WO2016064225A1 - 배터리 시스템의 냉각 공기 흐름 제어 시스템 및 방법 - Google Patents
배터리 시스템의 냉각 공기 흐름 제어 시스템 및 방법 Download PDFInfo
- Publication number
- WO2016064225A1 WO2016064225A1 PCT/KR2015/011213 KR2015011213W WO2016064225A1 WO 2016064225 A1 WO2016064225 A1 WO 2016064225A1 KR 2015011213 W KR2015011213 W KR 2015011213W WO 2016064225 A1 WO2016064225 A1 WO 2016064225A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- module
- opening
- temperature
- battery modules
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/63—Control systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/613—Cooling or keeping cold
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
- H01M10/6556—Solid parts with flow channel passages or pipes for heat exchange
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/656—Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
- H01M10/6561—Gases
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/656—Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
- H01M10/6561—Gases
- H01M10/6563—Gases with forced flow, e.g. by blowers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/656—Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
- H01M10/6561—Gases
- H01M10/6566—Means within the gas flow to guide the flow around one or more cells, e.g. manifolds, baffles or other barriers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
- H01M10/486—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/62—Heating or cooling; Temperature control specially adapted for specific applications
- H01M10/627—Stationary installations, e.g. power plant buffering or backup power supplies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a cooling air flow control system and method of a battery system for cooling a battery system including a plurality of battery modules, and is connected to an outlet for discharging cooling air of an air conditioning system to form a path through which cooling air flows.
- a pipe wherein the pipe comprises a plurality of module cooling holes corresponding to each of the plurality of battery modules and allowing cooling air to pass through each battery module through each module cooling hole to cool the plurality of battery modules
- the present invention relates to a cooling air flow control system and method of a battery system capable of minimizing the loss of cold air in cooling air and supplying each battery module to reduce energy consumption of an air conditioning system for constant temperature of the battery system.
- the present invention relates to a cooling air flow control system and method of a battery system which can reduce fan driving power consumption and fan installation cost without installing a fan for forced cooling air circulation (FAN) installed in battery racks of a conventional container class battery system.
- FAN forced cooling air circulation
- the present invention controls the opening and closing of the air supply of the plurality of battery modules according to the temperature of each battery module of the plurality of battery modules included in the battery system, thereby reducing the temperature deviation between the battery modules included in the battery system of the battery system
- the present invention relates to a cooling air flow control system and method of a battery system capable of maintaining or maximizing a depth of discharge (DOD) and reducing variation in state of health (SOH) between battery modules.
- DOD depth of discharge
- SOH state of health
- a conventional general air conditioning system used in a battery system such as a battery container for an energy storage system (ESS), which is composed of a plurality of battery racks
- the battery may be stored according to the position of the battery rack and the battery module. Temperature variations between modules inevitably occur.
- a conventional general air conditioning method in a battery system is to cool the surface of the battery module while moving cold cooling air from the floor (or ceiling) to the ceiling (or floor).
- the temperature of the battery module near the cold air is lower than the battery module located at the opposite end, where the cooling air enters after lowering the temperature of the entire battery system. This is because the temperature of the air itself rises as the cooling air passes through the surfaces of the battery modules one by one.
- the temperature variation between battery modules according to the position in the conventional general air conditioning system greatly affects two parts.
- the first is the reduction in depth of discharge (DOD) due to the temperature deviation diagnostics of the battery system.
- the battery system uses its own temperature deviation diagnosis function to adjust the temperature deviation of the battery module to a certain level during charging and discharging. Accordingly, if temperature deviation between the battery modules of the battery system exceeds a certain level because the temperature deviation cannot be adjusted quickly, the temperature deviation diagnosis function of the battery system is activated so that the battery system does not sufficiently charge and discharge and stop charging and discharging. The situation may arise. This results in damage to the battery system's DOD.
- the SOH (State of Health [%]) deviation occurs between battery modules included in the battery system.
- Lithium ion cells (Cells) which are the main components of lithium ion battery modules, which are mainly used in power storage, have different characteristics of SOH depending on operating temperature. For example, as the charge and discharge are repeated for a long time at a high temperature rather than at room temperature, the deterioration rate is faster. Accordingly, if the temperature deviation between the battery modules due to the limit of the temperature deviation resolution of the conventional general air conditioning system of the battery system is long-lasting, the difference in the SOH between the battery modules can be increased.
- the SOC diagnosis function or the voltage diagnosis function may be activated to stop the charging and discharging of the battery system, so that the DOD may be damaged.
- An object of the present invention includes a pipe connected to an outlet for discharging cooling air of an air conditioning system to form a path through which cooling air flows, wherein the pipe includes a plurality of module cooling holes corresponding to each of the plurality of battery modules. Cooling air passes through each of the battery modules through each module cooling port to cool the plurality of battery modules, thereby minimizing the loss of cooling air and supplying the battery modules to each battery module.
- an object of the present invention the cooling air flow of the battery system that can save the fan driving power consumption and the fan installation cost without having to install a cooling fan forced circulation fan (FAN) installed in the battery rack of the conventional container-class battery system It is to provide a control system and method.
- FAN cooling fan forced circulation fan
- another object of the present invention is to control the opening and closing of the air supply of the plurality of battery modules according to the temperature of each battery module of the plurality of battery modules included in the battery system, between the battery modules included in the battery system Cooling air flow control system of the battery system to reduce or eliminate temperature deviation to maintain or maximize the depth of discharge (DOD) of the battery system, and to reduce the deviation of state of health [%] (SOH) between battery modules And a method.
- DOD depth of discharge
- SOH state of health
- a cooling air flow control system of a battery system for cooling a battery system including a plurality of battery modules includes: an outlet for discharging cooling air for lowering temperatures of the plurality of battery modules; An air conditioning system including a suction port configured to lower the temperature of the plurality of battery modules and then suck cooling air having a raised temperature; And a plurality of module cooling holes connected to the discharge port, in which cooling air flows and corresponding to each of the plurality of battery modules, wherein the cooling air discharged through the discharge holes is discharged through each module cooling hole. And a pipe configured to pass through the module to cool the plurality of battery modules.
- the cooling air flow control system of the battery system may include the plurality of battery modules. At this time, each battery module, the air supply for receiving the cooling air flowing from the module cooling port; And it may include an exhaust port for discharging the cooling air after the temperature of the battery module is lowered.
- the air supply port may be formed on one surface of the battery module, and the exhaust port may be formed on the other surface of the battery module facing the one surface of the battery module.
- the air supply port may be fastened to the module cooling port, and the size of the air supply port may be larger than that of the module cooling port.
- the battery module may further include an opening and closing device for opening and closing the air supply.
- the opening and closing device the opening and closing plate which is formed in the vicinity of the air supply opening and closing the air supply opening;
- a servo motor providing power to open and close the opening and closing plate;
- a disc connected to the servo motor;
- a connecting rod connecting the disc and the opening and closing plate and converting the rotational motion of the servo motor into a linear movement of the opening and closing plate by transmitting the power of the servo motor transmitted to the original plate to the opening and closing plate.
- the battery module may further include a module controller which controls the opening and closing of the air supply port by the opening and closing device to control the amount of cooling air flowing into the battery module.
- the cooling air flow control system of the battery system further includes a system controller for controlling opening and closing of the air supply holes of the plurality of battery modules based on temperatures of the respective battery modules measured by each module control unit of the plurality of battery modules. It may include.
- the system controller may be configured to correspond to the temperature of each battery module when the temperature deviation between the battery module having the highest temperature and the battery module having the lowest temperature exceeds a predetermined temperature deviation reference value among the plurality of battery modules.
- the opening and closing of the air supply can be controlled individually.
- the system controller may sequentially arrange temperatures of the plurality of battery modules, group the plurality of battery modules into a plurality of groups according to the sorted temperatures, and then correspond to the groups belonging to the respective battery modules. Assigning the opening and closing degree of the mechanism, the module control unit of each battery module, it is possible to control the opening and closing of the air supply of the corresponding battery module according to the opening and closing degree of the assigned air supply.
- the system controller may be configured to lower the average temperature of all of the plurality of battery modules when the temperature deviation between the battery module having the highest temperature and the battery module having the lowest temperature is less than or equal to a predetermined temperature deviation reference value among the plurality of battery modules. Opening and closing of the air supply port of the whole battery module can be controlled collectively.
- the system controller collectively opens and closes the air supply holes of the entire plurality of battery modules to increase the average temperature of the entire plurality of battery modules when the average temperature of the plurality of battery modules is equal to or less than a predetermined average temperature reference value. Can be controlled.
- a cooling air flow control method of a battery system for cooling a battery system including a plurality of battery modules, the air conditioning system cooling for lowering the temperature of the plurality of battery modules through the outlet Venting air; Cooling air discharged through the outlet port is connected to the outlet port to form a flow path for cooling air and includes a plurality of module cooling holes corresponding to each of the plurality of battery modules. Cooling the plurality of battery modules by passing through modules; And lowering the temperatures of the plurality of battery modules through the inlet and sucking the cooling air having the elevated temperature.
- Each battery module of the plurality of battery modules the air supply for receiving the cooling air flowing from the module cooling port;
- An exhaust port for discharging cooling air after the temperature of the battery module is lowered;
- An opening and closing device for opening and closing the air supply;
- a module controller configured to control opening and closing of the air supply port by the opening and closing device to control an amount of cooling air flowing into the battery module.
