WO2016084200A1 - 電池用活物質、非水電解質電池、組電池、電池パック及び自動車 - Google Patents

電池用活物質、非水電解質電池、組電池、電池パック及び自動車 Download PDF

Info

Publication number
WO2016084200A1
WO2016084200A1 PCT/JP2014/081414 JP2014081414W WO2016084200A1 WO 2016084200 A1 WO2016084200 A1 WO 2016084200A1 JP 2014081414 W JP2014081414 W JP 2014081414W WO 2016084200 A1 WO2016084200 A1 WO 2016084200A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
active material
negative electrode
positive electrode
nonaqueous electrolyte
Prior art date
Application number
PCT/JP2014/081414
Other languages
English (en)
French (fr)
Inventor
稲垣 浩貴
高見 則雄
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to KR1020177005002A priority Critical patent/KR101880872B1/ko
Priority to JP2016510854A priority patent/JP6092466B2/ja
Priority to EP14907066.6A priority patent/EP3226328B1/en
Priority to PCT/JP2014/081414 priority patent/WO2016084200A1/ja
Priority to CN201480080959.9A priority patent/CN106663798B/zh
Publication of WO2016084200A1 publication Critical patent/WO2016084200A1/ja
Priority to US15/444,863 priority patent/US10224542B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • Embodiments of the present invention relate to a battery active material, a non-aqueous electrolyte battery, an assembled battery, a battery pack, and an automobile.
  • the battery thickness of a secondary battery using such an aluminum laminate packaging material changes due to the volume expansion and contraction of the electrode accompanying charging and discharging. This causes a problem that the battery fluctuates and the gap between the electrodes spreads to increase the resistance of the battery, and as a result, the battery characteristics deteriorate.
  • a battery using lithium titanate as a negative electrode active material has been developed as a material system that can avoid such problems.
  • Lithium titanate has almost no volume change associated with charging and discharging, and as a result, the change in battery thickness is extremely small.
  • this compound as a negative electrode active material, the above-described problems are solved.
  • Another object of the present invention is to provide a battery pack including the above nonaqueous electrolyte battery and an automobile including the battery pack.
  • an active material for a battery is provided.
  • This battery active material is represented by the general formula Li (2 + x) Na 2 Ti 6 O 14 (x is in the range of 0 ⁇ x ⁇ 6).
  • This battery active material contains 0.03 to 8.33 atoms of at least one element selected from the group consisting of Zr, Mo, W, V, Nb, Ta, P, Y, Al, Fe, and B. Inclusive in%.
  • a nonaqueous electrolyte battery includes a positive electrode, a negative electrode, and a nonaqueous electrolyte.
  • the negative electrode includes a negative electrode active material.
  • the negative electrode active material includes the battery active material according to the first embodiment.
  • an assembled battery is provided.
  • the assembled battery according to the third embodiment includes a plurality of nonaqueous electrolyte batteries according to the second embodiment.
  • a battery pack is provided.
  • the battery pack according to the fourth embodiment includes the nonaqueous electrolyte battery according to the second embodiment.
  • an automobile provided with the battery pack according to the fourth embodiment is provided.
  • the battery pack is disposed in the engine room of the automobile.
  • FIG. 10 is a schematic cross-sectional view showing an example of an automobile according to a fifth embodiment.
  • 3 is an XRD pattern of the battery active material of Example 1.
  • an active material for a battery is provided.
  • This battery active material is represented by the general formula Li (2 + x) Na 2 Ti 6 O 14 (x is in the range of 0 ⁇ x ⁇ 6).
  • This battery active material contains 0.03 to 8.33 atoms of at least one element selected from the group consisting of Zr, Mo, W, V, Nb, Ta, P, Y, Al, Fe, and B. Inclusive in%.
  • the subscript x in the above general formula can vary within the range of 0 or more and 6 or less, depending on the state of charge of the battery active material according to the first embodiment.
  • a nonaqueous electrolyte battery using lithium titanate for the negative electrode and LiMn 2 O 4 for the positive electrode has an average voltage of about 2.5V. This voltage is lower than 3.9 V, which is an average voltage of a secondary battery including a carbon negative electrode and a LiMn 2 O 4 positive electrode, which are lithium ion secondary batteries that are widely commercialized.
  • a non-aqueous electrolyte battery including a negative electrode containing lithium titanate and a positive electrode containing LiMn 2 O 4 is used to show the same average voltage as a secondary battery containing a carbon negative electrode and a LiMn 2 O 4 positive electrode.
  • the present inventors have carried out a lithium occlusion / release reaction at a potential lower than that of lithium titanate in order to increase the voltage of the cell, and are equivalent to the case where lithium titanate is used.
  • the battery active material represented by the general formula Li (2 + x) Na 2 Ti 6 O 14 (x is in the range of 0 ⁇ x ⁇ 6) has a lithium insertion / release reaction of about 1.2 V to It proceeds at a potential of 1.4 V (vs. Li / Li + ). Therefore, a nonaqueous electrolyte battery using a negative electrode including such a titanium-containing oxide exhibits a higher voltage than a nonaqueous electrolyte battery including lithium titanate.
  • the nonaqueous electrolyte battery using the negative electrode containing the titanium-containing oxide may have poor input / output characteristics such as a large current characteristic, and may exhibit poor life characteristics.
  • the present inventors are represented by the general formula Li (2 + x) Na 2 Ti 6 O 14 (x is in the range of 0 ⁇ x ⁇ 6). 0.03 to 8.33 atomic% of at least one element selected from the group consisting of Zr, Mo, W, V, Nb, Ta, P, Y, Al, Fe, and B in the battery active material
  • the electronic conductivity of the battery active material represented by the general formula Li (2 + x) Na 2 Ti 6 O 14 (x is in the range of 0 ⁇ x ⁇ 6) can be obtained. I found that I could be able to enhance.
  • the battery active material represented by the general formula Li (2 + x) Na 2 Ti 6 O 14 (x is in the range of 0 ⁇ x ⁇ 6) has a lithium occlusion-release reaction. It can proceed at a potential of 1.2 V to 1.4 V (vs. Li / Li + ).
  • the battery active material according to the first embodiment can realize a non-aqueous electrolyte battery that has excellent input / output characteristics and is capable of stable repeated rapid charge / discharge, that is, excellent life characteristics. .
  • At least one element selected from the group consisting of Zr, Mo, W, V, Nb, Ta, P, Y, Al, Fe, and B is represented by the general formula Li (2 + x) Na 2 Ti 6 O 14.
  • a part of the Ti site of the compound represented by can be substituted.
  • Preferred elements are Zr, Mo, W, V, Nb, Ta. Further preferred elements are V and Nb.
  • the content of the element is less than 0.03 atomic%, the effect of increasing the electronic conductivity is small. On the other hand, if the content of the above elements exceeds 8.33 atomic%, a heterogeneous phase that impairs the life performance may be generated. A more preferable substitution amount is 0.04 to 4.17 atomic%.
  • the content of the element can be measured by inductively coupled plasma (ICP emission spectroscopy).
  • the battery active material according to the first embodiment can take, for example, a granular shape.
  • the battery active material according to the first embodiment may be, for example, primary particles or secondary particles obtained by aggregating primary particles.
  • the compressive fracture strength of the secondary particles is preferably 10 MPa or more from the viewpoint of life characteristics.
  • the average secondary particle diameter is preferably 1 ⁇ m or more and 100 ⁇ m or less.
  • the average particle diameter of the secondary particles is more preferably 3 ⁇ m or more and 30 ⁇ m or less.
  • the active material for a battery contains secondary particles can be confirmed by, for example, observation with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the primary particles contained in the secondary particles preferably have an average primary particle diameter of 1 nm to 10 ⁇ m. When the average primary particle size is within this range, it is easy to handle in industrial production, and the diffusion of lithium ions in the solid of the titanium-containing oxide can be promoted.
  • the average primary particle diameter is more preferably 10 nm or more and 1 ⁇ m or less.
  • the average primary particle diameter is particularly preferably from 0.30 nm to 0.98 ⁇ m.
  • the primary particles are preferably isotropic.
  • isotropic particles mean particles having an aspect ratio of 3 or less. It can be confirmed by scanning electron microscope (SEM) observation that the primary particles are isotropic particles.
  • the secondary particles preferably have a specific surface area measured by the BET method of 3 m 2 / g or more and 50 m 2 / g or less.
  • the specific surface area is 3 m 2 / g or more, it is possible to secure sufficient lithium ion storage / desorption sites.
  • the specific surface area is 50 m 2 / g or less, it becomes easy to handle in industrial production.
  • the secondary particles have a specific surface area measured by the BET method of 5 m 2 / g or more and 50 m 2 / g or less.
  • the battery active material according to the first embodiment preferably has a carbon-containing phase formed on at least a part of the surface of the particle.
  • the battery active material according to the first embodiment can exhibit more excellent electronic conductivity by further including a phase containing carbon.
  • the amount of carbon is preferably in the range of 0.1% by mass to 10% by mass with respect to the mass of the active material. Within this range, it is possible to obtain an effect of enhancing electron conduction while ensuring a sufficient capacity. More preferably, carbon content is 1 mass% or more and 3 mass% with respect to the mass of an active material material.
  • the amount of carbon can be quantified by, for example, a high-frequency heating-infrared absorption method.
  • the battery active material according to the first embodiment includes at least one element selected from the group consisting of Zr, Mo, W, V, Nb, Ta, P, Y, Al, Fe, and B, and In addition to carbon, impurities inevitable in production can be further contained in an amount of 1000 ppm by mass or less.
  • the battery active material according to the first embodiment described above can be manufactured, for example, as follows.
  • lithium salts such as lithium hydroxide, lithium oxide, and lithium carbonate are prepared as the Li source
  • sodium salts such as sodium hydroxide, sodium oxide, and sodium carbonate are prepared as the Na source.
  • a predetermined amount of these is dissolved in pure water. Titanium oxide and the oxide of the additive element are added to this solution so that the atomic ratio of lithium, sodium, titanium, and the additive element is a predetermined ratio.
  • a titanium-containing oxide having the composition formula Li 2 Na 2 Ti 5 NbO 14 is synthesized, the raw materials are mixed so that the atomic ratio of lithium, sodium, titanium, and niobium is 2: 2: 5: 1. .
  • the obtained solution is dried while stirring to obtain a calcined precursor.
  • drying method include spray drying, granulation drying, freeze drying, or a combination thereof.
  • the obtained firing precursor is fired to obtain a titanium-containing oxide. Firing may be performed in the air, but may be performed in an inert atmosphere using an oxygen atmosphere or argon.
  • the powder may be mixed without dissolving the Li source and / or Na source in pure water, but in order to mix the raw materials more uniformly and suppress the generation of the impurity phase, It is preferable to go through the above steps.
  • Calcination of the firing precursor or the mixed raw material may be performed at a temperature of 680 ° C. to 1000 ° C. for about 30 minutes to 24 hours.
  • the baking is performed at a temperature of 720 ° C. or higher and 850 ° C. or lower for 1 hour or longer and 6 hours or shorter.
  • the pore volume and average pore diameter of the primary particles can be controlled by pulverizing and refiring the titanium-containing oxide obtained by the above-described firing under the conditions described below.
  • a pulverization method for example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling air flow type jet mill or a sieve can be used.
  • wet pulverization in which a known liquid pulverization aid such as water, ethanol, ethylene glycol, benzene, or hexane coexists can be used.
  • the grinding aid is effective for improving the grinding efficiency and increasing the amount of fine powder produced.
  • a more preferred method is a ball mill using zirconia balls as media, and wet grinding with a liquid grinding aid is preferred. Furthermore, an organic substance such as a polyol that improves the grinding efficiency may be added as a grinding aid. Although the kind of polyol is not particularly limited, pentaerythritol, triethylolethane, trimethylolpropane and the like can be used alone or in combination.
  • the refiring may be performed in the air, or may be performed in an inert atmosphere using an oxygen atmosphere or argon.
  • the refiring may be performed at a temperature of 250 ° C. to 900 ° C. for about 1 minute to 10 hours.
  • the temperature is 900 ° C. or higher, the pulverized powder is baked, and even if the heat treatment is performed for a short time, the pores are crushed, and the pore size distribution described in this embodiment is difficult to obtain.
  • the temperature is lower than 250 ° C., impurities (organic matter) adhering during wet pulverization cannot be removed, and the battery performance deteriorates.
  • the re-baking is performed at a temperature of 400 ° C. to 700 ° C. for 10 minutes to 3 hours.
  • the pH value of the titanium-containing oxide particles is preferably in the range of 10 to 11.2.
  • lithium carbonate, sodium carbonate, lithium hydroxide, sodium hydroxide, and the like are by-produced due to unreacted Li and / or Na components that are not taken into the titanium-containing oxide. obtain.
  • battery performance, particularly high-temperature cycle performance and output performance can be improved.
  • Li and / or Na components such as lithium carbonate, sodium carbonate, lithium hydroxide, and sodium hydroxide remain on the surface of the active material particles, these unreacted Li and / or remaining on the surface of the active material particles.
  • the Na component reacts with the non-aqueous electrolyte to generate carbon dioxide and hydrocarbon gas, and these side reactions form an organic film serving as a resistance component on the surface of the active material particles.
  • the re-baking process is performed after the grinding process.
  • unreacted Li and / or Na components exposed on the surface are taken into the active material, and unreacted Li and / or Na components remaining on the particle surface can be reduced. That is, it is possible to control the pH value to 11.2 or less by performing a re-baking step after pulverization.
  • Li source and Na source such as lithium hydroxide, sodium hydroxide, lithium carbonate and sodium carbonate, which are raw materials for titanium-containing oxides, are reacted with titanium oxide (for example, anatase TiO 2 , rutile TiO 2 ). It is possible to reduce the excess Li salt and / or Na salt such as lithium carbonate and sodium carbonate by-produced by lowering the ratio of the Li source and / or the Na source in the step of forming. However, when the ratio of the Li source and / or Na source is decreased, the ratio of lithium or sodium in the obtained active material is decreased, and as a result, the electric capacity of the titanium-containing oxide is decreased. Therefore, in order to keep the electric capacity at a high capacity, it is desirable that the obtained active material particles have a pH value of 10 or more without reducing the Li source and Na source as raw materials.
  • the pH value is more preferably in the range of 10.3 to 11.
  • the pH value of the titanium-containing oxide particles can be measured by the following procedure. That is, 1 g of titanium-containing oxide particles are dispersed in 50 mL of pure water (25 ° C.) and stirred for about 10 minutes, and then the active material particles are filtered to obtain a filtrate. The pH value of this filtrate is taken as the pH value of the titanium-containing oxide particles.
  • the battery active material according to the first embodiment can be taken out as follows, for example, when incorporated in a battery.
  • the battery is discharged.
  • the battery can be put into a discharged state by discharging the battery to a rated end voltage with a current of 0.1 C in a 25 ° C. environment.
  • the discharged battery is disassembled and an electrode (for example, a negative electrode) is taken out.
  • the extracted electrode is washed with, for example, methyl ethyl carbonate.
  • the washed electrode is put in water and the electrode layer is deactivated in water.
  • the battery active material can be extracted from the deactivated electrode by using a centrifugal separator or the like.
  • the binder component is removed by washing with N-methyl-2-pyrrolidone or the like, and then the conductive agent is removed with a mesh having an appropriate opening. If these components remain slightly, they may be removed by heat treatment in the atmosphere (for example, at 250 ° C. for 30 minutes).
  • the element content measurement by ICP emission spectroscopy can be performed, for example, by the following method.
  • the active material extracted in the previous procedure is weighed into a container and acid-melted or alkali-melted to obtain a measurement solution.
  • the content of the element in the active material can be measured by subjecting this measurement solution to ICP emission spectroscopy using a measurement apparatus (for example, SII Nanotechnology, Inc .: SPS-1500V). With such an emission analyzer, the content of the additive element in the active material can be measured.
  • the content of the element can be measured as follows.
  • the negative electrode active material taken out from the electrode is subjected to TEM-EDX, and the crystal structure of each particle is specified by a limited field diffraction method.
  • the synthetic content of the element can be measured by EDX analysis.
  • the carbon content in the active material can be measured by, for example, drying the active material taken out as described above at 150 ° C. for 12 hours, measuring it in a container, and then measuring it (for example, CS-C manufactured by LECO). 444LS).
  • the electrode When the electrode contains other active material, it can be measured as follows.
  • the active material taken out from the electrode is subjected to TEM-EDX, and the crystal structure of each particle is specified by a limited field diffraction method. Particles having a diffraction pattern attributed to the titanium-containing oxide are selected and the carbon content is measured. At this time, if carbon mapping is acquired by EDX, the carbon existing region can be known.
  • the measuring method of the average particle diameter of the secondary particles is as follows.
  • a laser diffraction type distribution measuring device Shiadzu SALD-300
  • the luminous intensity distribution is measured 64 times at intervals of 2 seconds, and the particle size distribution data is analyzed.
  • the average primary particle diameter can be confirmed by observation with a scanning electron microscope (SEM). The average of 10 typical particles extracted from a typical field of view is determined and the average primary particle size is determined.
  • the specific surface area can be measured by a method in which molecules having a known adsorption occupation area are adsorbed on the powder particle surface at the temperature of liquid nitrogen and the specific surface area of the sample is obtained from the amount.
  • the BET method based on low-temperature, low-humidity physical adsorption of inert gas is the most widely used theory, which is the most famous theory for calculating specific surface area by extending Langmuir theory, which is a monomolecular adsorption theory, to multimolecular adsorption. is there.
  • the specific surface area determined by this is referred to as a BET specific surface area.
  • the crystal structure of the active material can be confirmed by wide angle X-ray diffraction (XRD).
  • the wide-angle X-ray diffraction measurement of the active material is performed as follows. First, the target sample is pulverized until the average particle size is about 5 ⁇ m. As described above, the average particle diameter can be determined by, for example, a laser diffraction method. The crushed sample is filled in a holder portion having a depth of 0.2 mm formed on a glass sample plate. At this time, care should be taken so that the sample is sufficiently filled in the holder portion. Also, be careful that there are no cracks or voids due to insufficient filling of the sample. Next, using another glass plate from the outside, it is sufficiently pressed and smoothed. Be careful not to cause unevenness from the reference surface of the holder due to excessive or insufficient filling amount. Next, the glass plate filled with the sample is placed in a wide-angle X-ray diffractometer, and a diffraction pattern is acquired using Cu—K ⁇ rays.
  • the peak position may be shifted or the intensity ratio may be changed depending on how the sample is filled.
  • samples are measured in the form of pellets.
  • the pellet may be a green compact having a diameter of 10 mm and a thickness of 2 mm, for example.
  • the green compact can be produced by applying a pressure of about 250 MPa to a sample for 15 minutes.
  • the obtained pellet is placed in an X-ray diffractometer and the surface is measured.
  • lithium ions are completely separated from the active material.
  • the battery when used as a negative electrode, the battery is completely discharged. However, residual lithium ions may exist even in a discharged state.
  • the battery is then disassembled in a glove box filled with argon and washed with a suitable solvent. For example, ethyl methyl carbonate may be used.
  • the washed electrode may be cut out to the same extent as the area of the holder of the wide-angle X-ray diffractometer and directly attached to the glass holder for measurement. At this time, XRD is measured in advance according to the type of the metal foil of the electrode current collector, and it is grasped at which position the peak derived from the current collector appears.
  • the presence or absence of a peak of a mixture such as a conductive agent or a binder is also grasped in advance.
  • a peak of a mixture such as a conductive agent or a binder
  • the electrode may be physically peeled off, but is easily peeled off when ultrasonic waves are applied in a solvent. By measuring the electrode thus collected, wide-angle X-ray diffraction measurement of the active material can be performed.
  • the results of wide-angle X-ray diffraction obtained in this way are analyzed by the Rietveld method.
  • parameters related to the crystal structure (lattice constant, atomic coordinates, occupancy, etc.) can be refined by fully fitting the diffraction pattern calculated from the crystal structure model estimated in advance with the actual measurement value.
  • the characteristics of the crystal structure of the target active material and the location (site) of the additive element can be examined.
  • the battery active material according to the first embodiment described above can be used in both the negative electrode and the positive electrode of a nonaqueous electrolyte battery. Moreover, it does not change even if it applies to any of a negative electrode and a positive electrode, and the nonaqueous electrolyte battery which has the outstanding input-output characteristic is realizable.
  • the active material of the negative electrode as the counter electrode can be, for example, metallic lithium, a lithium alloy, or a carbon-based material such as graphite or coke.
  • the battery active material according to the first embodiment When used as the negative electrode active material in the negative electrode, it may be used alone or in combination with other active materials.
  • other active materials include lithium titanium composite oxides having a spinel structure (such as Li 4 Ti 5 O 12 ), anatase type, rutile type, or titanium composite oxide having a monoclinic ⁇ -type structure. (Atom iO 2 , r-TiO 2 , TiO 2 (B), etc.) and iron composite sulfide (FeS, FeS 2 etc.).
  • the electrode active material according to the first embodiment when used as the positive electrode active material in the positive electrode, it may be used alone or in combination with other active materials.
  • other active materials include lithium titanium composite oxides having a spinel structure (such as Li 4 Ti 5 O 12 ), anatase type, rutile type, or titanium composite oxide having a monoclinic ⁇ -type structure. (Atom iO 2 , r-TiO 2 , TiO 2 (B), etc.) and iron composite sulfide (FeS, FeS 2 etc.).
  • a battery active material is provided.
  • This battery active material is represented by the general formula Li (2 + x) Na 2 Ti 6 O 14 (x is in the range of 0 ⁇ x ⁇ 6).
  • This battery active material contains 0.03 to 8.33 atoms of at least one element selected from the group consisting of Zr, Mo, W, V, Nb, Ta, P, Y, Al, Fe, and B. Inclusive in%.
  • the battery active material according to the first embodiment can realize a non-aqueous electrolyte battery that can exhibit excellent input / output characteristics.
  • a nonaqueous electrolyte battery includes a positive electrode, a negative electrode, and a nonaqueous electrolyte.
  • the negative electrode includes a negative electrode active material.
  • the negative electrode active material includes the battery active material according to the first embodiment.
  • the nonaqueous electrolyte battery according to the second embodiment may further include a separator disposed between the positive electrode and the negative electrode.
  • the positive electrode, the negative electrode, and the separator can constitute an electrode group.
  • the non-aqueous electrolyte can be held on the electrode group.
  • the electrode group can have, for example, a stacked structure.
  • a plurality of positive electrodes and a plurality of negative electrodes are alternately stacked via separators therebetween.
  • the electrode group may have a wound structure.
  • the wound electrode group can be formed by winding a laminated body in which a positive electrode, a separator, and a negative electrode are stacked.
  • the nonaqueous electrolyte battery according to the second embodiment may further include an exterior member that accommodates the electrode group and the nonaqueous electrolyte, a negative electrode terminal, and a positive electrode terminal.
  • the positive electrode and the negative electrode can be spatially separated with a separator interposed therebetween.
  • the negative electrode terminal can be electrically connected to the negative electrode.
  • the positive terminal can be electrically connected to the positive electrode.
  • Exterior Material is formed from, for example, a laminate film having a thickness of 0.5 mm or less.
  • the exterior material may be, for example, a metal container having a thickness of 1.0 mm or less.
  • the metal container is more preferably 0.5 mm or less in thickness.
  • the shape of the exterior material can be selected from, for example, a flat type (thin type), a square type, a cylindrical type, a coin type, and a button type.
  • the exterior material include, for example, an exterior material for a small battery that is loaded on a portable electronic device or the like, an exterior material for a large battery that is loaded on a two- to four-wheeled vehicle, etc., depending on the battery size.
  • the laminate film a multilayer film in which a metal layer is interposed between resin layers is used.
  • the metal layer is preferably an aluminum foil or an aluminum alloy foil for weight reduction.
  • a polymer material such as polypropylene (PP), polyethylene (PE), nylon, polyethylene terephthalate (PET) can be used.
  • PP polypropylene
  • PE polyethylene
  • PET polyethylene terephthalate
  • the laminate film can be molded into the shape of an exterior material by sealing by heat sealing.
  • the metal container is made of, for example, aluminum or an aluminum alloy.
  • the aluminum alloy is preferably an alloy containing elements such as magnesium, zinc, and silicon.
  • transition metals such as iron, copper, nickel, and chromium are included in the alloy, the amount is preferably 100 ppm by mass or less.
  • Negative electrode The negative electrode can include a negative electrode current collector and a negative electrode layer formed on one or both sides of the negative electrode current collector.
  • the negative electrode current collector is made of an aluminum foil or an element such as Mg, Ti, Zn, Mn, Fe, Cu, and Si that is electrochemically stable in a potential range nobler than 1 V (vs. Li / Li + ). It is preferable that it is an aluminum alloy foil containing. Such aluminum foil or aluminum alloy foil can prevent dissolution and corrosion deterioration of the negative electrode current collector in the overdischarge cycle.
  • the thickness of the aluminum foil and the aluminum alloy foil is 20 ⁇ m or less, more preferably 15 ⁇ m or less.
  • the purity of the aluminum foil is preferably 99% or more.
  • As the aluminum alloy an alloy containing elements such as magnesium, zinc, and silicon is preferable.
  • the content of transition metals such as iron, copper, nickel and chromium is preferably 1% or less.
  • the negative electrode layer can contain a negative electrode active material, a conductive agent, and a binder.
  • the battery active material according to the first embodiment may be included in the negative electrode active material.
  • the negative electrode active material may include a negative electrode active material other than the battery active material according to the first embodiment.
  • the negative electrode active material preferably has a specific surface area of 0.5 m 2 / g or more and 50 m 2 / g or less.
  • the specific surface area is 0.5 m 2 / g or more, it is possible to sufficiently ensure occlusion and desorption sites of lithium ions.
  • the specific surface area is 50 m 2 / g or less, it becomes easy to handle in industrial production. More preferably, the specific surface area is 3 m 2 / g or more and 30 m 2 / g.
  • the conductive agent can improve the current collecting performance of the negative electrode active material and suppress the contact resistance with the current collector.
  • a carbon material for example, a carbon material, metal powder such as aluminum powder, and conductive ceramics such as TiO can be used.
  • the carbon material include acetylene black, carbon black, coke, carbon fiber, and graphite. More preferably, coke, graphite, TiO powder having an average particle diameter of 10 ⁇ m or less at a heat treatment temperature of 800 to 2000 ° C., and carbon fiber having an average particle diameter of 1 ⁇ m or less are preferable.
  • the BET specific surface area by N 2 adsorption of the carbon material is preferably 10 m 2 / g or more.
  • the binder can bind the negative electrode active material and the conductive agent.
  • the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine-based rubber, and styrene butadiene rubber.
  • the negative electrode active material, the conductive agent, and the binder in the negative electrode layer may be blended in a proportion of 70% by mass to 96% by mass, 2% by mass to 28% by mass, and 2% by mass to 28% by mass, respectively. preferable.
  • the amount of the conductive agent By setting the amount of the conductive agent to 2% by mass or more, the current collecting performance of the negative electrode layer can be improved, and the large current characteristics of the nonaqueous electrolyte battery can be improved.
  • the amount of the binder to 2% by mass or more, the binding property between the negative electrode layer and the current collector can be improved, and the cycle characteristics can be improved.
  • the conductive agent and the binder are each preferably 28% by mass or less in order to increase the capacity.
  • the negative electrode is prepared by, for example, suspending a negative electrode active material, a conductive agent and a binder in a widely used solvent to prepare a slurry, applying the slurry to a current collector, drying, and then applying a press. Produced.
  • the negative electrode may also be produced by forming an active material, a conductive agent and a binder in the form of a pellet to form a negative electrode layer, which is formed on a current collector.
  • Positive electrode can include a positive electrode current collector and a positive electrode layer formed on one or both surfaces of the positive electrode current collector.
  • the positive electrode current collector is preferably an aluminum foil or an aluminum alloy foil containing an element such as Mg, Ti, Zn, Mn, Fe, Cu, or Si.
  • the positive electrode layer can contain a positive electrode active material, a conductive agent and a binder.
  • the positive electrode active material for example, an oxide, a polymer, or the like can be used.
  • the oxide examples include manganese dioxide (MnO 2 ) occluded with lithium, iron oxide, copper oxide, nickel oxide and lithium manganese composite oxide (for example, Li x Mn 2 O 4 or Li x MnO 2 ), lithium nickel composite oxide.
  • MnO 2 manganese dioxide
  • iron oxide iron oxide
  • copper oxide copper oxide
  • nickel oxide nickel oxide
  • lithium manganese composite oxide for example, Li x Mn 2 O 4 or Li x MnO 2
  • lithium nickel composite oxide lithium nickel composite oxide.
  • the x and y are preferably 0 ⁇ x ⁇ 1 and 0 ⁇
  • a conductive polymer material such as polyaniline or polypyrrole, or a disulfide polymer material can be used.
  • Sulfur (S) and carbon fluoride can also be used as the active material.
  • Examples of preferable positive electrode active materials include lithium manganese composite oxide (Li x Mn 2 O 4 ), lithium nickel composite oxide (Li x NiO 2 ), and lithium cobalt composite oxide (Li x CoO 2 ) having a high positive electrode voltage.
  • Lithium nickel cobalt composite oxide Li x Ni 1-y Co y O 2
  • spinel lithium-manganese-nickel composite oxide structure Li x Mn 2-y Ni y O 4
  • lithium manganese cobalt composite oxide Li x Mn y Co 1- y O 2
  • lithium iron phosphate Li x FePO 4
  • the negative electrode including the battery active material according to the first embodiment, the lithium manganese composite oxide (Li x Mn 2 O 4 ) positive electrode, and the lithium nickel manganese cobalt composite oxide (for example, Li x (Ni a Mn b Co) c )
  • Li x (Ni a Mn b Co) c Li x (Ni a Mn b Co) c
  • a non-aqueous electrolyte battery comprising O 2, where a + b + c 1) positive electrode can constitute 5 series of 12V systems that can exhibit excellent compatibility with lead acid batteries.
  • Li x FePO 4 lithium iron phosphate
  • a possible 12V system can be configured in 6 series. With such a configuration, it is possible to provide an assembled battery and a battery pack that are excellent in high temperature durability and can be used in an engine room.
  • the conductive agent can improve the current collecting performance of the active material and suppress the contact resistance with the current collector.
  • Examples of the conductive agent include carbonaceous materials such as acetylene black, carbon black, and graphite.
  • the binder can bind the active material and the conductive agent.
  • the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and fluorine-based rubber.
  • the positive electrode active material, the conductive agent, and the binder in the positive electrode layer may be blended at a ratio of 80% by mass to 95% by mass, 3% by mass to 18% by mass, and 2% by mass to 17% by mass, respectively. preferable.
  • the conductive agent can exhibit the above-described effects by adjusting the amount to 3% by mass or more. By making the amount of the conductive agent 18% by mass or less, the decomposition of the nonaqueous electrolyte on the surface of the conductive agent under high temperature storage can be reduced. A sufficient positive electrode strength can be obtained by adjusting the amount of the binder to 2% by mass or more. By setting the binder to an amount of 17% by mass or less, the amount of the binder, which is an insulating material in the positive electrode, can be reduced, and the internal resistance can be reduced.
  • the positive electrode is prepared by, for example, suspending a positive electrode active material, a conductive agent and a binder in a widely used solvent to prepare a slurry, applying the slurry to a current collector, drying, and then applying a press. Produced.
  • the positive electrode may also be produced by forming a positive electrode active material, a conductive agent and a binder in the form of a pellet to form a positive electrode layer, which is formed on a current collector.
  • Non-aqueous electrolyte for example, a liquid non-aqueous electrolyte prepared by dissolving an electrolyte in an organic solvent, or a gel-like non-aqueous electrolyte in which a liquid electrolyte and a polymer material are combined can be used. .
  • the liquid non-aqueous electrolyte is preferably dissolved in an organic solvent at a concentration of 0.5M to 2.5M.
  • electrolytes examples include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenide (LiAsF 6 ), trifluorometasulfone Lithium salt of lithium acid (LiCF 3 SO 3 ), lithium bistrifluoromethylsulfonylimide [LiN (CF 3 SO 2 ) 2 ], or a mixture thereof.
  • the electrolyte is preferably one that is not easily oxidized even at a high potential, and LiPF 6 is most preferred.
  • organic solvents examples include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), vinylene carbonate; chain carbonates such as diethyl carbonate (DEC), dimethyl carbonate (DMC), and methyl ethyl carbonate (MEC).
  • Cyclic ethers such as tetrahydrofuran (THF), 2-methyltetrahydrofuran (2MeTHF), dioxolane (DOX); chain ethers such as dimethoxyethane (DME) and dietoethane (DEE); or ⁇ -butyrolactone (GBL), acetonitrile ( AN) and sulfolane (SL).
  • PC propylene carbonate
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • MEC methyl ethyl carbonate
  • Cyclic ethers such as tetrahydrofuran (THF), 2-methyltetrahydrofuran (2MeTHF), dioxo
  • polymer material examples include polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), and polyethylene oxide (PEO).
  • PVdF polyvinylidene fluoride
  • PAN polyacrylonitrile
  • PEO polyethylene oxide
  • a preferred organic solvent is a mixed solvent in which at least two of the group consisting of propylene carbonate (PC), ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed, or a mixed solvent containing ⁇ -butyrolactone (GBL). is there.
  • PC propylene carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • GBL ⁇ -butyrolactone
  • separator for example, a porous film containing polyethylene, polypropylene, cellulose, or polyvinylidene fluoride (PVdF), or a synthetic resin nonwoven fabric can be used.
  • a preferred porous film is made of polyethylene or polypropylene and can be melted at a constant temperature to cut off the current, thereby improving safety.
  • Negative electrode terminal for the negative electrode terminal, for example, a material having electrical stability and conductivity in a range where the potential with respect to the lithium ion metal is 1 V or more and 3 V or less can be used. Specifically, aluminum or an aluminum alloy containing an element such as Mg, Ti, Zn, Mn, Fe, Cu, or Si can be given. In order to reduce the contact resistance with the negative electrode current collector, the negative electrode terminal is preferably made of the same material as the negative electrode current collector.
  • Positive electrode terminal can be made of a material having electrical stability and conductivity in the range of 3 to 4.25 V with respect to the lithium ion metal. Specifically, aluminum or an aluminum alloy containing an element such as Mg, Ti, Zn, Mn, Fe, Cu, or Si can be given.
  • the positive electrode terminal is preferably made of the same material as that of the positive electrode current collector in order to reduce contact resistance with the positive electrode current collector.
  • FIG. 1 is a schematic cross-sectional view showing an example nonaqueous electrolyte battery according to the second embodiment.
  • FIG. 2 is an enlarged cross-sectional view of a part A in FIG.
  • the nonaqueous electrolyte battery 100 shown in FIGS. 1 and 2 includes a flat wound electrode group 1.
  • the flat wound electrode group 1 includes a negative electrode 3, a separator 4, and a positive electrode 5, as shown in FIG.
  • the separator 4 is interposed between the negative electrode 3 and the positive electrode 5.
  • Such a flat wound electrode group 1 includes, for example, a negative electrode 3, a separator 4, a positive electrode 5, and another separator 4 laminated so that the separator 4 is interposed between the negative electrode 3 and the positive electrode 5.
  • the formed laminate can be formed by winding it in a spiral shape with the negative electrode 3 on the outside and press molding.
  • the negative electrode 3 includes a negative electrode current collector 3a and a negative electrode layer 3b. As shown in FIG. 2, the outermost negative electrode 3 has a configuration in which the negative electrode layer 3b is formed only on the surface of the negative electrode current collector 3a facing the center of the electrode group. In the other negative electrode 3, negative electrode layers 3b are formed on both surfaces of the negative electrode current collector 3a.
  • the positive electrode 5 has positive electrode layers 5b formed on both surfaces of the positive electrode current collector 5a.
  • the negative electrode terminal 6 is connected to the negative electrode current collector 3 a of the outermost negative electrode 3, and the positive electrode terminal 7 is the positive electrode current collector of the inner positive electrode 5. It is connected to the body 5a.
  • the wound electrode group 1 is housed in a bag-like container 2 made of a laminate film in which a metal layer is interposed between two resin layers.
  • the negative terminal 6 and the positive terminal 7 are extended from the opening of the bag-like container 2 to the outside.
  • the liquid non-aqueous electrolyte is injected from the opening of the bag-like container 2 and stored in the bag-like container 2.
  • the bag-like container 2 is hermetically sealed with the wound electrode group 1 and the liquid non-aqueous electrolyte by heat-sealing the opening with the negative electrode terminal 6 and the positive electrode terminal 7 interposed therebetween.
  • nonaqueous electrolyte battery according to the second embodiment described above includes the battery active material according to the first embodiment, it can exhibit excellent input / output characteristics.
  • an assembled battery is provided.
  • the assembled battery according to the third embodiment includes a plurality of nonaqueous electrolyte batteries according to the second embodiment.
  • each unit cell can be electrically connected in series or in parallel, or can be arranged by combining series connection and parallel connection.
  • the assembled battery according to the third embodiment includes a negative electrode including the battery active material according to the first embodiment, a positive electrode including an iron-containing phosphate compound having an olivine structure, and a nonaqueous electrolyte.
  • 6 m non-aqueous electrolyte batteries can be provided.
  • m is an integer of 1 or more.
  • 6 m non-aqueous electrolyte batteries can be connected in series to form an assembled battery.
  • the non-aqueous electrolyte battery included in the assembled battery of this example can be configured with 6 series of 12V systems that can exhibit excellent compatibility with lead-acid batteries, and can withstand high temperatures. Is excellent. Therefore, the assembled battery of this example can be used in an engine room together with a lead storage battery.
  • the assembled battery according to the third embodiment includes a negative electrode containing the battery active material according to the first embodiment, a lithium manganese composite oxide having a spinel structure, and lithium nickel manganese cobalt having a layered structure.
  • a negative electrode containing the battery active material according to the first embodiment, a lithium manganese composite oxide having a spinel structure, and lithium nickel manganese cobalt having a layered structure.
  • 5n nonaqueous electrolyte batteries each including a positive electrode including at least one selected from the group consisting of complex oxides and a nonaqueous electrolyte.
  • n is an integer of 1 or more.
  • the 5n non-aqueous electrolyte batteries can be connected in series to form an assembled battery.
  • the non-aqueous electrolyte battery included in the assembled battery of this example can be configured in series of 5 series 12V systems that can exhibit excellent compatibility with lead-acid batteries, and can withstand high temperatures. Is excellent. Therefore, the assembled battery of this example can be used in an engine room together with a lead storage battery.
  • FIG. 3 is a schematic perspective view showing an example of an assembled battery according to the third embodiment.
  • the assembled battery 23 shown in FIG. 3 includes five unit cells 21.
  • Each of the five unit cells 21 is an example of a rectangular nonaqueous electrolyte battery according to the second embodiment.
  • the assembled battery 23 shown in FIG. 3 further includes four leads 20.
  • One lead 20 connects the negative electrode terminal 6 of one unit cell 21 and the positive electrode terminal 7 of another unit cell 21.
  • the five unit cells 21 are connected in series by the four leads 20. That is, the assembled battery 23 in FIG. 3 is a 5-series assembled battery.
  • the positive terminal 7 of one single cell 21 of the five single cells 21 is connected to a positive lead 28 for external connection. Further, the negative electrode terminal 6 of one of the five single cells 21 is connected to the negative electrode-side lead 30 for external connection.
  • the assembled battery according to the third embodiment includes the nonaqueous electrolyte battery according to the second embodiment, it can exhibit excellent input / output characteristics.
  • the battery pack according to the fourth embodiment includes the nonaqueous electrolyte battery according to the second embodiment.
  • the battery pack according to the fourth embodiment may include one nonaqueous electrolyte battery or a plurality of nonaqueous electrolyte batteries. Further, when the battery pack according to the fourth embodiment includes a plurality of nonaqueous electrolyte batteries, each single cell can be electrically connected in series or in parallel, or can be arranged in series or in parallel. Can also be arranged in combination.
  • the battery pack according to the fourth embodiment can also include the assembled battery according to the third embodiment.
  • FIG. 4 is an exploded perspective view of an example battery pack according to the fourth embodiment.
  • FIG. 5 is a block diagram showing an electric circuit of the battery pack shown in FIG.
  • the battery pack 200 shown in FIGS. 4 and 5 includes a plurality of flat batteries 21 having the structure shown in FIGS. That is, the battery pack 200 shown in FIGS. 4 and 5 includes a plurality of examples of the nonaqueous electrolyte battery according to the first embodiment.
  • the plurality of unit cells 21 are laminated so that the negative electrode terminal 6 and the positive electrode terminal 7 extending to the outside are aligned in the same direction, and are fastened with an adhesive tape 22, thereby constituting an assembled battery 23. . These unit cells 21 are electrically connected to each other in series as shown in FIG.
  • the printed wiring board 24 is disposed so as to face the side surface from which the negative terminals 6 and the positive terminals 7 of the plurality of single cells 21 extend. As shown in FIG. 5, a thermistor 25, a protection circuit 26, and a terminal 27 for energizing external devices are mounted on the printed wiring board 24. An insulating plate (not shown) is attached to the surface of the printed wiring board 24 facing the assembled battery 23 in order to avoid unnecessary connection with the wiring of the assembled battery 23.
  • a positive lead 28 is connected to the positive terminal 7 of the unit cell 10 located in the lowermost layer of the assembled battery 23, and the tip thereof is inserted into the positive connector 29 of the printed wiring board 24 to be electrically connected.
  • the negative electrode lead 30 is connected to the negative electrode terminal 6 of the unit cell 10 located in the uppermost layer of the assembled battery 23, and the tip thereof is inserted into the negative electrode connector 31 of the printed wiring board 24 to be electrically connected.
  • These connectors 29 and 31 are connected to the protection circuit 26 through wirings 32 and 33 formed on the printed wiring board 24, respectively.
  • the thermistor 25 detects the temperature of each unit cell 10 and transmits the detection signal to the protection circuit 26.
  • the protection circuit 26 can cut off the plus side wiring 34a and the minus side wiring 34b between the protection circuit 26 and the energization terminal 27 to the external device under a predetermined condition.
  • An example of the predetermined condition is when, for example, a signal is received from the thermistor 25 that the temperature of the unit cell 21 is equal to or higher than the predetermined temperature.
  • Another example of the predetermined condition is when an overcharge, overdischarge, overcurrent, or the like of the unit cell 21 is detected. This detection of overcharge or the like is performed for each single cell 21 or the entire single cell 21.
  • the battery voltage When detecting each single cell 21, the battery voltage may be detected, or the positive electrode potential or the negative electrode potential may be detected. In the latter case, a lithium electrode used as a reference electrode is inserted into each unit cell 10.
  • a wiring 35 for voltage detection is connected to each single cell 21, and a detection signal is transmitted to the protection circuit 26 through these wirings 35.
  • Protective sheets 36 made of rubber or resin are disposed on the three side surfaces of the assembled battery 23 excluding the side surfaces from which the positive electrode terminal 7 and the negative electrode terminal 6 protrude.
  • the assembled battery 23 is stored in a storage container 37 together with each protective sheet 36 and the printed wiring board 24. That is, the protective sheet 36 is disposed on both the inner side surface in the long side direction and the inner side surface in the short side direction of the storage container 37, and the printed wiring board 24 is disposed on the inner side surface on the opposite side in the short side direction. Yes.
  • the assembled battery 23 is located in a space surrounded by the protective sheet 36 and the printed wiring board 24.
  • the lid 38 is attached to the upper surface of the storage container 37.
  • a heat shrink tape may be used for fixing the assembled battery 23.
  • protective sheets are arranged on both side surfaces of the assembled battery, the heat shrinkable tube is circulated, and then the heat shrinkable tube is thermally contracted to bind the assembled battery.
  • the battery pack 200 shown in FIGS. 4 and 5 has a configuration in which a plurality of single cells 21 are connected in series.
  • the battery pack according to the third embodiment has a plurality of single cells 10 in order to increase the battery capacity. May be connected in parallel.
  • the battery pack according to the third embodiment may include a plurality of unit cells 10 connected in combination of series connection and parallel connection.
  • the assembled battery pack 200 can be further connected in series or in parallel.
  • the battery pack 200 shown in FIGS. 4 and 5 includes a plurality of unit cells 21, the battery pack according to the third embodiment may include one unit cell 21.
  • the battery pack according to the present embodiment is suitably used for applications that require excellent cycle characteristics when a large current is taken out. Specifically, it is used as a power source for a digital camera, or as an in-vehicle battery for, for example, a two-wheel to four-wheel hybrid electric vehicle, a two-wheel to four-wheel electric vehicle, and an assist bicycle. In particular, it is suitably used as a vehicle-mounted battery.
  • the battery pack according to the fourth embodiment includes the nonaqueous electrolyte battery according to the second embodiment, it can exhibit excellent input / output characteristics.
  • the automobile according to the fifth embodiment includes the battery pack according to the fourth embodiment.
  • Examples of vehicles here include vehicles equipped with two-wheel to four-wheel idling stop mechanisms, two-wheel to four-wheel hybrid electric vehicles, two-wheel to four-wheel electric vehicles, and assist bicycles.
  • FIG. 6 An example of the automobile of the fifth embodiment is shown in FIG. As shown in FIG. 6, the automobile 41 of the fourth embodiment has the battery pack 42 according to the third embodiment mounted in the engine room.
  • the distance between the battery pack and the electric drive system such as a motor or inverter is shortened, input / output loss is reduced, and fuel efficiency is improved.
  • the battery pack according to the fourth embodiment since the battery pack according to the fourth embodiment is provided, an automobile equipped with an electrochemical device capable of exhibiting excellent input / output characteristics can be provided.
  • Example 1 In Example 1, the beaker cell of Example 1 was produced by the following procedure.
  • lithium carbonate (Li 2 CO 3 ) powder, sodium carbonate (Na 2 CO 3 ) powder, titanium dioxide (TiO 2 ) powder having anatase structure, and niobium pentoxide (Nb 2 O 5 ) powder were prepared. . These powders were mixed so that the mass ratio of Li 2 CO 3 : Na 2 CO 3 : TiO 2 : Nb 2 O 5 was 7.3890: 10.9884: 47.8615: 0.0957. The resulting mixture was calcined at 800 ° C. for 3 hours to obtain a product. Subsequently, the product obtained previously was pulverized by a bead mill using zirconia as a medium, and the battery active material of Example 1 was obtained.
  • the obtained battery active material of Example 1 was a titanium-containing oxide represented by the general formula Li 2 Na 2 Ti 6 O 14 .
  • the Nb content was 0.03 atomic%.
  • the pH was 10.8.
  • Example 1 The battery active material of Example 1 was packed in a standard glass holder having a diameter of 25 mm, and measurement was performed by wide-angle X-ray diffraction. As a result, the X-ray diffraction pattern shown in FIG. 7 was obtained. From this diffraction pattern, the main substance constituting the obtained titanium-containing oxide is a substance represented by the general formula Li 2 Na 2 Ti 6 O 14 belonging to JCPDS (Joint Committee on Powder Diffraction Standards): 52-690. It was confirmed that. The apparatus and conditions used for the measurement are shown below.
  • X-ray generator RU-200R rotary anti-cathode type manufactured by Rigaku Corporation
  • X-ray source CuK ⁇ ray Curved crystal monochromator (graphite) used
  • Output 50 kV, 200 mA
  • Goniometer Rigaku Denki 2155S2 type slit system 1 ° -1 ° -0.15mm-0.45mm
  • Detector Scintillation counter
  • Count recording device RINT1400 type manufactured by Rigaku Corporation (4) Scan method 2 ⁇ / ⁇ continuous scan (5)
  • Qualitative analysis Measurement range (2 ⁇ ) 5 to 100 ° Scanning speed 2 ° / min Step width (2 ⁇ ) 0.02 °.
  • Electrode ⁇ Production of electrode>
  • the battery active material of Example 1, acetylene black as a conductive agent, and polyvinylidene fluoride (PVdF) were added to N-methylpyrrolidone (NMP) and mixed to prepare a slurry.
  • NMP N-methylpyrrolidone
  • the mass ratio of active material: acetylene black: PVdF was 90: 5: 5.
  • This slurry was applied to both surfaces of a current collector made of an aluminum foil having a thickness of 12 ⁇ m and dried. Thereafter, pressing was performed to obtain an electrode having an electrode density (not including the current collector) of 2.2 g / cm 3 .
  • Ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 1: 2 to obtain a mixed solvent.
  • LiPF 6 as an electrolyte was dissolved at a concentration of 1M to obtain a liquid nonaqueous electrolyte.
  • the beaker cell of Example 1 was subjected to constant current-constant voltage discharge for 10 hours at 0.2 C and 1 V in an environment of 25 ° C., and lithium was inserted into the battery active material of Example 1. .
  • constant current charging at 0.2 C was performed on the beaker cell of Example 1 until the cell voltage reached 3 V to release lithium from the battery active material of Example 1.
  • the discharge capacity at this time was 0.2 C capacity.
  • constant current-constant voltage discharge was performed at 0.2 C and 1 V for 10 hours, and lithium was inserted into the battery active material of Example 1.
  • constant current charging at 10 C was performed until the cell voltage reached 3 V, and lithium was released from the battery active material of Example 1.
  • the discharge capacity at this time was 10 C capacity.
  • the ratio of 10 C capacity to 0.2 C capacity is shown in Table 1 below as the rate capacity maintenance rate (%).
  • the specific surface area of the battery active material of Example 1 was measured by the method described above.
  • the specific surface area of the battery active material of Example 1 was 6.4 m 2 / g.
  • the battery active material of Example 1 was in a single particle form.
  • the average primary particle size of the battery active material of Example 1 was measured by the procedure described above.
  • the average primary particle diameter of the battery active material of Example 1 was 0.62 ⁇ m.
  • Example 2-6 Comparative Examples 1 and 2
  • Examples 2 to 6 and Comparative Examples 1 and 2 were performed in the same manner as in Example 1 except that the Nb content was changed to the values shown in Table 1 below.
  • Each of the battery active materials was prepared, and each of the beaker cells of Examples 2 to 6 and Comparative Examples 1 to 2 was prepared using the prepared battery active material.
  • Example 2 For each of the battery active materials of Examples 2 to 6 and Comparative Examples 1 and 2, various analyzes were performed in the same manner as in Example 1. The battery performance of each of the beaker cells of Examples 2 to 6 and Comparative Examples 1 and 2 was evaluated in the same procedure as in Example 1. Table 1 below shows the results of average primary particle diameter, specific surface area, Nb content, 0.2C capacity, and rate capacity retention rate for Examples 1 to 6 and Comparative Examples 1 and 2. The battery active materials of Examples 2 to 6 and Comparative Examples 1 and 2 each had a pH of 10.8 to 10.9.
  • Example 11 to 20 In Examples 11 to 20, Examples 11 to 20 were prepared in the same manner as in Example 1 except that an active material containing 0.13 atomic% of various additive elements was synthesized using oxides of various additive elements as raw materials. Each of the battery active materials was prepared, and each of the beaker cells of Examples 11 to 20 was produced using the prepared battery active material.
  • Each of the battery active materials of Examples 11 to 20 was analyzed in the same manner as in Example 1. Further, the battery performance of each of the beaker cells of Examples 11 to 20 was evaluated in the same procedure as in Example 1. For Examples 11 to 20, the results of average primary particle diameter, specific surface area, additive element type, 0.2 volume and rate capacity retention rate are shown in the following table together with the results of Example 3 for comparison. It is shown in 2. Each of the battery active materials of Examples 11 to 20 had a pH of 10.8 to 10.9.
  • Example 21 to 23 the battery active materials of Examples 21 to 23 were prepared as follows.
  • maltose was added to the battery active material synthesized in Example 3 and mixed with pure water in a beaker.
  • 2 g of maltose was mixed with 100 g of the battery active material.
  • 5 g of maltose was mixed with 100 g of the battery active material.
  • 15 g of maltose was mixed with 100 g of the battery active material.
  • the mixture was sufficiently dispersed with a stirrer using a rotor and then evaporated to dryness.
  • a composite in which the surface of the battery active material particles was uniformly coated with an organic substance was obtained.
  • the obtained composite was baked in an inert atmosphere in an argon stream for 1 hour at 500 ° C. to perform a carbonization heat treatment to carbonize the organic matter.
  • the battery active materials of Examples 21 to 23 were obtained.
  • Example 21 to 23 beaker cells of Examples 21 to 23 were produced in the same manner as in Example 1 except that the battery active material prepared as described above was used.
  • Example 21 For each of the battery active materials of Examples 21 to 23, the carbon amount was measured by the method described above. In addition, the battery performance of each of the beaker cells of Examples 21 to 23 was evaluated in the same procedure as in Example 1. The results of carbon amount, 0.2C capacity and rate capacity retention rate for Examples 21 to 23 are shown in Table 3 below together with the results of Example 3 for comparison.
  • the beaker cells of Examples 21 to 23 using the active material in which the carbon-containing phase was formed were improved in both capacity and capacity maintenance ratio compared to the beaker cell of Example 3 that did not contain the carbon-containing phase. I understood. In particular, as in Examples 22 and 23, it was found that a high effect was exhibited when the carbon content was 1 to 3% by mass.
  • Example 41 the nonaqueous electrolyte battery of Example 41 was produced using the following materials.
  • the battery active material synthesized in Example 1 was used as the negative electrode active material.
  • Lithium manganese composite oxide Li 1.1 Mn 1.9 Al 0.1 O 4
  • the non-aqueous electrolyte an electrolytic solution prepared by dissolving LiBF 4 at a concentration of 1.5 M in a PC / GBL (1: 2) mixed solvent was used.
  • a laminate film was used as the exterior material.
  • the produced non-aqueous electrolyte battery of Example 41 was a laminate type battery having dimensions of 4 mm thickness ⁇ 72 mm width ⁇ 100 mm height and a capacity of 2 Ah.
  • the battery voltage of the battery of Example 41 was 2.85V. That is, it was confirmed that the battery voltage of the nonaqueous electrolyte battery of Example 41 was a lead battery compatible voltage in 5 series.
  • Example 42 the non-aqueous electrolyte battery of Example 42 was produced using the following materials.
  • the battery active material synthesized in Example 1 was used as the negative electrode active material.
  • As the positive electrode active material lithium nickel manganese cobalt composite oxide (LiNi 6 Mn 2 Co 2 O 4 ) was used.
  • As the non-aqueous electrolyte an electrolytic solution prepared by dissolving LiBF 4 at a concentration of 1.5 M in a PC / GBL (1: 2) mixed solvent was used. A laminate film was used as the exterior material.
  • the produced non-aqueous electrolyte battery of Example 42 was a laminate type battery having dimensions of thickness 3.4 mm ⁇ width 72 mm ⁇ height 100 mm and a capacity of 2 Ah.
  • the battery voltage of the battery of Example 42 was 2.6V. That is, it was confirmed that the battery voltage of the nonaqueous electrolyte battery of Example 42 was 5 series in series and a lead battery compatible voltage.
  • Example 43 the nonaqueous electrolyte battery of Example 43 was produced using the following materials.
  • the battery active material synthesized in Example 1 was used as the negative electrode active material.
  • Lithium iron phosphate (LiFePO 4 ) was used as the positive electrode active material.
  • an electrolytic solution prepared by dissolving LiBF 4 ⁇ at a concentration of 1.5M in a PC / GBL (1: 2) mixed solvent was used as the non-aqueous electrolyte.
  • a laminate film was used as the exterior material.
  • the produced nonaqueous electrolyte battery of Example 43 was a laminated battery having a thickness of 3.6 mm, a width of 72 mm, and a height of 100 mm, and a capacity of 2 Ah.
  • the battery voltage of the battery of Example 43 was 1.85V. That is, it was confirmed that the battery voltage of the non-aqueous electrolyte battery of Example 43 was a 6-series lead battery compatible voltage.
  • Comparative Example 41 In Comparative Example 41, the non-aqueous electrolyte battery of Comparative Example 41 was produced using the following materials.
  • Lithium iron phosphate LiFePO 4
  • LiBF 4 ⁇ LiBF 4 ⁇
  • PC / GBL (1: 2) mixed solvent an electrolytic solution prepared by dissolving LiBF 4 ⁇ at a concentration of 1.5 M in a PC / GBL (1: 2) mixed solvent was used.
  • a laminate film was used as the exterior material.
  • the produced non-aqueous electrolyte battery of Comparative Example 41 was a laminate type battery having a dimension of thickness 3.6 mm ⁇ width 72 mm ⁇ height 100 mm and a capacity of 2 Ah.
  • the battery voltage of the battery of Comparative Example 41 was 3.4V.
  • Comparative Example 42 a nonaqueous electrolyte battery of Comparative Example 42 was produced using the following materials.
  • the battery active material synthesized in Comparative Example 1 was used as the negative electrode active material.
  • Lithium manganese composite oxide Li 1.1 Mn 1.9 Al 0.1 O 4
  • the non-aqueous electrolyte an electrolytic solution prepared by dissolving LiBF 4 ⁇ at a concentration of 1.5 M in a PC / GBL (1: 2) mixed solvent was used.
  • a laminate film was used as the exterior material.
  • the produced non-aqueous electrolyte battery of Comparative Example 42 was a laminate type battery having dimensions of 4 mm thickness ⁇ 72 mm width ⁇ 100 mm height and a capacity of 2 Ah.
  • the battery voltage of the battery of Comparative Example 42 was 2.85V. In other words, it was confirmed that the battery voltage of the nonaqueous electrolyte battery of Comparative Example 42 was a 5-series battery voltage compatible with lead batteries.
  • the batteries of Examples 41 to 43 using the battery active material of Example 1 as the negative electrode had a significantly higher cycle capacity maintenance rate than the comparative example 41 using graphite as the negative electrode, and were excellent. It was confirmed to have high temperature durability.
  • the nonaqueous electrolyte battery of Example 43 using lithium iron phosphate (LiFePO 4 ) as a positive electrode active material and a 1.5M LiBF 4 —PC / GBL (1: 2) electrolyte solution has an extremely good cycle. The capacity maintenance rate was shown.
  • the capacity of the nonaqueous electrolyte battery of Comparative Example 41 using graphite as the negative electrode active material was drastically reduced after 10 cycles, and the capacity after 500 cycles was almost zero.
  • Example 41 using the negative electrode active material of Example 1 has excellent cycle performance as compared with the battery of Comparative Example 42 using the negative electrode active material of Comparative Example 1. .
  • the battery active material has the general formula Li (2 + x) Na 2 Ti 6 O 14 (x is in the range of 0 ⁇ x ⁇ 6). ).
  • This battery active material contains 0.03 to 8.33 atoms of at least one element selected from the group consisting of Zr, Mo, W, V, Nb, Ta, P, Y, Al, Fe, and B. Inclusive in%. As a result, this battery active material can realize a nonaqueous electrolyte battery that can exhibit excellent input / output characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本発明は、優れた入出力特性を示すことができる非水電解質電池を実現することができる電池用活物質、優れた入出力特性を示すことができる非水電解質電池、この非水電解質電池を具備する組電池、先の非水電解質電池を具備する電池パック、この電池パックを具備する自動車を提供することを目的とする。本発明は、一般式Li(2+x)Na2Ti614(xは、0≦x≦6の範囲内にある)で表され、Zr、Mo、W、V、Nb、Ta、P、Y、Al、Fe、及びBからなる群より選択される少なくとも1種の元素を0.03~8.33原子%の量で含む電池用活物質などに関する。

Description

電池用活物質、非水電解質電池、組電池、電池パック及び自動車
 本発明の実施形態は、電池用活物質、非水電解質電池、組電池、電池パック及び自動車に関する。
 近年、エレクトロニクス分野における急速な技術発展により、電子機器の小型化及び軽量化が進んでいる。その結果、電子機器のポータブル化及びコードレス化が進行し、その駆動源となる二次電源についても、小型化、軽量化及び高エネルギー密度化が切望されている。このような要望に応えるべく、高いエネルギー密度を有するリチウム二次電池が開発されている。また、最近では、外装材にアルミラミネートフィルムを用いた超薄型及び軽量二次電池も開発、更には商品化されている。
 このようなアルミラミネート外装材を用いた二次電池は、充放電にともなう電極の体積膨張及び収縮により、電池厚さが変化する。これが原因となって、電池がよれたり、電極間が広がって、電池の抵抗が大きくなり、その結果電池特性が低下することが問題となっている。
 このような問題を回避できる材料系としてチタン酸リチウムを負極活物質に利用した電池が開発された。チタン酸リチウムは、充放電に伴う体積変化が殆ど無く、その結果、電池厚さの変化が極めて小さい。この化合物を負極活物質に利用することで、上述した問題を解決している。
特開2001-143702号公報 特開平9-199179号公報
 優れた入出力特性を示すことができる非水電解質電池を実現することができる電池用活物質、優れた入出力特性を示すことができる非水電解質電池、この非水電解質電池を具備する組電池、先の非水電解質電池を具備する電池パック、この電池パックを具備する自動車を提供することを目的とする。
 第1の実施形態によると、電池用活物質が提供される。この電池用活物質は、一般式Li(2+x)Na2Ti614(xは、0≦x≦6の範囲内にある)で表される。この電池用活物質は、Zr、Mo、W、V、Nb、Ta、P、Y、Al、Fe、及びBからなる群より選択される少なくとも1種の元素を0.03~8.33原子%の量で含む。
 第2の実施形態によると、非水電解質電池が提供される。この非水電解質電池は、正極と、負極と、非水電解質とを具備する。負極は、負極活物質を含む。負極活物質は、第1の実施形態に係る電池用活物質を含む。
 第3の実施形態によると、組電池が提供される。第3の実施形態に係る組電池は、第2の実施形態に係る複数個の非水電解質電池を具備する。
 第4の実施形態によると、電池パックが提供される。第4の実施形態に係る電池パックは、第2の実施形態に係る非水電解質電池を具備する。
 第5の実施形態によると、第4の実施形態に係る電池パックを具備する自動車が提供される。電池パックは、自動車のエンジンルームに配置されている。
第2の実施形態に係る一例の非水電解質電池を示す概略断面図。 図1の非水電解質電池のA部の拡大断面図。 第3の実施形態に係る組電池の一例を示す概略斜視図。 第4の実施形態に係る一例の電池パックを示す分解斜視図。 図4の電池パックの電気回路を示すブロック図。 第5の実施形態に係る一例の自動車を示す概略断面図。 実施例1の電池用活物質のXRDパターン。
 以下に、実施の形態について図面を参照しながら説明する。なお、実施の形態を通して共通の構成には同一の符号を付すものとし、重複する説明は省略する。また、各図は実施の形態の説明とその理解を促すための模式図であり、その形状や寸法、比などは実際の装置と異なる個所があるが、これらは以下の説明と公知の技術とを参酌して、適宜設計変更することができる。
 (第1の実施形態)
 第1の実施形態によると、電池用活物質が提供される。この電池用活物質は、一般式Li(2+x)Na2Ti614(xは、0≦x≦6の範囲内にある)で表される。この電池用活物質は、Zr、Mo、W、V、Nb、Ta、P、Y、Al、Fe、及びBからなる群より選択される少なくとも1種の元素を0.03~8.33原子%の量で含む。上記一般式における添字xは、第1の実施形態に係る電池用活物質の充電状態に依存して、0以上6以下の範囲内で変化し得る。
 チタン酸リチウムは、リチウムの吸蔵放出反応が約1.55V(vs.Li/Li+)で進行する。そのため、例えば、負極にチタン酸リチウムを用い、正極にLiMn24を用いた非水電解質電池は、その平均電圧が2.5V程度となる。この電圧は、広く商用化されているリチウムイオン二次電池である炭素負極とLiMn24正極とを含んだ二次電池の平均電圧である3.9Vに比べて低い。すなわち、チタン酸リチウムを含む負極とLiMn24を含む正極とを具備する非水電解質電池を用いて、炭素負極とLiMn24正極とを含んだ二次電池と同じ平均電圧を示す組電池又は電池パックを構成するためには、炭素負極とLiMn24正極とを含んだ二次電池を用いる場合に比べて、直列接続数(セル個数)を増やす必要が生じる。
 本発明者らは、このような問題に鑑みて、セルの高電圧化を図るべく、チタン酸リチウムよりも低い電位でリチウムの吸蔵放出反応が進行し、且つチタン酸リチウムを用いた場合と同等の良好な出入力性能と寿命特性とを兼ね備えることができる非水電解質電池を実現できる電池用活物質を模索した。
 一般式Li(2+x)Na2Ti614(xは、0≦x≦6の範囲内にある)で表される電池用活物質は、リチウムの吸蔵放出反応が凡そ1.2V~1.4V(vs.Li/Li+)の電位で進行する。そのため、このようなチタン含有酸化物を含む負極を用いた非水電解質電池は、チタン酸リチウムを含む非水電解質電池よりも高い電圧を示す。
 一方、鋭意研究により、上記チタン含有酸化物は、電子導電性に乏しいことが分かってきた。そのため、上記チタン含有酸化物を含む負極を用いた非水電解質電池は、大電流特性などの入出力特性が乏しくなり得るし、乏しい寿命特性を示し得る。
 本発明者らは、以上の問題を鑑み鋭意研究をした結果、一般式Li(2+x)Na2Ti614(xは、0≦x≦6の範囲内にある)で表される電池用活物質に、Zr、Mo、W、V、Nb、Ta、P、Y、Al、Fe、及びBからなる群より選択される少なくとも1種の元素を0.03~8.33原子%の量で含ませることにより、一般式Li(2+x)Na2Ti614(xは、0≦x≦6の範囲内にある)で表される電池用活物質の電子導電性を高めることができることができることを見出した。
 また、Zr、Mo、W、V、Nb、Ta、P、Y、Al、Fe、及びBからなる群より選択される少なくとも1種の元素を0.03~8.33原子%の量で含んでいても、一般式Li(2+x)Na2Ti614(xは、0≦x≦6の範囲内にある)で表される電池用活物質は、リチウムの吸蔵放出反応が凡そ1.2V~1.4V(vs.Li/Li+)の電位で進行することができる。
 これらの結果、第1の実施形態に係る電池用活物質は、入出力特性に優れ、安定した繰り返し急速充放電が可能である、すなわち寿命特性に優れた非水電解質電池を実現することができる。
 Zr、Mo、W、V、Nb、Ta、P、Y、Al、Fe、及びBからなる群より選択される少なくとも1種の元素は、一般式Li(2+x)Na2Ti614で表される化合物のTiサイトの一部を置換することができる。好ましい元素は、Zr、Mo、W、V、Nb、Taである。さらに好ましい元素は、V及びNbである。上記元素の含有量が0.03原子%より小さいと、電子導電性を高める効果が薄い。一方、上記元素の含有量が8.33原子%を超えると、寿命性能を阻害する異相が生成するおそれがある。より好ましい置換量は、0.04~4.17原子%である。上記元素の含有量は、誘導結合プラズマ(Inductively Coupled Plasma:ICP発光分光法によって測定することができる。
 第1の実施形態に係る電池用活物質は、例えば粒状をとることができる。第1の実施形態に係る電池用活物質は、例えば、一次粒子でもよいし、又は一次粒子が凝集してなる二次粒子でもよい。
 第1の実施形態に係る電池用活物質は、二次粒子を含む場合、寿命特性の観点から、二次粒子の圧縮破壊強度が10MPa以上であることが好ましい。
 また、二次粒子を含む場合、その平均二次粒子径は1μm以上100μm以下であることが好ましい。二次粒子の平均粒子径がこの範囲内にあると、工業生産上扱い易く、また、電極を作製するための塗膜において、質量及び厚さを均一にすることができる。さらに、電極の表面平滑性の低下を防ぐことができる。二次粒子の平均粒子径は、3μm以上30μm以下であることがより好ましい。
 電池用活物質材料が二次粒子を含んでいることは、例えば、走査型電子顕微鏡(Scanning Electron Microscope:SEM)観察によって確認できる。
 二次粒子に含まれる一次粒子は、平均一次粒子径が1nm以上10μm以下であることが好ましい。平均一次粒子径がこの範囲内にあると、工業生産上扱い易く、また、チタン含有酸化物の固体内におけるリチウムイオンの拡散を促進することができる。平均一次粒子径は、10nm以上1μm以下であることがより好ましい。平均一次粒子径は、0.30nm以上0.98μm以下であることが特に好ましい。
 一次粒子は等方状であることが好ましい。本明細書において等方状の粒子とは、アスペクト比が3以下である粒子を意味する。一次粒子が等方状粒子であることは、走査型電子顕微鏡(SEM)観察によって確認できる。
 二次粒子は、BET法によって測定された比表面積が、3m2/g以上50m2/g以下であることが好ましい。比表面積が3m2/g以上である場合には、リチウムイオンの吸蔵・脱離サイトを十分に確保することが可能になる。比表面積が50m2/g以下である場合には、工業生産上、扱い易くなる。より好ましくは、二次粒子は、BET法によって測定された比表面積が、5m2/g以上50m2/g以下である。
 第1の実施形態に係る電池用活物質は、粒子の表面の少なくとも一部に炭素を含む相が形成されていることが好ましい。第1の実施形態に係る電池用活物質は、炭素を含む相を更に含むことにより、より優れた電子導電性を示すことができる。炭素量は、活物質の質量に対して、0.1質量%以上10質量%以下の範囲内にあることが好ましい。この範囲内にあると、容量を十分に確保しながら、電子伝導を高める効果が得られる。より好ましくは、炭素含有量は、活物質材料の質量に対して1質量%以上3質量%である。炭素量は、例えば、高周波加熱-赤外線吸収法により定量することができる。
 第1の実施形態に係る電池用活物質材料は、Zr、Mo、W、V、Nb、Ta、P、Y、Al、Fe、及びBからなる群より選択される少なくとも1種の元素、並びに炭素の他に、製造上不可避な不純物を1000質量ppm以下の量で更に含むことができる。
 以上に説明した第1の実施形態に係る電池用活物質は、例えば、以下のように製造することができる。
 まず、Li源として水酸化リチウム、酸化リチウム、炭酸リチウムなどのリチウム塩、及びNa源として水酸化ナトリウム、酸化ナトリウム、炭酸ナトリウムなどのナトリウム塩を用意する。これらを純水に所定量溶解させる。この溶液に、リチウム、ナトリウム、チタン、及び添加元素の原子比が所定比率になるように、酸化チタンと添加元素の酸化物とを投入する。例えば、組成式Li2Na2Ti5NbO14のチタン含有酸化物を合成する場合、上記原料を、リチウム、ナトリウム、チタン、ニオブの原子比が2:2:5:1となるように混合する。
 次に、得られた溶液を攪拌しながら乾燥させ、焼成前駆体を得る。乾燥方法としては、噴霧乾燥、造粒乾燥、凍結乾燥又はこれらの組み合わせが挙げられる。得られた焼成前駆体を焼成し、チタン含有酸化物を得る。焼成は、大気中で行えば良いが、酸素雰囲気、アルゴンなどを用いた不活性雰囲気中で行っても良い。
 なお、上記工程において、Li源及び/又はNa源を純水に溶かさずに、粉末を混合するだけでも良いが、原料をより均一に混合して、不純物相の生成を抑制するためには、上述の工程を経ることが好ましい。
 焼成前駆体又は混合した原料の焼成は、680℃以上1000℃以下の温度で30分以上24時間以下程度行えば良い。好ましくは、焼成は、720℃以上850℃以下の温度で1時間以上6時間以下に亘って行う。
 680℃未満であると、酸化チタンとリチウム化合物との反応が不十分となり、アナターゼ型TiO2、ルチル型TiO2、Li2TiO3などの不純物相が増大し、電気容量が減少してしまう。1000℃を越えると、焼結の進行により結晶子径が過剰に成長し、大電流性能を低下させてしまう。
 上述の焼成により得られたチタン含有酸化物を、以下に説明する条件で粉砕及び再焼成することによって、一次粒子の細孔容積と平均細孔直径を制御することが可能となる。粉砕方法として例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェトミル、旋回気流型ジェットミルや篩等を用いることができる。粉砕の際には、水、エタノール、エチレングリコール、ベンゼン又はヘキサンなどの、公知の液体粉砕助剤を共存させた湿式粉砕を用いることもできる。粉砕助剤は、粉砕効率の改善、微粉生成量の増大に効果的である。より好ましい方法は、ジルコニア製ボールをメディアに用いたボールミルであり、液体粉砕助剤を加えた湿式での粉砕が好ましい。更に、粉砕効率を向上させるポリオールなどの有機物を粉砕助剤として添加しても良い。ポリオールの種類は特に限定されないが、ペンタエリトリトール、トリエチロールエタン、トリメチロールプロパンなどを単独で又は組み合わせて使用することができる。
 再焼成も、大気中で行えば良く、又は酸素雰囲気、アルゴンなどを用いた不活性雰囲気中で行っても良い。再焼成は、250℃以上900℃以下の温度で、1分以上10時間以下程度行えば良い。900℃以上であると、粉砕した粉末の焼成が進み、短時間の熱処理であっても細孔がつぶれてしまい、本実施形態に記載の細孔径分布が得られ難い。250℃未満であると湿式粉砕時に付着する不純物(有機物)を除去することができず、電池性能が低下してしまう。好ましくは、再焼成は、400℃以上700℃以下の温度で10分以上3時間以下に亘って行う。
 また、チタン含有酸化物粒子のpH値は10~11.2の範囲内にすることが望ましい。チタン含有酸化物粒子の焼成過程において、炭酸リチウム、炭酸ナトリウム、水酸化リチウム及び水酸化ナトリウムなどが、チタン含有酸化物に取り込まれない未反応のLi及び/又はNa成分に起因して副成され得る。この未反応Li及び/又はNa成分を低減させ、チタン含有酸化物粒子のpH値を11.2よりも小さくすることで、電池性能、特に、高温サイクル性能や出力性能を向上させることができる。
 これは、炭酸リチウム、炭酸ナトリウム、水酸化リチウム、及び水酸化ナトリウムなどの未反応Li及び/又はNa成分が活物質粒子表面に残存すると、活物質粒子表面に残存するこれらの未反応Li及び/又はNa成分が非水電解質と反応し、二酸化炭素や炭化水素ガスを発生させ、また、これらの副反応により活物質粒子表面に抵抗成分となる有機皮膜を形成するためである。
 しかしながら、チタン含有酸化物粒子を前述した条件で機械的に粉砕する場合、未反応Li及び/又はNa成分が表面に露出することになり、pH値が11.2よりも大きくなってその結果電池性能が低下する傾向がある。そのために、粉砕工程後に再焼成工程を行っている。再焼成を行うことで、表面に露呈された未反応のLi及び/又はNa成分が活物質内部に取り込まれ、粒子表面に残存する未反応のLi及び/又はNa成分を少なくすることができる。つまり、粉砕後の再焼成工程を施すことによって、pH値を11.2以下に制御することが可能となる。
 なお、チタン含有酸化物の原料となる水酸化リチウム、水酸化ナトリウム、炭酸リチウム及び炭酸ナトリウムなどのLi源及びNa源とチタン酸化物(例えば、アナターゼ型TiO2、ルチル型TiO2)とを反応させる段階で、Li源及び/又はNa源の比率を下げることで、副生成する炭酸リチウム及び炭酸ナトリウムなどの余剰Li塩及び/又はNa塩を低減させることは可能である。しかしながら、Li源及び/又はNa源の比率を低下させると、得られる活物質中のリチウムやナトリウムの比率が低下し、その結果、チタン含有酸化物の電気容量が低下する。そのため、電気容量を高容量に保持するために、原料としてのLi源及びNa源を減量せずに、得られる活物質粒子のpH値を10以上にすることが望ましい。
 また、電気容量の維持と、副反応の低減を考慮し、pH値は10.3~11の範囲であることがより好ましい。
 チタン含有酸化物粒子のpH値は以下の手順で測定できる。すなわち、チタン含有酸化物粒子1gを50mLの純水(25℃)に分散し、約10分間攪拌した後、活物質粒子を濾過し、濾液を得る。この濾液のpH値を、チタン含有酸化物粒子のpH値とする。
 [第1の実施形態に係る電池用活物質の確認方法]
 次に、第1の実施形態に係る電池用活物質についての、ICP発光分光法による元素の含有量の測定方法、炭素量の測定方法、二次粒子の平均粒子径の測定方法、一次粒子の平均粒子径の確認方法、及び比表面積の測定方法を説明する。
 なお、第1の実施形態に係る電池用活物質材料は、電池に組み込まれている場合、例えば以下のようにして取り出すことができる。まず、電池を放電状態にする。例えば、電池を25℃環境において0.1C電流で定格終止電圧まで放電させることで、電池を放電状態にすることができる。次に、放電状態の電池を解体し、電極(例えば負極)を取り出す。取り出した電極を例えばメチルエチルカーボネートで洗浄する。洗浄した電極を水中に入れ、電極層を水中で失活する。失活した電極から、遠心分離装置等を用いることで電池用活物質材料を抽出することができる。
 抽出処理は、例えば、バインダにポリフッ化ビニリデンを用いた場合には、N-メチル-2-ピロリドンなどで洗浄してバインダ成分を除去した後、適切な目開きのメッシュで導電剤を除去する。これらの成分が僅かに残存する場合は、大気中での加熱処理(例えば、250℃で30分など)によって除去すれば良い。
 (ICP発光分光法による元素の含有量の測定方法)
 ICP発光分光法による元素の含有量の測定は、例えば以下の方法で実行できる。先の手順で抽出した活物質材料を容器に測り取り、酸融解又はアルカリ融解して測定溶液を得る。この測定溶液を測定装置(例えばエスアイアイ・ナノテクノロジー社製:SPS-1500V)でICP発光分光を行なうことで、活物質材料中の元素の含有量を測定することができる。このような発光分析装置により、活物質中の添加元素の含有量を測定することができる。
 一方、電極中に他の活物質も含まれる場合は、元素の含有量は、以下のように測定することができる。電極中から取り出した負極活物質をTEM-EDXに供し、制限視野回折法によって各々の粒子の結晶構造を特定する。一般式Li(2+x)Na2Ti614に帰属される回折パターンを有する粒子を選定し、EDX分析によって、元素の合成含有量を測定することができる。
 (炭素量の測定方法)
 活物質材料中の炭素の含有量は、例えば、先に説明したように取り出した活物質材料を150℃で12時間乾燥させ、容器に測り取った後、測定装置(例えば、LECO社製 CS-444LS)により測定することができる。
 電極中に他の活物質が含まれている場合は、以下のように測定することができる。電極中から取り出した活物質をTEM-EDXに供し、制限視野回折法によって各々の粒子の結晶構造を特定する。チタン含有酸化物に帰属される回折パターンを有する粒子を選定し、炭素含有量を測定する。また、このとき、EDXで炭素マッピングを取得すれば炭素の存在領域を知ることができる。
 (二次粒子の平均粒子径の測定方法)
 二次粒子の平均粒子径の測定方法は、以下の通りである。測定装置としては、レーザー回折式分布測定装置(島津SALD-300)を用いる。まず、ビーカーに試料を約0.1gと界面活性剤と1~2mLの蒸留水とを添加して十分に攪拌し、攪拌水槽に注入して、ここで試料溶液を調製する。この試料溶液を用いて、2秒間隔で64回光度分布を測定し、粒度分布データを解析する。
 (一次粒子の平均径の確認方法)
 平均一次粒子径は、走査型電子顕微鏡(SEM)観察によって確認できる。典型的な視野から抽出される典型的な粒子10個の平均を求め、平均一次粒子径を決定する。
 (比表面積の測定方法)
 比表面積の測定は、粉体粒子表面に吸着占有面積が既知である分子を液体窒素の温度で吸着させ、その量から試料の比表面積を求める方法を用いることができる。最も良く利用されるのが不活性気体の低温低湿物理吸着によるBET法であり、単分子層吸着理論であるLangmuir理論を多分子層吸着に拡張した、比表面積の計算方法として最も有名な理論である。これにより求められた比表面積のことを、BET比表面積と称する。
 [第1の実施形態に係る活物質の結晶構造の確認方法]
 次に、活物質の結晶構造の確認方法について説明する。
 活物質の結晶構造は、広角X線回折(XRD)により確認することができる。
 活物質の広角X線回折測定は、次のように行う。まず、対象試料を平均粒子径が5μm程度となるまで粉砕する。平均粒子径は、先に説明したように、例えばレーザー回折法などによって求めることができる。粉砕した試料を、ガラス試料板上に形成された深さ0.2mmのホルダー部分に充填する。このとき、試料が十分にホルダー部分に充填されるように留意する。また、試料の充填不足によりひび割れ、空隙等がないように注意する。次いで、外部から別のガラス板を使い、充分に押し付けて平滑化する。充填量の過不足によりってホルダーの基準面より凹凸が生じることのないように注意する。次いで、試料が充填されたガラス板を広角X線回折装置に設置し、Cu-Kα線を用いて回折パターンを取得する。
 なお、試料の配向性が高い場合は、試料の充填の仕方によってピークの位置がずれたり、強度比が変化したりする可能性がある。そのような試料は、ペレットの形状にして測定する。ペレットは、例えば直径10mm、厚さ2mmの圧粉体であってよい。該圧粉体は、試料に約250MPaの圧力を15分間かけて製作することができる。得られたペレットをX線回折装置に設置し、その表面を測定する。このような方法で測定することにより、オペレータによる測定結果の違いを排除し、再現性を高くすることができる。
 電極に含まれる活物質について広角X線回折測定を行う場合は、例えば以下のように行うことができる。
 まず、活物質の結晶状態を把握するために、活物質からリチウムイオンが完全に離脱した状態にする。例えば負極として使う場合、電池を完全に放電状態にする。但し、放電状態でも残留したリチウムイオンが存在することがある。次に、アルゴンを充填したグローブボックス中で電池を分解し、適切な溶媒で洗浄する。たとえばエチルメチルカーボネートなどを用いると良い。洗浄した電極を、広角X線回折装置のホルダーの面積と同程度切り出し、直接ガラスホルダーに貼り付けて測定してもよい。このとき、電極集電体の金属箔の種類に応じてあらかじめXRDを測定しておき、どの位置に集電体由来のピークが現れるかを把握しておく。また、導電剤や結着剤といった合剤のピークの有無もあらかじめ把握しておく。集電体のピークと活物質のピークが重なる場合、集電体から活物質を剥離して測定することが望ましい。これは、ピーク強度を定量的に測定する際、重なったピークを分離するためである。もちろん、これらを事前に把握できているのであれば、この操作を省略することができる。電極を物理的に剥離しても良いが、溶媒中で超音波をかけると剥離しやすい。このようにして回収した電極を測定することで、活物質の広角X線回折測定を行うことができる。
 このようにして得られた広角X線回折の結果は、リートベルト法によって解析する。リートベルト法では、あらかじめ推定した結晶構造モデルから計算された回折パターンを実測値と全フィッティングして、結晶構造に関するパラメータ(格子定数、原子座標、占有率等)を精密化することができ、測定対象活物質の結晶構造の特徴や添加元素の存在位置(サイト)を調べることができる。
 以上に説明した第1の実施形態に係る電池用活物質は、非水電解質電池の負極及び正極の何れにおいても用いることができる。また、負極及び正極の何れに適用しても変わりなく、優れた入出力特性を有する非水電解質電池を実現することができる。
 第1の実施形態に係る電池用活物質を正極に用いる場合、対極としての負極の活物質は、例えば金属リチウム、リチウム合金、またはグラファイト、コークスといった炭素系材料を用いることができる。
 第1の実施形態に係る電池用活物質を負極において負極活物質として用いる場合、単独で用いてもよいが、他の活物質と共に用いてもよい。そのような他の活物質とは、例えば、スピネル型構造を有するリチウムチタン複合酸化物(Li4Ti512等)、アナターゼ型、ルチル型または単斜晶系β型構造を有するチタン複合酸化物(原子iO2、r-TiO2、TiO2(B)等)、鉄複合硫化物(FeS、FeS2等)である。
 同様に、第1の実施形態に係る電極用活物質を正極活物質として正極で用いる場合、単独で用いてもよいが、他の活物質と共に用いてもよい。そのような他の活物質とは、例えば、スピネル型構造を有するリチウムチタン複合酸化物(Li4Ti512等)、アナターゼ型、ルチル型または単斜晶系β型構造を有するチタン複合酸化物(原子iO2、r-TiO2、TiO(B)等)、鉄複合硫化物(FeS、FeS2等)である。
 以上に説明した第1の実施形態によると、電池用活物質が提供される。この電池用活物質は、一般式Li(2+x)Na2Ti614(xは、0≦x≦6の範囲内にある)で表される。この電池用活物質は、Zr、Mo、W、V、Nb、Ta、P、Y、Al、Fe、及びBからなる群より選択される少なくとも1種の元素を0.03~8.33原子%の量で含む。その結果、第1の実施形態に係る電池用活物質は、優れた入出力特性を示すことができる非水電解質電池を実現することができる。
 (第2の実施形態)
 第2の実施形態によると、非水電解質電池が提供される。この非水電解質電池は、正極と、負極と、非水電解質とを具備する。負極は、負極活物質を含む。負極活物質は、第1の実施形態に係る電池用活物質を含む。
 第2の実施形態に係る非水電解質電池は、正極と負極との間に配されたセパレータを更に具備することもできる。正極、負極及びセパレータは、電極群を構成することができる。非水電解質は、電極群に保持され得る。
 電極群は、例えば、積層型の構造を有することができる。積層型の電極群では、複数の正極と複数の負極とが、間にセパレータを介して交互に積層されている。
 或いは、電極群は、捲回型の構造を有することもできる。捲回型の電極群は、正極とセパレータと負極とを積層してなる積層体を捲回することにより形成することができる。
 第2の実施形態に係る非水電解質電池は、電極群及び非水電解質が収納される外装材と、負極端子と、正極端子とを更に具備していてもよい。
 正極及び負極は、セパレータを間に介在させて、空間的に離間し得る。負極端子は、負極に電気的に接続され得る。正極端子は、正極に電気的に接続され得る。
 以下、外装材、負極、正極、非水電解質、セパレータ、正極端子及び負極端子について、詳細に説明する。
 1)外装材
 外装材は、例えば、厚さ0.5mm以下のラミネートフィルムから形成される。或いは、外装材は、例えば、厚さ1.0mm以下の金属製容器でも良い。金属製容器は、厚さ0.5mm以下であることがより好ましい。
 外装材の形状は、例えば、扁平型(薄型)、角型、円筒型、コイン型、及びボタン型から選択できる。外装材の例には、電池寸法に応じて、例えば携帯用電子機器等に積載される小型電池用外装材、二輪乃至四輪の自動車等に積載される大型電池用外装材などが含まれる。
 ラミネートフィルムは、樹脂層間に金属層を介在した多層フィルムが用いられる。金属層は、軽量化のためにアルミニウム箔又はアルミニウム合金箔が好ましい。樹脂層は、例えばポリプロピレン(PP)、ポリエチレン(PE)、ナイロン、ポリエチレンテレフタレート(PET)等の高分子材料を用いることができる。ラミネートフィルムは、熱融着によりシールを行って外装材の形状に成形することができる。
 金属製容器は、例えば、アルミニウム又はアルミニウム合金等から作られる。アルミニウム合金は、マグネシウム、亜鉛、ケイ素等の元素を含む合金が好ましい。合金中に鉄、銅、ニッケル、クロム等の遷移金属が含まれる場合、その量は100質量ppm以下にすることが好ましい。
 2)負極
 負極は、負極集電体と、この負極集電体の片面又は両面に形成された負極層とを備えることができる。
 負極集電体は、1V(対Li/Li+)よりも貴である電位範囲において電気化学的に安定であるアルミニウム箔又はMg、Ti、Zn、Mn、Fe、Cu、Siのような元素を含むアルミニウム合金箔であること好ましい。このようなアルミニウム箔又はアルミニウム合金箔は、過放電サイクルでの負極集電体の溶解及び腐食劣化を防ぐことができる。
 アルミニウム箔およびアルミニウム合金箔の厚さは、20μm以下、より好ましくは15μm以下である。アルミニウム箔の純度は99%以上が好ましい。アルミニウム合金としては、マグネシウム、亜鉛、ケイ素などの元素を含む合金が好ましい。一方、鉄、銅、ニッケル、クロムなどの遷移金属の含有量は1%以下にすることが好ましい。
 負極層は、負極活物質、導電剤及び結着剤を含むことができる。
 第1の実施形態に係る電池用活物質は、負極活物質に含まれ得る。負極活物質は、第1の実施形態の説明で述べたように、第1の実施形態に係る電池用活物質以外の負極活物質を含んでも良い。
 負極活物質は、比表面積が0.5m2/g以上50m2/g以下であることが好ましい。比表面積が0.5m2/g以上である場合には、リチウムイオンの吸蔵および脱離サイトを十分に確保することが可能になる。比表面積が50m2/g以下である場合には、工業生産上扱い易くなる。より好ましくは、比表面積は3m2/g以上30m2/gである。
 導電剤は、負極活物質の集電性能を高め、集電体との接触抵抗を抑えることができる。導電剤としては、例えば、炭素材料、アルミニウム粉末などの金属粉末、TiOなどの導電性セラミックスを用いることができる。炭素材料としては、例えば、アセチレンブラック、カーボンブラック、コークス、炭素繊維、黒鉛が挙げられる。より好ましくは、熱処理温度が800~2000℃の平均粒子径10μm以下のコークス、黒鉛、TiOの粉末、平均粒子径1μm以下の炭素繊維が好ましい。前記炭素材料のN2吸着によるBET比表面積は10m2/g以上が好ましい。
 結着剤は、負極活物質と導電剤を結着できる。結着剤の例は、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム及びスチレンブタジエンゴムを含む。
 負極層中の負極活物質、導電剤及び結着剤は、それぞれ70質量%以上96質量%以下、2質量%以上28質量%以下及び2質量%以上28質量%以下の割合で配合することが好ましい。導電剤の量を2質量%以上とすることにより、負極層の集電性能を向上させ、非水電解質電池の大電流特性を向上させることができる。また、結着剤の量を2質量%以上とすることにより、負極層と集電体との結着性を高め、サイクル特性を向上させることができる。一方、導電剤及び結着剤はそれぞれ28質量%以下にすることが高容量化を図る上で好ましい。
 負極は、例えば、負極活物質、導電剤及び結着剤を汎用されている溶媒に懸濁してスラリーを調製し、このスラリーを集電体に塗布し、乾燥し、その後、プレスを施すことにより作製される。負極は、また、活物質、導電剤及び結着剤をペレット状に形成して負極層とし、これを集電体上に形成することにより作製されてもよい。
 3)正極
 正極は、正極集電体と、この正極集電体の片面又は両面に形成された正極層とを備えることができる。
 正極集電体は、例えばアルミニウム箔、又はMg、Ti、Zn、Mn、Fe、Cu、Siのような元素を含むアルミニウム合金箔であることが好ましい。
 正極層は、正極活物質、導電剤及び結着剤を含むことができる。
 正極活物質としては、例えば酸化物、ポリマー等を用いることができる。
 酸化物は、例えばリチウムを吸蔵した二酸化マンガン(MnO2)、酸化鉄、酸化銅、酸化ニッケル及びリチウムマンガン複合酸化物(例えばLixMn24またはLixMnO2)、リチウムニッケル複合酸化物(例えばLixNiO2)、リチウムコバルト複合酸化物(LixCoO2)、リチウムニッケルコバルト複合酸化物(例えばLiNi1-yCoy2)、リチウムマンガンコバルト複合酸化物(例えばLixMnyCo1-y2)、リチウムニッケルマンガンコバルト複合酸化物(例えばLix(NiaMnbCoc)O2、ここでa+b+c=1)、スピネル構造を有するリチウムマンガンニッケル複合酸化物(LixMn2-yNiy4)、オリビン構造を有するリチウムリン酸化物(例えばLixFePO4、LixFe1-yMnyPO4、LixCoPO4)、硫酸鉄(Fe2(SO43)、またはバナジウム酸化物(例えばV25)を用いることができる。上記のx及びyは、0<x≦1、0≦y≦1であることが好ましい。
 ポリマーとしては、例えば、ポリアニリンやポリピロールのような導電性ポリマー材料、またはジスルフィド系ポリマー材料を用いることができる。イオウ(S)、フッ化カーボンもまた活物質として使用できる。
 好ましい正極活物質の例には、正極電圧が高いリチウムマンガン複合酸化物(LixMn24)、リチウムニッケル複合酸化物(LixNiO2)、リチウムコバルト複合酸化物(LixCoO2)、リチウムニッケルコバルト複合酸化物(LixNi1-yCoy2)、リチウムニッケルマンガンコバルト複合酸化物(例えばLix(NiaMnbCoc)O2、ここでa+b+c=1)、スピネル構造のリチウムマンガンニッケル複合酸化物(LixMn2-yNiy4)、リチウムマンガンコバルト複合酸化物(LixMnyCo1-y2)、及びリチウムリン酸鉄(LixFePO4)が含まれる。上記のx及びyは、0<x≦1、0≦y≦1であることが好ましい。
 高温耐久性の観点から、さらに好ましい正極活物質は、スピネル構造を有するリチウムマンガン複合酸化物(LixMn24)、層状構造を有するリチウムニッケルマンガンコバルト複合酸化物(例えばLix(NiaMnbCoc)O2、ここでa+b+c=1)、及びオリビン構造を有するリチウムリン酸鉄(LixFePO4)である。これらの活物質は、構造安定性が高く、充放電の可逆性が優れるため、前述した負極活物質との組み合わせにおいて、より高い寿命性能及びより高い高温耐久性が得られる。
 また、第1の実施形態に係る電池用活物質を含む負極と、リチウムマンガン複合酸化物(LixMn24)正極やリチウムニッケルマンガンコバルト複合酸化物(例えばLix(NiaMnbCoc)O2、ここでa+b+c=1)正極とを具備する非水電解質電池は、鉛蓄電池と優れた互換性を示すことができる12Vシステムを5直列で構成できる。そして、第1の実施形態に係る電池用活物質を含む負極と、リチウムリン酸鉄(LixFePO4)正極とを具備する非水電解質電池は、鉛蓄電池と優れた互換性を示すことができる12Vシステムを6直列で構成できる。このような構成により、高温耐久性に優れ、エンジンルームで使用可能な組電池及び電池パックを提供することが可能となる。
 導電剤は、活物質の集電性能を高め、集電体との接触抵抗を抑えることができる。導電剤の例は、アセチレンブラック、カーボンブラック及び黒鉛などの炭素質物を含む。
 結着剤は、活物質と導電剤を結着させることができる。結着剤の例は、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)及びフッ素系ゴムを含む。
 正極層中の正極活物質、導電剤及び結着剤は、それぞれ80質量%以上95質量%以下、3質量%以上18質量%以下及び2質量%以上17質量%以下の割合で配合することが好ましい。導電剤は、3質量%以上の量にすることにより上述した効果を発揮することができる。導電剤は、18質量%以下の量にすることにより高温保存下での導電剤表面での非水電解質の分解を低減することができる。結着剤は、2質量%以上の量にすることにより十分な正極強度が得られる。結着剤は、17質量%以下の量にすることにより、正極中の絶縁材料である結着剤の配合量を減少させ、内部抵抗を減少できる。
 正極は、例えば、正極活物質、導電剤及び結着剤を汎用されている溶媒に懸濁してスラリーを調製し、このスラリーを集電体に塗布し、乾燥し、その後、プレスを施すことにより作製される。正極はまた正極活物質、導電剤及び結着剤をペレット状に形成して正極層とし、これを集電体上に形成することにより作製されてもよい。
 4)非水電解質
 非水電解質は、例えば電解質を有機溶媒に溶解することにより調製される液状非水電解質、又は液状電解質と高分子材料とを複合化したゲル状非水電解質を用いることができる。
 液状非水電解質は、電解質を0.5M以上2.5M以下の濃度で有機溶媒に溶解することが好ましい。
 電解質の例は、過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)、トリフルオロメタスルホン酸リチウム(LiCF3SO3)、ビストリフルオロメチルスルホニルイミドリチウム[LiN(CF3SO22]のリチウム塩、またはこれらの混合物を含む。電解質は、高電位でも酸化し難いものであることが好ましく、LiPF6が最も好ましい。
 有機溶媒の例は、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ビニレンカーボネートのような環状カーボネート;ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)のような鎖状カーボネート;テトラヒドロフラン(THF)、2メチルテトラヒドロフラン(2MeTHF)、ジオキソラン(DOX)のような環状エーテル;ジメトキシエタン(DME)、ジエトエタン(DEE)のような鎖状エーテル;又はγ-ブチロラクトン(GBL)、アセトニトリル(AN)、スルホラン(SL)を含む。これらの有機溶媒は、単独で又は混合溶媒の形態で用いることができる。
 高分子材料の例は、ポリフッ化ビニリデン(PVdF)、ポリアクリロニトリル(PAN)、ポリエチレンオキサイド(PEO)を含む。
 好ましい有機溶媒は、プロピレンカーボネート(PC)、エチレンカーボネート(EC)及びジエチルカーボネート(DEC)からなる群のうち、少なくとも2つ以上を混合した混合溶媒、又はγ-ブチロラクトン(GBL)を含む混合溶媒である。これらの混合溶媒を用いることにより、高温特性の優れた非水電解質電池を得ることができる。
 5)セパレータ
 セパレータは、例えばポリエチレン、ポリプロピレン、セルロース、若しくはポリフッ化ビニリデン(PVdF)を含む多孔質フィルム、又は合成樹脂製不織布を用いることができる。好ましい多孔質フィルムは、ポリエチレン又はポリプロピレンから作られ、一定温度において溶融し、電流を遮断することが可能であるために安全性を向上できる。
 6)負極端子
 負極端子は、例えばリチウムイオン金属に対する電位が1V以上3V以下の範囲における電気的安定性と導電性とを備える材料を用いることができる。具体的には、アルミニウムまたはMg、Ti、Zn、Mn、Fe、Cu、Si等の元素を含むアルミニウム合金が挙げられる。負極端子は、負極集電体との接触抵抗を低減するために、負極集電体と同様の材料であることが好ましい。
 7)正極端子
 正極端子は、リチウムイオン金属に対する電位が3~4.25Vの範囲における電気的安定性と導電性とを備える材料を用いることができる。具体的には、アルミニウムまたはMg、Ti、Zn、Mn、Fe、Cu、Si等の元素を含むアルミニウム合金が挙げられる。正極端子は、正極集電体との接触抵抗を低減するために、正極集電体と同様の材料であることが好ましい。
 次に、図面を参照しながら、第2の実施形態に係る非水電解質電池の例を説明する。
 図1は、第2の実施形態に係る一例の非水電解質電池を示す概略断面図である。図2は、図1のA部の拡大断面図である。
 図1及び図2に示す非水電解質電池100は、扁平状の捲回電極群1を具備する。
 扁平状の捲回電極群1は、図2に示すように、負極3、セパレータ4及び正極5を備える。セパレータ4は、負極3と正極5とに間に介在している。このような扁平状の捲回電極群1は、例えば、負極3と正極5とに間にセパレータ4が介在するように負極3、セパレータ4、正極5及びもう1枚のセパレータ4を積層して形成した積層物を、図2に示すように、負極3を外側にして渦巻状に捲回し、プレス成型することにより形成できる。
 負極3は、負極集電体3aと負極層3bとを含む。最外殻の負極3は、図2に示すように負極集電体3aのうち電極群の中心に向いた面のみに負極層3bを形成した構成を有する。その他の負極3は、負極集電体3aの両面に負極層3bが形成されている。
 正極5は、正極集電体5aの両面に正極層5bが形成されている。
 図1に示すように、捲回電極群1の外周端近傍において、負極端子6が最外殻の負極3の負極集電体3aに接続され、正極端子7が内側の正極5の正極集電体5aに接続されている。
 捲回型電極群1は、2枚の樹脂層の間に金属層が介在したラミネートフィルムからなる袋状容器2内に収納されている。
 負極端子6及び正極端子7は、袋状容器2の開口部から外部に延出されている。例えば液状非水電解質は、袋状容器2の開口部から注入されて、袋状容器2内に収納されている。
 袋状容器2は、開口部を負極端子6及び正極端子7を挟んでヒートシールすることにより、捲回電極群1及び液状非水電解質が完全密封されている。
 以上に説明した第2の実施形態に係る非水電解質電池は、第1の実施形態に係る電池用活物質を含むので、優れた入出力特性を示すことができる。
 (第3の実施形態)
 第3の実施形態によると、組電池が提供される。第3の実施形態に係る組電池は、第2の実施形態に係る複数個の非水電解質電池を具備する。
 第3の実施形態に係る組電池において、各単電池は、電気的に直列若しくは並列に接続して配置することができるし、又は直列接続及び並列接続を組み合わせて配置することもできる。
 例えば、第3の実施形態に係る組電池は、第1の実施形態に係る電池用活物質を含んだ負極とオリビン構造を有する鉄含有リン酸化合物を含んだ正極と非水電解質とを具備した非水電解質電池を6m個具備することができる。ここで、mは1以上の整数である。6m個の非水電解質電池は、直列に接続されて組電池を構成することができる。第2の実施形態において説明したように、この例の組電池が具備する非水電解質電池は、鉛蓄電池と優れた互換性を示すことができる12Vシステムを6直列で構成でき、且つ高温耐久性に優れている。そのため、この例の組電池は、鉛蓄電池とともに、エンジンルームで使用することができる。
 また、例えば、第3の実施形態に係る組電池は、第1の実施形態に係る電池用活物質を含んだ負極とスピネル構造を有するリチウムマンガン複合酸化物、及び層状構造を有するリチウムニッケルマンガンコバルト複合酸化物からなる群より選択される少なくとも1種を含んだ正極と非水電解質とを具備した非水電解質電池を5n個具備することができる。ここで、nは1以上の整数である。5n個の非水電解質電池は、直列に接続されて組電池を構成することができる。第2の実施形態において説明したように、この例の組電池が具備する非水電解質電池は、鉛蓄電池と優れた互換性を示すことができる12Vシステムを5直列で構成でき、且つ高温耐久性に優れている。そのため、この例の組電池は、鉛蓄電池と共に、エンジンルームで使用することができる。
 次に、第3の実施形態に係る組電池の一例を、図面を参照しながら説明する。
 図3は、第3の実施形態に係る組電池の一例を示す概略斜視図である。図3に示す組電池23は、5つの単電池21を具備する。5つの単電池21のそれぞれは、第2の実施形態に係る一例の角型非水電解質電池である。
 図3に示す組電池23は、4つのリード20を更に具備している。1つのリード20は、1つの単電池21の負極端子6と、もう1つの単電池21の正極端子7とを接続している。かくして、5つの単電池21は、4つのリード20により直列に接続されている。すなわち、図3の組電池23は5直列の組電池である。
 図3に示すように、5つの単電池21のうちの1つの単電池21の正極端子7は、外部接続用の正極側リード28に接続されている。また、5つの単電池21のうちの1つの単電池21の負極端子6は、外部接続用の負極側リード30に接続されている。
 第3の実施形態に係る組電池は、第2の実施形態に係る非水電解質電池を具備するので、優れた入出力特性を示すことができる。
 (第4の実施形態)
 第4の実施形態に係る電池パックは、第2の実施形態に係る非水電解質電池を具備する。
 第4の実施形態に係る電池パックは、1個の非水電解質電池を備えてもよいし、複数個の非水電解質電池を備えてもよい。また、第4の実施形態に係る電池パックが複数の非水電解質電池を備える場合、各単電池は、電気的に直列若しくは並列に接続して配置することができるし、又は直列接続及び並列接続を組み合わせて配置することもできる。
 或いは、第4の実施形態に係る電池パックは、第3の実施形態に係る組電池を具備することもできる。
 次に、第4の実施形態に係る電池パックの一例を、図面を参照しながら説明する。
 図4は、第4の実施形態に係る一例の電池パックの分解斜視図である。図5は、図4に示す電池パックの電気回路を示すブロック図である。
 図4及び図5に示す電池パック200は、図1及び図2に示した構造を有する複数個の扁平型電池21を含む。すなわち、図4及び図5に示す電池パック200は、第1の実施形態に係る一例の非水電解質電池を複数個含む。
 複数個の単電池21は、外部に延出した負極端子6及び正極端子7が同じ向きに揃えられるように積層され、粘着テープ22で締結されており、それにより組電池23を構成している。これらの単電池21は、図5に示すように互いに電気的に直列に接続されている。
 プリント配線基板24が、複数の単電池21の負極端子6及び正極端子7が延出している側面に対向して配置されている。プリント配線基板24には、図5に示すように、サーミスタ25、保護回路26及び外部機器への通電用端子27が搭載されている。なお、プリント配線基板24の組電池23と対向する面には、組電池23の配線と不要な接続を回避するために絶縁板(図示せず)が取り付けられている。
 組電池23の最下層に位置する単電池10の正極端子7に正極側リード28が接続されており、その先端はプリント配線基板24の正極側コネクタ29に挿入されて電気的に接続されている。組電池23の最上層に位置する単電池10の負極端子6に負極側リード30が接続されており、その先端はプリント配線基板24の負極側コネクタ31に挿入されて電気的に接続されている。これらのコネクタ29及び31は、プリント配線基板24に形成された配線32及び33をそれぞれ通して保護回路26に接続されている。
 サーミスタ25は、単電池10の各々の温度を検出し、その検出信号を保護回路26に送信する。保護回路26は、所定の条件で保護回路26と外部機器への通電用端子27との間のプラス側配線34a及びマイナス側配線34bを遮断することができる。所定の条件の例は、例えばサーミスタ25から、単電池21の温度が所定温度以上であるとの信号を受信したときである。また、所定の条件の他の例は、単電池21の過充電、過放電、過電流等を検出したときである。この過充電等の検出は、個々の単電池21又は単電池21全体について行われる。個々の単電池21を検出する場合、電池電圧を検出してもよいし、正極電位もしくは負極電位を検出してもよい。後者の場合、参照極として用いるリチウム電極を個々の単電池10に挿入する。図4及び図5の電池パック200では、単電池21それぞれに電圧検出のための配線35が接続されており、これら配線35を通して検出信号が保護回路26に送信される。
 正極端子7及び負極端子6が突出する側面を除く組電池23の三側面には、ゴムもしくは樹脂からなる保護シート36がそれぞれ配置されている。
 組電池23は、各保護シート36及びプリント配線基板24と共に収納容器37内に収納されている。すなわち、収納容器37の長辺方向の両方の内側面と短辺方向の内側面それぞれに保護シート36が配置されており、短辺方向の反対側の内側面にプリント配線基板24が配置されている。組電池23は、保護シート36及びプリント配線基板24で囲まれた空間内に位置する。蓋38は、収納容器37の上面に取り付けられている。
 なお、組電池23の固定には粘着テープ22に代えて、熱収縮テープを用いてもよい。この場合、組電池の両側面に保護シートを配置し、熱収縮チューブを周回させた後、熱収縮チューブを熱収縮させて組電池を結束させる。
 図4及び図5に示した電池パック200は複数の単電池21を直列接続した形態を有するが、第3の実施形態に係る電池パックは、電池容量を増大させるために、複数の単電池10を並列に接続してもよい。或いは、第3の実施形態に係る電池パックは、直列接続と並列接続とを組合せて接続された複数の単電池10を備えてもよい。組み上がった電池パック200をさらに直列又は並列に接続することもできる。
 また、図4及び図5に示した電池パック200は複数の単電池21を備えているが、第3の実施形態に係る電池パックは1つの単電池21を備えるものでもよい。
 また、電池パックの実施形態は用途により適宜変更される。本実施形態に係る電池パックは、大電流を取り出したときにサイクル特性が優れていることが要求される用途に好適に用いられる。具体的には、デジタルカメラの電源として、又は、例えば二輪乃至四輪のハイブリッド電気自動車、二輪乃至四輪の電気自動車、及び、アシスト自転車の車載用電池として用いられる。特に、車載用電池として好適に用いられる。
 第4の実施形態に係る電池パックは、第2の実施形態に係る非水電解質電池を具備するので、優れた入出力特性を示すことができる。
 (第5の実施形態)
 第5の実施形態に係る自動車は、第4の実施形態に係る電池パックを具備する。
 ここでいう自動車としては、二輪~四輪のアイドリングストップ機構を搭載した自動車、二輪~四輪のハイブリッド電気自動車、二輪~四輪の電気自動車、アシスト自転車などが挙げられる。
 第5の実施形態の自動車の一例を図6に示す。図6に示すように、第4の実施形態の自動車41は、エンジンルームに第3の実施形態に係る電池パック42が搭載されている。高温環境下となる自動車のエンジンルームに電池パックを設置することにより、電池パックとモータ、インバータ等の電動駆動系装置までの距離が短くなり、出入力のロスが低減し、燃費効率が向上する。
 第5の実施形態によると、第4の実施形態に係る電池パックを具備するので、優れた出入力特性を示すことができる電気化学装置を搭載した自動車を提供することができる。
 [実施例]
 以下に実施例を説明するが、本発明の主旨を超えない限り、本発明は以下に記載される実施例に限定されるものではない。
 (実施例1)
 実施例1では、以下の手順により、実施例1のビーカーセルを作製した。
 <活物質の調製>
 まず、炭酸リチウム(Li2CO3)粉末と、炭酸ナトリウム(Na2CO3)粉末と、アナターゼ構造の二酸化チタン(TiO2)粉末と、五酸化ニオブ(Nb25)粉末とを準備した。これらの粉末を、Li2CO3:Na2CO3:TiO2:Nb25の質量比が7.3890:10.9884:47.8615:0.0957となるように混合した。得られた混合物を800℃で3時間にわたって焼成して生成物を得た。続いて、先に得られた生成物を、ジルコニアをメディアとしたビーズミルで粉砕し、実施例1の電池用活物質を得た。
 後述する広角X線回折法により、得られた実施例1の電池用活物質が一般式Li2Na2Ti614で表されるチタン含有酸化物であることを確認した。また、ICP分光分析の結果、Nb含有量は0.03原子%であることが分かった。また、実施例1の電池用活物質を先に説明した方法により分析した結果、pHは10.8であることが分かった。
 <広角X線回折法>
 実施例1の電池用活物質を直径25mmの標準ガラスホルダーに詰め、広角X線回折法による測定を行った。その結果、図7に示すX線回折パターンを得た。この回折パターンから、得られたチタン含有酸化物を構成する主物質がJCPDS(Joint Committee on Powder Diffraction Standards):52-690に帰属される一般式Li2Na2Ti614で表される物質であることが確認された。以下に、測定に使用した装置および条件を示す。 
 (1) X線発生装置理学電機社製 RU-200R(回転対陰極型)
     X線源 : CuKα線
     湾曲結晶モノクロメータ(グラファイト)使用
     出力 : 50kV、200mA
 (2) ゴニオメータ理学電機社製 2155S2 型
     スリット系: 1°-1°-0.15mm-0.45mm
     検出器 : シンチレーションカウンター
 (3) 計数記録装置理学電機社製 RINT1400 型
 (4) スキャン方式 2θ/θ連続スキャン
 (5) 定性分析
     測定範囲(2θ) 5~100°
     スキャン速度 2°/分
     ステップ幅(2θ) 0.02°。
 <電極の作製>
 実施例1の電池用活物質と、導電剤としてのアセチレンブラックと、ポリフッ化ビニリデン(PVdF)とを、N-メチルピロリドン(NMP)に加え、混合してスラリーを調製した。この際、活物質:アセチレンブラック:PVdFの質量比を90:5:5とした。このスラリーを厚さ12μmのアルミニウム箔からなる集電体の両面に塗布し、乾燥させた。その後、プレスすることにより、電極密度(集電体を含まず)が2.2g/cm3の電極を得た。
 <液状非水電解質の調製>
 エチレンカーボネート(EC)およびジエチルカーボネート(DEC)を1:2の体積比率で混合して混合溶媒とした。この混合溶媒に、電解質であるLiPF6を1Mの濃度で溶解させて、液状非水電解質を得た。
 <ビーカーセルの製造>
 作製した電極を作用極とし、対極及び参照極としてリチウム金属を用いたビーカーセルを組み立てた。組み立てたビーカーセル内に、上述の液状非水電解質を注入して、実施例1のビーカーセルを完成させた。
 <電池性能の測定>
 実施例1のビーカーセルに対し、25℃の環境下において、0.2C及び1Vで10時間の定電流-定電圧放電を行って、実施例1の電池用活物質へのリチウム挿入を行った。次いで、実施例1のビーカーセルに対し、0.2Cでの定電流充電をセル電圧が3Vに達するまで行って、実施例1の電池用活物質からのリチウム放出を行った。この際の放電容量を0.2C容量とした。次いで、0.2C及び1Vで10時間にわたって定電流-定電圧放電を行って、実施例1の電池用活物質へのリチウム挿入を行った。次いで、10Cでの定電流充電をセル電圧が3Vに達するまで行って、実施例1の電池用活物質からのリチウム放出を行った。この際の放電容量を10C容量とした。0.2C容量に対する10C容量の比率をレート容量維持率(%)として以下の表1に記す。
 <比表面積>
 実施例1の電池用活物質の比表面積を先に示した方法により測定した。実施例1の電池用活物質の比表面積は6.4m2/gであった。
 <平均粒子径>
 SEMで確認した結果、実施例1の電池用活物質は単粒子形態であった。実施例1の電池用活物質の平均一次粒子径を、先に説明した手順により測定した。実施例1の電池用活物質の平均一次粒子径は0.62μmであった。
 (実施例2~6、比較例1~2)
 実施例2~6及び比較例1~2では、Nb含有量を以下の表1記載の値に変えたこと以外は実施例1と同様の手法によって、実施例2~6及び比較例1~2のそれぞれの電池用活物質を調製し、調製した電池用活物質を用いて実施例2~6及び比較例1~2のそれぞれのビーカーセルを作製した。
 実施例2~6及び比較例1~2のそれぞれの電池用活物質について、実施例1と同様に各種分析を行った。また、実施例2~6及び比較例1~2のそれぞれのビーカーセルについて、実施例1と同様の手順で電池性能の評価を行った。実施例1~6及び比較例1~2についての、平均一次粒子径、比表面積、Nb含有量、0.2C容量及びレート容量維持率の結果を以下の表1に示す。なお、実施例2~6及び比較例1~2のそれぞれの電池用活物質は、pHがいずれも10.8~10.9であった。
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から、Nbを0.03~8.33原子%含む電池用活物質を用いた実施例1~6のビーカーセルは、Nbを含まない、又は過剰に含んだ電池用活物質を用いた比較例1~2のビーカーセルに比べて、容量及び容量維持率に優れていたことが分かる。
 (実施例11~20)
 実施例11~20では、原料に各種添加元素の酸化物を用いて各種添加元素を0.13原子%添加した活物質を合成した以外は実施例1と同様の手法によって、実施例11~20のそれぞれの電池用活物質を調製し、調製した電池用活物質を用いて実施例11~20のそれぞれのビーカーセルを作製した。
 実施例11~20のそれぞれの電池用活物質について、実施例1と同様に各種分析を行った。また、実施例11~20のそれぞれのビーカーセルについて、実施例1と同様の手順で電池性能の評価を行った。実施例11~20についての、平均一次粒子径、比表面積、添加元素の種類、0.2容量及びレート容量維持率の結果を、比較のために実施例3の結果と合わせて、以下の表2に示す。なお、実施例11~20のそれぞれの電池用活物質は、pHがいずれも10.8~10.9であった。
Figure JPOXMLDOC01-appb-T000002
 表2に示す結果から、添加元素を変えても同様の効果が得られることが分かった。また、Vを添加した実施例14及びNbを添加した実施例3において、特に良好なレート容量維持率が得られたことが分かる。
 (実施例21~23)
 実施例21~23では、以下のようにして、実施例21~23の電池用活物質を調製した。
 まず、実施例3で合成した電池用活物質にマルトースを加え、純水と共にビーカーに入れて混合した。実施例21では、電池用活物質100gに対してマルトースを2g混合した。実施例22では、電池用活物質100gに対してマルトースを5g混合した。実施例23では、電池用活物質100gに対してマルトースを15g混合した。
 次いで、混合物を、回転子を用いてスターラで十分に分散させ、その後蒸発乾燥させた。かくして、電池用活物質粒子表面に有機物が均質にコーティングされた複合体を得た。続いて、得られた複合体を、アルゴン気流中の不活性雰囲気内において500℃1時間にわたって焼成して炭化熱処理を行い、有機物の炭化を図った。かくして、実施例21~23のそれぞれの電池用活物質を得た。
 実施例21~23では、上記のようにして調製した電池用活物質を用いたこと以外は実施例1と同じ方法で、実施例21~23のそれぞれのビーカーセルを作製した。
 実施例21~23のそれぞれの電池用活物質について、先に説明した方法により、炭素量の測定を行った。また、実施例21~23のそれぞれのビーカーセルについて、実施例1と同様の手順で電池性能の評価を行った。実施例21~23についての、炭素量、0.2C容量及びレート容量維持率の結果を、比較のために実施例3の結果と合わせて、以下の表3に示す。
Figure JPOXMLDOC01-appb-T000003
 炭素を含む相が形成された活物質を用いた実施例21~23のビーカーセルは、炭素を含む相を含まない実施例3のビーカーセルに比べて、容量及び容量維持率とも改善されたことが分かった。特に、実施例22及び23のように、炭素量が1~3質量%の場合に高い効果を示すことが分かった。
 (実施例41)
 実施例41では、以下の材料を使用して、実施例41の非水電解質電池を作製した。
 負極活物質として、実施例1で合成した電池用活物質を用いた。正極活物質として、リチウムマンガン複合酸化物(Li1.1Mn1.9Al0.14)を用いた。非水電解質としては、PC/GBL(1:2)混合溶媒にLiBF4を1.5Mの濃度で溶解させて調製した電解液を用いた。外装材としては、ラミネートフィルムを用いた。
 作製した実施例41の非水電解質電池は、厚さ4mm×幅72mm×高さ100mmの寸法を有し、容量が2Ahであるラミネート型電池であった。実施例41の電池の電池電圧は2.85Vであった。すなわち、実施例41の非水電解質電池の電池電圧は、5直列で鉛電池互換電圧であることが確認できた。
 (実施例42)
 実施例42では、以下の材料を使用して、実施例42の非水電解質電池を作製した。
 負極活物質として、実施例1で合成した電池用活物質を用いた。正極活物質として、リチウムニッケルマンガンコバルト複合酸化物(LiNi6Mn2Co24)を用いた。非水電解質としては、PC/GBL(1:2)混合溶媒にLiBF4を1.5Mの濃度で溶解させて調製した電解液を用いた。外装材としては、ラミネートフィルムを用いた。
 作製した実施例42の非水電解質電池は、厚さ3.4mm×幅72mm×高さ100mmの寸法を有し、容量が2Ahであるラミネート型電池であった。実施例42の電池の電池電圧は2.6Vであった。すなわち実施例42の非水電解質電池の電池電圧は、5直列で鉛電池互換電圧であることが確認できた。
 (実施例43)
 実施例43では、以下の材料を使用して、実施例43の非水電解質電池を作製した。
 負極活物質として、実施例1で合成した電池用活物質を用いた。正極活物質として、リチウムリン酸鉄(LiFePO4)を用いた。非水電解質として、PC/GBL(1:2)混合溶媒にLiBF4-を1.5Mの濃度で溶解させて調製した電解液を用いた。外装材としては、ラミネートフィルムを用いた。
 作製した実施例43の非水電解質電池は、厚さ3.6mm×幅72mm×高さ100mmの寸法を有し、容量が2Ahであるラミネート型電池であった。実施例43の電池の電池電圧は1.85Vであった。すなわち、実施例43の非水電解質電池の電池電圧は、6直列で鉛電池互換電圧であることが確認できた。
 (比較例41)
 比較例41では、以下の材料を使用して、比較例41の非水電解質電池を作製した。
 負極活物質として、黒鉛を用いた。正極活物質として、リチウムリン酸鉄(LiFePO4)を用いた。非水電解質としてPC/GBL(1:2)混合溶媒にLiBF4-を1.5Mの濃度で溶解させて調製した電解液を用いた。外装材としては、ラミネートフィルムを用いた。
 作製した比較例41の非水電解質電池は、厚さ3.6mm×幅72mm×高さ100mmの寸法を有し、容量が2Ahであるラミネート型電池であった。比較例41の電池の電池電圧は3.4Vであった。
 (比較例42)
 比較例42では、以下の材料を使用して、比較例42の非水電解質電池を作製した。
 負極活物質として、比較例1で合成した電池用活物質を用いた。正極活物質として、リチウムマンガン複合酸化物(Li1.1Mn1.9Al0.14)を用いた。非水電解質としてPC/GBL(1:2)混合溶媒にLiBF4-を1.5Mの濃度で溶解させて調製した電解液を用いた。外装材としては、ラミネートフィルムを用いた。
 作製した比較例42の非水電解質電池は、厚さ4mm×幅72mm×高さ100mmの寸法を有し、容量が2Ahであるラミネート型電池であった。比較例42の電池の電池電圧は2.85Vであった。すなわち、比較例42の非水電解質電池の電池電圧は、5直列で鉛電池互換電圧であることが確認できた。
 [評価]
 実施例41~43、並びに比較例41及び42の非水電解質電池を、80℃環境下で充電1C/放電1Cの充放電サイクル試験に供し、500サイクル後のサイクル容量維持率(%)を測定した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4の結果から、実施例1の電池用活物質を負極に用いた実施例41~43の電池は、黒鉛を負極に用いた比較例41に比べてサイクル容量維持率が著しく高く、優れた高温耐久性を有することが確認された。特に、リチウムリン酸鉄(LiFePO4)を正極活物質として用い、1.5M LiBF4-PC/GBL(1:2)電解液を用いて実施例43の非水電解質電池は、極めて良好なサイクル容量維持率を示した。一方、黒鉛を負極活物質に用いた比較例41の非水電解質電池は、10数サイクルで容量が激減し、500サイクル後の容量はほぼゼロであった。
 また、実施例1の負極活物質を用いた実施例41の電池は、比較例1の負極活物質を用いた比較例42の電池に対しても、優れたサイクル性能を有することが確認された。
 以上に説明した以上に説明した少なくとも一つの実施形態及び実施例に係る電池用活物質は、一般式Li(2+x)Na2Ti614(xは、0≦x≦6の範囲内にある)で表される。この電池用活物質は、Zr、Mo、W、V、Nb、Ta、P、Y、Al、Fe、及びBからなる群より選択される少なくとも1種の元素を0.03~8.33原子%の量で含む。その結果、この電池用活物質は、優れた入出力特性を示すことができる非水電解質電池を実現することができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 100…電池、1…電極群、2…容器、3…負極、3a…負極集電体、3b…負極層、4…セパレータ、5…正極、5a…正極集電体、5b…正極層、6…負極端子、7…正極端子、200…電池パック、20…リード、21…単電池、22…粘着テープ、23…組電池、24…プリント配線基板、25…サーミスタ、26…保護回路、27…通電用端子、28…正極側リード、29…正極側コネクタ、30…負極側リード、31…負極側コネクタ、32、33…配線、34a…プラス側配線、34b…マイナス側配線、35…電圧検出のための配線、36…保護シート、37…収納容器、38…蓋、41…自動車、42…電池パック。

Claims (12)

  1.  一般式Li(2+x)Na2Ti614(xは、0≦x≦6の範囲内にある)で表され、Zr、Mo、W、V、Nb、Ta、P、Y、Al、Fe、及びBからなる群より選択される少なくとも1種の元素を0.03~8.33原子%の量で含む電池用活物質。
  2.  前記電池用活物質は粒状であり、前記電池用活物質の表面の少なくとも一部に形成された炭素を含む相を更に含む請求項1に記載の電池用活物質。
  3.  前記電池用活物質は粒状であり、平均一次粒子径が0.30~0.98μmである請求項1又は2に記載の電池用活物質。
  4.  前記電池用活物質は粒状であり、比表面積が3~50m2/gである請求項1~3のいずれか1項に記載の電池用活物質。
  5.  正極と、
     負極活物質を含み、前記負極活物質が請求項1~4の何れか1項に記載の電池用活物質を含む負極と、
     非水電解質と
    を具備する非水電解質電池。
  6.  前記正極が正極活物質を含み、前記正極活物質は、オリビン構造を有する鉄含有リン酸化物を含む請求項5に記載の非水電解質電池。
  7.  前記正極が正極活物質を含み、前記正極活物質は、スピネル構造を有するリチウムマンガン複合酸化物、及び層状構造を有するリチウムニッケルマンガンコバルト複合酸化物からなる群より選択される少なくとも1種を含む請求項5に記載の非水電解質電池。
  8.  請求項5~7の何れか1項に記載の複数個の非水電解質電池を具備する組電池。
  9.  請求項6に記載の非水電解質電池を6m(mは1以上の整数である)個具備し、
     前記6m個の非水電解質電池が直列に接続されている組電池。
  10.  請求項7に記載の非水電解質電池を5n(nは1以上の整数である)個具備し、
     前記5n個の非水電解質電池が直列に接続されている組電池。
  11.  請求項5~7の何れか1項に記載の非水電解質電池を具備する電池パック。
  12.  請求項11に記載の電池パックを具備し、
     前記電池パックがエンジンルームに配置されている自動車。
PCT/JP2014/081414 2014-11-27 2014-11-27 電池用活物質、非水電解質電池、組電池、電池パック及び自動車 WO2016084200A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020177005002A KR101880872B1 (ko) 2014-11-27 2014-11-27 전지용 활물질, 비수전해질 전지, 조전지, 전지 팩 및 자동차
JP2016510854A JP6092466B2 (ja) 2014-11-27 2014-11-27 電池用活物質、非水電解質電池、組電池、電池パック及び自動車
EP14907066.6A EP3226328B1 (en) 2014-11-27 2014-11-27 Active material for batteries, nonaqueous electrolyte battery, assembled battery, battery pack and automobile
PCT/JP2014/081414 WO2016084200A1 (ja) 2014-11-27 2014-11-27 電池用活物質、非水電解質電池、組電池、電池パック及び自動車
CN201480080959.9A CN106663798B (zh) 2014-11-27 2014-11-27 电池用活性物质、非水电解质电池、组电池、电池包及汽车
US15/444,863 US10224542B2 (en) 2014-11-27 2017-02-28 Active material, nonaqueous electrolyte battery, battery module, battery pack, automobile and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/081414 WO2016084200A1 (ja) 2014-11-27 2014-11-27 電池用活物質、非水電解質電池、組電池、電池パック及び自動車

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/444,863 Continuation US10224542B2 (en) 2014-11-27 2017-02-28 Active material, nonaqueous electrolyte battery, battery module, battery pack, automobile and vehicle

Publications (1)

Publication Number Publication Date
WO2016084200A1 true WO2016084200A1 (ja) 2016-06-02

Family

ID=56073818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081414 WO2016084200A1 (ja) 2014-11-27 2014-11-27 電池用活物質、非水電解質電池、組電池、電池パック及び自動車

Country Status (6)

Country Link
US (1) US10224542B2 (ja)
EP (1) EP3226328B1 (ja)
JP (1) JP6092466B2 (ja)
KR (1) KR101880872B1 (ja)
CN (1) CN106663798B (ja)
WO (1) WO2016084200A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9812704B2 (en) 2015-03-13 2017-11-07 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, and battery pack
WO2018020667A1 (ja) * 2016-07-29 2018-02-01 株式会社 東芝 非水電解質電池及び電池パック
WO2018020670A1 (ja) * 2016-07-29 2018-02-01 株式会社 東芝 非水電解質電池及び電池パック
WO2018020669A1 (ja) * 2016-07-29 2018-02-01 株式会社 東芝 非水電解質電池及び電池パック
WO2018020668A1 (ja) * 2016-07-29 2018-02-01 株式会社 東芝 電極、非水電解質電池及び電池パック
US10096828B2 (en) 2015-08-25 2018-10-09 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, battery module, battery pack, automobile and vehicle
JP2018160437A (ja) * 2017-03-24 2018-10-11 株式会社東芝 活物質、電極、二次電池、電池パック、及び車両
JP2019057372A (ja) * 2017-09-20 2019-04-11 株式会社東芝 リチウムイオン二次電池、電池パック、及び車両
WO2019193692A1 (ja) * 2018-04-04 2019-10-10 株式会社 東芝 活物質、電極、非水電解質電池及び電池パック
JP2020024904A (ja) * 2018-08-02 2020-02-13 株式会社東芝 二次電池用電極、二次電池、電池パック及び車両
US10608250B2 (en) 2017-09-20 2020-03-31 Kabushiki Kaisha Toshiba Active material, active material composite material, electrode, secondary battery, battery pack, and vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11121408B2 (en) 2019-03-14 2021-09-14 Medtronic, Inc. Lithium-ion battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135872A (ja) * 2003-10-31 2005-05-26 Hitachi Maxell Ltd 非水二次電池の電極材料およびその製造方法、並びにそれを用いた非水二次電池
JP2007234233A (ja) * 2006-02-27 2007-09-13 National Institute Of Advanced Industrial & Technology リチウム二次電池用活物質及びその製造方法、並びにそれを用いたリチウム二次電池
JP2012151121A (ja) * 2012-03-29 2012-08-09 Toshiba Corp 非水電解質電池、リチウムチタン複合酸化物および電池パック
JP2013008493A (ja) * 2011-06-23 2013-01-10 Toshiba Corp 非水電解質電池及び電池パック
JP2014511335A (ja) * 2011-03-01 2014-05-15 クラリアント プロデュクテ (ドイッチュラント) ゲゼルシャフト ミット ベシュレンクテル ハフツング リチウムチタン混合酸化物
JP2014103032A (ja) * 2012-11-21 2014-06-05 Sony Corp 二次電池用活物質、二次電池用電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3555124B2 (ja) 1996-01-19 2004-08-18 日本電池株式会社 リチウムイオン電池
EP0880187B1 (en) * 1997-05-22 2004-11-24 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
JP4623786B2 (ja) 1999-11-10 2011-02-02 住友電気工業株式会社 非水二次電池
JP4237659B2 (ja) * 2004-03-17 2009-03-11 株式会社東芝 非水電解質電池
CN100344019C (zh) 2004-06-16 2007-10-17 松下电器产业株式会社 活性物质材料、其制造方法及含该材料的非水电解质二次电池
JP2006032321A (ja) 2004-06-16 2006-02-02 Matsushita Electric Ind Co Ltd 活物質材料、その製造方法、およびそれを含む非水電解質二次電池
US7682746B2 (en) * 2005-03-31 2010-03-23 Panasonic Corporation Negative electrode for non-aqueous secondary battery
JP2010040480A (ja) 2008-08-08 2010-02-18 Oita Univ 電極用材料、電極、リチウムイオン電池、電気二重層キャパシタ、電極用材料の製造方法
JP5196486B2 (ja) * 2008-11-20 2013-05-15 独立行政法人産業技術総合研究所 複合チタン酸化物の製造方法
CN102263240A (zh) * 2011-06-29 2011-11-30 中国科学院物理研究所 锂离子二次电池及负极、负极的制作方法和充放电方法
CN102364729A (zh) * 2011-11-10 2012-02-29 中南大学 一种高功率Li4Ti5O12/活性炭复合电极材料及其制备方法
EP2592050B1 (en) * 2011-11-11 2014-05-14 Samsung SDI Co., Ltd. Composite, method of manufacturing the composite, negative electrode active material including the composite, negative electrode including the negative electrode active material, and lithium secondary battery including the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135872A (ja) * 2003-10-31 2005-05-26 Hitachi Maxell Ltd 非水二次電池の電極材料およびその製造方法、並びにそれを用いた非水二次電池
JP2007234233A (ja) * 2006-02-27 2007-09-13 National Institute Of Advanced Industrial & Technology リチウム二次電池用活物質及びその製造方法、並びにそれを用いたリチウム二次電池
JP2014511335A (ja) * 2011-03-01 2014-05-15 クラリアント プロデュクテ (ドイッチュラント) ゲゼルシャフト ミット ベシュレンクテル ハフツング リチウムチタン混合酸化物
JP2013008493A (ja) * 2011-06-23 2013-01-10 Toshiba Corp 非水電解質電池及び電池パック
JP2012151121A (ja) * 2012-03-29 2012-08-09 Toshiba Corp 非水電解質電池、リチウムチタン複合酸化物および電池パック
JP2014103032A (ja) * 2012-11-21 2014-06-05 Sony Corp 二次電池用活物質、二次電池用電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3226328A4 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9812704B2 (en) 2015-03-13 2017-11-07 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, and battery pack
US10096828B2 (en) 2015-08-25 2018-10-09 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, battery module, battery pack, automobile and vehicle
CN109417193A (zh) * 2016-07-29 2019-03-01 株式会社东芝 非水电解质电池及电池包
JPWO2018020668A1 (ja) * 2016-07-29 2019-03-07 株式会社東芝 電極、非水電解質電池及び電池パック
WO2018020668A1 (ja) * 2016-07-29 2018-02-01 株式会社 東芝 電極、非水電解質電池及び電池パック
WO2018020670A1 (ja) * 2016-07-29 2018-02-01 株式会社 東芝 非水電解質電池及び電池パック
US11394050B2 (en) 2016-07-29 2022-07-19 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery and battery pack
CN109196694A (zh) * 2016-07-29 2019-01-11 株式会社东芝 非水电解质电池及电池包
JPWO2018020670A1 (ja) * 2016-07-29 2019-02-28 株式会社東芝 非水電解質電池及び電池パック
JPWO2018020669A1 (ja) * 2016-07-29 2019-02-28 株式会社東芝 非水電解質電池及び電池パック
WO2018020667A1 (ja) * 2016-07-29 2018-02-01 株式会社 東芝 非水電解質電池及び電池パック
WO2018020669A1 (ja) * 2016-07-29 2018-02-01 株式会社 東芝 非水電解質電池及び電池パック
JPWO2018020667A1 (ja) * 2016-07-29 2019-04-04 株式会社東芝 非水電解質電池及び電池パック
US11239462B2 (en) 2016-07-29 2022-02-01 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery and battery pack
CN109417193B (zh) * 2016-07-29 2021-10-15 株式会社东芝 非水电解质电池及电池包
US10439218B2 (en) 2017-03-24 2019-10-08 Kabushiki Kaisha Toshiba Active material, electrode, secondary battery, battery pack, and vehicle
JP2018160437A (ja) * 2017-03-24 2018-10-11 株式会社東芝 活物質、電極、二次電池、電池パック、及び車両
US10608250B2 (en) 2017-09-20 2020-03-31 Kabushiki Kaisha Toshiba Active material, active material composite material, electrode, secondary battery, battery pack, and vehicle
JP2019057372A (ja) * 2017-09-20 2019-04-11 株式会社東芝 リチウムイオン二次電池、電池パック、及び車両
WO2019193692A1 (ja) * 2018-04-04 2019-10-10 株式会社 東芝 活物質、電極、非水電解質電池及び電池パック
JPWO2019193692A1 (ja) * 2018-04-04 2021-02-12 株式会社東芝 活物質、電極、非水電解質電池及び電池パック
JP2020024904A (ja) * 2018-08-02 2020-02-13 株式会社東芝 二次電池用電極、二次電池、電池パック及び車両

Also Published As

Publication number Publication date
US20170170469A1 (en) 2017-06-15
US10224542B2 (en) 2019-03-05
EP3226328A1 (en) 2017-10-04
CN106663798A (zh) 2017-05-10
CN106663798B (zh) 2019-05-14
KR20170032903A (ko) 2017-03-23
EP3226328B1 (en) 2019-03-06
EP3226328A4 (en) 2018-04-18
JP6092466B2 (ja) 2017-03-08
JPWO2016084200A1 (ja) 2017-04-27
KR101880872B1 (ko) 2018-07-20

Similar Documents

Publication Publication Date Title
JP6092466B2 (ja) 電池用活物質、非水電解質電池、組電池、電池パック及び自動車
JP6076926B2 (ja) 電池用活物質、非水電解質電池、電池パック及び自動車
JP6076928B2 (ja) 電池用活物質材料、非水電解質電池、電池パック及び自動車
JP5793442B2 (ja) 電池用活物質、非水電解質電池及び電池パック
JP5787469B2 (ja) 負極活物質及びその製造方法、非水電解質電池及び電池パック
JP6275593B2 (ja) リチウムイオン二次電池用負極活物質材料及びその製造方法、リチウムイオン二次電池、電池パック、並びに自動車
JP6046069B2 (ja) 電池用活物質、非水電解質電池、電池パック及び自動車
JP6426509B2 (ja) 電池用活物質、非水電解質電池、組電池、電池パック及び自動車
WO2010137154A1 (ja) 電池用活物質、非水電解質電池および電池パック
JP6659274B2 (ja) 非水電解質電池用負極活物質、負極、非水電解質電池、組電池、電池パック及び自動車
JP6223760B2 (ja) 非水電解質二次電池用活物質、非水電解質二次電池、電池パック及び車両
JP2017168320A (ja) 活物質、非水電解質電池、電池パック、及び車両
JP2015088424A (ja) 電池用活物質、非水電解質電池、および、電池パック
JP2016171023A (ja) 電池用活物質、非水電解質電池、及び電池パック
JP5597662B2 (ja) 負極活物質、非水電解質電池及び電池パック
JP5209004B2 (ja) 電池用活物質、非水電解質電池、電池パック、及び自動車
JP5847757B2 (ja) 電池用負極活物質の製造方法
JP6132945B2 (ja) 電池パック及び自動車
WO2023175731A1 (ja) 電極、電池、及び電池パック
JP6316383B2 (ja) 電池用活物質、非水電解質電池、電池パック及び自動車
JP2015046400A (ja) 電池用活物質、非水電解質電池及び電池パック

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016510854

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907066

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177005002

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014907066

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014907066

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE