WO2024050690A1 - 复合聚酯膜及其制备方法与用途 - Google Patents

复合聚酯膜及其制备方法与用途 Download PDF

Info

Publication number
WO2024050690A1
WO2024050690A1 PCT/CN2022/117282 CN2022117282W WO2024050690A1 WO 2024050690 A1 WO2024050690 A1 WO 2024050690A1 CN 2022117282 W CN2022117282 W CN 2022117282W WO 2024050690 A1 WO2024050690 A1 WO 2024050690A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester
layer
composite
polyester layer
polyester film
Prior art date
Application number
PCT/CN2022/117282
Other languages
English (en)
French (fr)
Inventor
朱中亚
王帅
夏建中
李学法
张国平
Original Assignee
扬州纳力新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 扬州纳力新材料科技有限公司 filed Critical 扬州纳力新材料科技有限公司
Priority to PCT/CN2022/117282 priority Critical patent/WO2024050690A1/zh
Publication of WO2024050690A1 publication Critical patent/WO2024050690A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/04Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the partial melting of at least one layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/16Drying; Softening; Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/10Interconnection of layers at least one layer having inter-reactive properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials

Definitions

  • the present application relates to the field of battery technology, and in particular to a composite polyester film and its preparation method and use.
  • Metalized polymer films are widely used in electronics, packaging, printing and other fields due to their excellent conductivity, barrier, flexibility and light weight.
  • the products of metallized polymer films include composite current collectors, thin film electrodes, and packaging aluminized films. and printing films, etc.
  • Composite current collectors are usually prepared by depositing metal materials on the surface of polymer films such as polypropylene, polyethylene and polyester using physical vapor deposition. Compared with traditional current collectors, composite current collectors have the characteristics of low cost, light weight and good internal insulation. These characteristics enable the application of composite current collectors in batteries to reduce the cost of batteries and improve the energy density and safety of batteries.
  • the base film of the composite current collector is mainly a polyester film.
  • the surface tension of the polyester film is small and the surface tension of the surface metal layer is large, resulting in poor adhesion between the two. Even if the polyester film is treated by the corona method, The surface tension of the polyester film can only be increased by surface treatment, and the surface tension of the polyester film treated by the corona method is unstable.
  • a composite polyester film and its preparation method and use are provided.
  • the application provides a composite polyester film.
  • the composite polyester film includes a first polyester layer, a second polyester layer and a third polyester layer.
  • the first polyester layer and the third polyester layer are respectively located on the surfaces on both sides of the second polyester layer;
  • the raw materials for preparing the first polyester layer, the second polyester layer and the third polyester layer independently include: 97.0% to 99.9% polyester materials and 0.1% to 3.0% additives;
  • the terminal carboxyl group content of the polyester material in the first polyester layer and the third polyester layer is both 40 to 100 mol/t, and the terminal carboxyl group content of the polyester material in the second polyester layer is 5 to 30 mol. /t.
  • the raw materials for preparing the first polyester layer, the second polyester layer and the third polyester layer each independently include: 99.0% to 99.8% polyester material and 0.2% to 0.2%. 1.0% additive.
  • the terminal carboxyl group content of the polyester material in the first polyester layer and the third polyester layer is 50 to 100 mol/t
  • the terminal carboxyl group content of the polyester material in the second polyester layer is The carboxyl group content is 10 ⁇ 25mol/t.
  • the polyester material includes polyethylene 2,6-naphthalate glycol (PEN), polyethylene terephthalate-1,4-cyclohexanedimethanol (PETG) ), polyethylene terephthalate (PET), poly1,4-cyclohexane dimethanol terephthalate (PCT), polytrimethylene 2,6-naphthalate (PTN), poly(p-N) Butylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polybutylene adipate terephthalate (PBAT), polybutylene 2,6-naphthalate ( PBN), polybutylene 2,5-furandicarboxylate, polyarylate (PAR) and one or more of their derivatives.
  • PEN polyethylene 2,6-naphthalate glycol
  • PET polyethylene terephthalate
  • PCT poly1,4-cyclohexane dimethanol terephthalate
  • PN polytrimethylene 2,6-naphthalate
  • PBT poly(p-
  • the additives include one or more of nucleating agents, antioxidants, slip agents and antistatic agents;
  • the nucleating agent includes sodium carbonate, triphenyl phosphate, polycaprolactone, benzophenone, aluminum oxide, copper oxide, magnesium oxide, zinc oxide, barium sulfate, magnesium stearate and sodium benzoate one or more of;
  • the antioxidant includes one or more of bisphenol A phosphite and phosphonate;
  • the slip agent includes one or more of titanium dioxide, silica, siloxane, calcium carbonate, diatomaceous earth, talc, kaolin and acrylate;
  • the antistatic agent includes one or more of polyethylene glycol, glycerol, polyglycerol, polyether ester, carbon black, graphite and conductive fiber.
  • This application also provides a preparation method for the above-mentioned composite polyester film, which preparation method includes the following steps:
  • polyester slice one, polyester slice two and polyester slice three are each independently composed of 97.0% to 99.9% polyester. It is prepared from ester material and 0.1% to 3% additives, wherein the terminal carboxyl group content of the polyester material in the polyester chip one and the polyester chip three are both 40 to 100 mol/t, and the polyester in the polyester chip two The terminal carboxyl group content of the material is 5 ⁇ 30mol/t;
  • the application also provides a metallized polyester film, including a metal layer and a base material layer.
  • the metal layer is provided on at least one surface of the base material layer.
  • the base material layer includes the above-mentioned composite polyester film or Composite polyester film prepared by the above preparation method.
  • the thickness of the metal layer ranges from 20 to 2000 nm.
  • the material of the metal layer includes one or more of copper, copper alloy, aluminum, aluminum alloy, nickel, nickel alloy, titanium and silver.
  • the present application also provides a composite current collector, which includes the above-mentioned metallized polyester film.
  • the composite current collector further includes a protective layer disposed on the surface of the metal layer of the metallized polyester film.
  • the thickness of the protective layer ranges from 10 to 150 nm.
  • the material of the protective layer includes nickel, chromium, nickel-based alloy, copper-based alloy, copper oxide, aluminum oxide, nickel oxide, chromium oxide, cobalt oxide, graphite, carbon black, acetylene black, Ketjen One or more of black, carbon nanoquantum dots, carbon nanotubes, carbon nanofibers and graphene.
  • this application also provides an electrode sheet including the above composite current collector.
  • this application also provides an electrochemical device, including the above-mentioned electrode sheet.
  • this application also provides an electrical device, including the above electrochemical device.
  • the technical features described in open format include closed technical solutions composed of the listed features, and also include open technical solutions including the listed features.
  • the above numerical interval is considered to be continuous and includes the minimum value and maximum value of the range, as well as every value between such minimum value and maximum value. Further, when a range refers to an integer, every integer between the minimum value and the maximum value of the range is included. Additionally, when multiple ranges are provided to describe a feature or characteristic, the ranges can be combined. In other words, unless otherwise indicated, all ranges disclosed herein are to be understood to include any and all subranges subsumed therein.
  • the composite polyester film includes a first polyester layer, a second polyester layer and a third polyester layer.
  • the first polyester layer and the third polyester layer are respectively on surfaces on either side of the second polyester layer;
  • the raw materials for preparing the first polyester layer, the second polyester layer and the third polyester layer independently include: 97.0% to 99.9% polyester materials and 0.1% to 3.0% additives;
  • the terminal carboxyl group content of the polyester material in the first polyester layer and the third polyester layer is both 40 to 100 mol/t, and the terminal carboxyl group content of the polyester material in the second polyester layer is 5 to 30 mol/t.
  • the surface polarity of traditional polyester film is 35mN/m, which is quite different from the surface polarity of metal materials.
  • the corona method is usually used to modify the surface of the polyester film.
  • this method has the following shortcomings: (1) Under the premise of ensuring that the mechanical properties of the polyester film do not change significantly, the surface tension of the polyester film after corona treatment is generally 35-50mN/m, which is different from that before the treatment. Compared with polyester film, the surface tension of the treated polyester film has a limited increase, and there is still a large gap with the surface tension of metal materials (more than 100mN/m), resulting in an unsatisfactory bonding effect between the two; (2) The surface tension of the polyester film after corona treatment is unstable. After being stored for a period of time, the surface tension decreases, and finally it is close to the surface tension of the polyester film before treatment, which means there is a problem of unstable storage.
  • this application provides a composite polyester film, in which polyester materials with higher terminal carboxyl group content are selected from the first polyester layer and the third polyester layer to construct a polar surface rich in carboxyl groups, It can improve the adhesion performance of the composite polyester film, and the adhesion performance of the composite polyester film remains basically unchanged after being stored for a period of time, thereby improving the adhesion between the composite polyester film and the metal layer. If the terminal carboxyl group content of the polyester material in the first polyester layer and the third polyester layer is too low, the surface adhesion performance of the composite polyester film will be poor.
  • the polyester material in the second polyester layer is mainly to ensure the main performance of the composite polyester film.
  • the second The polyester layer does not require high adhesion. Therefore, the second polyester layer of this application selects a polyester material with a relatively low content. If the terminal carboxyl group content of the polyester material in the second polyester layer is too high, then It will affect the stability of the film formation and use process. If its content is too low, the polyester material will be easily degraded during the melt extrusion process, and the performance of the prepared composite polyester film will deteriorate.
  • the raw materials for preparing the first polyester layer, the second polyester layer and the third polyester layer each independently include: 99.0% to 99.8% polyester material and 0.2% to 1.0% additive.