- the system control unit controls the opening and closing of the air supply of the plurality of battery modules based on the temperature of each battery module measured by each module control unit of the plurality of battery modules. It may further include.
- the controlling of opening and closing of the air supply holes of the plurality of battery modules may include: wherein the system control unit has a temperature deviation between the battery module having the highest temperature and the battery module having the lowest temperature among the plurality of battery modules exceeding a predetermined temperature deviation reference value.
- the system control unit may include the step of individually controlling the opening and closing of the air supply of the respective battery module corresponding to the temperature of the battery module.
- the controlling of opening and closing of the air supply of the plurality of battery modules may include: when the temperature deviation between the battery module having the highest temperature and the battery module having the lowest temperature is lower than a predetermined temperature deviation reference value among the plurality of battery modules, the system controller. And collectively controlling opening and closing of the air supply holes of the entire plurality of battery modules to lower the average temperature of the entire plurality of battery modules.
- the controlling of the opening and closing of the air supply holes of the plurality of battery modules may include: increasing the average temperature of the entire plurality of battery modules when the average temperature of the plurality of battery modules is less than a predetermined average temperature reference value. And collectively controlling opening and closing of the air supply holes of the battery module as a whole.
- a pipe is connected to an outlet for discharging cooling air of an air conditioning system to form a path through which cooling air flows, and the pipe includes a plurality of module cooling holes corresponding to each of the plurality of battery modules.
- the pipe includes a plurality of module cooling holes corresponding to each of the plurality of battery modules.
- the temperature deviation between the battery modules included in the battery system Cooling air flow control system and method of the battery system to reduce or maintain the depth of discharge (DOD) of the battery system, and to reduce the deviation of the state of health [%] (SOH) between battery modules by reducing the Can be provided.
- DOD depth of discharge
- SOH state of health
- FIG. 1 is a view schematically illustrating a battery management system that may be applied to a cooling air flow control system of a battery system according to an embodiment of the present invention.
- FIG. 2 is a view showing an air conditioning system of a conventional battery system.
- FIG 3 is a view showing an air conditioning system and a pipe of the cooling air flow control system of the battery system according to an embodiment of the present invention.
- FIG. 4 is a view illustrating a state in which a battery rack is fastened to a pipe of a cooling air flow control system of a battery system according to an embodiment of the present invention.
- FIG. 5 is a diagram illustrating a rear surface of a battery module of a cooling air flow control system of a battery system according to an embodiment of the present invention.
- FIG. 6 is a view illustrating a front surface of a battery module of a cooling air flow control system of a battery system according to an embodiment of the present invention.
- FIG. 7 is a view illustrating a state in which a battery module of a cooling air flow control system of a battery system according to an embodiment of the present invention is fastened to a pipe.
- FIG. 8 and 9 illustrate an opening and closing device of a battery module of a cooling air flow control system of a battery system according to an exemplary embodiment of the present invention.
- FIG. 10 is a view showing the opening and closing operation of the opening and closing device of the battery module of the cooling air flow control system of the battery system according to an embodiment of the present invention.
- 11 to 14 are tables for explaining an example of controlling the temperature of the battery module by controlling the temperature of the battery module in the cooling air flow control system and method of the battery system according to an embodiment of the present invention.
- 15 is a flowchart illustrating a process of controlling a temperature of a battery module in a cooling air flow control system and method of a battery system according to an embodiment of the present invention.
- 16 is a flowchart illustrating a process of controlling a temperature deviation between battery modules in a cooling air flow control system and method of a battery system according to an embodiment of the present invention.
- 17 to 20 are tables for explaining an example of controlling the temperature deviation between the battery modules by the process of controlling the temperature deviation between the battery modules in the cooling air flow control system and method of the battery system according to an embodiment of the present invention. admit.
- ... unit described in the specification means a unit for processing one or more functions or operations, which may be implemented in hardware or software or a combination of hardware and software.
- the temperature factor to be controlled is the 'average temperature' of the battery module and the 'temperature deviation' between the battery module.
- Two factors affect 'State of Health (%)' and 'Depth of Discharge (DOD)' as shown in Table 1 below.
- the deterioration rate of the battery is increased in the order of low temperature-high temperature-room temperature based on the average temperature of the battery module. Therefore, in order to increase the life of the battery module, it is necessary to maintain the average temperature of the battery module at room temperature in the battery system.
- the depth of discharge is influenced by the temperature deviation diagnosis result between the battery modules. Therefore, it is necessary to reduce the temperature deviation between the battery modules in order to diagnose a warning or fault in the temperature diagnosis result of the battery system so that the battery system does not stop charging or discharging the battery.
- FIG. 1 is a view schematically illustrating a battery management system that may be applied to a cooling air flow control system of a battery system according to an embodiment of the present invention.
- a battery management system may be installed in a battery system such as a battery container, and may have a three-layer structure.
- MBMS Module Battery Management System (1) is provided in the battery module, serves to monitor the status of the battery module and transmit it to the rack battery management system (RBMS) (2).
- the MBMS 1 may be provided by the number N M of lower battery modules belonging to the corresponding battery rack.
- the RBMS 2 is provided in the battery rack and performs a diagnosis or protection operation based on the status of the lower battery modules belonging to the battery rack and the rack level status information such as current and voltage applied to the battery rack. do. In addition, the RBMS 2 transmits the status information of the battery module and the battery rack to the bank battery management system (BBMS) 3.
- the RBMS 2 may be provided by the number N R of battery racks belonging to the corresponding battery container.
- the BBMS 3 is provided in the battery container, and determines the optimal battery system operating method and takes appropriate measures based on the transmission data of the lower battery racks.
- the BBMS 3 also transmits battery system status information (general information) to the PCS (Power Control System).
- the MBMS 1 and the RBMS 2 and the RBMS 2 and the BBMS 3 are connected by controller area network (CAN) communication, they can exchange signals with each other.
- CAN controller area network
- the battery management system having such a structure is applied to the cooling air flow control system and method of the battery system according to an embodiment of the present invention, and can control the average temperature and temperature deviation of the battery module.
- FIG. 2 is a view showing an air conditioning system of a conventional battery system.
- the conventional battery system 10 receives cooling air from the air conditioning system 11 to cool the battery rack 12 and the battery modules 12-1 and 12-2 in the battery system 10. Let's do it.
- the cooling air is delivered at a similar flow rate to the entire battery modules 12-1 and 12-2 so that the battery modules 12-1 and 12-2 installed in the battery system 10 are discharged.
- the average temperature can be lowered, but there is a limit to reducing the temperature deviation between the battery modules 12-1 and 12-2.
- the flow of cooling air by the air conditioning system 11 in the conventional battery system 10 is largely divided into a rising flow from the bottom to the ceiling or a descending flow from the ceiling to the floor. In both of these flows, the cooling air rises or falls as the battery modules 12-1 and 12-2 of the stacked structure cool down one by one. By the time the cooling air reaches the last battery module 12-2, The temperature will be higher than when the first battery module 12-1 was reached. Therefore, in the conventional air conditioning system 11 in the battery system 10, it is not only easy to reduce the temperature deviation between the battery modules 12-1 and 12-2, but rather the battery module 12-1. , 12-2) may increase the temperature deviation.
- a cooling air flow control system 100 of a battery system includes an air conditioning system 110, a pipe 120, and a plurality of battery modules 130. Can be configured.
- the cooling air flow control system 100 of the battery system shown in FIGS. 3 to 10 is in accordance with one embodiment, and its components are not limited to the embodiment shown in FIGS. Some components may be added, changed or deleted.
- the cooling air flow control system 100 of the battery system may be implemented in the battery system, or may be implemented in the battery system itself.
- FIG 3 is a view showing an air conditioning system and a pipe of the cooling air flow control system of the battery system according to an embodiment of the present invention.
- the air conditioning system 110 lowers the temperatures of the outlet 111 and the plurality of battery modules 130 for discharging cooling air to lower the temperatures of the plurality of battery modules 130. It may be configured to include a suction port 112 for sucking the elevated cooling air.
- Pipe 120 is connected to the outlet 111 of the air conditioning system 110 to form a path through which the cooling air flow, and includes a plurality of module cooling holes 121 corresponding to each of the plurality of battery modules 130, The cooling air discharged through the outlet 111 passes through each battery module 130 through each module cooling port 121 to cool the plurality of battery modules 130.
- the cooling air passing through the air conditioning system 110 reaches the rear of each battery module 130 past the pipe 120. Cooling air arriving at the rear of the battery module 130 flows into the battery module 130 through the air supply 131 at the rear of the battery module 130 to lower the temperature inside the battery module 130, and then the front of the module. Through the exhaust port 132 in the portion is discharged to the outside of the battery module 130 flows back to the air conditioning system (110).
- FIG. 4 is a view illustrating a state in which a battery rack is fastened to a pipe of a cooling air flow control system of a battery system according to an embodiment of the present invention.
- the pipe 120 of the cooling air flow control system 100 of the battery system is fastened to the rear of each battery module 130 included in the battery rack 130 ' do.
- the temperature of the cooling air arriving at the rear of all the battery modules 130 installed in the battery rack 130 ′ in the battery system is maintained at a constant level. It is possible to reduce the temperature deviation between the battery modules 130.
- the air conditioning system 110 includes a temperature measuring unit 113 for measuring the temperature of the cooled air entering the inlet 112 and an exhaust port 132 at the front of the battery module 130. It may further include an air conditioning control unit 114 for controlling the temperature and the air flow rate of the cooling air supplied to the battery system corresponding to the temperature of the cooling air coming out through.
- the air conditioning system 110 may adjust cooling air by itself through the temperature measuring unit 113 and the air conditioning controller 114. In this case, communication between the air conditioning system 110 and the BMS is not necessary.
- the air conditioning system 110 may adjust the cold air based on the temperature of the battery system (container) measured by the temperature measuring unit 113.
- the cooling air generated by the air conditioning system 110 is elevated in temperature as it passes through the battery module 130, and the temperature-cooled cooling air is sucked back into the air conditioning system 130.
- FIG. 5 is a view showing the rear of the battery module of the cooling air flow control system of the battery system according to an embodiment of the present invention
- Figure 6 is a cooling air flow control system of the battery system according to an embodiment of the present invention
- FIG. 7 is a diagram illustrating a front surface of a battery module
- FIG. 7 is a view illustrating a state in which a battery module of a cooling air flow control system of a battery system is fastened to a pipe.
- cooling air flow control system 100 of the battery system according to an embodiment of the present invention may be included in the battery system, or may be implemented in the battery system itself, in this case, Cooling air flow control system 100 of the battery system according to an embodiment of the present invention may include a battery module 130.
- the battery module 130 of the cooling air flow control system 100 of the battery system according to an embodiment of the present invention will be described in detail.
- the battery module 130 of the cooling air flow control system 100 of the battery system is cooled from the module cooling port 121 of the pipe 120. It may include an air supply port 131 for receiving the air and an exhaust port 132 for discharging the cooling air after the temperature of the battery module 130 is lowered.
- the battery module 130 has an air supply 131 is formed on one surface of the battery module 130 in order to maintain the flow of cooling air in one direction
- the exhaust port 132 is formed of the battery module 130 It may be formed on the other surface opposite to one surface.
- 5 and 6 illustrate an example in which an air supply port 131 is formed on the rear surface of the battery module 130 and an exhaust port 132 is formed on the front surface of the battery module 130.
- the exhaust port 132 is not formed on the top, bottom and side surfaces of the battery module. This allows the cooling air to reach the battery cells (135 in FIG. 9) located in the front of the battery module 130, thereby allowing the temperature between the battery cells (135 in FIG. 9) in the battery module 130 to be reached. This is to reduce the deviation.
- the air supply 131 is fastened to the module cooling port 121 of the pipe 120, as shown in Figures 5 and 7, the size of the air supply 131 is a module cooling port ( 121) may be formed larger than the size.
- the module cooling port 121 of the pipe is fastened to enter the air supply 131, so that cooling air can flow into the battery module 130 without loss.
- FIG 8 and 9 are views showing the opening and closing device of the battery module of the cooling air flow control system of the battery system according to an embodiment of the present invention
- Figure 10 is a cooling air of the battery system according to an embodiment of the present invention It is a figure which shows the opening and closing operation
- the battery module 130 of the cooling air flow control system of the battery system includes an opening and closing device 133 that opens and closes the air supply 131 to control the flow rate of cooling air in the battery module 130. It may further include.
- the opening and closing device 133, the opening and closing plate 133-1 is formed in the vicinity of the air supply port 131 to open and close the opening and closing plate 133-1 for opening and closing the air supply 131.
- Servo motor 133-2 which provides power to open and close the plate 133-1, a disc 133-3 and a disc 133-3 connected to the servo motor 133-2, and an opening and closing plate 133- 1) is connected, and transmits the power of the servo motor 133-2 transmitted to the disc 133-3 to the opening and closing plate 133-1 to transmit the rotational movement of the servo motor 133-2 to the opening and closing plate 133.
- It may include a connecting table (133-4) for converting the linear motion of -1).
- the opening and closing device 133 of the battery module 130 of the cooling air flow control system of the battery system rotates the servomotor 133-2 in a clockwise direction to supply air supply.
- the opening and closing degree of the 131 may be increased or rotated in the counterclockwise direction 133-3 to reduce the opening and closing degree of the air supply 131.
- FIG. 10A illustrates a case where the air supply 131 is completely closed, that is, the opening and closing degree is 0%
- FIG. 10B illustrates a case where the air supply 131 is half open, that is, the opening and closing degree is 10 (c) shows the case where the air supply 131 is completely opened, that is, the opening and closing degree is 100%.
- the opening and closing device 133 may be controlled by the module controller 134 included in the battery module 130.
- the module control unit 134 may control the opening and closing of the cooling air flowing into the battery module 130 by controlling the opening and closing of the air supply 131 by the opening and closing device 133.
- the module controller 134 may correspond to an MBMS (1 in FIG. 1) for controlling each battery module.
- the cooling air flow control system 100 of the battery system may be configured to measure each of the battery modules 130 measured by each module control unit 134 of the battery modules 130.
- the system controller 140 may further include opening and closing the air supply 130 of the plurality of battery modules 130 based on the temperature.
- the system control unit 140 controls the battery rack and the lower battery modules belonging to the corresponding battery rack (BB 2 of FIG. 1) or the battery container and the BBMS 3 controlling the entire lower battery rack and the battery modules belonging to the battery container. It may correspond to (3 of FIG. 1).
- the switching device 133 provided in the plurality of battery modules 130 which may be performed by the system control unit 140 of the cooling air flow control system 100 of the battery system according to an embodiment of the present invention.
- the detailed process for controlling the average temperature of the battery module 130 and the temperature deviation between the battery module 130 and an example thereof will be described.
- 11 to 14 are tables for explaining an example of controlling the temperature of the battery module by controlling the temperature of the battery module in the cooling air flow control system and method of the battery system according to an embodiment of the present invention.
- the process of controlling the temperature of the battery module is largely 'module temperature deviation control section', 'module average temperature control section' and 'module temperature control stop' Section ".
- the module temperature deviation control section is a section for individually controlling the opening and closing degree of the air supply 131 of each battery module 130 in order to lower the temperature deviation between the battery modules 130 below a certain level.
- the 'module temperature deviation control section' may be a section that lowers the temperature deviation between the battery modules 130 to less than 2.0 ° C.
- the opening and closing of the air supply 131 of each battery module 130 may be individually controlled according to the temperature of the battery module 130.
- 'Module average temperature control section' is to open and close the air supply 131 of all battery modules 130 in order to equally lower the temperature of all the battery module 130, that is to lower the average temperature of the plurality of battery modules 130. This section controls the accuracy to 100%.
- Opening and closing of the air supply 131 of the plurality of battery modules 130 may be collectively controlled to lower the average temperature of the entire battery module 130.
- the module temperature control stop section is a section for controlling the opening and closing degree of the air supply 131 of all the battery modules 130 to 0% in order to prevent the average temperature of the battery module 130 from becoming too low.
- the system controller 140 increases the average temperature of the plurality of battery modules 130 when the average temperature of the plurality of battery modules 130 is less than or equal to a predetermined average temperature reference value. Opening and closing of the air supply holes 131 of the plurality of battery modules 130 may be collectively controlled.
- the temperature for each battery module 130 before the process of controlling the temperature of the battery module by the cooling air flow control system and method of the battery system according to an embodiment of the present invention is disclosed.
- . MT stands for Module Temperature of each battery module 130
- N R stands for the number of battery racks 130 'in the battery system
- N M stands for the number of battery modules in the battery rack 130'. do.
- the temperature deviation between the battery module 130 having the highest temperature and the lowest temperature in the battery rack 130 ′ is as small as 4.8 ° C. to 7.3 ° C.
- the 'module temperature deviation control interval' is performed to each battery module 130
- An example of individually controlling the opening and closing degree of the air supply 131 of the () is shown.
- the battery module 130 having a module temperature MT of 37 ° C. or higher in FIG. 11 controls the opening / closing degree of the air supply 131 to 100%, and the battery module 130 of 36 ° C. or higher and less than 37 ° C.
- the opening and closing degree of the mechanism 131 is controlled to 75%, and the battery module 130 of 35 ° C or more and less than 36 ° C controls the opening and closing degree of the air supply mechanism 131 to 50%, and the battery is 31 ° C or more and less than 35 ° C.
- the module 130 controls the opening and closing degree of the air supply 131 to 25%, and the battery module 130 less than 31 ° C controls the opening and closing degree of the air supply 131 to 0%, thereby increasing the module temperature of the battery module. According to MT, an example of individually controlling the opening and closing degree of the air supply 131 may be confirmed.
- the temperature deviation between the battery modules 130 is constant.
- An example controlled below the level is shown. 13 it can be seen that the temperature deviation between the battery module 130 having the highest temperature and the lowest temperature in the battery rack 130 ′ is controlled to be less than 2 ° C. from 1.3 ° C. to 1.9 ° C. to 1.9 ° C.
- a 'module average temperature control interval' is performed to perform all battery modules 130.
- the air supply 131 of all the battery modules 130 is opened at 100% to lower the average temperature of all the battery modules 130. You can see an example.
- FIG. 15 a flowchart of a process of controlling a temperature of a battery module in a cooling air flow control system and method of a battery system according to an embodiment of the present invention will be described in detail.
- 15 is a flowchart illustrating a process of controlling a temperature of a battery module in a cooling air flow control system and method of a battery system according to an embodiment of the present invention.
- the process of controlling the temperature of the battery module disclosed in FIG. 15 may be performed by the system controller 140 of the cooling air flow control system 100 of the battery system according to an embodiment of the present invention.
- the processing cycle of the process of controlling the temperature of the battery module of FIG. 15 may be 1 second.
- an air inlet status maintenance counter (ISMC) is first used. ) Is set to 0 (S1501).
- the ISMC is a counter value that determines how long the opening and closing degree of the air supply port 132 is maintained.
- Step S1503 may be performed through an RBMS provided for each battery rack 130 ′.
- the average temperature MT_avg of the module temperature MT of the entire battery module is obtained, and the average temperature MT_avg is compared with the average temperature reference value B (S1504).
- the average temperature reference value (B) should perform the 'module average temperature control stop interval' whether the corresponding average temperature (MT_avg) value corresponds to the value to perform the 'module average temperature control interval' or 'module temperature deviation control interval'. It is a reference value for determining whether it corresponds to a value, and may be set as an initial value as an optimal value according to a battery system operating environment or as a value that may be set by a user, for example, 30 ° C.
- step S1504 If the average temperature MT_avg of the module temperature MT of the entire battery module is greater than the average temperature reference value B in step S1504, it is determined whether the ISMC is 0 (S1505). It subtracts by 1 (S1506), and returns to step S1502, and when 0, goes to the next step (S1507).
- the temperature deviation MT_dev between the battery modules 130 is compared with the temperature deviation reference value A (S1507).
- the temperature deviation reference value (A) is a reference value for determining whether the corresponding temperature deviation (MT_dev) value corresponds to a value that should perform the 'module average temperature control interval' or a value that should perform the 'module temperature deviation control interval'. It may be set to an initial value as an optimal value according to the battery system operating environment, or as a value that can be set by a user, for example, 5 ° C.
- the average temperatures of the plurality of battery modules 130 as a whole are collectively set so as to lower the weight (S1509).
- the opening and closing degree of the air supply holes 131 of the entire battery modules 130 may be set to 100%.
- the ISMC After passing through step S1508 or step S1509, the ISMC is set to the air supply opening and closing state holding time C (S1510).
- the air supply opening / closing state maintenance time (C) is a time (C) for maintaining the air supply opening / closing state for temperature control of the battery module. As a possible value, it may be set to, for example, 60 seconds or 600 seconds.
- the plurality of battery modules 130 may be performed to perform the 'module temperature control stop section'.
- opening and closing of the air supply port 131 is collectively set (S1511). In this case, the opening and closing degree of the air supply holes 131 of the entire battery modules 130 may be set to 0%.
- step S1512 After going through step S1511, the ISMC is set to 0 (S1512).
- the air supply unit for each of the determined battery modules 130 ( The opening and closing degree of the 131 is transmitted to each module control unit 134 via the system control unit 140 (S1513), and each battery module 130 opens and closes the opening and closing device 133 according to the opening and closing degree of the corresponding air supply 131. Control to open and close the air supply 131.
- FIGS. 17 to 20 illustrate one embodiment of the present invention. Tables for explaining an example of controlling the temperature deviation between the battery module by the process of controlling the temperature deviation between the battery module in the cooling air flow control system and method of the battery system according to.
- the process illustrated in FIG. 16 specifically describes the process corresponding to step S1508 of FIG. 15.
- the temperature of the entire battery module 130 in the battery system is sorted in ascending order (S1601).
- 17 illustrates a temperature of each battery module 130 before the process of controlling the temperature deviation between the battery modules by the cooling air flow control system and method of the battery system according to an embodiment of the present invention is performed.
- 18 illustrates an example in which the temperatures of the battery modules 130 illustrated in FIG. 17 are arranged in ascending order.
- N R denotes the number of battery racks 130 'in the battery system
- N M denotes the number of battery modules in the battery rack 130'.
- the RBMS ID refers to an identification number of the RBMS of the battery rack 130 ′ to which the corresponding battery module 130 belongs
- the MBMS ID refers to an identification number of the MBMS of the corresponding battery module 130.
- the plurality of battery modules 130 are grouped into a plurality of groups according to the sorted temperatures (S1602). 19 shows an example in which the sorted temperatures are grouped into five groups from low to high temperature.
- the opening and closing degree of the air supply port is allocated to correspond to the group belonging to each of the grouped battery modules (S1603).
- 20 shows an example of assigning 0%, 25%, 50%, 75%, and 100% to a group belonging to each battery module grouped into each group.
- the number of groups may be determined according to the requirements of the precision of temperature control. The more, the higher precision temperature control is possible.
- FIGS. 17 to 20 it is assumed that the number of groups is 5, but this is according to an exemplary embodiment, and the number of groups may be adjusted as necessary.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Automation & Control Theory (AREA)
- Secondary Cells (AREA)
- Battery Mounting, Suspending (AREA)
Abstract
Description
SOH | DOD | |
배터리 모듈의 평균 온도 | 영향도: 大 | 영향도: 小 |
배터리 모듈간의 온도 편차 | 영향도: 거의 없음(배터리 모듈간 퇴화도 편차에는 큰영향을 미침) | 영향도: 大 |
Claims (19)
- 복수의 배터리 모듈을 포함하는 배터리 시스템을 냉각 시키기 위한 배터리 시스템의 냉각 공기 흐름 제어 시스템에 있어서,상기 복수의 배터리 모듈의 온도를 하강시키기 위한 냉각 공기를 배출하는 배출구와 상기 복수의 배터리 모듈의 온도를 하강시킨 후 온도가 상승된 냉각 공기를 흡입하는 흡입구를 포함하는 공조 시스템; 및상기 배출구에 연결되어 냉각 공기가 흐르는 경로를 형성하고 상기 복수의 배터리 모듈의 각각에 대응하는 복수의 모듈 냉각구를 포함하여, 상기 배출구를 통해 배출된 냉각 공기가 각 모듈 냉각구를 통해 각 배터리 모듈을 통과하도록 하여 상기 복수의 배터리 모듈을 냉각시키는 파이프를 포함하는 것을 특징으로 하는 배터리 시스템의 냉각 공기 흐름 제어 시스템.
- 제1항에 있어서,상기 복수의 배터리 모듈을 포함하되,각 배터리 모듈은,상기 모듈 냉각구로부터 유입되는 냉각 공기를 공급받는 급기구; 및상기 배터리 모듈의 온도를 하강시키고 난 후의 냉각 공기를 배출하는 배기구를 포함하는 것을 특징으로 하는 배터리 시스템의 냉각 공기 흐름 제어 시스템.
- 제2항에 있어서,상기 급기구는,상기 배터리 모듈의 일면에 형성되고,상기 배기구는,상기 배터리 모듈의 일면에 대향하는 타면에 형성되는 것을 특징으로 하는 배터리 시스템의 냉각 공기 흐름 제어 시스템.
- 제2항에 있어서,상기 급기구는,상기 모듈 냉각구와 체결되되, 상기 급기구의 크기는 상기 모듈 냉각구의 크기보다 크게 형성되는 것을 특징으로 하는 배터리 시스템의 냉각 공기 흐름 제어 시스템.
- 제2항에 있어서,상기 배터리 모듈은,상기 급기구를 개폐하는 개폐 장치를 더 포함하는 것을 특징으로 하는 배터리 시스템의 냉각 공기 흐름 제어 시스템.
- 제5항에 있어서,상기 개폐 장치는,상기 급기구의 부근에 형성되어 상기 급기구를 개폐하는 개폐판;상기 개폐판을 열고 닫는 동력을 제공하는 서보모터;상기 서보모터에 연결되는 원판; 및상기 원판 및 상기 개폐판을 연결하고, 상기 원판에 전달된 상기 서보모터의 동력을 상기 개폐판에 전달하여 상기 서보모터의 회전운동을 상기 개폐판의 직선운동으로 변환하는 연결대를 포함하는 것을 특징으로 하는 배터리 시스템의 냉각 공기 흐름 제어 시스템.
- 제5항에 있어서,상기 배터리 모듈은,상기 개폐 장치에 의한 상기 급기구의 개폐를 제어하여 상기 배터리 모듈에 유입되는 냉각 공기의 유입량을 제어하는 모듈 제어부를 더 포함하는 것을 특징으로 하는 배터리 시스템의 냉각 공기 흐름 제어 시스템.
- 제7항에 있어서,상기 복수의 배터리 모듈의 각 모듈 제어부에서 측정된 상기 각 배터리 모듈의 온도에 기반하여, 상기 복수의 배터리 모듈의 급기구의 개폐를 제어하는 시스템 제어부를 더 포함하는 것을 특징으로 하는 배터리 시스템의 냉각 공기 흐름 제어 시스템.
- 제8항에 있어서,상기 시스템 제어부는,상기 복수의 배터리 모듈 중 최고 온도를 가진 배터리 모듈 및 최저 온도를 가진 배터리 모듈간의 온도 편차가 소정의 온도 편차 기준값 초과인 경우, 상기 각 배터리 모듈의 온도에 대응하여 상기 각 배터리 모듈의 급기구의 개폐를 개별적으로 제어하는 것을 특징으로 하는 배터리 시스템의 냉각 공기 흐름 제어 시스템.
- 제9항에 있어서,상기 시스템 제어부는,상기 복수의 배터리 모듈의 온도를 순차적으로 정렬하고, 정렬된 온도에 따라 상기 복수의 배터리 모듈을 복수의 그룹으로 그룹화한 다음, 상기 각 배터리 모듈에게 소속된 그룹에 대응하여 상기 급기구의 개폐 정도를 할당하며,상기 각 배터리 모듈의 모듈 제어부는,할당된 상기 급기구의 개폐 정도에 따라 해당 배터리 모듈의 급기구의 개폐를 제어하는 것을 특징으로 하는 배터리 시스템의 냉각 공기 흐름 제어 시스템.
