WO2024060009A1 - 高力学强度聚合物薄膜、其制造方法和应用 - Google Patents

高力学强度聚合物薄膜、其制造方法和应用 Download PDF

Info

Publication number
WO2024060009A1
WO2024060009A1 PCT/CN2022/119870 CN2022119870W WO2024060009A1 WO 2024060009 A1 WO2024060009 A1 WO 2024060009A1 CN 2022119870 W CN2022119870 W CN 2022119870W WO 2024060009 A1 WO2024060009 A1 WO 2024060009A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester
polymer film
longitudinal stretching
molecular weight
oxide
Prior art date
Application number
PCT/CN2022/119870
Other languages
English (en)
French (fr)
Inventor
朱中亚
王帅
夏建中
李学法
张国平
Original Assignee
扬州纳力新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 扬州纳力新材料科技有限公司 filed Critical 扬州纳力新材料科技有限公司
Priority to PCT/CN2022/119870 priority Critical patent/WO2024060009A1/zh
Publication of WO2024060009A1 publication Critical patent/WO2024060009A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof

Definitions

  • the present application relates to the technical field of polymer film manufacturing, and in particular to a high mechanical strength polymer film, its manufacturing method and application.
  • a composite current collector can be produced by depositing a metal material on a polymer film using physical vapor deposition (PVD).
  • the polymer film can be, for example, a polypropylene film, a polyethylene film or a polyester film.
  • PVD physical vapor deposition
  • composite current collectors are light in weight, low in cost and have good internal insulation. Therefore, when composite current collectors are used in batteries, the energy density and safety of the battery will be greatly improved, especially in mobile phones. , laptop computers, drones, electric vehicles and other consumer batteries or power batteries.
  • the commonly used polymer base film for composite current collectors is polyester film.
  • Traditional polyester films are mostly packaging polyester films.
  • packaging polyester films are used for composite current collectors, there is a problem of poor mechanical properties, especially in the longitudinal direction.
  • the mechanical properties of MD are poor, mainly manifested in the relatively low elastic modulus and tensile strength in the MD direction (the elastic modulus is generally less than 5000MPa, and the tensile strength is generally less than 250MPa).
  • the polyester film is deposited with metal materials in a PVD system environment, the polyester film is prone to film breakage due to the high tension of the winding system in the PVD system environment, the bombardment of metal atoms and the increase in the surface temperature of the polyester film.
  • the coating and product composite molding processes involved in batteries also place higher requirements on the base film of the composite current collector.
  • a high mechanical strength polymer film According to various embodiments of the present application, a high mechanical strength polymer film, a manufacturing method and application thereof are provided.
  • the application provides a high mechanical strength polymer film.
  • the polymer film includes a polyester with a mass percentage of 95% to 99% and an additive of 1% to 5%.
  • the number average of the polyester is The molecular weight of the polyester is 13,000 Da to 20,000 Da, and the molecular weight of the polyester having a molecular weight less than 5,000 Da accounts for 0.5% to 5% of the total molecular weight of the polyester, and the molecular weight distribution index of the polyester is 1.6 to 2.4.
  • the method for manufacturing the polymer film includes the following steps: sequentially performing a first longitudinal stretching process, a transverse stretching process, and a second longitudinal stretching process;
  • first longitudinal stretching ratio (3.0-4.0): 1, first longitudinal stretching temperature 80°C-120°C;
  • the process conditions of the transverse stretching include: transverse stretching ratio (3.0-4.0): 1, transverse stretching temperature 90°C-140°C;
  • the process conditions of the second longitudinal stretching include: a second longitudinal stretching ratio (1.1-1.3): 1, and a second longitudinal stretching temperature of 80°C-120°C.
  • the polyester includes polyethylene terephthalate, polyethylene 2,6-naphthalate, polybutylene terephthalate, polyterephthalate 1,4-cyclohexanedimethanol, polyethylene terephthalate-1,4-cyclohexanedimethanol, polytrimethylene 2,6-naphthalate, polytrimethylene terephthalate , one or more of polybutylene 2,6-naphthalate, polybutylene 2,5-furandicarboxylate, polybutylene adipate terephthalate and their derivatives .
  • the auxiliary agent includes one or more of slip agent, antioxidant, antistatic agent and nucleating agent;
  • the slip agent includes one or more of calcium carbonate, talc, diatomaceous earth, acrylate, siloxane, titanium dioxide, kaolin and silica;
  • the antioxidant includes one or more of phosphonate and bisphenol A phosphite
  • the antistatic agent includes one or more of conductive fiber, polyethylene glycol, glycerin, polyether ester, polyglycerol, graphite and carbon black;
  • the nucleating agent includes sodium carbonate, benzophenone, zinc oxide, copper oxide, magnesium stearate, triphenyl phosphate, aluminum oxide, magnesium oxide, barium sulfate, polycaprolactone and sodium benzoate one or more of them.
  • the present application provides a method for manufacturing the above-mentioned high mechanical strength polymer film, comprising the following steps:
  • polyester chips with 95% to 99% polyester and 1% to 5% additives
  • the polyester chips are sequentially subjected to crystallization processing, drying processing, melt extrusion processing, sheet casting processing, first longitudinal stretching processing, transverse stretching processing and second longitudinal stretching processing to form a polymer film.
  • the process conditions of the crystallization treatment include: crystallization temperature of 135°C to 185°C, and crystallization time of 20min to 120min.
  • the drying process conditions include: drying temperature of 135°C to 175°C, and drying time of 120min to 300min.
  • the temperature of the melt extrusion process is 270°C to 290°C.
  • the casting process includes the following steps: casting the melt-extruded material, and then cooling it.
  • the present application provides a composite film, including a support film and a metal-rich layer. At least one surface of the support film is attached with the metal-rich layer.
  • the support film includes the above-mentioned polymer film or the above-mentioned manufacturing method. Polymer films produced by this method.
  • the material of the metal-enriched layer includes one or more of titanium, silver, copper, aluminum, nickel, copper alloy, aluminum alloy and nickel alloy.
  • the thickness of the metal-rich layer ranges from 500 nm to 2000 nm.
  • the thickness of the support film ranges from 1 ⁇ m to 20 ⁇ m.
  • the present application provides a composite current collector comprising the above-mentioned composite film.
  • a protective layer is also attached to the surface of the metal-rich layer
  • the thickness of the protective layer is 10nm ⁇ 150nm;
  • the materials of the protective layer include graphite, nickel, chromium, carbon black, copper oxide, acetylene black, aluminum oxide, nickel oxide, Ketjen black, chromium oxide, cobalt oxide, nickel-based alloy, copper-based alloy, One or more of carbon nanoquantum dots, carbon nanotubes, carbon nanofibers and graphene.
  • the present application provides an electrode sheet, including a composite current collector, and an active material layer attached to at least one surface of the composite current collector.
  • the present application provides a lithium secondary battery including the above electrode sheet.
  • the present application provides an electronic device including the above-mentioned battery.
  • the polymer film includes a polyester with a mass percentage of 95% to 99% and an additive of 1% to 5%.
  • the number average molecular weight of the polyester is 13000Da to 13000Da.
  • the number of molecules of polyester with a molecular weight of 20,000 Da and less than 5,000 Da accounts for 0.5% to 5% of the total number of polyester molecules, and the molecular weight distribution index of polyester is 1.6 to 2.4.
  • the molecular weight distribution index in this application refers to the ratio of weight average molecular weight to number average molecular weight. If the number average molecular weight of the polyester in the above-mentioned polymer film is too low, the mechanical properties of the produced polymer film will be poor; if the number average molecular weight of the polyester is too high, the film-forming properties of the polyester will be poor, resulting in poor polymerization during the film making process.
  • the membrane rupture rate of the film increases and the yield rate decreases; the number of polyester molecules with a molecular weight less than 5000 Da accounts for 0.5% to 5% of the total number of polyester molecules, that is, the number of polyester molecules with a molecular weight less than 5000 Da in polyester is 100%.
  • the molecular content of polyester with a molecular weight of less than 5000 Da is too low, which will lead to poor film-forming properties of the polyester and a reduction in yield; the molecular content of polyester with a molecular weight of less than 5000 Da is too high. If the polyester molecular weight distribution index is too small, the polyester film-forming properties will be poor and the yield rate will be reduced; if the polyester molecular weight distribution index is too large, the mechanical properties of the polymer film will be poor. .
  • the above-mentioned polymer film can improve the mechanical strength of the polymer film in the MD direction and reduce the membrane rupture rate by controlling the number average molecular weight of the raw material, the proportion of a certain molecular weight in the number of polyester molecules, and the molecular weight distribution index.
  • MD direction of the polymer film herein refers to the machine direction, length direction or longitudinal direction of the polymer film.
  • the polymer film may include, for example, 95% polyester and 5% auxiliary agents, or may include 96% polyester and 4% auxiliary agents, or may include 97% polyester and 3% auxiliary agents, Or it can include 98% polyester and 2% auxiliaries, or it can include 99% polyester and 1% auxiliaries;
  • the number average molecular weight of polyester can be, for example, 13000Da, 13500Da, 14000Da, 14500Da, 15000Da, 15500Da, 16000Da, 16500Da , 17000Da, 17500Da, 18000Da, 18500Da, 19000Da, 19500Da or 20000Da, etc.
  • the number of molecules of polyester with a molecular weight less than 5000Da can account for, for example, 0.5%, 1%, 1.5%, 2.0%, 2.5% of the total number of molecules of polyester.
  • the molecular weight distribution index of polyester can be, for example, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3 or 2.4, etc., the molecular weight distribution of polyester The exponent can also be other values between 1.6 and 2.4.
  • the method for manufacturing a polymer film includes the following steps: a first longitudinal stretching process, a transverse stretching process, and a second longitudinal stretching process in sequence.
  • the process conditions of the first longitudinal stretching include: first longitudinal stretching ratio (3.0-4.0): 1, and first longitudinal stretching temperature of 80°C-120°C.
  • the process conditions of transverse stretching include: transverse stretching ratio (3.0-4.0): 1, and transverse stretching temperature of 90°C-140°C.
  • the process conditions of the second longitudinal stretching include: a second longitudinal stretching ratio (1.1-1.3): 1, and a second longitudinal stretching temperature of 80°C-120°C.
  • the first longitudinal stretching ratio includes, but is not limited to, 3.0:1, 3.1:1, 3.2:1, 3.3:1, 3.4:1, 3.5:1, 3.6:1, 3.7:1, 3.8:1 , 3.9:1 or 4.0:1, etc.;
  • the first longitudinal stretching temperature includes but is not limited to 80°C, 82°C, 85°C, 87°C, 89°C, 90°C, 92°C, 95°C, 98°C, 99 °C, 100°C, 102°C, 105°C, 110°C, 115°C or 120°C, etc.
  • the transverse stretch ratio can be 3.0:1, 3.1:1, 3.2:1, 3.3:1, 3.4:1, 3.5:1 , 3.6:1, 3.7:1, 3.8:1, 3.9:1 or 4.0:1, etc.
  • the transverse stretching temperature can be 90°C, 92°C, 94°C, 96°C, 98°C, 100°C, 102°C, 105
  • the second longitudinal stretch ratio includes, but is not limited to, 1.1:1, 1.12:1, 1.14:1, 1.16:1, 1.18:1, 1.2:1, 1.22:1, 1.24:1, 1.26:1, 1.28: 1 or 1.3: 1 etc.; the second longitudinal stretching temperature includes but is not limited to 80°C, 82°C, 85°C, 87°C, 89°C, 90°C, 92°C, 95°C, 98°C, 99°C, 100 °C, 102°C, 105°C, 110°C, 115°C or 120°C, etc.
  • the polyester includes polyethylene terephthalate (PET), polyethylene 2,6-naphthalate (PEN), polybutylene terephthalate (PBT) ), poly1,4-cyclohexanedimethanol terephthalate (PCT), polyethylene terephthalate-1,4-cyclohexanedimethanol (PETG), poly2,6- Trimethylene naphthalate (PTN), polytrimethylene terephthalate (PTT), polybutylene 2,6-naphthalate (PBN), polybutylene 2,5-furandicarboxylate, polyhexane One or more of the diacid butanediol terephthalate (PBAT) and their derivatives.
  • PET polyethylene terephthalate
  • PEN polyethylene 2,6-naphthalate
  • PBT polybutylene terephthalate
  • PCT poly1,4-cyclohexanedimethanol terephthalate
  • PET polyethylene terephthalate-1,4-cyclohe
  • the polyester can be, for example, polyethylene terephthalate (PET), polyethylene 2,6-naphthalate (PEN), polybutylene terephthalate (PBT), Poly 1,4-cyclohexanedimethanol terephthalate (PCT), polyethylene terephthalate-1,4-cyclohexanedimethanol (PETG), poly 2,6-naphthalene dicarboxylate Propylene glycol formate (PTN), polytrimethylene terephthalate (PTT), polybutylene 2,6-naphthalate (PBN), polybutylene 2,5-furandicarboxylate, polyadipic acid Any one of butylene terephthalate (PBAT) and its derivatives can also be a mixture of multiple types of the above materials in any proportion.
  • PAT polyethylene terephthalate
  • PEN polyethylene 2,6-naphthalate
  • PBT polybutylene terephthalate
  • PCT Poly 1,4-cyclohexanedimethanol
  • the auxiliary agent includes one or more of slip agents, antioxidants, antistatic agents and nucleating agents.
  • auxiliary agent may include, for example, any one of slip agents, antioxidants, antistatic agents, and nucleating agents, or may include multiple combinations of slip agents, antioxidants, antistatic agents, and nucleating agents. Mixtures in any proportion.
  • the slip agent includes one or more of titanium dioxide, silica, calcium carbonate, talc, kaolin, diatomaceous earth, silicone, and acrylate.
  • the slip agent can be any one of titanium dioxide, silica, calcium carbonate, talc, kaolin, diatomaceous earth, siloxane and acrylate.
  • the slip agent can also be titanium dioxide, silica, A mixture of calcium carbonate, talc, kaolin, diatomaceous earth, siloxane and acrylate in any proportion.
  • the antioxidant includes one or more of a phosphonate and bisphenol A phosphite.
  • the antioxidant may include, for example, phosphonate or bisphenol A phosphite, or may include both phosphonate and bisphenol A phosphite; the phosphonate may be, for example, antioxidant 1222, antioxidant 300, etc.
  • the antistatic agent includes one or more of glycerol, polyglycerol, polyethylene glycol, polyether ester, carbon black, graphite, and conductive fiber.
  • the antistatic agent can be any one of glycerol, polyglycerol, polyethylene glycol, polyether ester, carbon black, graphite and conductive fiber.
  • the antistatic agent can also be glycerin, polyglycerol, polyether A mixture of ethylene glycol, polyetherester, carbon black, graphite and conductive fibers in any proportion.
  • the nucleating agent includes zinc oxide, aluminum oxide, magnesium oxide, copper oxide, barium sulfate, sodium carbonate, triphenyl phosphate, benzophenone, polycaprolactone, magnesium stearate, and benzene.
  • zinc oxide aluminum oxide, magnesium oxide, copper oxide, barium sulfate, sodium carbonate, triphenyl phosphate, benzophenone, polycaprolactone, magnesium stearate, and benzene.
  • zinc oxide aluminum oxide, magnesium oxide, copper oxide, barium sulfate, sodium carbonate, triphenyl phosphate, benzophenone, polycaprolactone, magnesium stearate, and benzene.
  • sodium carbonate triphenyl phosphate
  • benzophenone polycaprolactone
  • magnesium stearate magnesium stearate
  • benzene One or more types of sodium formate.
  • the nucleating agent may include zinc oxide, aluminum oxide, magnesium oxide, copper oxide, barium sulfate, sodium carbonate, triphenyl phosphate, benzophenone, polycaprolactone, magnesium stearate and sodium benzoate. Any one, or a mixture including a plurality of the above materials in any proportion.
  • the shape of the auxiliary includes granular, the average particle size of the granular auxiliary is 0.01 ⁇ m ⁇ 1.0 ⁇ m, and the average particle size D of the granular auxiliary and the thickness T of the polymer film meet the following conditions :T ⁇ 0.3D.
  • the average particle size of the granular additive is 0.02 ⁇ m to 0.5 ⁇ m.
  • the additives include granular additives.
  • the granular additives can improve the mechanical properties of the polymer film in the MD direction.
  • the average particle size of the granular additives can be, for example, 0.01 ⁇ m, 0.02 ⁇ m, 0.03 ⁇ m, 0.04 ⁇ m, and 0.05 ⁇ m, 0.06 ⁇ m, 0.07 ⁇ m, 0.08 ⁇ m, 0.09 ⁇ m, 0.1 ⁇ m, 0.15 ⁇ m, 0.2 ⁇ m, 0.25 ⁇ m, 0.3 ⁇ m, 0.35 ⁇ m, 0.4 ⁇ m, 0.45 ⁇ m, 0.5 ⁇ m, 0.6 ⁇ m, 0.7 ⁇ m, 0.8 ⁇ m, 0.9 ⁇ m or 1.0 ⁇ m;
  • Another embodiment of the present application provides a method for manufacturing the above-mentioned high mechanical strength polymer film, including the following steps:
  • polyester chips with 95% to 99% polyester and 1% to 5% additives
  • the polyester chips are sequentially subjected to crystallization processing, drying processing, melt extrusion processing, sheet casting processing, first longitudinal stretching processing, transverse stretching processing and second longitudinal stretching processing to form a polymer film.
  • the polymer film may include, for example, 95% polyester and 5% additives, or 95.5% polyester and 4.5% additives, or 96.5% polyester and 3.5% additives, or 97.5% polyester and 2.5% additives, or 98.5% polyester and 1.5% additives, or 99% polyester and 1% additives; the mechanical properties of the polymer film can be improved during the above-mentioned first longitudinal stretching treatment, transverse stretching treatment and second longitudinal stretching treatment.
  • the process conditions of the crystallization treatment include: crystallization temperature of 135°C to 185°C, and crystallization time of 20min to 120min.
  • the crystallization temperature can be any value between 135°C and 185°C, for example, it can be 135°C, 137°C, 140°C, 142°C, 145°C, 150°C, 153°C, 155°C, 160°C, 165°C , 175°C or 185°C, etc.; the crystallization time can be 20min, 25min, 30min, 35min, 38min, 40min, 42min, 45min, 49min, 53min, 57min, 60min, 65min, 70min, 72min, 77min, 80min, 82min, 86min, 90min, 100min, 105min, 110min, 111min, 113min, 117min or 120min, etc.
  • the drying process conditions include: drying temperature of 135°C to 175°C, and drying time of 120min to 300min.
  • drying temperature can be any value between 135°C and 175°C, for example, it can be 135°C, 137°C, 140°C, 142°C, 145°C, 150°C, 153°C, 155°C, 160°C, 164°C , 166°C, 168°C, 170°C, 172°C, 174°C or 175°C, etc.; drying time can be 120min, 125min, 130min, 135min, 138min, 140min, 142min, 145min, 149min, 153min, 160min, 170min, 175min, 180min, 190min, 200min, 220min, 240min, 280min, 285min, 292min, 295min or 300min, etc.
  • the melt extrusion temperature ranges from 270°C to 290°C.
  • melt extrusion can be 270°C, 272°C, 274°C, 275°C, 277°C, 280°C, 282°C, 285°C, 286°C or 290°C.
  • the temperature of melt extrusion can also be 270°C. Other values between ⁇ 290°C.
  • the casting process includes the following steps: casting the melt-extruded material and then cooling it.
  • Another embodiment of the present application provides a composite film, including a support film and a metal-enriched layer, wherein the metal-enriched layer is attached to at least one surface of the support film, and the support film includes the above-mentioned polymer film or the polymer film produced by the above-mentioned manufacturing method.
  • the material of the metal-rich layer includes one or more of titanium, silver, copper, aluminum, nickel, copper alloys, aluminum alloys and nickel alloys.
  • the metal-rich layer can be located on one surface of the polymer film or on both surfaces of the supporting film.
  • the material of the metal-rich layer can be consistent.
  • the material of the metal-rich layer For example, it can be any one of titanium, silver, copper, aluminum, nickel, copper alloy, aluminum alloy and nickel alloy.
  • the metal-rich layer can also be made of titanium, silver, copper, aluminum, nickel, copper alloy, aluminum alloy. and various formations in nickel alloys.
  • the thickness of the metal-rich layer ranges from 500 nm to 2000 nm.
  • the metal-rich layer can be made by one or more of physical vapor deposition, electroplating and chemical plating.
  • the thickness of the metal-rich layer can be, for example, 500nm, 510nm, 515nm, 520nm, 525nm.
  • the thickness of the support film ranges from 1 ⁇ m to 20 ⁇ m.
  • the thickness of the support film is 1 ⁇ m to 20 ⁇ m.
  • the thickness of the support film includes but is not limited to 1 ⁇ m, 1.5 ⁇ m, and 1.5 ⁇ m.
  • Another embodiment of the present application provides a composite current collector, including the above composite film.
  • a protective layer is also attached to the surface of the metal-rich layer.
  • the protective layer attached to the surface of the composite current collector is used to prevent the surface of the metal-enriched layer from being physically damaged or chemically corroded.
  • the thickness of the protective layer ranges from 10 nm to 150 nm.
  • the thickness of the protective layer includes, but is not limited to, 10nm, 12nm, 15nm, 18nm, 20nm, 25nm, 30nm, 32nm, 43nm, 45nm, 52nm, 56nm, 63nm, 77nm, 89nm, 92nm, 95nm, 98nm, 100nm , 105nm, 110nm, 115nm, 118nm, 120nm, 125nm, 128nm, 130nm, 135nm, 137nm, 140nm, 143nm, 146nm or 150nm.
  • the material of the protective layer includes graphite, nickel, chromium, carbon black, copper oxide, acetylene black, aluminum oxide, nickel oxide, Ketjen black, chromium oxide, cobalt oxide, nickel-based alloy, copper-based alloy , one or more of carbon nanoquantum dots, carbon nanotubes, carbon nanofibers and graphene.
  • Another embodiment of the present application provides an electrode sheet, including a composite current collector, and an active material layer attached to at least one surface of the composite current collector.
  • the active material layer includes active material, conductive agent and binder.
  • the active material is divided into positive electrode active material and negative electrode active material.
  • the positive electrode active material can be lithium cobalt oxide, lithium manganate, lithium iron phosphate or triphosphate. Yuan cathode materials, etc.
  • the negative active material can be graphite, silicon materials, silicon-carbon composite materials, etc.
  • the conductive agent can be conductive carbon black, carbon fiber, graphene, carbon nanotubes, etc.
  • the binder can be PVDF, CMC, SBR, etc.
  • Another embodiment of the present application provides a lithium secondary battery, including the above-mentioned electrode sheet.
  • the electrode sheet can be divided into a positive electrode sheet and a negative electrode sheet.
  • the positive electrode sheet can be the above-mentioned electrode sheet, or the negative electrode sheet can be the above-mentioned electrode sheet, or the positive electrode sheet and the negative electrode sheet can be used.
  • the negative electrode sheets all use the above-mentioned electrode sheets.
  • This application has no special restrictions on lithium secondary batteries.
  • the manufacturing methods commonly used in the field of lithium secondary batteries are all within the battery scope of this application.
  • the positive electrode sheet, negative electrode sheet, non-aqueous electrolyte and general battery necessary components can be used.
  • the elements are assembled with the battery case by lamination or winding to produce a lithium secondary battery.
  • Another embodiment of the present application provides an electronic device, including the above-mentioned battery.
  • the above-mentioned battery can be used as a driving power source or power storage device for a system of machinery, equipment, instruments, devices, or a combination thereof.
  • a driving power source or power storage device for a system of machinery, equipment, instruments, devices, or a combination thereof.
  • it can be, for example, mobile phones, notebook computers, smart home appliances, and electric vehicles. wait.
  • the defective rate of polymer films and composite current collectors was tested.
  • the defective rate is the ratio of the number of defective products due to film breakage during the manufacturing process to the total number of products. Since the width is consistent, the number is calculated based on the length.
  • Polymer films are made as follows:
  • Polyester chips are made from polyethylene terephthalate (PET), antioxidant 1222, titanium dioxide, silica and alumina by heating, melting, mixing, extrusion and shaping into chips; based on mass percentage, The contents of PET, antioxidant 1222, titanium dioxide, silica and alumina are 98%, 0.5%, 0.5%, 0.5%, 0.5% in order; the number average molecular weight of PET is 13000Da, the molecular weight distribution index is 1.6, and the middle molecular weight of PET The number percentage of PET molecules less than 5000Da is 0.5%; the sizes of additive antioxidant 1222, titanium dioxide, silica and alumina are all 50nm ⁇ 100nm;
  • Step 2 Transport the PET slices produced in step 1 to the crystallizer, crystallize at 145°C for 40 minutes, then transport to the drying tower, and dry at 155°C for 160 minutes;
  • Step 3 Add the polyester chips obtained in step 2 into a twin-screw extruder, heat to 280° C. to melt them, and extrude the molten material through a die head with the aid of a metering pump;
  • Step 4 Cast the molten material extruded in Step 3 onto the sheet casting roller, and then form it through the casting roller and water-cooling cooling treatment to cast it into a 59.4 ⁇ m thick polyester sheet;
  • Step 5 Preheat the polyester sheet produced in Step 4 at 90°C, perform the first longitudinal stretching at 110°C with a draw ratio of 3.0:1, and then perform heat setting treatment at 170°C, and then Cooling and forming processing at 40°C;
  • Step 6 preheat the polyester sheet obtained in step 5 at 90°C, stretch it transversely at 120°C with a stretch ratio of 3.0:1, perform heat setting at 170°C, and then perform cooling and forming treatment in a 90°C intermediate cooling zone and a 35°C cooling zone in sequence;
  • Step 7 Preheat the polyester sheet obtained in step 6 at 90°C, perform the second longitudinal stretching at 110°C with a draw ratio of 1.1:1, perform heat setting treatment at 170°C, and then heat it at 40°C. Perform cooling molding treatment at °C to obtain a polymer film with a thickness of 6 ⁇ m;
  • Step 8 Use the traction system to introduce the polymer film obtained in step 7 into the winding system and wind it up.
  • Example 2 It is basically the same as Example 1, except that the number average molecular weight of PET is 16000 Da.
  • Example 2 It is basically the same as Example 1, except that the number average molecular weight of PET is 19000 Da.
  • Example 2 It is basically the same as Example 1, except that the number average molecular weight of PET is 20,000 Da.
  • Example 3 It is basically the same as Example 3, except that the molecular weight distribution index of PET is 2.2.
  • Example 3 Basically the same as Example 3, except that the molecular weight distribution index of PET is 2.4.
  • Example 6 It is basically the same as Example 6, except that the number percentage of PET molecules with a molecular weight less than 5000 Da in PET is 3%.
  • Example 6 It is basically the same as Example 6, except that the percentage of PET molecules with a molecular weight less than 5000 Da in PET is 5%.
  • Example 8 It is basically the same as Example 8, except that the stretching ratio of the first longitudinal stretching is 2.5:1.
  • Example 8 It is basically the same as Example 8, except that the stretching ratio of the first longitudinal stretching is 3.5:1.
  • Example 8 It is basically the same as Example 8, except that the stretching ratio of the first longitudinal stretching is 4.0:1.
  • Example 8 It is basically the same as Example 8, except that the stretching ratio of the first longitudinal stretching is 4.5:1.
  • Example 12 Basically the same as Example 12, except that the second longitudinal stretching treatment was not performed.
  • Example 12 It is basically the same as Example 12, except that the stretching ratio of the second longitudinal stretching is 1.2:1.
  • Example 12 It is basically the same as Example 12, except that the stretching ratio of the second longitudinal stretching is 1.3:1.
  • Example 12 It is basically the same as Example 12, except that the stretching ratio of the second longitudinal stretching is 1.4:1.
  • Example 2 It is basically the same as Example 1, except that the contents of PET, antioxidant 1222, titanium dioxide, silica and alumina are 95%, 1.5%, 0.5%, 1.5% and 1.5% in order of mass percentage.
  • Example 2 It is basically the same as Example 1, except that in terms of mass percentage, the contents of PET, antioxidant 1222, titanium dioxide, silica and alumina are 99%, 0.25%, 0.25%, 0.25% and 0.25% respectively.
  • the polyester chips are made of polyethylene 2,6-naphthalate (PEN), antioxidant 1222, titanium dioxide, silica and alumina and are heated and melted Made by mixing, extruding and shaping into slices.
  • PEN polyethylene 2,6-naphthalate
  • polyester chips are made of polyethylene terephthalate-1,4-cyclohexanedimethanol (PETG), antioxidant 1222, titanium dioxide, Silicon oxide and aluminum oxide are produced by heating, melting, mixing, extruding and shaping into slices.
  • PETG polyethylene terephthalate-1,4-cyclohexanedimethanol
  • the polyester chips are made of polybutylene terephthalate (PBT), antioxidant 1222, titanium dioxide, silica and alumina by heating, melting, mixing, extrusion Made by cutting out and shaping slices.
  • PBT polybutylene terephthalate
  • antioxidant 1222 titanium dioxide
  • silica silica
  • alumina by heating, melting, mixing, extrusion Made by cutting out and shaping slices.
  • polyester chips are made from poly (2,6-butylene naphthalate) (PBN), antioxidant 1222, titanium dioxide, silicon dioxide and aluminum oxide by heating, melting, mixing, extruding and forming chips.
  • PBN poly (2,6-butylene naphthalate)
  • antioxidant 1222 titanium dioxide, silicon dioxide and aluminum oxide by heating, melting, mixing, extruding and forming chips.
  • polyester chips are made of polybutylene adipate terephthalate (PBAT), antioxidant 1222, titanium dioxide, silica and alumina and are heated and melted Made by mixing, extruding and shaping into slices.
  • PBAT polybutylene adipate terephthalate
  • antioxidant 1222 titanium dioxide
  • silica and alumina are heated and melted Made by mixing, extruding and shaping into slices.
  • Example 2 It is basically the same as Example 1, except that the number average molecular weight of PET is 12000 Da.
  • Example 2 It is basically the same as Example 1, except that the number average molecular weight of PET is 21000 Da.
  • Example 3 Basically the same as Example 3, except that the molecular weight distribution index of PET is 1.5.
  • the method is basically the same as Example 6, except that the percentage of PET molecules with a molecular weight less than 5000 Da in PET is 0.4%.
  • Example 6 It is basically the same as Example 6, except that the number percentage of PET molecules with a molecular weight less than 5000 Da in PET is 5.1%.
  • Example 2 Basically the same as Example 1, except that in terms of mass percentage, the contents of PET, antioxidant 1222, titanium dioxide, silica and alumina are 94%, 1.5%, 1.5%, 1.5% and 1.5% respectively.
  • Example 2 It is basically the same as Example 1, except that the contents of PET, antioxidant 1222, titanium dioxide, silica and alumina are 100%, 0%, 0%, 0% and 0% in order of mass percentage.
  • Aluminum wire with a purity greater than 99.99% was melted and evaporated at 1400°C and deposited on both surfaces of the polymer films produced in the above-mentioned Examples 1 to 24 and Comparative Examples 1 to 8 to form an aluminum metal enrichment layer with a thickness of 1 ⁇ m.
  • Carbon nanotubes and nitrogen methyl pyrrolidone were prepared into a solution with a solid content of 0.1wt%. The above solution was evenly applied to the surface of the aluminum metal enrichment layer with a coating amount of 90 ⁇ m, and dried at 100°C to obtain a composite Current collector.
  • Example 1 The difference between Example 1 and Comparative Examples 1-2 is that the number average molecular weight of PET is different. Compared with Comparative Examples 1-2, the polymer film produced in Example 1 can ensure a low defective rate and at the same time its MD direction The elastic modulus, tensile strength in the MD direction and elongation at break in the MD direction are relatively high. The elastic modulus of the polymer film produced in Example 1 can reach 5305MPa. Compared with Comparative Example 1, the composite film produced in Example 1 has a higher elastic modulus.
  • the current collector can ensure that the defective rate is reduced while increasing the elastic modulus in the MD direction and the tensile strength in the MD direction, and the elongation at break in the MD direction of the composite current collector manufactured in Example 1 is not much different from that in Comparative Example 1; Compared with Example 1, although the defective rate of the composite current collector manufactured in Comparative Example 2 was reduced, and the elastic modulus in the MD direction and the tensile strength in the MD direction were increased, the elongation at break of Comparative Example 2 was significantly reduced.
  • Example 1 shows that compared with Comparative Examples 1 to 2, the polymer film and composite current collector produced in Example 1 can take into account the defective rate and the elongation at break in the MD direction, and at the same time improve the elastic modulus in the MD direction and the stretch in the MD direction. strength;
  • Example 3 The difference between Example 3 and Comparative Examples 3-4 is that the molecular weight distribution index of PET is different.
  • the polymer film produced in Example 3 effectively improves the elastic modulus in the MD direction and the MD direction.
  • the tensile strength and elongation at break in the MD direction while ensuring a low defective rate.
  • the elastic modulus of the polymer film produced in Example 3 in the MD direction can reach 5500MPa, and the tensile strength in the MD direction can reach 309MPa.
  • the elongation at break can reach 103%; compared with the composite current collectors manufactured in Comparative Examples 3 to 4, the composite current collector manufactured in Example 3 can ensure that the elastic modulus and tensile strength in the MD direction are high while taking into account the MD.
  • the elongation at break and defective rate in the direction therefore, the mechanical properties of the polymer film and composite current collector produced in Example 3 are better;
  • Example 6 The difference between Example 6 and Comparative Examples 5-6 lies in the number percentage of PET molecules with a molecular weight less than 5000 Da in PET. Compared with Comparative Examples 5-6, the polymer film produced in Example 6 has a lower defective rate. When the value is low, the elastic modulus in the MD direction and the tensile strength in the MD direction are significantly improved, and the elongation at break in the MD direction is not much different compared with Comparative Example 5; compared with the composite sets manufactured in Comparative Examples 5 to 6 Compared with the fluid, when the elongation at break in the MD direction of the composite current collector manufactured in Example 6 is not much different from that in Example 5, its elastic modulus in the MD direction and tensile strength in the MD direction are significantly improved, and the defective rate reduce. It shows that compared to Comparative Examples 5 to 6, Example 6 has better mechanical properties;
  • the polymer film produced in Example 1 can reduce the defective rate, significantly increase the elastic modulus in the MD direction and the tensile strength in the MD direction, and its elongation at break in the MD direction is the same as that of the corresponding There is not much difference in Example 8; compared with Comparative Examples 7-8, the elastic modulus in the MD direction and the tensile strength in the MD direction of the composite current collector manufactured in Example 1 are not only greatly improved, but the defective rate is reduced, and its MD direction The elongation at break is not much different from that of Comparative Examples 7-8. This shows that the additives in the polymer film of the present application can improve the mechanical properties of the polymer film and the composite current collector in the MD direction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本申请涉及一种高力学强度聚合物薄膜,该高力学强度聚合物薄膜包括质量百分比为95%~99%的聚酯和1%~5%的助剂,聚酯的数均分子量为13000Da~20000Da,且分子量小于5000Da的聚酯的分子数量占聚酯的分子数量总量的0.5%~5%,聚酯的分子量分布指数为1.6~2.4。

Description

高力学强度聚合物薄膜、其制造方法和应用 技术领域
本申请涉及聚合物薄膜制造技术领域,特别是涉及一种高力学强度聚合物薄膜、其制造方法和应用。
背景技术
采用物理气相沉积(PVD)的方法在高分子聚合物薄膜上沉积金属材料可以制得复合集流体,高分子聚合物薄膜例如可以采用聚丙烯薄膜、聚乙烯薄膜或聚酯薄膜等。与传统的集流体相比,复合集流体质量轻、成本低以及内部绝缘性好,因此,将复合集流体应用于电池中,电池的能量密度和安全性会得到很大提升,尤其是在手机、笔记本电脑、无人机、电动汽车等消费电池或动力电池方面。
复合集流体常用的聚合物基膜为聚酯薄膜,传统的聚酯薄膜多为包装用聚酯薄膜,当包装用聚酯薄膜用于复合集流体时,存在力学性能差的问题,尤其是纵向MD的力学性能较差,主要表现在MD方向弹性模量及拉伸强度相对较低(弹性模量一般低于5000MPa,拉伸强度一般小于250MPa)。将该聚酯薄膜在PVD系统环境中沉积金属材料时,由于PVD系统环境中卷绕系统张力大,金属原子的轰击以及聚酯薄膜膜面温度的升高,聚酯薄膜易发生断膜。此外,电池涉及到的涂布及产品复合成型等工艺对复合集流体的基膜也提出了较高的要求。
发明内容
根据本申请的各种实施例,提供一种高力学强度聚合物薄膜、其制造方法和应用。
本申请是这样实现的:
第一方面,本申请提供一种高力学强度聚合物薄膜,所述聚合物薄膜包括质量百分比为95%~99%的聚酯和1%~5%的助剂,所述聚酯的数均分子量为13000Da~20000Da,且分子量小于5000Da的所述聚酯的分子数量占所述聚酯的分子数量总量的0.5%~5%,所述聚酯的分子量分布指数为1.6~2.4。
在其中一些实施例中,所述聚合物薄膜的制造方法包括以下步骤:依次进行的第一纵向拉伸处理、横向拉伸处理和第二纵向拉伸处理;
可选地,所述第一纵向拉伸的工艺条件包括:第一纵向拉伸倍率(3.0~4.0):1,第一纵向拉伸温度80℃~120℃;
可选地,所述横向拉伸的工艺条件包括:横向拉伸倍率(3.0~4.0):1,横向拉伸温度90℃~140℃;
可选地,所述第二纵向拉伸的工艺条件包括:第二纵向拉伸倍率(1.1~1.3):1,第二纵向拉伸温度80℃~120℃。
在其中一些实施例中,所述聚酯包括聚对苯二甲酸乙二醇酯、聚2,6-萘二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚对苯二甲酸1,4-环己烷二甲醇酯、聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯、聚2,6-萘二甲酸丙二醇酯、聚对苯二甲酸丙二醇酯、聚2,6-萘二甲酸丁二酯、聚2,5-呋喃二甲酸丁二醇酯、聚己二酸对苯二甲酸丁二醇酯以及它们的衍生物中的一种或多种。
在其中一些实施例中,所述助剂包括爽滑剂、抗氧化剂、抗静电剂和成核剂中的一种或多种;
可选地,所述爽滑剂包括碳酸钙、滑石粉、硅藻土、丙烯酸酯、硅氧烷、二氧化钛、高岭土和二氧化硅中的一种或多种;
可选地,所述抗氧化剂包括膦酸酯和亚磷酸双酚A中的一种或多种;
可选地,所述抗静电剂包括导电纤维、聚乙二醇、丙三醇、聚醚酯、聚甘油、石墨和炭黑中的一种或多种;
可选地,所述成核剂包括碳酸钠、二苯甲酮、氧化锌、氧化铜、硬酯酸镁、磷酸三苯酯、氧化铝、氧化镁、硫酸钡、聚己内酯和苯甲酸钠中的一种或多种。
第二方面,本申请提供一种上述高力学强度聚合物薄膜的制造方法,包括如下步骤:
将95%~99%聚酯和1%~5%助剂制成聚酯切片;
对聚酯切片依次进行结晶处理、干燥处理、熔融挤出处理、铸片处理、第一纵向拉伸处理、横向拉伸处理和第二纵向拉伸处理,制成聚合物薄膜。
在其中一些实施例中,所述结晶处理的工艺条件包括:结晶温度135℃~185℃,结晶时间20min~120min。
在其中一些实施例中,所述干燥处理的工艺条件包括:干燥温度135℃~175℃,干燥时间120min~300min。
在其中一些实施例中,所述熔融挤出处理的温度为270℃~290℃。
在其中一些实施例中,所述铸片处理包括以下步骤:将所述熔融挤出处理的物料进行流延处理,之后进行冷却处理。
第三方面,本申请提供一种复合薄膜,包括支撑膜和金属富集层,所述支撑膜的至少一个表面附着有所述金属富集层,所述支撑膜包括上述聚合物薄膜或上述制造方法制得的 聚合物薄膜。
在其中一些实施例中,所述金属富集层的材料包括钛、银、铜、铝、镍、铜合金、铝合金和镍合金中的一种或多种。
在其中一些实施例中,所述金属富集层的厚度为500nm~2000nm。
在其中一些实施例中,所述支撑膜的厚度为1μm~20μm。
第四方面,本申请提供一种复合集流体,包括上述复合薄膜。
在其中一些实施例中,所述金属富集层的表面还附着有防护层;
可选地,所述防护层的厚度为10nm~150nm;
可选地,所述防护层的材料包括石墨、镍、铬、炭黑、氧化铜、乙炔黑、氧化铝、氧化镍、科琴黑、氧化铬、氧化钴、镍基合金、铜基合金、碳纳米量子点、碳纳米管、碳纳米纤维和石墨烯中的一种或多种。
第五方面,本申请提供一种电极片,包括复合集流体,以及附着在所述复合集流体至少一个表面的活性物质层。
第六方面,本申请提供一种锂二次电池,包括上述电极片。
第七方面,本申请提供一种电子装置,包括上述电池。
本申请的一个或多个实施例的细节在下面的描述中提出。本申请的其它特征、目的和优点将从说明书以及权利要求书变得明显。
具体实施方式
下面将结合具体的实施例,对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“一种或多种”包括一个或多个相关的所列项目的任意的和所有的组合。
本申请一实施方式提供一种高力学强度聚合物薄膜,该聚合物薄膜包括质量百分比为95%~99%的聚酯和1%~5%的助剂,聚酯的数均分子量为13000Da~20000Da,且分子量小于5000Da的聚酯的分子数量占聚酯的分子数量总量的0.5%~5%,聚酯的分子量分布指数为1.6~2.4。
需要说明的是,本申请中的分子量分布指数是指重均分子量与数均分子量的比值。上述聚合物薄膜中聚酯的数均分子量过低,则制造的聚合物薄膜力学性能较差;聚酯的数均分子量过高,则聚酯成膜性较差,导致制膜过程中聚合物薄膜的破膜率提高,良品率降低;分子量小于5000Da的聚酯的分子数量占聚酯的分子数量总量的0.5%~5%,也即聚酯中分子量小于5000Da的聚酯分子的数量百分含量为0.5%~5%;分子量小于5000Da的聚酯的分子数量含量过低,则会导致聚酯成膜性较差,良品率降低;分子量小于5000Da的聚酯的分子数量含量过高,则制造的聚合物薄膜的力学性能较差;聚酯分子量分布指数过小,聚酯成膜性较差,良品率降低;聚酯分子量分布指数过大,制造的聚合物薄膜的力学性能较差。因此,上述聚合物薄膜通过控制原料的数均分子量、一定分子量所占聚酯的分子数量的比例和分子量分布指数能够提高聚合物薄膜MD方向的力学强度,降低破膜率。需要说明的是,本文中“聚合物薄膜MD方向”指的是聚合物薄膜的机械方向、长度方向或者纵向。
可理解,按照质量百分比计,聚合物薄膜例如可以包括95%聚酯和5%助剂,或者可以包括96%聚酯和4%助剂,或者可以包括97%聚酯和3%助剂,或者可以包括98%聚酯和2%助剂,或者可以包括99%聚酯和1%助剂;聚酯的数均分子量例如可以是13000Da、13500Da、14000Da、14500Da、15000Da、15500Da、16000Da、16500Da、17000Da、17500Da、18000Da、18500Da、19000Da、19500Da或20000Da等;分子量小于5000Da的聚酯的分子数量例如可以占聚酯的分子数量总量的0.5%、1%、1.5%、2.0%、2.5%、3%、3.5%、4%、4.5%或5%等;聚酯的分子量分布指数例如可以是1.6、1.7、1.8、1.9、2.0、2.1、2.2、2.3或2.4等,聚酯的分子量分布指数也可以是1.6~2.4之间的其他值。
在其中一些实施例中,聚合物薄膜的制造方法包括以下步骤:依次进行的第一纵向拉伸处理、横向拉伸处理和第二纵向拉伸处理。
在其中一些实施例中,第一纵向拉伸的工艺条件包括:第一纵向拉伸倍率(3.0~4.0):1,第一纵向拉伸温度80℃~120℃。
在其中一些实施例中,横向拉伸的工艺条件包括:横向拉伸倍率(3.0~4.0):1,横向拉伸温度90℃~140℃。
在其中一些实施例中,第二纵向拉伸的工艺条件包括:第二纵向拉伸倍率(1.1~1.3):1,第二纵向拉伸温度80℃~120℃。
可理解,第一纵向拉伸倍率包括但不限于可以是3.0:1、3.1:1、3.2:1、3.3:1、3.4:1、3.5:1、3.6:1、3.7:1、3.8:1、3.9:1或4.0:1等;第一纵向拉伸温度包括但不限于可以是80℃、82℃、85℃、87℃、89℃、90℃、92℃、95℃、98℃、99℃、100℃、102℃、 105℃、110℃、115℃或120℃等;横向拉伸倍率可以是3.0:1、3.1:1、3.2:1、3.3:1、3.4:1、3.5:1、3.6:1、3.7:1、3.8:1、3.9:1或4.0:1等;横向拉伸温度可以是90℃、92℃、94℃、96℃、98℃、100℃、102℃、105℃、110℃、112℃、115℃、118℃、120℃、122℃、125℃、128℃、130℃、132℃、135℃、138℃或140℃等。第二纵向拉伸倍率包括但不限于可以是1.1:1、1.12:1、1.14:1、1.16:1、1.18:1、1.2:1、1.22:1、1.24:1、1.26:1、1.28:1或1.3:1等;第二纵向拉伸温度包括但不限于可以是80℃、82℃、85℃、87℃、89℃、90℃、92℃、95℃、98℃、99℃、100℃、102℃、105℃、110℃、115℃或120℃等。
在其中一些实施例中,聚酯包括聚对苯二甲酸乙二醇酯(PET)、聚2,6-萘二甲酸乙二醇酯(PEN)、聚对苯二甲酸丁二醇酯(PBT)、聚对苯二甲酸1,4-环己烷二甲醇酯(PCT)、聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯(PETG)、聚2,6-萘二甲酸丙二醇酯(PTN)、聚对苯二甲酸丙二醇酯(PTT)、聚2,6-萘二甲酸丁二酯(PBN)、聚2,5-呋喃二甲酸丁二醇酯、聚己二酸对苯二甲酸丁二醇酯(PBAT)以及它们的衍生物中的一种或多种。
可理解,聚酯例如可以是聚对苯二甲酸乙二醇酯(PET)、聚2,6-萘二甲酸乙二醇酯(PEN)、聚对苯二甲酸丁二醇酯(PBT)、聚对苯二甲酸1,4-环己烷二甲醇酯(PCT)、聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯(PETG)、聚2,6-萘二甲酸丙二醇酯(PTN)、聚对苯二甲酸丙二醇酯(PTT)、聚2,6-萘二甲酸丁二酯(PBN)、聚2,5-呋喃二甲酸丁二醇酯、聚己二酸对苯二甲酸丁二醇酯(PBAT)以及它们的衍生物中的任意一种,也可以是上述材料中的多种按照任意比例形成的混合物。
在其中一些实施例中,助剂包括爽滑剂、抗氧化剂、抗静电剂和成核剂中的一种或多种。
可理解,助剂例如可以包括爽滑剂、抗氧化剂、抗静电剂和成核剂中的任意一种,也可以包括爽滑剂、抗氧化剂、抗静电剂和成核剂中的多种按照任意比例形成的混合物。
在其中一些实施例中,爽滑剂包括二氧化钛、二氧化硅、碳酸钙、滑石粉、高岭土、硅藻土、硅氧烷和丙烯酸酯中的一种或多种。
可理解,爽滑剂可以是二氧化钛、二氧化硅、碳酸钙、滑石粉、高岭土、硅藻土、硅氧烷和丙烯酸酯中的任意一种,爽滑剂也可以是二氧化钛、二氧化硅、碳酸钙、滑石粉、高岭土、硅藻土、硅氧烷和丙烯酸酯中的多种按照任意比例形成的混合物。
在其中一些实施例中,抗氧化剂包括膦酸酯和亚磷酸双酚A中的一种或多种。
可理解,抗氧化剂例如可以包括膦酸酯或亚磷酸双酚A,或者可以同时包括膦酸酯和亚磷酸双酚A;膦酸酯例如可以是抗氧化剂1222、抗氧化剂300等。
在其中一些实施例中,抗静电剂包括丙三醇、聚甘油、聚乙二醇、聚醚酯、炭黑、石墨和导电纤维中的一种或多种。
可理解,抗静电剂可以是丙三醇、聚甘油、聚乙二醇、聚醚酯、炭黑、石墨和导电纤维中任意一种,抗静电剂也可以是丙三醇、聚甘油、聚乙二醇、聚醚酯、炭黑、石墨和导电纤维中多种按照任意比例形成的混合物。
在其中一些实施例中,成核剂包括氧化锌、氧化铝、氧化镁、氧化铜、硫酸钡、碳酸钠、磷酸三苯酯、二苯甲酮、聚己内酯、硬酯酸镁和苯甲酸钠中的一种或多种。
可理解,成核剂可以包括氧化锌、氧化铝、氧化镁、氧化铜、硫酸钡、碳酸钠、磷酸三苯酯、二苯甲酮、聚己内酯、硬酯酸镁和苯甲酸钠中的任意一种,或者包括上述材料中的多种按照任意比例混合得到的混合物。
在其中一些实施例中,助剂的形状包括颗粒状,颗粒状助剂的平均粒径为0.01μm~1.0μm,且颗粒状助剂的平均粒径D与聚合物薄膜的厚度T满足如下条件:T≥0.3D。
进一步地,颗粒状助剂的平均粒径为0.02μm~0.5μm。
可理解,助剂包括颗粒状助剂,颗粒状助剂能够提高聚合物薄膜MD方向的力学性能,颗粒状助剂的平均粒径例如可以是0.01μm、0.02μm、0.03μm、0.04μm、0.05μm、0.06μm、0.07μm、0.08μm、0.09μm、0.1μm、0.15μm、0.2μm、0.25μm、0.3μm、0.35μm、0.4μm、0.45μm、0.5μm、0.6μm、0.7μm、0.8μm、0.9μm或1.0μm;颗粒状助剂的平均粒径D与聚合物薄膜的厚度T例如可以满足如下条件:T=0.3D、T=0.32D、T=0.34D、T=0.35D、T=0.37D、T=0.39D、T=0.4D、T=0.42D、T=0.44D、T=0.46D、T=0.48D或T=0.5Q等,当颗粒状助剂的平均粒径太小时,所起作用不明显;当颗粒状助剂的平均粒径太大时,制膜过程中易形成缺陷;设置的T≥3D是为了防止聚合物薄膜的厚度与颗粒状助剂不匹配所带来的膜缺陷。
本申请另一实施方式提供一种上述高力学强度聚合物薄膜的制造方法,包括如下步骤:
将95%~99%聚酯和1%~5%助剂制成聚酯切片;
对聚酯切片依次进行结晶处理、干燥处理、熔融挤出处理、铸片处理、第一纵向拉伸处理、横向拉伸处理和第二纵向拉伸处理,制成聚合物薄膜。
可理解,按照质量百分比计,聚合物薄膜例如可以包括95%聚酯和5%助剂,或者可以包括95.5%聚酯和4.5%助剂,或者可以包括96.5%聚酯和3.5%助剂,或者可以包括97.5%聚酯和2.5%助剂,或者可以包括98.5%聚酯和1.5%助剂,或者可以包括99%聚酯和1%助剂;上述第一纵向拉伸处理、横向拉伸处理和第二纵向拉伸处理过程中能够提高聚合物薄膜的力学性能。
在其中一些实施例中,结晶处理的工艺条件包括:结晶温度135℃~185℃,结晶时间20min~120min。
可理解,结晶温度可以是135℃~185℃之间的任意值,例如可以是135℃、137℃、140℃、142℃、145℃、150℃、153℃、155℃、160℃、165℃、175℃或185℃等;结晶时间可以是20min、25min、30min、35min、38min、40min、42min、45min、49min、53min、57min、60min、65min、70min、72min、77min、80min、82min、86min、90min、100min、105min、110min、111min、113min、117min或120min等。
在其中一些实施例中,干燥处理的工艺条件包括:干燥温度135℃~175℃,干燥时间120min~300min。
可理解,干燥温度可以是135℃~175℃之间的任意值,例如可以是135℃、137℃、140℃、142℃、145℃、150℃、153℃、155℃、160℃、164℃、166℃、168℃、170℃、172℃、174℃或175℃等;干燥时间可以是120min、125min、130min、135min、138min、140min、142min、145min、149min、153min、160min、170min、175min、180min、190min、200min、220min、240min、280min、285min、292min、295min或300min等。
在其中一些实施例中,熔融挤出的温度为270℃~290℃。
可理解,熔融挤出的温度可以是270℃、272℃、274℃、275℃、277℃、280℃、282℃、285℃、286℃或290℃,熔融挤出的温度还可以是270℃~290℃之间的其他值。
在其中一些实施例中,铸片处理包括以下步骤:将熔融挤出处理的物料进行流延处理,之后进行冷却处理。
本申请的再一实施方式提供一种复合薄膜,包括支撑膜和金属富集层,支撑膜的至少一个表面附着有金属富集层,支撑膜包括上述聚合物薄膜或上述制造方法制得的聚合物薄膜。
在其中一些实施例中,金属富集层的材料包括钛、银、铜、铝、镍、铜合金、铝合金和镍合金中的一种或多种。
需要说明的是,可理解,金属富集层可以位于聚合物薄膜的一个表面上,也可以位于支撑膜的两个表面上,金属富集层的材料可以是一致的,金属富集层的材料例如可以是钛、银、铜、铝、镍、铜合金、铝合金和镍合金中的任意一种,金属富集层例如也可以由钛、银、铜、铝、镍、铜合金、铝合金和镍合金中的多种形成。
在其中一些实施例中,金属富集层的厚度为500nm~2000nm。
需要说明的是,金属富集层可以通过物理气相沉积法、电镀法和化学镀法中的一种或多种制成,金属富集层的厚度例如可以是500nm、510nm、515nm、520nm、525nm、530nm、 535nm、540nm、545nm、550nm、560nm、570nm、580nm、590nm、600μm、610μm、630μm、650μm、670μm、700μm、770μm、860μm、950μm、1020μm、1110μm、1200μm、1250μm、1340μm、1410μm、1540μm、1670μm、1750μm、1870μm、1920μm或2000μm等。
在其中一些实施例中,支撑膜的厚度为1μm~20μm。
需要说明的是,考虑到复合集流体在电池中的应用要求,同时兼顾制造工艺的难度和成本的高低,支撑膜的厚度为1μm~20μm,支撑膜的厚度包括但不限于可以是1μm、1.5μm、2μm、2.5μm、3μm、3.5μm、4μm、4.2μm、5μm、5.7μm、6μm、6.8μm、7μm、8μm、8.5μm、9μm、9.2μm、9.8μm、10μm、11μm、11.4μm、12μm、12.7μm、13μm、14μm、15μm、18μm或20μm。
本申请的又一实施方式提供一种复合集流体,包括上述复合薄膜。
在其中一些实施例中,金属富集层的表面还附着有防护层。
需要说明的是,上述复合集流体表面附着的防护层用于防止金属富集层表面发生物理损坏或者被化学腐蚀。
在其中一些实施例中,防护层的厚度为10nm~150nm。
可理解,防护层的厚度包括但不限于可以是10nm、12nm、15nm、18nm、20nm、25nm、30nm、32nm、43nm、45nm、52nm、56nm、63nm、77nm、89nm、92nm、95nm、98nm、100nm、105nm、110nm、115nm、118nm、120nm、125nm、128nm、130nm、135nm、137nm、140nm、143nm、146nm或150nm。
在其中一些实施例中,防护层的材料包括石墨、镍、铬、炭黑、氧化铜、乙炔黑、氧化铝、氧化镍、科琴黑、氧化铬、氧化钴、镍基合金、铜基合金、碳纳米量子点、碳纳米管、碳纳米纤维和石墨烯中的一种或多种。
本申请的又一实施方式提供一种电极片,包括复合集流体,以及附着在复合集流体至少一个表面的活性物质层。
需要说明的是,活性物质层包括活性物质、导电剂和粘结剂,活性物质分为正极活性物质和负极活性物质,其中正极活性物质可以是钴酸锂、锰酸锂、磷酸铁锂或三元正极材料等,负极活性物质可以是石墨、硅材料、硅碳复合材料等,导电剂可以是导电炭黑、碳纤维、石墨烯、碳纳米管等,粘结剂可以是PVDF、CMC、SBR等,本申请对活性物质、导电剂和粘结剂没有特别的限制,采用电池领域常用的活性物质、导电剂和粘结剂均在本申请的活性物质层范围内。
本申请的又一实施方式提供一种锂二次电池,包括上述电极片。
可理解,根据活性物质层中活性物质的不同,电极片可以分为正极片和负极片,本申 请的电池中可以正极片采用上述电极片,或者负极片采用上述电极片,还可以正极片和负极片均采用上述电极片。本申请对锂二次电池没有特别的限制,采用锂二次电池领域常用的制造方法均在本申请的电池范围内,例如可以将正极片、负极片、非水电解质以及一般的电池必须的构成要素通过叠片或者卷绕的方式与电池壳体组装制造为锂二次电池。
本申请的又一实施方式提供一种电子装置,包括上述电池。
可理解,上述电池可以用于机械、设备、仪器、装置或者其组合的系统的驱动用电源或电源存储装置,作为上述电池的应用例,例如可以是手机、笔记本电脑、智能家电产品、电动汽车等。
作为本申请中的参数测定,可选地,采用以下方法进行测定:
(1)参照国标GB/T 1040.3-2006对聚合物薄膜和复合集流体的力学性能进行测试。
(2)对聚合物薄膜和复合集流体的不良率进行测试,不良率为制造过程中由于破膜导致的不合格品的数量占总产品数量的比例,由于宽度一致,数量以长度计算。
以下结合实施例,对本申请予以进一步地详尽阐述。
实施例1
聚合物薄膜的制造方法如下:
步骤一:聚酯切片由聚对苯二甲酸乙二醇酯(PET)、抗氧化剂1222、二氧化钛、二氧化硅及氧化铝通过加热熔融混合、挤出和成型切片制得;按照质量百分比计,PET、抗氧化剂1222、二氧化钛、二氧化硅及氧化铝的含量依次为98%、0.5%、0.5%、0.5%、0.5%;PET的数均分子量为13000Da,分子量分布指数为1.6,PET中分子量小于5000Da的PET分子的数量百分含量为0.5%;助剂抗氧化剂1222、二氧化钛、二氧化硅及氧化铝的尺寸均为50nm~100nm;
步骤二:将步骤一制造的PET切片输送到结晶器内,在145℃下结晶处理40min,然后输送到干燥塔内,在155℃下干燥处理160min;
步骤三:将步骤二得到的聚酯切片加入双螺杆挤出机内,加热至280℃将其熔融,借助计量泵通过模头将熔融物料挤出;
步骤四:将步骤三挤出的熔融物料流延到铸片辊上,经铸片辊及水冷的冷却处理成型,铸成59.4μm厚的聚酯片;
步骤五:将步骤四制造的聚酯片在90℃下进行预热,在110℃下以3.0:1的拉伸倍率进行第一纵向拉伸后,在170℃下进行热定型处理,然后在40℃下进行冷却成型处理;
步骤六:将步骤五得到的聚酯片在90℃下预热,在120℃下以3.0:1的拉伸倍率进行横向拉伸后,在170℃下进行热定型处理,然后依次在90℃中冷区、35℃冷却区下进行冷 却成型处理;
步骤七:将步骤六得到的聚酯片在90℃下预热,在110℃下以1.1:1的拉伸倍率进行第二纵向拉伸后,在170℃下进行热定型处理,然后在40℃下进行冷却成型处理,得到厚度为6μm的聚合物薄膜;
步骤八:利用牵引系统将步骤七得到的聚合物薄膜引入收卷系统中收卷。
实施例2
与实施例1基本相同,不同的是:PET的数均分子量为16000Da。
实施例3
与实施例1基本相同,不同的是:PET的数均分子量为19000Da。
实施例4
与实施例1基本相同,不同的是:PET的数均分子量为20000Da。
实施例5
与实施例3基本相同,不同的是:PET的分子量分布指数为1.9。
实施例6
与实施例3基本相同,不同的是:PET的分子量分布指数为2.2。
实施例7
与实施例3基本相同,不同的是:PET的分子量分布指数为2.4。
实施例8
与实施例6基本相同,不同的是:PET中分子量小于5000Da的PET分子的数量百分含量为3%。
实施例9
与实施例6基本相同,不同的是:PET中分子量小于5000Da的PET分子的数量百分含量为5%。
实施例10
与实施例8基本相同,不同的是:第一纵向拉伸的拉伸倍率为2.5:1。
实施例11
与实施例8基本相同,不同的是:第一纵向拉伸的拉伸倍率为3.5:1。
实施例12
与实施例8基本相同,不同的是:第一纵向拉伸的拉伸倍率为4.0:1。
实施例13
与实施例8基本相同,不同的是:第一纵向拉伸的拉伸倍率为4.5:1。
实施例14
与实施例12基本相同,不同的是:未进行第二纵向拉伸处理。
实施例15
与实施例12基本相同,不同的是:第二纵向拉伸的拉伸倍率为1.2:1。
实施例16
与实施例12基本相同,不同的是:第二纵向拉伸的拉伸倍率为1.3:1。
实施例17
与实施例12基本相同,不同的是:第二纵向拉伸的拉伸倍率为1.4:1。
实施例18
与实施例1基本相同,不同的是:按照质量百分比计,PET、抗氧化剂1222、二氧化钛、二氧化硅及氧化铝的含量依次为95%、1.5%、0.5%、1.5%、1.5%。
实施例19
与实施例1基本相同,不同的是:按照质量百分比计,PET、抗氧化剂1222、二氧化 钛、二氧化硅及氧化铝的含量依次为99%、0.25%、0.25%、0.25%、0.25%。
实施例20
与实施例1基本相同,不同的是:步骤一中,聚酯切片由聚2,6-萘二甲酸乙二醇酯(PEN)、抗氧化剂1222、二氧化钛、二氧化硅及氧化铝通过加热熔融混合、挤出和成型切片制得。
实施例21
与实施例1基本相同,不同的是:步骤一中,聚酯切片由聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯(PETG)、抗氧化剂1222、二氧化钛、二氧化硅及氧化铝通过加热熔融混合、挤出和成型切片制得。
实施例22
与实施例1基本相同,不同的是:步骤一中,聚酯切片由聚对苯二甲酸丁二醇酯(PBT)、抗氧化剂1222、二氧化钛、二氧化硅及氧化铝通过加热熔融混合、挤出和成型切片制得。
实施例23
与实施例1基本相同,不同的是:步骤一中,聚酯切片由聚2,6-萘二甲酸丁二酯(PBN)、抗氧化剂1222、二氧化钛、二氧化硅及氧化铝通过加热熔融混合、挤出和成型切片制得。
实施例24
与实施例1基本相同,不同的是:步骤一中,聚酯切片由聚己二酸对苯二甲酸丁二醇酯(PBAT)、抗氧化剂1222、二氧化钛、二氧化硅及氧化铝通过加热熔融混合、挤出和成型切片制得。
对比例1
与实施例1基本相同,不同的是:PET的数均分子量为12000Da。
对比例2
与实施例1基本相同,不同的是:PET的数均分子量为21000Da。
对比例3
与实施例3基本相同,不同的是:PET的分子量分布指数为1.5。
对比例4
与实施例3基本相同,不同的是:PET的分子量分布指数为2.5。
对比例5
与实施例6基本相同,不同的是:PET中分子量小于5000Da的PET分子的数量百分含量为0.4%。
对比例6
与实施例6基本相同,不同的是:PET中分子量小于5000Da的PET分子的数量百分含量为5.1%。
对比例7
与实施例1基本相同,不同的是:按照质量百分比计,PET、抗氧化剂1222、二氧化钛、二氧化硅及氧化铝的含量依次为94%、1.5%、1.5%、1.5%、1.5%。
对比例8
与实施例1基本相同,不同的是:按照质量百分比计,PET、抗氧化剂1222、二氧化钛、二氧化硅及氧化铝的含量依次为100%、0%、0%、0%、0%。
制造复合集流体
以1400℃将纯度大于99.99%的铝丝熔化蒸发后沉积在上述实施例1~24和对比例1~8制造的聚合物薄膜的两个表面,形成厚度为1μm的铝金属富集层,将碳纳米管和氮甲基吡咯烷酮配制成溶液,其固含量为0.1wt%,以90μm的涂覆量将上述溶液均匀涂覆到铝金属富集层的表面,在100℃下进行干燥,得到复合集流体。
实施例1~24和对比例1~8制造的聚合物薄膜和复合集流体的性能数据如表1和表2所示。
表1
Figure PCTCN2022119870-appb-000001
表2
Figure PCTCN2022119870-appb-000002
Figure PCTCN2022119870-appb-000003
由表1和表2分析可得:
实施例1和对比例1~2的不同之处在于PET的数均分子量不同,与对比例1~2相比,实施例1制造的聚合物薄膜能保证不良率较低的同时其MD方向的弹性模量、MD方向的拉伸强度和MD方向的断裂伸长率较高,实施例1制造的聚合物薄膜的弹性模量可达5305MPa;与对比例1相比,实施例1制造的复合集流体能保证降低不良率的同时提高其MD方向的弹性模量和MD方向的拉伸强度,并且实施例1制造的复合集流体MD方向的断裂伸长率与对比例1相差不大;与实施例1相比,虽然对比例2制造的复合集流体的不良率降低,MD方向的弹性模量和MD方向的拉伸强度提高,但是对比例2的断裂伸长率显著降低。说明与对比例1~2相比,实施例1制造的聚合物薄膜和复合集流体能够兼顾不良率和MD方向的断裂伸长率的同时,提高MD方向的弹性模量和MD方向的拉伸强度;
实施例3和对比例3~4的不同之处在于PET的分子量分布指数不同,与对比例3~4相比,实施例3制造的聚合物薄膜有效提高了MD方向的弹性模量、MD方向的拉伸强度 和MD方向的断裂伸长率,同时保证不良率较低,实施例3制造的聚合物薄膜MD方向的弹性模量可达5500MPa,MD方向的拉伸强度可达309MPa,MD方向的断裂伸长率可达103%;相比对比例3~4制造的复合集流体,实施例3制造的复合集流体能够保证MD方向的弹性模量和拉伸强度较高的情况下兼顾MD方向的断裂伸长率和不良率,因此,实施例3制造的聚合物薄膜和复合集流体的力学性能更优;
实施例6和对比例5~6的不同之处在于PET中分子量小于5000Da的PET分子的数量百分含量不同,与对比例5~6相比,实施例6制造的聚合物薄膜在不良率较低的情况下,MD方向的弹性模量和MD方向的拉伸强度得到显著提高,且MD方向的断裂伸长率与对比例5相比差别不大;与对比例5~6制造的复合集流体相比,实施例6制造的复合集流体的MD方向的断裂伸长率与实施例5相差不大的情况下,其MD方向的弹性模量和MD方向的拉伸强度明显提高且不良率降低。说明相对于对比例5~6,实施例6具有更优异的力学性能;
与对比例7~8相比,实施例1制造的聚合物薄膜能够降低不良率,同时大幅提高MD方向的弹性模量和MD方向的拉伸强度,并且其MD方向的断裂伸长率与对比例8相差不大;与对比例7~8相比,实施例1制造的复合集流体MD方向的弹性模量和MD方向的拉伸强度不仅得到大幅提升,不良率降低,而且其MD方向的断裂伸长率与对比例7~8相差不大。由此可以说明,本申请的聚合物薄膜中的助剂能够提高聚合物薄膜和复合集流体的MD方向的力学性能。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种高力学强度聚合物薄膜,其特征在于,所述聚合物薄膜包括质量百分比为95%~99%的聚酯和1%~5%的助剂,所述聚酯的数均分子量为13000Da~20000Da,且分子量小于5000Da的所述聚酯的分子数量占所述聚酯的分子数量总量的0.5%~5%,所述聚酯的分子量分布指数为1.6~2.4。
  2. 根据权利要求1所述的聚合物薄膜,其特征在于,所述聚合物薄膜的制造方法包括以下步骤:依次进行的第一纵向拉伸处理、横向拉伸处理和第二纵向拉伸处理;
    可选地,所述第一纵向拉伸的工艺条件包括:第一纵向拉伸倍率(3.0~4.0):1,第一纵向拉伸温度80℃~120℃;
    可选地,所述横向拉伸的工艺条件包括:横向拉伸倍率(3.0~4.0):1,横向拉伸温度90℃~140℃;
    可选地,所述第二纵向拉伸的工艺条件包括:第二纵向拉伸倍率(1.1~1.3):1,第二纵向拉伸温度80℃~120℃。
  3. 根据权利要求1~2任一项所述的聚合物薄膜,其特征在于,所述聚酯包括聚对苯二甲酸乙二醇酯、聚2,6-萘二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚对苯二甲酸1,4-环己烷二甲醇酯、聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯、聚2,6-萘二甲酸丙二醇酯、聚对苯二甲酸丙二醇酯、聚2,6-萘二甲酸丁二酯、聚2,5-呋喃二甲酸丁二醇酯、聚己二酸对苯二甲酸丁二醇酯以及它们的衍生物中的一种或多种。
  4. 根据权利要求1~3任一项所述的聚合物薄膜,其特征在于,所述助剂包括爽滑剂、抗氧化剂、抗静电剂和成核剂中的一种或多种;
    可选地,所述爽滑剂包括碳酸钙、滑石粉、硅藻土、丙烯酸酯、硅氧烷、二氧化钛、高岭土和二氧化硅中的一种或多种;
    可选地,所述抗氧化剂包括膦酸酯和亚磷酸双酚A中的一种或多种;
    可选地,所述抗静电剂包括导电纤维、聚乙二醇、丙三醇、聚醚酯、聚甘油、石墨和炭黑中的一种或多种;
    可选地,所述成核剂包括碳酸钠、二苯甲酮、氧化锌、氧化铜、硬酯酸镁、磷酸三苯酯、氧化铝、氧化镁、硫酸钡、聚己内酯和苯甲酸钠中的一种或多种。
  5. 一种如权利要求1~4任一项所述的聚合物薄膜的制造方法,其特征在于,包括如下步骤:
    将95%~99%聚酯和1%~5%助剂制成聚酯切片;
    对聚酯切片依次进行结晶处理、干燥处理、熔融挤出处理、铸片处理、第一纵向拉伸处理、横向拉伸处理和第二纵向拉伸处理,制成聚合物薄膜。
  6. 根据权利要求5所述的制造方法,其特征在于,包括以下特征(1)~(4)中的至少一种:
    (1)所述结晶处理的工艺条件包括:结晶温度135℃~185℃,结晶时间20min~120min;
    (2)所述干燥处理的工艺条件包括:干燥温度135℃~175℃,干燥时间120min~300min;
    (3)所述熔融挤出处理的温度为270℃~290℃;
    (4)所述铸片处理包括以下步骤:将所述熔融挤出处理的物料进行流延处理,之后进行冷却处理。
  7. 一种复合薄膜,其特征在于,包括支撑膜和金属富集层,所述支撑膜的至少一个表面附着有所述金属富集层,所述支撑膜包括权利要求1~4任一项所述的聚合物薄膜或权利要求5~6任一项所述的制造方法制得的聚合物薄膜。
  8. 根据权利要求7所述的复合薄膜,其特征在于,包括以下特征(1)~(3)中的至少一种:
    (1)所述金属富集层的材料包括钛、银、铜、铝、镍、铜合金、铝合金和镍合金中的一种或多种;
    (2)所述金属富集层的厚度为500nm~2000nm;
    (3)所述支撑膜的厚度为1μm~20μm。
  9. 一种复合集流体,其特征在于,包括权利要求7~8任一项所述的复合薄膜。
  10. 根据权利要求9所述的复合集流体,其特征在于,所述金属富集层的表面还附着有防护层。
  11. 根据权利要求10所述的复合集流体,其特征在于,所述防护层的厚度为10nm~150nm。
  12. 根据权利要求10~11任一项所述的复合集流体,其特征在于,所述防护层的材料包括石墨、镍、铬、炭黑、氧化铜、乙炔黑、氧化铝、氧化镍、科琴黑、氧化铬、氧化钴、镍基合金、铜基合金、碳纳米量子点、碳纳米管、碳纳米纤维和石墨烯中的一种或多种。
  13. 一种电极片,其特征在于,包括权利要求9~12任一项所述的复合集流体,以及附着在所述复合集流体至少一个表面的活性物质层。
  14. 一种锂二次电池,其特征在于,包括权利要求13所述的电极片。
  15. 一种电子装置,其特征在于,包括权利要求14所述的电池。
PCT/CN2022/119870 2022-09-20 2022-09-20 高力学强度聚合物薄膜、其制造方法和应用 WO2024060009A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/119870 WO2024060009A1 (zh) 2022-09-20 2022-09-20 高力学强度聚合物薄膜、其制造方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/119870 WO2024060009A1 (zh) 2022-09-20 2022-09-20 高力学强度聚合物薄膜、其制造方法和应用

Publications (1)

Publication Number Publication Date
WO2024060009A1 true WO2024060009A1 (zh) 2024-03-28

Family

ID=90453657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119870 WO2024060009A1 (zh) 2022-09-20 2022-09-20 高力学强度聚合物薄膜、其制造方法和应用

Country Status (1)

Country Link
WO (1) WO2024060009A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105176011A (zh) * 2014-06-17 2015-12-23 上海紫东薄膜材料股份有限公司 一种制作超薄型镀铝复合用聚酯薄膜的方法
CN109867771A (zh) * 2019-03-27 2019-06-11 佛山杜邦鸿基薄膜有限公司 一种低萃取、耐高温绝缘聚酯薄膜的制备方法
CN113524830A (zh) * 2021-07-09 2021-10-22 浙江南洋科技有限公司 一种锂电池集流体用高拉伸强度聚酯薄膜及其制备方法
CN114497568A (zh) * 2021-12-13 2022-05-13 上海兰钧新能源科技有限公司 一种热收缩复合集流体及其应用
CN114989574A (zh) * 2022-05-17 2022-09-02 扬州纳力新材料科技有限公司 聚酯基膜及其制备方法和应用、极片和锂电池单体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105176011A (zh) * 2014-06-17 2015-12-23 上海紫东薄膜材料股份有限公司 一种制作超薄型镀铝复合用聚酯薄膜的方法
CN109867771A (zh) * 2019-03-27 2019-06-11 佛山杜邦鸿基薄膜有限公司 一种低萃取、耐高温绝缘聚酯薄膜的制备方法
CN113524830A (zh) * 2021-07-09 2021-10-22 浙江南洋科技有限公司 一种锂电池集流体用高拉伸强度聚酯薄膜及其制备方法
CN114497568A (zh) * 2021-12-13 2022-05-13 上海兰钧新能源科技有限公司 一种热收缩复合集流体及其应用
CN114989574A (zh) * 2022-05-17 2022-09-02 扬州纳力新材料科技有限公司 聚酯基膜及其制备方法和应用、极片和锂电池单体

Similar Documents

Publication Publication Date Title
CN115447248B (zh) 复合聚合物膜、其制造方法、金属化复合聚合物膜与应用
CN113524830B (zh) 一种锂电池集流体用高拉伸强度聚酯薄膜及其制备方法
CN115521586B (zh) 高力学强度聚合物薄膜、其制造方法和应用
WO2024036938A1 (zh) 耐热及拉伸强度增强型聚酯膜及其制备方法、复合集流体
WO2024130774A1 (zh) 聚丙烯膜及其制备方法、复合集流体和应用
CN115322534B (zh) 耐溶剂增强型聚酯膜、其制备方法、复合集流体及用途
CN115583088A (zh) 复合聚酯膜及其制备方法和应用
JP2014220187A (ja) 蓄電素子電極用二軸延伸ポリエステルフィルム
JP2016007816A (ja) 積層多孔性フィルム、蓄電デバイス用セパレータおよび蓄電デバイス
WO2024104393A1 (zh) 多层复合聚丙烯材料及其制备方法和应用
CN115320206B (zh) 复合聚酯膜及其制备方法与用途
CN116120722B (zh) 一种适用于复合集流体的聚酯薄膜及其制备方法
WO2024060009A1 (zh) 高力学强度聚合物薄膜、其制造方法和应用
WO2024050690A1 (zh) 复合聚酯膜及其制备方法与用途
CN115477833B (zh) 改性聚酯薄膜、制备方法、复合集流体、电极片及其用途
WO2024044897A1 (zh) 耐溶胀型聚酯复合膜及其制备方法和应用
CN115447246B (zh) 耐溶胀型聚酯复合膜及其制备方法和应用
TWI779690B (zh) 雙軸延伸聚苯硫醚膜、以及由其所構成之二次電池電極用膜、二次電池用電極
CN115418012A (zh) 一种聚酯基膜及其制备方法、复合集流体
WO2024050722A1 (zh) 复合聚酯膜及其制备方法和应用
KR20220151898A (ko) 고분자 필름을 포함하는 집전체 및 이의 제조방법
WO2024050688A1 (zh) 复合聚合物膜、其制造方法、金属化复合聚合物膜与应用
CN117261303B (zh) 聚丙烯膜及其制备方法、复合集流体、电极极片和应用
WO2024051776A1 (zh) 复合聚酯膜及其制备方法和应用
WO2024092563A1 (zh) 改性聚酯薄膜、制备方法、复合集流体、电极片及其用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959021

Country of ref document: EP

Kind code of ref document: A1