WO2016084520A1 - 一液付加硬化型シリコーン組成物、その保存方法及び硬化方法 - Google Patents

一液付加硬化型シリコーン組成物、その保存方法及び硬化方法 Download PDF

Info

Publication number
WO2016084520A1
WO2016084520A1 PCT/JP2015/079667 JP2015079667W WO2016084520A1 WO 2016084520 A1 WO2016084520 A1 WO 2016084520A1 JP 2015079667 W JP2015079667 W JP 2015079667W WO 2016084520 A1 WO2016084520 A1 WO 2016084520A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
silicone composition
component
curable silicone
addition
Prior art date
Application number
PCT/JP2015/079667
Other languages
English (en)
French (fr)
Inventor
啓太 北沢
幸平 増田
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to EP15863390.9A priority Critical patent/EP3225662B1/en
Priority to KR1020177016610A priority patent/KR20170090440A/ko
Priority to US15/529,302 priority patent/US20170260392A1/en
Priority to CN201580064002.XA priority patent/CN107001802B/zh
Publication of WO2016084520A1 publication Critical patent/WO2016084520A1/ja
Priority to US16/678,591 priority patent/US11041072B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • B05D3/0406Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases the gas being air
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Definitions

  • the present invention relates to a one-component addition-curable silicone composition. Specifically, it relates to a one-component addition-curing silicone composition that provides a high thermal conductivity silicone grease, and has good long-term storage at room temperature under conditions where a certain amount of air is blocked, and is applied to a thin film of 1,500 ⁇ m or less. In addition, the present invention relates to a one-component addition-curable silicone composition capable of achieving both the progress of an addition-curing reaction at room temperature by exposure to air, a method for storing the same, and a method for curing the composition.
  • a cooling member such as a heat spreader is disposed in the vicinity of the heat generating portion, and after the two are brought into close contact with each other, heat is efficiently removed from the cooling member.
  • Patent Documents 1 to 11 Patent Documents 1 to 11: Patents).
  • thin and compressible heat radiation grease is suitable from the viewpoint of heat radiation performance as a heat countermeasure for semiconductor packages.
  • the heat dissipating grease can be broadly classified into two types: a non-curing type that does not cure and maintains a grease state, and a curing type that can be cured after compression to a desired thickness.
  • Non-curing heat radiation grease is generally easy to handle, such as being stored at room temperature, but semiconductor packages are uncured because they generate heat from the heat generating part and expand / contract due to the heat history of cooling.
  • the mold heat radiation grease is likely to flow out of the semiconductor package (pumping out) and is not preferable from the viewpoint of reliability.
  • the curable heat radiation grease is hardened after being compressed to a desired thickness, thereby making it difficult to generate the pumping-out described above and improving the reliability of the semiconductor package.
  • Patent Document 12 Japanese Patent Application Laid-Open No. 2014-080546
  • Patent Document 12 Japanese Patent Application Laid-Open No. 2014-080546
  • most of them have poor storage stability at room temperature, and frozen or refrigerated storage is essential, so product management may be difficult.
  • heating for a certain period of time is required for curing, production efficiency is lowered due to complicated and prolonged processes, and it is not preferable from the viewpoint of environmental burden due to the heating process.
  • a condensation-curing heat radiation grease is also mentioned as one of the curing types (for example, Patent Document 13: Japanese Patent No. 5365572).
  • Condensation-curing heat dissipation grease thickens and hardens due to moisture in the air, so if the moisture is blocked, it can be stored at room temperature, and product management is relatively easy.
  • Condensation-curing heat dissipation grease has the advantage that the curing reaction can proceed without the need for a heating step if a certain amount of moisture is present. As a result, there remains a big problem in terms of contamination of electronic parts due to odor and desorption components.
  • the present invention has been made in view of the above circumstances, and a long-term preservability at room temperature under a condition in which a certain amount of air is blocked, which is not possible with a conventional curable heat dissipating grease, and 1,500 ⁇ m or less.
  • a one-component addition-curable silicone composition that is compatible with the progress of an addition-curing reaction at room temperature by being applied to a thin film and exposed to the air, a method for storing the same, and a method for curing the composition With the goal.
  • an aliphatic polyunsaturated hydrocarbon group-containing organopolysiloxane, a thermally conductive filler, an organohydrogenpolysiloxane, and a specific organophosphorus compound As a result of intensive studies to achieve the above object, the present inventors have found that an aliphatic polyunsaturated hydrocarbon group-containing organopolysiloxane, a thermally conductive filler, an organohydrogenpolysiloxane, and a specific organophosphorus compound.
  • a one-component addition-curable silicone composition containing a platinum group metal complex as a ligand is applied to a thin film of 1,500 ⁇ m or less with good long-term storage at room temperature under conditions where a certain amount of air is blocked.
  • the present inventors have found that the addition curing reaction at room temperature by exposure to air is compatible, and the present invention has been made.
  • the present invention provides the following one-component addition-curable silicone composition, its storage method and curing method.
  • (A) Organopolysiloxane having an aliphatic unsaturated hydrocarbon group bonded to at least two silicon atoms in one molecule and a kinematic viscosity at 25 ° C.
  • R 1 represents a monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a substituent, and each R 1 may be the same or different.
  • R 1 represents a monovalent hydrocarbon group which has carbon atoms 1 be ⁇ 20 have a substituent, each of R 1 be the same, good .R 2 be different (This represents a monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a substituent.)
  • STP oxygen permeability coefficient
  • the one-component addition-curable silicone composition according to any one of [1] to [4] is made of a material having an oxygen permeability coefficient of 1 ⁇ 10 ⁇ 12 cm 3 (STP) cm / cm 2 ⁇ s ⁇ Pa or less.
  • STP oxygen permeability coefficient of 1 ⁇ 10 ⁇ 12 cm 3
  • the one-component addition-curable silicone composition of the present invention is applied to a thin film of 1,500 ⁇ m or less with good long-term storage at room temperature under conditions where a certain amount of air is blocked, which is difficult with the prior art. It is compatible with the progress of addition curing reaction at room temperature by exposure to air.
  • the one-component addition-curable silicone composition of the present invention comprises the following components (A) to (D) as essential components.
  • R 1 represents a monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a substituent, and each R 1 may be the same or different. Represents an integer of 0 to 3.
  • Component (A) has an aliphatic unsaturated hydrocarbon group bonded to at least two silicon atoms in one molecule and has a kinematic viscosity at 25 ° C. of 60 to 100,000 mm 2 / s. It is an organopolysiloxane.
  • the aliphatic unsaturated hydrocarbon group bonded to the silicon atom of the organopolysiloxane is preferably a monovalent hydrocarbon group having an aliphatic unsaturated bond having 2 to 8 carbon atoms, particularly 2 to 6 carbon atoms. More preferably, it is an alkenyl group, and examples thereof include alkenyl groups such as vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group, hexenyl group, cyclohexenyl group, and octenyl group. Particularly preferred is a vinyl group.
  • the aliphatic unsaturated hydrocarbon group may be bonded to the silicon atom at the end of the molecular chain, may be bonded to the silicon atom in the middle of the molecular chain, or may be bonded to both.
  • the organic group other than the aliphatic unsaturated hydrocarbon group bonded to the silicon atom of the organopolysiloxane includes an unsubstituted or substituted group having 1 to 18 carbon atoms, particularly 1 to 10 carbon atoms, particularly 1 to 8 carbon atoms.
  • a monovalent hydrocarbon group not containing an aliphatic unsaturated bond is preferable.
  • halogen atoms such as fluorine, bromine, chlorine, cyano groups, etc.
  • the organopolysiloxane has a kinematic viscosity at 25 ° C. of 60 to 100,000 mm 2 / s, preferably 100 to 30,000 mm 2 / s.
  • the kinematic viscosity is less than 60 mm 2 / s, the physical properties of the silicone composition are deteriorated, and when it exceeds 100,000 mm 2 / s, the extensibility of the silicone composition becomes poor.
  • the kinematic viscosity is a value at 25 ° C. measured with an Ubbelohde Ostwald viscometer (hereinafter the same).
  • the molecular structure of the organopolysiloxane is not particularly limited as long as it has the above-mentioned properties, and examples thereof include linear, branched, partially branched, or linear structures having a cyclic structure.
  • examples thereof include linear, branched, partially branched, or linear structures having a cyclic structure.
  • those having a linear structure in which the main chain is composed of repeating diorganosiloxane units and both ends of the molecular chain are blocked with triorganosiloxy groups are preferred.
  • the organopolysiloxane having a linear structure may partially have a branched structure or a cyclic structure. These organopolysiloxanes can be used alone or in combination of two or more.
  • Component (B) is a thermally conductive filler and is at least one material selected from the group consisting of metals, metal oxides, metal hydroxides, metal nitrides, metal carbides, and carbon allotropes.
  • metals metal oxides, metal hydroxides, metal nitrides, metal carbides, and carbon allotropes.
  • metals for example, aluminum, silver, copper, metal silicon, alumina, zinc oxide, magnesium oxide, silicon dioxide, cerium oxide, iron oxide, aluminum hydroxide, cerium hydroxide, aluminum nitride, boron nitride, silicon carbide , Diamond, graphite, carbon nanotube, graphene and the like, and a combination of a large particle component and a small particle component is preferable.
  • the average particle size of the large particle component is less than 0.1 ⁇ m, the viscosity of the resulting composition may be too high and the extensibility may be poor. Since it may become uniform, the range of 0.1 to 100 ⁇ m, preferably 1 to 40 ⁇ m is preferable. Further, if the average particle size of the small particle component is smaller than 0.01 ⁇ m, the viscosity of the resulting composition may be too high, and the extensibility may be poor. If the average particle size is larger than 10 ⁇ m, the resulting composition is not uniform. Therefore, a range of 0.01 to 10 ⁇ m, preferably a range of 0.1 to 4 ⁇ m is preferable.
  • an average particle diameter can be calculated
  • the shape of the large particle component and the small particle component is not particularly limited, such as a spherical shape, an indefinite shape, or a needle shape.
  • the blending amount of these (B) components is more than 3,000 parts by mass with respect to 100 parts by mass of the (A) component, the extensibility is poor, and when less than 100 parts by mass, the thermal conductivity is poor. Therefore, it is in the range of 100 to 3,000 parts by mass, preferably in the range of 500 to 2,800 parts by mass.
  • the component (C) comprises two or more, preferably three or more, particularly preferably 3 to 100, more preferably 3 to 20 hydrogen atoms (SiH groups) bonded to a silicon atom in one molecule.
  • This is an organohydrogenpolysiloxane.
  • the SiH group in the molecule can undergo an addition reaction in the presence of the aliphatic unsaturated hydrocarbon group of the component (A) described above and the platinum group metal complex described later to form a crosslinked structure. Anything is acceptable.
  • the organohydrogenpolysiloxane is not particularly limited in its molecular structure as long as it has the above-described properties, and examples thereof include linear, branched, cyclic, partially branched, or linear linear structures having a cyclic structure. . Preferably it is linear or cyclic.
  • the organohydrogenpolysiloxane preferably has a kinematic viscosity at 25 ° C. of 1.0 to 1,000 mm 2 / s, more preferably 10 to 100 mm 2 / s. If the kinematic viscosity is 1.0 mm 2 / s or more, the physical properties of the silicone composition do not deteriorate, and if it is 1,000 mm 2 / s or less, the extensibility of the silicone composition is poor. There is no risk of becoming.
  • the organic group bonded to the silicon atom of the organohydrogenpolysiloxane is preferably an organic group other than an aliphatic unsaturated hydrocarbon group, particularly an unsubstituted group having 1 to 12 carbon atoms, and more preferably 1 to 10 carbon atoms.
  • a monovalent hydrocarbon group that does not contain a substituted aliphatic unsaturated bond such as a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, an alkyl group such as a dodecyl group, a phenyl group, etc.
  • Aralkyl groups such as aryl groups, 2-phenylethyl groups, 2-phenylpropyl groups, etc., and those in which some or all of these hydrogen atoms are substituted with halogen atoms such as fluorine, bromine, chlorine, cyano groups, etc., such as chloromethyl Group, chloropropyl group, bromoethyl group, trifluoropropyl group, cyanoethyl group, etc., 2-glycidoxyethyl group, 3-glycidoxypro Group, epoxy ring-containing organic group such as 4-glycidoxy butyl group (glycidyl group and a glycidyloxy group-substituted alkyl group).
  • the organohydrogenpolysiloxane may be used alone or in combination of two or more.
  • the blending amount of the organohydrogenpolysiloxane of the component (C) is such that the number of SiH groups in the component (C) is 0.5 to 5 with respect to the total number of aliphatic unsaturated hydrocarbon groups in the component (A).
  • the amount is preferably 0.8 to 3, and more preferably 1 to 2.
  • Component (D) is a hydrosilylation catalyst that functions to promote the above-described addition reaction, and a platinum group metal complex having an organophosphorus compound represented by the following general formula (1) as a ligand. It is. (Wherein R 1 represents a monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a substituent, and each R 1 may be the same or different. Represents an integer of 0 to 3.)
  • R 1 in the above formula (1) is a monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a substituent, preferably a monovalent saturated aliphatic group which may have a substituent.
  • alkenyl groups such as ethenyl group, 1-methylethenyl group and 2-propenyl group, ethynyl group and 2-propynyl group.
  • An alkynyl group or the like having 2 to 20 carbon atoms, preferably 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms.
  • Aralkyl groups such as groups, halogen-substituted aryl groups such as ⁇ , ⁇ , ⁇ -trifluorotolyl groups and chlorobenzyl groups, aromatic heterocycles such as furyl groups and thienyl groups, etc., having 4 to 20 carbon atoms, preferably carbon atoms 4-12.
  • R 1 is preferably a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, an octyl group, a phenyl group or a tolyl group, more preferably an ethyl group, a butyl group, a hexyl group, an octyl group, A phenyl group, particularly preferably an ethyl group, a butyl group, a hexyl group, and an octyl group.
  • x is an integer of 0 to 3, and it is preferable that x is small because the characteristics as a catalyst are easily obtained.
  • a mixture of an organic phosphorus compound in which x is 0 and an organic phosphorus compound in which x is 3 may be used. Sufficient characteristics as a catalyst can be obtained.
  • organophosphorus compound examples include triphenyl phosphite, trihexyl phosphite, triethyl phosphite, triphenylphosphine, and trihexylphosphine.
  • this organic phosphorus compound may be used individually by 1 type or in mixture of 2 or more types.
  • platinum group atom serving as the central metal of the platinum group metal complex examples include ruthenium, rhodium, palladium, osmium, iridium, and platinum. Among them, platinum that is relatively easily available is preferable as the central metal of the hydrosilylation catalyst.
  • the component (D) is a platinum group metal or a platinum group metal compound added with the organophosphorus compound represented by the above formula (1) and stirred in an arbitrary solvent or without a solvent for a predetermined time and temperature.
  • the organophosphorus compound represented by the above formula (1) is strongly coordinated to the central metal, so that in the one-component addition-curable silicone composition of the present invention, at room temperature under a condition where a certain amount of air is blocked. Good long-term storage can be expressed.
  • the platinum group metal or the platinum group metal compound is particularly preferably a platinum metal or a platinum compound.
  • platinum compound platinum chloride, chloroplatinic acid, alcohol-modified chloroplatinic acid, platinum-divinyltetramethyldisiloxane, platinum- Examples thereof include platinum-olefin complexes such as cyclovinylmethylsiloxane complex, platinum-carbonyl complexes such as platinum carbonylvinylmethyl complex, and platinum-octylaldehyde / octanol complexes.
  • the one-component addition-curable silicone composition of the present invention is applied to a thin film and exposed to the air, whereby oxygen in the air is present in the presence of the organohydrogenpolysiloxane of the component (C).
  • a platinum group metal complex (hydrosilylation catalyst) having an organophosphorus compound represented by the general formula (1) as a ligand is activated, and an addition curing reaction can be allowed to proceed at room temperature.
  • the organophosphorus compound represented by the above formula (1) is used in an amount of 1 to 12 equivalents, preferably 1.5 to 10 equivalents, more preferably the platinum group atom as the central metal. 2-8 equivalents should be added. If the organophosphorus compound represented by the above formula (1) is less than 1 equivalent, good long-term storage at room temperature under conditions where air is blocked may not be exhibited. Even if it is applied to a thin film and exposed to air, the addition curing reaction may not proceed at room temperature.
  • the blending amount of the component (D) is not particularly limited as long as it is an effective amount as a catalyst, but is 0.1 to 1,000 ppm, preferably 1 to 1,000 ppm as the mass of the platinum group atom with respect to the component (A). What is necessary is just to mix
  • the one-component addition-curable silicone composition of the present invention is further composed of (E) a hydrolyzable organopolysiloxane compound represented by the following general formula (2) and (F) Either or both of the hydrolyzable organosilane compounds represented by the following general formula (3) can be included.
  • the hydrolyzable organopolysiloxane compound (E) and the hydrolyzable organosilane compound (F) are used to treat the surface of the thermally conductive filler.
  • the filler surface is less likely to agglomerate by covering the surface and the effect is maintained even at high temperatures, so that the heat resistance of the resulting silicone cured product is improved.
  • R 1 represents a monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a substituent, and each R 1 may be the same or different. It represents an integer of 5 to 100, preferably 10 to 80.
  • R 1 represents a monovalent hydrocarbon group which has carbon atoms 1 be ⁇ 20 have a substituent, each of R 1 be the same, good .R 2 be different (This represents a monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a substituent.)
  • R 1 in the above formulas (2) and (3) can be exemplified by the same groups as R 1 described above.
  • a methyl group, an ethyl group, a 3,3,3-trifluoropropyl group can be exemplified.
  • R 2 in the above formula (3) can be exemplified by the same as R 1 described above, and among these, an unsubstituted linear alkyl group having 4 to 20 carbon atoms is preferable, and carbon is more preferable.
  • the amount of the hydrolyzable organopolysiloxane compound of component (B) is too large, oil bleeding tends to occur or the curing reaction may not proceed sufficiently.
  • the amount is preferably 1 to 200 parts by weight, and more preferably 5 to 100 parts by weight.
  • the hydrolyzable organosilane compound of the component (F) when added, if it is too much, oil bleeding may occur or voids may be generated.
  • the amount is preferably from 0.01 to 10 parts by weight, particularly preferably from 0.1 to 8 parts by weight.
  • control agents such as acetylene alcohols may be added in order to improve the storage stability of the composition.
  • organo (poly) siloxane which does not have reactivity, such as methylpolysiloxane.
  • a conventionally known antioxidant such as 2,6-di-tert-butyl-4-methylphenol may be contained as necessary.
  • dyes, pigments, flame retardants, anti-settling agents, thixotropic agents, and the like can be blended as necessary. These can be mix
  • the method for producing the one-component addition-curable silicone composition of the present invention comprises the steps of mixing the above-described components (A) to (D), and if necessary, (E), (F) components and other components.
  • the conventional method for producing a silicone grease composition may be followed, and it is not particularly limited.
  • the above components (A) to (F), and other components as necessary, may be added to Narataro Awatori (registered trademark of Shinki Co., Ltd.), Trimix, Twinmix, Planetary Mixer (all of which are Inoue Manufacturing ( (Registered trademark of mixer manufactured by Co., Ltd.), Ultramixer (registered trademark of mixer manufactured by Mizuho Industry Co., Ltd.), Hibis Disper Mix (registered trademark of mixer manufactured by Special Machine Industries Co., Ltd.), etc.
  • a method of mixing by hand mixing using a spatula or the like can be employed.
  • the one-component addition-curable silicone composition of the present invention has a viscosity measured at 25 ° C. of preferably 3.0 to 1,000 Pa ⁇ s, more preferably 10 to 500 Pa ⁇ s.
  • the viscosity can be obtained by adjusting the mixing
  • the viscosity is a value of 25 ° C. measured with a Malcolm viscometer (rotor A: 10 rpm, displacement speed: 6 [1 / s]).
  • the one-component addition-curable silicone composition of the present invention exhibits a shelf life of 3 months or more at 25 ° C. under conditions where a certain amount of air is blocked. .
  • the one-component addition-curable silicone of the present invention is stored in a container made of a material having an oxygen permeability coefficient of 1 ⁇ 10 ⁇ 12 cm 3 (STP) cm / cm 2 ⁇ s ⁇ Pa or less.
  • STP oxygen permeability coefficient of 1 ⁇ 10 ⁇ 12 cm 3
  • the one-component addition-curable silicone composition of the present invention is stored in a container made of a material having an oxygen permeability coefficient larger than 1 ⁇ 10 ⁇ 12 cm 3 (STP) cm / cm 2 ⁇ s ⁇ Pa, the composition Since the product thickens and cures at room temperature, it becomes difficult to develop a good shelf life of 3 months or more at 25 ° C.
  • STP oxygen permeability coefficient
  • examples of the material having an oxygen permeability coefficient of 1 ⁇ 10 ⁇ 12 cm 3 (STP) cm / cm 2 ⁇ s ⁇ Pa or less include high-density polyethylene, low-density polyethylene, polypropylene, polystyrene, polycarbonate, and polyacetic acid.
  • examples thereof include polymer materials such as vinyl, polyethylene terephthalate, polyvinyl chloride, polyvinylidene chloride, nylon, polyvinyl fluoride, and polyacrylonitrile, and metal materials such as aluminum and stainless steel.
  • the container for storing the one-component addition-curable silicone composition of the present invention may be made of any of the above materials, and the members constituting the container may be made of different materials.
  • the one-component addition-curable silicone composition of the present invention is applied to a thin film having a thickness of 1,500 ⁇ m or less and exposed to air at room temperature (0 to 40 ° C., particularly The addition curing reaction proceeds at 10 to 30 ° C.).
  • the addition curing reaction proceeds at 10 to 30 ° C.
  • the one-component addition-curable silicone composition of the present invention with a coating thickness of 1,500 ⁇ m or less and exposing it to the air, oxygen in the air sufficiently penetrates into the composition, and the organic contained in the composition
  • a platinum group metal complex having a phosphorus compound as a ligand is activated by oxygen in the air, and the addition curing reaction can proceed at room temperature.
  • the one-component addition-curable silicone composition of the present invention when applied to a thickness of more than 1,500 ⁇ m and exposed to the air, oxygen in the air does not sufficiently penetrate into the composition, Since the platinum group metal complex having the organic phosphorus compound contained in the ligand as a ligand is not sufficiently activated by oxygen in the air, it may be difficult to proceed the addition curing reaction at room temperature.
  • the thin film is preferably curable in 1 to 14 days, particularly 3 to 10 days.
  • the kinematic viscosity is a value measured at 25 ° C. with an Ubbelohde Ostwald viscometer (manufactured by Shibata Kagaku Co., Ltd.). Moreover, in the following, room temperature shows 25 degreeC.
  • Component A-1 Dimethylpolysiloxane having both ends blocked with dimethylvinylsilyl groups and kinematic viscosity at 25 ° C. of 600 mm 2 / s
  • A-2 Both ends blocked with dimethylvinylsilyl groups, 25 ° C.
  • Component B-1 Aluminum powder having an average particle size of 10.0 ⁇ m (thermal conductivity: 237 W / m ⁇ ° C.)
  • B-2 Zinc oxide powder having an average particle size of 1.0 ⁇ m (thermal conductivity: 25 W / m ⁇ ° C.)
  • Component C-1 Methyl hydrogen polysiloxane represented by the following formula and having a kinematic viscosity at 25 ° C. of 90 mm 2 / s
  • Methyl hydrogen polysiloxane represented by the following formula and having a kinematic viscosity at 25 ° C. of 12 mm 2 / s
  • D-3 Solution in which a platinum-divinyltetramethyldisiloxane complex is dissolved in the same dimethylpolysiloxane as A-1 above (platinum atom content: 1% by mass as platinum atoms)
  • Examples 9 to 12, Comparative Examples 6 and 7 Subsequently, storage stability at room temperature of the one-component addition-curable silicone composition with respect to the material of the container storing the one-component addition-curable silicone composition was evaluated.
  • the composition of Example 1 was used for the one-component addition-curable silicone composition, and the storage stability at room temperature was evaluated by the same method as described above. The following five kinds of materials were used for the storage container. The numerical value in parentheses indicates the oxygen transmission coefficient.
  • Table 3 shows the results of storing the one-component addition-curable silicone composition of Example 1 in a container made of the above materials and evaluating the storage stability at room temperature.
  • Examples 13 to 18, Comparative Examples 8 and 9 Furthermore, the curability at room temperature with respect to the coating thickness of the one-component addition-curable silicone composition was evaluated.
  • the composition of Example 1 was used for the one-component addition-curable silicone composition, and the room temperature curability was evaluated by the same method as described above except that the coating thickness was appropriately changed.
  • Table 4 shows the results of applying the one-component addition-curable silicone composition of Example 1 to each thickness and evaluating the curability at room temperature.
  • the one-component addition-curable silicone composition of the present invention has “good long-term storage at room temperature under conditions where a certain amount of air is blocked” and “1,500 ⁇ m or less. It was confirmed that it was possible to achieve both “advance of the addition curing reaction at room temperature by applying to a thin film and exposing to air”.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

 従来の硬化型放熱グリースがなし得なかった、空気が一定量遮断された条件における室温下での良好な長期保存性と1,500μm以下の薄膜に塗布して空気中に曝すことによる室温下での付加硬化反応の進行とを両立する一液付加硬化型シリコーン組成物、及びその保存方法、並びに該組成物の硬化方法を提供する。 (A)ケイ素原子結合脂肪族不飽和炭化水素基を有し、特定の動粘度であるオルガノポリシロキサン、 (B)金属、金属酸化物、金属水酸化物、金属窒化物、金属炭化物、炭素の同素体から選ばれる1種以上の熱伝導性充填剤、 (C)オルガノハイドロジェンポリシロキサン、 (D)下記式(1)で表される有機リン化合物を配位子とする白金族金属錯体 (R1は1価炭化水素基、xは0~3。) を必須成分とする一液付加硬化型シリコーン組成物。

Description

一液付加硬化型シリコーン組成物、その保存方法及び硬化方法
 本発明は、一液付加硬化型シリコーン組成物に関する。詳細には、高熱伝導性のシリコーングリースを与える一液付加硬化型シリコーン組成物に関し、空気が一定量遮断された条件における室温下での良好な長期保存性と、1,500μm以下の薄膜に塗布して空気中に曝すことによる室温下での付加硬化反応の進行とを両立させることが可能な一液付加硬化型シリコーン組成物、及びその保存方法、並びに該組成物の硬化方法に関する。
 半導体パッケージ等の電子部品は、使用中の発熱及びそれによる性能の低下が広く知られており、これを解決するための手段として様々な放熱技術が用いられている。一般的な方法としては、発熱部の付近にヒートスプレッダなどの冷却部材を配置し、両者を密接させたうえで冷却部材から効率的に除熱することが挙げられる。
 その際、発熱部材と冷却部材との間に隙間があると、熱伝導性の悪い空気が介在することにより熱伝導が効率的でなくなるために発熱部材の温度が十分に下がらなくなってしまう。このような現象を防止するために、空気の介在を防ぐ目的として、熱伝導率が良く、部材の表面に追随性のある放熱グリースや放熱シートが用いられている(特許文献1~11:特許第2938428号公報、特許第2938429号公報、特許第3580366号公報、特許第3952184号公報、特許第4572243号公報、特許第4656340号公報、特許第4913874号公報、特許第4917380号公報、特許第4933094号公報、特開2008-260798号公報、特開2009-209165号公報)。
 実際には、半導体パッケージの熱対策には薄く圧縮可能な放熱グリースが放熱性能の観点から好適である。放熱グリースは硬化せずにグリース状を保つ非硬化型と、所望の厚みに圧縮後に硬化させることができる硬化型の2つに大別することができる。
 非硬化型の放熱グリースは一般に室温下で保存が可能であるなど、取扱いの容易さが特長であるが、半導体パッケージは発熱部の発熱、冷却の熱履歴による膨張・収縮が起こるため、非硬化型の放熱グリースは半導体パッケージからの流れ出し(ポンピングアウト)が発生しやすく、信頼性の観点からは好ましいとは言い難い。
 一方で硬化型の放熱グリースは所望の厚みに圧縮後に硬化させることで、先述のポンピングアウトを発生しづらくし、半導体パッケージの信頼性を高めることができるが、実用上不利な特徴も存在する。
 例えば、半導体パッケージの熱対策として付加硬化型の放熱グリースが過去に多く提案されている(例えば特許文献12:特開2014-080546号公報)。しかしそれらのほとんどは室温での保存性に乏しく、冷凍もしくは冷蔵保存が必須であるため、製品管理が困難である場合がある。また硬化させる際には一定時間の加熱が必要であるため工程の煩雑化・長期化による生産効率の低下を招いてしまい、更に加熱工程による環境負荷の観点からも好ましいとは言えない。
 また、縮合硬化型の放熱グリースも硬化型のひとつとして挙げられる(例えば特許文献13:特許第5365572号公報)。縮合硬化型の放熱グリースは空気中の湿気によって増粘・硬化するため、湿気が遮断されていれば室温での保存が可能であり、製品管理は比較的容易である。縮合硬化型の放熱グリースは一定量の湿気が存在していれば加熱工程を要さずとも硬化反応を進行させることができるという利点を有するが、硬化反応の際に低沸点の脱離成分が生ずるため、臭気や脱離成分による電子部品の汚染といった点で大きな課題を残している。
 上述したように、半導体パッケージの信頼性を高めるためには硬化型の放熱グリースの使用が好ましいものの、先行技術として提案されている放熱グリースは、その製品管理方法や硬化プロセス、硬化反応機構の観点から十分に満足できるものとは言い難い。
特許第2938428号公報 特許第2938429号公報 特許第3580366号公報 特許第3952184号公報 特許第4572243号公報 特許第4656340号公報 特許第4913874号公報 特許第4917380号公報 特許第4933094号公報 特開2008-260798号公報 特開2009-209165号公報 特開2014-080546号公報 特許第5365572号公報
 本発明は、上記事情を鑑みてなされたものであり、従来の硬化型放熱グリースがなし得なかった、空気が一定量遮断された条件における室温下での良好な長期保存性と1,500μm以下の薄膜に塗布して空気中に曝すことによる室温下での付加硬化反応の進行とを両立する一液付加硬化型シリコーン組成物、及びその保存方法、並びに該組成物の硬化方法を提供することを目的とする。
 本発明者らは、上記目的を達成するため鋭意検討を行った結果、脂肪族不飽和炭化水素基含有オルガノポリシロキサン、熱伝導性充填剤、オルガノハイドロジェンポリシロキサン、及び特定の有機リン化合物を配位子とする白金族金属錯体を含有する一液付加硬化型シリコーン組成物が、空気が一定量遮断された条件における室温下での良好な長期保存性と1,500μm以下の薄膜に塗布して空気中に曝すことによる室温下での付加硬化反応の進行とを両立することを見出し、本発明をなすに至った。
 従って、本発明は、下記に示す一液付加硬化型シリコーン組成物、その保存方法及び硬化方法を提供する。
〔1〕
 (A)1分子中に少なくとも2個のケイ素原子に結合する脂肪族不飽和炭化水素基を有し、25℃での動粘度が60~100,000mm2/sであるオルガノポリシロキサン:100質量部、
(B)金属、金属酸化物、金属水酸化物、金属窒化物、金属炭化物、及び炭素の同素体からなる群より選ばれる少なくとも1種の熱伝導性充填剤:100~3,000質量部、
(C)1分子中に2個以上のケイ素原子に結合した水素原子(SiH基)を有するオルガノハイドロジェンポリシロキサン:(A)成分中の脂肪族不飽和炭化水素基の個数の合計に対するSiH基の個数が0.5~5となる量、
(D)下記一般式(1)で表される有機リン化合物を配位子とする白金族金属錯体:有効量
Figure JPOXMLDOC01-appb-C000004
(式中、R1は置換基を有していてもよい炭素数1~20の1価炭化水素基を表し、それぞれのR1は同一であっても、異なっていてもよい。またxは0~3の整数を示す。)
を必須成分とする一液付加硬化型シリコーン組成物。
〔2〕
 更に、(E)下記一般式(2)で表される加水分解性オルガノポリシロキサン化合物を(A)成分100質量部に対して1~200質量部含むことを特徴とする〔1〕に記載の一液付加硬化型シリコーン組成物。
Figure JPOXMLDOC01-appb-C000005
(式中、R1は置換基を有していてもよい炭素数1~20の1価炭化水素基を表し、それぞれのR1は同一であっても、異なっていてもよい。またmは5~100の整数を示す。)
〔3〕
 更に、(F)下記一般式(3)で表される加水分解性オルガノシラン化合物を(A)成分100質量部に対して0.01~10質量部含むことを特徴とする〔1〕又は〔2〕に記載の一液付加硬化型シリコーン組成物。
Figure JPOXMLDOC01-appb-C000006
(式中、R1は置換基を有していてもよい炭素数1~20の1価炭化水素基を表し、それぞれのR1は同一であっても、異なっていてもよい。R2は置換基を有していてもよい炭素数1~20の1価炭化水素基を表す。)
〔4〕
 酸素透過係数が1×10-12cm3(STP)cm/cm2・s・Pa以下の材料からなる容器中に密閉保存することにより25℃で3か月以上の保存性を発現し、更に塗布厚さが1,500μm以下の薄膜に塗布して空気中に曝すことにより室温で付加硬化反応が進行することを特徴とする〔1〕~〔3〕のいずれかに記載の一液付加硬化型シリコーン組成物。
〔5〕
 〔1〕~〔4〕のいずれかに記載の一液付加硬化型シリコーン組成物を、酸素透過係数が1×10-12cm3(STP)cm/cm2・s・Pa以下の材料からなる容器中に密閉保存することを特徴とする25℃で3か月以上の保存性を発現する一液付加硬化型シリコーン組成物の保存方法。
〔6〕
 〔1〕~〔4〕のいずれかに記載の一液付加硬化型シリコーン組成物を、厚さ1,500μm以下の薄膜に塗布して室温で空気中に曝すことにより、室温で付加硬化反応を進行させることを特徴とする一液付加硬化型シリコーン組成物の硬化方法。
 本発明の一液付加硬化型シリコーン組成物は、従来技術では困難であった、空気が一定量遮断された条件における室温下での良好な長期保存性と1,500μm以下の薄膜に塗布して空気中に曝すことによる室温下での付加硬化反応の進行とを両立するものである。
 以下、本発明を詳細に説明する。
 本発明の一液付加硬化型シリコーン組成物は、下記(A)~(D)成分を必須成分とするものである。
(A)1分子中に少なくとも2個のケイ素原子に結合する脂肪族不飽和炭化水素基を有し、25℃での動粘度が60~100,000mm2/sであるオルガノポリシロキサン、
(B)金属、金属酸化物、金属水酸化物、金属窒化物、金属炭化物、及び炭素の同素体からなる群より選ばれる少なくとも1種の熱伝導性充填剤、
(C)1分子中に2個以上のケイ素原子に結合した水素原子(SiH基)を有するオルガノハイドロジェンポリシロキサン、
(D)下記一般式(1)で表される有機リン化合物を配位子とする白金族金属錯体。
Figure JPOXMLDOC01-appb-C000007
(式中、R1は置換基を有していてもよい炭素数1~20の1価炭化水素基を表し、それぞれのR1は同一であっても、異なっていてもよい。またxは0~3の整数を示す。)
(A)成分
 (A)成分は、1分子中に少なくとも2個のケイ素原子に結合する脂肪族不飽和炭化水素基を有し、25℃での動粘度が60~100,000mm2/sを有するオルガノポリシロキサンである。
 前記オルガノポリシロキサンのケイ素原子に結合する脂肪族不飽和炭化水素基としては、炭素数2~8、特に炭素数2~6の脂肪族不飽和結合を有する1価炭化水素基であることが好ましく、より好ましくはアルケニル基であり、例えば、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基、及びオクテニル基等のアルケニル基が挙げられる。特に好ましくはビニル基である。
 脂肪族不飽和炭化水素基は、分子鎖末端のケイ素原子に結合していても、分子鎖途中のケイ素原子に結合していても、両者に結合していてもよい。
 前記オルガノポリシロキサンのケイ素原子に結合する脂肪族不飽和炭化水素基以外の有機基としては、炭素数1~18、特に炭素数1~10、とりわけ炭素数1~8の、非置換又は置換の脂肪族不飽和結合を含まない1価炭化水素基であることが好ましく、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基、又は、これらの基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子、シアノ基等で置換したもの、例えばクロロメチル基、クロロプロピル基、ブロモエチル基、トリフルオロプロピル基、シアノエチル基等が挙げられる。特にはメチル基であることが好ましい。
 前記オルガノポリシロキサンは、25℃での動粘度が60~100,000mm2/sであり、好ましくは100~30,000mm2/sである。該動粘度が60mm2/s未満であると、シリコーン組成物の物理的特性が低下してしまい、100,000mm2/sを超えると、シリコーン組成物の伸展性が乏しいものとなる。
 本発明において、動粘度は、ウベローデ型オストワルド粘度計により測定した25℃における値である(以下、同じ)。
 前記オルガノポリシロキサンは、上記性質を有するものであればその分子構造は特に限定されず、直鎖状、分岐鎖状、一部分岐状又は環状構造を有する直鎖状等が挙げられる。特には、主鎖がジオルガノシロキサン単位の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基で封鎖された直鎖状構造を有するものが好ましい。該直鎖状構造を有するオルガノポリシロキサンは、部分的に分岐状構造、又は環状構造を有していてもよい。
 該オルガノポリシロキサンは、1種を単独で又は2種以上を組み合わせて使用することができる。
(B)成分
 (B)成分は熱伝導性充填剤であり、金属、金属酸化物、金属水酸化物、金属窒化物、金属炭化物、及び炭素の同素体からなる群より選ばれる少なくとも1種の材料からなるものが好ましく、例えば、アルミニウム、銀、銅、金属ケイ素、アルミナ、酸化亜鉛、酸化マグネシウム、二酸化ケイ素、酸化セリウム、酸化鉄、水酸化アルミニウム、水酸化セリウム、窒化アルミニウム、窒化ホウ素、炭化ケイ素、ダイヤモンド、グラファイト、カーボンナノチューブ、グラフェンなどが挙げられ、大粒子成分と小粒子成分を組み合わせたものであることが好ましい。
 この場合、大粒子成分の平均粒径は、0.1μmより小さいと得られる組成物の粘度が高くなりすぎ、伸展性の乏しいものとなるおそれがあり、100μmより大きいと得られる組成物が不均一となるおそれがあるため、0.1~100μmの範囲、好ましくは1~40μmの範囲がよい。また、小粒子成分の平均粒径は、0.01μmより小さいと得られる組成物の粘度が高くなりすぎ、伸展性の乏しいものとなるおそれがあり、10μmより大きいと得られる組成物が不均一となるおそれがあるため、0.01~10μmの範囲、好ましくは0.1~4μmの範囲がよい。なお、平均粒径は、例えば、レーザー光回折法による粒度分布測定における質量平均値(又はメジアン径)として求めることができる。
 また、大粒子成分及び小粒子成分の形状は、球状、不定形状、針状等、特に限定されるものではない。
 これら(B)成分の配合量は、(A)成分100質量部に対し3,000質量部より多いと伸展性の乏しいものとなるし、100質量部より少ないと熱伝導性に乏しいものとなるため、100~3,000質量部の範囲であり、好ましくは500~2,800質量部の範囲である。
(C)成分
 (C)成分は、ケイ素原子に結合した水素原子(SiH基)を1分子中に2個以上、好ましくは3個以上、特に好ましくは3~100個、更に好ましくは3~20個有するオルガノハイドロジェンポリシロキサンである。該オルガノハイドロジェンポリシロキサンは、分子中のSiH基が、上述した(A)成分が有する脂肪族不飽和炭化水素基と後述する白金族金属錯体の存在下に付加反応し、架橋構造を形成できるものであればよい。
 前記オルガノハイドロジェンポリシロキサンは、上記性質を有するものであればその分子構造は特に限定されず、直鎖状、分岐鎖状、環状、一部分岐状又は環状構造を有する直鎖状等が挙げられる。好ましくは直鎖状、環状である。
 該オルガノハイドロジェンポリシロキサンは25℃の動粘度が好ましくは1.0~1,000mm2/s、より好ましくは10~100mm2/sである。前記動粘度が1.0mm2/s以上であれば、シリコーン組成物の物理的特性が低下するおそれがなく、1,000mm2/s以下であれば、シリコーン組成物の伸展性が乏しいものとなるおそれがない。
 前記オルガノハイドロジェンポリシロキサンのケイ素原子に結合した有機基としては、脂肪族不飽和炭化水素基以外の有機基が好ましく、特には、炭素数1~12、更に炭素数1~10の、非置換又は置換の脂肪族不飽和結合を含まない1価炭化水素基であることが好ましく、例えば、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、ドデシル基等のアルキル基、フェニル基等のアリール基、2-フェニルエチル基、2-フェニルプロピル基等のアラルキル基、これらの水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子、シアノ基等で置換したもの、例えばクロロメチル基、クロロプロピル基、ブロモエチル基、トリフルオロプロピル基、シアノエチル基等、及び2-グリシドキシエチル基、3-グリシドキシプロピル基、4-グリシドキシブチル基等のエポキシ環含有有機基(グリシジル基又はグリシジルオキシ基置換アルキル基)が挙げられる。
 該オルガノハイドロジェンポリシロキサンは、1種単独でも、2種以上を混合して使用してもよい。
 (C)成分のオルガノハイドロジェンポリシロキサンの配合量は、(A)成分中の脂肪族不飽和炭化水素基の個数の合計に対する(C)成分中のSiH基の個数が0.5~5となる量であり、好ましくは0.8~3となる量であり、より好ましくは1~2となる量である。(C)成分の配合量が上記下限値未満では付加反応が十分に進行せず、架橋が不十分となる。また、上記上限値超では、架橋構造が不均一となったり、硬化しなかったりする。
(D)成分
 (D)成分は、上述した付加反応を促進するために機能するヒドロシリル化触媒であり、下記一般式(1)で表される有機リン化合物を配位子とする白金族金属錯体である。
Figure JPOXMLDOC01-appb-C000008
(式中、R1は置換基を有していてもよい炭素数1~20の1価炭化水素基を表し、それぞれのR1は同一であっても、異なっていてもよい。またxは0~3の整数を示す。)
 上記式(1)中のR1は、置換基を有していてもよい炭素数1~20の1価炭化水素基であり、好ましくは、置換基を有してもよい1価飽和脂肪族炭化水素基、置換基を有してもよい1価不飽和脂肪族炭化水素基、置換基を有してもよい1価芳香族炭化水素基(芳香族ヘテロ環を含む)であり、より好ましくは、置換基を有してもよい1価飽和脂肪族炭化水素基、置換基を有してもよい1価芳香族炭化水素基であり、特に好ましくは、置換基を有してもよい1価飽和脂肪族炭化水素基である。
 置換基を有してもよい1価飽和脂肪族炭化水素基として、具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等の直鎖アルキル基、イソプロピル基、イソブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基、エチルヘキシル基等の分岐鎖アルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、クロロメチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、ブロモプロピル基等のハロゲン置換アルキル基などの、炭素数1~20、好ましくは炭素数1~14、更に好ましくは炭素数1~12のものである。
 置換基を有してもよい1価不飽和脂肪族炭化水素基として、具体的には、エテニル基、1-メチルエテニル基、2-プロペニル基等のアルケニル基、エチニル基、2-プロピニル基等のアルキニル基などの、炭素数2~20、好ましくは炭素数2~12、更に好ましくは炭素数2~6のものである。
 置換基を有してもよい1価芳香族炭化水素基(芳香族ヘテロ環を含む)として、具体的には、フェニル基、トリル基、ナフチル基等のアリール基、ベンジル基、2-フェニルエチル基等のアラルキル基、α,α,α-トリフルオロトリル基、クロロベンジル基等のハロゲン置換アリール基、フリル基、チエニル基等の芳香族ヘテロ環等、炭素数4~20、好ましくは炭素数4~12のものである。
 R1としては、これらの中でも、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基、フェニル基、トリル基が好ましく、更に好ましくはエチル基、ブチル基、ヘキシル基、オクチル基、フェニル基であり、特に好ましくはエチル基、ブチル基、ヘキシル基、オクチル基である。
 xは0~3の整数であり、xが小さいほうが触媒としての特性が出やすいため好ましいが、例えば、xが0である有機リン化合物とxが3である有機リン化合物とを混合したものでも触媒としての十分な特性を出すことができる。
 上記有機リン化合物として具体的には、亜リン酸トリフェニル、亜リン酸トリヘキシル、亜リン酸トリエチル、トリフェニルホスフィン、トリヘキシルホスフィン等が挙げられる。
 なお、該有機リン化合物は、1種単独でも、2種以上を混合して使用してもよい。
 白金族金属錯体の中心金属となる白金族原子としては、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金が挙げられ、中でも比較的入手がしやすい白金がヒドロシリル化触媒の中心金属として好ましい。
 (D)成分は、白金族金属又は白金族金属化合物に対して、上記式(1)で表される有機リン化合物を添加し、任意の溶媒中もしくは無溶媒で所定の時間及び温度にて撹拌を行なうことで得ることができる。上記式(1)で表される有機リン化合物が中心金属に強力に配位することで、本発明の一液付加硬化型シリコーン組成物における、空気が一定量遮断された条件における室温下での良好な長期保存性を発現することができる。
 なお、白金族金属又は白金族金属化合物としては、特に白金金属又は白金化合物が好ましく、白金化合物としては、塩化白金、塩化白金酸、アルコール変性塩化白金酸、白金-ジビニルテトラメチルジシロキサン,白金-シクロビニルメチルシロキサン錯体等の白金-オレフィン錯体、白金カルボニルビニルメチル錯体等の白金-カルボニル錯体、白金-オクチルアルデヒド/オクタノール錯体等が挙げられる。
 一方で、本発明の一液付加硬化型シリコーン組成物は、薄膜に塗布して空気中に曝されることにより、空気中の酸素が(C)成分のオルガノハイドロジェンポリシロキサンの存在下、上記一般式(1)で表される有機リン化合物を配位子とする白金族金属錯体(ヒドロシリル化触媒)を活性化し、室温下において付加硬化反応を進行させることができる。
 (D)成分を調製する際、上記式(1)で表される有機リン化合物は、中心金属となる白金族原子に対して1~12当量、好ましくは1.5~10当量、更に好ましくは2~8当量を添加するのがよい。上記式(1)で表される有機リン化合物が1当量未満では、空気が遮断された条件における室温下での良好な長期保存性を発現することができない場合があり、12当量を超える量では、薄膜に塗布して空気中に曝しても室温下において付加硬化反応を進行させることができないおそれがある。
 (D)成分の配合量は、触媒として有効量であればよく、特に制限されないが、上記(A)成分に対して、白金族原子の質量として0.1~1,000ppm、好ましくは1~500ppm、更に好ましくは1~100ppm程度の範囲で配合すればよい。前記配合量が少なすぎると付加反応が著しく遅くなるか、又は硬化しなくなる場合があり、逆に多すぎると室温下での長期保存性の低下や、硬化後のシリコーン硬化物の耐熱性の低下を招くおそれがあり、更に白金族原子は高価であることからコスト面で不利となる。
(E)成分及び(F)成分
 本発明の一液付加硬化型シリコーン組成物は、更に、後述する(E)下記一般式(2)で表される加水分解性オルガノポリシロキサン化合物及び(F)下記一般式(3)で表される加水分解性オルガノシラン化合物のいずれか又は両方を含むことができる。
 (E)成分の加水分解性オルガノポリシロキサン化合物及び(F)成分の加水分解性オルガノシラン化合物は、熱伝導性充填剤の表面を処理するために用いるものであるが、充填剤の高充填化を補助するばかりでなく、充填剤表面を覆うことにより充填剤同士の凝集を起こりにくくし、高温下でもその効果は持続するため、得られるシリコーン硬化物の耐熱性を向上させる働きがある。
Figure JPOXMLDOC01-appb-C000009
(式中、R1は置換基を有していてもよい炭素数1~20の1価炭化水素基を表し、それぞれのR1は同一であっても、異なっていてもよい。またmは5~100、好ましくは10~80の整数を示す。)
Figure JPOXMLDOC01-appb-C000010
(式中、R1は置換基を有していてもよい炭素数1~20の1価炭化水素基を表し、それぞれのR1は同一であっても、異なっていてもよい。R2は置換基を有していてもよい炭素数1~20の1価炭化水素基を表す。)
 上記式(2)及び(3)中のR1は、上述したR1と同様のものを例示することができ、これらの中でも、メチル基、エチル基、3,3,3-トリフルオロプロピル基、フェニル基が好ましく、更に好ましくはメチル基、エチル基、フェニル基であり、特に好ましくはメチル基である。
 上記式(3)中のR2は、上述したR1と同様のものを例示することができ、これらの中でも、炭素数4~20の非置換の直鎖アルキル基が好ましく、更に好ましくは炭素数6~14の非置換の直鎖アルキル基であり、特に好ましくは炭素数6~12の非置換の直鎖アルキル基である。
 (E)成分の加水分解性オルガノポリシロキサン化合物を配合する場合の添加量は、多すぎるとオイルブリードしやすくなったり、十分に硬化反応が進行しない場合があるので、(A)成分100質量部に対して1~200質量部であることが好ましく、5~100質量部であることが特に好ましい。
 また、(F)成分の加水分解性オルガノシラン化合物を配合する場合の添加量は、多すぎるとオイルブリードしやすくなったり、ボイドの発生を招く場合があるので、(A)成分100質量部に対して0.01~10質量部であることが好ましく、0.1~8質量部であることが特に好ましい。
その他の成分
 本発明の一液付加硬化型シリコーン組成物は、組成物の保存性を向上させるために、アセチレンアルコール類等の、従来公知の制御剤を添加してもよい。また、組成物の弾性率や粘度を調整するためにメチルポリシロキサン等の反応性を有さないオルガノ(ポリ)シロキサンを含有してもよい。更に、シリコーン組成物の劣化を防ぐために、2,6-ジ-tert-ブチル-4-メチルフェノール等の、従来公知の酸化防止剤を必要に応じて含有してもよい。更に、染料、顔料、難燃剤、沈降防止剤、又はチクソ性向上剤等を、必要に応じて配合することができる。これらは、本発明の目的を損なわない範囲の量で配合することができる。
一液付加硬化型シリコーン組成物の製造方法
 次に、本発明における一液付加硬化型シリコーン組成物の製造方法について説明するが、これらに限定されるものではない。
 本発明の一液付加硬化型シリコーン組成物を製造する方法は、上述した(A)~(D)成分、必要によりこれに加えて(E)、(F)成分及びその他の成分を混合する工程を有するものであれば、従来のシリコーングリース組成物の製造方法に従えばよく、特に制限されるものでない。例えば、上記(A)~(F)成分、及び必要に応じてその他の成分をあわとり練太郎(シンキー(株)の登録商標)、トリミックス、ツウィンミックス、プラネタリーミキサー(いずれも井上製作所(株)製混合機の登録商標)、ウルトラミキサー(みずほ工業(株)製混合機の登録商標)、ハイビスディスパーミックス(特殊機化工業(株)製混合機の登録商標)等の混合機、もしくはヘラ等を用いた手混合にて混合する方法を採用することができる。
 本発明の一液付加硬化型シリコーン組成物は、25℃にて測定される粘度が、好ましくは3.0~1,000Pa・s、より好ましくは10~500Pa・sを有する。上記粘度が3.0Pa・s未満では、形状保持が困難となる等、作業性が悪くなるおそれがある。また上記粘度が1,000Pa・sを超える場合にも吐出や塗布が困難となる等、作業性が悪くなるおそれがある。前記粘度は、上述した各成分の配合を調整することにより得ることができる。本発明において、粘度はマルコム粘度計により測定した25℃の値である(ロータAで10rpm、ズリ速度6[1/s])。
一液付加硬化型シリコーン組成物の保存方法
 本発明の一液付加硬化型シリコーン組成物は、空気が一定量遮断された条件下において25℃で3か月以上の保存性を発現するものである。具体的には、酸素透過係数が1×10-12cm3(STP)cm/cm2・s・Pa以下の材料からなる容器中に密閉保存することにより、本発明の一液付加硬化型シリコーン組成物は25℃において3か月以上増粘・硬化することなく良好な長期保存性を発現することができる。一方、酸素透過係数が1×10-12cm3(STP)cm/cm2・s・Paより大きい材料からなる容器中に本発明の一液付加硬化型シリコーン組成物を保存した場合、該組成物は室温において増粘・硬化するため良好な25℃で3か月以上の保存性を発現することが困難となる。
 ここで、酸素透過係数が1×10-12cm3(STP)cm/cm2・s・Pa以下となる材料としては、例えば、高密度ポリエチレン、低密度ポリエチレン、ポリプロピレン、ポリスチレン、ポリカーボネート、ポリ酢酸ビニル、ポリエチレンテレフタレート、ポリ塩化ビニル、ポリ塩化ビニリデン、ナイロン、ポリフッ化ビニル、ポリアクリロニトリル等の高分子材料や、アルミニウム、ステンレス鋼等の金属材料が挙げられる。
 本発明の一液付加硬化型シリコーン組成物を保存する容器は上記材料からなるものであればよく、容器を構成する部材はそれぞれ異なる材料から構成されていてもよい。そのような容器中で本発明の一液付加硬化型シリコーン組成物を保存することにより、空気中に含まれる酸素による有機リン化合物を配位子とする白金族金属錯体の活性化を抑制することが可能となるため、室温における良好な長期保存性を発現することができる。
一液付加硬化型シリコーン組成物の硬化方法
 本発明の一液付加硬化型シリコーン組成物は、厚さ1,500μm以下の薄膜に塗布して空気中に曝すことにより室温(0~40℃、特に10~30℃)で付加硬化反応が進行するものである。塗布厚みを1,500μm以下として本発明の一液付加硬化型シリコーン組成物を塗布して空気中に曝すことにより、空気中の酸素が組成物内部に十分浸透し、組成物中に含まれる有機リン化合物を配位子とする白金族金属錯体が空気中の酸素によって活性化され、室温で付加硬化反応を進行させることができる。一方、本発明の一液付加硬化型シリコーン組成物を塗布厚み1,500μmより厚く塗布して空気中に曝した場合においては、空気中の酸素が組成物内部に十分浸透せず、組成物中に含まれる有機リン化合物を配位子とする白金族金属錯体が空気中の酸素によって十分に活性化されないため、室温で付加硬化反応を進行させることが困難となるおそれがある。なお、上記薄膜は1~14日間、特に3~10日間にて硬化し得ることが好ましい。
 以下、実施例及び比較例を示し、本発明をより詳細に説明するが、本発明は下記の実施例に制限されるものではない。下記において動粘度はウベローデ型オストワルド粘度計(柴田科学社製)により25℃で測定した値である。また、下記において室温は25℃を示す。
 まず、本発明の一液付加硬化型シリコーン組成物を調製する以下の各成分を用意した。
(A)成分
A-1:両末端がジメチルビニルシリル基で封鎖され、25℃における動粘度が600mm2/sのジメチルポリシロキサン
A-2:両末端がジメチルビニルシリル基で封鎖され、25℃における動粘度が10,000mm2/sのジメチルポリシロキサン
(B)成分
B-1:平均粒径10.0μmのアルミニウム粉末(熱伝導率:237W/m・℃)
B-2:平均粒径1.0μmの酸化亜鉛粉末(熱伝導率:25W/m・℃)
(C)成分
C-1:下記式で示され、25℃における動粘度が90mm2/sのメチルハイドロジェンポリシロキサン
Figure JPOXMLDOC01-appb-C000011
C-2:下記式で示され、25℃における動粘度が12mm2/sのメチルハイドロジェンポリシロキサン
Figure JPOXMLDOC01-appb-C000012
(D)成分
D-1:下記合成例1で得られた白金-亜リン酸トリヘキシル錯体
[合成例1]
 100mLのナスフラスコに、亜リン酸トリヘキシル0.31g(0.93mmol)、白金-ジビニルテトラメチルジシロキサン錯体を上記A-1と同じジメチルポリシロキサンに溶解した溶液(白金原子含有量:白金原子として1質量%)3.0g(白金原子として0.15mmol)、トルエン6.7gを加え、室温で3時間撹拌することで、無色透明の白金-亜リン酸トリヘキシル錯体9.8gを得た。
D-2:下記合成例2で得られた白金-亜リン酸トリフェニル錯体
[合成例2]
 100mLのナスフラスコに、亜リン酸トリフェニル0.29g(0.93mmol)、白金-ジビニルテトラメチルジシロキサン錯体を上記A-1と同じジメチルポリシロキサンに溶解した溶液(白金原子含有量:白金原子として1質量%)3.0g(白金原子として0.15mmol)、トルエン6.7gを加え、室温で3時間撹拌することで、無色半透明の白金-亜リン酸トリフェニル錯体9.8gを得た。
D-3:白金-ジビニルテトラメチルジシロキサン錯体を上記A-1と同じジメチルポリシロキサンに溶解した溶液(白金原子含有量:白金原子として1質量%)
(E)成分
E-1:下記式で示されるトリメトキシシリル基含有ジメチルポリシロキサン
Figure JPOXMLDOC01-appb-C000013
(F)成分
F-1:下記式で示されるデシルトリメトキシシラン
Figure JPOXMLDOC01-appb-C000014
その他の成分
G-1:下記式で示されるアセチレンアルコール
Figure JPOXMLDOC01-appb-C000015
[実施例1~8、比較例1~5]
一液付加硬化型シリコーン組成物の調製
 上記(A)~(F)成分及びその他の成分を、下記表1、表2に示す配合量に従い、下記に示す方法で配合して一液付加硬化型シリコーン組成物を調製した。なお、表1、表2中のSiH/SiVi(個数比)は(A)成分のアルケニル基の個数の合計に対する(C)成分中のSiH基の個数の合計の比である。
 5リットルのプラネタリーミキサー(井上製作所(株)製)に(A)、(B)、(E)及び(F)成分を加え、170℃で1時間混合した。常温(25℃)になるまで冷却し、次に(C)、(D)及びその他の成分を加えて均一になるように混合し、一液付加硬化型シリコーン組成物を調製した。
 上記方法で得られた各組成物について、下記の方法に従い、粘度及び熱伝導率を測定し、更に室温下保存性及び室温下硬化性を評価した。結果を表1及び表2に併記する。
[粘度]
 各組成物の絶対粘度を、マルコム粘度計(タイプPC-1T)を用いて25℃で測定した。
[熱伝導率]
 各組成物をキッチンラップで包み、熱伝導率を京都電子工業(株)製TPA-501で測定した。
[室温下保存性]
 各組成物を高密度ポリエチレン容器(高密度ポリエチレンの酸素透過係数:2×10-13cm3(STP)cm/cm2・s・Pa)に封入したのち25℃下に保存し、硬化するまでに要する時間が3か月以上であれば「○」、3か月未満であれば「×」とした。但しここでは、マルコム粘度計(タイプPC-1T)を用い、25℃における絶対粘度の測定が不可能となった状態を「硬化」と定義した。
[室温下硬化性]
 各組成物を120μmの厚みでアルミニウム板上に塗布したのち、室温下(25±2℃)で空気中に曝した。7日以内に表層及び内部が硬化した場合には「○」、左記以外の場合には「×」とした。但しここでは、組成物を触った際、指に転写しない状態を「硬化」と定義した。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
 表1及び2の結果より、本発明の要件を満たす実施例1~8では、空気が一定量遮断された条件における室温下保存性と、1,500μm以下の薄膜に塗布して空気中に曝すことによる室温下硬化性を両立可能であることがわかった。一方、比較例1~5では空気が一定量遮断された条件における室温下保存性と、1,500μm以下の薄膜に塗布して空気中に曝すことによる室温下硬化性を両立することは困難であることがわかった。
[実施例9~12、比較例6、7]
 続いて、一液付加硬化型シリコーン組成物を保存する容器の材質に対する一液付加硬化型シリコーン組成物の室温下保存性を評価した。なお一液付加硬化型シリコーン組成物には実施例1の組成を用い、室温下保存性は先に述べたものと同じ手法で評価した。保存容器の材質としては、以下の5種を用いた。カッコ内の数値は酸素透過係数を示す。
・高密度ポリエチレン(2×10-13cm3(STP)cm/cm2・s・Pa)
・ポリ塩化ビニル(3×10-15cm3(STP)cm/cm2・s・Pa)
・ポリ塩化ビニリデン(5×10-16cm3(STP)cm/cm2・s・Pa)
・アルミニウム(~0cm3(STP)cm/cm2・s・Pa)
・シリコーンゴム(6×10-11cm3(STP)cm/cm2・s・Pa)
 上記材質からなる容器に実施例1の組成の一液付加硬化型シリコーン組成物を保存し、それぞれの室温下保存性を評価した結果を表3に示す。
Figure JPOXMLDOC01-appb-T000018
 表3の結果より、本発明の要件を満たす実施例9~12では、空気が一定量遮断された条件における室温下保存性を発現することがわかった。一方、比較例6では空気が一定量遮断された条件における室温下保存性を発現することは困難であることがわかった。
[実施例13~18、比較例8、9]
 更に、一液付加硬化型シリコーン組成物の塗布厚みに対する室温下硬化性を評価した。なお一液付加硬化型シリコーン組成物には実施例1の組成を用い、室温下硬化性は塗布厚みを適宜変更した以外は先に述べたものと同じ手法で評価した。
 実施例1の組成の一液付加硬化型シリコーン組成物を各厚みに塗布し、それぞれの室温下硬化性を評価した結果を表4に示す。
Figure JPOXMLDOC01-appb-T000019
 表4の結果より、本発明の要件を満たす1,500μm以下の薄膜に塗布して空気中に曝した実施例13~18では、一液付加硬化型シリコーン組成物は室温下硬化性を発現することがわかった。一方、1,500μmより厚く塗布して空気中に曝した比較例8、9では、一液付加硬化型シリコーン組成物は室温下硬化性を発現することは困難であることがわかった。
 従って、表1~表4の結果より、本発明の一液付加硬化型シリコーン組成物は、「空気が一定量遮断された条件における室温下での良好な長期保存性」と「1,500μm以下の薄膜に塗布して空気中に曝すことによる室温下での付加硬化反応の進行」とを両立可能とすることが確認できた。
 なお、本発明は上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (6)

  1.  (A)1分子中に少なくとも2個のケイ素原子に結合する脂肪族不飽和炭化水素基を有し、25℃での動粘度が60~100,000mm2/sであるオルガノポリシロキサン:100質量部、
    (B)金属、金属酸化物、金属水酸化物、金属窒化物、金属炭化物、及び炭素の同素体からなる群より選ばれる少なくとも1種の熱伝導性充填剤:100~3,000質量部、
    (C)1分子中に2個以上のケイ素原子に結合した水素原子(SiH基)を有するオルガノハイドロジェンポリシロキサン:(A)成分中の脂肪族不飽和炭化水素基の個数の合計に対するSiH基の個数が0.5~5となる量、
    (D)下記一般式(1)で表される有機リン化合物を配位子とする白金族金属錯体:有効量
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は置換基を有していてもよい炭素数1~20の1価炭化水素基を表し、それぞれのR1は同一であっても、異なっていてもよい。またxは0~3の整数を示す。)
    を必須成分とする一液付加硬化型シリコーン組成物。
  2.  更に、(E)下記一般式(2)で表される加水分解性オルガノポリシロキサン化合物を(A)成分100質量部に対して1~200質量部含むことを特徴とする請求項1に記載の一液付加硬化型シリコーン組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R1は置換基を有していてもよい炭素数1~20の1価炭化水素基を表し、それぞれのR1は同一であっても、異なっていてもよい。またmは5~100の整数を示す。)
  3.  更に、(F)下記一般式(3)で表される加水分解性オルガノシラン化合物を(A)成分100質量部に対して0.01~10質量部含むことを特徴とする請求項1又は2に記載の一液付加硬化型シリコーン組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式中、R1は置換基を有していてもよい炭素数1~20の1価炭化水素基を表し、それぞれのR1は同一であっても、異なっていてもよい。R2は置換基を有していてもよい炭素数1~20の1価炭化水素基を表す。)
  4.  酸素透過係数が1×10-12cm3(STP)cm/cm2・s・Pa以下の材料からなる容器中に密閉保存することにより25℃で3か月以上の保存性を発現し、更に塗布厚さが1,500μm以下の薄膜に塗布して空気中に曝すことにより室温で付加硬化反応が進行することを特徴とする請求項1~3のいずれか1項に記載の一液付加硬化型シリコーン組成物。
  5.  請求項1~4のいずれか1項に記載の一液付加硬化型シリコーン組成物を、酸素透過係数が1×10-12cm3(STP)cm/cm2・s・Pa以下の材料からなる容器中に密閉保存することを特徴とする25℃で3か月以上の保存性を発現する一液付加硬化型シリコーン組成物の保存方法。
  6.  請求項1~4のいずれか1項に記載の一液付加硬化型シリコーン組成物を、厚さ1,500μm以下の薄膜に塗布して室温で空気中に曝すことにより、室温で付加硬化反応を進行させることを特徴とする一液付加硬化型シリコーン組成物の硬化方法。
PCT/JP2015/079667 2014-11-25 2015-10-21 一液付加硬化型シリコーン組成物、その保存方法及び硬化方法 WO2016084520A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15863390.9A EP3225662B1 (en) 2014-11-25 2015-10-21 One-pack addition curable silicone composition, method for storing same, and method for curing same
KR1020177016610A KR20170090440A (ko) 2014-11-25 2015-10-21 1액 부가 경화형 실리콘 조성물, 그 보존 방법 및 경화 방법
US15/529,302 US20170260392A1 (en) 2014-11-25 2015-10-21 One-pack addition curable silicone composition, method for storing same, and method for curing same
CN201580064002.XA CN107001802B (zh) 2014-11-25 2015-10-21 单液加成固化型有机硅组合物、其保存方法和固化方法
US16/678,591 US11041072B2 (en) 2014-11-25 2019-11-08 One-pack addition curable silicone composition, method for storing same, and method for curing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014237302A JP6260519B2 (ja) 2014-11-25 2014-11-25 一液付加硬化型シリコーン組成物の保存方法及び硬化方法
JP2014-237302 2014-11-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/529,302 A-371-Of-International US20170260392A1 (en) 2014-11-25 2015-10-21 One-pack addition curable silicone composition, method for storing same, and method for curing same
US16/678,591 Division US11041072B2 (en) 2014-11-25 2019-11-08 One-pack addition curable silicone composition, method for storing same, and method for curing same

Publications (1)

Publication Number Publication Date
WO2016084520A1 true WO2016084520A1 (ja) 2016-06-02

Family

ID=56074096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079667 WO2016084520A1 (ja) 2014-11-25 2015-10-21 一液付加硬化型シリコーン組成物、その保存方法及び硬化方法

Country Status (7)

Country Link
US (2) US20170260392A1 (ja)
EP (1) EP3225662B1 (ja)
JP (1) JP6260519B2 (ja)
KR (1) KR20170090440A (ja)
CN (1) CN107001802B (ja)
TW (1) TWI679246B (ja)
WO (1) WO2016084520A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021014970A1 (ja) * 2019-07-25 2021-01-28 信越化学工業株式会社 1液型硬化性シリコーンゲル組成物及びシリコーンゲル硬化物

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109890900B (zh) 2016-10-31 2022-01-14 陶氏东丽株式会社 单组分可固化型导热硅脂组合物和电子/电气组件
CN116284946A (zh) 2017-02-08 2023-06-23 埃肯有机硅美国公司 具有改进的热管理的二次电池组
CN110494497B (zh) * 2017-08-04 2021-11-09 瓦克化学股份公司 可以通过uv光辐照交联的硅酮组合物
JP6915599B2 (ja) * 2018-09-07 2021-08-04 信越化学工業株式会社 熱伝導性シリコーン組成物
JP6959950B2 (ja) 2019-03-04 2021-11-05 信越化学工業株式会社 非硬化型熱伝導性シリコーン組成物
JP7088123B2 (ja) * 2019-04-24 2022-06-21 信越化学工業株式会社 熱伝導性シリコーン組成物の製造方法
CN110669284B (zh) * 2019-09-30 2022-05-17 北京石墨烯技术研究院有限公司 石墨烯复合材料及其制备方法,以及一种制成品及其应用
EP3819328A1 (en) 2019-11-06 2021-05-12 3M Innovative Properties Company Thermally-conductive curable composition
CN115667407A (zh) * 2020-05-22 2023-01-31 信越化学工业株式会社 高导热性有机硅组合物
CN112961192A (zh) * 2021-02-26 2021-06-15 畅的新材料科技(上海)有限公司 一种高稳定性硅氢加成用铂金催化剂的制备方法和应用
WO2023243707A1 (ja) * 2022-06-17 2023-12-21 積水化学工業株式会社 シリコーン組成物、放熱部材、及び電子機器

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288650A (ja) * 1988-08-01 1990-03-28 General Electric Co <Ge> 発泡可能な組成物およびシリコーンフォームの製造方法
JPH03131656A (ja) * 1989-10-18 1991-06-05 Toshiba Silicone Co Ltd 難燃性シリコーンゴム組成物
JPH11140322A (ja) * 1997-11-13 1999-05-25 Toshiba Silicone Co Ltd 難燃性シリコーンゲル組成物
JP2000063672A (ja) * 1998-08-20 2000-02-29 Wacker Chemie Gmbh 硬化可能なオルガノポリシロキサン材料および該材料から架橋によって得られた成形体
JP2006063142A (ja) * 2004-08-25 2006-03-09 Shin Etsu Chem Co Ltd 一液型オルガノポリシロキサンゲル組成物
JP2008280395A (ja) * 2007-05-09 2008-11-20 Momentive Performance Materials Japan Kk 熱伝導性シリコーン組成物およびその硬化方法
JP2009144024A (ja) * 2007-12-13 2009-07-02 Momentive Performance Materials Inc 難燃性シリコーンゴム組成物
WO2010009755A1 (en) * 2008-07-21 2010-01-28 Momentive Performance Materials Gmbh Curable silicone compositions comprising aryl-phosphites
JP2011153252A (ja) * 2010-01-28 2011-08-11 Dow Corning Toray Co Ltd 熱伝導性シリコーンゴム組成物
JP2014218564A (ja) * 2013-05-07 2014-11-20 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3188300A (en) * 1963-02-28 1965-06-08 Gen Electric Preparation of stable copolymerizable organosilicon compositions containing a platinum catalyst and a phosphorus ligand
GB1310353A (en) * 1969-06-26 1973-03-21 Dow Corning Ltd Organosilicon compositions
EP0939115A1 (en) 1998-02-27 1999-09-01 Shin-Etsu Chemical Co., Ltd. Thermally conductive grease composition
JP2938429B1 (ja) 1998-02-27 1999-08-23 信越化学工業株式会社 熱伝導性シリコーン組成物
JP2938428B1 (ja) 1998-02-27 1999-08-23 信越化学工業株式会社 熱伝導性グリース組成物
JP3580366B2 (ja) 2001-05-01 2004-10-20 信越化学工業株式会社 熱伝導性シリコーン組成物及び半導体装置
AU2003246862A1 (en) 2002-04-29 2003-11-17 Rhodia Chimie Assembly for hydrosylilation, method for preparing same and silicone compositions incorporating same
FR2838985B1 (fr) * 2002-04-29 2005-03-18 Rhodia Chimie Sa Ensemble catalytique pour hydrosilylation et compositions silicone l'incorporant
JP3952184B2 (ja) 2002-10-10 2007-08-01 信越化学工業株式会社 熱伝導性シート
US20050049350A1 (en) * 2003-08-25 2005-03-03 Sandeep Tonapi Thin bond-line silicone adhesive composition and method for preparing the same
JP2005120259A (ja) * 2003-10-17 2005-05-12 Shin Etsu Chem Co Ltd 室温硬化性オルガノポリシロキサン組成物
JP4557136B2 (ja) * 2004-05-13 2010-10-06 信越化学工業株式会社 熱伝導性シリコーンゴム組成物及び成型品
JP4933094B2 (ja) 2005-12-27 2012-05-16 信越化学工業株式会社 熱伝導性シリコーングリース組成物
EP1878767A1 (en) * 2006-07-12 2008-01-16 Shin-Etsu Chemical Co., Ltd. Heat conductive silicone grease composition and cured product thereof
JP4917380B2 (ja) 2006-07-31 2012-04-18 信越化学工業株式会社 放熱用シリコーングリース組成物及びその製造方法
JP5283346B2 (ja) 2007-04-10 2013-09-04 信越化学工業株式会社 熱伝導性硬化物及びその製造方法
DE102007047212A1 (de) * 2007-10-02 2009-04-09 Wacker Chemie Ag Härtbare Siliconzusammensetzungen
JP5233325B2 (ja) 2008-02-29 2013-07-10 信越化学工業株式会社 熱伝導性硬化物及びその製造方法
JP4656340B2 (ja) 2008-03-03 2011-03-23 信越化学工業株式会社 熱伝導性シリコーングリース組成物
JP4572243B2 (ja) 2008-03-27 2010-11-04 信越化学工業株式会社 熱伝導性積層体およびその製造方法
JP4913874B2 (ja) 2010-01-18 2012-04-11 信越化学工業株式会社 硬化性オルガノポリシロキサン組成物および半導体装置
JP5365572B2 (ja) 2010-04-13 2013-12-11 信越化学工業株式会社 室温湿気増粘型熱伝導性シリコーングリース組成物
JP5664563B2 (ja) * 2012-01-23 2015-02-04 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物
JP5832983B2 (ja) 2012-10-18 2015-12-16 信越化学工業株式会社 シリコーン組成物

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288650A (ja) * 1988-08-01 1990-03-28 General Electric Co <Ge> 発泡可能な組成物およびシリコーンフォームの製造方法
JPH03131656A (ja) * 1989-10-18 1991-06-05 Toshiba Silicone Co Ltd 難燃性シリコーンゴム組成物
JPH11140322A (ja) * 1997-11-13 1999-05-25 Toshiba Silicone Co Ltd 難燃性シリコーンゲル組成物
JP2000063672A (ja) * 1998-08-20 2000-02-29 Wacker Chemie Gmbh 硬化可能なオルガノポリシロキサン材料および該材料から架橋によって得られた成形体
JP2006063142A (ja) * 2004-08-25 2006-03-09 Shin Etsu Chem Co Ltd 一液型オルガノポリシロキサンゲル組成物
JP2008280395A (ja) * 2007-05-09 2008-11-20 Momentive Performance Materials Japan Kk 熱伝導性シリコーン組成物およびその硬化方法
JP2009144024A (ja) * 2007-12-13 2009-07-02 Momentive Performance Materials Inc 難燃性シリコーンゴム組成物
WO2010009755A1 (en) * 2008-07-21 2010-01-28 Momentive Performance Materials Gmbh Curable silicone compositions comprising aryl-phosphites
JP2011153252A (ja) * 2010-01-28 2011-08-11 Dow Corning Toray Co Ltd 熱伝導性シリコーンゴム組成物
JP2014218564A (ja) * 2013-05-07 2014-11-20 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3225662A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021014970A1 (ja) * 2019-07-25 2021-01-28 信越化学工業株式会社 1液型硬化性シリコーンゲル組成物及びシリコーンゲル硬化物
JPWO2021014970A1 (ja) * 2019-07-25 2021-01-28
JP7192993B2 (ja) 2019-07-25 2022-12-20 信越化学工業株式会社 1液型硬化性シリコーンゲル組成物及びシリコーンゲル硬化物
US11667791B2 (en) 2019-07-25 2023-06-06 Shin-Etsu Chemical Co., Ltd. One-pack type curable silicone gel composition and cured silicone gel

Also Published As

Publication number Publication date
JP2016098337A (ja) 2016-05-30
CN107001802A (zh) 2017-08-01
KR20170090440A (ko) 2017-08-07
TW201623456A (zh) 2016-07-01
TWI679246B (zh) 2019-12-11
EP3225662A1 (en) 2017-10-04
US11041072B2 (en) 2021-06-22
CN107001802B (zh) 2020-09-22
US20200071526A1 (en) 2020-03-05
JP6260519B2 (ja) 2018-01-17
US20170260392A1 (en) 2017-09-14
EP3225662B1 (en) 2022-04-13
EP3225662A4 (en) 2018-07-18

Similar Documents

Publication Publication Date Title
JP6260519B2 (ja) 一液付加硬化型シリコーン組成物の保存方法及び硬化方法
JP5233325B2 (ja) 熱伝導性硬化物及びその製造方法
JP2017210518A (ja) 熱伝導性シリコーン組成物及びその硬化物
KR102334773B1 (ko) 열전도성 폴리오가노실록산 조성물
JP5472055B2 (ja) 熱伝導性シリコーングリース組成物
JP6625749B2 (ja) 熱伝導性ポリオルガノシロキサン組成物
JP2016030774A (ja) 熱伝導性シリコーン組成物及び熱伝導性シリコーン成型物
KR20120051585A (ko) 열전도성 실리콘 그리스 조성물
TWI622624B (zh) Polyoxonium composition and method for producing thermally conductive polyphosphonium composition
WO2018207696A1 (ja) 熱伝導性シリコーン組成物
WO2021131212A1 (ja) 熱伝導性シリコーン組成物
WO2018079309A1 (ja) 熱伝導性シリコーン組成物
CN106715592A (zh) 紫外线增稠型导热性硅润滑脂组合物
JP2009235279A (ja) 熱伝導性成形体およびその製造方法
JP2019182980A (ja) 熱伝導性シリコーン組成物及びその硬化物
JP6394559B2 (ja) 熱伝導性シリコーングリース組成物
WO2023053760A1 (ja) 熱伝導性シリコーン組成物および該組成物を使用するギャップフィラーの製造方法
JP2010144130A (ja) 硬化性オルガノポリシロキサン組成物
JP7010381B2 (ja) シリコーン組成物及びその製造方法
TWI818154B (zh) 非硬化型導熱性矽氧組成物
TWI534255B (zh) Heat-conductive silicone grease composition
WO2023162636A1 (ja) 熱伝導性シリコーン組成物
TW202313853A (zh) 導熱性矽氧組成物
TW202208552A (zh) 導熱性加成硬化型矽酮組合物及其硬化物
JP2021001239A (ja) 熱硬化型熱伝導性シリコーンゴム組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15863390

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15529302

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015863390

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177016610

Country of ref document: KR

Kind code of ref document: A