  • the additive content in the first polyester layer, the second polyester layer and the third polyester layer is too low, the effect of the additive will not be obvious.
  • the additive content in the layer is too high, which affects the film-forming properties and easily causes defects during the film-making process.
  • the additive is particulate matter, and the average particle size of the additive is 0.01 to 1.5 ⁇ m.
  • the additive is particulate matter
  • the average particle diameter of the additive is 0.02-0.5 ⁇ m
  • the average particle diameter (d) of the particulate matter is the same as that of the corresponding first polyester layer, the second polyester layer and the third polyester layer.
  • Thickness (t) satisfies: t ⁇ 0.3d.
  • the average particle size of the particles is too small and the effect is not obvious; the average particle size of the particles is too large and defects are easily formed during the film making process; the thickness of the film layer is greater than or equal to 30% of the average particle size of the particles in order to prevent the film from Film defects caused by mismatch between layer thickness and particle size.
  • the terminal carboxyl group content of the polyester material in the first polyester layer and the third polyester layer is both 50-100 mol/t, and the terminal carboxyl group content of the polyester material in the second polyester layer is 10-25 mol. /t.
  • the terminal carboxyl group content of the polyester material in the first polyester layer and the third polyester layer can be any value between 50 and 100 mol/t, for example: 50 mol/t, 55 mol/t, 60 mol/t, 65mol/t, 70mol/t, 75mol/t, 80mol/t, 85mol/t, 90mol/t, 95mol/t, 100mol/t
  • the terminal carboxyl group content of the polyester material in the second polyester layer can be 10 ⁇ 25mol Any value between /t, for example: 10mol/t, 12mol/t, 14mol/t, 16mol/t, 18mol/t, 20mol/t, 22mol/t, 24mol/t, 25mol/t.
  • polyester materials include polyethylene 2,6-naphthalate (PEN), polyethylene terephthalate-1,4-cyclohexanedimethanol (PETG), Polyethylene terephthalate (PET), poly1,4-cyclohexanedimethanol terephthalate (PCT), polytrimethylene 2,6-naphthalate (PTN), polyterephthalate Butylene formate (PBT), polytrimethylene terephthalate (PTT), polybutylene adipate terephthalate (PBAT), polybutylene 2,6-naphthalate (PBN) , one or more of polybutylene furandicarboxylate, polyarylate (PAR) and their derivatives.
  • PEN polyethylene 2,6-naphthalate
  • PET polyethylene terephthalate-1,4-cyclohexanedimethanol
  • PCT Polyethylene terephthalate
  • PCT poly1,4-cyclohexanedimethanol terephthalate
  • PTN polytrimethylene 2,
  • polyester materials include, but are not limited to, polyethylene 2,6-naphthalate glycol (PEN), polyethylene terephthalate-1,4-cyclohexanedimethanol (PETG) , polyethylene terephthalate (PET), poly1,4-cyclohexane dimethanol terephthalate (PCT), polytrimethylene 2,6-naphthalate (PTN), polyparaphenylene Butylene dicarboxylate (PBT), polytrimethylene terephthalate (PTT), polybutylene adipate terephthalate (PBAT), polybutylene 2,6-naphthalate (PBN) ), any one of polybutylene furandicarboxylate, polyarylate (PAR) and their derivatives, or polyester materials including but not limited to polyethylene 2,6-naphthalenedicarboxylate Alcohol ester (PEN), polyethylene terephthalate-1,4-cyclohexanedimethanol ester (PETG), polyethylene terephthalate (PEN), polyethylene
  • the intrinsic viscosity of the polyester material in the first polyester layer, the second polyester layer and the third polyester layer is 0.600-0.850 dL/g.
  • the intrinsic viscosity of the polyester material in the first polyester layer, the second polyester layer and the third polyester layer is 0.700-0.800 dL/g.
  • the intrinsic viscosity of the polyester materials in the first polyester layer, the second polyester layer and the third polyester layer is too low, the average molecular weight of the prepared composite polyester film will be lower, and the mechanical properties of the composite polyester film will be reduced. Poor; the intrinsic viscosity of the polyester materials in the first polyester layer, the second polyester layer and the third polyester layer is too high, the average molecular weight of the composite polyester film is higher, and the moldability of the composite polyester film is Poor and prone to film breakage.
  • the additives include one or more of nucleating agents, antioxidants, slip agents, and antistatic agents;
  • the nucleating agent includes sodium carbonate, triphenyl phosphate, polycaprolactone, benzophenone, aluminum oxide, copper oxide, magnesium oxide, zinc oxide, barium sulfate, magnesium stearate and sodium benzoate. one or more;
  • the antioxidant includes one or more of bisphenol A phosphite and phosphonate;
  • the slip agent includes one or more of titanium dioxide, silica, siloxane, calcium carbonate, diatomaceous earth, talc, kaolin and acrylate;
  • the antistatic agent includes one or more of polyethylene glycol, glycerol, polyglycerol, polyether ester, carbon black, graphite and conductive fiber.
  • nucleating agents include, but are not limited to, sodium carbonate, triphenyl phosphate, polycaprolactone, benzophenone, aluminum oxide, copper oxide, magnesium oxide, zinc oxide, barium sulfate, magnesium stearate, and benzene. Any of sodium formate, or nucleating agents including but not limited to sodium carbonate, triphenyl phosphate, polycaprolactone, benzophenone, aluminum oxide, copper oxide, magnesium oxide, zinc oxide, barium sulfate, hard ester A mixture of magnesium phosphate and sodium benzoate in any proportion.
  • the antioxidant includes but is not limited to any one of bisphenol A phosphite and phosphonate, or the antioxidant includes but is not limited to a mixture of bisphenol A phosphite and phosphonate in any ratio.
  • the slip agent includes but is not limited to any one of titanium dioxide, silica, siloxane, calcium carbonate, diatomaceous earth, talc, kaolin and acrylate, or the slip agent includes but is not It is limited to a mixture of titanium dioxide, silica, siloxane, calcium carbonate, diatomaceous earth, talc, kaolin and acrylate in any proportion.
  • nucleating agents are only classified according to the main function played by the substance.
  • the substance also has other auxiliary functions.
  • magnesium oxide, zinc oxide, aluminum oxide and copper oxide in this application are mainly used as nucleating agents, they also have antistatic effects; similarly, calcium carbonate and talc powder in this application are mainly used as slip agents. , but it also has a nucleating agent-like effect; the main function of polyethylene glycol in this application is antistatic, and in addition, it also has a nucleating agent-like effect.
  • This application also provides a preparation method for the above-mentioned composite polyester film.
  • the preparation method includes the following steps:
  • polyester slice one, polyester slice two and polyester slice three are each independently composed of 97.0% to 99.9% polyester material. and 0.1% to 3% additives.
  • the terminal carboxyl group content of the polyester material in polyester chip one and polyester chip two is 40 to 100 mol/t
  • the terminal carboxyl group content of the polyester material in polyester chip three is 5 ⁇ 30mol/t;
  • the raw material for preparing the first polyester layer is polyester chip one
  • the raw material for preparing the second polyester layer is polyester chip two
  • the raw material for preparing the third polyester layer is polyester chip three.
  • step S3 includes the following steps:
  • Casting sheet cast the molten polyester material in step S2 onto the casting roller, and undergo the casting roller and water cooling treatment to obtain the cast sheet;
  • Transverse stretching After preheating the above film at 80 to 120°C, perform transverse stretching at a ratio of (3 to 5): 1 at 90 to 140°C, and then stretch at 150 to 250°C. Heat setting treatment is carried out at 80 ⁇ 150°C, and cooling treatment is carried out at 80 ⁇ 150°C.
  • the heat treatment process of step S3 includes the following steps: Stage I: heat treatment temperature is 130-160°C, heat treatment time is 0.5-2 min; Stage II: heat treatment temperature is 160-220°C, heat treatment time is 0.5-5 min ; Stage III: The heat treatment temperature is 130 ⁇ 160°C, and the heat treatment time is 0.5 ⁇ 2min.
  • the heat treatment temperature of stage I and stage III can be any value between 130°C and 160°C, such as: 130°C, 134°C, 138°C, 140°C, 144°C, 148°C, 150°C, 154°C, 158°C, 160°C;
  • the heat treatment temperature of stage II can be any value between 160°C and 220°C, for example: 160°C, 165°C, 170°C, 175°C, 180°C, 185°C, 190°C, 195°C, 200 °C, 205°C, 210°C, 215°C, 220°C;
  • the heat treatment time of stage I, stage II and stage III can be any value between 0.5 and 2min, for example: 0.5min, 0.7min, 0.9min, 1.1min, 1.3min, 1.5min, 1.7min, 1.9min, 2.0min.
  • the purpose of heat treatment is to eliminate the residual stress of the diaphragm and moderately increase the crystallinity of the diaphragm, thereby reducing the thermal shrinkage rate of the diaphragm and increasing the tensile strength of the diaphragm.
  • the application also provides a metallized polyester film, including a metal layer and a base material layer.
  • the metal layer is provided on at least one surface of the base material layer.
  • the base material layer includes the above composite polyester film or the one prepared by the above preparation method. Composite polyester film.
  • the thickness of the metal layer ranges from 20 to 2000 nm.
  • the material of the metal layer includes one or more of copper, copper alloy, aluminum, aluminum alloy, nickel, nickel alloy, titanium and silver.
  • the thickness of the metal layer can be any value between 20 and 2000nm, such as: 20nm, 50nm, 150nm, 250nm, 350nm, 450nm, 550nm, 650nm, 750nm, 850nm, 950nm, 1050nm, 1150nm, 1250nm, 1350nm , 1450nm, 1550nm, 1650nm, 1750nm, 1850nm, 1950nm, 2000nm.
  • the preparation method of the metal layer includes, but is not limited to, one or more of physical vapor deposition, electroplating, and chemical plating, wherein the physical vapor deposition method includes, but is not limited to, resistance heating vacuum evaporation. , one or more of electron beam heating vacuum evaporation method, laser heating vacuum evaporation method and magnetron sputtering method.
  • metal layers are provided on the surfaces of both the first polyester layer and the third polyester layer of the composite polyester film.
  • the surface metal layer materials of the first polyester layer and the third polyester layer are consistent.
  • This application also provides a composite current collector, including the above-mentioned metallized polyester film.
  • the composite current collector further includes a protective layer disposed on the surface of the metal layer of the metallized polyester film.
  • the thickness of the protective layer ranges from 10 to 150 nm.
  • the material of the protective layer includes nickel, chromium, nickel-based alloy, copper-based alloy, copper oxide, aluminum oxide, nickel oxide, chromium oxide, cobalt oxide, graphite, carbon black, acetylene black, Ketjen black, One or more of carbon nanoquantum dots, carbon nanotubes, carbon nanofibers and graphene.
  • the thickness of the protective layer can be any value between 10 and 150nm, such as: 10nm, 16nm, 26nm, 36nm, 46nm, 56nm, 66nm, 76nm, 86nm, 96nm, 106nm, 116nm, 126nm, 136nm, 146nm ,150nm.
  • the materials of the two protective layers can be the same or different, and the thickness of the two protective layers can be equal or unequal.
  • the protective layer is used to prevent the metal layer from being chemically corroded or Physical damage.
  • the preparation method of the protective layer includes at least one of a physical vapor deposition method, an in-situ forming method, and a coating method; wherein the physical vapor deposition method includes a vacuum evaporation method and a magnetron sputtering method.
  • the in-situ forming method can be a method of forming a metal oxide passivation layer in situ on the surface of the metal layer
  • the coating method can be at least one of the die coating method, the blade coating method and the extrusion coating method. A sort of.
  • this application also provides an electrode sheet including the above composite current collector.
  • the electrode sheet of the present application can be either a positive electrode sheet or a negative electrode sheet.
  • the preparation method of the electrode sheet is well known to those skilled in the art, and the present application has no special limitations.
  • this application also provides an electrochemical device, including the above-mentioned electrode sheet.
  • the electrochemical device of the present application is not particularly limited and may include any device that undergoes electrochemical reactions.
  • the electrochemical device may include, but is not limited to, a lithium ion secondary battery, a lithium metal secondary battery, a lithium ion polymer secondary battery, a lithium polymer secondary battery, and the like.
  • this application also provides an electrical device, including the above electrochemical device.
  • the electrical device in this application is not particularly limited, and may include but is not limited to smart home appliances, mobile phones, computers, or electric vehicles.
  • Defective rate test The proportion of defective products produced due to rupture of each layer during the film making process to the total amount of composite polyester film.
  • the polyester material of the first polyester layer and the third polyester layer is polyethylene terephthalate (PET), with an intrinsic viscosity of 0.740dL/g, a molecular weight distribution of 2.2, and a PET terminal carboxyl group content of 40mol/t, the additives are antioxidant 300 and alumina (average particle size is 0.3 ⁇ m);
  • PET polyethylene terephthalate
  • the polyester material of the second polyester layer is polyethylene terephthalate (PET), the intrinsic viscosity is 0.740dL/g, the molecular weight distribution is 2.2, the PET terminal carboxyl group content is 20mol/t, and the additive is antioxidant 300 and alumina (average particle size 0.3 ⁇ m).
  • PET polyethylene terephthalate
  • the intrinsic viscosity is 0.740dL/g
  • the molecular weight distribution is 2.2
  • the PET terminal carboxyl group content is 20mol/t
  • the additive is antioxidant 300 and alumina (average particle size 0.3 ⁇ m).
  • polyester slice one, polyester slice two and polyester slice three are each independently composed of 99.4% PET and 0.3% antioxidant. 300 and 0.3% alumina are produced by heating, melting, mixing, extruding and forming chips. Among them, the PET terminal carboxyl group content in polyester chip one and polyester chip three are both 40 mol/t, and the PET terminal carboxyl group content in polyester chip two is 40 mol/t. is 20mol/t;
  • polyester slices 1, 2 and 3 Transport the polyester slices 1, 2 and 3 to the crystallizer respectively, and treat them at 150°C for 40 minutes. Then transport them to the drying tower and dry them at 155°C for 150 minutes.
  • the processed polyester chips 1, 2 and 3 are added to different twin-screw extruders, heated and melted at 280°C, and extruded through the die with the help of a metering pump to obtain a first polyester layer.
  • the molten polyester material of the second polyester layer and the third polyester layer, the first polyester layer, the second polyester layer and the third polyester layer are sequentially composed of polyester slice one, polyester slice two and polyester slice 3 is prepared, wherein the first polyester layer and the third polyester layer are respectively located on the surfaces on both sides of the second polyester layer;
  • the molten polyester material obtained in step S2 is cast onto a sheet casting roller, and is formed through the casting roller and water-cooling cooling treatment to obtain a cast sheet with a thickness of 96 ⁇ m;
  • step S3.1 Preheat the cast sheet obtained in step S3.1 at 90°C, and then stretch it longitudinally at a ratio of 4:1 at 110°C to obtain a film, which is then heat-set at 170°C. , cooling and forming processing at 40°C;
  • step S3.2 Preheat the film obtained in step S3.2 at 90°C, then stretch it transversely at 120°C at a ratio of 4:1, and then heat-set the film at 170°C and heat it at 110°C. Cooling and forming processing is carried out below;
  • the film obtained in step S3.3 is heat treated to prepare a composite polyester film.
  • the heat treatment process includes the following steps:
  • Stage I The heat treatment temperature is 140°C and the heat treatment time is 0.5 minutes;
  • Stage II The heat treatment temperature is 160°C and the heat treatment time is 0.5 minutes;
  • Stage III The heat treatment temperature is 140°C and the heat treatment time is 0.5 minutes.
  • the high-purity aluminum wire (purity greater than 99.99%) in the metal evaporation chamber is melted and evaporated at a high temperature of 1300 to 2000°C.
  • the evaporated metal atoms pass through
  • the cooling system in the vacuum coating chamber deposits on both surfaces of the composite polyester film to form an aluminum metal layer with a thickness of 1 ⁇ m;
  • 1g of carbon nanotubes was uniformly dispersed into 999g of nitrogen methylpyrrolidone (NMP) solution by ultrasonic dispersion, and a coating liquid with a solid content of 0.1wt% was prepared.
  • the coating liquid was evenly coated through a die coating process. Coated on the surface of the metal layer, and then dried at 100°C to obtain a composite cathode current collector, in which the coating amount is controlled at 80 ⁇ m.
  • the above-mentioned composite polyester film is surface-cleaned and placed in a vacuum evaporation chamber.
  • the high-purity copper wire (purity greater than 99.99%) in the metal evaporation chamber is melted and evaporated at a high temperature of 1400 to 2000°C.
  • the evaporated metal atoms pass through
  • the cooling system in the vacuum coating chamber deposits on both surfaces of the composite polyester film to form a copper metal layer with a thickness of 1 ⁇ m;
  • 1g of carbon nanotubes was uniformly dispersed into 999g of nitrogen methylpyrrolidone (NMP) solution by ultrasonic dispersion, and a coating liquid with a solid content of 0.1wt% was prepared.
  • the coating liquid was evenly coated through a die coating process. Coated on the surface of the metal layer, and then dried at 100°C to obtain a composite negative electrode current collector, in which the coating amount is controlled at 80 ⁇ m.
  • Example 2 It is basically the same as Example 1, except that the terminal carboxyl group content of PET in the first polyester layer and the third polyester layer is 50 mol/t.
  • Example 2 It is basically the same as Example 1, except that the terminal carboxyl group content of PET in the first polyester layer and the third polyester layer is 60 mol/t.
  • Example 2 It is basically the same as Example 1, except that the terminal carboxyl group content of PET in the first polyester layer and the third polyester layer is 70 mol/t.
  • Example 2 It is basically the same as Example 1, except that the terminal carboxyl group content of PET in the first polyester layer and the third polyester layer is 80 mol/t.
  • Example 2 It is basically the same as Example 1, except that the terminal carboxyl group content of PET in the first polyester layer and the third polyester layer is 90 mol/t.
  • Example 2 It is basically the same as Example 1, except that the terminal carboxyl group content of PET in the first polyester layer and the third polyester layer is 100 mol/t.
  • Example 7 It is basically the same as Example 7, except that the terminal carboxyl group content of PET in the second polyester layer is 5 mol/t.
  • Example 7 It is basically the same as Example 7, except that the terminal carboxyl group content of PET in the second polyester layer is 10 mol/t.
  • Example 7 It is basically the same as Example 7, except that the terminal carboxyl group content of PET in the second polyester layer is 25 mol/t.
  • Example 7 It is basically the same as Example 7, except that the terminal carboxyl group content of PET in the second polyester layer is 30 mol/t.
  • polyester materials in the first polyester layer, the second polyester layer and the third polyester layer are all made of PBT.
  • polyester materials in the first polyester layer, the second polyester layer and the third polyester layer are all made of PEN.
  • polyester chip one, polyester chip two and polyester chip three are each independently composed of 97.0% PET, 1.5% antioxidant 300 and 1.5% oxidation Aluminum is produced by heating, melting, mixing, extruding and shaping into slices.
  • polyester chip one, polyester chip two and polyester chip three are each independently composed of 99.0% PET, 0.5% antioxidant 300 and 0.5% oxidation in terms of mass percentage.
  • Aluminum is produced by heating, melting, mixing, extruding and shaping into slices.
  • polyester chip one, polyester chip two and polyester chip three are each independently composed of 99.8% PET, 0.1% antioxidant 300 and 0.1% oxidation Aluminum is produced by heating, melting, mixing, extruding and shaping into slices.
  • polyester chip one, polyester chip two and polyester chip three are each independently composed of 99.9% PET, 0.05% antioxidant 300 and 0.05% oxidation in terms of mass percentage.
  • Aluminum is produced by heating, melting, mixing, extruding and shaping into slices.
  • Example 2 It is basically the same as Example 1, except that the terminal carboxyl group content of PET in the first polyester layer and the third polyester layer is 35 mol/t.
  • Example 2 It is basically the same as Example 1, except that the terminal carboxyl group content of PET in the first polyester layer and the third polyester layer is 20 mol/t, and the corona method is used to treat the first polyester layer and the third polyester film of the composite polyester film. Three polyester layers are treated.
  • the corona method specifically includes the following steps: Place the prepared composite polyester film in a roll-to-roll corona treatment device. The corona power is 10kW and the current is 6A. The surface of the first polyester layer and the third polyester layer is modified at a linear speed.
  • Example 2 It is basically the same as Example 1, except that the terminal carboxyl group content of PET in the first polyester layer and the third polyester layer is 105 mol/t.
  • polyester chip one, polyester chip two and polyester chip three are each independently made of PET by heating, melting, mixing, extruding and shaping the chips.
  • polyester chip one, polyester chip two and polyester chip three are each independently composed of 96.0% PET, 2.0% antioxidant 300 and 2.0% oxidation Aluminum is produced by heating, melting, mixing, extruding and shaping into slices.
  • Example 2 It is basically the same as Example 1, except that the terminal carboxyl group content of PET in the second polyester layer is 4 mol/t.
  • Example 2 It is basically the same as Example 1, except that the terminal carboxyl group content of PET in the second polyester layer is 31 mol/t.
  • MD represents the longitudinal direction of the composite polyester film
  • TD represents the transverse direction of the composite polyester film.
  • the longitudinal direction is the direction with the longer side length of the composite polyester film
  • the transverse direction is the direction with the shorter side length of the composite polyester film.
  • direction, MD and TD are perpendicular to each other.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)

Abstract

本申请涉及一种复合聚酯膜,该复合聚酯膜包括第一聚酯层、第二聚酯层和第三聚酯层,第一聚酯层和第三聚酯层分别位于第二聚酯层两侧的表面上;按照质量百分比计,第一聚酯层、第二聚酯层和第三聚酯层的制备原料各自独立地包括:97.0%~99.9%聚酯材料和0.1%~3.0%添加剂;第一聚酯层和第三聚酯层中聚酯材料的端羧基含量均为40~100mol/t,第二聚酯层中聚酯材料的端羧基含量为5~30mol/t。

Description

复合聚酯膜及其制备方法与用途 技术领域
本申请涉及电池技术领域,特别是涉及一种复合聚酯膜及其制备方法与用途。
背景技术
金属化聚合物膜由于优良的导电、阻隔、柔韧及质量轻等性能而被广泛运用于电子、包装和印刷等领域,金属化聚合物膜的产品包括复合集流体、薄膜电极、包装镀铝膜和印刷薄膜等。复合集流体通常采用物理气相沉积法在聚丙烯、聚乙烯和聚酯等高分子聚合物薄膜的表面沉积金属材料制备得到。与传统的集流体相比,复合集流体具备成本低、质量轻以及内部绝缘性好等特点。这些特点使得复合集流体应用于电池中能够降低电池的成本,并提升电池的能量密度及安全性。复合集流体的基膜主要为聚酯膜,然而聚酯膜的表面张力较小,表面金属层的表面张力较大,导致两者的粘结力较差,即使利用电晕法对聚酯膜的表面进行处理,聚酯膜的表面张力提升的幅度也是有限的,并且利用电晕法处理后的聚酯膜,其表面张力存在不稳定的问题。
发明内容
根据本申请的各种实施例,提供一种复合聚酯膜及其制备方法与用途。
本申请采取以下技术方案:
本申请提供了一种复合聚酯膜,所述复合聚酯膜包括第一聚酯层、第二聚酯层和第三聚酯层,所述第一聚酯层和第三聚酯层分别位于所述第二聚酯层两侧的表面上;
按照质量百分比计,所述第一聚酯层、第二聚酯层和第三聚酯层的制备原料各自独立地包括:97.0%~99.9%聚酯材料和0.1%~3.0%添加剂;
所述第一聚酯层和所述第三聚酯层中聚酯材料的端羧基含量均为40~100mol/t,所述第二聚酯层中聚酯材料的端羧基含量为5~30mol/t。
在一些实施方式中,按照质量百分比计,所述第一聚酯层、第二聚酯层和第三聚酯层的制备原料各自独立地包括:99.0%~99.8%聚酯材料和0.2%~1.0%添加剂。
在一些实施方式中,所述第一聚酯层和所述第三聚酯层中聚酯材料的端羧基含量均为50~100mol/t,所述第二聚酯层中聚酯材料的端羧基含量为10~25mol/t。
在一些实施方式中,所述聚酯材料包括聚2,6-萘二甲酸乙二醇酯(PEN)、聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯(PETG)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二 甲酸1,4-环己烷二甲醇酯(PCT)、聚2,6-萘二甲酸丙二醇酯(PTN)、聚对苯二甲酸丁二醇酯(PBT)、聚对苯二甲酸丙二醇酯(PTT)、聚己二酸对苯二甲酸丁二醇酯(PBAT)、聚2,6-萘二甲酸丁二酯(PBN)、聚2,5-呋喃二甲酸丁二醇酯、聚芳酯(PAR)以及它们的衍生物中的一种或多种。
在一些实施方式中,所述添加剂包括成核剂、抗氧化剂、爽滑剂和抗静电剂中的一种或多种;
可选地,所述成核剂包括碳酸钠、磷酸三苯酯、聚己内酯、二苯甲酮、氧化铝、氧化铜、氧化镁、氧化锌、硫酸钡、硬酯酸镁和苯甲酸钠中的一种或多种;
可选地,所述抗氧化剂包括亚磷酸双酚A和膦酸酯中的一种或多种;
可选地,所述爽滑剂包括二氧化钛、二氧化硅、硅氧烷、碳酸钙、硅藻土、滑石粉、高岭土和丙烯酸酯中的一种或多种;
可选地,所述抗静电剂包括聚乙二醇、丙三醇、聚甘油、聚醚酯、炭黑、石墨和导电纤维中的一种或多种。
本申请还提供了上述复合聚酯膜的制备方法,所述制备方法包括以下步骤:
S1、分别制备聚酯切片一、聚酯切片二和聚酯切片三,按照质量百分比计,所述聚酯切片一、聚酯切片二和聚酯切片三各自独立地由97.0%~99.9%聚酯材料和0.1%~3%添加剂制得,其中,所述聚酯切片一和聚酯切片三中聚酯材料的端羧基含量均为40~100mol/t,所述聚酯切片二中聚酯材料的端羧基含量为5~30mol/t;
S2、制备具有第一聚酯层、第二聚酯层和第三聚酯层的熔融聚酯料,所述第一聚酯层、第二聚酯层和第三聚酯层依次由所述聚酯切片一、所述聚酯切片二和所述聚酯切片三制得,其中,所述第一聚酯层和第三聚酯层分别位于所述第二聚酯层两侧的表面上;
S3、对所述熔融聚酯料依次进行成型处理和热处理。
本申请还提供了一种金属化聚酯膜,包括金属层和基材层,所述金属层设置在所述基材层的至少一个表面上,所述基材层包括上述复合聚酯膜或上述制备方法制得的复合聚酯膜。
在一些实施方式中,所述金属层的厚度为20~2000nm。
在一些实施方式中,所述金属层的材料包括铜、铜合金、铝、铝合金、镍、镍合金、钛和银中的一种或多种。
本申请还提供了一种复合集流体,所述复合集流体包括上述金属化聚酯膜。
在一些实施方式中,所述复合集流体还包括保护层,所述保护层设置于所述金属化聚酯膜的金属层的表面上。
在一些实施方式中,所述保护层的厚度为10~150nm。
在一些实施方式中,所述保护层的材料包括镍、铬、镍基合金、铜基合金、氧化铜、氧化铝、氧化镍、氧化铬、氧化钴、石墨、炭黑、乙炔黑、科琴黑、碳纳米量子点、碳纳米管、碳纳米纤维和石墨烯中的一种或多种。
进一步地,本申请还提供了一种电极片,包括上述复合集流体。
进一步地,本申请还提供了一种电化学装置,包括上述电极片。
更进一步地,本申请还提供了一种用电装置,包括上述电化学装置。
本申请的一个或多个实施例的细节在下面的描述中提出。本申请的其它特征、目的和优点将从说明书以及权利要求书变得明显。
具体实施方式
下面将结合具体的实施例,对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“一种或多种”包括一个或多个相关的所列项目的任意的和所有的组合。
本申请中,以开放式描述的技术特征中,包括所列举特征组成的封闭式技术方案,也包括包含所列举特征的开放式技术方案。
本申请中,涉及到数值区间,如无特别说明,上述数值区间内视为连续,且包括该范围的最小值及最大值,以及这种最小值与最大值之间的每一个值。进一步地,当范围是指整数时,包括该范围的最小值与最大值之间的每一个整数。此外,当提供多个范围描述特征或特性时,可以合并该范围。换言之,除非另有指明,否则本文中所公开之所有范围应理解为包括其中所归入的任何及所有的子范围。
本申请一实施方式提供了一种复合聚酯膜,该复合聚酯膜包括第一聚酯层、第二聚酯层和第三聚酯层,第一聚酯层和第三聚酯层分别位于第二聚酯层两侧的表面上;
按照质量百分比计,第一聚酯层、第二聚酯层和第三聚酯层的制备原料各自独立地包括:97.0%~99.9%聚酯材料和0.1%~3.0%添加剂;
第一聚酯层和第三聚酯层中聚酯材料的端羧基含量均为40~100mol/t,第二聚酯层中聚 酯材料的端羧基含量为5~30mol/t。
传统的聚酯膜表面极性为35mN/m,其与金属材料的表面极性相差较大。为了解决这一问题,通常利用电晕法对聚酯膜的表面进行改性。但这一方法存在如下不足:(1)在保证聚酯膜的力学性能不发生明显变化的前提下,电晕处理后的聚酯膜表面张力一般为35~50mN/m,与未处理前的聚酯膜相比,处理后的聚酯膜的表面张力提升幅度有限,且仍与金属材料的表面张力(大于100mN/m)存在较大的差距,导致二者之间的结合效果不理想;(2)电晕处理后的聚酯膜表面张力不稳定,存放一段时间后,表面张力降低,最后与处理前的聚酯膜表面张力接近,即存在存储不稳定的问题。
针对上述技术问题,本申请提供了一种复合聚酯膜,其中,第一聚酯层和第三聚酯层中选择端羧基含量较高的聚酯材料,构建富含羧基的极性表面,能够提升复合聚酯膜的粘附性能,且存储一段时间后复合聚酯膜的粘附性能基本保持不变,进而能够提高复合聚酯膜与金属层的粘结力。若第一聚酯层和第三聚酯层中聚酯材料的端羧基含量过低,则复合聚酯膜的表面粘附性能不佳,若第一聚酯层和第三聚酯层中聚酯材料的端羧基含量过高,则会影响复合聚酯膜的成膜以及使用过程的稳定性;第二聚酯层中的聚酯材料主要是为了保证复合聚酯膜的主体性能,第二聚酯层不需要较高的粘附性,因此,本申请的第二聚酯层选择含量相对较低的聚酯材料,若第二聚酯层中聚酯材料的端羧基含量过高,则会影响成膜以及使用过程的稳定性,若其含量过低,则导致熔融挤出过程中的聚酯材料易降解,制备的复合聚酯膜的性能变差。
在一些实施方式中,按照质量百分比计,第一聚酯层、第二聚酯层和第三聚酯层的制备原料各自独立地包括:99.0%~99.8%聚酯材料和0.2%~1.0%添加剂。
若第一聚酯层、第二聚酯层和第三聚酯层中的添加剂含量过低,添加剂所起的作用不明显,若第一聚酯层、第二聚酯层和第三聚酯层中的添加剂含量过高,制膜过程中影响成膜性且易形成缺陷。
在一些实施方式中,添加剂为颗粒物,添加剂的平均粒径为0.01~1.5μm。
在一些实施方式中,添加剂为颗粒物,添加剂的平均粒径为0.02~0.5μm,且颗粒物的平均粒径(d)与对应第一聚酯层、第二聚酯层和第三聚酯层的厚度(t)满足:t≥0.3d。
需要解释的是,颗粒物平均粒径太小,所起作用不明显;颗粒物平均粒径太大,制膜过程中易形成缺陷;膜层的厚度大于等于颗粒物平均粒径的30%是为了防止膜层厚度与颗粒物粒径不匹配所带来的膜层缺陷。
在一些实施方式中,第一聚酯层和第三聚酯层中聚酯材料的端羧基含量均为50~100mol/t,第二聚酯层中聚酯材料的端羧基含量为10~25mol/t。
可以理解地,第一聚酯层和第三聚酯层中聚酯材料的端羧基含量可以为50~100mol/t之间的任意值,例如:50mol/t、55mol/t、60mol/t、65mol/t、70mol/t、75mol/t、80mol/t、85mol/t、90mol/t、95mol/t、100mol/t,第二聚酯层中聚酯材料的端羧基含量可以为10~25mol/t之间的任意值,例如:10mol/t、12mol/t、14mol/t、16mol/t、18mol/t、20mol/t、22mol/t、24mol/t、25mol/t。
在一些实施方式中,聚酯材料包括聚2,6-萘二甲酸乙二醇酯(PEN)、聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯(PETG)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸1,4-环己烷二甲醇酯(PCT)、聚2,6-萘二甲酸丙二醇酯(PTN)、聚对苯二甲酸丁二醇酯(PBT)、聚对苯二甲酸丙二醇酯(PTT)、聚己二酸对苯二甲酸丁二醇酯(PBAT)、聚2,6-萘二甲酸丁二酯(PBN)、聚2,5-呋喃二甲酸丁二醇酯、聚芳酯(PAR)以及它们的衍生物中的一种或多种。
可以理解地,聚酯材料包括但不限于聚2,6-萘二甲酸乙二醇酯(PEN)、聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯(PETG)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸1,4-环己烷二甲醇酯(PCT)、聚2,6-萘二甲酸丙二醇酯(PTN)、聚对苯二甲酸丁二醇酯(PBT)、聚对苯二甲酸丙二醇酯(PTT)、聚己二酸对苯二甲酸丁二醇酯(PBAT)、聚2,6-萘二甲酸丁二酯(PBN)、聚2,5-呋喃二甲酸丁二醇酯、聚芳酯(PAR)以及它们的衍生物中的任意一种,或者聚酯材料包括但不限于聚2,6-萘二甲酸乙二醇酯(PEN)、聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯(PETG)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸1,4-环己烷二甲醇酯(PCT)、聚2,6-萘二甲酸丙二醇酯(PTN)、聚对苯二甲酸丁二醇酯(PBT)、聚对苯二甲酸丙二醇酯(PTT)、聚己二酸对苯二甲酸丁二醇酯(PBAT)、聚2,6-萘二甲酸丁二酯(PBN)、聚2,5-呋喃二甲酸丁二醇酯、聚芳酯(PAR)以及它们的衍生物中的多种按照任意比例形成的混合物。
在一些实施方式中,第一聚酯层、第二聚酯层和第三聚酯层中聚酯材料的特性粘度为0.600~0.850dL/g。
在一些实施方式中,第一聚酯层、第二聚酯层和第三聚酯层中聚酯材料的特性粘度为0.700~0.800dL/g。
第一聚酯层、第二聚酯层和第三聚酯层中聚酯材料的特性粘度太低,所制备的复合聚酯膜的平均分子量则较低,复合聚酯膜的力学性能则会较差;第一聚酯层、第二聚酯层和第三聚酯层中聚酯材料的特性粘度太高,复合聚酯膜的平均分子量则较高,复合聚酯膜的成模性则较差,易发生断膜。
在一些实施方式中,添加剂包括成核剂、抗氧化剂、爽滑剂和抗静电剂中的一种或多 种;
可选地,成核剂包括碳酸钠、磷酸三苯酯、聚己内酯、二苯甲酮、氧化铝、氧化铜、氧化镁、氧化锌、硫酸钡、硬酯酸镁和苯甲酸钠中的一种或多种;
可选地,抗氧化剂包括亚磷酸双酚A和膦酸酯中的一种或多种;
可选地,爽滑剂包括二氧化钛、二氧化硅、硅氧烷、碳酸钙、硅藻土、滑石粉、高岭土和丙烯酸酯中的一种或多种;
可选地,抗静电剂包括聚乙二醇、丙三醇、聚甘油、聚醚酯、炭黑、石墨和导电纤维中的一种或多种。
可以理解地,成核剂包括但不限于碳酸钠、磷酸三苯酯、聚己内酯、二苯甲酮、氧化铝、氧化铜、氧化镁、氧化锌、硫酸钡、硬酯酸镁和苯甲酸钠中的任意一种,或者成核剂包括但不限于碳酸钠、磷酸三苯酯、聚己内酯、二苯甲酮、氧化铝、氧化铜、氧化镁、氧化锌、硫酸钡、硬酯酸镁和苯甲酸钠中的多种以任意比例形成的混合物。
可以理解地,抗氧化剂包括但不限于亚磷酸双酚A和膦酸酯中的任意一种,或者抗氧化剂包括但不限于亚磷酸双酚A和膦酸酯以任意比例形成的混合物。
可以理解地,爽滑剂包括但不限于可以是二氧化钛、二氧化硅、硅氧烷、碳酸钙、硅藻土、滑石粉、高岭土和丙烯酸酯中的任意一种,或者爽滑剂包括但不限于可以是二氧化钛、二氧化硅、硅氧烷、碳酸钙、硅藻土、滑石粉、高岭土和丙烯酸酯中的多种以任意比例形成的混合物。
需要解释的是,成核剂、爽滑剂和抗静电剂中所包含物质仅以该物质所起的主要作用划分类别,此外,该物质还具有其他辅助作用。例如:虽然本申请的氧化镁、氧化锌、氧化铝和氧化铜主要作为成核剂使用,但是其还具有抗静电的作用;类似地,本申请的碳酸钙和滑石粉主要作为爽滑剂使用,但是其还具有类似成核剂的作用;本申请的聚乙二醇主要作用为抗静电,此外,其也具有类似成核剂的作用。
本申请还提供了上述复合聚酯膜的制备方法,制备方法包括以下步骤:
S1、分别制备聚酯切片一、聚酯切片二和聚酯切片三,按照质量百分比计,聚酯切片一、聚酯切片二和聚酯切片三各自独立地由97.0%~99.9%聚酯材料和0.1%~3%添加剂制得,其中,聚酯切片一和聚酯切片二中聚酯材料的端羧基含量均为40~100mol/t,聚酯切片三中聚酯材料的端羧基含量为5~30mol/t;
S2、制备具有第一聚酯层、第二聚酯层和第三聚酯层的熔融聚酯料,第一聚酯层、第二聚酯层和第三聚酯层依次由聚酯切片一、聚酯切片二和聚酯切片三制得,其中,第一聚酯层和第三聚酯层分别位于第二聚酯层两侧的表面上;
S3、对熔融聚酯料依次进行成型处理和热处理。
需要解释的是,第一聚酯层的制备原料为聚酯切片一,第二聚酯层的制备原料为聚酯切片二,第三聚酯层的制备原料为聚酯切片三。
在一些实施方式中,步骤S3的成型处理工艺包括如下步骤:
(1)铸片:将步骤S2的熔融聚酯料流延到铸片辊上,经铸片辊和水冷处理,得到铸片;
(2)纵向拉伸:将上述铸片在70~100℃下预热后,在80~120℃条件下以(3~5):1的倍率进行纵向拉伸处理,得到膜片,之后将膜片在165~180℃下进行热定型处理,在30~50℃下进行冷却处理;
(3)横向拉伸:将上述膜片在80~120℃下预热后,在90~140℃条件下以(3~5):1的倍率进行横向拉伸处理,之后在150~250℃下进行热定型处理,在80~150℃下进行冷却处理。
在一些实施方式中,步骤S3的热处理工艺包括如下步骤:阶段I:热处理温度为130~160℃,热处理时间为0.5~2min;阶段II:热处理温度为160~220℃,热处理时间为0.5~5min;阶段III:热处理温度为130~160℃,热处理时间为0.5~2min。
可以理解地,阶段I和阶段III的热处理温度可以为130~160℃之间的任意值,例如:130℃、134℃、138℃、140℃、144℃、148℃、150℃、154℃、158℃、160℃;阶段II的热处理温度可以为160~220℃之间的任意值,例如:160℃、165℃、170℃、175℃、180℃、185℃、190℃、195℃、200℃、205℃、210℃、215℃、220℃;阶段I、阶段II和阶段III的热处理时间可以为0.5~2min之间的任意值,例如:0.5min、0.7min、0.9min、1.1min、1.3min、1.5min、1.7min、1.9min、2.0min。热处理的目的在于消除膜片的残余应力,并适度提升膜片的结晶度,从而降低膜片的热收缩率以及提高膜片的拉伸强度。
本申请还提供了一种金属化聚酯膜,包括金属层和基材层,金属层设置在基材层的至少一个表面上,基材层包括上述复合聚酯膜或上述制备方法制得的复合聚酯膜。
在一些实施方式中,金属层的厚度为20~2000nm。
在一些实施方式中,金属层的材料包括铜、铜合金、铝、铝合金、镍、镍合金、钛和银中的一种或多种。
可以理解地,金属层的厚度可以为20~2000nm之间的任意值,例如:20nm、50nm、150nm、250nm、350nm、450nm、550nm、650nm、750nm、850nm、950nm、1050nm、1150nm、1250nm、1350nm、1450nm、1550nm、1650nm、1750nm、1850nm、1950nm、2000nm。
在一些实施方式中,金属层的制备方法包括但不限于物理气相沉积法、电镀法和化学 镀法中的一种或多种,其中,物理气相沉积法包括但不限于电阻加热真空蒸镀法、电子束加热真空蒸镀法、激光加热真空蒸镀法和磁控溅射法中的一种或多种。
在一些实施方式中,复合聚酯膜的第一聚酯层和第三聚酯层的表面上均设置有金属层。
在此情况下,第一聚酯层和第三聚酯层的表面金属层材料是一致的。
本申请还提供了一种复合集流体,包括上述金属化聚酯膜。
在一些实施方式中,复合集流体还包括保护层,该保护层设置于金属化聚酯膜的金属层的表面上。
在一些实施方式中,保护层的厚度为10~150nm。
在一些实施方式中,保护层的材料包括镍、铬、镍基合金、铜基合金、氧化铜、氧化铝、氧化镍、氧化铬、氧化钴、石墨、炭黑、乙炔黑、科琴黑、碳纳米量子点、碳纳米管、碳纳米纤维和石墨烯中的一种或多种。
可以理解地,保护层的厚度可以为10~150nm之间的任意值,例如:10nm、16nm、26nm、36nm、46nm、56nm、66nm、76nm、86nm、96nm、106nm、116nm、126nm、136nm、146nm、150nm。
同一复合集流体的保护层为两层时,两层保护层的材料可以相同也可以不同,两层保护层的厚度可以相等也可以不相等,设置的保护层用于防止金属层被化学腐蚀或物理损坏。
在一些实施方式中,保护层的制备方法包括物理气相沉积法、原位成型法和涂布法中的至少一种;其中,物理气相沉积法包括真空蒸镀法和磁控溅射法中的至少一种,原位成型法可以为在金属层表面原位形成金属氧化物钝化层的方法,涂布法可以为模头涂布法、刮刀涂布法和挤压涂布法中的至少一种。
进一步地,本申请还提供了一种电极片,包括上述复合集流体。
可理解,本申请的电极片既可以是正极片也可以是负极片,电极片的制备方法为本领域技术人员所熟知的,本申请没有特别的限制。
进一步地,本申请还提供了一种电化学装置,包括上述电极片。
需要说明的是,本申请的电化学装置没有特别限制,其可以包括发生电化学反应的任何装置。在一些实施方式中,电化学装置可以包括但不限于是锂离子二次电池、锂金属二次电池、锂离子聚合物二次电池或锂聚合物二次电池等。
更进一步地,本申请还提供了一种用电装置,包括上述电化学装置。
需要说明的是,本申请的用电装置没有特别限制,其可以包括但不限于是智能家电、 手机、电脑或电动车辆等。
以下结合具体实施例和对比例对本申请做进一步详细的说明。
测试方法:
(1)表面张力测试:参照国标GB/T 14216-2008分别测试复合聚酯膜的初始表面张力和放置三个月的表面张力。刚制备完成的复合聚酯膜的表面张力为初始表面张力,制备完成的复合聚酯膜放置三个月,之后对其表面张力进行测试,得到的表面张力为放置三个月的表面张力。
(2)粘结力测试:在1mm厚的铝箔上粘接一层Permacel P-94双面胶,在双面胶的上方粘接复合正极集流体/复合负极集流体,在复合正极集流体/复合负极集流体的上方覆盖一层乙烯丙烯酸共聚物薄膜(杜邦Nurcel0903,厚度为50μm),然后在1.3×10 5N/m 2、120℃下热压10s,冷却至室温,裁成150mm×15mm的小条。最后将样品小条的乙烯丙烯酸共聚物薄膜固定于拉力机的上夹具,其余部分固定在下夹具,固定好后二者以180°的角度、100mm/min的速度进行剥离,测试剥离力,即复合正极集流体/复合负极集流体与金属层的粘结力。
(3)不良率测试:制膜过程中由于各层破膜产生的不良品占复合聚酯膜总量的比例。
(4)弹性模量测试:为了表征复合聚酯膜的力学性能,这里对其代表性的指标弹性模量进行了评价,评价方法参照国标GB/T 1040.3-2006。
实施例1
材料选择:第一聚酯层和第三聚酯层的聚酯材料为聚对苯二甲酸乙二醇酯(PET),特性粘度为0.740dL/g,分子量分布为2.2,PET端羧基含量为40mol/t,添加剂为抗氧化剂300和氧化铝(平均粒径为0.3μm);
第二聚酯层的聚酯材料为聚对苯二甲酸乙二醇酯(PET),特性粘度为0.740dL/g,分子量分布为2.2,PET端羧基含量为20mol/t,添加剂为抗氧化剂300及氧化铝(平均粒径为0.3μm)。
S1、分别制备聚酯切片一、聚酯切片二和聚酯切片三,按照质量百分比计,聚酯切片一、聚酯切片二和聚酯切片三各自独立地由99.4%PET、0.3%抗氧化剂300和0.3%氧化铝通过加热熔融混合、挤出和成型切片制得,其中,聚酯切片一和聚酯切片三中PET端羧基含量均为40mol/t,聚酯切片二中PET端羧基含量为20mol/t;
S2、将聚酯切片一、聚酯切片二和聚酯切片三分别输送到结晶器内,在150℃处理下40min,然后将其输送到干燥塔内,在155℃下干燥处理150min,将干燥处理后的聚酯切片一、聚酯切片二和聚酯切片三分别加入不同的双螺杆挤出机内,经280℃加热熔融,借 助计量泵通过模头挤出,得到具有第一聚酯层、第二聚酯层和第三聚酯层的熔融聚酯料,第一聚酯层、第二聚酯层和第三聚酯层依次由聚酯切片一、聚酯切片二和聚酯切片三制得,其中,第一聚酯层和第三聚酯层分别位于第二聚酯层两侧的表面上;
S3、成型处理和热处理
S3.1、铸片
将步骤S2得到的熔融聚酯料流延到铸片辊上,经铸片辊及水冷的冷却处理成型,得到厚度为96μm的铸片;
S3.2、纵向拉伸
将步骤S3.1得到的铸片在90℃下预热,然后在110℃条件下以4:1的倍率进行纵向拉伸,得到膜片,之后将膜片依次在170℃下进行热定型处理,在40℃下进行冷却成型处理;
S3.3、横向拉伸
将步骤S3.2得到的膜片在90℃下预热,然后在120℃条件下以4:1的倍率进行横向拉伸,之后将膜片依次在170℃下进行热定型处理,在110℃下进行冷却成型处理;
S3.4、热处理
将步骤S3.3得到的膜片进行热处理制备复合聚酯膜,热处理工艺包括如下步骤:
阶段I:热处理温度为140℃,热处理时间为0.5min;
阶段II:热处理温度为160℃,热处理时间为0.5min;
阶段III:热处理温度为140℃,热处理时间为0.5min。
按照如下方法制备复合正极集流体:
(1)制备金属层
将上述复合聚酯膜的表面清洁后置于真空蒸镀的舱体内,以1300~2000℃的高温将金属蒸发室内的高纯铝丝(纯度大于99.99%)熔化蒸发,蒸发后的金属原子经过真空镀膜室内的冷却系统,沉积在复合聚酯膜的两个表面,形成厚度为1μm的铝金属层;
(2)制备保护层
通过超声分散的方法将1g碳纳米管均匀分散到999g氮甲基吡咯烷酮(NMP)溶液中,配制成固含量为0.1wt%的涂布液,通过模头涂布的工艺将涂布液均匀涂覆到金属层的表面,然后在100℃下干燥,得到复合正极集流体,其中涂覆量控制在80μm。
按照如下方法制备复合负极集流体:
(1)制备金属层
将上述复合聚酯膜进行表面清洁后置于真空蒸镀的舱体内,以1400~2000℃的高温将 金属蒸发室内的高纯铜丝(纯度大于99.99%)熔化蒸发,蒸发后的金属原子经过真空镀膜室内的冷却系统,沉积在复合聚酯膜的两个表面,形成厚度为1μm的铜金属层;
(2)制备保护层
通过超声分散的方法将1g碳纳米管均匀分散到999g氮甲基吡咯烷酮(NMP)溶液中,配制成固含量为0.1wt%的涂布液,通过模头涂布的工艺将涂布液均匀涂覆到金属层的表面,然后在100℃下干燥,得到复合负极集流体,其中涂覆量控制在80μm。
实施例2
与实施例1基本相同,区别在于:第一聚酯层和第三聚酯层中PET的端羧基含量为50mol/t。
实施例3
与实施例1基本相同,区别在于:第一聚酯层和第三聚酯层中PET的端羧基含量为60mol/t。
实施例4
与实施例1基本相同,区别在于:第一聚酯层和第三聚酯层中PET的端羧基含量为70mol/t。
实施例5
与实施例1基本相同,区别在于:第一聚酯层和第三聚酯层中PET的端羧基含量为80mol/t。
实施例6
与实施例1基本相同,区别在于:第一聚酯层和第三聚酯层中PET的端羧基含量为90mol/t。
实施例7
与实施例1基本相同,区别在于:第一聚酯层和第三聚酯层中PET的端羧基含量为100mol/t。
实施例8
与实施例7基本相同,区别在于:第二聚酯层中PET的端羧基含量为5mol/t。
实施例9
与实施例7基本相同,区别在于:第二聚酯层中PET的端羧基含量为10mol/t。
实施例10
与实施例7基本相同,区别在于:第二聚酯层中PET的端羧基含量为25mol/t。
实施例11
与实施例7基本相同,区别在于:第二聚酯层中PET的端羧基含量为30mol/t。
实施例12
与实施例7基本相同,区别在于:第一聚酯层、第二聚酯层和第三聚酯层中的聚酯材料均选用PBT。
实施例13
与实施例7基本相同,区别在于:第一聚酯层、第二聚酯层和第三聚酯层中的聚酯材料均选用PEN。
实施例14
与实施例1基本相同,区别在于:步骤S1中,按照质量百分比计,聚酯切片一、聚酯切片二和聚酯切片三各自独立地由97.0%PET、1.5%抗氧化剂300和1.5%氧化铝通过加热熔融混合、挤出和成型切片制得。
实施例15
与实施例1基本相同,区别在于:步骤S1中,按照质量百分比计,聚酯切片一、聚酯切片二和聚酯切片三各自独立地由99.0%PET、0.5%抗氧化剂300和0.5%氧化铝通过加热熔融混合、挤出和成型切片制得。
实施例16
与实施例1基本相同,区别在于:步骤S1中,按照质量百分比计,聚酯切片一、聚酯切片二和聚酯切片三各自独立地由99.8%PET、0.1%抗氧化剂300和0.1%氧化铝通过加热熔融混合、挤出和成型切片制得。
实施例17
与实施例1基本相同,区别在于:步骤S1中,按照质量百分比计,聚酯切片一、聚酯切片二和聚酯切片三各自独立地由99.9%PET、0.05%抗氧化剂300和0.05%氧化铝通过加热熔融混合、挤出和成型切片制得。
对比例1
与实施例1基本相同,区别在于:第一聚酯层和第三聚酯层中PET的端羧基含量为35mol/t。
对比例2
与实施例1基本相同,区别在于:第一聚酯层和第三聚酯层中PET的端羧基含量为20mol/t,且利用电晕法对复合聚酯膜的第一聚酯层和第三聚酯层进行处理,该电晕法具体包括以下步骤:将制备的复合聚酯膜置于卷对卷的电晕处理装置中,电晕功率选择10kW,电流选择6A,以50m/min的线速度对第一聚酯层和第三聚酯层的表面进行改性处理。
对比例3
与实施例1基本相同,区别在于:第一聚酯层和第三聚酯层中PET的端羧基含量为105mol/t。
对比例4
与实施例1基本相同,区别在于:步骤S1中,聚酯切片一、聚酯切片二和聚酯切片三各自独立地由PET通过加热熔融混合、挤出和成型切片制得。
对比例5
与实施例1基本相同,区别在于:步骤S1中,按照质量百分比计,聚酯切片一、聚酯切片二和聚酯切片三各自独立地由96.0%PET、2.0%抗氧化剂300和2.0%氧化铝通过加热熔融混合、挤出和成型切片制得。
对比例6
与实施例1基本相同,区别在于:第二聚酯层中PET的端羧基含量为4mol/t。
对比例7
与实施例1基本相同,区别在于:第二聚酯层中PET的端羧基含量为31mol/t。
试验例1复合聚酯膜和复合集流体的性能测试
表面张力、粘结力、不良率和弹性模量的测试结果如表1所示。表1中,MD表示复合聚酯膜的纵向方向,TD表示复合聚酯膜的横向方向,纵向方向为复合聚酯膜边长较长的方向,横向方向为复合聚酯膜边长较短的方向,MD与TD两个方向互相垂直。
表1复合聚酯膜和复合集流体的性能测试结果
Figure PCTCN2022117282-appb-000001
由表1可知,实施例1~7的第一聚酯层和第三聚酯层中PET的端羧基含量逐渐增加, 制备的复合聚酯膜的初始表面张力逐渐提升,相应的复合聚酯膜与铝金属层之间的粘结力、复合聚酯膜与铜金属层之间的粘结力也逐渐提升;观察实施例8~11可知,提高第二聚酯层中PET的端羧基含量,并未对制备的复合聚酯膜的初始表面张力产生影响。
与对比例1~2和对比例4~5相比,实施例1制备的复合聚酯膜的初始表面张力较高,且放置三个月后复合聚酯膜的表面张力变化较小,相应的复合聚酯膜与铝金属层、铜金属层之间的粘结力较大,说明本申请提供的复合聚酯膜第一聚酯层、第二聚酯层和第三聚酯层的制备原料,以及对其中端羧基含量的调控有效解决了聚酯膜表面张力小,表面张力不稳定以及与表面金属层结合不牢固的问题。与实施例1相比,对比例3制备的复合聚酯膜的表面张力虽有提升且放置三个月后表面张力稳定,但由于PET的端羧基含量较高,导致制膜过程中不良率提升。
对比例6和对比例7制备的复合聚酯膜的表面张力,以及制备的复合聚酯膜与铝金属层、铜金属层之间的粘结力与实施例1相差不大,然而对比例6和对比例7制备的复合聚酯膜在MD和TD方向的弹性模量显著较低,说明对比例6和对比例7制备的复合聚酯膜的力学性能较差。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (16)

  1. 一种复合聚酯膜,其特征在于,所述复合聚酯膜包括第一聚酯层、第二聚酯层和第三聚酯层,所述第一聚酯层和第三聚酯层分别位于所述第二聚酯层两侧的表面上;
    所述第一聚酯层、第二聚酯层和第三聚酯层的制备原料按照质量百分比计各自独立地包括:97.0%~99.9%聚酯材料和0.1%~3.0%添加剂;
    所述第一聚酯层和所述第三聚酯层中聚酯材料的端羧基含量均为40~100mol/t,所述第二聚酯层中聚酯材料的端羧基含量为5~30mol/t。
  2. 根据权利要求1所述的复合聚酯膜,其特征在于,按照质量百分比计,所述第一聚酯层、第二聚酯层和第三聚酯层的制备原料各自独立地包括:99.0%~99.8%聚酯材料和0.2%~1.0%添加剂。
  3. 根据权利要求1~2任一项所述的复合聚酯膜,其特征在于,所述第一聚酯层和所述第三聚酯层中聚酯材料的端羧基含量均为50~100mol/t,所述第二聚酯层中聚酯材料的端羧基含量为10~25mol/t。
  4. 根据权利要求1~3任一项所述的复合聚酯膜,其特征在于,所述聚酯材料包括聚2,6-萘二甲酸乙二醇酯、聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯、聚对苯二甲酸乙二醇酯、聚对苯二甲酸1,4-环己烷二甲醇酯、聚2,6-萘二甲酸丙二醇酯、聚对苯二甲酸丁二醇酯、聚对苯二甲酸丙二醇酯、聚己二酸对苯二甲酸丁二醇酯、聚2,6-萘二甲酸丁二酯、聚2,5-呋喃二甲酸丁二醇酯、聚芳酯以及它们的衍生物中的一种或多种。
  5. 根据权利要求1~4任一项所述的复合聚酯膜,其特征在于,所述添加剂包括成核剂、抗氧化剂、爽滑剂和抗静电剂中的一种或多种;
    可选地,所述成核剂包括碳酸钠、磷酸三苯酯、聚己内酯、二苯甲酮、氧化铝、氧化铜、氧化镁、氧化锌、硫酸钡、硬酯酸镁和苯甲酸钠中的一种或多种;
    可选地,所述抗氧化剂包括亚磷酸双酚A和膦酸酯中的一种或多种;
    可选地,所述爽滑剂包括二氧化钛、二氧化硅、硅氧烷、碳酸钙、硅藻土、滑石粉、高岭土和丙烯酸酯中的一种或多种;
    可选地,所述抗静电剂包括聚乙二醇、丙三醇、聚甘油、聚醚酯、炭黑、石墨和导电纤维中的一种或多种。
  6. 如权利要求1~5任一项所述的复合聚酯膜的制备方法,其特征在于,所述制备方法包括以下步骤:
    S1、分别制备聚酯切片一、聚酯切片二和聚酯切片三,按照质量百分比计,所述聚酯 切片一、聚酯切片二和聚酯切片三各自独立地由97.0%~99.9%聚酯材料和0.1%~3%添加剂制得,其中,所述聚酯切片一和聚酯切片三中聚酯材料的端羧基含量均为40~100mol/t,所述聚酯切片二中聚酯材料的端羧基含量为5~30mol/t;
    S2、制备具有第一聚酯层、第二聚酯层和第三聚酯层的熔融聚酯料,所述第一聚酯层、第二聚酯层和第三聚酯层依次由所述聚酯切片一、所述聚酯切片二和所述聚酯切片三制得,其中,所述第一聚酯层和第三聚酯层分别位于所述第二聚酯层两侧的表面上;
    S3、对所述熔融聚酯料依次进行成型处理和热处理。
  7. 一种金属化聚酯膜,其特征在于,包括金属层和基材层,所述金属层设置在所述基材层的至少一个表面上,所述基材层包括权利要求1~5任一项所述的复合聚酯膜或权利要求6所述的制备方法制得的复合聚酯膜。
  8. 根据权利要求7所述的金属化聚酯膜,其特征在于,所述金属层的厚度为20~2000nm。
  9. 根据权利要求7~8任一项所述的金属化聚酯膜,其特征在于,所述金属层的材料包括铜、铜合金、铝、铝合金、镍、镍合金、钛和银中的一种或多种。
  10. 一种复合集流体,其特征在于,所述复合集流体包括权利要求7~9任一项所述的金属化聚酯膜。
  11. 根据权利要求10所述的复合集流体,其特征在于,所述复合集流体还包括保护层,所述保护层设置于所述金属化聚酯膜的金属层的表面上。
  12. 根据权利要求11所述的复合集流体,其特征在于,所述保护层的厚度为10~150nm。
  13. 根据权利要求11~12任一项所述的复合集流体,其特征在于,所述保护层的材料包括镍、铬、镍基合金、铜基合金、氧化铜、氧化铝、氧化镍、氧化铬、氧化钴、石墨、炭黑、乙炔黑、科琴黑、碳纳米量子点、碳纳米管、碳纳米纤维和石墨烯中的一种或多种。
  14. 一种电极片,其特征在于,包括权利要求10~13任一项所述的复合集流体。
  15. 一种电化学装置,其特征在于,包括权利要求14所述的电极片。
  16. 一种用电装置,其特征在于,包括权利要求15所述的电化学装置。
PCT/CN2022/117282 2022-09-06 2022-09-06 复合聚酯膜及其制备方法与用途 WO2024050690A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/117282 WO2024050690A1 (zh) 2022-09-06 2022-09-06 复合聚酯膜及其制备方法与用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/117282 WO2024050690A1 (zh) 2022-09-06 2022-09-06 复合聚酯膜及其制备方法与用途