- 제8항에 있어서,상기 시스템 제어부는,상기 복수의 배터리 모듈 중 최고 온도를 가진 배터리 모듈 및 최저 온도를 가진 배터리 모듈간의 온도 편차가 소정의 온도 편차 기준값 이하인 경우, 상기 복수의 배터리 모듈 전체의 평균 온도를 하강시키도록 상기 복수의 배터리 모듈 전체의 급기구의 개폐를 일괄적으로 제어하는 것을 특징으로 하는 배터리 시스템의 냉각 공기 흐름 제어 시스템.
- 제8항에 있어서,상기 시스템 제어부는,상기 복수의 배터리 모듈 전체의 평균 온도가 소정의 평균 온도 기준값 이하인 경우, 상기 복수의 배터리 모듈 전체의 평균 온도를 상승시키도록 상기 복수의 배터리 모듈 전체의 급기구의 개폐를 일괄적으로 제어하는 것을 특징으로 하는 배터리 시스템의 냉각 공기 흐름 제어 시스템.
- 복수의 배터리 모듈을 포함하는 배터리 시스템을 냉각 시키기 위한 배터리 시스템의 냉각 공기 흐름 제어 방법에 있어서,공조 시스템이 배출구를 통해 상기 복수의 배터리 모듈의 온도를 하강시키기 위한 냉각 공기를 배출하는 단계;상기 배출구에 연결되어 냉각 공기가 흐르는 경로를 형성하고 상기 복수의 배터리 모듈의 각각에 대응하는 복수의 모듈 냉각구를 포함하는 파이프가 상기 배출구를 통해 배출된 냉각 공기가 각 모듈 냉각구를 통해 각 배터리 모듈을 통과하도록 하여 상기 복수의 배터리 모듈을 냉각시키는 단계; 및상기 공조 시스템이 상기 흡입구를 통해 상기 복수의 배터리 모듈의 온도를 하강시킨 후 온도가 상승된 냉각 공기를 흡입하는 단계를 포함하는 것을 특징으로 하는 배터리 시스템의 냉각 공기 흐름 제어 방법.
- 제13항에 있어서,상기 복수의 배터리 모듈의 각 배터리 모듈은,상기 모듈 냉각구로부터 유입되는 냉각 공기를 공급받는 급기구;상기 배터리 모듈의 온도를 하강시키고 난 후의 냉각 공기를 배출하는 배기구;상기 급기구를 개폐하는 개폐 장치; 및상기 개폐 장치에 의한 상기 급기구의 개폐를 제어하여 상기 배터리 모듈에 유입되는 냉각 공기의 유입량을 제어하는 모듈 제어부를 포함하는 것을 특징으로 하는 배터리 시스템의 냉각 공기 흐름 제어 방법.
- 제14항에 있어서,시스템 제어부가 상기 복수의 배터리 모듈의 각 모듈 제어부에서 측정된 상기 각 배터리 모듈의 온도에 기반하여, 상기 복수의 배터리 모듈의 급기구의 개폐를 제어하는 단계를 더 포함하는 것을 특징으로 하는 배터리 시스템의 냉각 공기 흐름 제어 방법.
- 제15항에 있어서,상기 복수의 배터리 모듈의 급기구의 개폐를 제어하는 단계는,상기 시스템 제어부가 상기 복수의 배터리 모듈 중 최고 온도를 가진 배터리 모듈 및 최저 온도를 가진 배터리 모듈간의 온도 편차가 소정의 온도 편차 기준값 초과인 경우, 상기 시스템 제어부가 상기 각 배터리 모듈의 온도에 대응하여 상기 각 배터리 모듈의 급기구의 개폐를 개별적으로 제어하는 단계를 포함하는 것을 특징으로 하는 배터리 시스템의 냉각 공기 흐름 제어 방법.
- 제16항에 있어서,상기 각 배터리 모듈의 온도에 대응하여 상기 각 배터리 모듈의 급기구의 개폐를 개별적으로 제어하는 단계는,상기 시스템 제어부가 상기 복수의 배터리 모듈의 온도를 순차적으로 정렬하는 단계;상기 시스템 제어부가 정렬된 온도에 따라 상기 복수의 배터리 모듈을 복수의 그룹으로 그룹화하는 단계;상기 시스템 제어부가 상기 각 배터리 모듈에게 소속된 그룹에 대응하여 상기 급기구의 개폐 정도를 할당하는 단계; 및할당된 상기 급기구의 개폐 정도에 따라 해당 배터리 모듈의 급기구의 개폐를 제어하는 단계를 포함하는 것을 특징으로 하는 배터리 시스템의 냉각 공기 흐름 제어 방법.
- 제15항에 있어서,상기 복수의 배터리 모듈의 급기구의 개폐를 제어하는 단계는,상기 복수의 배터리 모듈 중 최고 온도를 가진 배터리 모듈 및 최저 온도를 가진 배터리 모듈간의 온도 편차가 소정의 온도 편차 기준값 이하인 경우, 상기 시스템 제어부가 상기 복수의 배터리 모듈 전체의 평균 온도를 하강시키도록 상기 복수의 배터리 모듈 전체의 급기구의 개폐를 일괄적으로 제어하는 단계를 포함하는 것을 특징으로 하는 배터리 시스템의 냉각 공기 흐름 제어 방법.
- 제15항에 있어서,상기 복수의 배터리 모듈의 급기구의 개폐를 제어하는 단계는,상기 복수의 배터리 모듈 전체의 평균 온도가 소정의 평균 온도 기준값 이하인 경우, 상기 복수의 배터리 모듈 전체의 평균 온도를 상승시키도록 상기 복수의 배터리 모듈 전체의 급기구의 개폐를 일괄적으로 제어하는 단계를 포함하는 것을 특징으로 하는 배터리 시스템의 냉각 공기 흐름 제어 방법.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/510,118 US10707545B2 (en) | 2014-10-22 | 2015-10-22 | System for providing cooling air in a battery system |
JP2017512810A JP6537201B2 (ja) | 2014-10-22 | 2015-10-22 | バッテリーシステムの冷却空気流れ制御システムおよび方法 |
CN201580051394.6A CN107078363B (zh) | 2014-10-22 | 2015-10-22 | 用于控制电池系统中的冷却空气流的系统和方法 |
EP15852288.8A EP3211710B1 (en) | 2014-10-22 | 2015-10-22 | System and method for controlling flow of cooling air in battery system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140143658A KR101829093B1 (ko) | 2014-10-22 | 2014-10-22 | 배터리 시스템의 냉각 공기 흐름 제어 시스템 및 방법 |
KR10-2014-0143658 | 2014-10-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016064225A1 true WO2016064225A1 (ko) | 2016-04-28 |
Family
ID=55761178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/011213 WO2016064225A1 (ko) | 2014-10-22 | 2015-10-22 | 배터리 시스템의 냉각 공기 흐름 제어 시스템 및 방법 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10707545B2 (ko) |
EP (1) | EP3211710B1 (ko) |
JP (1) | JP6537201B2 (ko) |
KR (1) | KR101829093B1 (ko) |
CN (1) | CN107078363B (ko) |
WO (1) | WO2016064225A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107403977A (zh) * | 2017-07-24 | 2017-11-28 | 华霆(合肥)动力技术有限公司 | 温控系统及方法 |
KR101915876B1 (ko) | 2017-01-17 | 2018-11-06 | (주)에이피이씨 | 친환경 ess |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101876227B1 (ko) * | 2017-09-26 | 2018-08-02 | (주)에이스엔지니어링 | 배터리 냉각 컨테이너 |
KR102412085B1 (ko) * | 2018-03-09 | 2022-06-21 | 주식회사 엘지에너지솔루션 | 전력 저장 장치 |
KR102140944B1 (ko) * | 2018-06-27 | 2020-08-05 | 한국전력공사 | 열사이펀을 이용해 공조하는 에너지저장시스템 |
DE102018212715A1 (de) * | 2018-07-31 | 2020-02-06 | Robert Bosch Gmbh | Brennstoffzellenstack und Verfahren zum Herstellen eines Brennstoffzellenstacks |
US11460504B2 (en) * | 2018-08-27 | 2022-10-04 | Chaojiong Zhang | Multi-chamber, explosion-proof, battery-testing apparatus |
CN109768348B (zh) * | 2018-12-21 | 2021-02-12 | 北京双登慧峰聚能科技有限公司 | 高寒地区储能集装箱热管理系统 |
CN109768349B (zh) * | 2018-12-21 | 2021-02-12 | 北京双登慧峰聚能科技有限公司 | 电池储能集装箱环境控制系统 |
CN109728226B (zh) * | 2019-01-15 | 2024-08-06 | 北京海博思创科技股份有限公司 | 电池柜 |
CN109786603B (zh) * | 2019-01-18 | 2021-07-20 | 风帆(扬州)有限责任公司 | 一种高稳定性高强度储能锂电池 |
KR102675574B1 (ko) * | 2019-02-28 | 2024-06-13 | 주식회사 엘지에너지솔루션 | 배터리 모듈, 이를 포함하는 배터리 랙 및 전력 저장 장치 |
KR102020569B1 (ko) * | 2019-04-29 | 2019-09-11 | (주)대은 | 냉각 기능을 포함하는 ess시스템 |
KR20210017535A (ko) | 2019-08-08 | 2021-02-17 | 주식회사 엘지화학 | 소화 유닛을 포함한 배터리 팩 |
US11850970B2 (en) * | 2019-08-18 | 2023-12-26 | Board Of Regents, The University Of Texas System | J-type air-cooled battery thermal management system and method |
KR20210029041A (ko) * | 2019-09-05 | 2021-03-15 | 주식회사 엘지화학 | 소화 유닛을 포함한 배터리 팩 |
KR102225484B1 (ko) * | 2019-09-16 | 2021-03-10 | 주식회사 에스이에너지 | 온도 분포 추정 기법을 이용한 배터리 랙의 온도 조절을 위한 장치 및 이를 위한 방법 |
KR20210033763A (ko) * | 2019-09-19 | 2021-03-29 | 주식회사 엘지화학 | 소화 유닛을 포함한 배터리 팩 |
KR102331618B1 (ko) * | 2019-11-27 | 2021-11-29 | 주식회사 에스앤비 | Ess의 외함을 이용한 스마트 공조 시스템 및 이를 위한 방법 |
CN114365334A (zh) * | 2020-01-03 | 2022-04-15 | 株式会社Lg新能源 | 能量存储装置和能量存储系统 |
CN111525067B (zh) * | 2020-05-06 | 2022-06-21 | 重庆广播电视大学重庆工商职业学院 | 适用于新能源汽车的电池包 |
CN111786057B (zh) * | 2020-06-16 | 2022-02-25 | 恒大恒驰新能源汽车研究院(上海)有限公司 | 车辆的电池温度均衡控制方法、控制装置及存储介质 |
CN112542635B (zh) * | 2020-11-04 | 2022-05-13 | 深圳市科陆电子科技股份有限公司 | 风扇启停均温方法、装置、设备及存储介质 |
KR102277343B1 (ko) | 2021-03-08 | 2021-07-14 | 주식회사 인투알 | 배터리 모듈 랙하우징의 공조 장치 |
KR102711581B1 (ko) | 2021-10-15 | 2024-09-30 | 보성파워텍 주식회사 | 강제 냉각기능이 구비된 에너지 저장 시스템용 컨테이너 |
CN114335790A (zh) * | 2021-11-24 | 2022-04-12 | 合肥国轩高科动力能源有限公司 | 一种储能电池包级浸没式灭火系统、电池热失控检测方法 |
WO2025004261A1 (ja) * | 2023-06-29 | 2025-01-02 | 三菱電機株式会社 | 蓄電池システム、および制御方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060027579A (ko) * | 2004-09-23 | 2006-03-28 | 삼성에스디아이 주식회사 | 전지 모듈 온도 제어 시스템 |
KR20060036694A (ko) * | 2004-10-26 | 2006-05-02 | 주식회사 엘지화학 | 전지팩의 냉각 시스템 |
KR20120076756A (ko) * | 2010-12-30 | 2012-07-10 | 주식회사 포스코아이씨티 | 배터리 시스템 |
KR20130102713A (ko) * | 2012-03-08 | 2013-09-23 | 주식회사 엘지화학 | 신규한 공냉식 구조의 전지팩 |
KR20130137928A (ko) * | 2012-06-08 | 2013-12-18 | 에스케이이노베이션 주식회사 | 배터리 팩 |
Family Cites Families (129)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4376809A (en) * | 1980-11-06 | 1983-03-15 | Chloride Silent Power Limited | Sodium sulphur batteries and cell modules therefor |
US4463569A (en) * | 1982-09-27 | 1984-08-07 | Mclarty Gerald E | Solid-state heating and cooling apparatus |
US4976327A (en) * | 1989-02-14 | 1990-12-11 | Globe-Union Inc. | Battery module for the engine compartment of an automobile |
US4964431A (en) * | 1989-10-16 | 1990-10-23 | Allied-Signal Inc. | Butterfly valve apparatus and method |
JP3379134B2 (ja) * | 1993-03-10 | 2003-02-17 | 日産自動車株式会社 | 電気自動車のバッテリ保温構造 |
US5671903A (en) * | 1993-12-29 | 1997-09-30 | Tokyo Electron Tohoku Kabushiki Kaisha | Heat treatment apparatus and valve device for use in the same |
JP3136926B2 (ja) * | 1994-11-08 | 2001-02-19 | 松下電器産業株式会社 | 蓄電池の状態管理システム |
JPH09232007A (ja) * | 1996-02-20 | 1997-09-05 | Toyota Autom Loom Works Ltd | 車両用電池の冷却装置 |
US6565836B2 (en) * | 1997-01-31 | 2003-05-20 | Ovonic Battery Company, Inc. | Very low emission hybrid electric vehicle incorporating an integrated propulsion system including a hydrogen powered internal combustion engine and a high power Ni-MH battery pack |
JP3821574B2 (ja) * | 1998-03-27 | 2006-09-13 | 大阪瓦斯株式会社 | 自己完結型熱電併給システム |
US6152096A (en) * | 1999-07-06 | 2000-11-28 | Visteon Global Technologies, Inc. | Storage battery protection by engine air intake system |
WO2001017055A1 (en) * | 1999-08-27 | 2001-03-08 | Tokyo R & D Co., Ltd. | Battery cooling structure |
JP4117865B2 (ja) * | 1999-08-31 | 2008-07-16 | 松下電器産業株式会社 | 組電池 |
US6479185B1 (en) * | 2000-04-04 | 2002-11-12 | Moltech Power Systems, Inc. | Extended life battery pack with active cooling |
JP2001338486A (ja) * | 2000-05-25 | 2001-12-07 | Hitachi Ltd | 情報記憶装置 |
JP2003007356A (ja) * | 2001-06-25 | 2003-01-10 | Matsushita Refrig Co Ltd | 蓄電池の温度調節装置とそれを搭載した移動車 |
US7045236B1 (en) * | 2001-08-10 | 2006-05-16 | Johnson Controls Technology Company | Heat and gas exchange system for battery |
US6828755B1 (en) * | 2001-10-15 | 2004-12-07 | Johnson Controls Technology Company | Battery system module |
JP2005011757A (ja) * | 2003-06-20 | 2005-01-13 | Toyota Motor Corp | 二次電池の温度異常検知装置および異常検知方法 |
JP2005183241A (ja) * | 2003-12-22 | 2005-07-07 | Sanyo Electric Co Ltd | 車両用の電源装置 |
JP4543710B2 (ja) * | 2004-03-11 | 2010-09-15 | 日産自動車株式会社 | 組電池 |
KR100627335B1 (ko) * | 2004-06-25 | 2006-09-25 | 삼성에스디아이 주식회사 | 전지 모듈과 전지 모듈의 격벽 |
JP2006035942A (ja) * | 2004-07-23 | 2006-02-09 | Sanyo Electric Co Ltd | 車両用の電源装置 |
JP4707346B2 (ja) * | 2004-08-16 | 2011-06-22 | 三洋電機株式会社 | 車両用の電源装置 |
KR20060027578A (ko) * | 2004-09-23 | 2006-03-28 | 삼성에스디아이 주식회사 | 이차 전지 모듈 온도 제어 시스템 |
US7642006B2 (en) * | 2004-11-29 | 2010-01-05 | Samsung Sdi Co., Ltd. | Secondary battery module |
US7601458B2 (en) * | 2005-03-24 | 2009-10-13 | Samsung Sdi Co., Ltd. | Rechargeable battery and battery module |
KR100648698B1 (ko) * | 2005-03-25 | 2006-11-23 | 삼성에스디아이 주식회사 | 이차 전지 모듈 |
JP4363350B2 (ja) * | 2005-03-30 | 2009-11-11 | トヨタ自動車株式会社 | 二次電池の冷却構造 |
KR100930475B1 (ko) * | 2005-09-02 | 2009-12-09 | 주식회사 엘지화학 | 이중 필터 장치를 포함하고 있는 차량용 전지팩의 냉각시스템 |
JP4781071B2 (ja) * | 2005-09-28 | 2011-09-28 | 三洋電機株式会社 | 電源装置と電池の冷却方法 |
US7661370B2 (en) * | 2005-10-19 | 2010-02-16 | Railpower, Llc | Design of a large low maintenance battery pack for a hybrid locomotive |
US8872474B2 (en) * | 2006-02-09 | 2014-10-28 | Karl F. Scheucher | Fail safe serviceable high voltage battery pack |
JP4811080B2 (ja) * | 2006-03-28 | 2011-11-09 | トヨタ自動車株式会社 | 冷却システムおよびこれを搭載する自動車並びに冷却システムの制御方法 |
JP5052057B2 (ja) * | 2006-06-30 | 2012-10-17 | 三洋電機株式会社 | 電源装置 |
US9016662B2 (en) * | 2006-08-29 | 2015-04-28 | Custom Controls, Llc | Efficient manual to automatic valve conversion device |
CN200976387Y (zh) * | 2006-12-07 | 2007-11-14 | 比亚迪股份有限公司 | 电池包冷却装置 |
WO2008095313A1 (en) * | 2007-02-09 | 2008-08-14 | Advanced Lithium Power Inc. | Battery thermal management system |
KR100942985B1 (ko) * | 2007-03-21 | 2010-02-17 | 주식회사 엘지화학 | 냉매 유량의 분배 균일성이 향상된 중대형 전지팩 케이스 |
JP4529991B2 (ja) * | 2007-04-03 | 2010-08-25 | 株式会社デンソー | 電池冷却装置 |
FR2915626B1 (fr) * | 2007-04-24 | 2010-10-29 | Batscap Sa | Module pour ensemble de stockage d'energie electrique |
KR100981878B1 (ko) * | 2007-06-14 | 2010-09-14 | 주식회사 엘지화학 | 냉매 유량의 분배 균일성이 향상된 중대형 전지팩 케이스 |
JP5010682B2 (ja) * | 2007-07-19 | 2012-08-29 | 三菱重工業株式会社 | 軌道系電動車両のバッテリ搭載構造および軌道系電動車両 |
US20090071178A1 (en) * | 2007-09-14 | 2009-03-19 | Gm Global Technology Operations, Inc. | Vehicle HVAC and Battery Thermal Management |
JP4483920B2 (ja) * | 2007-09-24 | 2010-06-16 | 株式会社デンソー | 車載組電池の温度調節装置 |
US7905308B2 (en) * | 2007-11-12 | 2011-03-15 | Honda Motor Co., Ltd. | Vehicle battery cooling device |
DE102008011466A1 (de) * | 2008-02-27 | 2009-09-03 | Robert Bosch Gmbh | Batteriemodul |
EP2262048A4 (en) * | 2008-03-24 | 2012-08-08 | Sanyo Electric Co | BATTERY ELEMENT AND BATTERY UNIT |
KR101020587B1 (ko) * | 2008-06-12 | 2011-03-09 | 주식회사 엘지화학 | 냉매 유량의 분배 균일성이 향상된 중대형 전지팩 케이스 |
KR101106105B1 (ko) * | 2008-07-26 | 2012-01-18 | 주식회사 엘지화학 | 우수한 냉각 효율성의 중대형 전지팩 케이스 |
JP5332432B2 (ja) * | 2008-09-12 | 2013-11-06 | 日産自動車株式会社 | 電池装置、車両および定置型蓄電池 |
JP5383689B2 (ja) * | 2008-09-19 | 2014-01-08 | 三菱重工業株式会社 | 二次電池搭載移動体及び二次電池のガス処理装置 |
DE102008043789A1 (de) * | 2008-11-17 | 2010-05-20 | Robert Bosch Gmbh | Batteriemodul |
KR100937897B1 (ko) * | 2008-12-12 | 2010-01-21 | 주식회사 엘지화학 | 신규한 공냉식 구조의 중대형 전지팩 |
KR101084972B1 (ko) * | 2009-02-27 | 2011-11-23 | 주식회사 엘지화학 | 냉매 유량의 분배 균일성이 향상된 중대형 전지팩 케이스 |
DE102009018787A1 (de) * | 2009-04-24 | 2010-10-28 | Akasol Engineering Gmbh | Batteriemodul |
KR101979955B1 (ko) * | 2009-05-18 | 2019-05-17 | 젠썸 인코포레이티드 | 배터리 열 관리 시스템 |
JP2010272251A (ja) * | 2009-05-19 | 2010-12-02 | Sanyo Electric Co Ltd | バッテリシステム |
KR101143279B1 (ko) * | 2009-08-20 | 2012-05-11 | 주식회사 엘지화학 | 신규한 냉각구조를 가진 전지팩 |
US8947023B2 (en) * | 2009-10-14 | 2015-02-03 | Hitachi, Ltd. | Battery control device and motor drive system |
JP5024353B2 (ja) * | 2009-10-29 | 2012-09-12 | トヨタ自動車株式会社 | 電気機器の冷却システム |
US8846232B2 (en) * | 2009-11-11 | 2014-09-30 | Atieva, Inc. | Flash cooling system for increased battery safety |
CN102362388B (zh) * | 2009-11-25 | 2013-09-25 | 松下电器产业株式会社 | 电池模块 |
KR101057556B1 (ko) | 2010-02-03 | 2011-08-17 | 에스비리모티브 주식회사 | 배터리 시스템 및 그 구동 방법 |
KR101156527B1 (ko) * | 2010-06-01 | 2012-06-21 | 에스비리모티브 주식회사 | 전지팩 |
US9337457B2 (en) * | 2010-06-24 | 2016-05-10 | Samsung Sdi Co., Ltd. | Battery assembly with cooling |
US20120003510A1 (en) * | 2010-06-30 | 2012-01-05 | Nissan Technical Center North America, Inc. | Vehicle battery temperature control system and method |
US8415041B2 (en) * | 2010-06-30 | 2013-04-09 | Nissan North America, Inc. | Vehicle battery temperature control system fluidly coupled to an air-conditioning refrigeration system |
US8574734B2 (en) * | 2010-06-30 | 2013-11-05 | Nissan North America, Inc. | Vehicle battery temperature control system containing heating device and method |
WO2012020941A2 (ko) * | 2010-08-09 | 2012-02-16 | 주식회사 엘지화학 | 신규한 구조의 전지팩 |
KR101369323B1 (ko) * | 2010-08-30 | 2014-03-05 | 주식회사 엘지화학 | 배터리팩의 냉각 제어 장치 및 방법 |
JP5712298B2 (ja) * | 2010-10-20 | 2015-05-07 | エルジー・ケム・リミテッド | 冷却効率が優れた電池パック |
KR101180954B1 (ko) * | 2010-12-03 | 2012-09-07 | 기아자동차주식회사 | 자동차의 고전압 배터리 냉각 시스템 |
CN103283063B (zh) * | 2010-12-28 | 2016-02-24 | 株式会社Lg化学 | 电池模块接收装置、电池模块恒温器以及包括其的蓄电系统 |
PT2659543T (pt) * | 2010-12-29 | 2024-04-30 | Byd Co Ltd | Módulo de bateria, sistema de gestão de temperatura de bateria e veículo compreendendo o mesmo |
JP5803259B2 (ja) * | 2011-05-17 | 2015-11-04 | 日産自動車株式会社 | 電気自動車のバッテリパック構造 |
JP2012243684A (ja) * | 2011-05-23 | 2012-12-10 | Mitsubishi Motors Corp | 電池パックの空調制御装置 |
CN103582975B (zh) * | 2011-06-13 | 2018-07-03 | Lg化学株式会社 | 提供改善的冷却剂分布均匀性的电池组 |
EP2725652B1 (en) * | 2011-06-21 | 2019-10-09 | LG Chem, Ltd. | Battery pack of air cooling structure |
JP2013016393A (ja) * | 2011-07-05 | 2013-01-24 | Toyota Motor Corp | 電源装置の冷却システム |
US8722222B2 (en) * | 2011-07-11 | 2014-05-13 | Gentherm Incorporated | Thermoelectric-based thermal management of electrical devices |
JP5747701B2 (ja) * | 2011-07-12 | 2015-07-15 | 三菱自動車工業株式会社 | 組電池の温度調節装置 |
US8722223B2 (en) * | 2011-09-01 | 2014-05-13 | Samsung Sdi Co., Ltd. | Battery pack |
JP5845354B2 (ja) * | 2011-09-29 | 2016-01-20 | エルジー・ケム・リミテッド | 新規な冷却構造を有する電池パック |
JP2013103598A (ja) * | 2011-11-14 | 2013-05-30 | Honda Motor Co Ltd | 電動車両用バッテリパック |
JP2013105618A (ja) * | 2011-11-14 | 2013-05-30 | Honda Motor Co Ltd | 電動車両用バッテリパック |
CN103917390A (zh) * | 2011-11-14 | 2014-07-09 | 本田技研工业株式会社 | 电动车辆用蓄电池组 |
KR101878809B1 (ko) * | 2011-12-16 | 2018-08-20 | 엘지전자 주식회사 | 전기 자동차의 배터리 냉각 시스템 |
WO2013102268A1 (en) * | 2012-01-05 | 2013-07-11 | Electrovaya Inc. | Fluid-cooled battery module containing battery cells |
KR101475737B1 (ko) * | 2012-02-07 | 2014-12-24 | 주식회사 엘지화학 | 신규한 공냉식 구조의 전지팩 |
JP6245789B2 (ja) * | 2012-02-20 | 2017-12-13 | 日産自動車株式会社 | 電気自動車のバッテリパック温調構造 |
JP5924025B2 (ja) * | 2012-02-20 | 2016-05-25 | 日産自動車株式会社 | 電気自動車のバッテリパック温調構造 |
JP2013187159A (ja) | 2012-03-09 | 2013-09-19 | Hitachi Ltd | 電池システム及びその温度制御方法 |
JP5591280B2 (ja) * | 2012-04-13 | 2014-09-17 | トヨタ自動車株式会社 | 電池、組電池 |
US9425628B2 (en) * | 2012-05-11 | 2016-08-23 | Ford Global Technologies, Llc | Vehicle battery pack cooling system |
KR101836514B1 (ko) * | 2012-07-11 | 2018-04-19 | 현대자동차주식회사 | 차량용 공조장치 |
CN103575140A (zh) * | 2012-07-19 | 2014-02-12 | 格伦格斯有限公司 | 用于电力电子设备和电池冷却的具有焊接管的紧凑型铝换热器 |
KR101459832B1 (ko) * | 2012-09-07 | 2014-11-11 | 현대자동차주식회사 | 배터리 시스템 |
KR101877996B1 (ko) * | 2012-09-07 | 2018-07-16 | 현대자동차주식회사 | 배터리 시스템 |
KR101371741B1 (ko) * | 2012-09-07 | 2014-03-12 | 기아자동차(주) | 배터리 시스템 |
JP5927702B2 (ja) * | 2012-09-12 | 2016-06-01 | 株式会社日立製作所 | 電池パック及びそれを備えたコンテナ |
JP5967214B2 (ja) * | 2012-11-05 | 2016-08-10 | 日産自動車株式会社 | バッテリ温調装置 |
KR102034337B1 (ko) * | 2013-01-14 | 2019-10-18 | 젠썸 인코포레이티드 | 전기 디바이스의 열전 기반 열 관리 |
WO2014128753A1 (ja) * | 2013-02-19 | 2014-08-28 | 三洋電機株式会社 | 蓄電システム |
CA2898312C (en) * | 2013-03-14 | 2021-10-26 | Allison Transmission, Inc. | System and method for thermally robust energy storage system |
US10172270B2 (en) * | 2013-03-15 | 2019-01-01 | John S. Youngquist | Pick-and-place feeder module assembly |
JP5861657B2 (ja) * | 2013-04-01 | 2016-02-16 | 株式会社デンソー | 電池パック |
US20140308551A1 (en) * | 2013-04-15 | 2014-10-16 | GM Global Technology Operations LLC | Series cooled module cooling fin |
US9912021B2 (en) * | 2013-05-17 | 2018-03-06 | Hamilton Sundstrand Corporation | Electrical storage device thermal management systems |
US20140356652A1 (en) * | 2013-06-04 | 2014-12-04 | Ford Global Technologies, Llc | Battery thermal management system for electrified vehicle |
KR101692790B1 (ko) * | 2013-07-31 | 2017-01-04 | 주식회사 엘지화학 | 냉매 유로를 포함하는 전지모듈 어셈블리 |
KR101709555B1 (ko) * | 2013-07-31 | 2017-02-23 | 주식회사 엘지화학 | 냉매 유로를 포함하는 전지모듈 어셈블리 |
US10106025B2 (en) * | 2013-08-29 | 2018-10-23 | Ford Global Technologies, Llc | High voltage battery cooling plenum |
CN105518929B (zh) * | 2013-09-06 | 2018-04-20 | 日产自动车株式会社 | 电池组冷却系统 |
JP6492668B2 (ja) * | 2014-01-23 | 2019-04-03 | 株式会社村田製作所 | 蓄電装置、蓄電システム、電子機器、電動車両および電力システム |
US10396411B2 (en) * | 2014-02-25 | 2019-08-27 | Ford Global Technologies, Llc | Traction battery thermal plate with transverse channel configuration |
US10263297B2 (en) * | 2014-04-22 | 2019-04-16 | The Boeing Company | Control system for a battery |
JP6024704B2 (ja) * | 2014-05-09 | 2016-11-16 | 株式会社デンソー | 電池パック |
JP6297922B2 (ja) * | 2014-05-23 | 2018-03-20 | 株式会社デンソー | 電池パック |
US20160006088A1 (en) * | 2014-07-01 | 2016-01-07 | Embry-Riddle Aeronautical University, Inc. | Battery thermal management for hybrid electric vehicles using a phase-change material cold plate |
US9362598B2 (en) * | 2014-08-25 | 2016-06-07 | Ford Global Technologies, Llc | Traction battery assembly with thermal device |
US20160064708A1 (en) * | 2014-08-26 | 2016-03-03 | Ford Global Technologies, Llc | Angled Battery Cell Configuration for a Traction Battery Assembly |
US9666844B2 (en) * | 2014-08-26 | 2017-05-30 | Ford Global Technologies, Llc | Support structure for angled battery cell configuration for a traction battery assembly |
US9673492B2 (en) * | 2014-09-17 | 2017-06-06 | GM Global Technology Operations LLC | Actively-switched direct refrigerant battery cooling |
US9543557B2 (en) * | 2014-09-26 | 2017-01-10 | Ford Global Technologies, Llc | Traction battery assembly |
JP5914609B2 (ja) * | 2014-09-29 | 2016-05-11 | 富士重工業株式会社 | 車載用バッテリー |
US9559393B2 (en) * | 2014-09-30 | 2017-01-31 | Johnson Controls Technology Company | Battery module thermal management fluid guide assembly |
US20160093842A1 (en) * | 2014-09-30 | 2016-03-31 | Google Inc. | Battery module |
JP6326007B2 (ja) * | 2015-06-12 | 2018-05-16 | 株式会社Subaru | 車載二次電池の冷却装置 |
-
2014
- 2014-10-22 KR KR1020140143658A patent/KR101829093B1/ko active IP Right Grant
-
2015
- 2015-10-22 EP EP15852288.8A patent/EP3211710B1/en active Active
- 2015-10-22 US US15/510,118 patent/US10707545B2/en active Active
- 2015-10-22 JP JP2017512810A patent/JP6537201B2/ja active Active
- 2015-10-22 WO PCT/KR2015/011213 patent/WO2016064225A1/ko active Application Filing
- 2015-10-22 CN CN201580051394.6A patent/CN107078363B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060027579A (ko) * | 2004-09-23 | 2006-03-28 | 삼성에스디아이 주식회사 | 전지 모듈 온도 제어 시스템 |
KR20060036694A (ko) * | 2004-10-26 | 2006-05-02 | 주식회사 엘지화학 | 전지팩의 냉각 시스템 |
KR20120076756A (ko) * | 2010-12-30 | 2012-07-10 | 주식회사 포스코아이씨티 | 배터리 시스템 |
KR20130102713A (ko) * | 2012-03-08 | 2013-09-23 | 주식회사 엘지화학 | 신규한 공냉식 구조의 전지팩 |
KR20130137928A (ko) * | 2012-06-08 | 2013-12-18 | 에스케이이노베이션 주식회사 | 배터리 팩 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3211710A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101915876B1 (ko) | 2017-01-17 | 2018-11-06 | (주)에이피이씨 | 친환경 ess |
CN107403977A (zh) * | 2017-07-24 | 2017-11-28 | 华霆(合肥)动力技术有限公司 | 温控系统及方法 |
CN107403977B (zh) * | 2017-07-24 | 2019-11-22 | 华霆(合肥)动力技术有限公司 | 温控系统及方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3211710A4 (en) | 2018-05-02 |
KR101829093B1 (ko) | 2018-03-29 |
US20170301967A1 (en) | 2017-10-19 |
EP3211710B1 (en) | 2019-12-04 |
EP3211710A1 (en) | 2017-08-30 |
US10707545B2 (en) | 2020-07-07 |
JP2017536644A (ja) | 2017-12-07 |
CN107078363B (zh) | 2019-11-29 |
JP6537201B2 (ja) | 2019-07-03 |
CN107078363A (zh) | 2017-08-18 |
KR20160047345A (ko) | 2016-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016064225A1 (ko) | 배터리 시스템의 냉각 공기 흐름 제어 시스템 및 방법 | |
WO2015126209A1 (ko) | 배터리팩 | |
WO2015016600A1 (ko) | 배터리 제어 장치 및 방법 | |
WO2018028329A1 (zh) | 一种具有多个独立电池组的电动汽车 | |
WO2015163561A1 (ko) | 서버실 냉각 장치 및 이를 구비하는 데이터 센터의 공조 시스템의 제조 방법 | |
WO2021020774A1 (ko) | 수분공급부가 구비된 전극 건조 장치 및 이를 이용한 전극 건조 방법 | |
WO2024106748A1 (ko) | 연료전지 배열 활용 고효율 일체형 흡수식 냉방시스템 | |
WO2015102247A1 (ko) | 서버실 냉각 장치, 외기 도입용 필터 모듈 및 이를 구비하는 데이터 센터의 공조 시스템 | |
WO2019103412A1 (ko) | 배터리 장치 및 배터리 온도 조절방법 | |
WO2021085866A1 (ko) | 에너지저장시스템(ess)에 포함된 배터리 모듈의 냉각 시스템 및 그 방법 | |
WO2018074809A1 (ko) | 셀 밸런싱 시스템 및 제어방법 | |
WO2021167221A1 (ko) | 전자 기기 | |
WO2017213445A1 (ko) | 서버실 냉각 장치 및 이를 이용한 데이터 센터의 운영 방법 | |
WO2021137634A1 (ko) | 전력 저장 장치 및 전력 저장 시스템 | |
WO2016028034A1 (ko) | 전열교환장치용 하우징부 및 이를 포함하는 전열교환장치 | |
WO2022225085A1 (ko) | 차량 열관리 시스템 | |
CN116247336B (zh) | 一种换电站的热能控制方法及换电站 | |
CN216805170U (zh) | 具有充电室的扩展仓及换电站 | |
CN209929777U (zh) | 自动控温式变电站直流屏柜防尘降温装置 | |
WO2019164203A1 (ko) | 복수의 슬레이브 관리 모듈에게 id를 할당하기 위한 무선 배터리 제어 시스템, 방법 및 배터리 팩 | |
WO2022164058A1 (ko) | 단열 패드를 포함하는 이차전지 충방전 시스템 및 이를 이용한 이차전지 충방전 시스템의 온도 제어방법 | |
WO2022143945A1 (zh) | 全功能仓、具有充电室的扩展仓以及换电站 | |
WO2022250332A1 (ko) | 배터리 팩 온도 제어 방법 및 시스템 | |
WO2022060044A1 (ko) | 전력 저장 장치 | |
WO2011013948A2 (en) | Refrigerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15852288 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017512810 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15510118 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2015852288 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015852288 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |