WO2014125520A1 - 蓄電システム - Google Patents

蓄電システム Download PDF

Info

Publication number
WO2014125520A1
WO2014125520A1 PCT/JP2013/000885 JP2013000885W WO2014125520A1 WO 2014125520 A1 WO2014125520 A1 WO 2014125520A1 JP 2013000885 W JP2013000885 W JP 2013000885W WO 2014125520 A1 WO2014125520 A1 WO 2014125520A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
storage battery
inverter
switch
power generation
Prior art date
Application number
PCT/JP2013/000885
Other languages
English (en)
French (fr)
Inventor
康弘 八木
武 東野
久保 守
泰生 奥田
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to PCT/JP2013/000885 priority Critical patent/WO2014125520A1/ja
Publication of WO2014125520A1 publication Critical patent/WO2014125520A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00016Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus
    • H02J13/00017Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus using optical fiber
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/124Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wired telecommunication networks or data transmission busses

Definitions

  • the present invention relates to a power storage system including a storage battery and a power generation device based on renewable energy.
  • the present invention has been made in view of such circumstances, and its purpose is to have high versatility when a power generation system that generates power based on renewable energy is linked to a power storage system connected to a system power supply. It is to provide a technology that can efficiently use electric power.
  • a power storage system includes a storage battery and a first converter that converts AC power to DC power when charging the storage battery, and converts DC power to AC power when discharging from the storage battery.
  • An inverter a second inverter that converts DC power generated by a power generator that generates power based on renewable energy into AC power, an AC side terminal of the first inverter, an AC side terminal of the second inverter, and a system An alternating current path for conducting the power supply.
  • FIGS. 4A to 4D are diagrams for explaining a physical configuration example of the power storage system according to the embodiment of the present invention. It is the figure which looked at the housing
  • the embodiment of the present invention relates to a power storage system connected to a system power supply, and further relates to a power storage system linked to a solar power generation system.
  • the power storage system is installed in, for example, industrial facilities, public facilities, commercial facilities, office buildings, residences, and the like.
  • the electricity bill at night time is set lower than the electricity bill at daytime. For example, the electricity charge from 23:00 to 7:00 on the next day is set cheaper than other time zones. Therefore, the electricity charge can be suppressed by charging the storage battery from the system power supply at night and using the electric power stored in the storage battery during the daytime. From the power company side, the amount of power used will be leveled.
  • the electric power stored in the storage battery is used as a backup power source for operating a specific load (for example, a light, an elevator, a computer server, etc.) when the system power supply fails.
  • the specific load is a preset load that can receive power supply from the storage battery or the solar power generation system preferentially at the time of a power failure of the system power supply.
  • other loads are referred to as general loads.
  • FIG. 1 is a diagram for explaining a power storage system 100 according to an embodiment of the present invention.
  • the power storage system 100 includes a storage battery module 10, a storage battery power conditioner 20, a storage battery management device 30, an inverter fan 50, a storage battery fan 60, a first switch S1 to a ninth switch S9, and a first breaker B1 to a third.
  • a breaker B3 is provided.
  • relays are used for the first switch S1 to the ninth switch S9.
  • a semiconductor switch such as a power MOSFET may be used instead of the relay.
  • System power supply 200 is a commercial power supply supplied from an electric power company.
  • the system power supply 200 is connected to the storage battery power conditioner 20 via the second switch S2. Moreover, it is connected to the PV power conditioner 40 through the fourth switch S4, the fifth switch S5, and the second breaker B2. Between the storage battery power conditioner 20 and the PV power conditioner 40, the second switch S2, the fourth switch S4, the fifth switch S5, the second breaker B2, or the third switch S3, the fourth switch S4, the fifth It is connected via the switch S5 and the second breaker B2.
  • the path between the grid power supply 200 and the storage battery power conditioner 20, the path between the grid power supply 200 and the PV power conditioner 40, and the path between the storage battery power conditioner 20 and the PV power conditioner 40 are configured to be conductive. Alternating current flows through these paths. Hereinafter, these paths are collectively referred to as an alternating current path.
  • the storage battery power conditioner 20 is connected to the storage battery module 10 via the first switch S1 and the first breaker B1.
  • the photovoltaic power generation system 300 includes a solar cell 310 and a PV power conditioner 40, and the PV power conditioner 40 is connected to the solar cell 310.
  • the storage battery power conditioner 20 includes a bidirectional inverter 21 (see FIG. 6) as described later.
  • the bidirectional inverter 21 converts AC power into DC power when charging the storage battery module 10, and converts DC power into AC power when discharging from the storage battery module 10.
  • the PV power conditioner 40 includes an inverter 41 (see FIG. 6) as will be described later.
  • the inverter 41 converts DC power generated by the solar power generation system 300 into AC power.
  • the storage battery module 10 is a packaged secondary battery that can be freely charged and discharged and can be used repeatedly.
  • the storage battery module 10 includes a plurality of storage battery cells connected in series or series-parallel. In the present embodiment, it is assumed that a lithium ion battery is used as the storage battery cell. Other types of batteries such as nickel metal hydride batteries and lead batteries may be used instead of lithium ion batteries.
  • One or a plurality of storage battery modules 10 are used in combination.
  • the plurality of storage battery modules 10 connected in series are connected / disconnected by the switching unit.
  • a plurality of storage battery modules 10 may be used in series-parallel connection.
  • the storage battery module 10 is charged with grid power or power generated by the solar power generation system 300.
  • the solar power generation system 300 is a power generation device that uses the photovoltaic effect. Any of a silicon system, a compound system, and an organic system may be used for the solar battery constituting the solar power generation system 300.
  • the storage battery power conditioner 20 converts the DC power output from the storage battery module 10 into AC power
  • the PV power conditioner 40 converts the DC power generated by the photovoltaic power generation system 300 into AC power.
  • 200, the storage battery module 10, and the photovoltaic power generation system 300 can be linked by a single alternating current path.
  • General load 400 is connected on a path between system power supply 200 and power storage system 100.
  • the specific load 500 is connected to a node between the fourth switch S4 and the fifth switch S5 in the AC current path via the sixth switch S6 and the third breaker B3.
  • General load 400 and specific load 500 operate by receiving AC power supplied from an AC current path.
  • the specific load 500 can receive power supply from at least one of the storage battery module 10 and the photovoltaic power generation system 300, but the general load 400 cannot receive power supply.
  • the inverter fan 50 is connected to a node between the fourth switch S4 and the fifth switch S5 in the AC current path via the seventh switch S7.
  • the inverter fan 50 is a fan for cooling the bidirectional inverter 21 of the storage battery power conditioner 20.
  • the storage battery fan 60 is connected to a node between the fourth switch S4 and the fifth switch S5 in the AC current path via the ninth switch S9.
  • the storage battery fan 60 is a fan that is operated when the storage battery module 10 is cooled and heated.
  • the heater 70 is connected to a node between the fourth switch S4 and the fifth switch S5 in the AC current path via the eighth switch S8.
  • the heater 70 is a heater for heating the storage battery module 10 and is used for increasing the temperature of the storage battery cell in the storage battery module 10.
  • the temperature sensor 600 detects the outside air temperature as the environmental temperature and outputs it to the storage battery management device 30.
  • a thermistor can be used as the temperature sensor 600.
  • the storage battery management device 30 is mainly a device for managing the storage battery module 10.
  • the storage battery management device 30 and the storage battery power conditioner 20 are connected to each other, and the storage battery management device 30 and the PV power conditioner 40 are connected to each other by a communication line using a metal wire. Between them, communication conforming to serial communication standards such as RS-232C and RS-485 is executed.
  • the communication lines are insulated from each other by using optical fibers.
  • the storage battery management device 30 is connected to the storage battery module 10 through a communication line using an optical fiber.
  • the storage battery device 30 is connected to each of the seventh switch S7 to the ninth switch S9 by a communication line using metal wiring.
  • the storage battery management device 30 indirectly controls the inverter fan 50 and the like by controlling on / off of the seventh switch S7 to the ninth switch S9. Detailed operation of the storage battery management device 30 will be described later.
  • Each of the first switch S1 to the sixth switch S6 and the first breaker B1 to the third breaker B3 is connected to the storage battery power conditioner 20 through a communication line using metal wiring. These are controlled by a control circuit 22 (see FIG. 6), which will be described later, in the storage battery power conditioner 20 based on an instruction from the power storage management device 30 to the storage battery power conditioner 20 or based on a judgment unique to the storage battery power conditioner 20. .
  • the power storage system 100 is operated in either the grid connection mode or the independent operation mode.
  • the self-sustained operation mode is basically selected at the time of power failure of the system power supply 200.
  • FIG. 2 is a diagram for explaining a grid interconnection mode of power storage system 100 according to the embodiment of the present invention.
  • the control circuit 22 in the storage battery power conditioner 20 controls the second switch S2 to be on, the third switch S3 to be off, and the fourth switch S4 to the third switch side. Control to connect to the terminal on the system power supply side instead.
  • the grid connection mode the grid power supply 200, the photovoltaic power generation system 300, and the storage battery module 10 are conducted through a single AC current path AP (see thick line).
  • the bidirectional inverter 21 of the storage battery power conditioner 20 When discharging from the storage battery module 10 in the grid connection mode, the bidirectional inverter 21 of the storage battery power conditioner 20 causes a current to flow through the AC current path AP at a frequency and phase synchronized with the frequency of the system power supply 200.
  • FIG. 3 is a diagram for explaining a self-sustaining operation mode of power storage system 100 according to the embodiment of the present invention.
  • the control circuit 22 in the storage battery power conditioner 20 controls the second switch S2 to be turned off and the third switch S3 to be turned on, and the fourth switch S4 is turned on the system power supply side. Control to connect to the terminal on the third switch side.
  • the photovoltaic power generation system 300 and the storage battery module 10 are electrically disconnected from the system power supply 200.
  • the bidirectional inverter 21 of the storage battery power conditioner 20 When discharging from the storage battery module 10 in the self-sustained operation mode, the bidirectional inverter 21 of the storage battery power conditioner 20 causes a current to flow from the system power supply 200 to the AC current path AP at a frequency and phase independent from each other.
  • the specific load 500 is electrically connected to the alternating current path AP (see thick line) formed in the self-sustained operation mode, but the general load 400 is electrically cut off. Therefore, the power stored in the storage battery module 10 and the power generated by the solar power generation system 300 can be supplied only to the specific load 500 at the time of a power failure.
  • FIGS. 4A to 4D are diagrams for explaining a physical configuration example of the power storage system 100 according to the embodiment of the present invention.
  • the components of the power storage system 100 surrounded by a dotted line in FIGS. 1 to 3 are housed in a housing 110 having an openable door.
  • 4A is a view of the housing 110 viewed from the top surface 110t
  • FIG. 4B is a view of the housing 110 viewed from the front surface 110f
  • FIG. 4C is a view of the housing 110 viewed from the bottom surface 110b
  • FIG. 4D is a view of the housing 110 viewed from the right side 110s.
  • the housing 110 is a vertically long box, and the storage battery module 10 is disposed in the lower part of the housing 110.
  • the storage battery management device 30 is disposed on the storage battery module 10, and the storage battery power conditioner 20, the first breaker B1 to the third breaker B3 are disposed thereon.
  • the bidirectional inverter 21 of the storage battery power conditioner 20 is arranged on the top surface side from the storage battery module 10.
  • the PV power conditioner 40 may also be designed to be installed in the housing 110.
  • a first air hole 111 is provided in the top surface 110t of the housing 110.