Publications (1)

Publication Number Publication Date
WO2024050690A1 true WO2024050690A1 (zh) 2024-03-14

Family

ID=90192697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117282 WO2024050690A1 (zh) 2022-09-06 2022-09-06 复合聚酯膜及其制备方法与用途

Country Status (1)

Country Link
WO (1) WO2024050690A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117887224A (zh) * 2024-03-15 2024-04-16 江阴纳力新材料科技有限公司 一种聚合物复合膜、其制备方法、复合集流体和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5874163A (en) * 1993-12-06 1999-02-23 Teijin Limited Laminated polyester film to be laminated on metal plate
JP2013026530A (ja) * 2011-07-25 2013-02-04 Mitsubishi Plastics Inc 太陽電池裏面封止材用ポリエステルフィルム
CN103459150A (zh) * 2011-01-31 2013-12-18 东丽薄膜欧洲 多层白色聚酯膜、生产所述膜的方法以及所述膜用于光伏电芯背板一部分的用途
CN107001666A (zh) * 2014-11-28 2017-08-01 东丽株式会社 聚酯膜
CN113276527A (zh) * 2021-05-28 2021-08-20 杭州大东南高科新材料有限公司 一种低萃取聚酯薄膜及其制备方法
CN113524830A (zh) * 2021-07-09 2021-10-22 浙江南洋科技有限公司 一种锂电池集流体用高拉伸强度聚酯薄膜及其制备方法
CN114989574A (zh) * 2022-05-17 2022-09-02 扬州纳力新材料科技有限公司 聚酯基膜及其制备方法和应用、极片和锂电池单体
CN115320206A (zh) * 2022-09-06 2022-11-11 扬州纳力新材料科技有限公司 复合聚酯膜及其制备方法与用途

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5874163A (en) * 1993-12-06 1999-02-23 Teijin Limited Laminated polyester film to be laminated on metal plate
CN103459150A (zh) * 2011-01-31 2013-12-18 东丽薄膜欧洲 多层白色聚酯膜、生产所述膜的方法以及所述膜用于光伏电芯背板一部分的用途
JP2013026530A (ja) * 2011-07-25 2013-02-04 Mitsubishi Plastics Inc 太陽電池裏面封止材用ポリエステルフィルム
CN107001666A (zh) * 2014-11-28 2017-08-01 东丽株式会社 聚酯膜
CN113276527A (zh) * 2021-05-28 2021-08-20 杭州大东南高科新材料有限公司 一种低萃取聚酯薄膜及其制备方法
CN113524830A (zh) * 2021-07-09 2021-10-22 浙江南洋科技有限公司 一种锂电池集流体用高拉伸强度聚酯薄膜及其制备方法
CN114989574A (zh) * 2022-05-17 2022-09-02 扬州纳力新材料科技有限公司 聚酯基膜及其制备方法和应用、极片和锂电池单体
CN115320206A (zh) * 2022-09-06 2022-11-11 扬州纳力新材料科技有限公司 复合聚酯膜及其制备方法与用途

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117887224A (zh) * 2024-03-15 2024-04-16 江阴纳力新材料科技有限公司 一种聚合物复合膜、其制备方法、复合集流体和应用
CN117887224B (zh) * 2024-03-15 2024-05-28 江阴纳力新材料科技有限公司 一种聚合物复合膜、其制备方法、复合集流体和应用

Similar Documents

Publication Publication Date Title
CN115447248B (zh) 复合聚合物膜、其制造方法、金属化复合聚合物膜与应用
JP6724457B2 (ja) 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
WO2023221188A1 (zh) 聚酯基膜及其制备方法和应用、极片和锂电池单体
JP6319293B2 (ja) コンデンサ用二軸配向ポリプロピレンフィルム、金属化フィルム、およびフィルムコンデンサ
WO2024050690A1 (zh) 复合聚酯膜及其制备方法与用途
CN115320206B (zh) 复合聚酯膜及其制备方法与用途
JP6439293B2 (ja) 積層多孔性フィルム、蓄電デバイス用セパレータおよび蓄電デバイス
WO2024104393A1 (zh) 多层复合聚丙烯材料及其制备方法和应用
JP2014208448A (ja) 導電層積層多孔性フィルム及び電池用セパレータ
JP6211796B2 (ja) 蓄電素子電極用二軸延伸ポリエステルフィルム
WO2024044897A1 (zh) 耐溶胀型聚酯复合膜及其制备方法和应用
WO2024092882A1 (zh) 复合铜集流体及其制备方法、极片、二次电池和用电装置
JP2002008665A (ja) 導電性樹脂シートおよびその製造方法
JP2011174009A (ja) 蓄電素子電極用難燃ポリエステルフィルム、それからなる蓄電素子用電極およびそれらからなる蓄電素子
WO2024050688A1 (zh) 复合聚合物膜、其制造方法、金属化复合聚合物膜与应用
JP4507498B2 (ja) 高分子誘電体ならびにコンデンサ用フィルム。
JP6331556B2 (ja) 積層多孔性フィルム、その製造方法および蓄電デバイス用セパレータ
WO2024050722A1 (zh) 复合聚酯膜及其制备方法和应用
JP4427766B2 (ja) コンデンサ用ポリエステルフィルム及びフィルムコンデンサ
WO2024060009A1 (zh) 高力学强度聚合物薄膜、其制造方法和应用
WO2024051776A1 (zh) 复合聚酯膜及其制备方法和应用
JPH1040920A (ja) 二次電池電極用フィルム
WO2024092563A1 (zh) 改性聚酯薄膜、制备方法、复合集流体、电极片及其用途
CN116120722B (zh) 一种适用于复合集流体的聚酯薄膜及其制备方法
JP3829424B2 (ja) コンデンサ用ポリエステルフィルムおよびフィルムコンデンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957664

Country of ref document: EP

Kind code of ref document: A1