WO2014128753A1 - 蓄電システム - Google Patents

蓄電システム Download PDF

Info

Publication number
WO2014128753A1
WO2014128753A1 PCT/JP2013/000913 JP2013000913W WO2014128753A1 WO 2014128753 A1 WO2014128753 A1 WO 2014128753A1 JP 2013000913 W JP2013000913 W JP 2013000913W WO 2014128753 A1 WO2014128753 A1 WO 2014128753A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
temperature
power
fan
housing
Prior art date
Application number
PCT/JP2013/000913
Other languages
English (en)
French (fr)
Inventor
洋輔 大槻
裕行 鏡原
昌宏 西村
浩之 上橋
武 東野
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2015501065A priority Critical patent/JP5975314B2/ja
Priority to PCT/JP2013/000913 priority patent/WO2014128753A1/ja
Publication of WO2014128753A1 publication Critical patent/WO2014128753A1/ja
Priority to JP2015045649A priority patent/JP2015159115A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power storage system for cold district specifications.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a technology for efficiently adjusting the temperature of a storage battery in a power storage system in which a heater and a plurality of fans are provided in a housing that houses the storage battery. There is.
  • a power storage system includes a plurality of storage batteries disposed in a housing, a plurality of intake fans disposed in the housing, and a plurality of heaters disposed in the housing. And comprising.
  • a plurality of storage batteries disposed in a housing
  • a plurality of intake fans disposed in the housing
  • a plurality of heaters disposed in the housing. And comprising.
  • When cooling multiple storage batteries preferentially operate the intake fan at a position away from the side surface of the housing among the multiple intake fans, and when heating multiple storage batteries, A heater at a close position is preferentially operated, and among the plurality of intake fans, an intake fan at a position away from the side surface of the housing is preferentially operated.
  • the temperature of the storage battery can be adjusted efficiently in the power storage system in which the heater and the plurality of fans are provided in the housing containing the storage battery.
  • FIGS. 4A to 4D are diagrams for explaining a physical configuration example of the power storage system according to the embodiment of the present invention. It is the figure which looked at the housing
  • the embodiment of the present invention relates to a power storage system connected to a system power supply, and further relates to a power storage system linked to a solar power generation system.
  • the power storage system is installed in, for example, industrial facilities, public facilities, commercial facilities, office buildings, residences, and the like.
  • the electricity bill at night time is set lower than the electricity bill at daytime. For example, the electricity charge from 23:00 to 7:00 on the next day is set cheaper than other time zones. Therefore, the electricity charge can be suppressed by charging the storage battery from the system power supply at night and using the electric power stored in the storage battery during the daytime. From the power company side, the amount of power used will be leveled.
  • the electric power stored in the storage battery is used as a backup power source for operating a specific load (for example, a light, an elevator, a computer server, etc.) when the system power supply fails.
  • the specific load is a preset load that can receive power supply from the storage battery or the solar power generation system preferentially at the time of a power failure of the system power supply.
  • other loads are referred to as general loads.
  • FIG. 1 is a diagram for explaining a power storage system 100 according to an embodiment of the present invention.
  • the power storage system 100 includes a storage battery module 10, a storage battery power conditioner 20, a storage battery management device 30, an inverter fan 50, a storage battery fan 60, a first switch S1 to a ninth switch S9, and a first breaker B1 to a third.
  • a breaker B3 is provided.
  • relays are used for the first switch S1 to the ninth switch S9.
  • a semiconductor switch such as a power MOSFET may be used instead of the relay.
  • System power supply 200 is a commercial power supply supplied from an electric power company.
  • the system power supply 200 is connected to the storage battery power conditioner 20 via the second switch S2. Moreover, it is connected to the PV power conditioner 40 through the fourth switch S4, the fifth switch S5, and the second breaker B2. Between the storage battery power conditioner 20 and the PV power conditioner 40, the second switch S2, the fourth switch S4, the fifth switch S5, the second breaker B2, or the third switch S3, the fourth switch S4, the fifth It is connected via the switch S5 and the second breaker B2.
  • the path between the grid power supply 200 and the storage battery power conditioner 20, the path between the grid power supply 200 and the PV power conditioner 40, and the path between the storage battery power conditioner 20 and the PV power conditioner 40 are configured to be conductive. Alternating current flows through these paths. Hereinafter, these paths are collectively referred to as an alternating current path.
  • the storage battery power conditioner 20 is connected to the storage battery module 10 via the first switch S1 and the first breaker B1.
  • the photovoltaic power generation system 300 includes a solar cell 310 and a PV power conditioner 40, and the PV power conditioner 40 is connected to the solar cell 310.
  • the storage battery power conditioner 20 includes a bidirectional inverter 21 (see FIG. 6) as described later.
  • the bidirectional inverter 21 converts AC power into DC power when charging the storage battery module 10, and converts DC power into AC power when discharging from the storage battery module 10.
  • the PV power conditioner 40 includes an inverter 41 (see FIG. 6) as will be described later.
  • the inverter 41 converts DC power generated by the solar power generation system 300 into AC power.
  • the storage battery module 10 is a packaged secondary battery that can be freely charged and discharged and can be used repeatedly.
  • the storage battery module 10 includes a plurality of storage battery cells connected in series or series-parallel. In the present embodiment, it is assumed that a lithium ion battery is used as the storage battery cell. Other types of batteries such as nickel metal hydride batteries and lead batteries may be used instead of lithium ion batteries.
  • One or a plurality of storage battery modules 10 are used in combination.
  • the plurality of storage battery modules 10 connected in series are connected / disconnected by the switching unit.
  • a plurality of storage battery modules 10 may be used in series-parallel connection.
  • the storage battery module 10 is charged with grid power or power generated by the solar power generation system 300.
  • the solar power generation system 300 is a power generation device that uses the photovoltaic effect. Any of a silicon system, a compound system, and an organic system may be used for the solar battery constituting the solar power generation system 300.
  • the storage battery power conditioner 20 converts the DC power output from the storage battery module 10 into AC power
  • the PV power conditioner 40 converts the DC power generated by the photovoltaic power generation system 300 into AC power.
  • 200, the storage battery module 10, and the photovoltaic power generation system 300 can be linked by a single alternating current path.
  • General load 400 is connected on a path between system power supply 200 and power storage system 100.
  • the specific load 500 is connected to a node between the fourth switch S4 and the fifth switch S5 in the AC current path via the sixth switch S6 and the third breaker B3.
  • General load 400 and specific load 500 operate by receiving AC power supplied from an AC current path.
  • the specific load 500 can receive power supply from at least one of the storage battery module 10 and the photovoltaic power generation system 300, but the general load 400 cannot receive power supply.
  • the inverter fan 50 is connected to a node between the fourth switch S4 and the fifth switch S5 in the AC current path via the seventh switch S7.
  • the inverter fan 50 is a fan for cooling the bidirectional inverter 21 of the storage battery power conditioner 20.
  • the storage battery fan 60 is connected to a node between the fourth switch S4 and the fifth switch S5 in the AC current path via the ninth switch S9.
  • the storage battery fan 60 is a fan that is operated when the storage battery module 10 is cooled and heated.
  • the heater 70 is connected to a node between the fourth switch S4 and the fifth switch S5 in the AC current path via the eighth switch S8.
  • the heater 70 is a heater for heating the storage battery module 10 and is used for increasing the temperature of the storage battery cell in the storage battery module 10.
  • the temperature sensor 600 detects the outside air temperature as the environmental temperature and outputs it to the storage battery management device 30.
  • a thermistor can be used as the temperature sensor 600.
  • the storage battery management device 30 is mainly a device for managing the storage battery module 10.
  • the storage battery management device 30 and the storage battery power conditioner 20 are connected by a communication line using an optical fiber.
  • the storage battery management device 30 and the PV power conditioner 40 are connected by a communication line using a metal line. Between them, communication conforming to serial communication standards such as RS-232C and RS-485 is executed.
  • the communication lines are insulated from each other by using optical fibers.
  • the storage battery management device 30 is connected to the storage battery module 10 through a communication line using an optical fiber.
  • the storage battery device 30 is connected to each of the seventh switch S7 to the ninth switch S9 by a communication line using metal wiring.
  • the storage battery management device 30 indirectly controls the inverter fan 50 and the like by controlling on / off of the seventh switch S7 to the ninth switch S9. Detailed operation of the storage battery management device 30 will be described later.
  • Each of the first switch S1 to the sixth switch S6 and the first breaker B1 to the third breaker B3 is connected to the storage battery power conditioner 20 through a communication line using metal wiring. These are controlled by a control circuit 22 (see FIG. 6), which will be described later, in the storage battery power conditioner 20 based on an instruction from the power storage management device 30 to the storage battery power conditioner 20 or based on a judgment unique to the storage battery power conditioner 20. .
  • the power storage system 100 is operated in either the grid connection mode or the independent operation mode.
  • the self-sustained operation mode is basically selected at the time of power failure of the system power supply 200.
  • FIG. 2 is a diagram for explaining a grid interconnection mode of power storage system 100 according to the embodiment of the present invention.
  • the control circuit 22 in the storage battery power conditioner 20 controls the second switch S2 to be on, the third switch S3 to be off, and the fourth switch S4 to the third switch side. Control to connect to the terminal on the system power supply side instead.
  • the grid connection mode the grid power supply 200, the photovoltaic power generation system 300, and the storage battery module 10 are conducted through a single AC current path AP (see thick line).
  • the bidirectional inverter 21 of the storage battery power conditioner 20 When discharging from the storage battery module 10 in the grid connection mode, the bidirectional inverter 21 of the storage battery power conditioner 20 causes a current to flow through the AC current path AP at a frequency and phase synchronized with the frequency of the system power supply 200.
  • FIG. 3 is a diagram for explaining a self-sustaining operation mode of power storage system 100 according to the embodiment of the present invention.
  • the control circuit 22 in the storage battery power conditioner 20 controls the second switch S2 to be turned off and the third switch S3 to be turned on, and the fourth switch S4 is turned on the system power supply side. Control to connect to the terminal on the third switch side.
  • the photovoltaic power generation system 300 and the storage battery module 10 are electrically disconnected from the system power supply 200.
  • the bidirectional inverter 21 of the storage battery power conditioner 20 When discharging from the storage battery module 10 in the self-sustained operation mode, the bidirectional inverter 21 of the storage battery power conditioner 20 causes a current to flow from the system power supply 200 to the AC current path AP at a frequency and phase independent from each other.
  • the specific load 500 is electrically connected to the alternating current path AP (see thick line) formed in the self-sustained operation mode, but the general load 400 is electrically cut off. Therefore, the power stored in the storage battery module 10 and the power generated by the solar power generation system 300 can be supplied only to the specific load 500 at the time of a power failure.
  • FIGS. 4A to 4D are diagrams for explaining a physical configuration example of the power storage system 100 according to the embodiment of the present invention.
  • the components of the power storage system 100 surrounded by a dotted line in FIGS. 1 to 3 are housed in a housing 110 having an openable door.
  • 4A is a view of the housing 110 viewed from the top surface 110t
  • FIG. 4B is a view of the housing 110 viewed from the front surface 110f
  • FIG. 4C is a view of the housing 110 viewed from the bottom surface 110b
  • FIG. 4D is a view of the housing 110 viewed from the right side 110s.
  • the housing 110 is a vertically long box, and the storage battery module 10 is disposed in the lower part of the housing 110.
  • the storage battery management device 30 is disposed on the storage battery module 10, and the storage battery power conditioner 20, the first breaker B1 to the third breaker B3 are disposed thereon.
  • the bidirectional inverter 21 of the storage battery power conditioner 20 is arranged on the top surface side from the storage battery module 10.
  • the PV power conditioner 40 may also be designed to be installed in the housing 110.
  • a first air hole 111 is provided in the top surface 110t of the housing 110.
  • An inverter fan 50 is provided in the vicinity of the first air hole 111.
  • the inverter fan 50 is an exhaust fan and discharges hot air in the vicinity of the bidirectional inverter 21.
  • the inverter fan 50 cools the bidirectional inverter 21 by sucking up air introduced from the second air hole 113 and the third air hole 114 provided in the lower part of the casing 110.
  • a storage battery fan 60 is provided in the lower part of the housing 110.
  • the storage battery fan 60 introduces outside air from the second air hole 113 and the third air hole 114.
  • the cooling efficiency of the power storage module 10 can be increased.
  • a handle 112 As shown in FIG. 4B, a handle 112, a second air hole 113, and a third air hole 114 are provided on the front surface 110f of the housing 110.
  • the second air hole 113 and the third air hole 114 are provided side by side below the front surface 110f.
  • two entry holes 115 and 116 are provided on the bottom surface 110 b of the housing 110.
  • FIG. 5 is a view of the housing 110 viewed from the right side surface 110s.
  • FIG. 5 is a diagram depicting the vicinity of region A in FIG. 4D in more detail.
  • the storage battery fan 60 is arranged in the vicinity of the bottom surface in the housing 110 so that the outside air inlet faces the second air hole 113 and the third air hole 114.
  • the heater 70 receives air sent from the storage battery fan 60 and sends warm air.
  • the heater 70 includes a heat sink, and the storage battery fan 60 and the heater 70 are configured so that the air outlet of the storage battery fan 60 and the heat sink face each other.
  • the storage battery fan 60 and the heater 70 are provided on the bottom side of the storage battery module 10.
  • both the storage battery fan 60 and the heater 70 are operated to warm and release the air sucked from the second air hole 113 and the third air hole 114.
  • the discharged warm air rises from the bottom surface side to the top surface side in the housing 110 and is exhausted from the first air hole 111 provided on the top surface.
  • FIG. 6 is a functional block diagram for explaining the components of the power storage system 100 of FIG.
  • the storage battery module 10 includes a storage battery cell 11, a voltage sensor 12, a current sensor 13, and a temperature sensor 14.
  • the storage battery cell 11 of FIG. 6 is drawn as a general term for a plurality of storage battery cells.
  • the voltage sensor 12 detects the voltage of each storage battery cell.
  • the current sensor 13 detects the current flowing through the storage battery cell 11.
  • a Hall element or a shunt resistor can be used for the current sensor 13.
  • the temperature sensor 14 detects the temperature of the storage battery cell 11 in the storage battery module 10.
  • a thermistor can be used for the temperature sensor 14.
  • the voltage value detected by the voltage sensor 12, the current value detected by the current sensor 13, and the temperature value detected by the temperature sensor 14 are output as monitoring data of the storage battery module 10 to the storage battery management device 30 via the communication path.
  • the storage battery power conditioner 20 includes a bidirectional inverter 21 and a control circuit 22.
  • the control circuit 22 executes mode management of the power storage system 100, control of the bidirectional inverter 21, communication with the storage battery management device 30, control of the first switch S1 to sixth switch S6, control of the first breaker B1 to third breaker B3, and the like. To do.
  • the control circuit 22 controls the inverter fan 50 in order to cool the bidirectional inverter 21.
  • the PV power conditioner 40 includes an inverter 41 and a control circuit 42.
  • the control circuit 42 executes state management of the photovoltaic power generation system 300, power generation control, communication with the storage battery management device 30, and the like.
  • the display device 700 displays various setting screens, status information of the storage battery module 10 and the photovoltaic power generation system 300 under the control of the storage battery management device 30.
  • the storage battery management device 30 includes a communication unit 31, a monitoring data acquisition unit 32, a user input reception unit 33, an SOC (StategeOf Charge) calculation unit 34, a charge / discharge control unit 35, a power generation control unit 36, a temperature control unit 37, a fan / heater A control unit 38 and a switch control unit 39 are provided.
  • SOC StateOf Charge
  • a charge / discharge control unit 35 a power generation control unit 36
  • a temperature control unit 37 a fan / heater
  • a control unit 38 and a switch control unit 39 are provided.
  • These configurations can be realized by an arbitrary processor, memory, or other LSI in terms of hardware, and are realized by a program loaded in the memory in terms of software.
  • Draw functional blocks Accordingly, those skilled in the art will understand that these functional blocks can be realized in various forms by hardware only, software only, or a combination thereof.
  • the communication unit 31 controls packet communication between the storage battery management device 30 and the storage battery power conditioner 20, and packet communication between the storage battery management device 30 and the PV power conditioner 40.
  • the monitoring data acquisition unit 32 acquires monitoring data transmitted from the storage battery module 10. In addition, the monitoring data acquisition unit 32 acquires temperature data indicating the temperature outside the housing 110 transmitted from the temperature sensor 600.
  • the user input reception unit 33 receives information input to the operation unit 800 by the user. For example, information such as a charging start time at which charging processing from the system power supply 200 to the storage battery module 10 is started and a charging rate thereof is received.
  • the SOC calculation unit 34 calculates the SOC (remaining capacity) of the storage battery cell 11 based on the monitoring data transmitted from the storage battery module 10.
  • SOC calculation method an OCV (Open Circuit Voltage) method or a Coulomb count method can be used.
  • the charge / discharge control unit 35 transmits to the control circuit 22 of the storage battery power conditioner 20 a packet signal including a charge setting value indicating a charge rate when the storage battery module 10 is charged. In addition, the charge / discharge control unit 35 transmits a packet signal including a discharge set value indicating a discharge rate when discharging from the storage battery module 10 to the control circuit 22. Further, the charge / discharge control unit 35 receives a packet signal including a charge value that is actually charged or a discharge value that is actually discharged from the control circuit 22. While the storage battery module 10 is being charged or discharged, the charge / discharge control unit 35 periodically transmits a packet signal to the control circuit 22 (for example, every 1 second). Each time the control circuit 22 receives the packet signal, it returns a packet signal containing actual data.
  • the power generation control unit 36 receives a packet signal including power generation information of the solar power generation system 300 from the control circuit 42 of the PV power conditioner 40.
  • the power generation control unit 36 transmits a packet signal including information for controlling power generation to the control circuit 42.
  • the power generation control unit 36 transmits the packet signal to the control circuit 42 periodically (for example, every 1 second). Each time the control circuit 42 receives the packet signal, it returns a packet signal containing actual data. When there is no response from the control circuit 42, the power generation control unit 36 lengthens the transmission cycle of the packet signal. For example, the period is changed to one minute.
  • the temperature control unit 37 controls the temperature of the storage battery cell 11 and controls the fan / heater control unit 38 to adjust the temperature of the storage battery cell 11.
  • the fan / heater control unit 38 operates at least one of the storage battery fan 60 and the inverter fan 50. Basically, the storage battery fan 60 is operated, and the outside air sucked from the second air hole 113 and the third air hole 114 is blown to the storage battery cell 11 to cool the storage battery cell 11. At that time, when the inverter fan 50 is operated, introduction of outside air can be promoted. When the inverter fan 50 is an intake fan, the inverter fan 50 can be operated to introduce outside air from the upper side of the storage battery cell 11.
  • the temperature control unit 37 has a maximum temperature of the storage battery cell 11 detected by the temperature sensor 14 that is equal to or higher than the first set temperature, and a maximum temperature of the storage battery cell 11 that is higher than the set temperature by the temperature sensor 600 In this case, the storage battery fan 60 is operated without operating the inverter fan 50. When the maximum temperature of the storage battery cell 11 is equal to or higher than the second set temperature higher than the first set temperature, both the storage battery fan 60 and the inverter fan 50 are operated. Specific numerical examples will be described later.
  • the fan / heater control unit 38 operates the storage battery fan 60 and the heater 70 and controls the inverter fan 50 to be inactive.
  • the temperature of the storage battery cell 11 can be increased by the hot air blowing up from the lower part to the upper part of the storage battery module 10.
  • introduction of outside air from the second air hole 113 and the third air hole 114 can be suppressed, and the air heated by the heater 70 can be circulated inside the housing 110. . Thereby, the heating efficiency of the heater 70 is improved.
  • the inverter fan 50 when the inverter fan 50 is an intake fan, it can prevent that external air is blown from the upper part side of the storage battery module 10 by stopping the inverter fan 50.
  • FIG. The situation in which the storage battery cell 11 needs to be heated is usually a state in which the outside air temperature is low. When the inverter fan 50 is operated, cold air is blown onto the storage battery module 10 from above.
  • FIG. 7 is a diagram summarizing the control of the heater 70, the storage battery fan 60, and the inverter fan 50 by the temperature control unit 37 and the fan / heater control unit 38.
  • the temperature control unit 37 controls all of the heater 70, the storage battery fan 60, and the inverter fan 50 to be turned off. Even when the temperature of the storage battery module 10 is the normal temperature, the temperature control unit 37 controls all of the heater 70, the storage battery fan 60, and the inverter fan 50 to be off.
  • the temperature control unit 37 controls the heater 70 and the storage battery fan 60 to be on and the inverter fan 50 to be off.
  • the temperature control unit 37 turns on the storage battery fan 60 after a predetermined time (for example, 90 seconds) has elapsed after the heater 70 is turned on. If the storage battery fan 60 is operated before the heater 70 is warmed, cold air enters the housing 110 from the outside. This can be avoided by providing a time difference.
  • the temperature control unit 37 controls the heater 70 to be turned off, the storage battery fan 60 to be turned on, and the inverter fan 50 to be turned off.
  • the temperature control unit 37 controls the heater 70 to be turned off and the storage battery fan 60 and the inverter fan 50 to be turned on.
  • the temperature control unit 37 controls all of the heater 70, the storage battery fan 60, and the inverter fan 50 to be turned off.
  • the switch control unit 39 transmits a packet signal including control information to the control circuit 22 of the storage battery power conditioner 20, and through the control circuit 22, the first switch S1 to the sixth switch S6 and the first breaker B1 to the first breaker B1.
  • the control of the 3 breaker B3 can be performed.
  • the switch control unit 39 can stop the power supply to the heater 70 by controlling the eighth switch S8 to be off.
  • the power supply to the storage battery fan 60 can be stopped by controlling the ninth switch S9 to be off.
  • the power supply to the inverter fan 50 can be stopped by controlling the seventh switch S7 to be turned off.
  • the seventh switch S7 may be controlled by the control circuit 22 of the storage battery power conditioner 20 instead of the switch control unit 39 of the storage battery management device 30.
  • the structure which can be controlled from both the switch control part 39 and the control circuit 22 may be sufficient.
  • the switch control unit 39 can turn off the power supply to the specific load 500 by controlling the sixth switch S6 to be off.
  • the switch control unit 39 can stop the power supply to the specific load 500 by controlling the sixth switch S6 to be off.
  • the switch control unit 39 turns off the sixth switch S6 when the power consumption of the specific load 500 exceeds the generated power of the solar power generation system 300 at the time of a power failure of the system power supply 200.
  • the sixth switch S6 is turned off under this condition, there is a tendency that the power supply opportunity to the specific load 500 at the time of a power failure decreases. In particular, when a power failure occurs at night, the specific load 500 cannot be supplied with power. Therefore, when the power consumption of the specific load 500 exceeds a certain power, the sixth switch S6 may be controlled based on the above-described conditions.
  • the power supply to the specific load 500 is not stopped. If the constant power is 1 kW, for example, the specific load 500 can be used within a range not exceeding 1 kW regardless of the power generation of the solar power generation system 300. Therefore, the power supply opportunity to the specific load 500 at the time of a power failure can be increased.
  • it is desirable to determine the value of the constant power in consideration of the power consumption of lighting and air conditioning equipment that is assumed to be used during a power failure.
  • the switch control unit 39 is the first when the power consumption of the specific load 500 exceeds the adjusted generated power obtained by adding the adjusted power (positive value) to the generated power of the photovoltaic power generation system 300 during the power failure of the system power supply 200.
  • the 6 switch S6 may be turned off. Also in this case, the power supply opportunity to the specific load 500 at the time of a power failure can be increased.
  • the switch control unit 39 turns off the sixth switch S6 when the SOC of the storage battery module 10 falls below a set value for preventing overdischarge (for example, 10%) during a power failure of the system power supply 200.
  • the overdischarge prevention set value is set according to the capacity of the specific load 500. As the capacity of the specific load 500 is smaller, a smaller value is set as the overdischarge prevention set value.
  • the switch control unit 39 may turn off the sixth switch S6 when both of the two conditions are satisfied, or may turn off the sixth switch S6 only when one of the two conditions is satisfied.
  • FIG. 8 is a flowchart for explaining an example of temperature control by the power storage system 100 according to the embodiment of the present invention.
  • the monitoring data acquisition unit 32 acquires the temperature of the storage battery cell 11 from the storage battery module 10 (S40), and acquires the environmental temperature from the temperature sensor 600 (S41).
  • the temperature controller 37 determines whether or not the maximum temperature of the storage battery cell 11 is 40 ° C. or higher (S42). When the temperature is 40 ° C. or higher (Y in S42), the temperature control unit 37 activates the cooling 2 (see FIG. 7) process (S43). When the temperature is lower than 40 ° C. (N in S42), the temperature controller 37 determines whether or not the maximum temperature of the storage battery cell 11 is 30 ° C. or higher and the maximum temperature of the storage battery cell 11 is (environmental temperature +2) ° C. or higher. Determine (S44). When the condition is satisfied (Y in S44), the temperature control unit 37 activates the cooling 1 (see FIG. 7) process (S45). When the condition is not satisfied (N in S44), the temperature control unit 37 determines whether the storage battery cell 11 is being charged or whether the storage battery cell 11 needs to be heated before charging (S46).
  • step S46 determines whether or not the minimum temperature of the storage battery cell 11 is less than 5 ° C. (S47). When the temperature is less than 5 ° C. (Y in S47), the temperature control unit 37 activates the process of charging and heating (see FIG. 7) (S48). When the temperature is 5 ° C. or higher (N in S47), the temperature control unit 37 activates the normal temperature (see FIG. 7) process (S50).
  • step S46 determines whether or not the minimum temperature of the storage battery cell 11 is less than (minimum dischargeable temperature + 2) ° C. (S49).
  • the temperature control unit 37 activates the discharge heating (see FIG. 7) process (S51).
  • the temperature control unit 37 activates the process of the normal temperature (see FIG. 7) (S50).
  • Step S40 to Step S51 is repeatedly executed (N in S52). Although illustrated at the bottom in FIG. 8 for the sake of convenience, the operation end determination process is executed at any time.
  • the minimum dischargeable temperature of the storage battery cell 11 is set lower than the minimum chargeable temperature.
  • the minimum dischargeable temperature of the storage battery cell 11 is set to ⁇ 10 ° C.
  • the minimum chargeable temperature is set to 2 ° C.
  • the temperature at which charge heating or discharge heating is activated in the above temperature control is set to a value obtained by adding an offset value to the lowest chargeable temperature or the lowest dischargeable temperature.
  • the temperature at which charging and heating is activated is set to 5 ° C., which is the lowest chargeable temperature of 2 ° C. plus an offset value of 3 ° C.
  • the minimum chargeable temperature and the minimum dischargeable temperature do not need to match the minimum charge temperature and the minimum discharge temperature recommended by the battery manufacturer.
  • the minimum charging temperature and the minimum discharging temperature are values obtained from the battery performance by the battery manufacturer in order to minimize battery deterioration.
  • Storage system manufacturers usually set the minimum chargeable temperature and the minimum dischargeable temperature higher than the minimum charge temperature and the minimum discharge temperature, taking into account system constraints such as the range of charge / discharge voltage of the inverter. .
  • the minimum chargeable temperature and the minimum dischargeable temperature are set to the same value for ease of system design.
  • the heater 70 can receive power from the storage battery module 10 even during a power failure of the system power supply 200. Accordingly, the storage battery cell 11 can be warmed even during a power failure of the system power supply 200. Even if the temperature of the storage battery cell 11 is lower than the minimum chargeable temperature, there is room for the temperature to rise above that temperature by heating with the heater 70. In order to operate the heater 70 at the time of a power failure of the system power supply 200, it is necessary to discharge from the storage battery module 10 or to generate power from the solar power generation system 300.
  • snow may accumulate on the solar panels, and even when it is clear, it may not be possible to generate electricity.
  • a snow melting device may be installed on a solar panel in a cold region. If this snow melting device is also connected to the above-mentioned AC current path, the snow melting device can be operated even when the system power supply 200 is interrupted.
  • the lowest temperature at which the storage battery cell 11 can be discharged is set as low as possible in order to ensure the maximum operating condition of the heater 70 and the snow melting device. For example, you may set to the minimum discharge temperature described in the battery manufacturer's spec sheet.
  • the minimum temperature at which the storage battery cell 11 can be charged is set to a value higher than the minimum charging temperature described in the specification sheet from the viewpoint of system constraints and battery protection.
  • a different value may be set as the lowest dischargeable temperature of the storage battery cell 11 in the grid connection mode and the independent operation mode.
  • a lower value may be set in the independent operation mode. For example, it may be set to ⁇ 4 ° C. in the grid connection mode and ⁇ 7 ° C. in the independent operation mode.
  • the heater 70 and the specific load 500 can receive power from the system power supply 200 without discharging from the storage battery module 10, but cannot receive power from the system power supply 200 in the self-sustained operation mode.
  • the grid connection mode it is less necessary to secure power supply from the storage battery module 10. Therefore, priority is given to battery protection, and the value of the minimum dischargeable temperature is set high.
  • the charge / discharge control unit 35 may control the discharge amount at the initial stage of the discharge to be low when discharging from the storage battery module 10 in the grid connection mode. Specifically, the discharge is started with a discharge amount lower than the discharge amount designated by the user. This initial discharge amount is preset by the designer. The charge / discharge control unit 35 gradually increases the discharge amount corresponding to the temperature rise of the storage battery cell 11.
  • the temperature of the storage battery cell 11 is low, if the discharge amount is small, it is possible to suppress the discharge voltage from becoming too low. If the discharge amount is increased as the temperature of the storage battery cell 11 rises and the internal resistance falls, the change in the discharge voltage can be moderated. If this control is used, the protection of the battery can be further strengthened.
  • the charge / discharge control unit 35 controls to discharge with a set discharge amount from the beginning of discharge.
  • the self-sustained operation mode power is not supplied from the system power supply 200 to the specific load 500, so it is necessary to secure the amount of power supplied from the storage battery module 10.
  • the grid connection mode power is supplied to the general load 400 and the specific load 500 from the system power supply 200, so that the operation of the general load 400 and the specific load 500 can be guaranteed even if the discharge amount from the storage battery module 10 is reduced.
  • the reason why the charge / discharge control unit 35 controls the discharge amount in the grid connection mode to be low is that the temperature of the storage battery cell 11 is lower than the set temperature obtained by adding an offset (positive value) to the lowest dischargeable temperature. It may be only when. This is because if the temperature of the storage battery cell 11 is higher than the set temperature, the discharge voltage is suppressed from becoming too low at the start of discharge.
  • the temperature control unit 37 may perform control so that the minimum temperature of the storage battery cell 11 always exceeds the minimum chargeable temperature.
  • the temperature of the storage battery cell 11 is efficiently adjusted in the power storage system in which the heater 70, the inverter fan 50, and the storage battery fan 60 are provided in the housing that houses the storage battery cell 11. it can.
  • the operating states of the inverter fan 50 and the storage battery fan 60 are controlled according to the temperature of the storage battery cell 11 and the environmental temperature. For example, both are operated when the temperature is very high, but only the storage battery fan 60 is operated when the temperature is low. According to the latter control, the storage battery cell 11 can be cooled while suppressing power consumption of the inverter fan 50 and preventing noise of the inverter fan 50.
  • the warm air from the heater 70 can be spread into the housing 110 by operating the storage battery fan 60.
  • the inverter fan 50 is not operated, so that warm air can flow from the bottom side to the top side.
  • the power storage system 100 can be operated more optimally.
  • FIG. 9 is a diagram for explaining a physical configuration example of the power storage system 100 according to the modification.
  • FIG. 9 shows the housing 110 viewed from the bottom surface 110b.
  • six storage battery modules of the first storage battery module 10a, the second storage battery module 10b, the third storage battery module 10c, the fourth storage battery module 10d, the fifth storage battery module 10e, and the sixth storage battery module 10f are arranged vertically. Arranged side by side.
  • three sets of intake fans 60 and heaters 70 are arranged.
  • the first intake fan 60a and the first heater 70a are mainly for cooling or heating the first storage battery module 10a and the second storage battery module 10b.
  • the second intake fan 60b and the second heater 70b are mainly for cooling or heating the third storage battery module 10c and the fourth storage battery module 10d.
  • the third intake fan 60c and the third heater 70c are mainly for cooling or heating the fifth storage battery module 10e and the sixth storage battery module 10f.
  • the temperatures of the storage battery modules (the first storage battery module 10a and the sixth storage battery module 10f in FIG. 9) that are arranged close to the side surface of the casing 110 are arranged on the center side of the casing 110.
  • the temperature control unit 37 preferentially operates the intake fan 60b near the center of the housing 110 among the plurality of intake fans 60a to 60c. For example, the air flow of the intake fan 60b is increased, or the intake fans 60a and 60c other than the intake fan 60b that increases the air flow are intermittently operated or stopped.
  • the temperature control unit 37 preferentially operates the heaters 70a and 70c near the side surface of the housing 110 among the plurality of heaters 70a to 70c.
  • the intake fan 60b close to the center of the casing 110 is preferentially operated.
  • the intake fans 60a and 60c immediately below the heaters 70a and 70c close to the side surface of the casing 110 are operated, hot air easily flows to other than the target storage battery module, so the intake fan 60b close to the center is operated preferentially. .
  • the temperature control unit 37 cools the storage battery module in which the highest temperature is detected among the plurality of storage battery modules 10a to 10f among the plurality of intake fans 60a to 60c. To operate the intake fan preferentially.
  • the temperature control unit 37 heats the storage battery module in which the lowest temperature is detected among the plurality of storage battery modules 10a to 10f. For this reason, the heater is preferentially operated.
  • the intake fan for blowing air to the storage battery module in which the highest temperature is detected among the plurality of storage battery modules 10a to 10f is preferentially operated.
  • Each storage battery module 10a-f is equipped with a temperature sensor 14 respectively.
  • the temperature control unit 37 can identify the storage battery module having the highest or lowest temperature among the plurality of storage battery modules 10a to 10f with reference to the output values of the temperature sensors 14.
  • the power storage system according to the present invention can be linked to a power generation apparatus that generates power based on renewable energy other than the solar power generation system 300.
  • a wind power generator or a micro hydroelectric generator with a direct current output is applicable.
  • the invention according to the present embodiment may be specified by the items described below.
  • An intake fan for preferentially operating a heater for heating a storage battery in which the lowest temperature is detected among the heaters and for blowing air to the storage battery in which the highest temperature is detected among the plurality of intake fans Is a power storage system characterized in that it is operated with priority.
  • 100 power storage system 110 housing, 111 first air hole, 112 handle, 113 second air hole, 114 third air hole, 115, 116 inlet hole, 10 storage battery module, 11 storage battery cell, 12 voltage sensor, 13 current sensor , 14 temperature sensor, 20 storage battery power conditioner, 21 bidirectional inverter, 22 control circuit, 30 storage battery management device, 31 communication unit, 32 monitoring data acquisition unit, 33 user input reception unit, 34 SOC calculation unit, 35 charge / discharge control Unit, 36 power generation control unit, 37 temperature control unit, 38 fan / heater control unit, 39 switch control unit, 40 PV power conditioner, 41 inverter, 42 control circuit, 50 inverter fan, 0 storage battery fan, 70 heater, 200 grid power supply, 300 solar power generation system, 400 general load, 500 specific load, 600 temperature sensor, S1 1st switch, S2 2nd switch, S3 3rd switch, S4 4th switch, S5 5th switch, S6 6th switch, S7 7th switch, S8 8th switch, S9 9th switch, B1 1st breaker,
  • the present invention can be used for a cold region-specific power storage system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

 筐体内には複数の蓄電池モジュール10a~fと、複数の吸気ファン60a~cと、複数のヒータ70a~cが配置される。複数の蓄電池モジュール10a~fを冷却する場合、複数の吸気ファン60a~cのうち筐体の側面から離れた位置の吸気ファンを優先的に稼動させる。複数の蓄電池モジュール10a~fを加熱する場合、複数のヒータ70a~cのうち筐体の側面に近い位置のヒータを優先的に稼動させ、かつ複数の吸気ファン60a~cのうち筐体の側面から遠い位置のヒータを優先的に稼動させる。

Description

蓄電システム
 本発明は、寒冷地仕様の蓄電システムに関する。
 近年、バックアップやピークシフト用の蓄電システムが普及してきている。蓄電池は温度依存性が高く、高温または低温下で充放電すると劣化が促進され、寿命が短くなることが知られている。特に低温時には電池の内部抵抗が大きくなるため、電圧低下が大きくなり、充電/放電禁止電圧まで低下することも発生し得る。そこで蓄電池の温度が適正範囲の状態で充放電することが望まれる(例えば、特許文献1参照)。
特開平09-083167号公報
 蓄電池の温度を適正範囲に維持するため、蓄電池を収納した筐体内にヒータとファンを設けることが考えられる。その際、筐体内の空気の流れを良くするために、例えば筐体の上部と下部にファンを設けることが考えられる。
 本発明はこうした状況に鑑みなされたものであり、その目的は、蓄電池を収納した筐体内にヒータと複数のファンを設けた蓄電システムにて、蓄電池の温度を効率的に調整する技術を提供することにある。
 上記課題を解決するために、本発明のある態様の蓄電システムは、筐体内に配置された複数の蓄電池と、筐体内に配置された複数の吸気ファンと、筐体内に配置された複数のヒータと、を備える。複数の蓄電池を冷却する場合、複数の吸気ファンのうち筐体の側面から離れた位置の吸気ファンを優先的に稼動させ、複数の蓄電池を加熱する場合、複数のヒータのうち筐体の側面に近い位置のヒータを優先的に稼動させ、かつ複数の吸気ファンのうち筐体の側面から離れた位置の吸気ファンを優先的に稼動させる。
 本発明によれば、蓄電池を収納した筐体内にヒータと複数のファンを設けた蓄電システムにて、蓄電池の温度を効率的に調整できる。
本発明の実施の形態に係る蓄電システムを説明するための図である。 本発明の実施の形態に係る蓄電システムの系統連系モードを説明するための図である。 本発明の実施の形態に係る蓄電システムの自立運転モードを説明するための図である。 図4(a)-(d)は、本発明の実施の形態に係る蓄電システムの物理的な構成例を説明するための図である。 筐体を右側面から見た図である。 図1の蓄電システムの構成要素を説明するための機能ブロック図である。 温度制御部及びファン・ヒータ制御部による、ヒータ、蓄電池ファン及びインバータファンの制御をまとめた図である。 本発明の実施の形態に係る蓄電システムによる、温度制御例を説明するためのフローチャートである。 変形例に係る蓄電システムの物理的な構成例を説明するための図である。
 本発明の実施の形態は、系統電源に接続される蓄電システムであって、さらに太陽光発電システムと連携する蓄電システムに関する。当該蓄電システムは、例えば産業施設、公共施設、商業施設、オフィスビル、住居などに設置される。電力会社が時間帯別電気料金制度を採用している場合、夜間の時間帯の電気料金は、昼間の時間帯の電気料金よりも安く設定される。例えば、23:00~翌日の7:00までの電気料金が他の時間帯より安く設定される。従って夜間に系統電源から蓄電池に充電し、蓄電池に蓄えられた電力を昼間に使用することにより電気料金を抑えることができる。電力会社側から見ると電力使用量が平準化されることになる。
 蓄電池に蓄えられた電力は、系統電源が停電したとき特定負荷(例えば、電灯、エレベータ、コンピュータサーバなど)を動作させるためのバックアップ電源として用いられる。特定負荷は系統電源の停電時にて、優先的に蓄電池または太陽光発電システムから電力供給を受けることができる予め設定された負荷である。本明細書では、それ以外の負荷を一般負荷という。
 図1は、本発明の実施の形態に係る蓄電システム100を説明するための図である。実施の形態に係る蓄電システム100は、蓄電池モジュール10、蓄電池パワーコンディショナ20、蓄電池管理装置30、インバータファン50、蓄電池ファン60、第1スイッチS1~第9スイッチS9、第1ブレーカB1~第3ブレーカB3を備える。本実施の形態では第1スイッチS1~第9スイッチS9にリレーを使用することを想定する。なお、リレーの代わりにパワーMOSFETなどの半導体スイッチを用いてもよい。
 系統電源200は電力会社から供給される商用電源である。系統電源200は、第2スイッチS2を介して蓄電池パワーコンディショナ20と接続される。また第4スイッチS4、第5スイッチS5、第2ブレーカB2を介してPVパワーコンディショナ40に接続される。蓄電池パワーコンディショナ20とPVパワーコンディショナ40間は、第2スイッチS2、第4スイッチS4、第5スイッチS5、第2ブレーカB2を介して、又は第3スイッチS3、第4スイッチS4、第5スイッチS5、第2ブレーカB2を介して接続される。
 系統電源200と蓄電池パワーコンディショナ20間の経路、系統電源200とPVパワーコンディショナ40間の経路、蓄電池パワーコンディショナ20とPVパワーコンディショナ40間の経路は導通可能な構成である。それらの経路には交流電流が流れる。以下、それらの経路を総称して交流電流路という。
 蓄電池パワーコンディショナ20は、第1スイッチS1及び第1ブレーカB1を介して蓄電池モジュール10に接続される。太陽光発電システム300は太陽電池310及びPVパワーコンディショナ40を含み、PVパワーコンディショナ40は太陽電池310に接続される。
 蓄電池パワーコンディショナ20は後述するように双方向インバータ21(図6参照)を含む。双方向インバータ21は、蓄電池モジュール10に充電するとき交流電力から直流電力に変換し、蓄電池モジュール10から放電するとき直流電力から交流電力に変換する。PVパワーコンディショナ40は後述するようにインバータ41(図6参照)を含む。インバータ41は、太陽光発電システム300により発電された直流電力を交流電力に変換する。
 蓄電池モジュール10は充放電自在で繰り返し使用できる、パッケージ化された二次電池である。蓄電池モジュール10は、直列または直並列接続された複数の蓄電池セルを含む。本実施の形態では蓄電池セルとしてリチウムイオン電池を使用することを想定する。なお、リチウムイオン電池の代わりにニッケル水素電池、鉛電池など他の種類の電池を使用してもよい。蓄電池モジュール10は1個ないしは複数組み合わせて使用される。
 本実施の形態では6個の蓄電池モジュール10を直列接続して使用することを想定する。直列接続された複数の蓄電池モジュール10は、スイッチングユニットにより接続/切断制御される。なお複数の蓄電池モジュール10を直並列接続して使用してもよい。蓄電池モジュール10は系統電力または太陽光発電システム300により発電された電力により充電される。
 太陽光発電システム300は光起電力効果を利用した発電装置である。太陽光発電システム300を構成する太陽電池にはシリコン系、化合物系、有機系のいずれを使用してもよい。
 蓄電池パワーコンディショナ20が蓄電池モジュール10から出力される直流電力を交流電力に変換し、PVパワーコンディショナ40が太陽光発電システム300により発電される直流電力を交流電力に変換することにより、系統電源200、蓄電池モジュール10、太陽光発電システム300を単一の交流電流路でリンクできる。
 一般負荷400は、系統電源200と蓄電システム100との間の経路上に接続される。特定負荷500は交流電流路の内、第4スイッチS4と第5スイッチS5間のノードに、第6スイッチS6及び第3ブレーカB3を介して接続される。
 一般負荷400及び特定負荷500は、交流電流路から供給される交流電力を受けて動作する。系統電源200の停電時、特定負荷500は蓄電池モジュール10及び太陽光発電システム300の少なくとも一方から電源供給を受けることができるが、一般負荷400は電源供給を受けることができない。
 インバータファン50は交流電流路の内、第4スイッチS4と第5スイッチS5間のノードに、第7スイッチS7を介して接続される。インバータファン50は、蓄電池パワーコンディショナ20の双方向インバータ21を冷却するためのファンである。
 蓄電池ファン60は交流電流路の内、第4スイッチS4と第5スイッチS5間のノードに、第9スイッチS9を介して接続される。蓄電池ファン60は、蓄電池モジュール10の冷却時および加温時に動作させるためのファンである。
 ヒータ70は交流電流路の内、第4スイッチS4と第5スイッチS5間のノードに、第8スイッチS8を介して接続される。ヒータ70は蓄電池モジュール10を加熱するためのヒータであり、蓄電池モジュール10内の蓄電池セルの温度を上昇させるために使用される。
 温度センサ600は外気温を環境温度として検出し、蓄電池管理装置30に出力する。温度センサ600には例えば、サーミスタを使用できる。
 蓄電池管理装置30は主に、蓄電池モジュール10を管理するための装置である。蓄電池管理装置30と蓄電池パワーコンディショナ20間は光ファイバを用いた通信線で接続される。蓄電池管理装置30とPVパワーコンディショナ40間はメタル線を用いた通信線で接続される。それらの間ではRS-232C、RS-485などのシリアル通信規格に準拠した通信が実行される。通信線には光ファイバを用いることにより装置間を絶縁する。
 また蓄電池管理装置30は蓄電池モジュール10と、光ファイバを用いた通信線で接続される。また蓄電池装置30は第7スイッチS7~第9スイッチS9のそれぞれと、メタル配線を用いた通信線で接続される。蓄電池管理装置30は、第7スイッチS7~第9スイッチS9のオン・オフを制御することで、インバータファン50等を間接的に制御する。蓄電池管理装置30の詳細な動作は後述する。なお第1スイッチS1~第6スイッチS6、第1ブレーカB1~第3ブレーカB3のそれぞれは、蓄電池パワーコンディショナ20とメタル配線を用いた通信線で接続される。これらは、蓄電管理装置30から蓄電池パワーコンディショナ20に対する指示、あるいは、蓄電池パワーコンディショナ20独自の判断に基づき、蓄電池パワーコンディショナ20内の後述する制御回路22(図6参照)により制御される。
 実施の形態に係る蓄電システム100は、系統連系モードまたは自立運転モードのいずれかで運転される。自立運転モードは基本的に、系統電源200の停電時に選択される。
 図2は、本発明の実施の形態に係る蓄電システム100の系統連系モードを説明するための図である。系統連系モードでは図2に示すように、蓄電池パワーコンディショナ20内の制御回路22は第2スイッチS2をオン、第3スイッチS3をオフに制御し、第4スイッチS4を、第3スイッチ側ではなく系統電源側の端子に接続するよう制御する。系統連系モードでは系統電源200、太陽光発電システム300、蓄電池モジュール10が単一の交流電流路AP(太線参照)を介して導通する。
 系統連系モードにて蓄電池モジュール10から放電する場合、蓄電池パワーコンディショナ20の双方向インバータ21は、系統電源200の周波数に同期した周波数および位相で交流電流路APに電流を流す。
 図3は、本発明の実施の形態に係る蓄電システム100の自立運転モードを説明するための図である。自立運転モードでは図3に示すように、蓄電池パワーコンディショナ20内の制御回路22は、第2スイッチS2をオフ、第3スイッチS3をオンに制御し、第4スイッチS4を、系統電源側ではなく第3スイッチ側の端子に接続するよう制御する。自立運転モードでは太陽光発電システム300及び蓄電池モジュール10は系統電源200から電気的に切り離される。
 自立運転モードにて蓄電池モジュール10から放電する場合、蓄電池パワーコンディショナ20の双方向インバータ21は、系統電源200から自立した周波数および位相で交流電流路APに電流を流す。自立運転モードで形成される交流電流路AP(太線参照)には特定負荷500は電気的に接続されるが、一般負荷400は電気的に遮断される。従って停電時に、特定負荷500にのみ、蓄電池モジュール10に蓄えられた電力および太陽光発電システム300により発電された電力を供給できる。
 図4(a)-(d)は、本発明の実施の形態に係る蓄電システム100の物理的な構成例を説明するための図である。図1-図3にて点線で囲まれた蓄電システム100の構成部材は、開閉式の扉を備える筐体110に収納される。図4(a)は筐体110を天面110tから見た図を、図4(b)は筐体110を正面110fから見た図を、図4(c)は筐体110を底面110bから見た図を、図4(d)は筐体110を右側面110sから見た図をそれぞれ示す。
 筐体110は縦長のボックスであり、筐体110内の下部に蓄電池モジュール10が配置される。本実施の形態では6個の蓄電池モジュール10が縦置きに並べて配置される。図示しないが蓄電池モジュール10の上に、蓄電池管理装置30が配置され、その上に蓄電池パワーコンディショナ20、第1ブレーカB1~第3ブレーカB3が配置される。このように蓄電池パワーコンディショナ20の双方向インバータ21は、蓄電池モジュール10より天面側に配置される。なおPVパワーコンディショナ40も筐体110内に設置される設計であってもよい。
 図4(a)に示すように筐体110の天面110tには第1空気孔111が設けられる。第1空気孔111の近傍にインバータファン50が設けられる。インバータファン50は排気ファンであり、双方向インバータ21の近辺の熱い空気を排出する。インバータファン50は、筐体110の下部に設けられる第2空気孔113及び第3空気孔114から導入された空気を吸い上げることで双方向インバータ21を冷却する。
 筐体110内の下部に蓄電池ファン60を設ける。蓄電池ファン60は第2空気孔113及び第3空気孔114から外気を導入する。インバータファン50と蓄電池ファン60を併用することで、蓄電モジュール10の冷却効率を上げることができる。また下部から吸気し、上部から排気することで、蓄電池の放電による電池の温度上昇や、インバータの廃熱を上昇気流により上部に送る効果も期待できる。
 図4(b)に示すように筐体110の正面110fには、取っ手112、第2空気孔113及び第3空気孔114が設けられる。第2空気孔113及び第3空気孔114は正面110fの下部に、横並びに設けられる。図4(c)に示すように筐体110の底面110bには、二つの入線孔115、116が設けられる。
 図5は、筐体110を右側面110sから見た図である。図5は図4(d)の領域A近傍をより詳細に描いた図である。蓄電池ファン60は筐体110内の底面近傍に、外気導入口が第2空気孔113及び第3空気孔114を向くように配置される。
 ヒータ70は、蓄電池ファン60から送出された空気を受け、温風を送出する。本実施の形態ではヒータ70はヒートシンクを備え、蓄電池ファン60の吹出口とヒートシンクが対面するように蓄電池ファン60とヒータ70を構成する。蓄電池ファン60及びヒータ70は蓄電池モジュール10より底面側に設けられる。蓄電池モジュール10を加熱する際、蓄電池ファン60及びヒータ70は両方とも稼働し、第2空気孔113及び第3空気孔114から吸気した空気を温めて放出する。放出された温風は図4(d)に示すように、筐体110内にて底面側から天面側に向けて上昇し、天面に設けられた第1空気孔111から排気される。
 図6は、図1の蓄電システム100の構成要素を説明するための機能ブロック図である。蓄電池モジュール10は蓄電池セル11、電圧センサ12、電流センサ13、温度センサ14を備える。図6の蓄電池セル11は複数の蓄電池セルの総称として描いている。
 電圧センサ12は各蓄電池セルの電圧を検出する。電流センサ13は蓄電池セル11に流れる電流を検出する。電流センサ13にはホール素子やシャント抵抗を用いることができる。温度センサ14は、蓄電池モジュール10内の蓄電池セル11の温度を検出する。温度センサ14にはサーミスタを用いることができる。電圧センサ12により検出された電圧値、電流センサ13により検出された電流値、温度センサ14により検出された温度値は、蓄電池モジュール10の監視データとして通信路を介して蓄電池管理装置30に出力される。
 蓄電池パワーコンディショナ20は双方向インバータ21、制御回路22を備える。制御回路22は蓄電システム100のモード管理、双方向インバータ21の制御、蓄電池管理装置30との通信、第1スイッチS1~第6スイッチS6、第1ブレーカB1~第3ブレーカB3の制御などを実行する。また制御回路22は、双方向インバータ21を冷却するためにインバータファン50を制御する。
 PVパワーコンディショナ40はインバータ41、制御回路42を備える。制御回路42は太陽光発電システム300の状態管理、発電制御、蓄電池管理装置30との通信などを実行する。表示装置700は蓄電池管理装置30による制御の下、各種設定画面、蓄電池モジュール10および太陽光発電システム300のステータス情報などを表示する。
 蓄電池管理装置30は通信部31、監視データ取得部32、ユーザ入力受付部33、SOC(State Of Charge)算出部34、充放電制御部35、発電制御部36、温度制御部37、ファン・ヒータ制御部38、スイッチ制御部39を備える。これらの構成は、ハードウエア的には、任意のプロセッサ、メモリ、その他のLSIで実現でき、ソフトウエア的にはメモリにロードされたプログラムなどによって実現されるが、ここではそれらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックがハードウエアのみ、ソフトウエアのみ、またはそれらの組合せによっていろいろな形で実現できることは、当業者には理解されるところである。
 通信部31は、蓄電池管理装置30と蓄電池パワーコンディショナ20間のパケット通信、蓄電池管理装置30とPVパワーコンディショナ40間のパケット通信を制御する。監視データ取得部32は、蓄電池モジュール10から送信される監視データを取得する。また監視データ取得部32は、温度センサ600から送信される、筐体110の外の気温を示す温度データを取得する。
 ユーザ入力受付部33は、ユーザにより操作部800に入力された情報を受け付ける。例えば、系統電源200から蓄電池モジュール10への充電処理を開始する充電開始時刻、その充電レートなどの情報を受け付ける。
 SOC算出部34は、蓄電池モジュール10から送信される監視データをもとに蓄電池セル11のSOC(残容量)を算出する。SOCの算出方法としてOCV(Open Circuit Voltage)法やクーロンカウント法を用いることができる。
 充放電制御部35は、蓄電池モジュール10に充電する場合の充電レートを示す充電設定値を含むパケット信号を、蓄電池パワーコンディショナ20の制御回路22に送信する。また充放電制御部35は、蓄電池モジュール10から放電する場合の放電レートを示す放電設定値を含むパケット信号を制御回路22に送信する。また充放電制御部35は、制御回路22から、実際に充電された充電値または実際に放電された放電値を含むパケット信号を受信する。蓄電池モジュール10の充電中または放電中、充放電制御部35はパケット信号を制御回路22に定期的(例えば、1秒周期)に送信する。制御回路22は当該パケット信号を受信する度に、実データを含むパケット信号を返信する。
 発電制御部36は、PVパワーコンディショナ40の制御回路42から、太陽光発電システム300の発電情報を含むパケット信号を受信する。発電制御部36は、発電を制御するための情報を含むパケット信号を制御回路42に送信する。発電制御部36はパケット信号を制御回路42に定期的(例えば、1秒周期)に送信する。制御回路42は当該パケット信号を受信する度に、実データを含むパケット信号を返信する。発電制御部36は、制御回路42からの応答がない場合、パケット信号の送信周期を長くする。例えば、1分周期に変更する。
 温度制御部37は、蓄電池セル11の温度を管理するとともにファン・ヒータ制御部38を制御して、蓄電池セル11の温度を調整する。蓄電池セル11を冷却する場合、ファン・ヒータ制御部38は、蓄電池ファン60及びインバータファン50の少なくとも一方を稼働させる。基本的に蓄電池ファン60を稼働させて、第2空気孔113及び第3空気孔114から吸気した外気を蓄電池セル11に送風して蓄電池セル11を冷却する。その際、インバータファン50を稼働させると外気の導入を促進できる。なおインバータファン50が吸気ファンの場合、インバータファン50を稼働させて蓄電池セル11の上側からも外気を導入できる。
 例えば温度制御部37は、温度センサ14により検出される蓄電池セル11の最高温度が第1設定温度以上で、かつ蓄電池セル11の最高温度が温度センサ600により検出される環境温度より設定値以上高い場合、インバータファン50を稼働させずに蓄電池ファン60を稼働させる。蓄電池セル11の最高温度が、第1設定温度より高い第2設定温度以上の場合、蓄電池ファン60及びインバータファン50の両方を稼働させる。具体的な数値例は後述する。
 蓄電池セル11を加熱する場合、ファン・ヒータ制御部38は、蓄電池ファン60及びヒータ70を稼働させ、インバータファン50を非稼働に制御する。図4(d)に示すように温風が蓄電池モジュール10の下部から上部に吹き上がることにより、蓄電池セル11の温度を上昇させることができる。この際、インバータファン50を停止させることにより、第2空気孔113及び第3空気孔114からの外気の導入を抑え、ヒータ70で暖められた空気を筐体110の内部で循環させることができる。これにより、ヒータ70の加温効率が向上する。なお、インバータファン50が吸気ファンの場合、インバータファン50を停止させることにより、蓄電池モジュール10の上部側から外気が吹きつけられることを防止できる。蓄電池セル11を加熱する必要がある状況は通常、外気温が低い状態であり、インバータファン50を稼働させていると、蓄電池モジュール10に上から冷気が吹きつけられることになる。
 図7は、温度制御部37及びファン・ヒータ制御部38による、ヒータ70、蓄電池ファン60及びインバータファン50の制御をまとめた図である。蓄電システム100が待機状態のとき温度制御部37はヒータ70、蓄電池ファン60及びインバータファン50の全てをオフに制御する。蓄電池モジュール10の温度が通常温度のときも温度制御部37はヒータ70、蓄電池ファン60及びインバータファン50の全てをオフに制御する。
 蓄電池モジュール10の充電および放電のために加熱が必要であるとき温度制御部37はヒータ70及び蓄電池ファン60をオンに、インバータファン50をオフに制御する。なお温度制御部37は蓄電池ファン60を、ヒータ70をオンした後、所定時間(例えば90秒)経過後にオンする。ヒータ70が温まる前に蓄電池ファン60を稼働すると筐体110内に外から冷気が入ってしまう。時間差を設けることにより、これを回避できる。
 蓄電池モジュール10を冷却する必要があるとき(冷却1)、温度制御部37はヒータ70をオフに、蓄電池ファン60をオンに、インバータファン50をオフに制御する。蓄電池モジュール10をより強力に冷却する必要があるとき(冷却2)、温度制御部37はヒータ70をオフに、蓄電池ファン60及びインバータファン50をオンに制御する。蓄電システム100が異常・故障のとき温度制御部37はヒータ70、蓄電池ファン60及びインバータファン50の全てをオフに制御する。
 図6に戻る。スイッチ制御部39は、蓄電池パワーコンディショナ20の制御回路22に制御情報を含むパケット信号を送信し、当該制御回路22を介して、第1スイッチS1~第6スイッチS6、第1ブレーカB1~第3ブレーカB3の制御を行うことができる。スイッチ制御部39は、第8スイッチS8をオフに制御してヒータ70への給電を停止できる。また第9スイッチS9をオフに制御して蓄電池ファン60への給電を停止できる。また第7スイッチS7をオフに制御してインバータファン50への給電を停止できる。なお第7スイッチS7については蓄電池管理装置30のスイッチ制御部39ではなく、蓄電池パワーコンディショナ20の制御回路22が制御してもよい。またスイッチ制御部39と制御回路22の両方から制御できる構成でもよい。またスイッチ制御部39は、第6スイッチS6をオフに制御して特定負荷500への給電を停止できる。
 スイッチ制御部39は、第6スイッチS6をオフに制御して特定負荷500への給電を停止できる。スイッチ制御部39は系統電源200の停電時にて、特定負荷500の消費電力が太陽光発電システム300の発電電力を上回るとき第6スイッチS6をオフする。この条件で第6スイッチS6をオフする場合、停電時における特定負荷500への給電機会が減る傾向がある。特に夜間に停電した場合、特定負荷500に給電できなくなる。そこで、特定負荷500の消費電力が一定電力を超えた場合に、上述の条件にもとづく第6スイッチS6の制御を実行してもよい。即ち、特定負荷500の消費電力が一定電力以下の場合は、特定負荷500への給電を停止しない。当該一定電力を例えば1kWとすると、太陽光発電システム300の発電に関係なく、1kWを超えない範囲で特定負荷500を使用できる。従って、停電時における特定負荷500への給電機会を増やすことができる。ここで、一定電力の値は、停電時の使用が想定される照明や空調機器の消費電力を考慮して決定することが望ましい。
 またスイッチ制御部39は系統電源200の停電時にて、特定負荷500の消費電力が、太陽光発電システム300の発電電力に調整電力(正の値)を加えた調整後の発電電力を上回るとき第6スイッチS6をオフしてもよい。この場合も、停電時における特定負荷500への給電機会を増やすことができる。ここで、調整電力の値は、特定負荷500への給電機会の確保と、蓄電池保護のバランスを考慮して決定することが望ましい。
 またスイッチ制御部39は系統電源200の停電時にて、蓄電池モジュール10のSOCが過放電防止用設定値(例えば10%)を下回ると第6スイッチS6をオフする。過放電防止用設定値は特定負荷500の容量に応じて設定される。特定負荷500の容量が小さいほど、過放電防止用設定値に小さな値が設定される。スイッチ制御部39は、当該二つの条件の両方を満たしたとき第6スイッチS6をオフしてもよいし、一方を満たしただけで第6スイッチS6をオフしてもよい。
 図8は、本発明の実施の形態に係る蓄電システム100による、温度制御例を説明するためのフローチャートである。監視データ取得部32は、蓄電池モジュール10から蓄電池セル11の温度を取得し(S40)、温度センサ600から環境温度を取得する(S41)。
 温度制御部37は蓄電池セル11の最高温度が40℃以上であるか否か判定する(S42)。40℃以上である場合(S42のY)、温度制御部37は冷却2(図7参照)の処理を発動する(S43)。40℃未満である場合(S42のN)、温度制御部37は蓄電池セル11の最高温度が30℃以上であり、かつ蓄電池セル11の最高温度が(環境温度+2)℃以上であるか否か判定する(S44)。その条件を満たす場合(S44のY)、温度制御部37は冷却1(図7参照)の処理を発動する(S45)。その条件を満たさない場合(S44のN)、温度制御部37は蓄電池セル11への充電中であるか、又は蓄電池セル11の充電前加熱が必要であるか判定する(S46)。
 ステップS46の条件を満たす場合(S46のY)、温度制御部37は蓄電池セル11の最低温度が5℃未満であるか否か判定する(S47)。5℃未満である場合(S47のY)、温度制御部37は充電加熱(図7参照)の処理を発動する(S48)。5℃以上である場合(S47のN)、温度制御部37は通常温度(図7参照)の処理を発動する(S50)。
 ステップS46の条件を満たさない場合(S46のN)、温度制御部37は蓄電池セル11の最低温度が(放電可能な最低温度+2)℃未満であるか否か判定する(S49)。(放電可能な最低温度+2)℃未満である場合(S49のY)、温度制御部37は放電加熱(図7参照)の処理を発動する(S51)。(放電可能な最低温度+2)℃以上である場合(S50のN)、温度制御部37は通常温度(図7参照)の処理を発動する(S50)。
 蓄電システム100の運転が終了するまで(S52のY)、ステップS40~ステップS51までの処理が繰り返し実行される(S52のN)。なお図8では便宜的に一番下に描いているが、運転終了の判定処理は、どの時点でも実行される。
 本実施の形態に係る蓄電システム100では、蓄電池セル11の放電可能な最低温度を、充電可能な最低温度より低く設定する。例えば、蓄電池セル11の放電可能な最低温度を-10℃、充電可能な最低温度を2℃に設定する。上述の温度制御における充電加熱または放電加熱が発動される温度は、充電可能な最低温度または放電可能な最低温度にオフセット値が加えられた値に設定されている。例えば充電加熱が発動される温度は、充電可能な最低温度の2℃にオフセット値の3℃が加えられた5℃に設定されている。
 充電可能な最低温度および放電可能な最低温度は、電池メーカにより推奨される最低充電温度および最低放電温度と一致している必要はない。この最低充電温度および最低放電温度は電池劣化を最小限に抑えるために、電池メーカが電池性能から求めた値である。蓄電システムメーカは通常、パワーコンディショナの充電/放電電圧範囲などのシステム制約を考慮し、充電可能な最低温度および放電可能な最低温度を、当該最低充電温度および最低放電温度より高い値に設定する。また通常、システム設計の容易さから、充電可能な最低温度および放電可能な最低温度を同じ値に設定する。
 本実施の形態に係る蓄電システム100では、系統電源200の停電時においてもヒータ70が蓄電池モジュール10から給電を受けることができる。従って系統電源200の停電時においても蓄電池セル11を温めることができる。仮に蓄電池セル11の温度が、充電可能な最低温度を下回っていてもヒータ70による加熱により、その温度以上に上昇させる余地がある。系統電源200の停電時においてヒータ70を稼働させるには、蓄電池モジュール10から放電するか、太陽光発電システム300が発電している必要がある。
 寒冷地では太陽光パネルの上に積雪することがあり、晴れていても発電できない状況が発生し得る。これに対して寒冷地では太陽光パネルに融雪装置が設置される場合がある。この融雪装置も上述の交流電流路に接続すれば、系統電源200の停電時にも融雪装置を稼働させることができる。
 ヒータ70や融雪装置が稼働可能な状況を最大限に確保するには、蓄電池セル11の放電可能な最低温度をできるだけ低く設定することが望ましい。例えば、電池メーカのスペックシートに記載された最低放電温度に設定してもよい。蓄電池セル11の充電可能な最低温度は、システム制約や電池保護の観点からスペックシートに記載された最低充電温度より高い値に設定する。
 さらに蓄電池セル11の放電可能な最低温度に、系統連系モードと自立運転モードで異なる値を設定してもよい。具体的には自立運転モードのほうが低い値を設定してもよい。例えば、系統連系モードのとき-4℃、自立運転モードのとき-7℃に設定してもよい。系統連系モードでは蓄電池モジュール10から放電しなくてもヒータ70及び特定負荷500は系統電源200から給電を受けることができるが、自立運転モードでは系統電源200から給電を受けることができない。逆にいえば系統連系モードでは蓄電池モジュール10からの給電を確保する必要性が低い。そこで電池保護を優先して、放電可能な最低温度の値を高く設定する。
 充放電制御部35は、系統連系モードにて蓄電池モジュール10から放電する場合、放電初期の放電量を低く制御してもよい。具体的にはユーザから指定された放電量より低い放電量で放電を開始する。この初期放電量は、設計者が予め設定する。充放電制御部35は、蓄電池セル11の温度上昇に対応して漸次的に放電量を増加させていく。
 蓄電池セル11の温度が低くても放電量が小さければ、放電電圧が過小になることを抑えることができる。蓄電池セル11の温度が上昇し、内部抵抗が下降するのに合わせて放電量を上げていけば放電電圧の変化を緩やかにできる。この制御を用いれば電池の保護をより強化できる。
 充放電制御部35は、自立運転モードにて蓄電池モジュール10から放電する場合、放電初期から、設定された放電量で放電するよう制御する。自立運転モードでは特定負荷500に系統電源200から給電されないため蓄電池モジュール10からの給電量を確保する必要がある。一方、系統連系モードでは一般負荷400及び特定負荷500に系統電源200から給電されているため、蓄電池モジュール10からの放電量を絞っても一般負荷400及び特定負荷500の動作を保証できる。
 充放電制御部35が系統連系モードにて放電初期の放電量を低く制御するのは、蓄電池セル11の温度が、放電可能な最低温度にオフセット(正の値)を加算した設定温度より低いときのみであってもよい。蓄電池セル11の温度が当該設定温度より高ければ、放電開始時に放電電圧が過小になることが抑制されるためである。
 上述のように自立運転モードでは、放電開始時に放電量を絞る制御を好ましくない。また、太陽光発電システム300の発電量と特定負荷500の消費電力量の関係は不定である。従って放電状態から充電状態に突然切り替わることもある。そこで自立運転モードでは、温度制御部37は、蓄電池セル11の最低温度が、充電可能な最低温度を常に上回るように制御してもよい。
 以上説明したように本実施の形態によれば、蓄電池セル11を収納した筐体内にヒータ70、インバータファン50、蓄電池ファン60を設けた蓄電システムにて、蓄電池セル11の温度を効率的に調整できる。蓄電池セル11を冷却する場合、蓄電池セル11の温度および環境温度に応じて、インバータファン50及び蓄電池ファン60の稼働状態を制御する。例えば非常に高温の場合は両方を稼働させるが、高温の程度が低い場合は蓄電池ファン60のみを稼働させる。後者の制御によれば、インバータファン50の消費電力を抑え、かつインバータファン50の騒音を防止しつつ蓄電池セル11を冷却できる。
 また蓄電池セル11を加熱する場合、蓄電池ファン60を稼働させることによりヒータ70からの温風を筐体110内に行き渡らせることができる。蓄電池ファン60を底面側にインバータファン50を天面側に設置し、蓄電池セル11を加熱する際にインバータファン50は稼働させないことにより、温風を底面側から天面側に流すことができる。
 また放電可能な最低温度を、充電可能な最低温度より低く設定することにより、ヒータ70への給電をできるだけ確保することができる。これにより温度制約により充電不能となる事態をできるだけ少なくできる。また蓄電システム100の運転モードにより、放電可能な最低温度を使い分けることにより、蓄電システム100をより最適に運転できる。
 以上、本発明を実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 上述した実施の形態では蓄電池ファン60(以下、吸気ファン60という)を一つ設置する例を説明した。以下の変形例では複数の吸気ファン60を設置する例を説明する。
 図9は、変形例に係る蓄電システム100の物理的な構成例を説明するための図である。図9は、筐体110を底面110bから見た図を示す。本変形例でも、第1蓄電池モジュール10a、第2蓄電池モジュール10b、第3蓄電池モジュール10c、第4蓄電池モジュール10d、第5蓄電池モジュール10e、第6蓄電池モジュール10fの6個の蓄電池モジュールが縦置きに並べて配置される。本変形例では、吸気ファン60及びヒータ70の組が三つ配置される。第1吸気ファン60a及び第1ヒータ70aは主に、第1蓄電池モジュール10a及び第2蓄電池モジュール10bを冷却または加熱するためのものである。第2吸気ファン60b及び第2ヒータ70bは主に、第3蓄電池モジュール10c及び第4蓄電池モジュール10dを冷却または加熱するためのものである。第3吸気ファン60c及び第3ヒータ70cは主に、第5蓄電池モジュール10e及び第6蓄電池モジュール10fを冷却または加熱するためのものである。
 外気温が低い場合、筐体110の側面に近接して配置される蓄電池モジュール(図9では第1蓄電池モジュール10a及び第6蓄電池モジュール10f)の温度は、筐体110の中央側に配置される蓄電池モジュール(図9では第3蓄電モジュール10c及び第4蓄電池モジュール10d)の温度よりも低くなる傾向がある。筐体110の側面から冷気が伝わるためである。従って、筐体110の側面に近接して配置される蓄電池モジュールが温まりにくい傾向にある。
 そこで温度制御部37は、複数の蓄電池モジュール10a~fを冷却する場合、複数の吸気ファン60a~cのうち筐体110の中央部に近い吸気ファン60bを優先的に稼働させる。例えば、吸気ファン60bの風量を多くする、もしくは風量を多くする吸気ファン60b以外の吸気ファン60a、60cを間欠動作または停止状態にする。
 また温度制御部37は、複数の蓄電池モジュール10a~fを加熱する場合、複数のヒータ70a~cのうち筐体110の側面に近いヒータ70a、70cを優先的に稼働させる。それと共に、複数の吸気ファン60a~cのうち筐体110の中央部に近い吸気ファン60bを優先的に稼働させる。筐体110の側面に近いヒータ70a、70cの直下の吸気ファン60a、60cを稼動させると、熱風がターゲットの蓄電池モジュール以外に流れやすくなるため、中央部に近い吸気ファン60bを優先的に稼働させる。
 また温度制御部37は、複数の蓄電池モジュール10a~fを冷却する場合、複数の吸気ファン60a~cのうち、複数の蓄電池モジュール10a~fのうちの最も高い温度が検出された蓄電池モジュールを冷却するための吸気ファンを優先的に稼働させる。
 また温度制御部37は、複数の蓄電池モジュール10a~fを加熱する場合、複数のヒータa~cのうち、複数の蓄電池モジュール10a~fのうちの最も低い温度が検出された蓄電池モジュールを加熱するためのヒータを優先的に稼働させる。それと共に、複数の吸気ファン60a~cのうち、複数の蓄電池モジュール10a~fのうちの最も高い温度が検出された蓄電池モジュールに送風するための吸気ファンを優先的に稼働させる。
 なお各蓄電池モジュール10a~fには、それぞれ温度センサ14が搭載されている。温度制御部37は、それら温度センサ14の出力値を参照して、複数の蓄電池モジュール10a~fのうち、最も温度が高い又は低い蓄電池モジュールを特定できる。
 上述の実施の形態では系統電源に接続された蓄電システム100に太陽光発電システム300を連携する例を説明した。この点、本発明に係る蓄電システムは太陽光発電システム300以外の、再生可能エネルギーをもとに発電する発電装置と連携することもできる。例えば直流出力の、風力発電装置、マイクロ水力発電装置などが該当する。
 なお、本実施の形態に係る発明は、以下に記載する項目によって特定されてもよい。
[項目1]
 筐体内に配置された複数の蓄電池と、
 前記筐体内に配置された複数の吸気ファンと、
 前記筐体内に配置された複数のヒータと、を備え、
 前記複数の蓄電池を冷却する場合、前記複数の吸気ファンのうち前記筐体の側面から離れた位置の吸気ファンを優先的に稼動させ、前記複数の蓄電池を加熱する場合、前記複数のヒータのうち前記筐体の側面に近い位置のヒータを優先的に稼動させ、かつ前記複数の吸気ファンのうち前記筐体の側面から離れた位置の吸気ファンを優先的に稼動させることを特徴とする蓄電システム。
[項目2]
 筐体内に配置された複数の蓄電池と、
 前記筐体内に配置された複数の吸気ファンと、
 前記筐体内に配置された複数のヒータと、を備え、
 前記複数の蓄電池を冷却する場合、前記複数の吸気ファンのうち、最も高い温度が検出された蓄電池に送風するための吸気ファンを優先的に稼動させ、前記複数の蓄電池を加熱する場合、前記複数のヒータのうち、最も低い温度が検出された蓄電池を加熱するためのヒータを優先的に稼働させ、かつ前記複数の吸気ファンのうち、最も高い温度が検出された蓄電池に送風するための吸気ファンを優先的に稼動させることを特徴とする蓄電システム。
[項目3]
 前記筐体内の空気を排気する排気ファンを、さらに備え、
 前記複数の蓄電池の最高温度が第1設定温度以上で、かつ前記複数の蓄電池の最高温度が環境温度より設定値以上高い場合、前記排気ファンを稼働させずに前記複数の吸気ファンの少なくとも一つを稼働させることを特徴とする請求項1または2に記載の蓄電システム。
[項目4]
 前記蓄電池の最高温度が、前記第1設定温度より高い第2設定温度以上の場合、前記排気ファン及び前記複数の吸気ファンの少なくとも一つを稼働させることを特徴とする請求項3に記載の蓄電システム。
[項目5]
 筐体内に配置された複数の蓄電池と、
 前記筐体内に配置された複数の吸気ファンと、
 前記筐体内に配置された複数のヒータと、を備え、
 前記複数の蓄電池を加熱する場合、前記複数のヒータのうち前記筐体の側面に近い位置のヒータを優先的に稼動させ、かつ前記複数の吸気ファンのうち前記筐体の側面から離れた位置の吸気ファンを優先的に稼動させることを特徴とする蓄電システム。
 100 蓄電システム、 110 筐体、 111 第1空気孔、 112 取っ手、 113 第2空気孔、 114 第3空気孔、 115,116 入線孔、 10 蓄電池モジュール、 11 蓄電池セル、 12 電圧センサ、 13 電流センサ、 14 温度センサ、 20 蓄電池パワーコンディショナ、 21 双方向インバータ、 22 制御回路、 30 蓄電池管理装置、 31 通信部、 32 監視データ取得部、 33 ユーザ入力受付部、 34 SOC算出部、 35 充放電制御部、 36 発電制御部、 37 温度制御部、 38 ファン・ヒータ制御部、 39 スイッチ制御部、 40 PVパワーコンディショナ、 41 インバータ、 42 制御回路、 50 インバータファン、 60 蓄電池ファン、 70 ヒータ、 200 系統電源、 300 太陽光発電システム、 400 一般負荷、 500 特定負荷、 600 温度センサ、 S1 第1スイッチ、 S2 第2スイッチ、 S3 第3スイッチ、 S4 第4スイッチ、 S5 第5スイッチ、 S6 第6スイッチ、 S7 第7スイッチ、 S8 第8スイッチ、 S9 第9スイッチ、 B1 第1ブレーカ、 B2 第2ブレーカ、 B3 第3ブレーカ。
 本発明は、寒冷地仕様の蓄電システムに利用可能である。

Claims (5)

  1.  筐体内に配置された複数の蓄電池と、
     前記筐体内に配置された複数の吸気ファンと、
     前記筐体内に配置された複数のヒータと、を備え、
     前記複数の蓄電池を冷却する場合、前記複数の吸気ファンのうち前記筐体の側面から離れた位置の吸気ファンを優先的に稼動させ、前記複数の蓄電池を加熱する場合、前記複数のヒータのうち前記筐体の側面に近い位置のヒータを優先的に稼動させ、かつ前記複数の吸気ファンのうち前記筐体の側面から離れた位置の吸気ファンを優先的に稼動させることを特徴とする蓄電システム。
  2.  筐体内に配置された複数の蓄電池と、
     前記筐体内に配置された複数の吸気ファンと、
     前記筐体内に配置された複数のヒータと、を備え、
     前記複数の蓄電池を冷却する場合、前記複数の吸気ファンのうち、最も高い温度が検出された蓄電池に送風するための吸気ファンを優先的に稼動させ、前記複数の蓄電池を加熱する場合、前記複数のヒータのうち、最も低い温度が検出された蓄電池を加熱するためのヒータを優先的に稼働させ、かつ前記複数の吸気ファンのうち、最も高い温度が検出された蓄電池に送風するための吸気ファンを優先的に稼動させることを特徴とする蓄電システム。
  3.  前記筐体内の空気を排気する排気ファンを、さらに備え、
     前記複数の蓄電池の最高温度が第1設定温度以上で、かつ前記複数の蓄電池の最高温度が環境温度より設定値以上高い場合、前記排気ファンを稼働させずに前記複数の吸気ファンの少なくとも一つを稼働させることを特徴とする請求項1または2に記載の蓄電システム。
  4.  前記蓄電池の最高温度が、前記第1設定温度より高い第2設定温度以上の場合、前記排気ファン及び前記複数の吸気ファンの少なくとも一つを稼働させることを特徴とする請求項3に記載の蓄電システム。
  5.  筐体内に配置された複数の蓄電池と、
     前記筐体内に配置された複数の吸気ファンと、
     前記筐体内に配置された複数のヒータと、を備え、
     前記複数の蓄電池を加熱する場合、前記複数のヒータのうち前記筐体の側面に近い位置のヒータを優先的に稼動させ、かつ前記複数の吸気ファンのうち前記筐体の側面から離れた位置の吸気ファンを優先的に稼動させることを特徴とする蓄電システム。
PCT/JP2013/000913 2013-02-19 2013-02-19 蓄電システム WO2014128753A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015501065A JP5975314B2 (ja) 2013-02-19 2013-02-19 蓄電システム
PCT/JP2013/000913 WO2014128753A1 (ja) 2013-02-19 2013-02-19 蓄電システム
JP2015045649A JP2015159115A (ja) 2013-02-19 2015-03-09 蓄電システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/000913 WO2014128753A1 (ja) 2013-02-19 2013-02-19 蓄電システム
JP2015045649A JP2015159115A (ja) 2013-02-19 2015-03-09 蓄電システム

Publications (1)

Publication Number Publication Date
WO2014128753A1 true WO2014128753A1 (ja) 2014-08-28

Family

ID=59562618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000913 WO2014128753A1 (ja) 2013-02-19 2013-02-19 蓄電システム

Country Status (2)

Country Link
JP (2) JP5975314B2 (ja)
WO (1) WO2014128753A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016184476A (ja) * 2015-03-25 2016-10-20 パナソニックIpマネジメント株式会社 蓄電システム及び管理装置
JP2019515414A (ja) * 2016-03-02 2019-06-06 ゲンサーム インコーポレイテッド 車両用のバッテリー及びキャパシタアセンブリ、並びにその加熱及び冷却のための方法
US11220988B2 (en) 2016-03-02 2022-01-11 Gentherm Incorporated Systems and methods for supplying power in a hybrid vehicle using capacitors, a battery and one or more DC/DC converters
EP4002552A4 (en) * 2019-10-28 2022-10-26 Lg Energy Solution, Ltd. SYSTEM AND METHOD FOR COOLING BATTERY MODULES INCLUDED IN AN ENERGY STORAGE SYSTEM (ESS)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101829093B1 (ko) * 2014-10-22 2018-03-29 주식회사 엘지화학 배터리 시스템의 냉각 공기 흐름 제어 시스템 및 방법
JP6837408B2 (ja) * 2017-09-22 2021-03-03 株式会社日立製作所 二次電池の制御装置および制御方法
KR102375845B1 (ko) * 2017-11-24 2022-03-17 주식회사 엘지에너지솔루션 배터리 장치 및 배터리 온도 조절방법
KR102591516B1 (ko) 2018-04-17 2023-10-19 삼성에스디아이 주식회사 배터리팩 및 이를 구비하는 전자기기

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0983167A (ja) * 1995-09-20 1997-03-28 Fujitsu Ltd 屋外設置電子装置筐体
JP2003229110A (ja) * 2002-01-31 2003-08-15 Sanyo Electric Co Ltd 車両用のバッテリー装置
JP2010092723A (ja) * 2008-10-08 2010-04-22 Toyota Motor Corp 電池温度調節装置
JP2010114989A (ja) * 2008-11-05 2010-05-20 Denso Corp 電池冷却装置
JP2013020497A (ja) * 2011-07-12 2013-01-31 Mitsubishi Motors Corp 組電池の温度調節装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3573927B2 (ja) * 1997-08-29 2004-10-06 三洋電機株式会社 電池ユニットの充電方法及び装置
JP4007763B2 (ja) * 2001-02-01 2007-11-14 三洋電機株式会社 組電池
JP2006109542A (ja) * 2004-09-30 2006-04-20 Sanyo Electric Co Ltd 車両用の電源装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0983167A (ja) * 1995-09-20 1997-03-28 Fujitsu Ltd 屋外設置電子装置筐体
JP2003229110A (ja) * 2002-01-31 2003-08-15 Sanyo Electric Co Ltd 車両用のバッテリー装置
JP2010092723A (ja) * 2008-10-08 2010-04-22 Toyota Motor Corp 電池温度調節装置
JP2010114989A (ja) * 2008-11-05 2010-05-20 Denso Corp 電池冷却装置
JP2013020497A (ja) * 2011-07-12 2013-01-31 Mitsubishi Motors Corp 組電池の温度調節装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016184476A (ja) * 2015-03-25 2016-10-20 パナソニックIpマネジメント株式会社 蓄電システム及び管理装置
JP2019515414A (ja) * 2016-03-02 2019-06-06 ゲンサーム インコーポレイテッド 車両用のバッテリー及びキャパシタアセンブリ、並びにその加熱及び冷却のための方法
US11220988B2 (en) 2016-03-02 2022-01-11 Gentherm Incorporated Systems and methods for supplying power in a hybrid vehicle using capacitors, a battery and one or more DC/DC converters
JP6992941B2 (ja) 2016-03-02 2022-01-13 ゲンサーム インコーポレイテッド 車両用のバッテリー及びキャパシタアセンブリ、並びにその加熱及び冷却のための方法
US11616262B2 (en) 2016-03-02 2023-03-28 Gentherm Incorporated Battery and capacitor assembly for a vehicle and a method for heating and cooling the battery and capacitor assembly
US11852114B2 (en) 2016-03-02 2023-12-26 Gentherm Incorporated Systems and methods for supplying power in a hybrid vehicle using capacitors, a battery and one or more DC/DC converters
EP4002552A4 (en) * 2019-10-28 2022-10-26 Lg Energy Solution, Ltd. SYSTEM AND METHOD FOR COOLING BATTERY MODULES INCLUDED IN AN ENERGY STORAGE SYSTEM (ESS)

Also Published As

Publication number Publication date
JP2015159115A (ja) 2015-09-03
JP5975314B2 (ja) 2016-08-23
JPWO2014128753A1 (ja) 2017-02-02

Similar Documents

Publication Publication Date Title
JP5975314B2 (ja) 蓄電システム
WO2014128745A1 (ja) 蓄電システム
JP7113267B2 (ja) 蓄電システム
EP3159997B1 (en) Electrical power-supplying device and method for supplying electrical power
JP2013542706A (ja) バッテリーバランシングシステム
JP5891367B2 (ja) 蓄電システム
CN105591460A (zh) 用于电池管理的系统和方法
JP6395849B2 (ja) 電池管理システムを配線するデバイスおよび方法
JP6296383B2 (ja) 蓄電池パワーコンディショナ
KR102591536B1 (ko) 에너지 저장장치
WO2017203985A1 (ja) 蓄電システム、及び管理装置
JP6369803B2 (ja) 蓄電装置
WO2014125520A1 (ja) 蓄電システム
WO2014125519A1 (ja) 蓄電システム
US20160043580A1 (en) System and method for reducing current variability between multiple energy storage devices
WO2015019387A1 (ja) 蓄電池管理装置
WO2014122690A1 (ja) 蓄電システム
WO2014122691A1 (ja) 蓄電システム
JP6982820B2 (ja) 制御指令システム、及び電力変換システム
KR102639782B1 (ko) 에너지 저장장치
WO2015019386A1 (ja) 蓄電池管理装置および表示装置
JP6519781B2 (ja) 蓄電システム及び管理装置
CN108390115A (zh) 电池管理系统、方法及汽车
JP2020014271A (ja) 蓄電システムおよび制御方法
KR102626903B1 (ko) 에너지 저장장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875520

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015501065

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13875520

Country of ref document: EP

Kind code of ref document: A1