WO2023208240A1 - 集流体及其制备方法和应用 - Google Patents

集流体及其制备方法和应用 Download PDF

Info

Publication number
WO2023208240A1
WO2023208240A1 PCT/CN2023/091984 CN2023091984W WO2023208240A1 WO 2023208240 A1 WO2023208240 A1 WO 2023208240A1 CN 2023091984 W CN2023091984 W CN 2023091984W WO 2023208240 A1 WO2023208240 A1 WO 2023208240A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
fiber
current collector
parts
metal
Prior art date
Application number
PCT/CN2023/091984
Other languages
English (en)
French (fr)
Inventor
周高阳
李学法
张国平
Original Assignee
扬州纳力新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 扬州纳力新材料科技有限公司 filed Critical 扬州纳力新材料科技有限公司
Publication of WO2023208240A1 publication Critical patent/WO2023208240A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/041Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of battery technology, and specifically to a current collector and its preparation method and application.
  • Today's lithium-ion batteries basically use pure copper foil as the negative electrode current collector and pure aluminum foil as the positive electrode current collector. As a result, the total mass of the positive and negative electrode current collectors is heavier, accounting for about 15%-20% of the total battery. . Thinning the positive and negative current collectors can reduce battery weight and increase energy density.
  • pure aluminum foil is usually made by traditional calendering equipment, and the thinnest mass production thickness is about 8 ⁇ m. Pure copper foil is usually electrolytic copper material, deposited and extruded by a cathode roller, and the thinnest mass production thickness is about 6 ⁇ m. Limited by the current technical equipment, it is difficult to reduce the thickness of copper foil and aluminum foil. In addition, after copper and aluminum are turned into foil materials, their own strength is reduced, resulting in a reduction in processing performance, and it is difficult to further reduce the thickness.
  • the present invention provides a current collector that can prevent the metal layer from falling off while achieving lightweight battery, and its preparation method and application.
  • the present invention provides a current collector, which includes a fiber base layer, and a first adhesive layer and a second adhesive layer are respectively provided on both sides of the fiber base layer.
  • the first adhesive layer and the second adhesive layer The bonding layer is respectively provided with a first metal layer and a second metal layer on the surface away from the fiber base layer;
  • the material composition of the fiber base layer includes the following components by weight:
  • composite fiber 50 to 120 parts of composite fiber, 4.1 to 19 parts of inorganic filler and auxiliaries, wherein the composite fiber includes organic fiber and inorganic fiber.
  • the mass ratio of the organic fibers and the inorganic fibers is (70-99.9): (0.1-30).
  • the mass ratio of the organic fibers and the inorganic fibers is (90-99.9): (0.1-10).
  • the inorganic filler includes one or more of calcium carbonate, borax and nano-silica.
  • the organic fiber includes polyethylene terephthalate fiber, polybutylene terephthalate fiber, polyethylene naphthalate fiber, polypropylene fiber.
  • the inorganic fiber includes one or more of graphene fiber, carbon fiber, glass fiber, ceramic fiber, metal oxide nanofiber and silica nanofiber.
  • the auxiliary agent includes one or more of a dispersant, a thickener, an emulsifier and a binder;
  • the dispersant includes one or more of polyacrylamide, polyvinyl alcohol, sodium citrate and sodium silicate;
  • the thickener includes one or more of sodium hydroxypropyl methylcellulose, sodium hydroxyethyl methylcellulose, sodium carboxymethylcellulose, sodium methylcellulose and sodium alginate;
  • the emulsifier includes one or more of glyceryl monostearate, polyoxyethylene ether and sodium lauryl sulfate;
  • the binder includes sodium carboxymethyl cellulose and/or polyvinyl alcohol.
  • the additive amount of the additive in the fiber base layer is 8.1 to 28 parts by weight, and among the additives, the dispersant is 2.5 to 9 parts by weight.
  • the thickener is 3 to 8 parts by weight, the emulsifier is 0.1 to 2 parts by weight, and the adhesive is 2.5 to 9 parts by weight.
  • the current collector as described above further includes a first anti-oxidation layer and a second anti-oxidation layer.
  • the first anti-oxidation layer is located on the surface of the first metal layer away from the first adhesive layer.
  • the second anti-oxidation layer is located on the surface of the second metal layer away from the second adhesive layer.
  • the materials of the first bonding layer and the second bonding layer are independently Ni, Zn, Fe, Gr, SiO2, Al2O3, Fe2O3 or Si3N4.
  • the first metal layer and the second metal layer are made of Al, Cu or Zn.
  • the materials of the first anti-oxidation layer and the second anti-oxidation layer are independently Al, Fe, Ni, Zn, Gr, Fe2O3, Al2O3, SiC or Si3N4 .
  • the thickness of the fiber base layer is 2 ⁇ m to 8 ⁇ m.
  • the thicknesses of the first adhesive layer and the second adhesive layer are each independently 10 nm to 200 nm.
  • the thicknesses of the first metal layer and the second metal layer are each independently 100 nm to 2000 nm.
  • the thicknesses of the first anti-oxidation layer and the second anti-oxidation layer are independently 10 nm to 100 nm.
  • At least one of the first bonding layer and the second bonding layer is made of Fe
  • the inorganic fiber includes one of graphene fiber, carbon fiber or Two kinds.
  • the inorganic fibers are selected from metal oxide nanofibers, and the materials of the first adhesive layer and the second adhesive layer are independently selected from metal or metal oxide nanofibers. things.
  • the inorganic fiber is selected from one or more of graphene fiber, carbon fiber, glass fiber, ceramic fiber and silica nanofiber, and the first adhesive layer
  • the materials of the second bonding layer and the second bonding layer are independently selected from non-metal oxides and non-metal nitrides.
  • the present invention also provides a method for preparing a current collector as described above, which includes the following steps:
  • the composite fiber, the inorganic filler and the additive are mixed and rolled into shape to prepare the fiber base layer;
  • the first adhesive layer and the second adhesive layer are respectively formed on both sides of the fiber base layer;
  • the first metal layer and the second metal layer are respectively formed on the side of the first adhesive layer and the second adhesive layer away from the fiber base layer.
  • the present invention further provides an electrode pole piece, which includes the above-mentioned current collector and an electrode active material layer located on the surface of the current collector.
  • the present invention provides a battery cell, which includes the above-mentioned electrode pole piece.
  • the present invention also provides a battery pack, which includes a plurality of the above-mentioned electrode cells.
  • the present invention also provides an electrical device, which includes the battery cell as described above or the battery pack as described above.
  • the fiber base layer provided by the present invention has a low elongation rate and is not easily deformed, and the surface of the fiber base layer does not need to be punched. Under the action of the first bonding layer and the second bonding layer, it can be realized with the first metal The good combination of the first metal layer and the second metal layer prevents the first metal layer and the second metal layer from falling off, and solves the problem of weakening or losing battery performance due to the falling off of the first metal layer and the second metal layer.
  • the above-mentioned fiber base layer can also reduce the weight of the current collector, thereby reducing the total battery capacity and increasing its energy density.
  • the introduction of the fiber base layer is beneficial to the infiltration of the current collector and the electrolyte, thereby improving the efficiency of the battery injection process, increasing the battery rate performance, and enhancing the stability of the battery.
  • the current collector provided by the present invention can reduce the weight of the battery and improve the energy density of the battery while preventing the metal plating from falling off, and reducing the manufacturing cost of the current collector and the battery.
  • Figure 1 is a schematic structural diagram of a current collector produced in one embodiment of the present invention.
  • the heavier weight of traditional current collectors results in a heavier overall battery weight and lower energy density.
  • the plastic film currently used to reduce the weight of the current collector has a large elongation rate and is easy to deform, and the metal layer deposited on it is easy to fall off, making it difficult to achieve substantial improvement in battery performance.
  • the present invention provides a current collector to solve the above problems.
  • the current collector involved in the present invention includes a fiber base layer, wherein both sides of the fiber base layer are respectively provided with a first bonding layer and a second bonding layer, and the first bonding layer and the second bonding layer are on the surface away from the fiber base layer.
  • a first metal layer and a second metal layer are provided respectively; the material of the fiber base layer includes the following components by weight:
  • composite fiber 50 to 120 parts of composite fiber, 4.1 to 19 parts of inorganic filler and auxiliaries, in which the composite fiber includes organic fiber and inorganic fiber.
  • the above-mentioned fiber base layer has a low elongation rate and is not easily deformed, and the surface of the fiber base layer does not need to be punched. Under the action of the first bonding layer and the second bonding layer, the bonding with the first metal layer and the second bonding layer can be achieved.
  • the good combination of the two metal layers avoids This eliminates the need for the first metal layer and the second metal layer to fall off, and solves the problem of battery performance being weakened or lost due to the falling off of the first metal layer and the second metal layer.
  • the above-mentioned fiber base layer can also reduce the weight of the current collector, thereby reducing the total battery capacity and increasing its energy density.
  • the introduction of the fiber base layer is beneficial to the infiltration of the current collector and the electrolyte, thereby improving the efficiency of the battery injection process, increasing the battery rate performance, and enhancing the stability of the battery.
  • the current collector provided by the present invention can reduce the weight of the battery and improve the energy density of the battery while preventing the metal plating from falling off, and reducing the manufacturing cost of the current collector and the battery.
  • the composite fiber can be any value between 50 and 120 parts, for example, it can also be 55 parts, 58 parts, 60 parts, 65 parts, 70 parts, 80 parts, 90 parts, 100 parts, and 110 parts. .
  • the mass ratio of organic fibers and inorganic fibers can be any value between (70-99.9): (0.1-30), and can also be 80:20, 82:18, 85:15, 87: 13. 90:10, 92:8, 95:5, 98:2.
  • the organic fiber can be any organic fiber commonly used in the art, including, but not limited to, polyethylene terephthalate fiber, polybutylene terephthalate fiber, polyethylene naphthalate fiber. Glycol ester fiber, polypropyl urethane fiber, polyurethane fiber, polycaprolactone fiber, nylon 6, nylon 66, polyimide fiber, polyacrylonitrile fiber, polyoxyethylene fiber, polyvinyl alcohol fiber, One or more of polyvinyl chloride fiber, polyvinylpyrrolidone fiber, cellulose acetate, ethylcyanoethyl cellulose, polyaniline fiber and polybenzimidazole fiber.
  • the organic fiber is one or more of nylon 6, nylon 66, polyimide fiber and polyacrylonitrile fiber.
  • the inorganic fiber can also be any well-known inorganic fiber in the art, including, but not limited to, one of graphene fiber, carbon fiber, glass fiber, ceramic fiber, metal oxide nanofiber and silica nanofiber.
  • the inorganic fibers are metal oxide nanofibers.
  • the metal oxide nanofibers include one or more of aluminum oxide nanofibers, zinc oxide nanofibers, zirconium oxide nanofibers, magnesium oxide nanofibers, titanium dioxide nanofibers and tin oxide nanofibers.
  • graphene fiber is a fibrous material composed of graphene single-layer units.
  • the inorganic filler includes one or more of calcium carbonate, borax, and nanosilica.
  • the mechanical properties and heat resistance of the fiber base layer can be improved by adding inorganic fillers.
  • the inorganic fillers are calcium carbonate, borax and nano-silica.
  • calcium carbonate is 2-8 parts by weight
  • borax is 2-10 parts by weight
  • nano-silica is 0.1-1 parts by weight.
  • auxiliary agents may include one or more of dispersants, thickeners, emulsifiers, and binders.
  • the dispersant can be one or more of polyacrylamide, polyvinyl alcohol, sodium citrate and sodium silicate
  • the thickener can be sodium hydroxypropyl methylcellulose, hydroxyethyl methylcellulose
  • the emulsifier can be glyceryl monostearate, polyoxyethylene ether and sodium lauryl sulfate.
  • the binder may be sodium carboxymethylcellulose and/or polyvinyl alcohol.
  • the amount of additives added to the fiber base layer can be 8.1 to 28 parts by weight.
  • the dispersant can be 2.5 to 9 parts by weight
  • the thickener can be 3 to 8 parts by weight
  • the agent can be 0.1 to 2 parts by weight
  • the adhesive can be 2.5 to 9 parts by weight.
  • the thickness of the fiber base layer can be any value between 2 ⁇ m and 8 ⁇ m, for example, it can also be 2.5 ⁇ m, 4 ⁇ m, 5.5 ⁇ m, 6 ⁇ m, or 7 ⁇ m.
  • the fiber base layer has a tensile elongation of 0.2% to 0.4% at a compacted density of 4g/cm3 to 4.1g/cm3, which is much lower than the elongation of traditional copper foil or aluminum foil (>0.6%).
  • the current collector thus prepared has a lower elongation and is less prone to deformation.
  • the surface of the fiber base layer may or may not have a porous structure.
  • the average pore diameter may range from 5 nm to 500 nm, and the porosity may range from 0.1% to 50%.
  • the thickness of the first adhesive layer and the second adhesive layer can be independently any value between 10 nm and 200 nm, for example, it can also be 30 nm, 50 nm, 100 nm, 130 nm, 150 nm, or 180 nm.
  • the materials of the first bonding layer and the second bonding layer can be independently selected from metals or non-metal compounds, where the metal can be Ni, Zn, Fe or Gr, and the non-metal compounds are mainly oxides. and nitrides, such as SiO2, Al2O3, Fe2O3 or Si3N4, wherein the non-metallic compounds are further divided into compounds containing metal elements and compounds without metal elements.
  • the compounds containing metal elements mainly include metal oxides. , for example, it can be Al2O3 or Fe2O3, and the compound that does not contain metal elements mainly includes non-metal oxides and non-metal nitrides, for example, it can be SiO2 or Si3N4.
  • the inorganic fibers are selected from metal oxide nanofibers, and the materials of the first bonding layer and the second bonding layer are independently selected from metals or metal oxides.
  • the inorganic fibers comprise titanium dioxide nanofibers, and the materials of the first bonding layer and the second bonding layer are independently selected from Ni and Fe2O3.
  • the inorganic fiber is selected from one or more of graphene fiber, carbon fiber, glass fiber, ceramic fiber and silica nanofiber, and the materials of the first bonding layer and the second bonding layer are independent of each other.
  • Ground is selected from non-metal oxides and non-metal nitrides, for example, it can be SiO2 or Si3N4.
  • the inorganic fiber is selected from one or more of glass fiber, ceramic fiber and silica nanofiber, and the materials of the first bonding layer and the second bonding layer are independently selected from SiO2 or Si3N4 .
  • the inorganic fibers are selected from one or both of graphene fibers and carbon fibers, and the materials of the first bonding layer and the second bonding layer are independently selected from Ni, Zn, Fe and Gr.
  • the inorganic fiber is selected from one or both graphene fibers and carbon fibers, and the first bonding layer The material of at least one of the second bonding layer and the second bonding layer is Fe.
  • the thickness of the first metal layer and the second metal layer can be independently any value between 100nm and 2000nm, for example, it can also be 150nm, 200nm, 300nm, 500nm, 800nm, 1200nm, 1500nm, 1800nm. .
  • the first metal layer and the second metal layer may be made of Al, Cu or Zn.
  • the current collector further includes a first anti-oxidation layer and a second anti-oxidation layer.
  • the first anti-oxidation layer is located on a side of the first metal layer away from the first adhesive layer
  • the second anti-oxidation layer is located on the side of the first metal layer away from the first adhesive layer.
  • the thickness of the first anti-oxidation layer and the second anti-oxidation layer can be independently any value between 10 nm and 100 nm, for example, it can also be 20 nm, 50 nm, 70 nm, or 90 nm.
  • the materials of the first anti-oxidation layer and the second anti-oxidation layer can be each independently a metal, a metal oxide, or a non-metal compound, wherein the metal can be Al, Fe, Ni, Zn or Gr, and the metal oxide
  • the compound can be Fe2O3 or Al2O3, and the non-metal compound can be carbide or nitride, such as SiC or Si3N4.
  • the materials of the first anti-oxidation layer and the second anti-oxidation layer can be independently Al, Fe, Ni, Zn, Fe2O3, Al2O3 or SiC.
  • the material of the first anti-oxidation layer and the second anti-oxidation layer can be independently Ni, Gr, Al2O3 or Si3N4.
  • the present invention also provides a method for preparing a current collector as described above, which includes the following steps:
  • a first adhesive layer and a second adhesive layer are respectively formed on both sides of the fiber base layer;
  • a first metal layer and a second metal layer are respectively formed on the surfaces of the first adhesive layer and the second adhesive layer away from the fiber base layer.
  • the specific steps of preparing the fiber base layer may be to mix composite fibers, inorganic fillers and auxiliaries, lay them into a mesh, and then hot-roll and dry them into shape.
  • the method of forming the first adhesive layer, the second adhesive layer, the first metal layer and the second metal layer may be any method known in the art, such as vacuum vapor deposition.
  • the present invention further provides an electrode pole piece, which includes the above-mentioned current collector and an electrode active material layer located on the surface of the current collector.
  • the present invention provides a battery cell, which includes the above-mentioned electrode pole piece.
  • the present invention also provides a battery pack, which includes a plurality of the above-mentioned electrode cells.
  • the present invention also provides an electrical device, which includes the battery cell as described above or the battery pack as described above.
  • the current collector includes a fiber base layer 100, in which a first bonding layer 200 and a second bonding layer 500 are respectively provided on both sides of the fiber base layer 100.
  • the first bonding layer 200 and the second bonding layer 500 are away from the fibers.
  • the first metal layer 300 and the second metal layer 600 are respectively provided on one side of the base layer 100; the first metal layer 300 and the second metal layer 600 are respectively provided on the side away from the first adhesive layer 200 and the second adhesive layer 500.
  • the specific preparation steps of the current collector are as follows:
  • nylon 6 and titanium dioxide nanofibers After blending and melting nylon 6 and titanium dioxide nanofibers with a mass ratio of 98:2, they are extruded to form composite fibers; take 50 parts of composite fiber, 3 parts of sodium methylcellulose, 3 parts of polyacrylamide, and 0.5 parts of monostearin Glyceryl acid, 2 parts of calcium carbonate, 5 parts of polyvinyl alcohol, 2 parts of borax and 0.2 parts of nano-silica are mixed evenly, then evenly laid into a mesh, and then hot rolled and dried to prepare a 6 ⁇ m thick fiber base layer 100;
  • a first adhesive layer 200 and a second adhesive layer 500 with a thickness of 50 nm are respectively deposited on the upper and lower surfaces of the fiber base layer 100 prepared in step 1), wherein the first adhesive layer 200 and The second adhesive layer 500 is a nickel metal layer. Then continue to deposit a first metal layer 300 and a second metal layer 600 with a thickness of 1000 nm on the first adhesive layer 200 and the second adhesive layer 500, wherein the first metal layer 300 and the second metal layer 600 are aluminum metal. layer.
  • first anti-oxidation layer 400 and the second anti-oxidation layer 700 with a thickness of 50 nm on the first metal layer 300 and the second metal layer 600, wherein the first anti-oxidation layer 400 and the second anti-oxidation layer 700 are
  • the nickel metal layer is the aluminum current collector. Relevant performance tests were performed on it, and the test results are shown in Table 1.
  • the method for preparing a current collector and the structure of the current collector in this embodiment are basically the same as those in Embodiment 1, except that the first metal layer 300 and the second metal layer 600 in step 2) are copper metal layers, thereby producing a copper collector. fluid. Relevant performance tests were performed on it, and the test results are shown in Table 1.
  • the method of preparing the current collector and the structure of the current collector in this embodiment are basically the same as those in Embodiment 1, except that the formula of the fiber base layer 100 is different.
  • the specific preparation steps of the current collector are as follows:
  • nylon 6 and titanium dioxide nanofibers After blending and melting nylon 6 and titanium dioxide nanofibers with a mass ratio of 98:2, they are extruded to form composite fibers; take 80 parts of composite fiber, 3 parts of sodium methylcellulose, 3 parts of polyacrylamide, and 0.5 parts of monostearin After mixing the acid glyceryl ester, 2 parts of calcium carbonate, 5 parts of polyvinyl alcohol, 2 parts of borax and 0.2 parts of nano-silica, evenly lay it into a mesh, and then heat it Roll and dry to prepare a 6 ⁇ m thick fiber base layer 100;
  • a first adhesive layer 200 and a second adhesive layer 500 with a thickness of 50 nm are respectively deposited on the upper and lower surfaces of the fiber base layer 100 prepared in step 1), wherein the first adhesive layer 200 and The second adhesive layer 500 is a SiO2 layer.
  • a first metal layer 300 and a second metal layer 600 with a thickness of 1000 nm are aluminum metal. layer.
  • the Al2O3 layer is the aluminum current collector. Relevant performance tests were performed on it, and the test results are shown in Table 1.
  • the method for preparing a current collector and the structure of the current collector in this embodiment are basically the same as those in Embodiment 3, except that the first metal layer 300 and the second metal layer 600 in step 2) are copper metal layers, and the first anti-oxidation layer 400 and the second anti-oxidation layer 700 are SiC layers, thereby producing a copper current collector. Relevant performance tests were performed on it, and the test results are shown in Table 1.
  • the method of preparing the current collector and the structure of the current collector in this embodiment are basically the same as those in Embodiment 1, except that the formula of the fiber base layer 100 is different.
  • the specific preparation steps of the current collector are as follows:
  • polyimide fiber and glass fiber After blending and melting polyimide fiber and glass fiber with a mass ratio of 98:2, they are extruded to form composite fiber; take 120 parts of composite fiber, 3 parts of sodium methylcellulose, 3 parts of polyacrylamide, 0.5 parts of mono Glyceryl stearate, 2 parts of calcium carbonate, 5 parts of polyvinyl alcohol, 2 parts of borax and 0.2 parts of nano-silica are mixed evenly and laid evenly into a mesh, and then hot rolled and dried to prepare a 6 ⁇ m thick fiber base layer 100 ;
  • Vacuum vapor deposition technology is used to deposit a first adhesive layer 200 and a second adhesive layer 500 with a thickness of 40 nm respectively on the upper and lower surfaces of the fiber base layer 100 prepared in step 1), wherein the first adhesive layer 200 and The second adhesive layer 500 is a nickel metal layer. Then continue to deposit a first metal layer 300 and a second metal layer 600 with a thickness of 1000 nm on the first adhesive layer 200 and the second adhesive layer 500, wherein the first metal layer 300 and the second metal layer 600 are aluminum metal. layer.
  • first anti-oxidation layer 400 and the second anti-oxidation layer 700 with a thickness of 40 nm on the first metal layer 300 and the second metal layer 600, wherein the first anti-oxidation layer 400 and the second anti-oxidation layer 700 are
  • the nickel metal layer is the aluminum current collector. Relevant performance tests were performed on it, and the test results are shown in Table 1.
  • the method for preparing the current collector and the structure of the current collector in this embodiment are basically the same as those in Example 5, except for the following steps:
  • the first metal layer 300 and the second metal layer 600 in 2) are copper metal layers, thereby producing a copper current collector. Relevant performance tests were performed on it, and the test results are shown in Table 1.
  • the method of preparing the current collector and the structure of the current collector in this embodiment are basically the same as those in Embodiment 1, except that the formula of the fiber base layer 100 is different.
  • the specific preparation steps of the current collector are as follows:
  • polyacrylonitrile fibers and silica nanofibers After blending and melting polyacrylonitrile fibers and silica nanofibers with a mass ratio of 85:15, they are extruded to form composite fibers; take 50 parts of composite fiber, 3 parts of sodium methylcellulose, 3 parts of polyacrylamide, 0.5 After mixing evenly, 6 parts of glyceryl monostearate, 2 parts of calcium carbonate, 5 parts of polyvinyl alcohol, 2 parts of borax and 0.2 parts of nano-silica are evenly laid into a mesh, and then hot rolled and dried to prepare 6 ⁇ m thick fibers. Grassroots 100;
  • a first adhesive layer 200 and a second adhesive layer 500 with a thickness of 50 nm are respectively deposited on the upper and lower surfaces of the fiber base layer 100 prepared in step 1), wherein the first adhesive layer 200 and The second adhesive layer 500 is a nickel metal layer. Then continue to deposit a first metal layer 300 and a second metal layer 600 with a thickness of 1000 nm on the first adhesive layer 200 and the second adhesive layer 500, wherein the first metal layer 300 and the second metal layer 600 are aluminum metal. layer.
  • first anti-oxidation layer 400 and the second anti-oxidation layer 700 with a thickness of 50 nm on the first metal layer 300 and the second metal layer 600, wherein the first anti-oxidation layer 400 and the second anti-oxidation layer 700 are
  • the nickel metal layer is the aluminum current collector. Relevant performance tests were performed on it, and the test results are shown in Table 1.
  • the method of preparing a current collector and the structure of the current collector in this embodiment are basically the same as those in Embodiment 7, except that the materials of the first adhesive layer 200 and the second adhesive layer 500 are different.
  • the specific preparation steps of the current collector are as follows:
  • polyacrylonitrile fibers and silica nanofibers After blending and melting polyacrylonitrile fibers and silica nanofibers with a mass ratio of 85:15, they are extruded to form composite fibers; take 50 parts of composite fiber, 3 parts of sodium methylcellulose, 3 parts of polyacrylamide, 0.5 After mixing evenly, 6 parts of glyceryl monostearate, 2 parts of calcium carbonate, 5 parts of polyvinyl alcohol, 2 parts of borax and 0.2 parts of nano-silica are evenly laid into a mesh, and then hot rolled and dried to prepare 6 ⁇ m thick fibers. Grassroots 100;
  • a first adhesive layer 200 and a second adhesive layer 500 with a thickness of 50 nm are respectively deposited on the upper and lower surfaces of the fiber base layer 100 prepared in step 1), wherein the first adhesive layer 200 and The second adhesive layer 500 is a SiO2 layer.
  • a first metal layer 300 and a second metal layer 600 with a thickness of 1000 nm are aluminum metal. layer.
  • first anti-oxidation layer 400 and a second anti-oxidation layer 700 with a thickness of 50 nm on the first metal layer 300 and the second metal layer 600, wherein the first anti-oxidation layer 400 and the second anti-oxidation layer 700 are made of nickel.
  • the metal layer is the aluminum current collector. Relevant performance tests were performed on it, and the test results are shown in Table 1.
  • the method for preparing a current collector and the structure of the current collector in this embodiment are basically the same as those in Embodiment 6, except that the materials of the first adhesive layer 200 and the second adhesive layer 500 are different.
  • the specific preparation steps of the current collector are as follows:
  • polyimide fiber and glass fiber After blending and melting polyimide fiber and glass fiber with a mass ratio of 98:2, they are extruded to form composite fiber; take 120 parts of composite fiber, 3 parts of sodium methylcellulose, 3 parts of polyacrylamide, 0.5 parts of mono Glyceryl stearate, 2 parts of calcium carbonate, 5 parts of polyvinyl alcohol, 2 parts of borax and 0.2 parts of nano-silica are mixed evenly and laid evenly into a mesh, and then hot rolled and dried to prepare a 6 ⁇ m thick fiber base layer 100 ;
  • Vacuum vapor deposition technology is used to deposit a first adhesive layer 200 and a second adhesive layer 500 with a thickness of 40 nm respectively on the upper and lower surfaces of the fiber base layer 100 prepared in step 1), wherein the first adhesive layer 200 and The second adhesive layer 500 is a SiO2 layer. Then continue to deposit a first metal layer 300 and a second metal layer 600 with a thickness of 1000 nm on the first adhesive layer 200 and the second adhesive layer 500, wherein the first metal layer 300 and the second metal layer 600 are copper metal. layer.
  • the method of preparing the current collector and the structure of the current collector in this comparative example are basically the same as those in Example 1, except that the materials of the first adhesive layer 200 and the second adhesive layer 500 are different.
  • the specific preparation steps of the current collector are as follows:
  • nylon 6 and titanium dioxide nanofibers After blending and melting nylon 6 and titanium dioxide nanofibers with a mass ratio of 98:2, they are extruded to form composite fibers; take 50 parts of composite fiber, 3 parts of sodium methylcellulose, 3 parts of polyacrylamide, and 0.5 parts of monostearin Glyceryl acid, 2 parts of calcium carbonate, 5 parts of polyvinyl alcohol, 2 parts of borax and 0.2 parts of nano-silica are mixed evenly, then evenly laid into a mesh, and then hot rolled and dried to prepare a 6 ⁇ m thick fiber base layer 100;
  • a first adhesive layer 200 and a second adhesive layer 500 with a thickness of 50 nm are respectively deposited on the upper and lower surfaces of the fiber base layer 100 prepared in step 1), wherein the first adhesive layer 200 and The second adhesive layer 500 is a Fe2O3 layer. Then continue to deposit the first metal layer 300 and the second metal layer 600 with a thickness of 1000 nm on the first adhesive layer 200 and the second adhesive layer 500, wherein the first metal layer 300 and the second metal layer 600 are aluminum metal. layer.
  • first anti-oxidation layer 400 and the second anti-oxidation layer 700 with a thickness of 50 nm on the first metal layer 300 and the second metal layer 600, wherein the first anti-oxidation layer 400 and the second anti-oxidation layer 700 are
  • the nickel metal layer is the aluminum current collector. Relevant performance tests were performed on it, and the test results are shown in Table 1.
  • the method of preparing the current collector and the structure of the current collector in this comparative example are basically the same as those in Example 1, except that the materials of the inorganic fibers are different, and the materials of the first adhesive layer 200 and the second adhesive layer 500 are different.
  • the specific preparation steps of the current collector are as follows:
  • nylon 6 and graphene fiber After blending and melting nylon 6 and graphene fiber with a mass ratio of 98:2, they are extruded to form composite fibers; take 50 parts of composite fiber, 3 parts of sodium methylcellulose, 3 parts of polyacrylamide, and 0.5 parts of monostearin Glyceryl acid, 2 parts of calcium carbonate, 5 parts of polyvinyl alcohol, 2 parts of borax and 0.2 parts of nano-silica are mixed evenly, then evenly laid into a mesh, and then hot rolled and dried to prepare a 6 ⁇ m thick fiber base layer 100;
  • a first adhesive layer 200 and a second adhesive layer 500 with a thickness of 50 nm are respectively deposited on the upper and lower surfaces of the fiber base layer 100 prepared in step 1), wherein the first adhesive layer 200 and The second adhesive layer 500 is an iron metal layer. Then continue to deposit a first metal layer 300 and a second metal layer 600 with a thickness of 1000 nm on the first adhesive layer 200 and the second adhesive layer 500, wherein the first metal layer 300 and the second metal layer 600 are aluminum metal. layer.
  • first anti-oxidation layer 400 and the second anti-oxidation layer 700 with a thickness of 50 nm on the first metal layer 300 and the second metal layer 600, wherein the first anti-oxidation layer 400 and the second anti-oxidation layer 700 are
  • the nickel metal layer is the aluminum current collector. Relevant performance tests were performed on it, and the test results are shown in Table 1.
  • the method and structure of the current collector for preparing the current collector in this comparative example are basically the same as those in Example 11. The difference is that the first metal layer 300 and the second metal layer 600 in step 2) are copper metal layers, thereby producing a copper collector. fluid.
  • the specific preparation steps of the current collector are as follows:
  • nylon 6 and graphene fiber After blending and melting nylon 6 and graphene fiber with a mass ratio of 98:2, they are extruded to form composite fibers; take 50 parts of composite fiber, 3 parts of sodium methylcellulose, 3 parts of polyacrylamide, and 0.5 parts of monostearin Glyceryl acid, 2 parts of calcium carbonate, 5 parts of polyvinyl alcohol, 2 parts of borax and 0.2 parts of nano-silica are mixed evenly, then evenly laid into a mesh, and then hot rolled and dried to prepare a 6 ⁇ m thick fiber base layer 100;
  • the first adhesive layer 200 and the second adhesive layer 500 are 50 nm, wherein the first adhesive layer 200 and the second adhesive layer 500 are iron metal layers. Then continue to deposit a first metal layer 300 and a second metal layer 600 with a thickness of 1000 nm on the first adhesive layer 200 and the second adhesive layer 500, wherein the first metal layer 300 and the second metal layer 600 are copper metal. layer.
  • first anti-oxidation layer 400 and the second anti-oxidation layer 700 with a thickness of 50 nm on the first metal layer 300 and the second metal layer 600, wherein the first anti-oxidation layer 400 and the second anti-oxidation layer 700 are
  • the nickel metal layer is the copper current collector. Relevant performance tests were performed on it, and the test results are shown in Table 1.
  • the method of preparing the current collector and the structure of the current collector in this comparative example are basically the same as those in Example 11, except that the materials of the inorganic fibers are different.
  • the specific preparation steps of the current collector are as follows:
  • nylon 6 and carbon fiber After blending and melting nylon 6 and carbon fiber with a mass ratio of 98:2, they are extruded to form composite fibers; take 50 parts of composite fiber, 3 parts of sodium methylcellulose, 3 parts of polyacrylamide, and 0.5 parts of glyceryl monostearate After the ester, 2 parts of calcium carbonate, 5 parts of polyvinyl alcohol, 2 parts of borax and 0.2 parts of nano-silica are mixed evenly, they are evenly laid into a mesh shape, and then hot rolled and dried to prepare a 6 ⁇ m thick fiber base layer 100;
  • a first adhesive layer 200 and a second adhesive layer 500 with a thickness of 50 nm are respectively deposited on the upper and lower surfaces of the fiber base layer 100 prepared in step 1), wherein the first adhesive layer 200 and The second adhesive layer 500 is an iron metal layer. Then continue to deposit a first metal layer 300 and a second metal layer 600 with a thickness of 1000 nm on the first adhesive layer 200 and the second adhesive layer 500, wherein the first metal layer 300 and the second metal layer 600 are aluminum metal. layer.
  • first anti-oxidation layer 400 and the second anti-oxidation layer 700 with a thickness of 50 nm on the first metal layer 300 and the second metal layer 600, wherein the first anti-oxidation layer 400 and the second anti-oxidation layer 700 are
  • the nickel metal layer is the aluminum current collector. Relevant performance tests were performed on it, and the test results are shown in Table 1.
  • the method for preparing the current collector and the structure of the current collector in this comparative example are basically the same as those in Example 12, except that the materials of the inorganic fibers are different.
  • the specific preparation steps of the current collector are as follows:
  • nylon 6 and carbon fiber After blending and melting nylon 6 and carbon fiber with a mass ratio of 98:2, they are extruded to form composite fibers; take 50 parts of composite fiber, 3 parts of sodium methylcellulose, 3 parts of polyacrylamide, and 0.5 parts of glyceryl monostearate After the ester, 2 parts of calcium carbonate, 5 parts of polyvinyl alcohol, 2 parts of borax and 0.2 parts of nano-silica are mixed evenly, they are evenly laid into a mesh shape, and then hot rolled and dried to prepare a 6 ⁇ m thick fiber base layer 100;
  • a first adhesive layer 200 and a second adhesive layer 500 with a thickness of 50 nm are respectively deposited on the upper and lower surfaces of the fiber base layer 100 prepared in step 1), wherein the first adhesive layer 200 and The second adhesive layer 500 is an iron metal layer. Then continue to deposit a first metal layer 300 and a second metal layer 600 with a thickness of 1000 nm on the first adhesive layer 200 and the second adhesive layer 500, wherein the first metal layer 300 and the second metal layer 600 are copper metal. layer.
  • first anti-oxidation layer 400 and the second anti-oxidation layer 700 with a thickness of 50 nm on the first metal layer 300 and the second metal layer 600, wherein the first anti-oxidation layer 400 and the second anti-oxidation layer 700 are
  • the nickel metal layer is the copper current collector. Relevant performance tests were performed on it, and the test results are shown in Table 1.
  • the method for preparing the current collector and the structure of the current collector in this comparative example are basically the same as those in Example 1, except that the fiber used in the fiber base layer 100 is only nylon 6. Specific steps are as follows:
  • a first adhesive layer 200 and a second adhesive layer 500 with a thickness of 50 nm are respectively deposited on the upper and lower surfaces of the fiber base layer 100 prepared in step 1), wherein the first adhesive layer 200 and The second adhesive layer 500 is a nickel metal layer. Then continue to deposit a first metal layer 300 and a second metal layer 600 with a thickness of 1000 nm on the first adhesive layer 200 and the second adhesive layer 500, wherein the first metal layer 300 and the second metal layer 600 are aluminum metal. layer.
  • first anti-oxidation layer 400 and the second anti-oxidation layer 700 with a thickness of 50 nm on the first metal layer 300 and the second metal layer 600, wherein the first anti-oxidation layer 400 and the second anti-oxidation layer 700 are
  • the nickel metal layer is the aluminum current collector. Relevant performance tests were performed on it, and the test results are shown in Table 1.
  • the method of preparing the current collector and the structure of the current collector in this comparative example are basically the same as those in Comparative Example 1, except that the first metal layer 300 and the second metal layer 600 in step 2) are copper metal layers. Specific steps are as follows:
  • the first adhesive layer 200 and the second adhesive layer 500 are 50 nm, wherein the first adhesive layer 200 and the second adhesive layer 500 are nickel metal layers. Then continue to deposit a first metal layer 300 and a second metal layer 600 with a thickness of 1000 nm on the first adhesive layer 200 and the second adhesive layer 500, wherein the first metal layer 300 and the second metal layer 600 are copper metal. layer.
  • first anti-oxidation layer 400 and the second anti-oxidation layer 700 with a thickness of 50 nm on the first metal layer 300 and the second metal layer 600, wherein the first anti-oxidation layer 400 and the second anti-oxidation layer 700 are
  • the nickel metal layer is the aluminum current collector. Relevant performance tests were performed on it, and the test results are shown in Table 1.
  • the preparation method and current collector structure of this comparative example are basically the same as those of Example 1, except that the mass ratio of nylon 6 and titanium dioxide nanofibers in the composite fiber is 60:40.
  • the method for preparing the current collector and the structure of the current collector in this comparative example are basically the same as those in Example 1, except that the first adhesive layer and the second adhesive layer are not provided.
  • Test method for tensile elongation Clamp one end of the fiber base layer in the upper clamping head of the tensile testing machine, and clamp the other end in the lower clamping head of the tensile testing machine, and keep it at the same on the axis; set the specifications, speed, unit and other parameters of the testing machine, measure and record the extension length and load value of the sample during the test process; calculate the tensile elongation of the fiber base layer based on the test results.
  • the pressure density when testing the tensile elongation is 4g/cm3 ⁇ 4.1g/cm3. Among them, the meaning of pressure density is the ratio of the tensile force exerted on the sample to the cross-sectional area of the sample.
  • the test conditions are specifically: temperature between 20°C-25°C, relative humidity between 40%-70%.
  • Peel force test method stick an 11cm long tape on the steel plate, and then stick a 10cm long current collector on the tape; stick a 22cm long tape on the current collector, and fix the steel plate to the peel force testing machine; After the long tape is bent into a U shape, the chuck of the peel force testing machine clamps the free end of the 22cm long tape, and then starts the peel force testing machine to separate the metal layer from the base material layer by pulling the tape to test the peeling force.
  • the test conditions are specifically: temperature between 20°C-25°C, relative humidity between 40%-70%.
  • Test method for electrolyte infiltration contact angle drop the electrolyte vertically on the surface of the current collector, and measure the contact angle between the droplet and the material surface using a contact angle measuring instrument.
  • the temperature is between 20°C-25°C, and the relative humidity is between 40%-70%.
  • the electrolyte is ethylene carbonate.
  • the resistivity test method record the length and cross-sectional area of the current collector sample; place the current collector sample into the test fixture to ensure good contact between the fixture and the sample surface; apply a certain amount of current through the resistivity tester. Use a voltmeter to measure the voltage across the sample. From the measured current and voltage values, the resistivity of the sample is calculated using the resistivity formula.
  • the specific test conditions are: temperature between 20°C and 25°C, relative humidity between 40% and 70%, and the resistance spacing of the resistivity tester between 0.8mm and 1.2mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及电池技术领域,具体而言,涉及一种集流体及其制备方法和应用。集流体包括纤维基层,纤维基层的两侧表面分别设有第一粘结层和第二粘结层,第一粘结层和第二粘结层在远离纤维基层的表面分别设有第一金属层和第二金属层;纤维基层的材料包括以下重量份的各组分:复合纤维50~120份、无机填料4.1~19份及助剂,其中复合纤维包括有机纤维和无机纤维。本发明提供的集流体能够在实现电池轻量化的同时,避免金属层的脱落。

Description

集流体及其制备方法和应用 技术领域
本发明涉及电池技术领域,具体而言,涉及一种集流体及其制备方法和应用。
背景技术
现今锂离子电池正负极集流体基本上是以纯铜箔作为负极集流体,纯铝箔作为正极集流体,导致正、负极集流体的总质量较重,约占电池总量的15%-20%。将正负极集流体减薄可以实现电池减重,提高能量密度。然而,目前纯铝箔通常靠传统压延设备制成,最薄量产厚度为8μm左右,纯铜箔通常是电解铜材,由阴极辊沉淀挤压成形,最薄量产厚度约为6μm。受限目前的技术设备,铜箔、铝箔的厚度很难再降低,另外由于铜和铝变成箔材后,其自身强度降低,导致加工性能降低,也难以进一步减薄。
目前也有研究将铝或铜通过物理或化学沉积技术沉积在塑料薄膜上(如PET膜、PVT膜、PP膜等)作为集流体来降低电池重量,提高能量密度,降低成本,实现电池轻量化。然而所采用的塑料薄膜延展性较高,容易变形。而且为了更好的与传统箔材对标导电性,通常需将铜层或铝层的沉积厚度增加到2μm左右,铜层或铝层厚度的增加易导致其发生脱落。
发明内容
基于此,本发明提供了一种能够在实现电池轻量化的同时,避免金属层的脱落的集流体及其制备方法和应用。
为了实现本发明的上述目的,特采用以下技术方案:
本发明一方面,提供一种集流体,包括纤维基层,所述纤维基层的两侧表面分别设有第一粘结层和第二粘结层,所述第一粘结层和所述第二粘结层在远离所述纤维基层的表面分别设有第一金属层和第二金属层;所述纤维基层的材料组成包括以下重量份的各组分:
复合纤维50~120份、无机填料4.1~19份及助剂,其中,所述复合纤维包括有机纤维和无机纤维。
可选的,如上述所述的集流体,所述有机纤维和所述无机纤维的质量比为(70~99.9):(0.1~30)。
可选的,如上述所述的集流体,所述有机纤维和所述无机纤维的质量比为(90~99.9):(0.1~10)。
可选的,如上述所述的集流体,所述无机填料包括碳酸钙、硼砂及纳米二氧化硅中的一种或多种。
可选的,如上述所述的集流体,所述有机纤维包括聚对苯二甲酸乙二醇酯纤维、聚对苯二甲酸丁二醇酯纤维、聚萘二甲酸乙二醇酯纤维、聚丙基胺基甲酸酯纤维、聚氨酯纤维、聚己内酯纤维、尼龙6、尼龙66、聚酰亚胺纤维、聚丙烯腈纤维、聚氧乙烯纤维、聚乙烯醇纤维、聚氯乙烯纤维、聚乙烯吡咯烷酮纤维、醋酸纤维素、乙基氰乙基纤维素、聚苯胺纤维及聚苯并咪唑纤维中的一种或多种。
可选的,如上述所述的集流体,所述无机纤维包括石墨烯纤维、碳纤维、玻璃纤维、陶瓷纤维、金属氧化物纳米纤维及二氧化硅纳米纤维中的一种或多种。
可选的,如上述所述的集流体,所述助剂包括分散剂、增稠剂、乳化剂及粘合剂中的一种或多种;
所述分散剂包括聚丙烯酰胺、聚乙烯醇、柠檬酸钠及硅酸钠中的一种或多种;
所述增稠剂包括羟丙基甲基纤维素钠、羟乙基甲基纤维素钠、羧甲基纤维素钠、甲基纤维素钠及海藻酸钠中的一种或多种;
所述乳化剂包括单硬脂酸甘油酯、聚氧乙烯醚及十二烷基硫酸钠中的一种或多种;
所述粘合剂包括羧甲基纤维素钠和/或聚乙烯醇。
可选的,如上述所述的集流体,所述助剂在所述纤维基层中的添加量为8.1~28重量份,在所述助剂中,所述分散剂为2.5~9重量份,所述增稠剂为3~8重量份,所述乳化剂为0.1~2重量份,所述粘合剂为2.5~9重量份。
可选的,如上述所述的集流体,还包括第一抗氧化层和第二抗氧化层,所述第一抗氧化层位于所述第一金属层远离所述第一粘结层的表面,所述第二抗氧化层位于所述第二金属层远离所述第二粘结层的表面。
可选的,如上述所述的集流体,所述第一粘结层和所述第二粘结层的材料各自独立地为Ni、Zn、Fe、Gr、SiO2、Al2O3、Fe2O3或Si3N4。
可选的,如上述所述的集流体,所述第一金属层和所述第二金属层的材料为Al、Cu或Zn。
可选的,如上述所述的集流体,所述第一抗氧化层和所述第二抗氧化层的材料各自独立地为Al、Fe、Ni、Zn、Gr、Fe2O3、Al2O3、SiC或Si3N4。
可选的,如上述所述的集流体,所述纤维基层的厚度为2μm~8μm。
可选的,如上述所述的集流体,所述第一粘结层和所述第二粘结层的厚度各自独立地为10nm~200nm。
可选的,如上述所述的集流体,所述第一金属层和所述第二金属层的厚度各自独立地为100nm~2000nm。
可选的,如上述所述的集流体,所述第一抗氧化层和所述第二抗氧化层的厚度各自独立地为10nm~100nm。
可选的,如上述所述的集流体,所述第一粘结层和所述第二粘结层至少之一的材料为Fe,所述无机纤维包括石墨烯纤维、碳纤维中的一种或两种。
可选的,如上述所述的集流体,所述无机纤维选自金属氧化物纳米纤维,所述第一粘结层和所述第二粘结层的材料分别独立地选自金属或金属氧化物。
可选的,如上述所述的集流体,所述无机纤维选自石墨烯纤维、碳纤维、玻璃纤维、陶瓷纤维及二氧化硅纳米纤维中的一种或多种,所述第一粘结层和所述第二粘结层的材料分别独立地选自非金属氧化物和非金属氮化物。
本发明一方面,还提供一种如上述所述的集流体的制备方法,包括以下步骤:
将所述复合纤维、所述无机填料和所述助剂混合后轧制成型,制备所述纤维基层;
在所述纤维基层的两面分别形成所述第一粘结层和所述第二粘结层;及
在所述第一粘结层和所述第二粘结层远离所述纤维基层的一面分别形成所述第一金属层和所述第二金属层。
本发明另一方面,进一步提供一种电极极片,其包括上述所述的集流体及位于所述集流体表面的电极活性材料层。
本发明再一方面,提供一种电池单体,其包括上述所述的电极极片。
本发明一方面,还提供一种电池组,其包括多个上述所述的电极单体。
本发明再一方面,还提供一种用电装置,其包括如上述所述的电池单体或如上所述的电池组。
本发明提供的纤维基层的延展率较低、不易变形,而且纤维基层的表面也不需要进行打孔处理,在第一粘结层和第二粘结层的作用下即可实现与第一金属层和第二金属层的良好结合,避免了第一金属层和第二金属层的脱落,解决了由于第一金属层和第二金属层的脱落导致电池性能减弱或丧失的问题。此外,上述纤维基层还能够实现集流体的减重,从而能够实现电池总量的降低,提高了其能量密度。而且纤维基层的引入有利于集流体与电解液的浸润,从而提高了电池注液工艺的效率,增加了电池倍率性能,增强了电池的稳定性。
综上,本发明提供的集流体在实现电池轻量化、提高电池能量密度的同时又可以避免金属镀层的脱落,且降低了集流体和电池的制造成本。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一个实施例中制得的集流体的结构示意图。
附图标记说明:100-纤维基层;200-第一粘结层;300-第一金属层;400-第一抗氧化层;500-第二粘结层;600-第二金属层;700-第二抗氧化层。
具体实施方式
现将详细地提供本发明实施方式的参考,其一个或多个实例描述于下文。提供每一实例作为解释而非限制本发明。实际上,对本领域技术人员而言,显而易见的是,可以对本发明进行多种修改和变化而不背离本发明的范围或精神。例如,作为一个实施方式的部分而说明或描述的特征可以用于另一实施方式中,来产生更进一步的实施方式。
因此,旨在本发明覆盖落入所附权利要求的范围及其等同范围中的此类修改和变化。本发明的其它对象、特征和方面公开于以下详细描述中或从中是显而易见的。本领域普通技术人员应理解本讨论仅是示例性实施方式的描述,而非意在限制本发明更广阔的方面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
传统集流体的重量较重导致电池的总重量较重,能量密度较低。此外,目前降低集流体重量所采用的塑料薄膜的延展率较大、易变形,且沉积其上的金属层易脱落,难以实现电池性能的实质性提升。为此,本发明提供了一种集流体以解决上述问题。
本发明涉及的集流体,包括纤维基层,其中纤维基层的两侧表面分别设有第一粘结层和第二粘结层,第一粘结层和第二粘结层在远离纤维基层的表面分别设有第一金属层和第二金属层;纤维基层的材料包括以下重量份的各组分:
复合纤维50~120份、无机填料4.1~19份及助剂,其中复合纤维包括有机纤维和无机纤维。
上述纤维基层的延展率较低、不易变形,而且纤维基层的表面也不需要进行打孔处理,在第一粘结层和第二粘结层的作用下即可实现与第一金属层和第二金属层的良好结合,避 免了第一金属层和第二金属层的脱落,解决了由于第一金属层和第二金属层的脱落导致电池性能减弱或丧失的问题。此外,上述纤维基层还能够实现集流体的减重,从而能够实现电池总量的降低,提高了其能量密度。而且纤维基层的引入有利于集流体与电解液的浸润,从而提高了电池注液工艺的效率,增加了电池倍率性能,增强了电池的稳定性。
综上,本发明提供的集流体在实现电池轻量化、提高电池能量密度的同时又可以避免金属镀层的脱落,且降低了集流体和电池的制造成本。
在一些实施方式中,复合纤维可以为50~120份之间的任意值,例如还可以为55份、58份、60份、65份、70份、80份、90份、100份、110份。
在一些实施方式中,有机纤维和无机纤维的质量比可以为(70~99.9):(0.1~30)之间的任意值,还可以为80:20、82:18、85:15、87:13、90:10、92:8、95:5、98:2。
在一些实施方式中,有机纤维可以为本领域常用的任意有机纤维,包括,但不限于聚对苯二甲酸乙二醇酯纤维、聚对苯二甲酸丁二醇酯纤维、聚萘二甲酸乙二醇酯纤维、聚丙基胺基甲酸酯纤维、聚氨酯纤维、聚己内酯纤维、尼龙6、尼龙66、聚酰亚胺纤维、聚丙烯腈纤维、聚氧乙烯纤维、聚乙烯醇纤维、聚氯乙烯纤维、聚乙烯吡咯烷酮纤维、醋酸纤维素、乙基氰乙基纤维素、聚苯胺纤维及聚苯并咪唑纤维中的一种或多种。优选地,有机纤维为尼龙6、尼龙66、聚酰亚胺纤维及聚丙烯腈纤维中的一种或多种。
在一些实施方式中,无机纤维也可以为本领域任意公知的无机纤维,包括,但不限于石墨烯纤维、碳纤维、玻璃纤维、陶瓷纤维、金属氧化物纳米纤维及二氧化硅纳米纤维中的一种或多种。优选地,无机纤维为金属氧化物纳米纤维。其中,金属氧化物纳米纤维包括氧化铝纳米纤维、氧化锌纳米纤维、氧化锆纳米纤维、氧化镁纳米纤维、二氧化钛纳米纤维及氧化锡纳米纤维中的一种或多种。其中,石墨烯纤维是由石墨烯单层单元组成的纤维状材料。
在一些实施方式中,无机填料包括碳酸钙、硼砂及纳米二氧化硅中的一种或多种。通过添加无机填料可以提高纤维基层的力学性能和耐热性能。优选地,无机填料为碳酸钙、硼砂和纳米二氧化硅。
在一些实施方式中,在无机填料中,碳酸钙为2~8重量份、硼砂为2~10重量份、纳米二氧化硅为0.1~1重量份。
在一些实施方式中,助剂可以包括分散剂、增稠剂、乳化剂及粘合剂中的一种或多种。其中,分散剂可以为聚丙烯酰胺、聚乙烯醇、柠檬酸钠及硅酸钠中的一种或多种,增稠剂可以为羟丙基甲基纤维素钠、羟乙基甲基纤维素钠、羧甲基纤维素钠、甲基纤维素钠及海藻酸钠中的一种或多种,乳化剂可以为单硬脂酸甘油酯、聚氧乙烯醚及十二烷基硫酸钠中 的一种或多种,粘合剂可以为羧甲基纤维素钠和/或聚乙烯醇。
在一些实施方式中,助剂在纤维基层中的添加量可以为8.1~28重量份,在助剂中,分散剂可以为2.5~9重量份,增稠剂可以为3~8重量份,乳化剂可以为0.1~2重量份,粘合剂可以为2.5~9重量份。
在一些实施方式中,纤维基层的厚度可以为2μm~8μm之间的任意值,例如还可以为2.5μm、4μm、5.5μm、6μm、7μm。
在一些实施方式中,纤维基层在4g/cm3~4.1g/cm3压实密度下的拉伸延展率为0.2%~0.4%,远低于传统铜箔或铝箔的延展率(>0.6%),由此制备的集流体的延展率更低,不易发生变形。
在一些实施方式中,纤维基层表面可以有孔结构,也可以没有孔结构,当有孔结构时,平均孔径可以为5nm~500nm,孔隙率可以为0.1%~50%。
在一些实施方式中,第一粘结层和第二粘结层的厚度可以各自独立地为10nm~200nm之间的任意值,例如还可以为30nm、50nm、100nm、130nm、150nm、180nm。
在一些实施方式中,第一粘结层和第二粘结层的材料可以分别独立地选自金属或非金属化合物,其中金属可以为Ni、Zn、Fe或Gr,非金属化合物主要为氧化物和氮化物,例如可以为SiO2、Al2O3、Fe2O3或Si3N4,其中所述非金属化合物又进一步分为含金属元素的化合物和不含金属元素的化合物,所述含金属元素的化合物主要包括金属氧化物,例如可以为Al2O3或Fe2O3,所述不含金属元素的化合物主要包括非金属氧化物和非金属氮化物,例如可以为SiO2或Si3N4。
在一些实施方式中,无机纤维选自金属氧化物纳米纤维,第一粘结层和第二粘结层的材料分别独立地选自金属或金属氧化物。
在一些实施方式中,无机纤维包含二氧化钛纳米纤维,第一粘结层和第二粘结层的材料分别独立地选自Ni和Fe2O3。
在一些实施方式中,无机纤维选自石墨烯纤维、碳纤维、玻璃纤维、陶瓷纤维及二氧化硅纳米纤维中的一种或多种,第一粘结层和第二粘结层的材料分别独立地选自非金属氧化物和非金属氮化物,例如可以为SiO2或Si3N4。
在一些实施方式中,无机纤维选自玻璃纤维、陶瓷纤维及二氧化硅纳米纤维中的一种或多种,第一粘结层和第二粘结层的材料分别独立地选自SiO2或Si3N4。
在一些实施方式中,无机纤维选自石墨烯纤维和碳纤维中的一种或两种,第一粘结层和第二粘结层的材料分别独立地选自Ni、Zn、Fe和Gr。
在一些实施方式中,无机纤维选自石墨烯纤维和碳纤维中的一种或两种,第一粘结层 和第二粘结层至少之一的材料为Fe。
在一些实施方式中,第一金属层和第二金属层的厚度可以各自独立地为100nm~2000nm之间的任意值,例如还可以为150nm、200nm、300nm、500nm、800nm、1200nm、1500nm、1800nm。
在一些实施方式中,第一金属层和第二金属层的材料可以为Al、Cu或Zn。
在一些实施方式中,所述集流体还包括第一抗氧化层和第二抗氧化层,第一抗氧化层位于第一金属层远离第一粘结层的一面,第二抗氧化层位于第二金属层远离第二粘结层的一面。抗氧化层的引入可以防止第一金属层和第二金属层发生氧化,还可以进一步防止第一金属层和第二金属层的脱落。
在一些实施方式中,第一抗氧化层和第二抗氧化层的厚度可以各自独立地为10nm~100nm之间的任意值,例如还可以为20nm、50nm、70nm、90nm。
在一些实施方式中,第一抗氧化层和第二抗氧化层的材料可以各自独立地为金属、金属氧化物、非金属化合物,其中金属可以为Al、Fe、Ni、Zn或Gr,金属氧化物可以为Fe2O3或Al2O3,非金属化合物可以为碳化物或氮化物,例如可以为SiC或Si3N4。优选地,当第一金属层和第二金属层的材料为Cu时,第一抗氧化层和第二抗氧化层的材料可以各自独立地为Al、Fe、Ni、Zn、Fe2O3、Al2O3或SiC;当第一金属层和第二金属层的材料为Al时,第一抗氧化层和第二抗氧化层的材料可以各自独立地为Ni、Gr、Al2O3或Si3N4。
本发明一方面,还提供一种如上述所述的集流体的制备方法,包括以下步骤:
将复合纤维、无机填料和助剂混合后轧制成型,制备纤维基层;
在纤维基层的两面分别形成第一粘结层和第二粘结层;及
在第一粘结层和第二粘结层远离纤维基层的一面分别形成第一金属层和第二金属层。
在一些实施方式中,制备纤维基层的具体步骤可以为将复合纤维、无机填料和助剂混合后铺设成网,然后经热轧和干燥成型。
在一些实施方式中,形成第一粘结层、第二粘结层、第一金属层和第二金属层的方法可以为本领域公知的任意方法,比如真空气相沉积。
本发明另一方面,进一步提供一种电极极片,其包括上述所述的集流体及位于集流体表面的电极活性材料层。
本发明再一方面,提供一种电池单体,其包括上述所述的电极极片。
本发明一方面,还提供一种电池组,其包括多个上述所述的电极单体。
本发明再一方面,还提供一种用电装置,其包括如上述所述的电池单体或如上所述的电池组。
以下结合具体实施例和对比例对本发明作进一步详细的说明。
实施例1
本实施例制得的集流体的结构示意图如图1所示。由图1可知,集流体包括纤维基层100,其中纤维基层100的两面分别设有第一粘结层200和第二粘结层500在第一粘结层200和第二粘结层500远离纤维基层100的一侧分别设有第一金属层300和第二金属层600;第一金属层300和第二金属层600远离第一粘结层200和第二粘结层500的一侧分别设有第一抗氧化层400和第二抗氧化层700。集流体的具体制备步骤具体如下:
1)纤维基层100的制备
将质量比为98:2的尼龙6和二氧化钛纳米纤维共混熔融后,挤出形成复合纤维;取50份复合纤维、3份甲基纤维素钠、3份聚丙烯酰胺、0.5份单硬脂酸甘油酯、2份碳酸钙、5份聚乙烯醇、2份硼砂和0.2份纳米二氧化硅混合均匀后,均匀铺设成网状,随后通过热轧、干燥制备6μm厚的纤维基层100;
2)集流体的制备
采用真空气相沉积技术在步骤1)中制得的纤维基层100的上、下表面分别沉积厚度为50nm的第一粘结层200和第二粘结层500,其中,第一粘结层200和第二粘结层500为镍金属层。然后继续在第一粘结层200和第二粘结层500上沉积厚度为1000nm的第一金属层300和第二金属层600,其中,第一金属层300和第二金属层600为铝金属层。随后继续在第一金属层300和第二金属层600上沉积厚度为50nm的第一抗氧化层400和第二抗氧化层700,其中,第一抗氧化层400和第二抗氧化层700为镍金属层,即得铝集流体。对其进行相关性能测试,测试结果如表1所示。
实施例2
本实施例与实施例1制备集流体的方法和集流体结构基本相同,不同之处在于:步骤2)中的第一金属层300和第二金属层600为铜金属层,从而制得了铜集流体。对其进行相关性能测试,测试结果如表1所示。
实施例3
本实施例与实施例1制备集流体的方法和集流体结构基本相同,不同之处在于:纤维基层100的配方不同。集流体的具体制备步骤具体如下:
1)纤维基层100的制备
将质量比为98:2的尼龙6和二氧化钛纳米纤维共混熔融后,挤出形成复合纤维;取80份复合纤维、3份甲基纤维素钠、3份聚丙烯酰胺、0.5份单硬脂酸甘油酯、2份碳酸钙、5份聚乙烯醇、2份硼砂和0.2份纳米二氧化硅混合均匀后,均匀铺设成网状,随后通过热 轧、干燥制备6μm厚的纤维基层100;
2)集流体的制备
采用真空气相沉积技术在步骤1)中制得的纤维基层100的上、下表面分别沉积厚度为50nm的第一粘结层200和第二粘结层500,其中,第一粘结层200和第二粘结层500为SiO2层。然后继续在第一粘结层200和第二粘结层500上沉积厚度为1000nm的第一金属层300和第二金属层600,其中,第一金属层300和第二金属层600为铝金属层。随后继续在第一金属层300和第二金属层600上沉积厚度为50nm的第一抗氧化层400和第二抗氧化层700,其中,第一抗氧化层400和第二抗氧化层700为Al2O3层,即得铝集流体。对其进行相关性能测试,测试结果如表1所示。
实施例4
本实施例与实施例3制备集流体的方法和集流体结构基本相同,不同之处在于:步骤2)中的第一金属层300和第二金属层600为铜金属层,第一抗氧化层400和第二抗氧化层700为SiC层,从而制得了铜集流体。对其进行相关性能测试,测试结果如表1所示。
实施例5
本实施例与实施例1制备集流体的方法和集流体结构基本相同,不同之处在于:纤维基层100的配方不同。集流体的具体制备步骤具体如下:
1)纤维基层100的制备
将质量比为98:2的聚酰亚胺纤维和玻璃纤维共混熔融后,挤出形成复合纤维;取120份复合纤维、3份甲基纤维素钠、3份聚丙烯酰胺、0.5份单硬脂酸甘油酯、2份碳酸钙、5份聚乙烯醇、2份硼砂和0.2份纳米二氧化硅混合均匀后,均匀铺设成网状,随后通过热轧、干燥制备6μm厚的纤维基层100;
2)集流体的制备
采用真空气相沉积技术在步骤1)中制得的纤维基层100的上、下表面分别沉积厚度为40nm的第一粘结层200和第二粘结层500,其中,第一粘结层200和第二粘结层500为镍金属层。然后继续在第一粘结层200和第二粘结层500上沉积厚度为1000nm的第一金属层300和第二金属层600,其中,第一金属层300和第二金属层600为铝金属层。随后继续在第一金属层300和第二金属层600上沉积厚度为40nm的第一抗氧化层400和第二抗氧化层700,其中,第一抗氧化层400和第二抗氧化层700为镍金属层,即得铝集流体。对其进行相关性能测试,测试结果如表1所示。
实施例6
本实施例与实施例5制备集流体的方法和集流体结构基本相同,不同之处在于:步骤 2)中的第一金属层300和第二金属层600为铜金属层,从而制得了铜集流体。对其进行相关性能测试,测试结果如表1所示。
实施例7
本实施例与实施例1制备集流体的方法和集流体结构基本相同,不同之处在于:纤维基层100的配方不同。集流体的具体制备步骤具体如下:
1)纤维基层100的制备
将质量比为85:15的聚丙烯腈纤维和二氧化硅纳米纤维共混熔融后,挤出形成复合纤维;取50份复合纤维、3份甲基纤维素钠、3份聚丙烯酰胺、0.5份单硬脂酸甘油酯、2份碳酸钙、5份聚乙烯醇、2份硼砂和0.2份纳米二氧化硅混合均匀后,均匀铺设成网状,随后通过热轧、干燥制备6μm厚的纤维基层100;
2)集流体的制备
采用真空气相沉积技术在步骤1)中制得的纤维基层100的上、下表面分别沉积厚度为50nm的第一粘结层200和第二粘结层500,其中,第一粘结层200和第二粘结层500为镍金属层。然后继续在第一粘结层200和第二粘结层500上沉积厚度为1000nm的第一金属层300和第二金属层600,其中,第一金属层300和第二金属层600为铝金属层。随后继续在第一金属层300和第二金属层600上沉积厚度为50nm的第一抗氧化层400和第二抗氧化层700,其中,第一抗氧化层400和第二抗氧化层700为镍金属层,即得铝集流体。对其进行相关性能测试,测试结果如表1所示。
实施例8
本实施例与实施例7制备集流体的方法和集流体结构基本相同,不同之处在于:第一粘结层200和第二粘结层500的材料不同。集流体的具体制备步骤具体如下:
1)纤维基层100的制备
将质量比为85:15的聚丙烯腈纤维和二氧化硅纳米纤维共混熔融后,挤出形成复合纤维;取50份复合纤维、3份甲基纤维素钠、3份聚丙烯酰胺、0.5份单硬脂酸甘油酯、2份碳酸钙、5份聚乙烯醇、2份硼砂和0.2份纳米二氧化硅混合均匀后,均匀铺设成网状,随后通过热轧、干燥制备6μm厚的纤维基层100;
2)集流体的制备
采用真空气相沉积技术在步骤1)中制得的纤维基层100的上、下表面分别沉积厚度为50nm的第一粘结层200和第二粘结层500,其中,第一粘结层200和第二粘结层500为SiO2层。然后继续在第一粘结层200和第二粘结层500上沉积厚度为1000nm的第一金属层300和第二金属层600,其中,第一金属层300和第二金属层600为铝金属层。随后 继续在第一金属层300和第二金属层600上沉积厚度为50nm的第一抗氧化层400和第二抗氧化层700,其中,第一抗氧化层400和第二抗氧化层700为镍金属层,即得铝集流体。对其进行相关性能测试,测试结果如表1所示。
实施例9
本实施例与实施例6制备集流体的方法和集流体结构基本相同,不同之处在于:第一粘结层200和第二粘结层500的材料不同。集流体的具体制备步骤具体如下:
1)纤维基层100的制备
将质量比为98:2的聚酰亚胺纤维和玻璃纤维共混熔融后,挤出形成复合纤维;取120份复合纤维、3份甲基纤维素钠、3份聚丙烯酰胺、0.5份单硬脂酸甘油酯、2份碳酸钙、5份聚乙烯醇、2份硼砂和0.2份纳米二氧化硅混合均匀后,均匀铺设成网状,随后通过热轧、干燥制备6μm厚的纤维基层100;
2)集流体的制备
采用真空气相沉积技术在步骤1)中制得的纤维基层100的上、下表面分别沉积厚度为40nm的第一粘结层200和第二粘结层500,其中,第一粘结层200和第二粘结层500为SiO2层。然后继续在第一粘结层200和第二粘结层500上沉积厚度为1000nm的第一金属层300和第二金属层600,其中,第一金属层300和第二金属层600为铜金属层。随后继续在第一金属层300和第二金属层600上沉积厚度为40nm的第一抗氧化层400和第二抗氧化层700,其中,第一抗氧化层400和第二抗氧化层700为镍金属层,即得铜集流体。对其进行相关性能测试,测试结果如表1所示。实施例10
本对比例与实施例1制备集流体的方法和集流体结构基本相同,不同之处在于:第一粘结层200和第二粘结层500的材料不同。集流体的具体制备步骤具体如下:
1)纤维基层100的制备
将质量比为98:2的尼龙6和二氧化钛纳米纤维共混熔融后,挤出形成复合纤维;取50份复合纤维、3份甲基纤维素钠、3份聚丙烯酰胺、0.5份单硬脂酸甘油酯、2份碳酸钙、5份聚乙烯醇、2份硼砂和0.2份纳米二氧化硅混合均匀后,均匀铺设成网状,随后通过热轧、干燥制备6μm厚的纤维基层100;
2)集流体的制备
采用真空气相沉积技术在步骤1)中制得的纤维基层100的上、下表面分别沉积厚度为50nm的第一粘结层200和第二粘结层500,其中,第一粘结层200和第二粘结层500为Fe2O3层。然后继续在第一粘结层200和第二粘结层500上沉积厚度为1000nm的第一金属层300和第二金属层600,其中,第一金属层300和第二金属层600为铝金属层。随 后继续在第一金属层300和第二金属层600上沉积厚度为50nm的第一抗氧化层400和第二抗氧化层700,其中,第一抗氧化层400和第二抗氧化层700为镍金属层,即得铝集流体。对其进行相关性能测试,测试结果如表1所示。
实施例11
本对比例与实施例1制备集流体的方法和集流体结构基本相同,不同之处在于:无机纤维的材料不同,第一粘结层200和第二粘结层500的材料不同。集流体的具体制备步骤具体如下:
1)纤维基层100的制备
将质量比为98:2的尼龙6和石墨烯纤维共混熔融后,挤出形成复合纤维;取50份复合纤维、3份甲基纤维素钠、3份聚丙烯酰胺、0.5份单硬脂酸甘油酯、2份碳酸钙、5份聚乙烯醇、2份硼砂和0.2份纳米二氧化硅混合均匀后,均匀铺设成网状,随后通过热轧、干燥制备6μm厚的纤维基层100;
2)集流体的制备
采用真空气相沉积技术在步骤1)中制得的纤维基层100的上、下表面分别沉积厚度为50nm的第一粘结层200和第二粘结层500,其中,第一粘结层200和第二粘结层500为铁金属层。然后继续在第一粘结层200和第二粘结层500上沉积厚度为1000nm的第一金属层300和第二金属层600,其中,第一金属层300和第二金属层600为铝金属层。随后继续在第一金属层300和第二金属层600上沉积厚度为50nm的第一抗氧化层400和第二抗氧化层700,其中,第一抗氧化层400和第二抗氧化层700为镍金属层,即得铝集流体。对其进行相关性能测试,测试结果如表1所示。
实施例12
本对比例与实施例11制备集流体的方法和集流体结构基本相同,不同之处在于:步骤2)中的第一金属层300和第二金属层600为铜金属层,从而制得了铜集流体。集流体的具体制备步骤具体如下:
1)纤维基层100的制备
将质量比为98:2的尼龙6和石墨烯纤维共混熔融后,挤出形成复合纤维;取50份复合纤维、3份甲基纤维素钠、3份聚丙烯酰胺、0.5份单硬脂酸甘油酯、2份碳酸钙、5份聚乙烯醇、2份硼砂和0.2份纳米二氧化硅混合均匀后,均匀铺设成网状,随后通过热轧、干燥制备6μm厚的纤维基层100;
2)集流体的制备
采用真空气相沉积技术在步骤1)中制得的纤维基层100的上、下表面分别沉积厚度 为50nm的第一粘结层200和第二粘结层500,其中,第一粘结层200和第二粘结层500为铁金属层。然后继续在第一粘结层200和第二粘结层500上沉积厚度为1000nm的第一金属层300和第二金属层600,其中,第一金属层300和第二金属层600为铜金属层。随后继续在第一金属层300和第二金属层600上沉积厚度为50nm的第一抗氧化层400和第二抗氧化层700,其中,第一抗氧化层400和第二抗氧化层700为镍金属层,即得铜集流体。对其进行相关性能测试,测试结果如表1所示。
实施例13
本对比例与实施例11制备集流体的方法和集流体结构基本相同,不同之处在于:无机纤维的材料不同。集流体的具体制备步骤具体如下:
1)纤维基层100的制备
将质量比为98:2的尼龙6和碳纤维共混熔融后,挤出形成复合纤维;取50份复合纤维、3份甲基纤维素钠、3份聚丙烯酰胺、0.5份单硬脂酸甘油酯、2份碳酸钙、5份聚乙烯醇、2份硼砂和0.2份纳米二氧化硅混合均匀后,均匀铺设成网状,随后通过热轧、干燥制备6μm厚的纤维基层100;
2)集流体的制备
采用真空气相沉积技术在步骤1)中制得的纤维基层100的上、下表面分别沉积厚度为50nm的第一粘结层200和第二粘结层500,其中,第一粘结层200和第二粘结层500为铁金属层。然后继续在第一粘结层200和第二粘结层500上沉积厚度为1000nm的第一金属层300和第二金属层600,其中,第一金属层300和第二金属层600为铝金属层。随后继续在第一金属层300和第二金属层600上沉积厚度为50nm的第一抗氧化层400和第二抗氧化层700,其中,第一抗氧化层400和第二抗氧化层700为镍金属层,即得铝集流体。对其进行相关性能测试,测试结果如表1所示。
实施例14
本对比例与实施例12制备集流体的方法和集流体结构基本相同,不同之处在于:无机纤维的材料不同。集流体的具体制备步骤具体如下:
1)纤维基层100的制备
将质量比为98:2的尼龙6和碳纤维共混熔融后,挤出形成复合纤维;取50份复合纤维、3份甲基纤维素钠、3份聚丙烯酰胺、0.5份单硬脂酸甘油酯、2份碳酸钙、5份聚乙烯醇、2份硼砂和0.2份纳米二氧化硅混合均匀后,均匀铺设成网状,随后通过热轧、干燥制备6μm厚的纤维基层100;
2)集流体的制备
采用真空气相沉积技术在步骤1)中制得的纤维基层100的上、下表面分别沉积厚度为50nm的第一粘结层200和第二粘结层500,其中,第一粘结层200和第二粘结层500为铁金属层。然后继续在第一粘结层200和第二粘结层500上沉积厚度为1000nm的第一金属层300和第二金属层600,其中,第一金属层300和第二金属层600为铜金属层。随后继续在第一金属层300和第二金属层600上沉积厚度为50nm的第一抗氧化层400和第二抗氧化层700,其中,第一抗氧化层400和第二抗氧化层700为镍金属层,即得铜集流体。对其进行相关性能测试,测试结果如表1所示。
对比例1
本对比例与实施例1制备集流体的方法和集流体结构基本相同,不同之处在于:纤维基层100中所用纤维仅为尼龙6。具体步骤如下:
1)纤维基层100的制备
取50份尼龙6、3份甲基纤维素钠、3份聚丙烯酰胺、0.5份单硬脂酸甘油酯、2份碳酸钙、5份聚乙烯醇、2份硼砂和0.2份纳米二氧化硅混合均匀后,均匀铺设成网状,随后通过热轧、干燥制备6μm厚的纤维基层100;
2)集流体的制备
采用真空气相沉积技术在步骤1)中制得的纤维基层100的上、下表面分别沉积厚度为50nm的第一粘结层200和第二粘结层500,其中,第一粘结层200和第二粘结层500为镍金属层。然后继续在第一粘结层200和第二粘结层500上沉积厚度为1000nm的第一金属层300和第二金属层600,其中,第一金属层300和第二金属层600为铝金属层。随后继续在第一金属层300和第二金属层600上沉积厚度为50nm的第一抗氧化层400和第二抗氧化层700,其中,第一抗氧化层400和第二抗氧化层700为镍金属层,即得铝集流体。对其进行相关性能测试,测试结果如表1所示。
对比例2
本对比例与对比例1制备集流体的方法和集流体结构基本相同,不同之处在于:步骤2)中的第一金属层300和第二金属层600为铜金属层。具体步骤如下:
1)纤维基层100的制备
取50份尼龙6、3份甲基纤维素钠、3份聚丙烯酰胺、0.5份单硬脂酸甘油酯、2份碳酸钙、5份聚乙烯醇、2份硼砂和0.2份纳米二氧化硅混合均匀后,均匀铺设成网状,随后通过热轧、干燥制备6μm厚的纤维基层100;
2)集流体的制备
采用真空气相沉积技术在步骤1)中制得的纤维基层100的上、下表面分别沉积厚度 为50nm的第一粘结层200和第二粘结层500,其中,第一粘结层200和第二粘结层500为镍金属层。然后继续在第一粘结层200和第二粘结层500上沉积厚度为1000nm的第一金属层300和第二金属层600,其中,第一金属层300和第二金属层600为铜金属层。随后继续在第一金属层300和第二金属层600上沉积厚度为50nm的第一抗氧化层400和第二抗氧化层700,其中,第一抗氧化层400和第二抗氧化层700为镍金属层,即得铝集流体。对其进行相关性能测试,测试结果如表1所示。
对比例3
本对比例与实施例1制备集流体的方法和集流体结构基本相同,不同之处在于:复合纤维中尼龙6和二氧化钛纳米纤维的质量比为60:40。
对比例4
本对比例与实施例1制备集流体的方法和集流体结构基本相同,不同之处在于:未设置第一粘结层和第二粘结层。
拉伸延展率的测试方法:将纤维基层的一个端部装夹在拉伸试验机的上夹持头中,另一个端部装夹在拉伸试验机下夹持头中,并保持在相同的轴线上;设置试验机的规格、速度和单位等参数,在测试过程中测量并记录样品的引伸长度和载荷值;根据测试结果计算出纤维基层的拉伸延展率。测试拉伸延展率时的压力密度为4g/cm3~4.1g/cm3。其中,压力密度的含义是施加在样品上的拉伸力与样品的横截面积之比。测试条件具体为:温度在20℃-25℃之间,相对湿度在40%-70%之间。
剥离力的测试方式:将11cm长的胶带贴在钢板上,再把10cm长的集流体贴在胶带上;将22cm长的胶带贴在集流体上,将钢板固定于剥离力测试机;将22cm长的胶带弯曲成U形后,剥离力测试机的夹头夹持22cm长的胶带的自由端,然后启动剥离力测试机,通过拉扯胶带使金属层与基材层分离,测试剥离力。测试条件具体为:温度在20℃-25℃之间,相对湿度在40%-70%之间。
电解液浸润接触角的测试方法:将电解液垂直滴落在集流体表面上,通过接触角测量仪测量液滴与材料表面的接触角。温度在20℃-25℃之间,相对湿度在40%-70%之间。电解液为碳酸乙烯酯。
电阻率的测试方法:记录集流体样品的长度和截面积;将集流体样品放入测试夹具中,确保夹具与样品表面良好接触;通过电阻率测试仪施加一定大小的电流。使用电压计测量样品两端的电压。通过测量得到的电流和电压值,使用电阻率公式计算出样品的电阻率。测试条件具体为:温度在20℃-25℃之间,相对湿度在40%-70%之间,电阻率测试仪的电阻间距在0.8mm-1.2mm。
表1
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (17)

  1. 一种集流体,其特征在于,包括纤维基层,所述纤维基层的两侧表面分别设有第一粘结层和第二粘结层,所述第一粘结层和所述第二粘结层在远离所述纤维基层的表面分别设有第一金属层和第二金属层;所述纤维基层的材料组成包括以下重量份的各组分:
    复合纤维50~120份、无机填料4.1~19份及助剂,其中,所述复合纤维包括有机纤维和无机纤维。
  2. 根据权利要求1所述的集流体,其特征在于,所述有机纤维和所述无机纤维的质量比为(70~99.9):(0.1~30)。
  3. 根据权利要求2所述的集流体,其特征在于,所述有机纤维和所述无机纤维的质量比为(90~99.9):(0.1~10)。
  4. 根据权利要求1~3中任一项所述的集流体,其特征在于,所述无机填料包括碳酸钙、硼砂及纳米二氧化硅中的一种或多种;和/或
    所述有机纤维包括聚对苯二甲酸乙二醇酯纤维、聚对苯二甲酸丁二醇酯纤维、聚萘二甲酸乙二醇酯纤维、聚丙基胺基甲酸酯纤维、聚氨酯纤维、聚己内酯纤维、尼龙6、尼龙66、聚酰亚胺纤维、聚丙烯腈纤维、聚氧乙烯纤维、聚乙烯醇纤维、聚氯乙烯纤维、聚乙烯吡咯烷酮纤维、醋酸纤维素、乙基氰乙基纤维素、聚苯胺纤维及聚苯并咪唑纤维中的一种或多种;和/或
    所述无机纤维包括石墨烯纤维、碳纤维、玻璃纤维、陶瓷纤维、金属氧化物纳米纤维及二氧化硅纳米纤维中的一种或多种。
  5. 根据权利要求1~3中任一项所述的集流体,其特征在于,所述助剂包括分散剂、增稠剂、乳化剂及粘合剂中的一种或多种;
    所述分散剂包括聚丙烯酰胺、聚乙烯醇、柠檬酸钠及硅酸钠中的一种或多种;
    所述增稠剂包括羟丙基甲基纤维素钠、羟乙基甲基纤维素钠、羧甲基纤维素钠、甲基纤维素钠及海藻酸钠中的一种或多种;
    所述乳化剂包括单硬脂酸甘油酯、聚氧乙烯醚及十二烷基硫酸钠中的一种或多种;
    所述粘合剂包括羧甲基纤维素钠和/或聚乙烯醇。
  6. 根据权利要求5所述的集流体,其特征在于,所述助剂在所述纤维基层中的添加量为8.1~28重量份;在所述助剂中,所述分散剂为2.5~9重量份,所述增稠剂为3~8重量份,所述乳化剂为0.1~2重量份,所述粘合剂为2.5~9重量份。
  7. 根据权利要求1~3中任一项所述的集流体,其特征在于,还包括第一抗氧化层和第 二抗氧化层,所述第一抗氧化层位于所述第一金属层远离所述第一粘结层的表面,所述第二抗氧化层位于所述第二金属层远离所述第二粘结层的表面,所述第一抗氧化层和所述第二抗氧化层的材料各自独立地为Al、Fe、Ni、Zn、Gr、Fe2O3、Al2O3、SiC或Si3N4。
  8. 根据权利要求1~3中任一项所述的集流体,其特征在于,所述第一粘结层和所述第二粘结层的材料各自独立地为Ni、Zn、Fe、Gr、SiO2、Al2O3、Fe2O3或Si3N4;和/或
    所述第一金属层和所述第二金属层的材料为Al或Cu。
  9. 根据权利要求8所述的集流体,其特征在于,所述纤维基层的厚度为2μm~8μm;和/或
    所述第一粘结层和所述第二粘结层的厚度各自独立地为10nm~200nm;和/或
    所述第一金属层和所述第二金属层的厚度各自独立地为100nm~2000nm;和/或
    所述第一抗氧化层和所述第二抗氧化层的厚度各自独立地为10nm~100nm。
  10. 根据权利要求1~3中任一项所述的集流体,其特征在于,所述第一粘结层和所述第二粘结层至少之一的材料为Fe,所述无机纤维包括石墨烯纤维、碳纤维中的一种或两种。
  11. 根据权利要求1~3中任一项所述的集流体,所述无机纤维选自金属氧化物纳米纤维,所述第一粘结层和所述第二粘结层的材料分别独立地选自金属或金属氧化物。
  12. 根据权利要求1~3中任一项所述的集流体,所述无机纤维选自石墨烯纤维、碳纤维、玻璃纤维、陶瓷纤维及二氧化硅纳米纤维中的一种或多种,所述第一粘结层和所述第二粘结层的材料分别独立地选自非金属氧化物和非金属氮化物。
  13. 一种如权利要求1~12任一项所述的集流体的制备方法,其特征在于,包括以下步骤:
    将所述复合纤维、所述无机填料和所述助剂混合后轧制成型,制备所述纤维基层;
    在所述纤维基层的两面分别形成所述第一粘结层和所述第二粘结层;及
    在所述第一粘结层和所述第二粘结层远离所述纤维基层的一面分别形成所述第一金属层和所述第二金属层。
  14. 一种电极极片,其特征在于,包括权利要求1~13任一项所述的集流体及位于所述集流体表面的电极活性材料层。
  15. 一种电池单体,其特征在于,包括权利要求14所述的电极极片。
  16. 一种电池组,其特征在于,包括多个权利要求15所述的电极单体。
  17. 一种用电装置,其特征在于,包括如权利要求15所述的电池单体或如权利要求16所述的电池组。
PCT/CN2023/091984 2022-04-29 2023-05-04 集流体及其制备方法和应用 WO2023208240A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210464617.3A CN114678536A (zh) 2022-04-29 2022-04-29 集流体及其制备方法和应用
CN202210464617.3 2022-04-29
CNPCT/CN2022/095479 2022-05-27
PCT/CN2022/095479 WO2023206689A1 (zh) 2022-04-29 2022-05-27 集流体及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023208240A1 true WO2023208240A1 (zh) 2023-11-02

Family

ID=82079925

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/095479 WO2023206689A1 (zh) 2022-04-29 2022-05-27 集流体及其制备方法和应用
PCT/CN2023/091984 WO2023208240A1 (zh) 2022-04-29 2023-05-04 集流体及其制备方法和应用

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095479 WO2023206689A1 (zh) 2022-04-29 2022-05-27 集流体及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN114678536A (zh)
WO (2) WO2023206689A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114678536A (zh) * 2022-04-29 2022-06-28 扬州纳力新材料科技有限公司 集流体及其制备方法和应用
WO2024050696A1 (zh) * 2022-09-06 2024-03-14 扬州纳力新材料科技有限公司 复合膜的制造方法、复合膜及其应用
WO2024088417A1 (zh) * 2022-10-28 2024-05-02 扬州纳力新材料科技有限公司 低热收缩率复合集流体及其制备方法和应用
WO2024087127A1 (zh) * 2022-10-28 2024-05-02 扬州纳力新材料科技有限公司 低热收缩率复合集流体及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108281666A (zh) * 2018-03-26 2018-07-13 安徽金美新材料科技有限公司 一种纸基复合结构及电池
CN208336378U (zh) * 2018-03-26 2019-01-04 宁德时代新能源科技股份有限公司 一种纸基复合结构及电池
CN109830688A (zh) * 2019-01-15 2019-05-31 欣旺达电子股份有限公司 阴极集流体及阴极极片
CN111430722A (zh) * 2020-04-07 2020-07-17 武汉兰钧新能源科技有限公司 一种纸质集流体、其制备方法、电极及电池
CN112151806A (zh) * 2020-09-15 2020-12-29 浙江长宇新材料有限公司 一种超轻多层复合集流体及其制备方法
CN113707886A (zh) * 2021-06-16 2021-11-26 浙江柔震科技有限公司 一种多功能复合集流体及其制备方法
CN114678536A (zh) * 2022-04-29 2022-06-28 扬州纳力新材料科技有限公司 集流体及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110943227B (zh) * 2019-05-31 2021-03-09 宁德时代新能源科技股份有限公司 复合集流体、电极极片及电化学装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108281666A (zh) * 2018-03-26 2018-07-13 安徽金美新材料科技有限公司 一种纸基复合结构及电池
CN208336378U (zh) * 2018-03-26 2019-01-04 宁德时代新能源科技股份有限公司 一种纸基复合结构及电池
CN109830688A (zh) * 2019-01-15 2019-05-31 欣旺达电子股份有限公司 阴极集流体及阴极极片
CN111430722A (zh) * 2020-04-07 2020-07-17 武汉兰钧新能源科技有限公司 一种纸质集流体、其制备方法、电极及电池
CN112151806A (zh) * 2020-09-15 2020-12-29 浙江长宇新材料有限公司 一种超轻多层复合集流体及其制备方法
CN113707886A (zh) * 2021-06-16 2021-11-26 浙江柔震科技有限公司 一种多功能复合集流体及其制备方法
CN114678536A (zh) * 2022-04-29 2022-06-28 扬州纳力新材料科技有限公司 集流体及其制备方法和应用

Also Published As

Publication number Publication date
CN114678536A (zh) 2022-06-28
WO2023206689A1 (zh) 2023-11-02

Similar Documents

Publication Publication Date Title
WO2023208240A1 (zh) 集流体及其制备方法和应用
Yuan et al. A binder-free composite anode composed of CuO nanosheets and multi-wall carbon nanotubes for high-performance lithium-ion batteries
Wang et al. A novel carbon–silicon composite nanofiber prepared via electrospinning as anode material for high energy-density lithium ion batteries
WO2018192341A1 (zh) 一种金属二次电池负极用三维集流体及其制备方法和用途
WO2018040903A1 (zh) 锂离子电池隔膜及其制备方法和锂离子电池
US8821593B2 (en) Method for manufacturing electrode for electrochemical element
KR20200092370A (ko) 실리콘계 음극재료, 그 제조방법 및 리튬이온전지에서의 용도
TWI452757B (zh) 導電性片及電極
WO2016165633A1 (en) Polymer composite membrane and preparation method thereof, gel electrolyte and lithium ion battery having the same
WO2016110110A1 (zh) 一种硅碳复合锂离子电池负极极片的制备方法
EP4089780A1 (en) Composition, composite separator and preparation method therefor, and lithium ion battery
KR20140137399A (ko) 실리콘 나노합성물 나노섬유들
CN113193161B (zh) 一种电极组件及电化学装置
CN109817953A (zh) 预锂化硅碳负极材料及其制备方法与锂离子电池
KR101209847B1 (ko) 다공성 cnf 집전체 및 이를 이용한 전극과 그의 제조방법
WO2016110113A1 (zh) 一种以碳纤维布为基体制备锂离子电池负极片的方法
CN112331485A (zh) 一种锂离子电容器及其制备方法和用途
KR100992394B1 (ko) 카본-금속산화물 복합체의 음극 활물질을 구비한이차전지용 음극 및 이를 이용한 이차전지와, 이차전지용음극 활물질의 제조방법
CN108598358A (zh) 一种复合金属锂负极的制备方法
JP2018524772A (ja) リチウム二次電池用の電解銅箔及びこれを含むリチウム二次電池
CN111786040A (zh) 极片及其应用、含有该极片的低温升长寿命锂离子电池
WO2016110111A1 (zh) 一种碳纤维布用作锂离子电池负极片的制备方法
Li et al. Carbon nanofiber interlayer: a highly effective strategy to stabilize silicon anodes for use in lithium-ion batteries
CN112635814B (zh) 一种硫化物固态电池用电解质膜及其制备方法和用途
JP7107809B2 (ja) 二次電池用正極

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795672

Country of ref document: EP

Kind code of ref document: A1