  • An inverter fan 50 is provided in the vicinity of the first air hole 111.
  • the inverter fan 50 is an exhaust fan and discharges hot air in the vicinity of the bidirectional inverter 21.
  • the inverter fan 50 cools the bidirectional inverter 21 by sucking up air introduced from the second air hole 113 and the third air hole 114 provided in the lower part of the casing 110.
  • a storage battery fan 60 is provided in the lower part of the housing 110.
  • the storage battery fan 60 introduces outside air from the second air hole 113 and the third air hole 114.
  • the cooling efficiency of the power storage module 10 can be increased.
  • a handle 112 As shown in FIG. 4B, a handle 112, a second air hole 113, and a third air hole 114 are provided on the front surface 110f of the housing 110.
  • the second air hole 113 and the third air hole 114 are provided side by side below the front surface 110f.
  • two entry holes 115 and 116 are provided on the bottom surface 110 b of the housing 110.
  • FIG. 5 is a view of the housing 110 viewed from the right side surface 110s.
  • FIG. 5 is a diagram depicting the vicinity of region A in FIG. 4D in more detail.
  • the storage battery fan 60 is arranged in the vicinity of the bottom surface in the housing 110 so that the outside air inlet faces the second air hole 113 and the third air hole 114.
  • the heater 70 receives air sent from the storage battery fan 60 and sends warm air.
  • the heater 70 includes a heat sink, and the storage battery fan 60 and the heater 70 are configured so that the air outlet of the storage battery fan 60 and the heat sink face each other.
  • the storage battery fan 60 and the heater 70 are provided on the bottom side of the storage battery module 10.
  • both the storage battery fan 60 and the heater 70 are operated to warm and release the air sucked from the second air hole 113 and the third air hole 114.
  • the discharged warm air rises from the bottom surface side to the top surface side in the housing 110 and is exhausted from the first air hole 111 provided on the top surface.
  • FIG. 6 is a functional block diagram for explaining the components of the power storage system 100 of FIG.
  • the storage battery module 10 includes a storage battery cell 11, a voltage sensor 12, a current sensor 13, and a temperature sensor 14.
  • the storage battery cell 11 of FIG. 6 is drawn as a general term for a plurality of storage battery cells.
  • the voltage sensor 12 detects the voltage of each storage battery cell.
  • the current sensor 13 detects the current flowing through the storage battery cell 11.
  • a Hall element or a shunt resistor can be used for the current sensor 13.
  • the temperature sensor 14 detects the temperature of the storage battery cell 11 in the storage battery module 10.
  • a thermistor can be used for the temperature sensor 14.
  • the voltage value detected by the voltage sensor 12, the current value detected by the current sensor 13, and the temperature value detected by the temperature sensor 14 are output as monitoring data of the storage battery module 10 to the storage battery management device 30 via the communication path.
  • the storage battery power conditioner 20 includes a bidirectional inverter 21 and a control circuit 22.
  • the control circuit 22 executes mode management of the power storage system 100, control of the bidirectional inverter 21, communication with the storage battery management device 30, control of the first switch S1 to sixth switch S6, control of the first breaker B1 to third breaker B3, and the like. To do.
  • the control circuit 22 controls the inverter fan 50 in order to cool the bidirectional inverter 21.
  • the PV power conditioner 40 includes an inverter 41 and a control circuit 42.
  • the control circuit 42 executes state management of the photovoltaic power generation system 300, power generation control, communication with the storage battery management device 30, and the like.
  • the display device 700 displays various setting screens, status information of the storage battery module 10 and the photovoltaic power generation system 300 under the control of the storage battery management device 30.
  • the storage battery management device 30 includes a communication unit 31, a monitoring data acquisition unit 32, a user input reception unit 33, an SOC (StategeOf Charge) calculation unit 34, a charge / discharge control unit 35, a power generation control unit 36, a temperature control unit 37, a fan / heater A control unit 38 and a switch control unit 39 are provided.
  • SOC StateOf Charge
  • a charge / discharge control unit 35 a power generation control unit 36
  • a temperature control unit 37 a fan / heater
  • a control unit 38 and a switch control unit 39 are provided.
  • These configurations can be realized by an arbitrary processor, memory, or other LSI in terms of hardware, and are realized by a program loaded in the memory in terms of software.
  • Draw functional blocks Accordingly, those skilled in the art will understand that these functional blocks can be realized in various forms by hardware only, software only, or a combination thereof.
  • the communication unit 31 controls packet communication between the storage battery management device 30 and the storage battery power conditioner 20, and packet communication between the storage battery management device 30 and the PV power conditioner 40.
  • the monitoring data acquisition unit 32 acquires monitoring data transmitted from the storage battery module 10. In addition, the monitoring data acquisition unit 32 acquires temperature data indicating the temperature outside the housing 110 transmitted from the temperature sensor 600.
  • the user input reception unit 33 receives information input to the operation unit 800 by the user. For example, information such as a charging start time at which charging processing from the system power supply 200 to the storage battery module 10 is started and a charging rate thereof is received.
  • the SOC calculation unit 34 calculates the SOC (remaining capacity) of the storage battery cell 11 based on the monitoring data transmitted from the storage battery module 10.
  • SOC calculation method an OCV (Open Circuit Voltage) method or a Coulomb count method can be used.
  • the charge / discharge control unit 35 transmits to the control circuit 22 of the storage battery power conditioner 20 a packet signal including a charge setting value indicating a charge rate when the storage battery module 10 is charged. In addition, the charge / discharge control unit 35 transmits a packet signal including a discharge set value indicating a discharge rate when discharging from the storage battery module 10 to the control circuit 22. Further, the charge / discharge control unit 35 receives a packet signal including a charge value that is actually charged or a discharge value that is actually discharged from the control circuit 22. While the storage battery module 10 is being charged or discharged, the charge / discharge control unit 35 periodically transmits a packet signal to the control circuit 22 (for example, every 1 second). Each time the control circuit 22 receives the packet signal, it returns a packet signal containing actual data.
  • the power generation control unit 36 receives a packet signal including power generation information of the solar power generation system 300 from the control circuit 42 of the PV power conditioner 40.
  • the power generation control unit 36 transmits a packet signal including information for controlling power generation to the control circuit 42.
  • the power generation control unit 36 transmits the packet signal to the control circuit 42 periodically (for example, every 1 second). Each time the control circuit 42 receives the packet signal, it returns a packet signal containing actual data. When there is no response from the control circuit 42, the power generation control unit 36 lengthens the transmission cycle of the packet signal. For example, the period is changed to one minute.
  • the temperature control unit 37 controls the temperature of the storage battery cell 11 and controls the fan / heater control unit 38 to adjust the temperature of the storage battery cell 11.
  • the fan / heater control unit 38 operates at least one of the storage battery fan 60 and the inverter fan 50. Basically, the storage battery fan 60 is operated, and the outside air sucked from the second air hole 113 and the third air hole 114 is blown to the storage battery cell 11 to cool the storage battery cell 11. At that time, when the inverter fan 50 is operated, introduction of outside air can be promoted. When the inverter fan 50 is an intake fan, the inverter fan 50 can be operated to introduce outside air from the upper side of the storage battery cell 11.
  • the fan / heater control unit 38 operates the storage battery fan 60 and the heater 70 and controls the inverter fan 50 to be inactive.
  • the temperature of the storage battery cell 11 can be increased by the hot air blowing up from the lower part to the upper part of the storage battery module 10.
  • introduction of outside air from the second air hole 113 and the third air hole 114 can be suppressed, and the air heated by the heater 70 can be circulated inside the housing 110. . Thereby, the heating efficiency of the heater 70 is improved.
  • the inverter fan 50 when the inverter fan 50 is an intake fan, it can prevent that external air is blown from the upper part side of the storage battery module 10 by stopping the inverter fan 50.
  • FIG. The situation in which the storage battery cell 11 needs to be heated is usually a state in which the outside air temperature is low. When the inverter fan 50 is operated, cold air is blown onto the storage battery module 10 from above.
  • the switch control unit 39 transmits a packet signal including control information to the control circuit 22 of the storage battery power conditioner 20, and through the control circuit 22, the first switch S1 to the sixth switch S6 and the first breaker B1 to the first breaker B1.
  • the control of the 3 breaker B3 can be performed.
  • the switch control unit 39 can stop the power supply to the heater 70 by controlling the eighth switch S8 to be off.
  • the power supply to the storage battery fan 60 can be stopped by controlling the ninth switch S9 to be off.
  • the power supply to the inverter fan 50 can be stopped by controlling the seventh switch S7 to be turned off.
  • the seventh switch S7, the eighth switch S8, and the ninth switch S9 can also be controlled from the control circuit 22 of the storage battery power conditioner 20.
  • the switch control unit 39 can stop the power supply to the specific load 500 by controlling the sixth switch S6 to be off.
  • the switch control unit 39 turns off the sixth switch S6 when the power consumption of the specific load 500 exceeds the generated power of the solar power generation system 300 at the time of a power failure of the system power supply 200.
  • the sixth switch S6 is turned off under this condition, there is a tendency that the power supply opportunity to the specific load 500 at the time of a power failure decreases. In particular, when a power failure occurs at night, the specific load 500 cannot be supplied with power. Therefore, when the power consumption of the specific load 500 exceeds a certain power, the sixth switch S6 may be controlled based on the above-described conditions.
  • the power supply to the specific load 500 is not stopped. If the constant power is 1 kW, for example, the specific load 500 can be used within a range not exceeding 1 kW regardless of the power generation of the solar power generation system 300. Therefore, the power supply opportunity to the specific load 500 at the time of a power failure can be increased.
  • it is desirable to determine the value of the constant power in consideration of the power consumption of lighting and air conditioning equipment that is assumed to be used during a power failure.
  • the switch control unit 39 is the first when the power consumption of the specific load 500 exceeds the adjusted generated power obtained by adding the adjusted power (positive value) to the generated power of the photovoltaic power generation system 300 during the power failure of the system power supply 200.
  • the 6 switch S6 may be turned off. Also in this case, the power supply opportunity to the specific load 500 at the time of a power failure can be increased.
  • the switch control unit 39 turns off the sixth switch S6 when the SOC of the storage battery module 10 falls below a set value for preventing overdischarge (for example, 10%) during a power failure of the system power supply 200.
  • the overdischarge prevention set value is set according to the capacity of the specific load 500. As the capacity of the specific load 500 is smaller, a smaller value is set as the overdischarge prevention set value.
  • the switch control unit 39 may turn off the sixth switch S6 when both of the two conditions are satisfied, or may turn off the sixth switch S6 only when one of the two conditions is satisfied.
  • the power storage system 100 operates in the self-sustaining operation mode at the time of power failure of the system power supply 200. Therefore, when the power consumption of the specific load 500 exceeds the power generation power of the solar power generation system 300, the capacity of the storage battery module 10 decreases. The storage battery module 10 deteriorates when overdischarged.
  • Whether or not the power consumption of the specific load 500 exceeds the power generation of the solar power generation system 300 can be determined by detecting whether or not the power storage system 100 is discharged. In the self-sustaining operation mode, when the power consumption of the specific load 500 exceeds the power generation power of the solar power generation system 300, the storage battery module 10 is in a discharged state. Conversely, when the power consumption of the specific load 500 is lower than the power generation of the solar power generation system 300, the storage battery module 10 is in a charged state.
  • the switch control unit 39 can specify whether the storage battery module 10 is discharging or charging with reference to information included in the packet signal received from the control circuit 22 of the storage battery power conditioner 20.
  • a current sensor may be installed in the AC current path, and it may be determined whether or not the power consumption of the specific load 500 exceeds the generated power of the photovoltaic power generation system 300 from the direction of the current. Further, a current sensor may be installed in the current path between the AC current path and the specific load 500, and the determination may be made based on the measured value.
  • FIG. 7 is a flowchart for explaining a control example of the sixth switch S6 in the self-sustaining operation mode by the power storage system 100 according to the embodiment of the present invention.
  • the monitoring data acquisition part 32 acquires monitoring data, such as a voltage value of a storage battery cell, from the storage battery module 10 (S10).
  • the SOC calculation unit 34 calculates the SOC of the storage battery module 10 based on the monitoring data (S11).
  • the switch control unit 39 compares the calculated SOC with the first set value for preventing overdischarge (S12). When the SOC is equal to or higher than the first set value (N in S12), the process proceeds to step S10.
  • the switch control unit 39 determines whether or not the storage battery module 10 is in a discharged state (S13). When not in the discharging state (N in S13), the process proceeds to step S10. When it is in a discharging state (Y in S13), the switch control unit 39 turns off the sixth switch S6 (S14).
  • the monitoring data acquisition part 32 acquires monitoring data, such as a voltage value of a storage battery cell, from the storage battery module 10 (S15).
  • the SOC calculation unit 34 calculates the SOC of the storage battery module 10 based on the monitoring data (S16).
  • the switch control unit 39 compares the calculated SOC with the second set value for return (S17).
  • the second set value is set to a value larger than the first set value. For example, the first set value + 10% is set.
  • the process proceeds to step S15.
  • the switch control unit 39 turns on the sixth switch S6 (S18).
  • the additional condition may be that the storage battery module 10 is in a discharged state.
  • An additional condition may be that the display device 700 displays that the return is possible and the user inputs a return instruction to the operation unit 800. In this case, when the SOC of the storage battery module 10 becomes equal to or higher than the second set value after the sixth switch S6 is turned off, the switch control unit 39 causes the display device 700 to display that it can be returned.
  • the heat dissipating device When the specific load 500 includes a heat dissipating device such as an electric heater, the heat dissipating device is stopped by turning off the sixth switch S6.
  • the user may place a combustible material near the heat dissipating device after the heat dissipating device is stopped. is there.
  • the user can be made aware of the resumption of power supply.
  • the load to be the specific load 500 is selected by the user. Therefore, for example, in the case of only the specific load 500 that does not become an unsafe state even if the LED light is automatically restored, it is not necessary to make a user operation a condition.
  • the user can set in advance whether or not to automatically return from the setting screen displayed on the display device 700 before the start of operation. When this setting is valid, when the SOC becomes equal to or higher than the second set value, the switch control unit 39 turns on the sixth switch S6 and automatically restarts power supply. Note that even if the automatic / manual return setting is changed during operation, it will not be reflected unless the system operation is stopped and restarted.
  • step S10 to step S18 is executed until the self-sustained operation of the power storage system 100 ends (Y in S19) (N in S19). Although shown at the bottom in FIG. 7 for the sake of convenience, the operation end determination process is executed at any time.
  • FIG. 8 is a flowchart for explaining a control example of components other than the sixth switch S6 in the self-sustaining operation mode by the power storage system 100 according to the embodiment of the present invention.
  • the monitoring data acquisition part 32 acquires monitoring data, such as a voltage value of a storage battery cell, from the storage battery module 10 (S20).
  • the SOC calculation unit 34 calculates the SOC of the storage battery module 10 based on the monitoring data (S21).
  • the power generation control unit 36 acquires the power generation information of the solar power generation system 300 from the control circuit 42 of the PV power conditioner 40 (S22).
  • the switch control unit 39 compares the calculated SOC with the first set value for preventing overdischarge (S23). When the SOC is greater than or equal to the first set value (N in S23), the process proceeds to step S20. When the SOC is less than the first set value (Y in S23), the power generation control unit 36 determines whether or not the solar power generation system 300 is generating power (S24). In the power generation state (N in S24), the process proceeds to step S20. In the non-power generation state (Y in S24), the fan / heater control unit 38 controls the heater 70 to be inactive (S25). When the heater 70 is operating, it is stopped, and when it is not operating, the state is maintained. The fan / heater control unit 38 may also control the storage battery fan 60 and the inverter fan 50 to be inactive.
  • step S25 mainly assumes a situation where power can be secured from other than the storage battery module 10 and the solar power generation system 300.
  • the power generation control unit 36 causes the PV power conditioner 40 to shift to the sleep mode by including an instruction to shift to the sleep mode in the packet signal transmitted to the PV power conditioner 40 (S26). Thereby, the power consumption of the PV power conditioner 40 can be reduced.
  • the control circuit 42 of the PV power conditioner 40 may shift the PV power conditioner 40 to the sleep mode by self-determination.
  • the charging / discharging control unit 35 causes the storage battery power conditioner 20 to shift to the sleep mode by including an instruction to shift to the sleep mode in the packet signal transmitted to the storage battery power conditioner 20 (S27). Since the discharge from the storage battery module 10 is prohibited and neither the grid power supply 200 nor the solar power generation system 300 is charged, the storage battery power conditioner 20 is caused to sleep. Thereby, the power consumption of the storage battery power conditioner 20 can be reduced.
  • the control circuit 42 of the PV power conditioner 40 returns the PV power conditioner 40 from the sleep mode to the normal mode (S29).
  • the charge / discharge control unit 35 detects the resumption of power generation of the photovoltaic power generation system 300 with reference to the packet signal received from the PV power conditioner 40, the charge / discharge control unit 35 returns the storage battery power conditioner 20 from the sleep mode to the normal mode (S30). .
  • step S20 to step S30 is executed until the self-sustained operation of the power storage system 100 ends (Y in S31) (N in S31). Although illustrated at the bottom in FIG. 8 for the sake of convenience, the operation end determination process is executed at any time.
  • FIG. 9 is a flowchart for explaining a communication interval switching process between the storage battery management device 30 and the PV power conditioner 40 in the power storage system 100 according to the embodiment of the present invention.
  • the communication unit 31 of the storage battery management device 30 decreases the communication frequency between the storage battery management device 30 and the PV power conditioner 40 (S36). That is, the communication interval is lengthened.
  • the PV power conditioner 40 is normally in the sleep mode, so the communication interval becomes longer.
  • the communication unit 31 of the storage battery management device 30 sets the communication frequency between the storage battery management device 30 and the PV power conditioner 40 to normal (S37).
  • the processing from step S35 to step S37 is repeatedly executed (N in S38).
  • the solar power generation system 300 when the solar power generation system 300 is linked to the power storage system 100 connected to the system power supply, the solar power generation system 300 is connected to the power storage system 100 via the PV power conditioner 40. Connect to. That is, the power storage module 10 and the system power supply 200 are connected with an AC output.
  • the photovoltaic power generation system 300 it is conceivable to connect the photovoltaic power generation system 300 to the direct current side of the storage battery power conditioner 20, but in this case, the output range of the photovoltaic power generation system 300 needs to be within the rated range of the storage battery power conditioner 20. is there.
  • the photovoltaic power generation system 300 is added to the existing power storage system 100, it is necessary to select the photovoltaic power generation system 300 that falls within the rated range of the storage battery power conditioner 20. Further, it may be impossible to link the existing power storage system 100 to the existing solar power generation system 300.
  • the solar power generation system 300 When the solar power generation system 300 is connected to the direct current side of the storage battery power conditioner 20, it is conceivable to install a DC-DC converter between the solar power generation system 300 and the storage battery power conditioner 20. In this case, the cost for installing the DC-DC converter increases, and conversion loss occurs not only in the storage battery power conditioner 20 but also in the DC-DC converter, so that the energy efficiency is lowered.
  • the PV power conditioner 40 by providing the PV power conditioner 40, various types of photovoltaic power generation systems 300 can be connected to the power storage system 100 without limitation of the output range.
  • a DC-DC converter is unnecessary, it is possible to avoid a reduction in energy efficiency.
  • FIG. 10 is a diagram for explaining a power storage system 100 according to a modification of the present invention.
  • the power storage system 100 according to the modification has a configuration in which the fifth switch S5 and the sixth switch S6 of the power storage system 100 illustrated in FIG. 1-3 are omitted.
  • the sixth switch S6 connected in series with the third breaker B3 is used as an element for cutting off the power supply to the specific load 500.
  • the sixth switch S6 is turned off (open in the case of a relay) as described above, it is turned on (closed in the case of a relay) when the SOC of the storage battery module 10 exceeds the second set value for return, It can be automatically restored.
  • the switch control unit 39 closes the third breaker B3 when stopping the power supply to the specific load 500.
  • the third breaker B3 has a coil and a contact, and the coil is excited using overcurrent detection as a trigger to close the contact.
  • the third breaker B3 has another coil that is energized by external control.
  • the switch control unit 39 can close the contact by controlling the current to flow through the other coil.
  • the cost of the entire power storage system 100 can be reduced.
  • the breaker must be manually reset once it is opened. That is, when the breaker trips, the breaker needs to be restarted.
  • the switch control unit 39 displays on the display device 700 that the breaker can be returned.
  • the sixth switch S6 may be a reset switch. In this case, the sixth switch S6 is turned on by pressing the reset switch.
  • the power storage system according to the present invention can be linked to a power generation apparatus that generates power based on renewable energy other than the solar power generation system 300.
  • a wind power generator or a micro hydroelectric generator with a direct current output is applicable.
  • the invention according to the present embodiment may be specified by the items described below.
  • a storage battery A first inverter that converts AC power to DC power when charging the storage battery, and converts DC power to AC power when discharging from the storage battery; A second inverter that converts DC power generated by a power generation device that generates power based on renewable energy into AC power; An AC current path for conducting the AC side terminal of the first inverter, the AC side terminal of the second inverter, and a system power supply;
  • a power storage system comprising:
  • Item 1 is characterized in that a predetermined load that can be preferentially supplied with power from the storage battery or the power generation device is connected to the AC current path when a power failure occurs in a system power supply.
  • a predetermined load that can be preferentially supplied with power from the storage battery or the power generation device is connected to the AC current path when a power failure occurs in a system power supply.
  • a heater, a fan, and a management device 3.
  • a management device for managing the storage battery is further provided, The management device acquires information indicating whether or not the power generation device is generating power from the second inverter, and the power generation device is not generating power in a state in which the storage battery is not discharged at the time of a power failure of the system power supply.
  • the power storage system according to item 1 or 2 wherein the power source of the first inverter and the second inverter is turned off or the first inverter and the second inverter are caused to sleep.
  • 100 power storage system 110 housing, 111 first air hole, 112 handle, 113 second air hole, 114 third air hole, 115, 116 inlet hole, 10 storage battery module, 11 storage battery cell, 12 voltage sensor, 13 current sensor , 14 temperature sensor, 20 storage battery power conditioner, 21 bidirectional inverter, 22 control circuit, 30 storage battery management device, 31 communication unit, 32 monitoring data acquisition unit, 33 user input reception unit, 34 SOC calculation unit, 35 charge / discharge control Unit, 36 power generation control unit, 37 temperature control unit, 38 fan / heater control unit, 39 switch control unit, 40 PV power conditioner, 41 inverter, 42 control circuit, 50 inverter fan, 0 storage battery fan, 70 heater, 200 grid power supply, 300 solar power generation system, 400 general load, 500 specific load, 600 temperature sensor, S1 1st switch, S2 2nd switch, S3 3rd switch, S4 4th switch, S5 5th switch, S6 6th switch, S7 7th switch, S8 8th switch, S9 9th switch, B1 1st breaker,
  • the present invention can be used for a power storage system that cooperates with a solar power generation system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

 双方向インバータ21は、蓄電池モジュール10に充電するとき交流電力から直流電力に変換し、蓄電池モジュール10から放電するとき直流電力から交流電力に変換する。インバータ41は、太陽光発電システム300により発電された直流電力を交流電力に変換する。交流電流路は、双方向インバータ21の交流側端子と、インバータ41の交流側端子と、系統電源200とを導通させる。

Description

蓄電システム
 本発明は、蓄電池と、再生可能エネルギーをもとにする発電装置を備える蓄電システムに関する。
 近年、系統電源に接続された蓄電システムに太陽光発電システムを連携させるシステムが開発されている。蓄電池は直流であり系統電源は交流であるため、両者の間にはインバータが設けられる。太陽光発電システムは通常、直流であるため、蓄電池と太陽光発電システムの間にはDC-DCコンバータが設けられることが多い(例えば、特許文献1参照)。ただしDC-DCコンバータを用いると変換時に電力損失が発生する。また上述のインバータの直流側に、太陽光発電システムを直接接続することも考えられる。この場合、太陽光発電システムの出力が当該インバータの定格範囲内に収まる必要があり、連携できる太陽光発電システムの種別が限定される。
特公平6-106012号公報
 本発明はこうした状況に鑑みなされたものであり、その目的は、系統電源に接続された蓄電システムに、再生可能エネルギーをもとに発電する発電システムを連携する際に、汎用性が高く、発電電力を効率よく利用できる技術を提供することにある。
 上記課題を解決するために、本発明のある態様の蓄電システムは、蓄電池と、蓄電池に充電するとき交流電力から直流電力に変換し、蓄電池から放電するとき直流電力から交流電力に変換する第1インバータと、再生可能エネルギーをもとに発電する発電装置により発電された直流電力を交流電力に変換する第2インバータと、第1インバータの交流側端子と、第2インバータの交流側端子と、系統電源とを導通させるための交流電流路と、を備える。
 本発明によれば、系統電源に接続された蓄電システムに、再生可能エネルギーをもとに発電する発電システムを連携する際に、汎用性を高くでき、発電電力を効率よく利用できる。
本発明の実施の形態に係る蓄電システムを説明するための図である。 本発明の実施の形態に係る蓄電システムの系統連系モードを説明するための図である。 本発明の実施の形態に係る蓄電システムの自立運転モードを説明するための図である。 図4(a)-(d)は、本発明の実施の形態に係る蓄電システムの物理的な構成例を説明するための図である。 筐体を右側面から見た図である。 図1の蓄電システムの構成要素を説明するための機能ブロック図である。 本発明の実施の形態に係る蓄電システムによる、自立運転モードにおける第6スイッチの制御例を説明するためのフローチャートである。 本発明の実施の形態に係る蓄電システムによる、自立運転モードにおける第6スイッチ以外の構成要素の制御例を説明するためのフローチャートである。 本発明の実施の形態に係る蓄電システムにおける、蓄電池管理装置とPVパワーコンディショナ間の通信間隔切替処理を説明するためのフローチャートである。 本発明の変形例に係る蓄電システムを説明するための図である。
 本発明の実施の形態は、系統電源に接続される蓄電システムであって、さらに太陽光発電システムと連携する蓄電システムに関する。当該蓄電システムは、例えば産業施設、公共施設、商業施設、オフィスビル、住居などに設置される。電力会社が時間帯別電気料金制度を採用している場合、夜間の時間帯の電気料金は、昼間の時間帯の電気料金よりも安く設定される。例えば、23:00~翌日の7:00までの電気料金が他の時間帯より安く設定される。従って夜間に系統電源から蓄電池に充電し、蓄電池に蓄えられた電力を昼間に使用することにより電気料金を抑えることができる。電力会社側から見ると電力使用量が平準化されることになる。
 蓄電池に蓄えられた電力は、系統電源が停電したとき特定負荷(例えば、電灯、エレベータ、コンピュータサーバなど)を動作させるためのバックアップ電源として用いられる。特定負荷は系統電源の停電時にて、優先的に蓄電池または太陽光発電システムから電力供給を受けることができる予め設定された負荷である。本明細書では、それ以外の負荷を一般負荷という。
 図1は、本発明の実施の形態に係る蓄電システム100を説明するための図である。実施の形態に係る蓄電システム100は、蓄電池モジュール10、蓄電池パワーコンディショナ20、蓄電池管理装置30、インバータファン50、蓄電池ファン60、第1スイッチS1~第9スイッチS9、第1ブレーカB1~第3ブレーカB3を備える。本実施の形態では第1スイッチS1~第9スイッチS9にリレーを使用することを想定する。なお、リレーの代わりにパワーMOSFETなどの半導体スイッチを用いてもよい。
 系統電源200は電力会社から供給される商用電源である。系統電源200は、第2スイッチS2を介して蓄電池パワーコンディショナ20と接続される。また第4スイッチS4、第5スイッチS5、第2ブレーカB2を介してPVパワーコンディショナ40に接続される。蓄電池パワーコンディショナ20とPVパワーコンディショナ40間は、第2スイッチS2、第4スイッチS4、第5スイッチS5、第2ブレーカB2を介して、又は第3スイッチS3、第4スイッチS4、第5スイッチS5、第2ブレーカB2を介して接続される。
 系統電源200と蓄電池パワーコンディショナ20間の経路、系統電源200とPVパワーコンディショナ40間の経路、蓄電池パワーコンディショナ20とPVパワーコンディショナ40間の経路は導通可能な構成である。それらの経路には交流電流が流れる。以下、それらの経路を総称して交流電流路という。
 蓄電池パワーコンディショナ20は、第1スイッチS1及び第1ブレーカB1を介して蓄電池モジュール10に接続される。太陽光発電システム300は太陽電池310及びPVパワーコンディショナ40を含み、PVパワーコンディショナ40は太陽電池310に接続される。
 蓄電池パワーコンディショナ20は後述するように双方向インバータ21(図6参照)を含む。双方向インバータ21は、蓄電池モジュール10に充電するとき交流電力から直流電力に変換し、蓄電池モジュール10から放電するとき直流電力から交流電力に変換する。PVパワーコンディショナ40は後述するようにインバータ41(図6参照)を含む。インバータ41は、太陽光発電システム300により発電された直流電力を交流電力に変換する。
 蓄電池モジュール10は充放電自在で繰り返し使用できる、パッケージ化された二次電池である。蓄電池モジュール10は、直列または直並列接続された複数の蓄電池セルを含む。本実施の形態では蓄電池セルとしてリチウムイオン電池を使用することを想定する。なお、リチウムイオン電池の代わりにニッケル水素電池、鉛電池など他の種類の電池を使用してもよい。蓄電池モジュール10は1個ないしは複数組み合わせて使用される。
 本実施の形態では6個の蓄電池モジュール10を直列接続して使用することを想定する。直列接続された複数の蓄電池モジュール10は、スイッチングユニットにより接続/切断制御される。なお複数の蓄電池モジュール10を直並列接続して使用してもよい。蓄電池モジュール10は系統電力または太陽光発電システム300により発電された電力により充電される。
 太陽光発電システム300は光起電力効果を利用した発電装置である。太陽光発電システム300を構成する太陽電池にはシリコン系、化合物系、有機系のいずれを使用してもよい。
 蓄電池パワーコンディショナ20が蓄電池モジュール10から出力される直流電力を交流電力に変換し、PVパワーコンディショナ40が太陽光発電システム300により発電される直流電力を交流電力に変換することにより、系統電源200、蓄電池モジュール10、太陽光発電システム300を単一の交流電流路でリンクできる。
 一般負荷400は、系統電源200と蓄電システム100との間の経路上に接続される。特定負荷500は交流電流路の内、第4スイッチS4と第5スイッチS5間のノードに、第6スイッチS6及び第3ブレーカB3を介して接続される。
 一般負荷400及び特定負荷500は、交流電流路から供給される交流電力を受けて動作する。系統電源200の停電時、特定負荷500は蓄電池モジュール10及び太陽光発電システム300の少なくとも一方から電源供給を受けることができるが、一般負荷400は電源供給を受けることができない。
 インバータファン50は交流電流路の内、第4スイッチS4と第5スイッチS5間のノードに、第7スイッチS7を介して接続される。インバータファン50は、蓄電池パワーコンディショナ20の双方向インバータ21を冷却するためのファンである。
 蓄電池ファン60は交流電流路の内、第4スイッチS4と第5スイッチS5間のノードに、第9スイッチS9を介して接続される。蓄電池ファン60は、蓄電池モジュール10の冷却時および加温時に動作させるためのファンである。
 ヒータ70は交流電流路の内、第4スイッチS4と第5スイッチS5間のノードに、第8スイッチS8を介して接続される。ヒータ70は蓄電池モジュール10を加熱するためのヒータであり、蓄電池モジュール10内の蓄電池セルの温度を上昇させるために使用される。
 温度センサ600は外気温を環境温度として検出し、蓄電池管理装置30に出力する。温度センサ600には例えば、サーミスタを使用できる。
 蓄電池管理装置30は主に、蓄電池モジュール10を管理するための装置である。蓄電池管理装置30と蓄電池パワーコンディショナ20間、蓄電池管理装置30とPVパワーコンディショナ40間はそれぞれメタル線を用いた通信線で接続される。それらの間ではRS-232C、RS-485などのシリアル通信規格に準拠した通信が実行される。通信線には光ファイバを用いることにより装置間を絶縁する。
 また蓄電池管理装置30は蓄電池モジュール10と、光ファイバを用いた通信線で接続される。また蓄電池装置30は第7スイッチS7~第9スイッチS9のそれぞれと、メタル配線を用いた通信線で接続される。蓄電池管理装置30は、第7スイッチS7~第9スイッチS9のオン・オフを制御することで、インバータファン50等を間接的に制御する。蓄電池管理装置30の詳細な動作は後述する。なお第1スイッチS1~第6スイッチS6、第1ブレーカB1~第3ブレーカB3のそれぞれは、蓄電池パワーコンディショナ20とメタル配線を用いた通信線で接続される。これらは、蓄電管理装置30から蓄電池パワーコンディショナ20に対する指示、あるいは、蓄電池パワーコンディショナ20独自の判断に基づき、蓄電池パワーコンディショナ20内の後述する制御回路22(図6参照)により制御される。
 実施の形態に係る蓄電システム100は、系統連系モードまたは自立運転モードのいずれかで運転される。自立運転モードは基本的に、系統電源200の停電時に選択される。
 図2は、本発明の実施の形態に係る蓄電システム100の系統連系モードを説明するための図である。系統連系モードでは図2に示すように、蓄電池パワーコンディショナ20内の制御回路22は第2スイッチS2をオン、第3スイッチS3をオフに制御し、第4スイッチS4を、第3スイッチ側ではなく系統電源側の端子に接続するよう制御する。系統連系モードでは系統電源200、太陽光発電システム300、蓄電池モジュール10が単一の交流電流路AP(太線参照)を介して導通する。
 系統連系モードにて蓄電池モジュール10から放電する場合、蓄電池パワーコンディショナ20の双方向インバータ21は、系統電源200の周波数に同期した周波数および位相で交流電流路APに電流を流す。
 図3は、本発明の実施の形態に係る蓄電システム100の自立運転モードを説明するための図である。自立運転モードでは図3に示すように、蓄電池パワーコンディショナ20内の制御回路22は、第2スイッチS2をオフ、第3スイッチS3をオンに制御し、第4スイッチS4を、系統電源側ではなく第3スイッチ側の端子に接続するよう制御する。自立運転モードでは太陽光発電システム300及び蓄電池モジュール10は系統電源200から電気的に切り離される。
 自立運転モードにて蓄電池モジュール10から放電する場合、蓄電池パワーコンディショナ20の双方向インバータ21は、系統電源200から自立した周波数および位相で交流電流路APに電流を流す。自立運転モードで形成される交流電流路AP(太線参照)には特定負荷500は電気的に接続されるが、一般負荷400は電気的に遮断される。従って停電時に、特定負荷500にのみ、蓄電池モジュール10に蓄えられた電力および太陽光発電システム300により発電された電力を供給できる。
 図4(a)-(d)は、本発明の実施の形態に係る蓄電システム100の物理的な構成例を説明するための図である。図1-図3にて点線で囲まれた蓄電システム100の構成部材は、開閉式の扉を備える筐体110に収納される。図4(a)は筐体110を天面110tから見た図を、図4(b)は筐体110を正面110fから見た図を、図4(c)は筐体110を底面110bから見た図を、図4(d)は筐体110を右側面110sから見た図をそれぞれ示す。
 筐体110は縦長のボックスであり、筐体110内の下部に蓄電池モジュール10が配置される。本実施の形態では6個の蓄電池モジュール10が縦置きに並べて配置される。図示しないが蓄電池モジュール10の上に、蓄電池管理装置30が配置され、その上に蓄電池パワーコンディショナ20、第1ブレーカB1~第3ブレーカB3が配置される。このように蓄電池パワーコンディショナ20の双方向インバータ21は、蓄電池モジュール10より天面側に配置される。なおPVパワーコンディショナ40も筐体110内に設置される設計であってもよい。
 図4(a)に示すように筐体110の天面110tには第1空気孔111が設けられる。第1空気孔111の近傍にインバータファン50が設けられる。インバータファン50は排気ファンであり、双方向インバータ21の近辺の熱い空気を排出する。インバータファン50は、筐体110の下部に設けられる第2空気孔113及び第3空気孔114から導入された空気を吸い上げることで双方向インバータ21を冷却する。
 筐体110内の下部に蓄電池ファン60を設ける。蓄電池ファン60は第2空気孔113及び第3空気孔114から外気を導入する。インバータファン50と蓄電池ファン60を併用することで、蓄電モジュール10の冷却効率を上げることができる。また下部から吸気し、上部から排気することで、蓄電池の放電による電池の温度上昇や、インバータの廃熱を上昇気流により上部に送る効果も期待できる。
 図4(b)に示すように筐体110の正面110fには、取っ手112、第2空気孔113及び第3空気孔114が設けられる。第2空気孔113及び第3空気孔114は正面110fの下部に、横並びに設けられる。図4(c)に示すように筐体110の底面110bには、二つの入線孔115、116が設けられる。
 図5は、筐体110を右側面110sから見た図である。図5は図4(d)の領域A近傍をより詳細に描いた図である。蓄電池ファン60は筐体110内の底面近傍に、外気導入口が第2空気孔113及び第3空気孔114を向くように配置される。
 ヒータ70は、蓄電池ファン60から送出された空気を受け、温風を送出する。本実施の形態ではヒータ70はヒートシンクを備え、蓄電池ファン60の吹出口とヒートシンクが対面するように蓄電池ファン60とヒータ70を構成する。蓄電池ファン60及びヒータ70は蓄電池モジュール10より底面側に設けられる。蓄電池モジュール10を加熱する際、蓄電池ファン60及びヒータ70は両方とも稼働し、第2空気孔113及び第3空気孔114から吸気した空気を温めて放出する。放出された温風は図4(d)に示すように、筐体110内にて底面側から天面側に向けて上昇し、天面に設けられた第1空気孔111から排気される。
 図6は、図1の蓄電システム100の構成要素を説明するための機能ブロック図である。蓄電池モジュール10は蓄電池セル11、電圧センサ12、電流センサ13、温度センサ14を備える。図6の蓄電池セル11は複数の蓄電池セルの総称として描いている。
 電圧センサ12は各蓄電池セルの電圧を検出する。電流センサ13は蓄電池セル11に流れる電流を検出する。電流センサ13にはホール素子やシャント抵抗を用いることができる。温度センサ14は、蓄電池モジュール10内の蓄電池セル11の温度を検出する。温度センサ14にはサーミスタを用いることができる。電圧センサ12により検出された電圧値、電流センサ13により検出された電流値、温度センサ14により検出された温度値は、蓄電池モジュール10の監視データとして通信路を介して蓄電池管理装置30に出力される。
 蓄電池パワーコンディショナ20は双方向インバータ21、制御回路22を備える。制御回路22は蓄電システム100のモード管理、双方向インバータ21の制御、蓄電池管理装置30との通信、第1スイッチS1~第6スイッチS6、第1ブレーカB1~第3ブレーカB3の制御などを実行する。また制御回路22は、双方向インバータ21を冷却するためにインバータファン50を制御する。
 PVパワーコンディショナ40はインバータ41、制御回路42を備える。制御回路42は太陽光発電システム300の状態管理、発電制御、蓄電池管理装置30との通信などを実行する。表示装置700は蓄電池管理装置30による制御の下、各種設定画面、蓄電池モジュール10および太陽光発電システム300のステータス情報などを表示する。
 蓄電池管理装置30は通信部31、監視データ取得部32、ユーザ入力受付部33、SOC(State Of Charge)算出部34、充放電制御部35、発電制御部36、温度制御部37、ファン・ヒータ制御部38、スイッチ制御部39を備える。これらの構成は、ハードウエア的には、任意のプロセッサ、メモリ、その他のLSIで実現でき、ソフトウエア的にはメモリにロードされたプログラムなどによって実現されるが、ここではそれらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックがハードウエアのみ、ソフトウエアのみ、またはそれらの組合せによっていろいろな形で実現できることは、当業者には理解されるところである。
 通信部31は、蓄電池管理装置30と蓄電池パワーコンディショナ20間のパケット通信、蓄電池管理装置30とPVパワーコンディショナ40間のパケット通信を制御する。監視データ取得部32は、蓄電池モジュール10から送信される監視データを取得する。また監視データ取得部32は、温度センサ600から送信される、筐体110の外の気温を示す温度データを取得する。
 ユーザ入力受付部33は、ユーザにより操作部800に入力された情報を受け付ける。例えば、系統電源200から蓄電池モジュール10への充電処理を開始する充電開始時刻、その充電レートなどの情報を受け付ける。
 SOC算出部34は、蓄電池モジュール10から送信される監視データをもとに蓄電池セル11のSOC(残容量)を算出する。SOCの算出方法としてOCV(Open Circuit Voltage)法やクーロンカウント法を用いることができる。
 充放電制御部35は、蓄電池モジュール10に充電する場合の充電レートを示す充電設定値を含むパケット信号を、蓄電池パワーコンディショナ20の制御回路22に送信する。また充放電制御部35は、蓄電池モジュール10から放電する場合の放電レートを示す放電設定値を含むパケット信号を制御回路22に送信する。また充放電制御部35は、制御回路22から、実際に充電された充電値または実際に放電された放電値を含むパケット信号を受信する。蓄電池モジュール10の充電中または放電中、充放電制御部35はパケット信号を制御回路22に定期的(例えば、1秒周期)に送信する。制御回路22は当該パケット信号を受信する度に、実データを含むパケット信号を返信する。
 発電制御部36は、PVパワーコンディショナ40の制御回路42から、太陽光発電システム300の発電情報を含むパケット信号を受信する。発電制御部36は、発電を制御するための情報を含むパケット信号を制御回路42に送信する。発電制御部36はパケット信号を制御回路42に定期的(例えば、1秒周期)に送信する。制御回路42は当該パケット信号を受信する度に、実データを含むパケット信号を返信する。発電制御部36は、制御回路42からの応答がない場合、パケット信号の送信周期を長くする。例えば、1分周期に変更する。
 温度制御部37は、蓄電池セル11の温度を管理するとともにファン・ヒータ制御部38を制御して、蓄電池セル11の温度を調整する。蓄電池セル11を冷却する場合、ファン・ヒータ制御部38は、蓄電池ファン60及びインバータファン50の少なくとも一方を稼働させる。基本的に蓄電池ファン60を稼働させて、第2空気孔113及び第3空気孔114から吸気した外気を蓄電池セル11に送風して蓄電池セル11を冷却する。その際、インバータファン50を稼働させると外気の導入を促進できる。なおインバータファン50が吸気ファンの場合、インバータファン50を稼働させて蓄電池セル11の上側からも外気を導入できる。
 蓄電池セル11を加熱する場合、ファン・ヒータ制御部38は、蓄電池ファン60及びヒータ70を稼働させ、インバータファン50を非稼働に制御する。図4(d)に示すように温風が蓄電池モジュール10の下部から上部に吹き上がることにより、蓄電池セル11の温度を上昇させることができる。この際、インバータファン50を停止させることにより、第2空気孔113及び第3空気孔114からの外気の導入を抑え、ヒータ70で暖められた空気を筐体110の内部で循環させることができる。これにより、ヒータ70の加温効率が向上する。なお、インバータファン50が吸気ファンの場合、インバータファン50を停止させることにより、蓄電池モジュール10の上部側から外気が吹きつけられることを防止できる。蓄電池セル11を加熱する必要がある状況は通常、外気温が低い状態であり、インバータファン50を稼働させていると、蓄電池モジュール10に上から冷気が吹きつけられることになる。
 スイッチ制御部39は、蓄電池パワーコンディショナ20の制御回路22に制御情報を含むパケット信号を送信し、当該制御回路22を介して、第1スイッチS1~第6スイッチS6、第1ブレーカB1~第3ブレーカB3の制御を行うことができる。スイッチ制御部39は、第8スイッチS8をオフに制御してヒータ70への給電を停止できる。また第9スイッチS9をオフに制御して蓄電池ファン60への給電を停止できる。また第7スイッチS7をオフに制御してインバータファン50への給電を停止できる。なお第7スイッチS7、第8スイッチS8、第9スイッチS9は、蓄電池パワーコンディショナ20の制御回路22からも制御できる。
 スイッチ制御部39は、第6スイッチS6をオフに制御して特定負荷500への給電を停止できる。スイッチ制御部39は系統電源200の停電時にて、特定負荷500の消費電力が太陽光発電システム300の発電電力を上回るとき第6スイッチS6をオフする。この条件で第6スイッチS6をオフする場合、停電時における特定負荷500への給電機会が減る傾向がある。特に夜間に停電した場合、特定負荷500に給電できなくなる。そこで、特定負荷500の消費電力が一定電力を超えた場合に、上述の条件にもとづく第6スイッチS6の制御を実行してもよい。即ち、特定負荷500の消費電力が一定電力以下の場合は、特定負荷500への給電を停止しない。当該一定電力を例えば1kWとすると、太陽光発電システム300の発電に関係なく、1kWを超えない範囲で特定負荷500を使用できる。従って、停電時における特定負荷500への給電機会を増やすことができる。ここで、一定電力の値は、停電時の使用が想定される照明や空調機器の消費電力を考慮して決定することが望ましい。
 またスイッチ制御部39は系統電源200の停電時にて、特定負荷500の消費電力が、太陽光発電システム300の発電電力に調整電力(正の値)を加えた調整後の発電電力を上回るとき第6スイッチS6をオフしてもよい。この場合も、停電時における特定負荷500への給電機会を増やすことができる。ここで、調整電力の値は、特定負荷500への給電機会の確保と、蓄電池保護のバランスを考慮して決定することが望ましい。
 またスイッチ制御部39は系統電源200の停電時にて、蓄電池モジュール10のSOCが過放電防止用設定値(例えば10%)を下回ると第6スイッチS6をオフする。過放電防止用設定値は特定負荷500の容量に応じて設定される。特定負荷500の容量が小さいほど、過放電防止用設定値に小さな値が設定される。スイッチ制御部39は、当該二つの条件の両方を満たしたとき第6スイッチS6をオフしてもよいし、一方を満たしただけで第6スイッチS6をオフしてもよい。
 系統電源200の停電時は蓄電システム100は自立運転モードで動作する。従って特定負荷500の消費電力が太陽光発電システム300の発電電力を上回ると、蓄電池モジュール10の容量が低下していく。蓄電池モジュール10は過放電すると劣化する。
 蓄電池モジュール10の保護を重視する場合、SOCの値に係わらず特定負荷500の消費電力が太陽光発電システム300の発電電力を上回った時点で、特定負荷500への給電を停止する。また特定負荷500への給電維持を重視する場合、蓄電池モジュール10のSOCが過放電防止用設定値を下回り、かつ特定負荷500の消費電力が太陽光発電システム300の発電電力を上回っている場合に特定負荷500への給電を停止する。太陽光発電システム300の発電電力が特定負荷500の消費電力を上回っている場合、蓄電池モジュール10のSOCが回復する方向にあるため第6スイッチS6をオフしない。
 特定負荷500の消費電力が太陽光発電システム300の発電電力を上回るか否かは、蓄電システム100が放電しているか否かを検出することにより判定できる。自立運転モードでは、特定負荷500の消費電力が太陽光発電システム300の発電電力を上回る場合、蓄電池モジュール10は放電状態となる。逆に特定負荷500の消費電力が太陽光発電システム300の発電電力を下回る場合、蓄電池モジュール10は充電状態となる。スイッチ制御部39は、蓄電池パワーコンディショナ20の制御回路22から受信するパケット信号に含まれる情報を参照して、蓄電池モジュール10が放電中か充電中かを特定できる。
 また交流電流路に電流センサを設置して、その電流の向きから特定負荷500の消費電力が太陽光発電システム300の発電電力を上回るか否かを判定してもよい。また交流電流路と特定負荷500との間の電流路に電流センサを設置して、その計測値をもとに判定してもよい。
 図7は、本発明の実施の形態に係る蓄電システム100による、自立運転モードにおける第6スイッチS6の制御例を説明するためのフローチャートである。監視データ取得部32は、蓄電池モジュール10から蓄電池セルの電圧値などの監視データを取得する(S10)。SOC算出部34は、監視データをもとに蓄電池モジュール10のSOCを算出する(S11)。スイッチ制御部39は、算出されたSOCと過放電防止用の第1設定値を比較する(S12)。SOCが第1設定値以上の場合(S12のN)、ステップS10に遷移する。SOCが第1設定値未満の場合(S12のY)、スイッチ制御部39は蓄電池モジュール10が放電状態であるか否か判定する(S13)。放電状態でない場合(S13のN)、ステップS10に遷移する。放電状態である場合(S13のY)、スイッチ制御部39は第6スイッチS6をオフする(S14)。
 監視データ取得部32は、蓄電池モジュール10から蓄電池セルの電圧値などの監視データを取得する(S15)。SOC算出部34は、監視データをもとに蓄電池モジュール10のSOCを算出する(S16)。スイッチ制御部39は、算出されたSOCと復帰用の第2設定値を比較する(S17)。第2設定値は第1設定値より大きな値に設定される。例えば、第1設定値+10%に設定される。
SOCが第2設定値以上の場合(S17のN)、ステップS15に遷移する。SOCが第2設定値未満の場合(S17のY)、スイッチ制御部39は第6スイッチS6をオンする(S18)。なお蓄電池モジュール10が放電状態にあることを追加条件としてもよい。また表示装置700に復帰が可能であることを表示し、ユーザが操作部800に復帰指示を入力することを追加条件としてもよい。この場合、スイッチ制御部39は、第6スイッチS6がオフした後にて蓄電池モジュール10のSOCが第2設定値以上になったとき、表示装置700に復帰可能状態であることを表示させる。特定負荷500に電気ストーブなどの放熱機器が含まれる場合、第6スイッチS6のオフにより放熱機器が停止するが、ユーザが放熱機器の停止後に可燃物を放熱機器の近くに置いてしまう可能性がある。ユーザ操作を条件とすることにより、ユーザに給電再開を認識させることができる。
 特定負荷500とすべき負荷はユーザによって選択される。従って、例えばLED照明など自動復帰しても不安全状態にならない特定負荷500のみの場合には、ユーザ操作を条件とする必要はない。ユーザは、運転開始前に表示装置700に表示された設定画面から、予め自動復帰させるか否かを設定できる。この設定が有効になっている場合、SOCが第2設定値以上になると、スイッチ制御部39は第6スイッチS6をオンして、自動で給電を再開させる。なお、運転中に自動・手動復帰設定を変更しても、一度システムの運転を停止して、再起動しない限り反映されない。
 蓄電システム100の自立運転が終了するまで(S19のY)、ステップS10~ステップS18までの処理が実行される(S19のN)。なお図7では便宜的に一番下に描いているが、運転終了の判定処理は、どの時点でも実行される。
 図8は、本発明の実施の形態に係る蓄電システム100による、自立運転モードにおける第6スイッチS6以外の構成要素の制御例を説明するためのフローチャートである。監視データ取得部32は、蓄電池モジュール10から蓄電池セルの電圧値などの監視データを取得する(S20)。SOC算出部34は、監視データをもとに蓄電池モジュール10のSOCを算出する(S21)。発電制御部36は、PVパワーコンディショナ40の制御回路42から太陽光発電システム300の発電情報を取得する(S22)。
 スイッチ制御部39は、算出されたSOCと過放電防止用の第1設定値を比較する(S23)。SOCが第1設定値以上の場合(S23のN)、ステップS20に遷移する。SOCが第1設定値未満の場合(S23のY)、発電制御部36は太陽光発電システム300が発電中であるか否か判定する(S24)。発電状態の場合(S24のN)、ステップS20に遷移する。非発電状態の場合(S24のY)、ファン・ヒータ制御部38はヒータ70を非稼働に制御する(S25)。ヒータ70が稼働している場合は停止させ、稼働していない場合はその状態を維持する。なおファン・ヒータ制御部38は蓄電池ファン60及びインバータファン50も非稼働に制御してもよい。
 SOCが第1設定値未満では蓄電池モジュール10から放電されず、太陽光発電システム300が発電していない状態では蓄電池モジュール10に充電されない。従って蓄電池モジュール10を加熱する必要がない。ヒータ70を非稼働に制御することによりヒータ70の消費電力を低減できる。なお停電時における自立運転モードでは、蓄電池モジュール10及び太陽光発電システム300からの給電が停止した時点で、ヒータ70は稼働できなくなる。ステップS25の処理は、蓄電池モジュール10及び太陽光発電システム300以外から電源を確保できる状況を主に想定している。
 発電制御部36は、PVパワーコンディショナ40に送信するパケット信号にスリープモードへの移行指示を含めることにより、PVパワーコンディショナ40をスリープモードに移行させる(S26)。これによりPVパワーコンディショナ40の消費電力を低減できる。なお太陽光発電システム300の発電が停止した後、PVパワーコンディショナ40の制御回路42が、自己判断によりPVパワーコンディショナ40をスリープモードに移行させてもよい。
 充放電制御部35は、蓄電池パワーコンディショナ20に送信するパケット信号にスリープモードへの移行指示を含めることにより、蓄電池パワーコンディショナ20をスリープモードに移行させる(S27)。蓄電池モジュール10からの放電が禁止され、系統電源200からも太陽光発電システム300からも充電されないため、蓄電池パワーコンディショナ20をスリープさせる。これにより蓄電池パワーコンディショナ20の消費電力を低減できる。
 太陽光発電システム300の発電が再開すると(S28のY)、PVパワーコンディショナ40の制御回路42は、PVパワーコンディショナ40をスリープモードから通常モードに復帰させる(S29)。充放電制御部35は、PVパワーコンディショナ40から受信するパケット信号を参照して太陽光発電システム300の発電再開を検出すると、蓄電池パワーコンディショナ20をスリープモードから通常モードに復帰させる(S30)。
 蓄電システム100の自立運転が終了するまで(S31のY)、ステップS20~ステップS30までの処理が実行される(S31のN)。なお図8では便宜的に一番下に描いているが、運転終了の判定処理は、どの時点でも実行される。
 図9は、本発明の実施の形態に係る蓄電システム100における、蓄電池管理装置30とPVパワーコンディショナ40間の通信間隔切替処理を説明するためのフローチャートである。PVパワーコンディショナ40がスリープモードの場合(S35のY)、蓄電池管理装置30の通信部31は、蓄電池管理装置30とPVパワーコンディショナ40間の通信頻度を低下させる(S36)。即ち通信間隔を長くする。夜間は通常、PVパワーコンディショナ40がスリープモードになるため通信間隔が長くなる。PVパワーコンディショナ40が通常モードの場合(S35のN)、蓄電池管理装置30の通信部31は、蓄電池管理装置30とPVパワーコンディショナ40間の通信頻度を通常に設定する(S37)。蓄電システム100の運転が終了するまで(S38のY)、ステップS35~ステップS37までの処理が繰り返し実行される(S38のN)。
 以上説明したように本実施の形態によれば、系統電源に接続された蓄電システム100に太陽光発電システム300を連携させる際、太陽光発電システム300をPVパワーコンディショナ40を介して蓄電システム100に接続する。即ち、交流出力で蓄電モジュール10及び系統電源200と接続する。
 太陽光発電システム300を、蓄電池パワーコンディショナ20の直流側に接続することも考えられるが、この場合、太陽光発電システム300の出力範囲が、蓄電池パワーコンディショナ20の定格範囲内に収まる必要がある。既成の蓄電システム100に太陽光発電システム300を追加する場合、蓄電池パワーコンディショナ20の定格範囲に収まる太陽光発電システム300を選択する必要がある。また既存の太陽光発電システム300に、既成の蓄電システム100を連携しようとしても不可能となる場合がある。
 太陽光発電システム300を、蓄電池パワーコンディショナ20の直流側に接続する場合、太陽光発電システム300と蓄電池パワーコンディショナ20の間にDC-DCコンバータを設置することも考えられる。この場合、DC-DCコンバータを設置するコストが増大するとともに、蓄電池パワーコンディショナ20だけでなくDC-DCコンバータでも変換損失が発生するため、エネルギー効率が低下する。
 これに対して本実施の形態によれば、PVパワーコンディショナ40を設けることにより、様々な種類の太陽光発電システム300を、出力範囲の制限なく蓄電システム100に接続できる。またDC-DCコンバータが不要であるため、それによるエネルギー効率の低下も回避できる。
 また自立運転モードにて特定負荷500の消費電力が太陽光発電システム300の発電電力を上回るとき、及び/又は蓄電池モジュール10のSOCが第1設定値を下回るとき特定負荷500への給電を停止する。これにより蓄電池モジュール10の過放電を防止し、蓄電池モジュール10を保護できる。
 以上、本発明を実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 図10、本発明の変形例に係る蓄電システム100を説明するための図である。変形例に係る蓄電システム100は、図1-3に示した蓄電システム100の第5スイッチS5及び第6スイッチS6を省略した構成である。
 図1-3に示した蓄電システム100では特定負荷500への給電を遮断するための素子として、第3ブレーカB3と直列に接続された第6スイッチS6を使用した。この構成では上述のように第6スイッチS6をオフ(リレーの場合はオープン)した後、蓄電池モジュール10のSOCが復帰用の第2設定値を上回るとオン(リレーの場合はクローズ)して、自動復帰させることができる。
 変形例ではスイッチ制御部39は、特定負荷500への給電を停止する際、第3ブレーカB3をクローズさせる。第3ブレーカB3はコイル及び接点を有し、コイルは過電流検出をトリガとして励磁し接点をクローズさせる。また第3ブレーカB3は外部制御により通電される別のコイルを有する。スイッチ制御部39はその別のコイルに電流を流すよう制御することにより、接点をクローズできる。
 このように変形例によれば第5スイッチS5及び第6スイッチS6を省略するため蓄電システム100全体のコストを低減できる。またブレーカは一度開くと手動で復帰させる必要がある。即ち、ブレーカがトリップするとブレーカの再投入が必要となる。スイッチ制御部39は、ブレーカを開いた後にて蓄電池モジュール10のSOCが、復帰用の設定値を上回ったとき、表示装置700にブレーカ復帰可能状態であることを表示させる。このように第6スイッチS6にブレーカを使用する場合、復帰の際に必ずユーザの確認作業が必要となり、復帰の際の安全性をより担保できる。なお、第6スイッチS6はリセットスイッチでもよく、その場合、リセットスイッチを押すことで第6スイッチS6がオンされる。
 上述の実施の形態では系統電源に接続された蓄電システム100に太陽光発電システム300を連携する例を説明した。この点、本発明に係る蓄電システムは太陽光発電システム300以外の、再生可能エネルギーをもとに発電する発電装置と連携することもできる。例えば直流出力の、風力発電装置、マイクロ水力発電装置などが該当する。
 なお、本実施の形態に係る発明は、以下に記載する項目によって特定されてもよい。
[項目1]
 蓄電池と、
 前記蓄電池に充電するとき交流電力から直流電力に変換し、前記蓄電池から放電するとき直流電力から交流電力に変換する第1インバータと、
 再生可能エネルギーをもとに発電する発電装置により発電された直流電力を交流電力に変換する第2インバータと、
 前記第1インバータの交流側端子と、前記第2インバータの交流側端子と、系統電源とを導通させるための交流電流路と、
 を備えることを特徴とする蓄電システム。
[項目2]
 前記交流電流路には、系統電源の停電時にて、優先的に前記蓄電池または前記発電装置から電力供給を受けることができる予め設定された特定の負荷が接続されることを特徴とする項目1に記載の蓄電システム。
[項目3]
 ヒータと、ファンと、管理装置と、をさらに備え、
 前記管理装置は、前記蓄電池を加熱する場合、前記ヒータと前記ファンを稼動させることを特徴とする項目1または2に記載の蓄電システム。
[項目4]
 前記管理装置は、停電時に前記蓄電池から放電していない状態にて、前記ヒータおよび前記ファンを非稼働に制御することを特徴とする項目3に記載の蓄電システム。
[項目5]
 前記蓄電池を管理するための管理装置を、さらに備え、
 前記管理装置は、前記第2インバータから前記発電装置が発電しているか否かを示す情報を取得し、系統電源の停電時に前記蓄電池から放電していない状態にて前記発電装置が発電していない場合、前記第1インバータ及び前記第2インバータの電源をオフ、又は前記第1インバータ及び前記第2インバータをスリープさせることを特徴とする項目1または2に記載の蓄電システム。
 100 蓄電システム、 110 筐体、 111 第1空気孔、 112 取っ手、 113 第2空気孔、 114 第3空気孔、 115,116 入線孔、 10 蓄電池モジュール、 11 蓄電池セル、 12 電圧センサ、 13 電流センサ、 14 温度センサ、 20 蓄電池パワーコンディショナ、 21 双方向インバータ、 22 制御回路、 30 蓄電池管理装置、 31 通信部、 32 監視データ取得部、 33 ユーザ入力受付部、 34 SOC算出部、 35 充放電制御部、 36 発電制御部、 37 温度制御部、 38 ファン・ヒータ制御部、 39 スイッチ制御部、 40 PVパワーコンディショナ、 41 インバータ、 42 制御回路、 50 インバータファン、 60 蓄電池ファン、 70 ヒータ、 200 系統電源、 300 太陽光発電システム、 400 一般負荷、 500 特定負荷、 600 温度センサ、 S1 第1スイッチ、 S2 第2スイッチ、 S3 第3スイッチ、 S4 第4スイッチ、 S5 第5スイッチ、 S6 第6スイッチ、 S7 第7スイッチ、 S8 第8スイッチ、 S9 第9スイッチ、 B1 第1ブレーカ、 B2 第2ブレーカ、 B3 第3ブレーカ。
 本発明は、太陽光発電システムと連携する蓄電システムに利用可能である。

Claims (5)

  1.  蓄電池と、
     前記蓄電池に充電するとき交流電力から直流電力に変換し、前記蓄電池から放電するとき直流電力から交流電力に変換する第1インバータと、
     再生可能エネルギーをもとに発電する発電装置により発電された直流電力を交流電力に変換する第2インバータと、
     前記第1インバータの交流側端子と、前記第2インバータの交流側端子と、系統電源とを導通させるための交流電流路と、
     を備えることを特徴とする蓄電システム。
  2.  前記交流電流路には、系統電源の停電時にて、優先的に前記蓄電池または前記発電装置から電力供給を受けることができる予め設定された特定の負荷が接続されることを特徴とする請求項1に記載の蓄電システム。
  3.  ヒータと、ファンと、管理装置と、をさらに備え、
     前記管理装置は、前記蓄電池を加熱する場合、前記ヒータと前記ファンを稼動させることを特徴とする請求項1または2に記載の蓄電システム。
  4.  前記管理装置は、停電時に前記蓄電池から放電していない状態にて、前記ヒータおよび前記ファンを非稼働に制御することを特徴とする請求項3に記載の蓄電システム。
  5.  前記蓄電池を管理するための管理装置を、さらに備え、
     前記管理装置は、前記第2インバータから前記発電装置が発電しているか否かを示す情報を取得し、系統電源の停電時に前記蓄電池から放電していない状態にて前記発電装置が発電していない場合、前記第1インバータ及び前記第2インバータの電源をオフ、又は前記第1インバータ及び前記第2インバータをスリープさせることを特徴とする請求項1または2に記載の蓄電システム。
PCT/JP2013/000885 2013-02-18 2013-02-18 蓄電システム WO2014125520A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/000885 WO2014125520A1 (ja) 2013-02-18 2013-02-18 蓄電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/000885 WO2014125520A1 (ja) 2013-02-18 2013-02-18 蓄電システム

Publications (1)

Publication Number Publication Date
WO2014125520A1 true WO2014125520A1 (ja) 2014-08-21

Family

ID=51353560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000885 WO2014125520A1 (ja) 2013-02-18 2013-02-18 蓄電システム

Country Status (1)

Country Link
WO (1) WO2014125520A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035481A1 (ja) * 2014-09-03 2016-03-10 株式会社日立産機システム パワーコンディショナ
JP6017715B1 (ja) * 2016-01-29 2016-11-02 株式会社A−スタイル 太陽光発電システム
CN112366982A (zh) * 2020-03-30 2021-02-12 山东省科学院海洋仪器仪表研究所 一种用于水下绞车缓启动的供电装置及其控制方法
CN112952882A (zh) * 2021-04-13 2021-06-11 阳光电源股份有限公司 储能变换系统、储能变换系统的控制方法及计算机可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012287A (ja) * 1996-06-24 1998-01-16 Nissan Motor Co Ltd 2次電池の最小温度検出装置
JPH118976A (ja) * 1997-06-13 1999-01-12 Sharp Corp インバータ装置およびその起動方法
JP2011010412A (ja) * 2009-06-24 2011-01-13 Shimizu Corp 重要負荷の自立運転制御システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012287A (ja) * 1996-06-24 1998-01-16 Nissan Motor Co Ltd 2次電池の最小温度検出装置
JPH118976A (ja) * 1997-06-13 1999-01-12 Sharp Corp インバータ装置およびその起動方法
JP2011010412A (ja) * 2009-06-24 2011-01-13 Shimizu Corp 重要負荷の自立運転制御システム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035481A1 (ja) * 2014-09-03 2016-03-10 株式会社日立産機システム パワーコンディショナ
JP6017715B1 (ja) * 2016-01-29 2016-11-02 株式会社A−スタイル 太陽光発電システム
JP2017135920A (ja) * 2016-01-29 2017-08-03 株式会社A−スタイル 太陽光発電システム
CN112366982A (zh) * 2020-03-30 2021-02-12 山东省科学院海洋仪器仪表研究所 一种用于水下绞车缓启动的供电装置及其控制方法
CN112366982B (zh) * 2020-03-30 2022-09-16 山东省科学院海洋仪器仪表研究所 一种用于水下绞车缓启动的供电装置及其控制方法
CN112952882A (zh) * 2021-04-13 2021-06-11 阳光电源股份有限公司 储能变换系统、储能变换系统的控制方法及计算机可读存储介质
CN112952882B (zh) * 2021-04-13 2024-04-12 阳光电源股份有限公司 储能变换系统、储能变换系统的控制方法及计算机可读存储介质

Similar Documents

Publication Publication Date Title
WO2014128745A1 (ja) 蓄電システム
JP5975314B2 (ja) 蓄電システム
EP3159997B1 (en) Electrical power-supplying device and method for supplying electrical power
US9331497B2 (en) Electrical energy storage unit and control system and applications thereof
CN103384088B (zh) 用于管理电网电力供应的系统和方法
JP6296383B2 (ja) 蓄電池パワーコンディショナ
JP7113267B2 (ja) 蓄電システム
JP5891367B2 (ja) 蓄電システム
CN105591460A (zh) 用于电池管理的系统和方法
CN102576630A (zh) 蓄电系统以及控制装置
JP2013542706A (ja) バッテリーバランシングシステム
WO2014125520A1 (ja) 蓄電システム
KR102591536B1 (ko) 에너지 저장장치
WO2012165154A1 (ja) 電力供給システム
JP5914864B2 (ja) 蓄電池ユニット、蓄電設備および電力供給システム
WO2015019387A1 (ja) 蓄電池管理装置
WO2014125519A1 (ja) 蓄電システム
CN116888010A (zh) 采用二次寿命电动车辆电池的能量储存系统和方法
JP2011101536A (ja) コンセント及び配電システム
WO2014122690A1 (ja) 蓄電システム
WO2015019386A1 (ja) 蓄電池管理装置および表示装置
WO2014122691A1 (ja) 蓄電システム
JP6982820B2 (ja) 制御指令システム、及び電力変換システム
KR101618711B1 (ko) 태양광 패널로부터 dc전력을 입력받아 구동하는 태양광 발전 장치용 접속반
JP2016039658A (ja) 多重受電分電盤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13875305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP