WO2024130774A1 - 聚丙烯膜及其制备方法、复合集流体和应用 - Google Patents

聚丙烯膜及其制备方法、复合集流体和应用 Download PDF

Info

Publication number
WO2024130774A1
WO2024130774A1 PCT/CN2022/143138 CN2022143138W WO2024130774A1 WO 2024130774 A1 WO2024130774 A1 WO 2024130774A1 CN 2022143138 W CN2022143138 W CN 2022143138W WO 2024130774 A1 WO2024130774 A1 WO 2024130774A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypropylene
nanowires
polypropylene film
sub
current collector
Prior art date
Application number
PCT/CN2022/143138
Other languages
English (en)
French (fr)
Inventor
朱中亚
王帅
夏建中
李学法
张国平
Original Assignee
扬州纳力新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 扬州纳力新材料科技有限公司 filed Critical 扬州纳力新材料科技有限公司
Publication of WO2024130774A1 publication Critical patent/WO2024130774A1/zh

Links

Definitions

  • the present application relates to the field of battery technology, and in particular to a polypropylene film and a preparation method thereof, a composite current collector and applications thereof.
  • a composite current collector can be prepared by using a polymer film as a base film and depositing a layer of metal material on its surface.
  • the composite current collector with a polymer film as a base film has the characteristics of low cost, light weight, and good internal insulation, so that the composite current collector can be used in batteries to reduce the cost of the battery and improve the energy density and safety of the battery.
  • the composite current collector prepared with traditional polypropylene film as the base film has the following problems: 1 Since the material polarity of the polypropylene film itself is weak and its surface tension is low, the affinity between the low surface tension polypropylene film and the high surface tension metal layer is poor. Therefore, the adhesion between the interface of the two is low and the bonding is not strong, that is, there is a problem of poor surface adhesion of the polypropylene film. 2 The mechanical performance indicators such as elastic modulus and tensile strength of the polypropylene film are low, resulting in relatively poor mechanical properties, which leads to the problem that the composite current collector is prone to breakage during the preparation process, the yield rate is reduced, and the mechanical properties of the prepared composite current collector are poor.
  • a polypropylene film, a preparation method thereof, a composite current collector and applications are provided.
  • the first aspect of the present application provides a polypropylene film, which comprises the following raw materials, measured by mass percentage: 90% to 99.9% polypropylene and 0.1% to 10% hydroxyl-containing sub-nanowires;
  • the hydroxyl-containing sub-nanowires include one or more of hydroxyapatite sub-nanowires, gadolinium oxyhydroxide sub-nanowires, tungsten oxyhydroxide sub-nanowires and copper oxyhydroxide sub-nanowires.
  • the diameter of the hydroxyl-containing sub-nanowire is less than 1 nm, and the aspect ratio of the hydroxyl-containing sub-nanowire is greater than or equal to 10.
  • the diameter of the hydroxyl-containing sub-nanowire is less than 1 nm, and the aspect ratio of the hydroxyl-containing sub-nanowire is 10-1000.
  • the polypropylene has a melt index of 3 g/10 min to 4 g/10 min at 230° C. and a load of 2.16 kg.
  • the molecular weight distribution index of the polypropylene is 4.5 to 5.3.
  • the polypropylene has an isotacticity greater than or equal to 96%.
  • the second aspect of the present application provides a method for preparing the polypropylene film as described in the first aspect of the present application, comprising the following steps:
  • the molten material is sequentially subjected to sheet casting and biaxial stretching treatments.
  • the melting temperature is 200°C to 260°C.
  • the biaxial stretching comprises the following steps: sequentially subjecting the film obtained by the casting process to preheating treatment, synchronous stretching treatment and heat setting treatment.
  • the preheating treatment is carried out in two stages, and the temperatures of the two stages are increased successively, and the temperatures of the two stages are 130°C to 145°C and 145°C to 155°C respectively.
  • the synchronous stretching is carried out in three stages, and the temperatures of the three stages are successively increased.
  • the temperatures of the three stages are 152°C to 156°C, 156°C to 160°C, and 160°C to 163°C respectively.
  • the longitudinal stretching ratio is 6 times to 8 times, and the transverse stretching ratio is 5 times to 7 times.
  • the heat setting treatment is carried out in two stages, and the temperatures of the two stages are increased successively, and the temperatures of the two stages are 162°C to 165°C and 165°C to 169°C respectively.
  • the biaxial stretching treatment comprises the following steps: subjecting the film obtained by the casting process to longitudinal stretching treatment, transverse stretching treatment and heat treatment in sequence.
  • the preheating temperature of the longitudinal stretching treatment is 110° C. to 140° C.
  • the temperature of the longitudinal stretching is 140° C. to 150° C.
  • the longitudinal stretching ratio is 6 to 8 times.
  • the preheating temperature of the transverse stretching treatment is 120°C to 140°C
  • the transverse stretching temperature is 150°C to 160°C
  • the transverse stretching ratio is 5 to 7 times
  • the heat setting temperature is 165°C to 170°C.
  • the heat treatment temperature is 120°C to 140°C.
  • the third aspect of the present application provides a composite current collector, comprising a substrate and a metal layer, wherein the metal layer is located on at least one surface of the substrate, and the substrate comprises the polypropylene film described in the first aspect of the present application or the polypropylene film prepared by the preparation method described in the second aspect of the present application.
  • the thickness of the metal layer is 500 nm to 2000 nm.
  • the composite current collector further includes a protective layer, and the protective layer is located on the surface of the metal layer.
  • the material of the protective layer includes one or more of copper oxide, aluminum oxide, nickel oxide, chromium oxide, cobalt oxide, copper chromium oxide, nickel-chromium alloy, graphite, carbon nano-quantum dots, carbon nanotubes, carbon nanofibers and graphene.
  • the thickness of the protective layer is 10 nm to 150 nm, and the thickness of the protective layer is less than or equal to one tenth of the thickness of the metal layer.
  • the fourth aspect of the present application provides an electrode plate, comprising the composite current collector described in the third aspect of the present application.
  • the fifth aspect of the present application provides a battery, comprising the electrode plate described in the fourth aspect of the present application.
  • the sixth aspect of the present application provides an electrical device, comprising the battery described in the fifth aspect of the present application.
  • polypropylene film which comprises the following raw materials, measured by mass percentage: 90% to 99.9% polypropylene and 0.1% to 10% hydroxyl-containing sub-nanowires;
  • the hydroxyl-containing sub-nanowires include one or more of hydroxyapatite sub-nanowires, gadolinium oxyhydroxide sub-nanowires, tungsten oxyhydroxide sub-nanowires, and copper oxyhydroxide sub-nanowires.
  • the present application can utilize the similarity between the size and properties of the above-mentioned hydroxyl-containing sub-nanowires and polypropylene polymers to achieve a relatively uniform distribution of the hydroxyl-containing sub-nanowires in the polypropylene polymer chain, and rely on the strong intermolecular forces between the hydroxyl-containing sub-nanowires and the polypropylene polymer to form a three-dimensional network structure of hydroxyl-containing sub-nanowires-polypropylene polymers, thereby improving the mechanical properties of the polypropylene film;
  • the hydroxyl-containing sub-nanowires that are relatively uniformly dispersed on the surface of the polypropylene film can improve the polarity of the polypropylene film surface due to their rich polar functional group hydroxyl groups, thereby improving the surface tension of the polypropylene film and promoting the improvement of the surface adhesion performance of the polypropylene film.
  • the present application can control the elastic modulus, tensile strength, surface tension, and defective rate of the polypropylene film by controlling the content of polypropylene and hydroxyl-containing sub-nanowires in the polypropylene film, thereby improving the adhesion between the polypropylene film and the metal layer and the mechanical properties of the composite current collector containing the polypropylene film.
  • hydroxyl-containing sub-nanowires may include one or more of hydroxyapatite sub-nanowires, gadolinium oxyhydroxide sub-nanowires, tungsten oxyhydroxide sub-nanowires and copper oxyhydroxide sub-nanowires, and may also include other types of hydroxyl-containing inorganic oxide sub-nanowires, and the present application has no particular restrictions.
  • hydroxyapatite sub-nanowires, gadolinium oxyhydroxide sub-nanowires, tungsten oxyhydroxide sub-nanowires and copper oxyhydroxide sub-nanowires belong to inorganic oxide sub-nanowires, they have good affinity and compatibility with metal atoms, and can promote the adhesion of the polypropylene film surface to the metal layer, thereby improving the adhesion between the surface of the polypropylene film and the metal layer; on the other hand, the synthesis of hydroxyl-containing sub-nanowires is not easy, while the synthesis methods of the above-mentioned hydroxyapatite sub-nanowires, gadolinium oxyhydroxide sub-nanowires, tungsten oxyhydroxide sub-nanowires and copper oxyhydroxide sub-nanowires are relatively simple and easy to obtain.
  • the diameter of the hydroxyl-containing sub-nanowire is less than 1 nm, and the aspect ratio of the hydroxyl-containing sub-nanowire is greater than or equal to 10.
  • the present application controls the diameter and aspect ratio of the above-mentioned hydroxyl-containing sub-nanowires, further making the hydroxyl-containing sub-nanowires and the polypropylene polymer similar in size and properties, so as to achieve uniform distribution of the hydroxyl-containing sub-nanowires in the polymer chain, and relies on the strong intermolecular force between the hydroxyl-containing sub-nanowires and the polypropylene polymer to form a three-dimensional network structure of the hydroxyl-containing sub-nanowire-polypropylene polymer, thereby further improving the mechanical properties of the polypropylene film, and then improving the mechanical properties of the composite current collector containing the polypropylene film.
  • the present application can control the elastic modulus, tensile strength, surface tension and defect rate of the polypropylene film by controlling the aspect ratio of the hydroxyl-containing sub-nanowires, thereby further improving the surface adhesion and mechanical properties of the polypropylene film, and then improving the bonding force between the polypropylene film and the metal layer and the mechanical properties of the composite current collector containing the polypropylene film.
  • the diameter of the hydroxyl-containing sub-nanowire can be, for example, 0.1nm, 0.2nm, 0.3nm, 0.4nm, 0.5nm, 0.6nm, 0.7nm, 0.8nm, 0.9nm or 0.99nm, and the aspect ratio of the hydroxyl-containing sub-nanowire can be, for example, 10, 50, 100, 500, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000 or 9000, etc.
  • the diameter of the hydroxyl-containing sub-nanowire is less than 1 nm, and the aspect ratio of the hydroxyl-containing sub-nanowire is 10-1000.
  • the polypropylene has a melt index of 3 g/10 min to 4 g/10 min at 230° C. and 2.16 kg load.
  • the present application can control the elastic modulus, tensile strength, surface tension and defect rate of the polypropylene film by controlling the melt index of polypropylene, thereby further improving the surface adhesion and mechanical properties of the polypropylene film, and then improving the bonding force between the polypropylene film and the metal layer and the mechanical properties of the composite current collector containing the polypropylene film.
  • the melt index of polypropylene is too low, the molecular weight of polypropylene is too large, resulting in poor film forming during the film drawing process; when the melt index of polypropylene is too high, the molecular weight of polypropylene is too low, resulting in poor film forming, resulting in poor mechanical properties of the polypropylene film.
  • melt index of polypropylene at 230°C and 2.16kg load can include but is not limited to 3g/10min, 3.1g/10min, 3.2g/10min, 3.3g/10min, 3.4g/10min, 3.5g/10min, 3.6g/10min, 3.7g/10min, 3.8g/10min, 3.9g/10min or 4g/10min, etc.
  • the molecular weight distribution index of the polypropylene is 4.5 to 5.3.
  • the present application can control the elastic modulus, tensile strength, surface tension and defect rate of the polypropylene film by controlling the molecular weight distribution index of polypropylene, thereby further improving the surface adhesion and mechanical properties of the polypropylene film, and then improving the bonding force between the polypropylene film and the metal layer and the mechanical properties of the composite current collector containing the polypropylene film.
  • the molecular weight distribution index of polypropylene can include but is not limited to 4.5, 4.6, 4.7, 4.8, 4.9, 5, 5.1, 5.2 or 5.3, etc.
  • the polypropylene has an isotacticity greater than or equal to 96%.
  • the present application can control the elastic modulus, tensile strength, surface tension and defect rate of the polypropylene film by controlling the isotacticity of polypropylene, thereby further improving the mechanical properties of the polypropylene film, and then improving the mechanical properties of the composite current collector containing the polypropylene film.
  • the isotacticity of polypropylene is higher, the regularity of the polypropylene molecules is higher, which can improve the orientation and crystallinity of the polypropylene film, thereby further improving the mechanical properties of the polypropylene film.
  • the isotacticity of polypropylene can include but is not limited to 96%, 97%, 98% or 99%, etc.
  • Another embodiment of the present application provides a method for preparing the above-mentioned polypropylene film, comprising the following steps:
  • the polypropylene and the hydroxyl-containing sub-nanowires are mixed, melted, and the melted material is extruded;
  • the molten material is sequentially subjected to sheet casting and biaxial stretching treatments.
  • the polypropylene film prepared by the above preparation method includes hydroxyl-containing sub-nanowires, and the hydroxyl-containing sub-nanowires include one or more of hydroxyapatite sub-nanowires, gadolinium oxyhydroxyl sub-nanowires, tungsten oxyhydroxyl sub-nanowires, and copper oxyhydroxyl sub-nanowires.
  • the present application can utilize the similarity between the above hydroxyl-containing sub-nanowires and polypropylene polymers in size and properties to achieve a relatively uniform distribution of the hydroxyl-containing sub-nanowires in the polypropylene polymer chain, and rely on the strong intermolecular force between the hydroxyl-containing sub-nanowires and the polypropylene polymer to form a three-dimensional network structure of hydroxyl-containing sub-nanowires-polypropylene polymers, thereby improving the mechanical properties of the prepared polypropylene film;
  • the hydroxyl-containing sub-nanowires that are relatively evenly dispersed on the surface of the polypropylene film can improve the polarity of the polypropylene film surface due to the fact that they are rich in polar functional groups hydroxyl groups, thereby improving the surface tension of the polypropylene film and promoting the improvement of the surface adhesion performance of the polypropylene film.
  • the above-mentioned preparation method of the present application can control the elastic modulus, tensile strength, surface tension and defective rate of the polypropylene film by controlling the content of polypropylene and hydroxyl-containing sub-nanowires in the polypropylene film raw material, thereby improving the adhesion between the polypropylene film and the metal layer and the mechanical properties of the composite current collector containing the polypropylene film.
  • the polypropylene film obtained by the biaxial stretching treatment is further subjected to a winding treatment, and the winding tension is 20N/m to 30N/m. It is understood that the winding tension can be, for example, 20N/m, 22N/m, 24N/m, 26N/m, 28N/m or 30N/m.
  • the melting temperature is 200° C. to 260° C. It is understood that the melting temperature may include but is not limited to 200° C., 210° C., 220° C., 230° C., 240° C., 250° C., or 260° C., etc.
  • the biaxial stretching comprises the following steps: sequentially subjecting the film obtained by the casting process to preheating, synchronous stretching and heat setting. It should be noted that the mechanical properties of the polypropylene film can be improved by controlling the steps and processes of the biaxial stretching.
  • the preheat treatment is carried out in two stages, and the temperatures of the two stages are successively increased, and the temperatures of the two stages are successively 130°C to 145°C and 145°C to 155°C.
  • 130°C to 145°C may include but is not limited to 130°C, 132°C, 135°C, 138°C, 140°C, 142°C or 145°C, etc.
  • 145°C to 155°C may include but is not limited to 145°C, 147°C, 149°C, 151°C, 153°C or 155°C, etc.
  • the temperatures of the two stages of pretreatment may be, for example, successively 130°C, 140°C, or 142°C, 145°C, or 145°C, 155°C, etc.
  • the synchronous stretching is divided into three stages, and the temperatures of the three stages are successively increased, and the temperatures of the three stages are successively 152°C to 156°C, 156°C to 160°C, and 160°C to 163°C, and the longitudinal stretching ratio is 6 times to 8 times, and the transverse stretching ratio is 5 times to 7 times.
  • 152°C to 156°C may include but is not limited to 152°C, 153°C, 154°C, 155°C or 156°C, etc.
  • 156°C to 160°C may include but is not limited to 156°C, 157°C, 158°C, 159°C or 160°C, etc.
  • 160°C to 163°C may include but is not limited to 160°C, 161°C, 162°C or 163°C, etc.
  • the longitudinal stretching ratio may be, for example, 6 times, 6.5 times, 7 times, 7.5 times or 8 times, etc.
  • the transverse stretching ratio may be, for example, 5 times, 5.5 times, 6 times, 6.5 times or 7 times, etc.
  • the temperatures of the three stages of simultaneous stretching may be, for example, 152°C, 156°C, 160°C, or 156°C, 157°C, 163°C, or 155°C, 156°C, 160°C, etc.
  • the heat setting treatment is divided into two stages, and the temperatures of the two stages are successively increased, and the temperatures of the two stages are successively 162°C to 165°C and 165°C to 169°C.
  • 162°C to 165°C may include but is not limited to 162°C, 163°C, 164°C or 165°C, etc.
  • 165°C to 169°C may include but is not limited to 165°C, 166°C, 167°C, 168°C or 169°C, etc.
  • the temperatures of the two stages of the heat setting treatment may be, for example, successively 162°C, 165°C, or 163°C, 165°C, or 165°C, 167°C, or 165°C, 169°C, etc.
  • the biaxial stretching treatment comprises the following steps: sequentially subjecting the film obtained by the casting process to longitudinal stretching treatment, transverse stretching treatment and heat treatment. It should be noted that the mechanical properties of the polypropylene film can be improved by controlling the steps and processes of the biaxial stretching. After the longitudinal stretching treatment, the film is cooled to room temperature and then subjected to the transverse stretching treatment.
  • the preheating temperature of the longitudinal stretching treatment is 110°C to 140°C
  • the temperature of the longitudinal stretching is 140°C to 150°C
  • the longitudinal stretching ratio is 6 to 8 times. It is understood that the preheating temperature of the longitudinal stretching treatment can be, for example, 110°C, 120°C, 130°C or 140°C
  • the temperature of the longitudinal stretching can be, for example, 140°C, 142°C, 146°C, 148°C or 150°C
  • the longitudinal stretching ratio can be, for example, 6 times, 6.5 times, 7 times, 7.5 times or 8 times, etc.
  • the preheating temperature of the transverse stretching treatment is 120° C. to 140° C.
  • the temperature of the transverse stretching is 150° C. to 160° C.
  • the transverse stretching ratio is 5 to 7 times
  • the heat setting temperature is 165° C. to 170° C.
  • the preheating temperature of the transverse stretching treatment can be, for example, 120° C., 125° C., 130° C., 135° C. or 140° C.
  • the temperature of the transverse stretching can be, for example, 150° C., 152° C., 154° C., 156° C., 158° C. or 160° C.
  • the transverse stretching ratio can be, for example, 5 times, 5.5 times, 6 times, 6.5 times or 7 times, etc.
  • the temperature of the heat treatment is 120°C to 140°C.
  • the purpose of the above heat treatment is to eliminate the internal stress of the film and improve the thermal stability of the film. It is understood that the temperature of the heat treatment can be, for example, 120°C, 125°C, 130°C, 135°C or 140°C.
  • Another embodiment of the present application provides a composite current collector, including a substrate and a metal layer, wherein the metal layer is located on at least one surface of the substrate, and the substrate includes the above-mentioned polypropylene film or the polypropylene film prepared by the above-mentioned preparation method.
  • the surface adhesion and mechanical properties of the polypropylene film or the polypropylene film prepared by the preparation method are improved, thereby improving the adhesion between the substrate and the metal layer in the composite current collector and the mechanical properties of the composite current collector.
  • the purpose of arranging the metal layer on the surface of the substrate is to conduct electricity.
  • the material of the metal layer includes one or more of copper, aluminum, silver, gold, nickel, and alloys thereof.
  • the thickness of the metal layer is 500nm to 2000nm. It is understood that the thickness of the metal layer can be, for example, 500nm, 700nm, 800nm, 900nm, 1000nm, 1100nm, 1200nm, 1300nm, 1400nm, 1700nm or 2000nm, etc. In some more specific embodiments, the thickness of the metal layer is 700nm to 1200nm.
  • the preparation method of the metal layer includes one or more of physical vapor deposition, electroplating and chemical plating.
  • physical vapor deposition includes one or more of resistance heating vacuum evaporation, electron beam heating vacuum evaporation, laser heating vacuum evaporation, and magnetron sputtering.
  • the composite current collector further includes a protective layer, which is located on the surface of the metal layer.
  • the protective layer can prevent the metal layer from being chemically corroded or physically damaged.
  • the material of the protective layer includes one or more of copper oxide, aluminum oxide, nickel oxide, chromium oxide, cobalt oxide, copper chromium oxide, nickel-chromium alloy, graphite, carbon nano-quantum dots, carbon nanotubes, carbon nanofibers and graphene.
  • the thickness of the protective layer is 10nm to 150nm, and the thickness of the protective layer is less than or equal to one tenth of the thickness of the metal layer. It is understood that the thickness of the protective layer may include but is not limited to 10nm, 20nm, 30nm, 50nm, 70nm, 100nm, 120nm or 150nm, etc. In some more specific embodiments, the thickness of the protective layer is 20nm to 100nm, and the thickness of the protective layer is less than or equal to one tenth of the thickness of the metal layer.
  • the preparation method of the protective layer includes one or more of physical vapor deposition, chemical vapor deposition, in-situ forming and coating.
  • the above-mentioned physical vapor deposition can be one or more of vacuum evaporation and magnetron sputtering.
  • the above-mentioned chemical vapor deposition can be one or more of atmospheric pressure chemical vapor deposition and plasma enhanced chemical vapor deposition.
  • the above-mentioned in-situ forming can be a method of forming a metal oxide passivation layer in situ on the surface of the metal layer.
  • the above-mentioned coating can be one or more of die coating, blade coating and extrusion coating.
  • the present application also provides an electrode sheet, including the above-mentioned composite current collector.
  • the electrode sheet of the present application can be formed into a slurry by mixing the positive electrode active material/negative electrode active material, a conductive agent, a binder and a solvent, and the slurry is coated on the composite current collector of the present application using a method for preparing electrode sheets well known to those skilled in the art.
  • the electrode sheet can be divided into a positive electrode sheet and a negative electrode sheet.
  • the present application has no particular restrictions on the preparation method of the electrode sheet, and the above-mentioned preparation method can be a preparation method well known to those skilled in the art.
  • Another embodiment of the present application further provides a battery, including the above-mentioned electrode plate.
  • the above-mentioned electrode plate can be a positive electrode plate or a negative electrode plate.
  • the above-mentioned battery can include but is not limited to a lithium ion secondary battery, a lithium ion polymer secondary battery, a lithium metal secondary battery or a lithium polymer secondary battery.
  • Another embodiment of the present application further provides an electric device, comprising the above-mentioned battery.
  • the above-mentioned battery can be used as a power source or energy storage unit in the above-mentioned electric device, and the above-mentioned electric device includes but is not limited to electric vehicles, smart home appliances, computers, tablets, mobile phones, digital cameras, etc.
  • the preparation method of polypropylene film comprises the following steps:
  • the selected polypropylene has a melt index of 3 g/10 min, a molecular weight distribution index of 4.5, and an isotacticity of 96% at 230° C. and a load of 2.16 kg;
  • the selected hydroxyl-containing sub-nanowire is a hydroxyapatite sub-nanowire, which has a diameter of 0.8 nm and an aspect ratio of 10;
  • the molten material extruded from the die is cast onto the casting roll, and is formed by the casting roll and water cooling treatment, and the cooling temperature is 25°C;
  • step S3 The membrane obtained in step S3 is asynchronously stretched:
  • longitudinal stretching is performed: the preheating temperature is 135°C, the stretching temperature is 140°C, the longitudinal stretching ratio is 7 times, and the longitudinal stretching is cooled to room temperature; then transverse stretching is performed: the preheating temperature is 135°C, the stretching temperature is 150°C, the stretching ratio is 6 times, and the heat setting temperature is 165°C; then heat treatment is performed at a heat treatment temperature of 125°C;
  • step S4 The film obtained in step S4 is cooled by air in the platform area, and then enters the winding system through the traction system to be wound up, and the winding tension is 30N/m.
  • the preparation method of the composite current collector comprises the following steps:
  • the polypropylene film prepared above is placed in a magnetron sputtering chamber, copper metal with a purity of 99.99% is used as a target material, argon gas is used as a gas source, and a 80 nm thick metal layer is plated on the polypropylene film by magnetron sputtering in the magnetron sputtering chamber to obtain a composite film;
  • Electroplating is performed using the composite film prepared in step S1 as a substrate.
  • the electroplating includes the following three processes:
  • the components of the electroplating solution are 150 g/L copper sulfate, 120 g/L sulfuric acid, 60 mg/L chloride ion, 1 mg/L sodium polydisulfide dipropane sulfonate, 0.5 mg/L Jiana green, 200 mg/L polyethylene glycol 8000, the temperature of the electroplating solution is 25°C, the average cathode current density is 2 A/dm 2 , and the electroplating treatment is 5 min;
  • the preparation method of the polypropylene film is basically the same as that of Example 1, except that the mass percentages of polypropylene and hydroxyapatite sub-nanowires in the raw materials are 95% and 5%, respectively.
  • the preparation method of the composite current collector is the same as that of Example 1.
  • the preparation method of the polypropylene film is basically the same as that of Example 1, except that the mass percentages of polypropylene and hydroxyapatite sub-nanowires in the raw materials are 90% and 10%, respectively.
  • the preparation method of the composite current collector is the same as that of Example 1.
  • the preparation method of the polypropylene film is basically the same as that of Example 1, except that the aspect ratio of the hydroxyapatite sub-nanowires in the raw material is 100.
  • the preparation method of the composite current collector is the same as that of Example 1.
  • the preparation method of the polypropylene film is basically the same as that of Example 1, except that the aspect ratio of the hydroxyapatite sub-nanowires in the raw material is 1000.
  • the preparation method of the composite current collector is the same as that of Example 1.
  • the preparation method of the polypropylene film is basically the same as that of Example 1, except that the melt index of the polypropylene in the raw material is 3.5 g/10 min at 230° C. and a load of 2.16 kg.
  • the preparation method of the composite current collector is the same as that of Example 1.
  • the preparation method of the polypropylene film is basically the same as that of Example 1, except that the melting index of the polypropylene in the raw material is 4 g/10 min at 230° C. and a load of 2.16 kg.
  • the preparation method of the composite current collector is the same as that of Example 1.
  • the preparation method of the polypropylene film is basically the same as that of Example 1, except that the molecular weight distribution index of the polypropylene in the raw material is 4.9.
  • the preparation method of the composite current collector is the same as that of Example 1.
  • the preparation method of the polypropylene film is basically the same as that of Example 1, except that the molecular weight distribution index of the polypropylene in the raw material is 5.3.
  • the preparation method of the composite current collector is the same as that of Example 1.
  • the preparation method of the polypropylene film is basically the same as that of Example 1, except that the isotacticity of the polypropylene in the raw material is 97%.
  • the preparation method of the composite current collector is the same as that of Example 1.
  • the preparation method of the polypropylene film is basically the same as that of Example 1, except that the isotacticity of the polypropylene in the raw material is 99%.
  • the preparation method of the composite current collector is the same as that of Example 1.
  • the preparation method of the polypropylene film is basically the same as that of Example 1, except that: the biaxial stretching in step S4 adopts a synchronous stretching process, and the stretching process is as follows: it is divided into three areas: a preheating area, a stretching area, and a heat setting area. Specifically, the preheating area is divided into two sections, and the temperature is successively increased, namely 135°C and 150°C; the stretching area is divided into three sections, and the temperature is successively increased, namely 154°C, 157°C, and 160°C; the stretching ratio is: the longitudinal stretching ratio is 7, and the transverse stretching ratio is 6.
  • the heat setting area is divided into two sections, and the temperature is successively increased, namely 163°C and 166°C.
  • the preparation method of the composite current collector is the same as that of Example 1.
  • the preparation method of the polypropylene film is basically the same as that of Example 1, except that the hydroxyapatite sub-nanowires in the raw material are replaced by gadolinium oxyhydroxide sub-nanowires.
  • the preparation method of the composite current collector is the same as that of Example 1.
  • the preparation method of the polypropylene film is basically the same as that of Example 1, except that the hydroxyapatite sub-nanowires in the raw material are replaced by tungsten oxyhydroxide sub-nanowires.
  • the preparation method of the composite current collector is the same as that of Example 1.
  • the preparation method of the polypropylene film is basically the same as that of Example 1, except that the hydroxyapatite sub-nanowires in the raw material are replaced by copper oxyhydroxide sub-nanowires.
  • the preparation method of the composite current collector is the same as that of Example 1.
  • the preparation method of the polypropylene film is basically the same as that of Example 1, except that the aspect ratio of the hydroxyapatite sub-nanowires in the raw material is 9.
  • the preparation method of the composite current collector is the same as that of Example 1.
  • the preparation method of the polypropylene film is basically the same as that of Example 1, except that the melt index of the polypropylene in the raw material is 2.9 g/10 min at 230° C. and a load of 2.16 kg.
  • the preparation method of the composite current collector is the same as that of Example 1.
  • the preparation method of the polypropylene film is basically the same as that of Example 1, except that the melt index of the polypropylene in the raw material is 4.1 g/10 min at 230° C. and a load of 2.16 kg.
  • the preparation method of the composite current collector is the same as that of Example 1.
  • the preparation method of the polypropylene film is basically the same as that of Example 1, except that the molecular weight distribution index of the polypropylene in the raw material is 4.4.
  • the preparation method of the composite current collector is the same as that of Example 1.
  • the preparation method of the polypropylene film is basically the same as that of Example 1, except that the molecular weight distribution index of the polypropylene in the raw material is 5.4.
  • the preparation method of the composite current collector is the same as that of Example 1.
  • the preparation method of the polypropylene film is basically the same as that of Example 1, except that the isotacticity of the polypropylene in the raw material is 95%.
  • the preparation method of the composite current collector is the same as that of Example 1.
  • the preparation method of the polypropylene film is basically the same as that of Example 1, except that the raw material does not contain hydroxyapatite sub-nanowires, and the mass percentage of polypropylene is 100%.
  • the preparation method of the composite current collector is the same as that of Example 1.
  • the preparation method of the polypropylene film is basically the same as that of Example 1, except that the mass contents of polypropylene and hydroxyapatite sub-nanowires in the raw materials are 89% and 11%, respectively.
  • the preparation method of the composite current collector is the same as that of Example 1.
  • the purpose of preparing the polypropylene film is to improve the mechanical properties and surface adhesion properties of the film, and then improve the performance of the composite current collector prepared with the polypropylene film as the substrate.
  • the mechanical properties of the film are usually characterized by the elastic modulus and tensile strength of the film, while the surface adhesion performance of the polypropylene film mainly depends on its surface tension, which is ultimately reflected in the bonding force between the polypropylene film and the metal layer in the composite current collector.
  • this application tests the elastic modulus, tensile strength and surface tension of the polypropylene film, and tests the elastic modulus, tensile strength and bonding force between the polypropylene film and the metal layer of the composite current collector containing the polypropylene film.
  • the defective rate caused by film breakage during the preparation of the polypropylene film was statistically analyzed. The results are shown in Tables 1 to 2.
  • Test method for elastic modulus and tensile strength The elastic modulus and tensile strength of the prepared polypropylene film and composite current collector were tested with reference to the national standard GB/T 1040.3-2006.
  • Example 1 4010 200 37 0
  • Example 3 4311 218 51 0
  • Example 5 4845 249 44 0
  • Example 6 3853 191 38 0
  • Example 7 3672 180
  • Example 8 3893 193 38 0
  • Example 9 3755 185 39 0
  • Example 10 4195 211 37 0 Embodiment 11 4522 230 37 0
  • Example 12 4113 206 37 0
  • Example 13 4079 204 39 0 Embodiment 14 3923 195 38 0 Embodiment 15 3977 198 40 0
  • Example 16 3585 175 35 0 Embodiment 17 4213 212 34 6 Embodiment 18 3539 172 42 3 Embodiment 19 4096 205 35 5 Embodiment 20 3568 174 40 2 Embodiment 21 3619 177 37 0 Comparative Example 1 3503 170 30 0 Comparative Example 2 3839 191 52 3
  • Example 1 20881 160 1.0
  • Example 4 21663 188 1.3
  • Example 5 22356 210 1.6
  • Example 6 20609 153 1.1
  • Example 7 20281 142 1.2
  • Example 8 20673 155 1.1
  • Example 9 20436 146 1.2
  • Example 10 21215 173 1.0
  • Embodiment 11 21783 192
  • Example 12 21061 165 1.0
  • Example 13 21003 164 1.2
  • Embodiment 19 21029 163 0.9 Embodiment 20 20101 134 1.3
  • Embodiment 21 20191 138 1.0 Comparative Example 1 19980 132 0.7 Comparative Example 2 20611 149 2.3
  • Example 1 Example 4, Example 5 and Example 16 that: by increasing the aspect ratio of the hydroxyapatite sub-nanowires in the raw material, the elastic modulus and tensile strength of the prepared polypropylene film show an increasing trend, and the elastic modulus and tensile strength of the corresponding composite current collector also show the same trend; the surface tension of the polypropylene film shows an increasing trend, and the bonding force between the polypropylene film and the metal layer in the corresponding composite current collector shows an increasing trend.
  • Example 1 Example 6, Example 7, Example 17 and Example 18, it can be seen that: by increasing the melt index of the polypropylene in the raw material, the elastic modulus and tensile strength of the prepared polypropylene film show a decreasing trend, and the elastic modulus and tensile strength of the corresponding composite current collector also show the same trend; the surface tension of the polypropylene film becomes larger, and the bonding force between the polypropylene film and the metal layer in the corresponding composite current collector shows an increasing trend.
  • Example 1 Example 8, Example 9, Example 19 and Example 20, it can be seen that: by increasing the molecular weight distribution index of the polypropylene in the raw material, the elastic modulus and tensile strength of the prepared polypropylene film show a decreasing trend, and the elastic modulus and tensile strength of the corresponding composite current collector also show the same trend; the surface tension of the polypropylene film becomes larger, and the bonding force between the polypropylene film and the metal layer in the corresponding composite current collector shows an increasing trend.
  • Example 1 Example 10, Example 11 and Example 21, it can be seen that: by improving the isotacticity of the polypropylene in the raw material, the elastic modulus and tensile strength of the prepared polypropylene film show an increasing trend, and the elastic modulus and tensile strength of the corresponding composite current collector also show the same trend; while the surface tension of the polypropylene film remains unchanged, and the bonding force between the polypropylene film and the metal layer in the corresponding composite current collector remains unchanged.

Landscapes

  • Laminated Bodies (AREA)

Abstract

聚丙烯膜及其制备方法、复合集流体和应用。聚丙烯膜按照质量百分比计包括如下原料:90%-99.9%聚丙烯和0.1%-10%含羟基的亚纳米线;含羟基的亚纳米线包括羟基磷灰石亚纳米线、羟基氧化轧亚纳米线、羟基氧化钨亚纳米线和羟基氧化铜亚纳米线中的一种或多种。

Description

聚丙烯膜及其制备方法、复合集流体和应用
相关申请
本申请要求2022年12月22日申请的,申请号为202211656040.2,名称为“聚丙烯膜及其制备方法、复合集流体和应用”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及电池技术领域,特别是涉及一种聚丙烯膜及其制备方法、复合集流体和应用。
背景技术
以高分子聚合物膜为基膜,在其表面沉积一层金属材料可以制备得到复合集流体。与传统的集流体相比,以高分子聚合物膜为基膜的复合集流体具有成本低、质量轻、内部绝缘性好等特点,使得该复合集流体应用于电池中能够降低电池的成本、并提升电池的能量密度及安全性。
然而,以传统聚丙烯膜为基膜制备的复合集流体存在如下问题:①由于聚丙烯膜自身材料极性较弱,其表面张力较低,低表面张力的聚丙烯膜与高表面张力的金属层之间的亲合力较差,因此,二者界面之间的附着力较低,结合不牢固,即存在聚丙烯膜表面粘附性能差的问题。②聚丙烯膜的弹性模量、拉伸强度等力学性能指标较低,导致其力学性能相对较差,从而引发复合集流体制备过程中易发生断膜,良品率降低,且制备的复合集流体的力学性能较差的问题。
发明内容
根据本申请的各种实施例,提供一种聚丙烯膜及其制备方法、复合集流体和应用。
本申请的第一方面提供一种聚丙烯膜,按照质量百分比计,所述聚丙烯膜包括如下原料:90%~99.9%聚丙烯和0.1%~10%含羟基的亚纳米线;
所述含羟基的亚纳米线包括羟基磷灰石亚纳米线、羟基氧化钆亚纳米线、羟基氧化钨亚纳米线和羟基氧化铜亚纳米线中的一种或多种。
在一些实施方式中,所述含羟基的亚纳米线的直径小于1nm,所述含羟基的亚纳米线的长径比大于或等于10。
在一些实施方式中,所述含羟基的亚纳米线的直径小于1nm,所述含羟基的亚纳米线的长径比为10~1000。
在一些实施方式中,所述聚丙烯在230℃、2.16kg载荷下的熔融指数为3g/10min~4g/10min。
在一些实施方式中,所述聚丙烯的分子量分布指数为4.5~5.3。
在一些实施方式中,所述聚丙烯的等规度大于或等于96%。
本申请的第二方面提供一种如本申请第一方面所述的聚丙烯膜的制备方法,包括如下步骤:
将所述聚丙烯和所述含羟基的亚纳米线混合,熔融,挤出熔融料;
将所述熔融料依次进行铸片处理和双向拉伸处理。
在一些实施方式中,所述熔融的温度为200℃~260℃。
在一些实施方式中,所述双向拉伸包括如下步骤:将铸片处理得到的膜片依次进行预热处理、同步拉伸处理和热定型处理。
在一些更具体的实施方式中,所述预热处理分为两个阶段进行,两个阶段的温度依次升高,两个阶段的温度依次为130℃~145℃、145℃~155℃。
在一些更具体的实施方式中,所述同步拉伸分为三个阶段进行,三个阶段的温度依次升高,三个阶段的温度依次为152℃~156℃、156℃~160℃、160℃~163℃,纵向拉伸比为6倍~8倍,横向拉伸比为5倍~7倍。
在一些更具体的实施方式中,所述热定型处理分为两个阶段进行,两个阶段的温度依次升高,两个阶段的温度依次为162℃~165℃、165℃~169℃。
在一些实施方式中,所述双向拉伸处理包括如下步骤:将铸片处理得到的膜片依次进行纵向拉伸处理、横向拉伸处理和热处理。
在一些更具体的实施方式中,所述纵向拉伸处理的预热温度为110℃~140℃,纵向拉伸的温度为140℃~150℃,纵向拉伸比为6倍~8倍。
在一些更具体的实施方式中,所述横向拉伸处理的预热温度为120℃~140℃,横向拉伸的温度为150℃~160℃,横向拉伸比为5倍~7倍,热定型温度为165℃~170℃。
在一些更具体的实施方式中,所述热处理的温度为120℃~140℃。
本申请的第三方面提供一种复合集流体,包括基材和金属层,所述金属层位于所述基材的至少一个表面上,所述基材包括本申请第一方面所述的聚丙烯膜或本申请第二方面所述的制备方法制得的聚丙烯膜。
在一些实施方式中,所述金属层的厚度为500nm~2000nm。
在一些实施方式中,所述复合集流体还包括保护层,所述保护层位于所述金属层的表面上。
在一些更具体的实施方式中,所述保护层的材料包括氧化铜、氧化铝、氧化镍、氧化铬、氧化钴、铜铬氧化物、镍铬合金、石墨、碳纳米量子点、碳纳米管、碳纳米纤维和石墨烯中的一种或多种。
在一些更具体的实施方式中,所述保护层的厚度为10nm~150nm,且所述保护层的厚度小于或等于所述金属层的厚度的十分之一。
本申请的第四方面提供一种电极极片,包括本申请第三方面所述的复合集流体。
本申请的第五方面提供一种电池,包括本申请第四方面所述的电极极片。
本申请的第六方面提供一种用电装置,包括本申请第五方面所述的电池。
本申请的一个或多个实施例的细节在下面的描述中提出。本申请的其它特征、目的和优点将从说明书以及权利要求书变得明显。
具体实施方式
下面将结合具体的实施例,对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“一种或多种”包括一个或多个相关的所列项目的任意的和所有的组合。本申请中术语“多种”的含义是至少两种,例如两种,三种等,除非另有明确具体的限定。本申请中,以开放式描述的技术特征中,包括所列举特征组成的封闭式技术方案,也包括包含所列举特征的开放式技术方案。
本申请中,涉及到数值区间,如无特别说明,上述数值区间内视为连续,且包括该范围的最小值及最大值,以及这种最小值与最大值之间的每一个值。进一步地,当范围是指整数时,包括该范围的最小值与最大值之间的每一个整数。此外,当提供多个范围描述特征或特性时,可以合并该范围。换言之,除非另有指明,否则本文中所公开之所有范围应理解为包括其中所归入的任何及所有的子范围。
本申请一实施方式提供一种聚丙烯膜,按照质量百分比计,该聚丙烯膜包括如下原料:90%~99.9%聚丙烯和0.1%~10%含羟基的亚纳米线;
含羟基的亚纳米线包括羟基磷灰石亚纳米线、羟基氧化钆亚纳米线、羟基氧化钨亚纳米线和羟基氧化铜亚纳米线中的一种或多种。
本申请一方面可利用上述含羟基的亚纳米线与聚丙烯高分子在尺寸及性质上的相似性,实现含羟基的亚纳米线在聚丙烯高分子链中较为均匀的分布,并依靠含羟基的亚纳米线与聚丙烯高分子之间的强分子间作用力,形成含羟基的亚纳米线-聚丙烯高分子的三维网络结构,进而提升聚丙烯膜的力学性能;另一方面,较为均匀分散在聚丙烯膜面位置的含羟基的亚纳米线由于其本身富含极性官能团羟基,可提升聚丙烯膜面的极性,进而提升聚丙烯膜的表面张力,促进聚丙烯膜表面粘附性能的提升。本申请通过控制聚丙烯膜中聚丙烯和含羟基的亚纳米线的含量可以控制聚丙烯膜的弹性模量、拉伸强度、表面张力和不良率等性能,从而提升该聚丙烯膜与金属层的粘结力以及包含该聚丙烯膜的复合集流体的力学性能。当聚丙烯膜中含羟基的亚纳米线的含量过低时,聚丙烯膜性能的提升不明显;当聚丙烯膜中含羟基的亚纳米线的含量过高时,成膜性变差,聚丙烯膜的制备过程中易发生破膜,从而引起不良率的提升。
上述含羟基的亚纳米线可以包括羟基磷灰石亚纳米线、羟基氧化钆亚纳米线、羟基氧化钨亚纳米线和羟基氧化铜亚纳米线中的一种或多种,还可以包括其他种类的含羟基的无机氧化物亚纳米线,本申请没有特别的限制。由于上述羟基磷灰石亚纳米线、羟基氧化钆亚纳米线、羟基氧化钨亚纳米线和羟基氧化铜亚纳米线属于无机氧化物类亚纳米线,其与金属原子的亲和性及兼容性较好,可以促进聚丙烯膜表面对金属层的粘结,从而能够提高聚丙烯膜的表面与金属层的粘结力;另一方面,含羟基的亚纳米线的合成并不容易,而上述羟基磷灰石亚纳米线、羟基氧化钆亚纳米线、羟基氧化钨亚纳米线和羟基氧化铜亚纳米线的合成方法相对比较简单,易于获得。
在一些实施方式中,含羟基的亚纳米线的直径小于1nm,含羟基的亚纳米线的长径比大于或等于10。
本申请通过控制上述含羟基的亚纳米线的直径和长径比,进一步使含羟基的亚纳米线与聚丙烯高分子在尺寸及性质上具有相似性,以实现含羟基的亚纳米线在高分子链中的均匀分布,并依靠含羟基的亚纳米线与聚丙烯高分子之间的强分子间作用力,形成含羟基的亚纳米线-聚丙烯高分子的三维网络结构,从而进一步提升聚丙烯膜的力学性能,进而提升包含该聚丙烯膜的复合集流体的力学性能。当含羟基的亚纳米线的长径比过低时,含羟基的亚纳米线很难与聚丙烯高分子形成有效的三维网络结构,从而导致聚丙烯膜的力学性能提升有限。本申请通过控制含羟基的亚纳米线的长径比可以控制聚丙烯膜的弹性模量、拉伸强度、表面张力和不良率,从而进一步提高聚丙烯膜的表面粘附性能和力学性能,进而 提升该聚丙烯膜与金属层的粘结力以及包含该聚丙烯膜的复合集流体的力学性能。可理解,含羟基的亚纳米线的直径例如可以是0.1nm、0.2nm、0.3nm、0.4nm、0.5nm、0.6nm、0.7nm、0.8nm、0.9nm或0.99nm等,含羟基的亚纳米线的长径比例如可以是10、50、100、500、1000、2000、3000、4000、5000、6000、7000、8000或9000等。
在一些实施方式中,含羟基的亚纳米线的直径小于1nm,含羟基的亚纳米线的长径比为10~1000。
在一些实施方式中,聚丙烯在230℃、2.16kg载荷下的熔融指数为3g/10min~4g/10min。
本申请通过控制聚丙烯的熔融指数可以控制聚丙烯膜的弹性模量、拉伸强度、表面张力和不良率,从而进一步提高聚丙烯膜的表面粘附性能和力学性能,进而提升该聚丙烯膜与金属层的粘结力以及包含该聚丙烯膜的复合集流体的力学性能。当聚丙烯的熔融指数过低时,聚丙烯的分子量过大导致拉膜过程中成膜性较差;当聚丙烯的熔融指数过高时,聚丙烯的分子量过低导致成膜性较差,使得聚丙烯膜的力学性能较差。可理解,聚丙烯在230℃、2.16kg载荷下的熔融指数可以包括但不限于是3g/10min、3.1g/10min、3.2g/10min、3.3g/10min、3.4g/10min、3.5g/10min、3.6g/10min、3.7g/10min、3.8g/10min、3.9g/10min或4g/10min等。
在一些实施方式中,聚丙烯的分子量分布指数为4.5~5.3。
本申请通过控制聚丙烯的分子量分布指数可以控制聚丙烯膜的弹性模量、拉伸强度、表面张力和不良率,从而进一步提高聚丙烯膜的表面粘附性能和力学性能,进而提升该聚丙烯膜与金属层的粘结力以及包含该聚丙烯膜的复合集流体的力学性能。当聚丙烯的分子量分布指数过高时,小分子聚丙烯的含量较多,导致聚丙烯膜力学性能较差,且成膜性较差;当聚丙烯的分子量分布指数过低时,拉膜过程中成膜性变差,导致聚丙烯膜的良品率降低。可理解,聚丙烯的分子量分布指数可以包括但不限于是4.5、4.6、4.7、4.8、4.9、5、5.1、5.2或5.3等。
在一些实施方式中,聚丙烯的等规度大于或等于96%。
本申请通过控制聚丙烯的等规度可以控制聚丙烯膜的弹性模量、拉伸强度、表面张力和不良率,从而进一步提高聚丙烯膜的力学性能,进而提升包含该聚丙烯膜的复合集流体的力学性能。当聚丙烯的等规度越高时,聚丙烯分子的规整度越高,能够提升聚丙烯膜的取向度及结晶度,从而进一步提高聚丙烯膜的力学性能。可理解,聚丙烯的等规度可以包括但不限于是96%、97%、98%或99%等。
本申请另一实施方式提供上述聚丙烯膜的制备方法,包括如下步骤:
将聚丙烯和含羟基的亚纳米线混合,熔融,挤出熔融料;
将熔融料依次进行铸片处理和双向拉伸处理。
上述制备方法制得的聚丙烯膜中包括含羟基的亚纳米线,含羟基的亚纳米线包括羟基磷灰石亚纳米线、羟基氧化钆亚纳米线、羟基氧化钨亚纳米线和羟基氧化铜亚纳米线中的一种或多种。本申请一方面可以利用上述含羟基的亚纳米线与聚丙烯高分子在尺寸及性质上的相似性,实现含羟基的亚纳米线在聚丙烯高分子链中较为均匀的分布,并依靠含羟基的亚纳米线与聚丙烯高分子之间的强分子间作用力,形成含羟基的亚纳米线-聚丙烯高分子的三维网络结构,进而提升制备的聚丙烯膜的力学性能;另一方面,较为均匀分散在聚丙烯膜面位置的含羟基的亚纳米线由于其本身富含极性官能团羟基,可提升聚丙烯膜面的极性,进而提升聚丙烯膜的表面张力,促进聚丙烯膜表面粘附性能的提升。本申请的上述制备方法通过控制聚丙烯膜原料中聚丙烯和含羟基的亚纳米线的含量可以控制聚丙烯膜的弹性模量、拉伸强度、表面张力和不良率等性能,进而提升该聚丙烯膜与金属层的粘结力以及包含该聚丙烯膜的复合集流体的力学性能。
在一些实施方式中,双向拉伸处理得到的聚丙烯膜还进行收卷处理,收卷的张力为20N/m~30N/m。可理解,收卷的张力例如可以是20N/m、22N/m、24N/m、26N/m、28N/m或30N/m等。
在一些实施方式中,熔融的温度为200℃~260℃。可理解,熔融的温度可以包括但不限于是200℃、210℃、220℃、230℃、240℃、250℃或260℃等。
在一些实施方式中,双向拉伸包括如下步骤:将铸片处理得到的膜片依次进行预热处理、同步拉伸处理和热定型处理。需要说明的是,通过控制双向拉伸的步骤和工艺可以提高聚丙烯膜的力学性能。
在一些更具体的实施方式中,预热处理分为两个阶段进行,两个阶段的温度依次升高,两个阶段的温度依次为130℃~145℃、145℃~155℃。可理解,130℃~145℃可以包括但不限于是130℃、132℃、135℃、138℃、140℃、142℃或145℃等,145℃~155℃可以包括但不限于是145℃、147℃、149℃、151℃、153℃或155℃等。预处理两个阶段的温度例如可以依次是130℃、140℃,或142℃、145℃,或145℃、155℃等。
在一些更具体的实施方式中,同步拉伸分为三个阶段进行,三个阶段的温度依次升高,三个阶段的温度依次为152℃~156℃、156℃~160℃、160℃~163℃,纵向拉伸比为6倍~8倍,横向拉伸比为5倍~7倍。可理解,152℃~156℃可以包括但不限于是152℃、153℃、154℃、155℃或156℃等,156℃~160℃可以包括但不限于是156℃、157℃、158℃、159℃或160℃等,160℃~163℃可以包括但不限于是160℃、161℃、162℃或163℃等。纵向拉伸比例如可以是6倍、6.5倍、7倍、7.5倍或8倍等,横向拉伸比例如可以是5倍、5.5倍、 6倍、6.5倍或7倍等。同步拉伸三个阶段的温度例如可以依次是152℃、156℃、160℃,或156℃、157℃、163℃,或155℃、156℃、160℃等。
在一些更具体的实施方式中,热定型处理分为两个阶段进行,两个阶段的温度依次升高,两个阶段的温度依次为162℃~165℃、165℃~169℃。可理解,162℃~165℃可以包括但不限于是162℃、163℃、164℃或165℃等,165℃~169℃可以包括但不限于是165℃、166℃、167℃、168℃或169℃等。热定型处理两个阶段的温度例如可以依次是162℃、165℃,或163℃、165℃,或165℃、167℃,或165℃、169℃等。
在一些实施方式中,双向拉伸处理包括如下步骤:将铸片处理得到的膜片依次进行纵向拉伸处理、横向拉伸处理和热处理。需要说明的是,通过控制双向拉伸的步骤和工艺可以提高聚丙烯膜的力学性能。将膜片经过纵向拉伸处理后冷却至室温,之后再进行横向拉伸处理。
在一些更具体的实施方式中,纵向拉伸处理的预热温度为110℃~140℃,纵向拉伸的温度为140℃~150℃,纵向拉伸比为6倍~8倍。可理解,纵向拉伸处理的预热温度例如可以是110℃、120℃、130℃或140℃等,纵向拉伸的温度例如可以是140℃、142℃、146℃、148℃或150℃等,纵向拉伸比例如可以是6倍、6.5倍、7倍、7.5倍或8倍等。
在一些更具体的实施方式中,横向拉伸处理的预热温度为120℃~140℃,横向拉伸的温度为150℃~160℃,横向拉伸比为5倍~7倍,热定型温度为165℃~170℃。可理解,横向拉伸处理的预热温度例如可以是120℃、125℃、130℃、135℃或140℃等,横向拉伸的温度例如可以是150℃、152℃、154℃、156℃、158℃或160℃等,横向拉伸比例如可以是5倍、5.5倍、6倍、6.5倍或7倍等。
在一些更具体的实施方式中,热处理的温度为120℃~140℃。进行上述热处理的目的是为了消除膜内部应力,提高膜的热稳定性。可理解,热处理的温度例如可以是120℃、125℃、130℃、135℃或140℃等。
本申请再一实施方式提供一种复合集流体,包括基材和金属层,该金属层位于基材的至少一个表面上,基材包括上述聚丙烯膜或上述制备方法制得的聚丙烯膜。
上述聚丙烯膜或上述制备方法制得的聚丙烯膜的表面粘附性能和力学性能得到提升,进而使得上述复合集流体中基材与金属层的粘结力以及复合集流体的力学性能得到提升。上述基材表面设置金属层的目的是导电。
在一些实施方式中,金属层的材料包括铜、铝、银、金、镍及其合金中的一种或多种。
在一些实施方式中,金属层的厚度为500nm~2000nm。可理解,金属层的厚度例如可以是500nm、700nm、800nm、900nm、1000nm、1100nm、1200nm、1300nm、1400nm、 1700nm或2000nm等。在一些更具体的实施方式中,金属层的厚度为700nm~1200nm。
在一些实施方式中,金属层的制备方法包括物理气相沉积、电镀和化学镀中的一种或多种。
在一些更具体的实施方式中,物理气相沉积包括电阻加热真空蒸镀、电子束加热真空蒸镀、激光加热真空蒸镀和磁控溅射中的一种或多种。
在一些实施方式中,复合集流体还包括保护层,保护层位于金属层的表面上。上述保护层可以防止金属层被化学腐蚀或物理破坏。
在一些更具体的实施方式中,保护层的材料包括氧化铜、氧化铝、氧化镍、氧化铬、氧化钴、铜铬氧化物、镍铬合金、石墨、碳纳米量子点、碳纳米管、碳纳米纤维和石墨烯中的一种或多种。
在一些更具体的实施方式中,保护层的厚度为10nm~150nm,且保护层的厚度小于或等于金属层的厚度的十分之一。可理解,保护层的厚度可以包括但不限于是10nm、20nm、30nm、50nm、70nm、100nm、120nm或150nm等。在一些更具体的实施方式中,保护层的厚度为20nm~100nm,且保护层的厚度小于或等于金属层的厚度的十分之一。
在一些更具体的实施方式中,保护层的制备方法包括物理气相沉积、化学气相沉积、原位成型和涂布中的一种或多种。上述物理气相沉积可以为真空蒸镀和磁控溅射中的一种或多种。上述化学气相沉积可以为常压化学气相沉积和等离子体增强化学气相沉积中的一种或多种。上述原位成型可以为在金属层表面原位形成金属氧化物钝化层的方法。上述涂布可以为模头涂布、刮刀涂布和挤压涂布中的一种或多种。
本申请再一实施方式还提供一种电极极片,包括上述复合集流体。需要说明的是,本申请的电极极片例如可以由正极活性材料/负极活性材料、导电剂、粘结剂和溶剂混合后形成浆料,采用本领域技术人员所熟知的制备电极极片的方法将浆料涂覆在本申请的复合集流体上得到。根据活性材料的不同,电极极片可以分为正极极片和负极极片。本申请对电极极片的制备方法没有特别的限制,上述制备方法可以是本领域技术人员所熟知的制备方法。
本申请再一实施方式还提供一种电池,包括上述电极极片。需要说明的是,上述电极极片可以是正极极片也可以是负极极片,本申请中对上述电池没有特别的限制,上述电池可以包括但不限于是锂离子二次电池、锂离子聚合物二次电池、锂金属二次电池或锂聚合物二次电池等。
本申请再一实施方式还提供一种用电装置,包括上述电池。需要说明的是,上述电池可以作为电源或者能量储存单元用于上述用电装置中,上述用电装置包括但不限于电动车 辆、智能家电产品、电脑、平板、手机、数码相机等。
以下结合具体实施例和对比例对本申请做进一步详细的说明。
实施例1
聚丙烯膜的制备方法包括如下步骤:
S1.选取原料
选取的聚丙烯在230℃、2.16kg载荷下的熔融指数为3g/10min、分子量分布指数为4.5、等规度为96%;选取的含羟基的亚纳米线为羟基磷灰石亚纳米线,其直径为0.8nm,长径比为10;
S2.熔融挤出
将上述原料分别加入到对应的双螺杆挤出机内,聚丙烯和羟基磷灰石亚纳米线的质量百分比分别为99.9%、0.1%,在240℃下熔融,然后经过过滤器(10微米滤网)过滤后,通过模头挤出熔体,模头温度为250℃;
S3.铸片
将模头挤出的熔融料流延到铸片辊上,经铸片辊及水冷的冷却处理成型,冷却温度为25℃;
S4.双向拉伸
将步骤S3得到的膜片进行异步拉伸:
首先进行纵向拉伸:预热温度为135℃,拉伸温度为140℃,纵向拉伸倍率为7倍,纵向拉伸后冷却至室温;然后进行横向拉伸:预热温度为135℃,拉伸温度为150℃,拉伸倍率为6倍,热定型温度为165℃;之后进行热处理,热处理温度为125℃;
S5.收卷
将步骤S4得到的膜经平台区空气冷却后,经牵引系统进入收卷系统进行膜片收卷,收卷张力为30N/m。
复合集流体的制备方法包括如下步骤:
S1.将上述制备的聚丙烯膜置于磁控溅射的舱体内,以纯度为99.99%的铜金属为靶材,以氩气为气源,在磁控溅射舱体内通过磁控溅射的方法在聚丙烯膜上镀一层80nm厚的金属层,得到复合薄膜;
S2.以步骤S1制备的复合薄膜为基材进行电镀,电镀包括如下三个过程:
(1)电镀制备金属层:电镀液的各组分为150g/L硫酸铜、120g/L硫酸、60mg/L氯离子、1mg/L聚二硫二丙烷磺酸钠、0.5mg/L健那绿、200mg/L聚乙二醇8000,电镀液的温度为25℃,平均阴极电流密度为2A/dm 2,电镀处理5min;
(2)制备保护层:电镀结束后,将镀好的复合薄膜在清水槽中进行清洗,然后在盛有5g/L重铬酸钾水溶液的保护层制备槽内制备表面保护层,处理温度为25℃,处理30s,最后再通过清水槽进行清洗;
(3)干燥:在烘箱温度为70℃的条件下对清洗后的复合薄膜进行干燥,得到铜金属层及保护层总厚度为1μm的复合铜集流体。
实施例2
聚丙烯膜的制备方法与实施例1基本相同,区别在于:原料中聚丙烯和羟基磷灰石亚纳米线的质量百分含量分别为95%、5%。
复合集流体的制备方法与实施例1相同。
实施例3
聚丙烯膜的制备方法与实施例1基本相同,区别在于:原料中聚丙烯和羟基磷灰石亚纳米线的质量百分含量分别为90%、10%。
复合集流体的制备方法与实施例1相同。
实施例4
聚丙烯膜的制备方法与实施例1基本相同,区别在于:原料中羟基磷灰石亚纳米线的长径比为100。
复合集流体的制备方法与实施例1相同。
实施例5
聚丙烯膜的制备方法与实施例1基本相同,区别在于:原料中羟基磷灰石亚纳米线的长径比为1000。
复合集流体的制备方法与实施例1相同。
实施例6
聚丙烯膜的制备方法与实施例1基本相同,区别在于:原料中聚丙烯在230℃、2.16kg载荷下的熔融指数为3.5g/10min。
复合集流体的制备方法与实施例1相同。
实施例7
聚丙烯膜的制备方法与实施例1基本相同,区别在于:原料中聚丙烯在230℃、2.16kg载荷下的熔融指数为4g/10min。
复合集流体的制备方法与实施例1相同。
实施例8
聚丙烯膜的制备方法与实施例1基本相同,区别在于:原料中聚丙烯的分子量分布指 数为4.9。
复合集流体的制备方法与实施例1相同。
实施例9
聚丙烯膜的制备方法与实施例1基本相同,区别在于:原料中聚丙烯的分子量分布指数为5.3。
复合集流体的制备方法与实施例1相同。
实施例10
聚丙烯膜的制备方法与实施例1基本相同,区别在于:原料中聚丙烯的等规度为97%。
复合集流体的制备方法与实施例1相同。
实施例11
聚丙烯膜的制备方法与实施例1基本相同,区别在于:原料中聚丙烯的等规度为99%。
复合集流体的制备方法与实施例1相同。
实施例12
聚丙烯膜的制备方法与实施例1基本相同,区别在于:步骤S4中双向拉伸采用同步拉伸的工艺,其拉伸工艺如下:分为预热区、拉伸区、热定型区三个区域,具体地,预热区分为两段,温度依次升高,即135℃、150℃;拉伸区分为三段,温度依次升高,即154℃、157℃、160℃;拉伸比:纵向拉伸倍率为7,横向拉伸倍率为6。热定型区分为两段,温度依次升高,即163℃、166℃。
复合集流体的制备方法与实施例1相同。
实施例13
聚丙烯膜的制备方法与实施例1基本相同,区别在于:将原料中的羟基磷灰石亚纳米线替换为羟基氧化钆亚纳米线。
复合集流体的制备方法与实施例1相同。
实施例14
聚丙烯膜的制备方法与实施例1基本相同,区别在于:将原料中的羟基磷灰石亚纳米线为羟基氧化钨亚纳米线。
复合集流体的制备方法与实施例1相同。
实施例15
聚丙烯膜的制备方法与实施例1基本相同,区别在于:将原料中的羟基磷灰石亚纳米线替换为羟基氧化铜亚纳米线。
复合集流体的制备方法与实施例1相同。
实施例16
聚丙烯膜的制备方法与实施例1基本相同,区别在于:原料中羟基磷灰石亚纳米线的长径比为9。
复合集流体的制备方法与实施例1相同。
实施例17
聚丙烯膜的制备方法与实施例1基本相同,区别在于:原料中聚丙烯在230℃、2.16kg载荷下的熔融指数为2.9g/10min。
复合集流体的制备方法与实施例1相同。
实施例18
聚丙烯膜的制备方法与实施例1基本相同,区别在于:原料中聚丙烯在230℃、2.16kg载荷下的熔融指数为4.1g/10min。
复合集流体的制备方法与实施例1相同。
实施例19
聚丙烯膜的制备方法与实施例1基本相同,区别在于:原料中聚丙烯的分子量分布指数为4.4。
复合集流体的制备方法与实施例1相同。
实施例20
聚丙烯膜的制备方法与实施例1基本相同,区别在于:原料中聚丙烯的分子量分布指数为5.4。
复合集流体的制备方法与实施例1相同。
实施例21
聚丙烯膜的制备方法与实施例1基本相同,区别在于:原料中聚丙烯的等规度为95%。
复合集流体的制备方法与实施例1相同。
对比例1
聚丙烯膜的制备方法与实施例1基本相同,区别在于:原料中不含羟基磷灰石亚纳米线,聚丙烯的质量百分含量为100%。
复合集流体的制备方法与实施例1相同。
对比例2
聚丙烯膜的制备方法与实施例1基本相同,区别在于:原料中聚丙烯和羟基磷灰石亚纳米线的质量含量分别为89%、11%。
复合集流体的制备方法与实施例1相同。
聚丙烯膜和和复合集流体的性能测试
如前所述制备聚丙烯膜的目的在于提升膜的力学性能及表面粘附性能,进而提升以此聚丙烯膜为基材制备的复合集流体的性能。对于聚丙烯膜,通常以膜的弹性模量及拉伸强度表征膜的力学性能,而聚丙烯膜的表面粘附性能主要取决于其表面张力,最终表现在复合集流体中聚丙烯膜与金属层的粘结力上,因此,本申请对聚丙烯膜的弹性模量、拉伸强度及表面张力进行了测试,并对包含该聚丙烯膜的复合集流体的弹性模量、拉伸强度及聚丙烯膜与金属层的粘结力进行了测试。此外,对聚丙烯膜制备过程中由于破膜所带来的不良率进行了统计。结果如表1~2所示。
(1)弹性模量及拉伸强度的测试方法:参照国标GB/T 1040.3-2006对制备的聚丙烯膜及复合集流体的弹性模量和拉伸强度进行测试。
(2)表面张力的测试方法:按照GB/T 14216-2008对制备的聚丙烯膜的表面张力进行测试。
(3)复合集流体中聚丙烯膜与金属层的粘结力的测试方法:在1mm厚的铝箔上粘接一层Permacel P-94双面胶,在双面胶的上方粘接复合集流体,在复合集流体上方覆盖一层乙烯丙烯酸共聚物薄膜(杜邦Nurcel0903,厚度为50μm),然后在1.3×10 5N/m 2、120℃下热压10s,冷却至室温,裁成150mm×15mm的小条。然后将样品小条的乙烯丙烯酸共聚物薄膜固定于拉力机的上夹具,其余部分固定在下夹具,固定好后二者以180 °的角度、100mm/min的速度进行剥离,测试剥离力,即聚丙烯膜与金属层的粘结力。
(4)不良率的测试方法:制备过程中由破膜导致的不合格品的数量占总产品数量的比例,由于宽度一致,故数量以长度计算。
表1 聚丙烯膜的性能测试结果
组别 弹性模量(MPa) 拉伸强度(MPa) 表面张力(mN/m) 不良率(%)
实施例1 4010 200 37 0
实施例2 5266 273 46 0
实施例3 4311 218 51 0
实施例4 4451 226 40 0
实施例5 4845 249 44 0
实施例6 3853 191 38 0
实施例7 3672 180 40 0
实施例8 3893 193 38 0
实施例9 3755 185 39 0
实施例10 4195 211 37 0
实施例11 4522 230 37 0
实施例12 4113 206 37 0
实施例13 4079 204 39 0
实施例14 3923 195 38 0
实施例15 3977 198 40 0
实施例16 3585 175 35 0
实施例17 4213 212 34 6
实施例18 3539 172 42 3
实施例19 4096 205 35 5
实施例20 3568 174 40 2
实施例21 3619 177 37 0
对比例1 3503 170 30 0
对比例2 3839 191 52 3
表2 复合集流体的性能测试结果
组别 弹性模量(MPa) 拉伸强度(MPa) 粘结力(N/cm)
实施例1 20881 160 1.0
实施例2 23072 235 1.8
实施例3 21420 179 2.2
实施例4 21663 188 1.3
实施例5 22356 210 1.6
实施例6 20609 153 1.1
实施例7 20281 142 1.2
实施例8 20673 155 1.1
实施例9 20436 146 1.2
实施例10 21215 173 1.0
实施例11 21783 192 1.0
实施例12 21061 165 1.0
实施例13 21003 164 1.2
实施例14 20732 156 1.1
实施例15 20821 159 1.3
实施例16 20127 135 0.9
实施例17 21241 170 0.9
实施例18 20043 133 1.3
实施例19 21029 163 0.9
实施例20 20101 134 1.3
实施例21 20191 138 1.0
对比例1 19980 132 0.7
对比例2 20611 149 2.3
从实施例1~3及对比例1~2,可以看出:提升原料中羟基磷灰石亚纳米线的含量,制备的聚丙烯膜的弹性模量、拉伸强度呈现先增大后降低的趋势,对应的复合集流体的弹性模量、拉伸强度亦呈现出相同的趋势;而聚丙烯膜的表面张力则呈现增大的趋势,对应的复合集流体中聚丙烯膜与金属层的粘结力呈现增大的趋势。当原料中羟基磷灰石亚纳米线的含量过高时,聚丙烯膜制备过程中易发生破膜。从实施例1~15及对比例1,可以看出:与对比例1制备的聚丙烯膜相比,本申请实施例1~15制备的聚丙烯膜的力学性能及表面粘附性能明显提升。
从实施例1、实施例4、实施例5及实施例16可以看出:提升原料中羟基磷灰石亚纳米线的长径比,制备的聚丙烯膜的弹性模量、拉伸强度呈现增大的趋势,对应的复合集流体的弹性模量、拉伸强度亦呈现出相同的趋势;聚丙烯膜的表面张力则呈现增大的趋势, 对应的复合集流体中聚丙烯膜与金属层的粘结力呈现增大的趋势。
从实施例1、实施例6、实施例7、实施例17和实施例18,可以看出:提升原料中聚丙烯的熔融指数,制备的聚丙烯膜的弹性模量、拉伸强度呈现降低的趋势,对应的复合集流体的弹性模量、拉伸强度亦呈现出相同的趋势;聚丙烯膜的表面张力变大,对应的复合集流体中聚丙烯膜与金属层的粘结力呈现增大的趋势。
从实施例1、实施例8、实施例9、实施例19和实施例20,可以看出:提升原料中聚丙烯的分子量分布指数,制备的聚丙烯膜的弹性模量、拉伸强度呈现降低的趋势,对应的复合集流体的弹性模量、拉伸强度亦呈现出相同的趋势;聚丙烯膜的表面张力变大,对应的复合集流体中聚丙烯膜与金属层的粘结力呈现增大的趋势。
从实施例1、实施例10、实施例11及实施例21,可以看出:提升原料中聚丙烯的等规度,制备的聚丙烯膜的弹性模量、拉伸强度呈现增大的趋势,对应的复合集流体的弹性模量、拉伸强度亦呈现出相同的趋势;而聚丙烯膜的表面张力不变,对应的复合集流体中聚丙烯膜与金属层的粘结力不变。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (16)

  1. 一种聚丙烯膜,其特征在于,按照质量百分比计,所述聚丙烯膜包括如下原料:90%~99.9%聚丙烯和0.1%~10%含羟基的亚纳米线;
    所述含羟基的亚纳米线包括羟基磷灰石亚纳米线、羟基氧化钆亚纳米线、羟基氧化钨亚纳米线和羟基氧化铜亚纳米线中的一种或多种。
  2. 根据权利要求1所述的聚丙烯膜,其特征在于,所述含羟基的亚纳米线的直径小于1nm,所述含羟基的亚纳米线的长径比大于或等于10。
  3. 根据权利要求1~2任一项所述的聚丙烯膜,其特征在于,所述含羟基的亚纳米线的直径小于1nm,所述含羟基的亚纳米线的长径比为10~1000。
  4. 根据权利要求1~3任一项所述的聚丙烯膜,其特征在于,所述聚丙烯具备如下特征(1)~(3)中的至少一个:
    (1)所述聚丙烯在230℃、2.16kg载荷下的熔融指数为3g/10min~4g/10min;
    (2)所述聚丙烯的分子量分布指数为4.5~5.3;
    (3)所述聚丙烯的等规度大于或等于96%。
  5. 如权利要求1~4任一项所述的聚丙烯膜的制备方法,其特征在于,包括如下步骤:
    将所述聚丙烯和所述含羟基的亚纳米线混合,熔融,挤出熔融料;
    将所述熔融料依次进行铸片处理和双向拉伸处理。
  6. 根据权利要求5所述的制备方法,其特征在于,所述熔融的温度为200℃~260℃。
  7. 根据权利要求5~6任一项所述的制备方法,其特征在于,所述双向拉伸包括如下步骤:将铸片处理得到的膜片依次进行预热处理、同步拉伸处理和热定型处理;
    可选地,所述预热处理分为两个阶段进行,两个阶段的温度依次升高,两个阶段的温度依次为130℃~145℃、145℃~155℃;
    可选地,所述同步拉伸分为三个阶段进行,三个阶段的温度依次升高,三个阶段的温度依次为152℃~156℃、156℃~160℃、160℃~163℃,纵向拉伸比为6倍~8倍,横向拉伸比为5倍~7倍;
    可选地,所述热定型处理分为两个阶段进行,两个阶段的温度依次升高,两个阶段的温度依次为162℃~165℃、165℃~169℃。
  8. 根据权利要求5~6任一项所述的制备方法,其特征在于,所述双向拉伸处理包括如下步骤:将铸片处理得到的膜片依次进行纵向拉伸处理、横向拉伸处理和热处理;
    可选地,所述纵向拉伸处理的预热温度为110℃~140℃,纵向拉伸的温度为 140℃~150℃,纵向拉伸比为6倍~8倍;
    可选地,所述横向拉伸处理的预热温度为120℃~140℃,横向拉伸的温度为150℃~160℃,横向拉伸比为5倍~7倍,热定型温度为165℃~170℃;
    可选地,所述热处理的温度为120℃~140℃。
  9. 一种复合集流体,其特征在于,包括基材和金属层,所述金属层位于所述基材的至少一个表面上,所述基材包括权利要求1~4任一项所述的聚丙烯膜或权利要求5~8任一项所述的制备方法制得的聚丙烯膜。
  10. 根据权利要求9所述的复合集流体,其特征在于,所述金属层的厚度为500nm~2000nm。
  11. 根据权利要求9~10任一项所述的复合集流体,其特征在于,还包括保护层,所述保护层位于所述金属层的表面上。
  12. 根据权利要求11所述的复合集流体,其特征在于,所述保护层的材料包括氧化铜、氧化铝、氧化镍、氧化铬、氧化钴、铜铬氧化物、镍铬合金、石墨、碳纳米量子点、碳纳米管、碳纳米纤维和石墨烯中的一种或多种。
  13. 根据权利要求11~12任一项所述的复合集流体,其特征在于,所述保护层的厚度为10nm~150nm,且所述保护层的厚度小于或等于所述金属层的厚度的十分之一。
  14. 一种电极极片,其特征在于,包括权利要求9~13任一项所述的复合集流体。
  15. 一种电池,其特征在于,包括权利要求14所述的电极极片。
  16. 一种用电装置,其特征在于,包括权利要求15所述的电池。
PCT/CN2022/143138 2022-12-22 2022-12-29 聚丙烯膜及其制备方法、复合集流体和应用 WO2024130774A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211656040.2A CN115850863A (zh) 2022-12-22 2022-12-22 聚丙烯膜及其制备方法、复合集流体和应用
CN202211656040.2 2022-12-22

Publications (1)

Publication Number Publication Date
WO2024130774A1 true WO2024130774A1 (zh) 2024-06-27

Family

ID=85653809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/143138 WO2024130774A1 (zh) 2022-12-22 2022-12-29 聚丙烯膜及其制备方法、复合集流体和应用

Country Status (2)

Country Link
CN (1) CN115850863A (zh)
WO (1) WO2024130774A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116598044B (zh) * 2023-05-23 2024-05-24 扬州纳力新材料科技有限公司 导电材料、导电基材及其复合集流体和应用
CN117261303B (zh) * 2023-11-21 2024-02-23 扬州纳力新材料科技有限公司 聚丙烯膜及其制备方法、复合集流体、电极极片和应用

Also Published As

Publication number Publication date
CN115850863A (zh) 2023-03-28

Similar Documents

Publication Publication Date Title
WO2024130774A1 (zh) 聚丙烯膜及其制备方法、复合集流体和应用
EP3496190B1 (en) Current collector, electrode plate including the same and electrochemical device
CN115447248B (zh) 复合聚合物膜、其制造方法、金属化复合聚合物膜与应用
CN102248713B (zh) 一种聚烯微多孔多层隔膜及其制造方法
CN115207563A (zh) 蓄电装置用分隔件及其制造方法
CN109449349A (zh) 一种聚丙烯微孔膜及其制备方法和应用
CN114497568B (zh) 一种热收缩复合集流体及其应用
WO2024000802A1 (zh) 一种复合集流体、制备方法、电极极片、电池和电子设备
WO2023208240A1 (zh) 集流体及其制备方法和应用
WO2024108680A1 (zh) 聚合物复合膜及其制备方法、复合集流体、极片、二次电池和用电装置
CN115594872B (zh) 一种复合集流体基膜及其制备方法、集流体及其制备方法
JP6439293B2 (ja) 積層多孔性フィルム、蓄電デバイス用セパレータおよび蓄電デバイス
WO2024104393A1 (zh) 多层复合聚丙烯材料及其制备方法和应用
CN115763829A (zh) 一种可增强导电性的复合集流体
WO2024092882A1 (zh) 复合铜集流体及其制备方法、极片、二次电池和用电装置
CN115320206B (zh) 复合聚酯膜及其制备方法与用途
WO2024050690A1 (zh) 复合聚酯膜及其制备方法与用途
WO2024044897A1 (zh) 耐溶胀型聚酯复合膜及其制备方法和应用
WO2024138509A1 (zh) 复合铜集流体及其制备方法、电极和二次电池
WO2024050722A1 (zh) 复合聚酯膜及其制备方法和应用
WO2024060009A1 (zh) 高力学强度聚合物薄膜、其制造方法和应用
WO2024050688A1 (zh) 复合聚合物膜、其制造方法、金属化复合聚合物膜与应用
CN117894998B (zh) 一种复合集流体及锂离子电池
WO2024051776A1 (zh) 复合聚酯膜及其制备方法和应用
WO2024092563A1 (zh) 改性聚酯薄膜、制备方法、复合集流体、电极片及其用途