applications, various industrial materials, flexible displays and organic It is used as an optical material such as a transparent electrode substrate for EL.
  • JP-A-3-13315 JP 11-165350 A Japanese Patent Laid-Open No. 2005-216706
  • substrate use of a transparent conductive film is calculated
  • the flatness of the film is impaired if a heat setting treatment at a high temperature is performed.
  • the PEN film is excellent in mechanical properties like the PET film, and is excellent in heat resistance as compared with the PET film.
  • the PEN film has a problem that the PEN constituting the film has a rigid molecular structure, so that the processability is poor and the film breaks during processing.
  • the present invention has the following configuration. That is, [I] A polyester film in which the proportion of polyethylene terephthalate in the polyester resin constituting the film is 60% by weight or more, and the heat shrinkage in the film longitudinal direction and width direction when heat-treated at 200 ° C. for 30 minutes. Polyester film which is 0.5% or less in any case. [II] At least one of the heat shrinkage rate in the longitudinal direction of the film and the heat shrinkage rate in the width direction when heat-treated at 200 ° C. for 30 minutes is 0.01% or more [I] The polyester film as described in. [III] The heat shrinkage rate in the longitudinal direction of the film and the heat shrinkage rate in the width direction when heat-treated at 220 ° C.
  • the polyester resin constituting the film has a melting point (Tmf (° C.)) and one or more minute endothermic peak temperatures (Tmeta (° C.)) from [I] to [V ]
  • the polyester resin constituting the film has two or more minute endothermic peaks (Tmeta (° C)), the lowest temperature Tmeta (Tmeta1) (° C) and the highest temperature Tmeta (Tmeta2) (° C). ) Satisfies the following relationship: [VI]. Tmf ⁇ 35 (° C.) ⁇ Tmeta1 (° C.) ⁇ Tmeta2 (° C.) ⁇ Tmf (° C.) [VIII]
  • the polyester film is a laminated polyester film composed of at least three layers, and the melting point (Tmo (° C.)) of the polyester resin constituting the layer (A layer) constituting the outermost surface of the film is 260 ° C. or higher.
  • the laminated polyester film is composed of three layers, the polyester constituting the melting point (Tmo (° C.)) of the polyester resin constituting the layer constituting the surface layer (A layer) and the layer constituting the inner layer (B layer)
  • the polyester film according to [VIII] wherein the difference in melting point (Tmi (° C.)) of the resin is 5 ° C. or higher and 10 ° C. or lower.
  • the polyester film according to [IX] wherein the ratio of the sum of the thicknesses of the layers constituting the surface layer (A layer) and the thicknesses of the layers constituting the inner layer (B layer) is from 1/8 to 1/4. .
  • [XI] The polyester film according to any one of [I] to [X], which is used for a substrate for forming a transparent conductive film.
  • the present invention it is possible to provide a film that achieves heat resistance, particularly low heat shrinkage at high temperatures, and is excellent in workability.
  • the polyester film of the present invention is a polyester film in which the proportion of polyethylene terephthalate in the polyester resin constituting the film is 60% by weight or more.
  • the polyester referred to here has a dicarboxylic acid component and a diol component.
  • a structural component shows the minimum unit which can be obtained by hydrolyzing polyester.
  • the proportion of polyethylene terephthalate is preferably 70% by weight or more, more preferably 80% by weight or more.
  • the polyester film of the present invention needs to have a thermal shrinkage rate of 0.5% or less in both the film longitudinal direction and the width direction after heat treatment at 200 ° C. for 30 minutes. More preferably, the thermal shrinkage in the longitudinal direction and the width direction after the film of the present invention is treated at 200 ° C. for 30 minutes is 0.3% or less.
  • the polyester film is a stretched film
  • the molecular chain is in a tensioned state (orientated state) by stretching. Therefore, when heat is applied, the molecular chain tension is released, the film contracts, and the planarity may deteriorate.
  • a process of heat treatment at a predetermined temperature after the stretching process is performed in order to stabilize the structure of the polyester molecular chain formed by stretching (hereinafter referred to as film structure). It is known to use a method of providing (the heat treatment temperature is referred to as a heat setting temperature). By carrying out a heat treatment step after the stretching step, a film having a certain degree of flatness and mechanical properties can be obtained.
  • the degree of contraction of molecular chains in tension by stretching due to heat is not uniform. For this reason, a difference occurs in the thermal shrinkage even in the film plane, and the film is wrinkled and the flatness is impaired.
  • a thermal load is applied to the film in a process (such as a curing process) after the ITO film is deposited. At this time, if the flatness of the film is impaired due to thermal shrinkage of the polyester film, the conductivity of the ITO film is lowered, which is not preferable.
  • the higher the cure temperature the larger the ITO film crystal size and the better the ITO film conductivity.
  • the crystal size is large, the film used as the substrate may be bent or followed up during deformation. It is inferior in property, and the ITO film is easily cracked.
  • the curing temperature at which both the followability and the conductivity at the time of deformation of the ITO film are 200 ° C. or more and 220 ° C. or less. Therefore, by setting the thermal contraction rate in the longitudinal direction and the width direction of the film at 200 ° C. and 220 ° C., which are the temperatures, to 0.5% or less, the ITO film is kept at an appropriate temperature without impairing the flatness of the film This is preferable because the performance as a transparent conductive substrate is improved. More preferably, it is 0.3% or less.
  • the thermal contraction rate of the film at 200 ° C. and 220 ° C. is small.
  • the polyester film is used for an ITO vapor deposition substrate, it is at 200 ° C. and 220 ° C.
  • the thermal shrinkage rate of the film is 0.01% or more in either the longitudinal direction or the width direction, the polyester film shrinks without expanding due to heat, so it is possible to suppress the occurrence of cracks in the ITO film.
  • the performance as a transparent conductive substrate is improved, which is preferable.
  • the thermal shrinkage of the film at 200 ° C. and 220 ° C. is 0.03% or more in either the longitudinal direction or the width direction.
  • Method I a method of forming the polyester film under a specific condition
  • Method II a method of setting the polyester resin constituting the film to a specific configuration
  • Examples of the method include a combination of (method b), (method a) and (method b).
  • the polyester film of the present invention is produced by forming a polyester film in which the ratio of polyethylene terephthalate in the polyester resin constituting the film is 60% by weight or more by the method described later and further annealing by the method described later (Method A). Can be suitably obtained.
  • a method of obtaining a biaxially oriented polyester film by performing biaxial stretching after discharging a polyester containing 60% by weight or more of polyethylene terephthalate in an extruder and discharging it from a die to obtain an unrolled sheet the following conditions are satisfied.
  • the thermal shrinkage rate at 200 ° C. can be reduced.
  • the biaxially stretched film obtained in (2) is heat-set for 1 second to 30 seconds at a temperature (Th0 (° C.)) that satisfies the following formula (ii), and gradually cooled gradually Then, a polyester film is obtained by cooling to room temperature.
  • the sequential biaxial separation is performed by separating the film longitudinal direction (MD) and the film width direction (direction perpendicular to the film longitudinal direction, TD) separately.
  • MD film longitudinal direction
  • TD film width direction
  • stretching temperature (T1n) (degreeC) is less than Tg (degreeC)
  • T1n (° C.) exceeds Tg + 40 (° C.), the film is frequently broken and the film may not be obtained by stretching. More preferably, Tg + 10 (° C.) ⁇ T1n (° C.) ⁇ Tg + 30 (° C.).
  • step (3) It is preferable from the viewpoint of flatness that the step (3) is performed while holding both ends of the film. Further, a method of heat fixing while shrinking 1 to 10% with respect to the film width in the film width direction is preferable from the viewpoint of reducing the heat shrinkage rate.
  • heat shrinkage generated in the film occurs at a temperature close to the temperature at which the film structure is formed as described above. Therefore, in order to suppress the heat shrinkage rate of the film at a high temperature exceeding 200 ° C., heat setting is performed. It is important to increase the temperature (Th0 (° C.)). On the other hand, when heat treatment is performed at a temperature at which the heat setting temperature (Th0 (° C.)) exceeds Tmf (° C.), the film cannot be melted to form a film. Further, if the heat treatment is performed at a temperature too close to Tmf (° C.), the planarity may be deteriorated.
  • the polyester resin constituting the polyester film of the present invention preferably has a minute endothermic peak.
  • the minute endothermic peak is preferably Tmf-35 (° C.) or more and Tmf (° C.) or less, more preferably Tmf-25 (° C.) or more and Tmf-10 (° C.) or less.
  • annealing is performed by the following method (4) in order to make the structure of the polyester molecular chain in which the orientation in the film is formed stronger. It is preferable.
  • the film obtained in (3) is annealed at a heat treatment temperature Th1 (° C.) satisfying the following formula (iii) for a period of 70 seconds to 600 seconds.
  • a method of performing the annealing treatment there is a method of heat-treating the film in an oven installed between the film winding roll and the film winding roll (off-annealing).
  • Tmf-35 ° C.
  • Th1 ° C.
  • Th0 thermo fixing temperature
  • Th1 ° C.
  • Th0 thermal fixing temperature
  • Th1 (° C.) is lower than Th0 (heat set temperature) (° C.), particularly when Th1 (° C.) is sufficiently smaller than Th0 (heat set temperature) (° C.), the minute endothermic peak (Tmeta) is (3)
  • Th0 heat set temperature
  • Th0 heat set temperature
  • Tmeta minute endothermic peak
  • the polyester resin which comprises the polyester film of this invention has 2 or more Tmeta (degreeC).
  • Tmeta (° C.) is 2 or more
  • the low temperature T meta (T meta 1) (° C.) and the high temperature T meta (T meta 2) (° C.) are Tmf ⁇ 35 (° C.) ⁇ T meta 1 (° C.) ⁇
  • Tmeta2 (° C.) ⁇ Tmf (° C.) is satisfied, a film with good flatness can be obtained, which is preferable.
  • the heat setting treatment step (3) and the annealing treatment step (4) may be performed a plurality of times.
  • the film that has undergone the heat setting treatment step (3) and the annealing treatment step (4) a plurality of times may have a Tmeta (° C.) of 3 or more.
  • Tmeta (° C.) the lowest temperature Tmeta (° C) is Tmeta1 (° C)
  • the highest temperature Tmeta (° C) is Tmeta2 (° C)
  • the polyester film of the present invention is a laminated film composed of at least three layers, and a method (method b) in which the melting point (Tmo) of the resin constituting the layer (A layer) constituting the outermost surface of the film is 260 ° C. or more, It can be suitably obtained. It is preferable that the film has the above structure because the heat shrinkage rate of the film can be reduced and the flatness can be improved.
  • the melting point of polyethylene terephthalate which is the main component of the polyester film of the present invention, is about 255 ° C. That is, the polyester constituting the A layer contains a high melting point component other than polyethylene terephthalate.
  • the melting point (Tmo) of the resin constituting the layer (A layer) constituting the outermost surface of the film is more preferably 262 ° C. or higher.
  • the inner layer (B layer) that does not constitute the surface layer is preferably polyethylene terephthalate.
  • fusing point Tmf (degreeC) of the polyester resin which comprises the polyester film of this invention reflects melting
  • the resin used for the A layer examples include polyethylene naphthalate (hereinafter sometimes referred to as PEN), polycyclohexylenedimethylene terephthalate (hereinafter sometimes referred to as PCHT), polyphenylene sulfide (hereinafter sometimes referred to as PPS), or These mixtures are mentioned. Further, in order to improve the adhesion between the A layer and the B layer, it is also a preferred embodiment to add a small amount of the resin constituting the B layer to the resin constituting the A layer within a range not impairing the effects of the invention of the present application. is there.
  • PEN polyethylene naphthalate
  • PCHT polycyclohexylenedimethylene terephthalate
  • PPS polyphenylene sulfide
  • the amount of the resin constituting the B layer added to the resin constituting the A layer is preferably 0.01% by weight or more and less than 15% by weight, more preferably 0.1% by weight with respect to the total amount of the resin constituting the A layer. % To 5% by weight.
  • the ratio of the sum of the thicknesses of the layers constituting the surface layer (A layer) to the thicknesses of the layers constituting the inner layer (B layer) (sum of the thickness of A layer / B layer thickness) is 1/16 to 1/2 It is preferable that When it is smaller than 1/16, the thickness of the surface layer (A layer) is thin, the role of protecting the B layer is not sufficient, and the planarity and heat resistance may be inferior. If it exceeds 1/2, the stretchability may deteriorate.
  • the ratio of the sum of the thicknesses of the layers constituting the surface layer (A layer) and the thicknesses of the layers (B layer) constituting the inner layer (sum of the thickness of the A layer / the thickness of the B layer) is more preferably 1/8. ⁇ 1/4.
  • the thickness of the one side of A layer is 5 micrometers or more and 30 micrometers or less. Even when the above-mentioned stacking ratio is satisfied, when the thickness of one side of the A layer is less than 5 ⁇ m, the planarity may be inferior, and when it exceeds 30 ⁇ m, the stretchability and workability may be deteriorated.
  • the polyester film of the present invention is a laminated film composed of at least three layers
  • an extruder is used for each layer constituting the laminated film, the raw materials of each layer are melted, and these are provided between the extrusion apparatus and the die.
  • a method of laminating in a molten state with a merging apparatus, guiding to a die, and extruding from the die onto a cast drum to process into a sheet is preferably used.
  • the sheet is closely cooled and solidified by static electricity on a drum cooled to a surface temperature of 10 ° C. or higher and 40 ° C. or lower to produce an unstretched sheet.
  • This unstretched sheet is formed by the methods (2) to (4) described above to obtain a polyester film.
  • the melting point (Tmo (° C)) of the resin constituting the surface layer is higher than the melting point (Tmi (° C)) of the resin constituting the inner layer of the film.
  • heat treatment is performed for 1 second to 30 seconds at a heat setting temperature (Th0 (° C.)) that satisfies the formula (iv), and after uniform cooling, it is cooled to room temperature. It is also a preferred embodiment that after obtaining a polyester film by annealing, annealing is performed for 70 seconds to 600 seconds at an annealing temperature Th1 (° C.) satisfying the following formula (v).
  • the melting point (Tmo (° C.)) of the resin constituting the surface layer is higher than the melting point Tmf (° C.) of the polyester resin constituting the film. That is, since the surface layer can protect the resin of the inner layer as described above, the heat setting temperature can be increased, and the heat setting can be performed at a temperature close to Tmf (° C.) without melting the film.
  • the film of the present invention obtained as described above has a low thermal shrinkage at high temperatures and is excellent in flatness.
  • the film of the present invention preferably has a film unevenness difference of 300 ⁇ m or less when the film unevenness is measured with a non-contact laser microscope by the method described below. If the unevenness difference is 0 ⁇ m, it becomes a substantially flat surface, so the lower limit is 0 ⁇ m or more.
  • the unevenness of the film surface exceeds 300 ⁇ m, it may be unfavorable because the film processability is deteriorated and the conductivity after ITO deposition is deteriorated.
  • the smaller the unevenness difference the better the conductivity after ITO deposition.
  • there are methods such as providing a heat setting step after biaxial stretching of the film and further providing a step of annealing at a temperature lower than the heat setting temperature after the heat setting step. . More preferably, it is 150 micrometers or less, Most preferably, it is 80 micrometers or less.
  • the polyester film of the present invention preferably has a plane orientation coefficient of 0.145 or more and 0.165 or less.
  • the plane orientation coefficient is obtained from the refractive index of the film by the method described later.
  • the plane orientation coefficient of a biaxially stretched film made of PET, PEN, or the like is increased by arranging benzene rings included in molecular chains in parallel with the film plane. Since benzene rings are rigid in the molecular chain, when the plane orientation coefficient exceeds 0.165, there are many benzene rings arranged in parallel to the film plane, so the film is likely to break during processing such as bending or cutting the film. There is a case.
  • the plane orientation coefficient is less than 0.145, the mechanical strength may be inferior because no orientation is obtained by biaxial stretching.
  • the polyester resin of the present invention contains phosphoric acid and an alkali metal phosphate because the polyester film of the present invention has excellent heat and moisture resistance.
  • the method for adding a phosphoric acid and an alkali metal phosphate to the polyester resin include adding phosphoric acid and an alkali metal phosphate during polymerization of the polyester resin.
  • the polyester film of the present invention is a laminated film having an A layer and a B layer, phosphoric acid and phosphoric acid are contained in both the A layer and the B layer, in which only the A layer contains phosphoric acid and an alkali metal phosphate.
  • An embodiment in which an alkali metal salt is contained is preferable because of excellent heat and heat resistance.
  • the heat resistance of the polyester film of the present invention is good, it can be suitably used as an ITO vapor deposition substrate used in a display used in a harsher environment, for example, a display of a car navigation system.
  • the film obtained by the present invention is excellent in processability and flatness and has a small thermal shrinkage at high temperature, and can be suitably used as a transparent electrode deposition substrate such as ITO.
  • a 1st RUN differential scanning calorimetry chart (the vertical axis is thermal energy and the horizontal axis is temperature) is obtained.
  • the peak top temperature at the crystal melting peak which is the endothermic peak, is determined, and this is defined as the melting point (° C.).
  • the temperature at the peak top having the largest peak area is defined as the melting point.
  • Tmf Melting point (° C) of the polyester resin constituting the polyester film
  • a differential scanning calorimeter “Robot DSC-RDC220” manufactured by Seiko Denshi Kogyo Co., Ltd. and a disk session “SSC / 5200” for data analysis were used. Perform the measurement in the following manner. The sample is weighed in a sample pan by 5 mg, and the sample is heated from 25 ° C. to 320 ° C. at a heating rate of 20 ° C./min (1stRUN). A 1st RUN differential scanning calorimetry chart (the vertical axis is thermal energy and the horizontal axis is temperature) is obtained.
  • the peak top temperature at the crystal melting peak which is the endothermic peak, is determined, and this is defined as the melting point (° C.).
  • the temperature at the peak top having the largest peak area is defined as the melting point.
  • Tmeta1, Tmeta2) (° C) of the polyester resin constituting the polyester film
  • the minute endothermic peak temperature Tmeta (° C.) is determined by using a differential scanning calorimeter “Robot DSC-RDC220” manufactured by Seiko Denshi Kogyo according to JIS K 7122 (1999), and a disk session “SSC / 5200” for data analysis. ”To measure. 5 mg of the film is weighed in a sample pan and heated from 25 ° C. to 320 ° C. at a temperature rising rate of 20 ° C./min (1stRUN).
  • a 1st RUN differential scanning calorimetry chart (the vertical axis is thermal energy and the horizontal axis is temperature) is obtained.
  • Tmeta the endothermic peak temperature before the crystal melting peak
  • the data analysis unit enlarges the vicinity of the peak and reads the peak.
  • Tmeta1 the minute endothermic peak having the highest temperature
  • Tmeta2 the lowest minute endothermic peak
  • the graph reading method of the minute endothermic peak uses the peak detection function of the analysis software, and among the temperatures detected as peaks, the endothermic peak detected at a temperature below the melting point is defined as Tmeta.
  • Tg Glass transition temperature (° C) of the polyester resin constituting the polyester film
  • the differential scanning calorimeter “Robot DSC-RDC220” manufactured by Seiko Denshi Kogyo Co., Ltd. was used, and the disk session “SSC / 5200” was used for data analysis. Conduct measurements.
  • a marked line is attached to the film so that the length measurement portion is approximately 100 mm, and the length of the marked line is measured under the condition of 23 ° C. and is defined as L0. Thereafter, a 2 g weight is put in a hot air oven heated to a predetermined temperature (200 ° C. or 220 ° C.), the film is hung, and left for 30 minutes. The film is taken out from the oven and cooled to 23 ° C., and then the length of the marked line is measured and set to L1.
  • the shrinkage ratio of the film is determined by the following formula (vi). The measurement is performed by cutting out five points at random so that the film longitudinal direction or the film width direction is 150 mm.
  • An average value is calculated for each of the longitudinal direction and the width direction, and is defined as the thermal shrinkage rate of the film.
  • (Vi) (Film heat shrinkage) (L0 ⁇ L1) / L0 ⁇ 100 F.
  • Film flatness Evaluation is performed using a non-contact three-dimensional measuring apparatus NH-SP3 manufactured by Mitaka Kogyo Co., Ltd. as a non-contact laser microscope. NH software manufactured by Ryoko Co., Ltd. is used for the analysis. Cut the film into 120 mm ⁇ 120 mm. Each side is made parallel to the film longitudinal direction or the width direction. The four sides of the cut out film are fixed with a tape on a measuring table kept horizontal. The surface shape of the film is measured in the three-dimensional shape measurement mode.
  • the X-axis direction is the film longitudinal direction
  • the Y-axis direction is the film width direction.
  • the measurement pitch is 100 ⁇ m in the X-axis direction, 500 ⁇ m in the Y-axis direction, the measurement range is 100 mm ⁇ 100 mm, and the Z-axis magnification is 20 times.
  • the difference (the height difference H ( ⁇ m)) between the highest point and the lowest point in the Z-axis direction is calculated. Five points are randomly cut out from the film into the above shape, and the average value is calculated and evaluated as follows. 0 ⁇ H ⁇ 80 Evaluation A 80 ⁇ H ⁇ 150 Evaluation B 150 ⁇ H ⁇ 300 Evaluation C 300 ⁇ H Evaluation D Evaluation A is most excellent in flatness.
  • the thickness of each layer was determined by the following method.
  • the film cross section is cut out with a microtome in a direction parallel to the film width direction.
  • the cross section is observed with a scanning electron microscope at a magnification of 5000 times to determine the thickness ratio of each layer.
  • the thickness of each layer is calculated from the obtained lamination ratio and the above-described film thickness.
  • Terminal carboxyl group amount The terminal carboxyl group amount was measured by the following method according to the method of Malice. (Reference: M. J. Malice, F. Huizinga, Anal. Chim. Acta, 22 363 (1960)) 2 g of a measurement sample (polyester resin (raw material) or separated P1 layer of the laminate) was dissolved in 50 mL of o-cresol / chloroform (weight ratio 7/3) at a temperature of 80 ° C., and 0.05 N KOH / The solution was titrated with a methanol solution, and the terminal carboxyl group concentration was measured and indicated by the value of equivalent / polyester 1t (eq./t).
  • the indicator at the time of titration used phenol red, and the place where it changed from yellowish green to light red was set as the end point of titration. If there is insoluble matter such as inorganic particles in the solution in which the measurement sample is dissolved, the solution is filtered to measure the weight of the insoluble matter, and the value obtained by subtracting the weight of the insoluble matter from the measurement sample weight The following correction was made.
  • L Film-forming properties Count the number of times the film breaks in one hour during film formation, A is less than 1 time, B is 1 to 3 times, C is 3 to 5 times, A value of 5 or more is evaluated as D. A is the best film-forming property, and D is the worst.
  • the direction having the maximum refractive index in the film is regarded as the longitudinal direction
  • the direction orthogonal to the longitudinal direction is regarded as the width direction.
  • the direction of the maximum refractive index in the film may be obtained by measuring the refractive index in all directions of the film with a refractometer, and the slow axis direction may be determined by a phase difference measuring device (birefringence measuring device) or the like. It may be obtained by deciding.
  • the film cut out in the same manner is treated with a pressure cooker manufactured by Tabai Espec Co., Ltd. under high-humidity heat conditions of a temperature of 125 ° C. and a relative humidity of 100% RH, and then the elongation at break is measured.
  • n 5 and it measures about each of the longitudinal direction of a film, and the width direction, and let the average value be the breaking elongation E1.
  • the elongation retention is calculated by the following equation (a).
  • the treatment time is changed by one hour, and the treatment time at which the elongation retention is 50% or less is defined as the elongation half-life.
  • PET-A Polymerization was carried out from terephthalic acid and ethylene glycol by a conventional method using antimony trioxide as a catalyst to obtain melt-polymerized PET.
  • the resulting melt-polymerized PET had a glass transition temperature of 81 ° C., a melting point of 255 ° C., an intrinsic viscosity of 0.62, and a terminal carboxyl group content of 20 eq. / T.
  • melt-polymerized PET was solid-phase polymerized by a conventional method to obtain PET-A.
  • the obtained PET-A had a glass transition temperature of 82 ° C., a melting point of 255 ° C., an intrinsic viscosity of 0.85, and a terminal carboxyl group content of 11 eq. / T.
  • PEN-A A transesterification reaction was carried out from dimethyl 2,6-naphthalenedicarboxylate and ethylene glycol using manganese acetate as a catalyst. After the transesterification reaction, PEN-A was obtained by a conventional method using antimony trioxide as a catalyst. The obtained PEN-A had a glass transition temperature of 124 ° C., a melting point of 265 ° C., an intrinsic viscosity of 0.62, and a terminal carboxyl group concentration of 25 eq. / T.
  • PET-B Polymerization was performed using terephthalic acid and ethylene glycol as raw materials and antimony trioxide as a catalyst. Simultaneously with antimony trioxide, a solution of phosphoric acid and sodium dihydrogen phosphate dihydrate dissolved in ethylene glycol was added. Phosphoric acid was added in an amount corresponding to 2.0 mol / t with respect to PET, and sodium dihydrogen phosphate dihydrate was added in an amount corresponding to 1.7 mol / t with respect to PET.
  • PET-C had a glass transition temperature of 81 ° C., a melting point of 255 ° C., an intrinsic viscosity of 0.68, and a terminal carboxyl group content of 20 eq. / T.
  • PET-C was solid-phase polymerized by a conventional method to obtain PET-B.
  • the obtained PET-B had a glass transition temperature of 82 ° C., a melting point of 255 ° C., an intrinsic viscosity of 0.85, and a terminal carboxyl group content of 11 eq. / T.
  • PEN-B A transesterification reaction was carried out using dimethyl 2,6-naphthalenedicarboxylate and ethylene glycol as raw materials and manganese acetate as a catalyst. After the transesterification reaction, polymerization was carried out using antimony trioxide as a catalyst. Simultaneously with antimony trioxide, a solution of phosphoric acid and sodium dihydrogen phosphate dihydrate dissolved in ethylene glycol was added. Phosphoric acid was added so as to be equivalent to 2.0 mol / t with respect to PET, and sodium dihydrogen phosphate dihydrate was added so as to correspond to 1.7 mol / t with respect to PET, and the polymerization reaction was allowed to proceed. Got. The obtained PEN-B had a glass transition temperature of 124 ° C., a melting point of 265 ° C., an intrinsic viscosity of 0.62, and a terminal carboxyl group concentration of 20 eq. / T.
  • Example 1 As a resin constituting the surface layer, 100 parts by mass of PEN-A was dried in a vacuum at 160 ° C. for 2 hours, and then charged into the extruder 1. Further, 100 parts by mass of PET-A as a resin constituting the inner layer was vacuum-dried at 160 ° C. for 2 hours, and then charged into the extruder 2. Each raw material is melted in the extruder at the temperature shown in the table, and the resin introduced into the extruder 1 is merged by the merging device so as to become both surface layers of the film, and extruded onto a casting drum having a surface temperature of 25 ° C. A laminated sheet having a layer structure was produced.
  • the sheet is preheated with a heated roll group, and then stretched 3.2 times in the longitudinal direction (MD direction) at a temperature of 95 ° C., and then cooled with a roll group at a temperature of 25 ° C. to be a uniaxially stretched film.
  • MD direction longitudinal direction
  • roll group a temperature of 25 ° C.
  • the obtained uniaxially stretched film was stretched 3.5 times in the width direction (TD direction) perpendicular to the longitudinal direction in a heating zone at a temperature of 110 ° C. in the tenter while holding both ends with clips.
  • heat setting was performed for 10 seconds at a temperature of 240 ° C. in a heat treatment zone in the tenter.
  • the film was shrunk in the film width direction by 5% with respect to the film width. Subsequently, after cooling gradually uniformly in a cooling zone, it wound up and obtained the laminated polyester film. Furthermore, the obtained film is annealed in a hot air oven installed between the film winding roll and the film winding roll at a temperature of 220 ° C. so that the time for heat treatment of the film is 5 minutes. And a film having a thickness of 100 ⁇ m was obtained. Each characteristic of the film is shown in the table. The film had a low heat shrinkage at 200 ° C. and a particularly good flatness.
  • Example 2-4 Film formation was performed in the same manner as in Example 1 except that the resin composition and film formation conditions were changed as shown in the table. The properties of the film are shown in the table. The film had a low heat shrinkage at 200 ° C. and a particularly good flatness.
  • Example 5 A film having a thickness of 100 ⁇ m was obtained in the same manner as in Example 1 except that the heat setting temperature and off-annealing temperature of the film were changed as shown in the table. Each characteristic of the film is shown in the table. Since the heat setting temperature was near the film melting point, only one Tmeta was observed. This film was found to be a film that has a low thermal shrinkage rate at 220 ° C. in addition to a 200 ° C. heat shrinkage rate and is excellent in flatness.
  • Example 6-8 Film formation was performed in the same manner as in Example 5 except that the resin composition and film formation conditions were changed as shown in the table. The properties of the film are shown in the table. The film had a low heat shrinkage at 220 ° C. and a particularly good flatness.
  • Example 9-14 and 22 A film was formed in the same manner as in Example 1 except that the lamination ratio of the film and the thickness of the film were changed as shown in the table. The properties of the film are shown in the table.
  • Example 9 since the lamination ratio of the surface layer (A layer) was large, although it was slightly inferior in film formability and workability, it could withstand practical use.
  • Example 11 since the lamination ratio of the surface layer (A layer) is small and the thickness is thin, the function of protecting the inner layer (B layer) is lowered and the planarity is inferior.
  • Example 13 since the thickness of one side of the surface layer (A layer) was thin, the function of protecting the inner layer (B layer) was lowered, and although it was slightly inferior in flatness, it could withstand practical use. In Example 22, since the thickness of one side of the surface layer (A layer) was thick, although it was slightly inferior in film formability and workability, it could withstand practical use.
  • Example 15-17 Film formation was performed in the same manner as in Example 5 except that the resin composition and the off-annealing temperature of the film were changed as shown in the table. The properties of the film are shown in the table. Since the off-annealing temperature was lower than that of Example 5, the heat shrinkage rate at 220 ° C. was slightly inferior, but the flatness showed excellent characteristics.
  • Example 18 The resin constituting the film was only polyethylene terephthalate, and a single film was formed according to the film forming conditions as shown in the table. The properties of the film are shown in the table.
  • Example 18 the heat yield at 200 ° C. was excellent, but the flatness was slightly inferior to that in Example 1, but it could withstand practical use.
  • Example 21 since the heat setting temperature and the annealing temperature are the same, the heat shrinkage rate is excellent. Although it was slightly inferior in flatness, it could withstand practical use.
  • Example 19 A film was obtained in the same manner as in Example 1 except that the composition of the resin constituting the A layer was as described in the table. The properties of the film are shown in the table. It turned out that melting
  • Example 20 A film was obtained in the same manner as in Example 1 except that the resin used for the A layer was PCHT.
  • PCHT Eastman Chemical Co., Ltd., copolyester 13319 was used.
  • the properties of the film are shown in the table. The film was excellent in heat shrinkage and flatness.
  • Example 23-25 A film was obtained in the same manner as in Example 1 except that the resin used for the A layer was PEN-B and the resin used for the B layer was PET-B. The properties of the film are shown in the table. It was a film excellent in heat shrinkage, flatness, and heat and humidity resistance.
  • Comparative Examples 1 and 2 The resin constituting the film was only polyethylene terephthalate, and a single film was formed according to the film forming conditions as shown in the table. The properties of the film are shown in the table. In Comparative Example 1, since the temperature of Tmeta1 is low and is lower than Tmf-35 ° C., the heat shrinkage rate is inferior. In Comparative Example 2, since the heat setting temperature was high and Tmf was equivalent, the film forming property was poor and a film could not be obtained.
  • Comparative Examples 3 and 4 The resin constituting the film was PEN only, and the film was formed under the stretching conditions described in the table. The properties of the obtained film are shown in the table. In Comparative Example 3, only heat setting was performed, and in Comparative Example 4, off-annealing was performed after the heat setting step. Since it is not a film containing PET as a main component and has a large plane orientation coefficient (fn), it is greatly inferior in workability.
  • Example 5 A film was formed in the same manner as in Example 1 except that the composition of the resin constituting the A layer and the film forming conditions were changed as described in the table. The film properties are shown in the table.
  • the polyester film of the present invention not only has excellent flatness and workability, but also has excellent heat resistance. Therefore, the polyester film of the present invention has little change in film shape even in a high-temperature environmental process such as transparent electrode deposition, and can be suitably used as an optical device substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

フィルムを構成するポリエステル樹脂に占めるポリエチレンテレフタレートの割合が60重量%以上であるポリエステルフィルムであって、200℃で30分間熱処理を行った場合のフィルム長手方向および幅方向の熱収縮率がいずれも0.5%以下であるポリエステルフィルム。耐熱性、特に高温での低熱収縮率を実現し、かつ加工性に優れたフィルムを提供する。

Description

ポリエステルフィルム
 本発明は、高温においても熱収縮率の低いポリエステルフィルムに関する。
 ポリエステル樹脂、特にポリエチレンテレフタレート(以下PETと略すことがある)や、ポリエチレン2,6-ナフタレンジカルボキシレート(以下PENを略すことがある)などは機械特性、熱特性、耐薬品性、電気特性、成形性に優れ、様々な用途に用いられている。そのポリエステルをフィルム化したポリエステルフィルム、中でも二軸配向ポリエステルフィルムは、その優れた機械的特性、電気的特性などから、太陽電池バックシート、給湯器モーター用電気絶縁材料や、ハイブリッド車などに使用されるカーエアコン用モーターや駆動モーター用などの電気絶縁材料、磁気記録材料や、コンデンサ用材料、包装材料、建築材料、写真用途、グラフィック用途、感熱転写用途などの各種工業材料、またフレキシブルディスプレイや有機ELなどの透明電極基板といった光学材料として使用されている。
 これらの用途のうち、光学材料(例えば透明導電膜の製膜基板(ITO(Indium Tin Oxide)蒸着基板など))用途に用いる場合、ITO膜の導電性を上げるために一定温度でのキュア工程が必要であり、耐熱性、特に基板の熱収縮率の低減が求められる。そのため、該用途には、低熱収縮性に優れるフィルムが用いられることが知られていた(特許文献1、2、3)。
特開平3-13315号公報 特開平11-165350号公報 特開2005-216706号公報
 しかしながら、ITO膜の導電性を従来より向上させて性能の高い光学デバイスを作製するためには、キュア工程の温度を上げる必要がある。そのため、透明導電膜の製膜基板用途に用いられるポリエステルフィルムには、従来品よりもさらに高温下でのフィルムの熱収縮率低減が求められている。ポリエステルフィルムの中で機械特性、耐熱性に優れるPETフィルムの熱収縮率を低減させるには、フィルムを高い温度で熱固定処理することが有効である。しかしながら、より高温での熱収縮率を低減するため、高温での熱固定処理を実施すれば、フィルムの平面性が損なわれるという問題がある。一方、ポリエステルフィルムの中でPENフィルムは、PETフィルムと同様機械特性に優れており、また、PETフィルムに比べて耐熱性に優れる。しかしながら、PENフィルムは、フィルムを構成するPENが剛直な分子構造を持つため加工性が悪く、加工時にフィルムが割れるという課題を有していることがわかった。
 本発明の課題は、かかる従来技術の背景に鑑み、高温条件下での熱収縮率の低いポリエステルフィルムを提供することにある。また、平面性が良好であり、かつ加工性に優れるポリエステルフィルムを提供することにある。
 上記課題を解決するために、本発明は以下の構成をとる。すなわち、
[I]フィルムを構成するポリエステル樹脂に占めるポリエチレンテレフタレートの割合が60重量%以上であるポリエステルフィルムであって、200℃で30分間熱処理を行った場合のフィルム長手方向、幅方向の熱収縮率がいずれも0.5%以下であるポリエステルフィルム。
[II]200℃で30分間熱処理を行った場合のフィルム長手方向の熱収縮率、幅方向の熱収縮率のうち、少なくともいずれか一方の熱収縮率が0.01%以上である[I]に記載のポリエステルフィルム。
[III]220℃で30分間熱処理を行った場合のフィルム長手方向の熱収縮率、幅方向の熱収縮率がいずれも0.5%以下であり、かつ、少なくともいずれか一方の熱収縮率が0.01%以上である[I]または[II]に記載のポリエステルフィルム。
[IV]非接触式レーザー顕微鏡でフィルムの凹凸を測定した際に、フィルムの凹凸差が300μm以下である[I]~[III]のいずれかに記載のポリエステルフィルム。
[V]面配向係数が0.145以上0.165以下である[I]から[IV]のいずれかに記載のポリエステルフィルム。
[VI]フィルムを構成するポリエステル樹脂が、融点(Tmf(℃))を有しており、かつ、微少吸熱ピーク温度(Tmeta(℃))を1つ以上有している[I]から[V]のいずれかに記載のポリエステルフィルム。
[VII]フィルムを構成するポリエステル樹脂が、微少吸熱ピーク(Tmeta(℃))を2以上有しており、最も低い温度のTmeta(Tmeta1)(℃)と最も高い温度のTmeta(Tmeta2)(℃)が以下の関係を満たす[VI]に記載のポリエステルフィルム。
Tmf-35(℃)≦Tmeta1(℃)<Tmeta2(℃)≦Tmf(℃)
[VIII]前記ポリエステルフィルムが、少なくとも3層からなる積層ポリエステルフィルムであり、フィルムの最表面を構成する層(A層)を構成するポリエステル樹脂の融点(Tmo(℃))が260℃以上である[I]から[VII]のいずれかに記載のポリエステルフィルム。
[IX]前記積層ポリエステルフィルムが3層からなり、表層を構成する層(A層)を構成するポリエステル樹脂の融点(Tmo(℃))と、内層を構成する層(B層)を構成するポリエステル樹脂の融点(Tmi(℃))の差が5℃以上10℃以下である[VIII]に記載のポリエステルフィルム。
[X]表層を構成する層(A層)の厚みの和と、内層を構成する層(B層)の厚みの比が1/8以上1/4以下である[IX]に記載のポリエステルフィルム。
[XI]透明導電膜の製膜基板に用いられる[I]から[X]のいずれかに記載のポリエステルフィルム。
 本発明によれば、耐熱性、特に高温での低熱収縮率を実現し、かつ加工性に優れたフィルムを提供することができる。
 以下に具体例を挙げつつ、本発明について詳細に説明する。
本発明のポリエステルフィルムは、フィルムを構成するポリエステル樹脂に占めるポリエチレンテレフタレートの割合が60重量%以上であるポリエステルフィルムである。
 ここでいうポリエステルは、ジカルボン酸構成成分とジオール構成成分を有してなるものである。なお、本明細書内において、構成成分とはポリエステルを加水分解することで得ることが可能な最小単位のことを示す。ポリエチレンテレフタレートの割合は好ましくは70重量%以上、さらに好ましくは80重量%以上である。
 本発明のポリエステルフィルムは、200℃で30分間熱処理した後のフィルム長手方向および幅方向の熱収縮率がいずれも、0.5%以下である必要がある。より好ましくは、本発明のフィルムを200℃で30分間処理した後の長手方向および幅方向の熱収縮率が0.3%以下である。
 一般的に、ポリエステルフィルムが延伸フィルムである場合、延伸によって分子鎖は緊張状態(配向した状態)にある。そのため、熱が加えられた場合、分子鎖の緊張が解け、フィルムが収縮し、平面性が悪化する場合がある。かかる熱による収縮や平面性の悪化を抑える方法としては、延伸によって形成されたポリエステル分子鎖の構造(以後、フィルム構造という)を安定化させるため、延伸工程の後に所定の温度での熱処理の工程(該熱処理温度を熱固定温度という)を設ける方法を用いることが知られている。延伸工程の後に熱処理工程を実施することにより、一定程度、平面性、機械特性が良好なフィルムを得ることができる。しかしながら、このような熱処理工程を経たフィルムであっても、高温、特に200℃以上の温度でフィルムに熱が加わると、フィルムを構成する分子の構造が乱れ、平面性が悪化する。つまり、熱収縮率を低減し、フィルムの平面性を良好なものとするためには、フィルムを構成する分子の構造を強固なものとし、高温、特に200℃以上でも安定な構造とする必要がある。
 延伸によって緊張状態にある分子鎖が熱によって収縮する程度は一様では無い。そのため、フィルム面内でも熱収縮率に差が生じることとなり、フィルムにシワが入り平面性が損なわれる。例えば、ポリエステルフィルムを透明導電膜の製膜基板であるITO蒸着用基板に用いる場合、ITO膜を蒸着した後の工程(キュア工程など)でフィルムに熱負荷が加わる。このとき、ポリエステルフィルムの熱収縮によりフィルムの平面性が損なわれると、ITO膜の導電性が低下するため好ましくない。
 また、一般的に、キュア温度が高い方がITO膜の結晶サイズが大きくなり、ITO膜の導電性が向上するが、該結晶サイズが大きいと、基板とするフィルムを折り曲げたりする変形時の追従性に劣り、ITO膜に亀裂が入りやすくなる。ITO膜の変形時追従性と導電性を両立できるキュア温度は、200℃以上220℃以下である。そのため、該温度である200℃、220℃におけるフィルムの長手方向および幅方向の熱収縮率をいずれも0.5%以下とすることで、フィルムの平面性を損なうこと無くITO膜を適切な温度でキュアすることができ、透明導電基板としての性能が向上するため好ましい。より好ましくは0.3%以下である。
 上述したとおり、ポリエステルフィルムの平面性の観点からは、200℃、220℃におけるフィルムの熱収縮率は小さい方が好ましいが、ポリエステルフィルムをITO蒸着用基板に用いる場合は、200℃、220℃におけるフィルムの熱収縮率は、長手方向、幅方向のいずれかが0.01%以上であると、ポリエステルフィルムが熱によって膨張することなく収縮するため、ITO膜の亀裂の発生を抑制することが可能となり、透明導電基板としての性能が向上するので好ましい。より好ましくは、200℃、220℃におけるフィルムの熱収縮率は、長手方向、幅方向のいずれかが0.03%以上である。
 本発明のポリエステルフィルムの熱収縮率を上記範囲とするためには、ポリエステルフィルムの製膜を特定の条件で実施する方法(方法イ)、フィルムを構成するポリエステル樹脂を特定の構成とする方法(方法ロ)、(方法イ)・(方法ロ)を組合せる方法が挙げられる。
 まず、(方法イ)について説明する。本発明のポリエステルフィルムは、フィルムを構成するポリエステル樹脂に占めるポリエチレンテレフタレートの割合が60重量%以上であるポリエステルフィルムを後述の方法で製膜し、さらに後述の方法でアニールする方法(方法イ)により、好適に得ることができる。
 まず、フィルムを製膜する方法について説明する。
 ポリエチレンテレフタレートを60重量%以上含むポリエステルを押出機内で加熱溶融した後口金から吐出し、未延シートを得た後、二軸延伸を実施し、二軸配向ポリエステルフィルムを得る方法において、以下の条件を満たすことにより、200℃における熱収縮率を小さくすることができる。
(1)溶融したポリエステルを口金から吐出して未延伸シートを作製する際に、表面温度10℃以上40℃以下に冷却されたドラム上で静電気により密着冷却固化し、未延伸シートを作製する。
(2)(1)で得られた未延伸シートを、下記(i)式を満たす温度T1n(℃)にて、フィルムの長手方向(MD)とフィルムの幅方向(TD)に面積倍率10.0倍以上16.0倍以下に二軸延伸する。
(i)Tg(℃)≦T1n(℃)≦Tg+40(℃)
Tg:ポリエステルフィルムを構成するポリエステル樹脂のガラス転移温度(℃)
(3)(2)で得られた二軸延伸フィルムを、下記(ii)式を満足する温度(Th0(℃))で、1秒間以上30秒間以下の熱固定処理を行ない、均一に徐冷後、室温まで冷却することによって、ポリエステルフィルムを得る。
(ii)Tmf-35(℃)≦Th0(℃)≦Tmf(℃)
Tmf:ポリエステルフィルムを構成するポリエステル樹脂の融点(℃)
(1)を満たす条件によって未延伸シートを得ることにより実質的に非晶のポリエステルフィルムを得ることができ、(2)以降の工程においてフィルムに配向を付与せしめ易くし、熱収縮率が小さく、機械特性に良好なフィルムを得やすくすることができる。
(2)を満たす条件によって二軸延伸フィルムを得ることにより、フィルムに適度な配向を付与せしめ、機械特性の良好なフィルムとすることができる。
(3)を満たす条件によって結晶配向を完了させることにより、配向が形成されたポリエステル分子鎖の構造が安定し、熱収縮率が低く、平面性が良好なフィルムとすることができる。
 なお、(2)において、二軸延伸する方法としては、フィルムの長手方向(MD)とフィルムの幅方向(フィルムの長手方向に垂直な方向、TD)の延伸とを分離して行う逐次二軸延伸方法、また、長手方向と幅方向の延伸を同時に行う同時二軸延伸方法のどちらを用いて行っても良い。また、延伸温度(T1n)(℃)がTg(℃)未満である場合、延伸することが困難である。T1n(℃)がTg+40(℃)を超える場合には、フィルム破れが頻発し、延伸によりフィルムを得ることができない場合がある。より好ましくは、Tg+10(℃)≦T1n(℃)≦Tg+30(℃)である。
 (3)の工程は、フィルムの両端を把持したまま行う方法が、平面性の観点から好ましい。また、フィルム幅方向にフィルム幅に対して1~10%収縮させながら熱固定させる方法も、熱収縮率を低減する観点から好ましい。
 (3)において、フィルムに発生する熱収縮は、上述の通りフィルム構造を形成する温度に近い温度で生じることから、200℃を超える高温でのフィルムの熱収縮率を抑えるためには、熱固定温度(Th0(℃))を高くすることが重要となる。一方で、熱固定温度(Th0(℃))がTmf(℃)を超える温度で熱処理する場合、フィルムが溶けて製膜することができない。また、Tmf(℃)に近すぎる温度で熱処理すると、平面性が悪化する場合がある。そのため、より好ましくは、Tmf-25(℃)≦Th0(℃)≦Tmf-10(℃)である。この熱固定処理を実施すると、フィルムを構成するポリエステル樹脂は、この熱固定温度が反映された微小吸熱ピーク(Tmeta(℃))を有する。そのため、本発明のポリエステルフィルムを構成するポリエステル樹脂は、微小吸熱ピークを有することが好ましい。そして、その微小吸熱ピークは、Tmf-35(℃)以上、Tmf(℃)以下であることが好ましく、Tmf-25(℃)以上、Tmf-10(℃)以下であることがさらに好ましい。
 また、より高温での熱収縮率を低減するためには、フィルム内の配向が形成されたポリエステル分子鎖の構造をより強固なものとするため、以下(4)の方法でアニール処理を実施することが好ましい。
 (4)(3)で得られたフィルムを、下記(iii)式を満たす熱処理温度Th1(℃)にて、70秒以上600秒以下の時間で、アニールする。当該アニール処理を行う方法としては、フィルム巻きだしロールとフィルム巻き取りロールの間に設置されたオーブンでフィルムを熱処理する(オフアニール)方法が挙げられる。
(iii)Tmf-35(℃)≦Th1(℃)≦Th0(熱固定温度)(℃)
 (3)を満たす条件で熱固定したフィルムを、さらに(4)を満たす条件でアニールすることで、フィルム内の配向が形成されたポリエステル分子鎖の構造をより強固なものとすることができ、200℃を超えるような高温での熱収縮率を大幅に低減させることができる。
 Th1(℃)がTh0(熱固定温度)(℃)を超える場合、(4)の工程において、(3)の工程で固定化されたフィルム内の分子鎖の構造が破壊される結果、フィルムが大きく収縮することとなり、平面性が悪化する場合がある。一方、Th1(℃)がTmf-35(℃)を下回る場合、高温での熱収縮率を低減することができない場合がある。Th1(℃)がTh0(熱固定温度)(℃)より低い場合、特にTh1(℃)がTh0(熱固定温度)(℃)より充分に小さい場合、微少吸熱ピーク(Tmeta)は、(3)の工程における熱固定処理によって形成されたフィルム構造を反映したものと、(4)の工程におけるアニール処理によって形成されたフィルム構造を反映したものが観察される。この場合、(3)の熱固定の工程で形成されたフィルムの構造が、(4)のアニール処理工程において破壊されないため、フィルム内の配向が形成されたポリエステル分子鎖の構造をより強固なものとすることができる。この場合、200℃を超えるような高温での熱収縮率を大幅に低減させることが可能となり、フィルムの平面性が良好となる。そのため、本発明のポリエステルフィルムを構成するポリエステル樹脂は、Tmeta(℃)を2以上有することが好ましい。そして、Tmeta(℃)が2以上存在する場合は、低い温度のTmeta(Tmeta1)(℃)と、高い温度のTmeta(Tmeta2)(℃)が、Tmf-35(℃)≦Tmeta1(℃)<Tmeta2(℃)≦Tmf(℃)を満たす場合、平面性良好なフィルムを得ることができるため、好ましい。(3)の熱固定処理工程、(4)のアニール処理工程は複数回経ても良い。(3)の熱固定処理工程、(4)のアニール処理工程を複数回経たフィルムは、Tmeta(℃)が3以上有する場合がある。Tmeta(℃)が3以上有する場合は、最も低い温度のTmeta(℃)をTmeta1(℃)、最も高い温度のTmeta(℃)をTmeta2(℃)とし、Tmf-35(℃)≦Tmeta1(℃)<Tmeta2(℃)≦Tmf(℃)の関係を満たすことが好ましい。
 次に(方法ロ)について説明する。本発明のポリエステルフィルムは、少なくとも3層からなる積層フィルムとし、フィルムの最表面を構成する層(A層)を構成する樹脂の融点(Tmo)が260℃以上とする方法(方法ロ)により、好適に得ることができる。フィルムの構成を上記の構成とすることにより、フィルムの熱収縮率を低減し、平面性を良好なものとすることができるため好ましい。本発明のポリエステルフィルムの主成分であるポリエチレンテレフタレートの融点は約255℃である。すなわち、A層を構成するポリエステルは、ポリエチレンテレフタレート以外の高融点成分を含むこととなる。高融点を有する樹脂からなる表層(A層)を有することにより、内層(B層)を構成する樹脂のみからなるフィルムでは実施することができなかったような高い温度で、熱固定処理やアニール処理をすることが可能となる。高融点を有する樹脂からなる表層(A層)が存在することにより、高い温度で熱固定処理やアニール処理をしても内層(B層)が溶融することを防ぐことが可能となるのである。このような高い温度で熱固定処理やアニール処理を実施できた結果、200℃を超えるような高温での熱収縮率を大幅に低減させることが可能となる。
 フィルムの最表面を構成する層(A層)を構成する樹脂の融点(Tmo)は262℃以上であることがより好ましい。また、加工性、機械特製の観点から、表層を構成しない内層(B層)はポリエチレンテレフタレートであることが好ましい。本発明のポリエステルフィルムを構成するポリエステル樹脂の融点Tmf(℃)は、60重量%以上含有する主成分であるポリエチレンテレフタレートの融点を反映する。
 A層に用いる樹脂としては、ポリエチレンナフタレート(以下PENと称することがある)、ポリシクロヘキシレンジメチレンテレフタレート(以下PCHTと称することがある)、ポリフェニレンサルファイド(以下PPSと称することがある)、またはこれらの混合物が挙げられる。また、A層とB層の密着性を向上指させるため、本願の発明の効果を損なわない範囲で、A層を構成する樹脂にB層を構成する樹脂を少量添加することも好ましい実施形態である。A層を構成する樹脂にB層を構成する樹脂を添加する量は、A層を構成する樹脂の総量に対して好ましくは0.01重量%以上15重量%未満、さらに好ましくは0.1重量%以上5重量%以下である。
 また、表層(A層)を構成する樹脂の融点(Tmo(℃))と、内層(B層)を構成するポリエステル樹脂の融点(Tmi(℃))の差(Tmo-Tmi(℃))が5℃以上15℃以下であることが好ましい。該温度差が15℃を超えると、溶融押出時に積層性が悪くなる場合がある。一方、5℃未満となると、A層に強い配向を加えることが困難となる場合がある。より好ましくは、5℃以上10℃以下である。
 表層を構成する層(A層)の厚みの和と、内層を構成する層(B層)の厚みの比(A層の厚みの和/B層の厚み)は、1/16~1/2であることが好ましい。1/16より小さい場合、表層(A層)の厚みが薄く、B層を保護する役割が十分でなく、平面性、耐熱性に劣る場合がある。1/2を超える場合、延伸性が悪くなる場合がある。表層を構成する層(A層)の厚みの和と、内層を構成する層(B層)の厚みの比(A層の厚みの和/B層の厚み)は、より好ましくは、1/8~1/4である。該範囲とすることで、平面性、耐熱性、延伸性に優れたフィルムとすることができる。また、A層の片側の厚みは、5μm以上30μm以下であることが好ましい。上述の積層比を満たす場合でも、A層の片側の厚みが5μmに満たない場合、平面性に劣る場合が有り、30μmを超える場合は、延伸性、加工性が悪くなる場合がある。
 本発明のポリエステルフィルムを、少なくとも3層からなる積層フィルムとする場合、積層フィルムを構成する層毎に押出機を用い、各層の原料を溶融せしめ、これらを押出装置と口金の間に設けられた合流装置にて溶融状態で積層したのち口金に導き、口金からキャストドラム上に押し出してシート状に加工する方法が好適に用いられる。該シートは、表面温度10℃以上40℃以下に冷却されたドラム上で静電気により密着冷却固化し、未延伸シートを作製する。この未延伸シートを上述の(2)~(4)の方法によって製膜し、ポリエステルフィルムを得る。
 本構成の積層フィルムにおいては、表層を構成する樹脂の融点(Tmo(℃))は、フィルムの内層を構成する樹脂の融点(Tmi(℃))よりも高いため、熱固定の工程およびアニールの工程でフィルムに熱を加えた場合、表層が内層の樹脂を保護する効果により、フィルムの構造が、単層のPETフィルムに比べて破壊されにくい。その結果、フィルムの平面性がより良好となる。
 また、本構成の積層フィルムにおいては、(iv)式を満足するような熱固定温度(Th0(℃))で、1秒間以上30秒間以下の熱処理を行ない、均一に徐冷後、室温まで冷却することによってポリエステルフィルムを得た後、下記(v)式を満たすアニール処理温度Th1(℃)にて、70秒以上600秒以下の時間でアニールすることも好ましい実施形態である。
(iv)Tmf-10(℃)≦Th0(熱固定温度)(℃)≦Tmf(℃)
(v)Tmf-35(℃)≦Th1(℃)≦Th0(熱固定温度)(℃)
本構成の積層フィルムにおいて、表層を構成する樹脂の融点(Tmo(℃))は、フィルムを構成するポリエステル樹脂の融点Tmf(℃)よりも高い。即ち、上述のように表層が内層の樹脂を保護することができるため、熱固定温度を高くすることが可能となり、フィルムを溶かすこと無くTmf(℃)に近い温度で熱固定することができる。(iv)式を満たす場合、熱固定温度がTmf(℃)に近いため、熱固定温度を反映するTmeta(℃)は融点ピークに重なり、観察することができない。一方で、二軸延伸後にフィルム構造をより高温で形成することが可能となるため、(4)のアニール工程の温度を、フィルム構造を破壊することなく高温化することができる。その結果、高温下でも安定なフィルム構造とすることができ、高温での熱収縮率を低減することが可能となる。
 以上のようにして得られる本発明のフィルムは、高温での熱収縮率が低く、また平面性にも優れている。
 本発明のフィルムは、後述の方法によって非接触式レーザー顕微鏡でフィルムの凹凸を測定した際に、フィルムの凹凸差が300μm以下であることが好ましい。凹凸差が0μmであれば、実質平面となるので、下限値は0μm以上である。
 フィルム表面の凹凸差が300μmを超える場合、フィルム加工性の悪化や、ITO蒸着後の導電性が悪くなるため好ましくない場合がある。凹凸差が小さければ小さいほど、ITO蒸着後の導電性が向上する。フィルム表面の凹凸差を上記の範囲とするには、フィルムの二軸延伸後に熱固定工程を設けること、さらに熱固定工程後に熱固定温度以下の温度でアニールする工程を設けるなどの方法が挙げられる。より好ましくは150μm以下であり、特に好ましくは80μm以下である。
 また、本発明のポリエステルフィルムは、面配向係数が0.145以上0.165以下であることが好ましい。面配向係数は、後述の方法によりフィルムの屈折率から求められる。PET、PENなどからなる二軸延伸フィルムの面配向係数は、一般的に、分子鎖に含まれるベンゼン環がフィルム平面に平行に並ぶことにより大きくなる。ベンゼン環は、分子鎖の中でも剛直であるため、面配向係数が0.165を超える場合、ベンゼン環が多くフィルム平面に平行に並ぶため、フィルムを曲げたり断裁するといった加工時に、フィルムが割れやすくなる場合がある。面配向係数が0.145を下回る場合、二軸延伸による配向がついていないため機械強度に劣る場合がある。
 また、本発明のポリエステルフィルムは、フィルムを構成するポリエステル樹脂がリン酸とリン酸アルカリ金属塩を含有すると、耐湿熱性に優れるため好ましい。ポリエステル樹脂に、リン酸とリン酸アルカリ金属塩を含有させる方法としては、ポリエステル樹脂の重合時に、リン酸とリン酸アルカリ金属塩を添加することが挙げられる。本発明のポリエステルフィルムがA層、B層を有する積層フィルムである場合、A層のみにリン酸とリン酸アルカリ金属塩を含有させる態様、A層、B層のいずれにもリン酸とリン酸アルカリ金属塩を含有させる態様が、耐湿熱性に優れるため好ましい。本発明のポリエステルフィルムの耐湿熱性が良好である場合、より過酷な環境下で使われるディスプレイ、例えばカーナビゲーションシステムのディスプレイに用いられるITO蒸着基板として好適に用いることができる。
 本発明により得られるフィルムは、加工性、平面性に優れ、高温での熱収縮率が小さいため、ITOなどの透明電極蒸着基板用途として好適に用いることができる。
 [特性の評価方法]
 A.各層を構成する樹脂の融点(Tmo、Tmi)(℃)
 試料を、JIS K 7121(1999)に基づいた方法により、セイコー電子工業(株)製示差走査熱量測定装置“ロボットDSC-RDC220”を、データ解析にはディスクセッション“SSC/5200”を用いて、下記の要領にて、測定を実施する。
サンプルパンに試料を5mgずつ秤量し、試料を25℃から320℃まで20℃/分の昇温速度で加熱する(1stRUN)。1stRUNの示差走査熱量測定チャート(縦軸を熱エネルギー、横軸を温度とする)を得る。当該1stRunの示差走査熱量測定チャートの、吸熱ピークである結晶融解ピークにおけるピークトップの温度を求め、これを融点(℃)とする。2以上の結晶融解ピークが観測される場合は、最もピーク面積の大きいピークトップの温度を融点とする。
 試料は、積層ポリエステルフィルムからミクロトームを用いて各層を構成する樹脂のみ削りだし、測定に供する。
 B.ポリエステルフィルムを構成するポリエステル樹脂の融点(Tmf)(℃)
 試料を、JIS K 7121(1999)に基づいた方法により、セイコー電子工業(株)製示差走査熱量測定装置“ロボットDSC-RDC220”を、データ解析にはディスクセッション“SSC/5200”を用いて、下記の要領にて、測定を実施する。
サンプルパンに試料を5mgずつ秤量し、試料を25℃から320℃まで20℃/分の昇温速度で加熱する(1stRUN)。1stRUNの示差走査熱量測定チャート(縦軸を熱エネルギー、横軸を温度とする)を得る。当該1stRunの示差走査熱量測定チャートの、吸熱ピークである結晶融解ピークにおけるピークトップの温度を求め、これを融点(℃)とする。2以上の結晶融解ピークが観測される場合は、最もピーク面積の大きいピークトップの温度を融点とする。
 C.ポリエステルフィルムを構成するポリエステル樹脂の微小吸熱ピーク(Tmeta1、Tmeta2)(℃)
 微少吸熱ピーク温度Tmeta(℃)は、JIS K 7122(1999)に準じて、セイコー電子工業(株)製示差走査熱量測定装置”ロボットDSC-RDC220”を、データ解析にはディスクセッション”SSC/5200”を用いて測定する。サンプルパンにフィルムを5mg秤量し、25℃から320℃まで20℃/分の昇温速度で加熱する(1stRUN)。1stRUNの示差走査熱量測定チャート(縦軸を熱エネルギー、横軸を温度とする)を得る。得られた示差走査熱量測定チャートにおける結晶融解ピーク前の微少吸熱ピーク温度でもってTmeta(℃)とする。微小な吸熱のピークが観測しにくい場合は、データ解析部にてピーク付近を拡大して、ピークを読みとる。微小吸熱ピークが複数存在する場合、温度が最も高い微小吸熱ピークをTmeta1(℃)、最も低い微小吸熱ピークをTmeta2(℃)とする。
 微小吸熱ピークのグラフ読み取り方法は、解析ソフトのピーク検出機能を用いて、ピークとして検出される温度のうち、融点未満の温度で検出される吸熱ピークをTmetaとする。
 D.ポリエステルフィルムを構成するポリエステル樹脂のガラス転移温度(Tg)(℃)
 JIS K 7121(1999)に準じて、セイコー電子工業(株)製示差走査熱量測定装置”ロボットDSC-RDC220”を、データ解析にはディスクセッション”SSC/5200”を用いて、下記の要領にて、測定を実施する。
 サンプルパンに試料を5mg秤量し、試料を25℃から300℃まで20℃/分の昇温速度で加熱し(1stRUN)、その状態で5分間保持し、次いで25℃以下となるよう急冷する。直ちに引き続いて、再度25℃から20℃/分の昇温速度で300℃まで昇温を行って測定を行い、2ndRUNの示差走査熱量測定チャート(縦軸を熱エネルギー、横軸を温度とする)を得る。当該2ndRUNの示差走査熱量測定チャートにおいて、ガラス転移の階段状の変化部分において、各ベースラインの延長した直線から縦軸方向に等距離にある直線とガラス転移の階段状の変化部分の曲線とが交わる点から求める。2以上のガラス転移の階段状の変化部分が観測される場合は、それぞれについて、ガラス転移温度を求め、それらの温度を平均した値を試料のガラス転移温度(Tg)(℃)とする。
 D.フィルムの面配向係数(fn)
JIS K 7105(1999)に準じて、アタゴ(株)製アッベ式屈折率計を用いて20℃での屈折率を求める。フィルムの表面の長手方向屈折率(Nmd),幅方向屈折率(Nd),厚み方向屈折率(Nz)を測定し、面配向係数(fn)を算出する。
fn=(Nmd+Ntd)/2-Nz
 E.フィルムの熱収縮率(%)
JIS C 2318(1997)に準じて、フィルムの熱収縮率を測定する。フィルムを幅10mm、長さ150mmの短冊状に切り出す。測長部分がおおよそ100mmになるようにフィルムに標線をつけて標線の長さを23℃の条件下にて測定し、L0とする。その後、所定の温度(200℃または220℃)に熱した熱風オーブン内に2gのおもりをつけてフィルムを吊し、30分間放置する。フィルムをオーブンから取りだして23℃まで冷却した後、標線の長さを測定し、L1とする。下記(vi)式によりフィルムの収縮率を求める。測定は、フィルム長手方向またはフィルム幅方向が150mmの長さになるようにランダムに5箇所切り出して測定する。長手方向、幅方向それぞれに平均値を算出し、フィルムの熱収縮率とする。
(vi)(フィルム熱収縮率)=(L0-L1)/L0×100
 F.フィルムの平面性
 非接触式レーザー顕微鏡として三鷹光器(株)製の非接触三次元測定装置NH-SP3を用いて評価する。解析には(株)菱光社製NHソフトを用いる。フィルムを120mm×120mmにフィルムを切り出す。各辺は、フィルム長手方向または幅方向に平行になるようにする。切り出したフィルムの4辺を、水平に保たれた測定台にテープで固定する。3次元形状測定モードにて、フィルムの表面形状を測定する。X軸方向はフィルム長手方向、Y軸方向はフィルム幅方向とする。測定ピッチは、X軸方向は100μm、Y軸方向は500μmとして、測定範囲は100mm×100mmの範囲とし、Z軸倍率は20倍とする。Z軸方向の最も高い点と最も低い点の差(高低差H(μm))を算出する。フィルムからランダムに5箇所を上記形状に切り出し、その平均値を算出し、以下のように評価する。
0≦H<80 評価A
80≦H<150 評価B
150≦H≦300 評価C
300<H 評価D
評価Aが最も平面性に優れている。
 G.フィルムの厚み(μm)
 フィルム厚みは、ダイヤルゲージを用い、JIS K7130(1992年)A-2法に準じて、フィルムを10枚重ねた状態で任意の5ヶ所について厚さを測定した。その平均値を10で除してフィルム厚みとした。
 H.積層フィルムの各層の厚み(μm)
 フィルムが積層フィルムである場合、下記の方法にて、各層の厚みを求めた。フィルム断面を、フィルム幅方向に平行な方向にミクロトームで切り出す。該断面を走査型電子顕微鏡で5000倍の倍率で観察し、積層各層の厚み比率を求める。求めた積層比率と上記したフィルム厚みから、各層の厚みを算出する。
 I.打ち抜き性
 高分子計器(株)製試験片打抜機を用い、JIS K-6251に記載の5号型ダンベル形状に積層フィルムを打ち抜く。フィルムを50枚重ねて打ち抜いた際に端面の割れ、剥がれが起きている枚数Mを数え、打ち抜き性を評価する。
0≦M≦9:打ち抜き性A
10≦M≦20:打ち抜き性B
21≦M≦30:打ち抜き性C
31≦M:打ち抜き性D
Aが最も優れ、Dが最も劣っている。
 J.固有粘度IV
 オルトクロロフェノール100mlにポリエステル組成物を溶解させ(溶液濃度C=1.2g/dl)、その溶液の25℃での粘度を、オストワルド粘度計を用いて測定する。また、同様に溶媒の粘度を測定する。得られた溶液粘度、溶媒粘度を用いて、下記(c)式により、[η](dl/g)を算出し、得られた値でもって固有粘度(IV)とする。
(c)ηsp/C=[η]+K[η]・C
(ここで、ηsp=(溶液粘度(dl/g)/溶媒粘度(dl/g))―1、Kはハギンス定数(0.343とする)である。)。
 K.末端カルボキシル基量
 末端カルボキシル基量については、Mauliceの方法に準じて、以下の方法にて測定した。(文献:M.J.Maulice,F. Huizinga,  Anal.Chim.Acta,22  363(1960))
測定試料(ポリエステル樹脂(原料)または積層体のP1層のみを分離したもの)2gをo-クレゾール/クロロホルム(重量比7/3)50mLに温度80℃にて溶解し、0.05NのKOH/メタノール溶液によって滴定し、末端カルボキシル基濃度を測定し、当量/ポリエステル1t(eq./t)の値で示した。なお、滴定時の指示薬はフェノールレッドを用いて、黄緑色から淡紅色に変化したところを滴定の終点とした。なお、測定試料を溶解させた溶液に無機粒子などの不溶物がある場合は、溶液を濾過して不溶物の重量測定を行い、不溶物の重量を測定試料重量から差し引いた値を測定試料重量とする補正を実施した。
 L.製膜性
 製膜中にフィルムが1時間に破れる回数を数え、1回未満であるものをA、1回以上3回未満であるものをB、3回以上5回未満であるものをC、5回以上であるものをDとして評価する。Aが最も製膜性がよく、Dが最も劣る。
 なお、上記の測定において、測定するフィルムの長手方向や幅方向が分からない場合は、フィルムにおいて最大の屈折率を有する方向を長手方向、長手方向に直行する方向を幅方向とみなす。また、フィルムにおける最大の屈折率の方向は、フィルムの全ての方向の屈折率を屈折率計で測定して求めてもよく、位相差測定装置(複屈折測定装置)などにより遅相軸方向を決定することで求めてもよい。
 M.フィルムの耐湿熱性
 積層フィルムを1cm×20cmの大きさに、長辺がフィルムの長手方向・幅方向に平行となるようにそれぞれ切り出し、ASTM-D882(1997)に基づいて、チャック間5cm、引っ張り速度300mm/分にて引っ張ったときの破断伸度を測定する。なお、サンプル数はn=5とし、また、フィルムの長手方向、幅方向のそれぞれについて測定した後、それらの平均値を求め、これをフィルムの破断伸度E0とする。
 次に、同様に切り出したフィルムを、タバイエスペック(株)製プレッシャークッカーにて、温度125℃、相対湿度100%RHの高湿熱条件下にて処理を行った後、破断伸度を測定する。なお、測定はn=5とし、フィルムの長手方向、幅方向のそれぞれについて測定し、その平均値を破断伸度E1とする。得られた破断伸度E0,E1を用いて、次の(a)式により伸度保持率を算出する。処理時間を1時間ずつ変更し、伸度保持率が50%以下となる処理時間を伸度半減期とする。
(d) 伸度保持率(%)=E1/E0×100
 得られた伸度半減期から、フィルムの耐湿熱性を以下のように判定した。
伸度半減期が30時間以上の場合:A
伸度半減期が20時間以上30時間未満の場合:B
伸度半減期が20時間未満の場合:C
 以下、本発明について実施例を挙げて説明するが、本発明は必ずしもこれらに限定されるものではない。
 [PET-Aの製造]テレフタル酸およびエチレングリコールから、三酸化アンチモンを触媒として、常法により重合を行い、溶融重合PETを得た。得られた溶融重合PETのガラス転移温度は81℃、融点は255℃、固有粘度は0.62、末端カルボキシル基量は20eq./tであった。次に、溶融重合PETを常法により固相重合せしめ、PET-Aを得た。得られたPET-Aのガラス転移温度は82℃、融点は255℃、固有粘度は0.85、末端カルボキシル基量は11eq./tであった。
 [PEN-Aの製造]2,6-ナフタレンジカルボン酸ジメチルおよびエチレングリコールから、酢酸マンガンを触媒として、エステル交換反応を実施した。エステル交換反応終了後、三酸化アンチモンを触媒として常法によりPEN-Aを得た。得られたPEN-Aのガラス転移温度は124℃、融点は265℃、固有粘度は0.62、末端カルボキシル基濃度は25eq./tであった。
 [PET-Bの製造]テレフタル酸およびエチレングリコールを原料として用い、三酸化アンチモンを触媒として、重合を行った。三酸化アンチモンと同時に、リン酸とリン酸二水素ナトリウム二水和物をエチレングリコールに溶解した溶液を添加した。リン酸は、PETに対して2.0mol/t相当、リン酸二水素ナトリウム二水和物はPETに対して1.7mol/t相当となるよう添加した。また、リン化合物による重合触媒の失活を抑制するため、リン化合物の添加と同時に、酢酸マンガンをPETに対して2.4mol/t相当添加し、重合反応を進行させ、PET-Cを得た。得られたPET-Cのガラス転移温度は81℃、融点は255℃、固有粘度は0.68、末端カルボキシル基量は20eq./tであった。次に、PET-Cを常法により固相重合せしめ、PET-Bを得た。得られたPET-Bのガラス転移温度は82℃、融点は255℃、固有粘度は0.85、末端カルボキシル基量は11eq./tであった。
 [PEN-Bの製造]2,6-ナフタレンジカルボン酸ジメチルおよびエチレングリコールを原料として用い、酢酸マンガンを触媒として、エステル交換反応を実施した。エステル交換反応終了後、三酸化アンチモンを触媒として重合を行った。三酸化アンチモンと同時に、リン酸とリン酸二水素ナトリウム二水和物をエチレングリコールに溶解した溶液を添加した。リン酸は、PETに対して2.0mol/t相当、リン酸二水素ナトリウム二水和物はPETに対して1.7mol/t相当となるよう添加し、重合反応を進行させ、PEN-Bを得た。得られたPEN-Bのガラス転移温度は124℃、融点は265℃、固有粘度は0.62、末端カルボキシル基濃度は20eq./tであった。
 (実施例1)
 表層を構成する樹脂として、PEN-A100質量部とし、160℃で2時間真空乾燥した後押出機1に投入した。また、内層を構成する樹脂としてPET-A100質量部を160℃で2時間真空乾燥した後、押出機2に投入した。押出機内でそれぞれの原料を表に記載の温度で溶融させ、合流装置で押出機1に投入した樹脂がフィルムの両表層となるように合流させ、表面温度25℃のキャスティングドラム上に押し出し、3層構造をもつ積層シートを作製した。続いて該シートを加熱したロール群で予熱した後、95℃の温度で長手方向(MD方向)に3.2倍延伸を行った後、25℃の温度のロール群で冷却して一軸延伸フィルムを得た。得られた一軸延伸フィルムの両端をクリップで把持しながらテンター内の110℃の温度の加熱ゾーンで長手方向に直角な幅方向(TD方向)に3.5倍延伸した。さらに引き続いて、テンター内の熱処理ゾーンで240℃の温度で10秒間の熱固定を施した。熱固定の工程で、フィルムをフィルム幅方向にフィルム幅に対して5%収縮させた。次いで、冷却ゾーンで均一に徐冷後、巻き取って、積層ポリエステルフィルムを得た。さらに、得られたフィルムをフィルム巻きだしロールとフィルム巻き取りロールの間に設置された熱風オーブンにて、220℃の温度にて、フィルムが熱処理される時間が5分となるようにアニール処理を施し、厚さ100μmのフィルムを得た。フィルムの各特性を表に示す。200℃熱収縮率が低く、かつ平面性も特に良好なフィルムであった。
 (実施例2-4)
 樹脂の組成、製膜条件を表の通りに変えた以外は、実施例1と同様に製膜を行った。フィルムの特性を表に示す。200℃熱収縮率が低く、かつ平面性も特に良好なフィルムであった。
 (実施例5)
 フィルムの熱固定温度、オフアニール温度を表に記載の通りに変えた以外は、実施例1と同様にして厚さ100μmのフィルムを得た。フィルムの各特性を表に示す。熱固定温度がフィルム融点近傍であったため、Tmetaが1つしか観察されなかった。このフィルムは、200℃熱収縮率に加え、220℃の熱収縮率が低く、平面性に優れるフィルムであることがわかった。
 (実施例6-8)
 樹脂の組成、製膜条件を表の通りに変えた以外は、実施例5と同様に製膜を行った。フィルムの特性を表に示す。220℃熱収縮率が低く、かつ平面性も特に良好なフィルムであった。
 (実施例9-14、22)
 フィルムの積層比、フィルムの厚みを表の通りに変えた以外は、実施例1と同様にして製膜を行った。フィルムの特性を表に示す。実施例9では表層(A層)の積層比が大きいため、製膜性、加工性にやや劣るものの、実用に耐え得るものであった。実施例11では、表層(A層)の積層比が小さく厚みが薄いため、内層(B層)を保護する機能が低下し、平面性に劣る。実施例13では、表層(A層)の片側の厚みが薄いため、内層(B層)を保護する機能が低下し、平面性にやや劣るものの、実用に耐え得るものであった。実施例22では、表層(A層)の片側の厚みが厚いため、製膜性、加工性にやや劣るものの、実用に耐え得るものであった。
 (実施例15-17)
 樹脂の組成、フィルムのオフアニール温度を表に記載の通りに変えた以外は、実施例5と同様に製膜を行った。フィルムの特性を表に示す。実施例5に比べてオフアニール温度が低いため、220℃熱収縮率はやや劣るものの、平面性は優れた特性を示した。
 (実施例18、21)
 フィルムを構成する樹脂をポリエチレンテレフタレートのみとし、製膜条件を表の通りとして単膜のフィルムを製膜した。フィルムの特性を表に示す。実施例18では200℃熱収に優れるが、平面性が実施例1に比べてやや劣るものの実用には耐え得るものであった。実施例21では、熱固定温度とアニール温度が同一であるため、熱収縮率に優れる。平面性にやや劣っているものの、実用には耐え得るものであった。
 (実施例19)
 A層を構成する樹脂の組成を表に記載の通りとした以外は、実施例1と同様にしてフィルムを得た。フィルムの特性を表に示す。A層の融点が260℃に満たず、平面性にやや劣ることがわかった。
 (実施例20)
 A層に用いる樹脂をPCHTとした以外は、実施例1と同様にしてフィルムを得た。PCHTは、イーストマンケミカル社製copolyester13319を用いた。フィルムの特性を表に示す。熱収縮率、平面性に優れるフィルムであった。
 (実施例23-25)
 A層に用いる樹脂をPEN-Bとし、B層に用いる樹脂をPET-Bとした以外は、実施例1と同様にしてフィルムを得た。フィルムの特性を表に示す。熱収縮率、平面性、耐湿熱性に優れるフィルムであった。
 (比較例1、2)
 フィルムを構成する樹脂をポリエチレンテレフタレートのみとし、製膜条件を表の通りとして単膜のフィルムを製膜した。フィルムの特性を表に示す。比較例1では、Tmeta1の温度が低く、Tmf-35℃未満であるため、熱収縮率に劣る。比較例2では、熱固定温度が高く、Tmf同等であるため、製膜性が悪くフィルムを得ることができなかった。
 (比較例3、4)
 フィルムを構成する樹脂をPENのみとし、表に記載の延伸条件で製膜した。得られたフィルムの特性を表に示す。比較例3では、熱固定のみ行い、比較例4では、熱固定工程後にオフアニールを実施した。PETを主成分とするフィルムでは無く、面配向係数(fn)が大きいため、加工性に大きく劣る。
 (比較例5、6)
 A層を構成する樹脂の組成、製膜条件を表に記載の通りに変えた以外は、実施例1と同様にしてフィルムを製膜した。フィルム特性を表に示す。
 比較例5では、Tmeta1の温度が低く、Tmf-35℃未満であるため、熱収縮率に大きく劣る。比較例6では、オフアニール工程を経ていないので、熱収縮率に大きく劣る。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
本発明のポリエステルフィルムは、平面性、加工性に優れるだけで無く、耐熱性にも優れる。そのため、本発明のポリエステルフィルムは、透明電極蒸着などの高温の環境の工程中でもフィルム形状変化が少なく、光学デバイス基板用途として好適に用いることができる。

Claims (11)

  1. フィルムを構成するポリエステル樹脂に占めるポリエチレンテレフタレートの割合が60重量%以上であるポリエステルフィルムであって、200℃で30分間熱処理を行った場合のフィルム長手方向、幅方向の熱収縮率がいずれも0.5%以下であるポリエステルフィルム。
  2. 200℃で30分間熱処理を行った場合のフィルム長手方向、幅方向の熱収縮率のうち、少なくともいずれか一方の熱収縮率が0.01%以上である請求項1に記載のポリエステルフィルム。
  3. 220℃で30分間熱処理を行った場合のフィルム長手方向の熱収縮率、幅方向の熱収縮率がいずれも0.5%以下であり、かつ、少なくともいずれか一方の熱収縮率が0.01%以上である請求項1または2に記載のポリエステルフィルム。
  4. 非接触式レーザー顕微鏡でフィルムの凹凸を測定した際に、フィルムの凹凸差が300μm以下である請求項1から3のいずれかに記載のポリエステルフィルム。
  5. 面配向係数が0.145以上0.165以下である請求項1から4のいずれかに記載のポリエステルフィルム。
  6. フィルムを構成するポリエステル樹脂が、融点(Tmf(℃))を有しており、かつ、微少吸熱ピーク温度(Tmeta(℃))を1つ以上有している請求項1から5のいずれかに記載のポリエステルフィルム。
  7. フィルムを構成するポリエステル樹脂が、微少吸熱ピーク(Tmeta(℃))を2以上有しており、最も低い温度のTmeta(Tmeta1)(℃)と最も高い温度のTmeta(Tmeta2)(℃)が以下の関係を満たす請求項6に記載のポリエステルフィルム。
    Tmf-35(℃)≦Tmeta1(℃)<Tmeta2(℃)≦Tmf(℃)
  8. 前記ポリエステルフィルムが、少なくとも3層からなる積層ポリエステルフィルムであり、フィルムの表面を構成する層(A層)を構成するポリエステル樹脂の融点(Tmo(℃))が260℃以上である請求項1から7のいずれかに記載のポリエステルフィルム。
  9. 前記積層ポリエステルフィルムが3層からなり、表層を構成する層(A層)を構成するポリエステル樹脂の融点(Tmo(℃))と、内層を構成する層(B層)を構成するポリエステル樹脂の融点(Tmi(℃))の差が5℃以上10℃以下である請求項8に記載のポリエステルフィルム。
  10. 表層を構成する層(A層)の厚みの和と、内層を構成する層(B層)の厚みの比が1/8以上1/4以下である請求項9に記載のポリエステルフィルム。
  11. 透明導電膜の製膜基板に用いられる請求項1から9のいずれかに記載のポリエステルフィルム。
     
PCT/JP2015/081140 2014-11-28 2015-11-05 ポリエステルフィルム WO2016084568A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177010869A KR102402833B1 (ko) 2014-11-28 2015-11-05 폴리에스테르 필름
CN201580064505.7A CN107001666B (zh) 2014-11-28 2015-11-05 聚酯膜
JP2015556280A JP6565683B2 (ja) 2014-11-28 2015-11-05 ポリエステルフィルム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-241226 2014-11-28
JP2014241226 2014-11-28

Publications (1)

Publication Number Publication Date
WO2016084568A1 true WO2016084568A1 (ja) 2016-06-02

Family

ID=56074139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081140 WO2016084568A1 (ja) 2014-11-28 2015-11-05 ポリエステルフィルム

Country Status (5)

Country Link
JP (1) JP6565683B2 (ja)
KR (1) KR102402833B1 (ja)
CN (1) CN107001666B (ja)
TW (1) TWI685510B (ja)
WO (1) WO2016084568A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020012067A (ja) * 2018-07-19 2020-01-23 日東電工株式会社 ポリエステルフィルム、保護フィルム、保護フィルム積層体、および、保護フィルムの製造方法
JP2020059767A (ja) * 2018-10-05 2020-04-16 東レ株式会社 ポリエステルフィルム
JPWO2020262532A1 (ja) * 2019-06-28 2020-12-30
US20210370655A1 (en) * 2018-10-31 2021-12-02 Jfe Steel Corporation Film for coating metal sheet and resin coated metal sheet

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102619518B1 (ko) * 2017-09-22 2023-12-29 미쯔비시 케미컬 주식회사 공중합 폴리에스테르 필름
KR102378969B1 (ko) * 2018-11-09 2022-03-25 주식회사 엘지화학 도전성 고분자 기판의 제조 방법
WO2024050690A1 (zh) * 2022-09-06 2024-03-14 扬州纳力新材料科技有限公司 复合聚酯膜及其制备方法与用途

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08132523A (ja) * 1994-11-09 1996-05-28 Toray Ind Inc 低熱収縮性ポリエステルフィルム
JPH08244111A (ja) * 1995-03-14 1996-09-24 Toray Ind Inc ポリエステルフィルムおよびその製造方法
JPH10180866A (ja) * 1996-10-21 1998-07-07 Toray Ind Inc 低熱収縮性ポリエステルフィルム及びその製造方法
WO2006132244A1 (ja) * 2005-06-09 2006-12-14 Toray Industries, Inc. 二軸延伸ポリエステルフィルムの製造方法
JP2007276190A (ja) * 2006-04-04 2007-10-25 Toray Ind Inc 二軸延伸ポリエステルフィルムの製造方法
WO2014030474A1 (ja) * 2012-08-21 2014-02-27 東レ株式会社 二軸配向ポリエチレンテレフタレートフィルムおよびその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2692269B2 (ja) 1989-06-13 1997-12-17 ダイアホイルヘキスト株式会社 低収縮ポリエステルフィルム
US5811493A (en) * 1994-10-21 1998-09-22 Minnesota Mining And Manufacturing Company Paper-like film
JPH11165350A (ja) 1997-12-04 1999-06-22 Toray Ind Inc フレキシブルプリント基板用二軸配向ポリエステルフイルム及びその製造方法
JP4052021B2 (ja) * 2002-06-04 2008-02-27 帝人デュポンフィルム株式会社 配向ポリエステルフィルムおよびそれを用いた積層フィルム
JP4456883B2 (ja) 2004-01-30 2010-04-28 帝人デュポンフィルム株式会社 色素増感型太陽電池用積層フィルムおよびそれを用いた色素増感型太陽電池用電極
CN101134810B (zh) * 2006-09-01 2011-05-04 远东新世纪股份有限公司 经改性的共聚酯、由其制得的热收缩聚酯膜及该聚酯膜的制备方法
KR101111040B1 (ko) * 2006-09-06 2012-03-13 도요 보세키 가부시키가이샤 성형용 폴리에스테르 필름
CN100999587A (zh) * 2006-12-25 2007-07-18 刘津平 一种生物全降解薄膜及其材料的制造方法
JP5728944B2 (ja) * 2009-03-26 2015-06-03 東レ株式会社 太陽電池用ポリエステルフィルム、それを用いた太陽電池バックシート、および太陽電池
JP2012017456A (ja) * 2010-06-11 2012-01-26 Fujifilm Corp ポリエステルフィルム及びその製造方法、太陽電池用バックシート、並びに太陽電池モジュール
KR101848724B1 (ko) * 2010-07-06 2018-04-13 도레이 카부시키가이샤 성형용 2축 배향 폴리에스테르 필름
JP2012214760A (ja) * 2011-03-28 2012-11-08 Fujifilm Corp ポリエステルフィルムおよびこれを用いた太陽電池用バックシートならびにポリエステルフィルムの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08132523A (ja) * 1994-11-09 1996-05-28 Toray Ind Inc 低熱収縮性ポリエステルフィルム
JPH08244111A (ja) * 1995-03-14 1996-09-24 Toray Ind Inc ポリエステルフィルムおよびその製造方法
JPH10180866A (ja) * 1996-10-21 1998-07-07 Toray Ind Inc 低熱収縮性ポリエステルフィルム及びその製造方法
WO2006132244A1 (ja) * 2005-06-09 2006-12-14 Toray Industries, Inc. 二軸延伸ポリエステルフィルムの製造方法
JP2007276190A (ja) * 2006-04-04 2007-10-25 Toray Ind Inc 二軸延伸ポリエステルフィルムの製造方法
WO2014030474A1 (ja) * 2012-08-21 2014-02-27 東レ株式会社 二軸配向ポリエチレンテレフタレートフィルムおよびその製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020012067A (ja) * 2018-07-19 2020-01-23 日東電工株式会社 ポリエステルフィルム、保護フィルム、保護フィルム積層体、および、保護フィルムの製造方法
CN110733223A (zh) * 2018-07-19 2020-01-31 日东电工株式会社 聚酯薄膜、保护薄膜、保护薄膜层叠体以及保护薄膜的制造方法
JP2020059767A (ja) * 2018-10-05 2020-04-16 東レ株式会社 ポリエステルフィルム
JP7234563B2 (ja) 2018-10-05 2023-03-08 東レ株式会社 ポリエチレンテレフタレートフィルム
US20210370655A1 (en) * 2018-10-31 2021-12-02 Jfe Steel Corporation Film for coating metal sheet and resin coated metal sheet
JPWO2020262532A1 (ja) * 2019-06-28 2020-12-30
WO2020262532A1 (ja) * 2019-06-28 2020-12-30 富士フイルム株式会社 圧力測定用シートセット、圧力測定用シート
CN113811750A (zh) * 2019-06-28 2021-12-17 富士胶片株式会社 压力测量用片材组、压力测量用片材
JP7231732B2 (ja) 2019-06-28 2023-03-01 富士フイルム株式会社 圧力測定用シートセット、圧力測定用シート
CN113811750B (zh) * 2019-06-28 2024-03-08 富士胶片株式会社 压力测量用片材组、压力测量用片材

Also Published As

Publication number Publication date
CN107001666B (zh) 2020-09-01
TW201625714A (zh) 2016-07-16
KR102402833B1 (ko) 2022-05-27
JP6565683B2 (ja) 2019-08-28
JPWO2016084568A1 (ja) 2017-09-07
CN107001666A (zh) 2017-08-01
KR20170090410A (ko) 2017-08-07
TWI685510B (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
JP6565683B2 (ja) ポリエステルフィルム
KR101467009B1 (ko) 자동차 구동 모터용 2 축 배향 폴리에스테르 필름 및 그것으로 이루어지는 전기 절연 부재
JP6672819B2 (ja) ポリエステルフィルム
JP2021504512A (ja) ポリエステル樹脂組成物およびこれを含む二軸延伸ポリエステルフィルム
KR101393937B1 (ko) 플렉시블 디스플레이 기판용 2 축 배향 폴리에스테르 필름
JP6507640B2 (ja) 積層ポリエステルフィルム
JP6760066B2 (ja) 二軸配向ポリエステルフィルム
WO2017169662A1 (ja) フィルムおよびそれを用いた電気絶縁シート、粘着テープ、回転機
JP2010234673A (ja) ポリエステルフィルム
JP6135301B2 (ja) 耐久性ポリエステルフィルムとその製造方法、及びそれを用いた太陽電池封止用フィルム
KR102131627B1 (ko) 내구성 폴리에스테르 필름과 그 제조방법, 그것을 사용한 태양전지 밀봉용 필름, 및 태양전지
JP6503751B2 (ja) 二軸配向ポリエステルフィルム
JP2018021168A (ja) 二軸配向ポリエステルフィルム
JP3948908B2 (ja) カバーレイフィルム用ポリエステルフィルム
JP2011192790A (ja) 太陽電池用ポリエステルフィルムおよびその製造方法
JP6243179B2 (ja) 積層フィルム
JP2006192829A (ja) 積層フィルムおよびタッチパネル
JP6318717B2 (ja) ポリエステルフィルム
JP3920039B2 (ja) Tabスペーサ用ポリエステルフィルム
JP2015037097A (ja) 太陽電池保護膜用ポリエステルフィルムおよびそれからなる太陽電池保護膜
KR102177746B1 (ko) 광학 필름 및 이를 이용한 유기 발광 표시 장치
JP2015193799A (ja) 二軸配向ポリエステルフィルム
JP6390336B2 (ja) R32と接する用途に用いるポリエステルフィルム
JP2014145046A (ja) ポリエステルフィルム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015556280

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15863533

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177010869

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15863533

Country of ref document: EP

Kind code of ref document: A1