KR100942985B1 - 냉매 유량의 분배 균일성이 향상된 중대형 전지팩 케이스 - Google Patents

냉매 유량의 분배 균일성이 향상된 중대형 전지팩 케이스 Download PDF

Info

Publication number
KR100942985B1
KR100942985B1 KR1020070027401A KR20070027401A KR100942985B1 KR 100942985 B1 KR100942985 B1 KR 100942985B1 KR 1020070027401 A KR1020070027401 A KR 1020070027401A KR 20070027401 A KR20070027401 A KR 20070027401A KR 100942985 B1 KR100942985 B1 KR 100942985B1
Authority
KR
South Korea
Prior art keywords
battery
pack case
battery pack
refrigerant
inlet
Prior art date
Application number
KR1020070027401A
Other languages
English (en)
Other versions
KR20080085949A (ko
Inventor
최두성
임예훈
안재성
강달모
한상필
윤종문
양희국
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020070027401A priority Critical patent/KR100942985B1/ko
Priority to EP07851678.8A priority patent/EP2130243B1/en
Priority to PCT/KR2007/006712 priority patent/WO2008114923A1/en
Priority to US12/532,068 priority patent/US9614206B2/en
Priority to JP2009554433A priority patent/JP5550912B2/ja
Priority to CN2007800519948A priority patent/CN101622733B/zh
Publication of KR20080085949A publication Critical patent/KR20080085949A/ko
Application granted granted Critical
Publication of KR100942985B1 publication Critical patent/KR100942985B1/ko
Priority to JP2013101625A priority patent/JP2013179076A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/651Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6566Means within the gas flow to guide the flow around one or more cells, e.g. manifolds, baffles or other barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

본 발명은 충방전이 가능한 다수의 전지셀들을 적층한 전지모듈이 장착되는 전지팩 케이스로서, 전지셀들의 냉각을 위한 냉매가 전지셀 적층방향에 수직한 방향으로 전지모듈의 일측으로부터 대향측으로 유동할 수 있도록 냉매 유입구와 배출구가 팩 케이스에 형성되어 있고, 냉매 유입구로부터 전지모듈에 이르는 유동 공간('유입 덕트')과 전지모듈로부터 냉매 배출구에 이르는 유동 공간('배출 덕트')이 팩 케이스에 각각 형성되어 있으며, 상기 유입 덕트의 수직 단면적은 배출 덕트의 수직 단면적보다 작게 형성되어 있는 구조로 이루어진 중대형 전지팩 케이스를 제공한다.

Description

냉매 유량의 분배 균일성이 향상된 중대형 전지팩 케이스 {Middle or Large-sized Battery Pack Case Providing Improved Distribution Uniformity in Coolant Flux}
도 1은 종래의 중대형 전지팩 케이스에 전지모듈을 장착한 중대형 전지팩의 사시도이다;
도 2는 도 1의 중대형 전지팩 케이스에 전지모듈을 장착한 중대형 전지팩의 단면 모식도이다;
도 3은 본 발명의 하나의 실시예에 따른 전지팩 케이스에 전지모듈을 장착한 중대형 전지팩의 단면 모식도이다;
도 4는 도 2 및 도 3의 구조로 제작된 중대형 전지팩에서 셀 사이의 유량 분포를 측정한 결과를 나타낸 비교 그래프이다;
도 5는 본 발명의 또 다른 하나의 실시예에 따른 전지팩 케이스에 비드가 형성된 중대형 전지팩의 단면 모식도이다;
도 6은 본 발명의 또 다른 실시예에 따른 전지팩 케이스에 높이 차이가 있는 다수의 비드들이 형성된 중대형 전지팩의 단면 모식도이다.
본 발명은 중대형 전지팩 케이스에 관한 것으로, 더욱 상세하게는, 충방전이 가능한 다수의 전지셀들을 적층한 전지모듈이 장착되는 전지팩 케이스로서, 냉매가 전지셀 적층방향에 수직한 방향으로 전지모듈의 일측으로부터 대향측으로 유동할 수 있도록 냉매 유입구와 배출구가 팩 케이스에 형성되어 있고, 유입 덕트 및 배출 덕트가 팩 케이스에 각각 형성되어 있으며, 상기 유입 덕트의 수직 단면적은 배출 덕트의 수직 단면적보다 작게 형성되어 있는 구조로 이루어진 중대형 전지팩 케이스에 관한 것이다.
최근, 충방전이 가능한 이차전지는 와이어리스 모바일 기기의 에너지원으로 광범위하게 사용되고 있다. 또한, 이차전지는 화석 연료를 사용하는 기존의 가솔린 차량, 디젤 차량 등의 대기오염 등을 해결하기 위한 방안으로 제시되고 있는 전기자동차(EV), 하이브리드 전기자동차(HEV) 등의 동력원으로서도 주목받고 있다.
소형 모바일 기기들에는 디바이스 1 대당 하나 또는 두서너 개의 전지셀들이 사용됨에 반하여, 자동차 등과 같은 중대형 디바이스에는 고출력 대용량의 필요성으로 인해, 다수의 전지셀을 전기적으로 연결한 중대형 전지모듈이 사용된다.
중대형 전지모듈은 가능하면 작은 크기와 중량으로 제조되는 것이 바람직하므로, 높은 집적도로 충적될 수 있고 용량 대비 중량이 작은 각형 전지, 파우치형 전지 등이 중대형 전지모듈의 전지셀로서 주로 사용되고 있다. 특히, 알루미늄 라미네이트 시트 등을 외장부재로 사용하는 파우치형 전지는 중량이 작고 제조비용이 낮으며 형태 변형이 용이하다는 등의 이점으로 인해 최근 많은 관심을 모으고 있다.
중대형 전지모듈이 소정의 장치 내지 디바이스에서 요구되는 출력 및 용량을 제공하기 위해서는, 다수의 전지셀들을 직렬 방식으로 전기적으로 연결하여야 하고 외력에 대해 안정적인 구조를 유지할 수 있어야 한다.
또한, 중대형 전지모듈을 구성하는 전지셀들은 충방전이 가능한 이차전지로 구성되어 있으므로, 이와 같은 고출력 대용량 이차전지는 충방전 과정에서 다량의 열을 발생시키는 바, 충방전 과정에서 발생한 단위전지의 열이 효과적으로 제거되지 못하면, 열축적이 일어나고 결과적으로 단위전지의 열화를 촉진하며, 경우에 따라서는 발화 또는 폭발의 위험성도 존재한다. 따라서, 고출력 대용량의 전지인 차량용 전지팩에는 그것에 내장되어 있는 전지셀들을 냉각시키는 냉각 시스템이 필요하다.
한편, 다수의 전지셀들로 구성된 중대형 전지팩에서, 일부 전지셀의 성능 저하는 전체 전지팩의 성능 저하를 초래하게 된다. 이러한 성능 불균일성을 유발하는 주요 원인 중의 하나는 전지셀 간의 냉각 불균일성에 의한 것이므로, 냉매의 유동시 냉각 균일성을 확보할 수 있는 구조가 요구된다.
특히, 중대형 전지팩에서, 냉매 유입구측 덕트(이하, '유입 덕트'라 함) 및 냉매 배출구측 덕트(이하, '배출 덕트'라 함)의 수직 단면적은 전지팩 내부의 유량 분배에 많은 영향을 끼치게 된다.
일반적으로, 유입 덕트의 수직 단면적이 배출 덕트의 수직 단면적보다 크거 나 같으면 유량이 유입구 근처의 전지셀들 사이의 유로에 많이 유입되는 경향이 나타나고, 유입구와 먼 쪽의 전지셀들 사이의 유로에는 유량이 많이 감소하여 전지셀들 간의 균일한 냉각이 어렵게 된다.
이러한 냉매의 불균일한 분배로 인한 문제점을 개선하기 위한 기술로서, 한국 특허출원공개 제2006-037625호에는, 전지모듈에서 유입부와 유출부에 연통부재를 구비하고, 연통부재는 제 1 연결통로(유입 덕트)와 제 2 연결통로(배출 덕트)로 구성하여 냉각 효율을 향상시키는 기술이 개시되어 있다. 상기 기술은, 유입구에서 멀어질수록 전지셀들 사이의 유로의 유동 단면적을 크게 하는 기술을 적용하고 있어서, 부분적인 냉각 균일성 효과는 얻을 수 있다. 그러나, 제 1 연결통로와 제 2 연결통로의 수직 단면적이 동일하게 형성되어 있어서, 냉매 유량이 냉매 유입부 근처의 셀 사이 유로에 많이 몰리게 되므로 전지셀들 간의 냉각 균일성을 근원적으로 해결하지 못하는 문제점이 있다.
따라서, 이러한 문제점을 근본적으로 해결할 수 있는 기술에 대한 필요성이 높은 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 출원의 발명자들은 중대형 전지팩 케이스에 대한 다양한 실험들과 심도 있는 연구를 거듭한 끝에, 전지팩 케이스에 형성된 유입 덕트의 수직 단면적을 배 출 덕트의 수직 단면적보다 작게 형성할 경우, 놀랍게도, 전지 셀 사이의 유로에 흐르는 냉매의 유량을 균일하게 분배할 수 있어서, 전지셀들 사이에 축적되는 열을 효과적으로 제거할 수 있고, 전지의 성능 및 수명을 크게 향상시킬 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다.
따라서, 본 발명에 따른 중대형 전지팩 케이스는, 충방전이 가능한 다수의 전지셀들을 적층한 전지모듈이 장착되는 전지팩 케이스로서, 전지셀들의 냉각을 위한 냉매가 전지셀 적층방향에 수직한 방향으로 전지모듈의 일측으로부터 대향측으로 유동할 수 있도록 냉매 유입구와 배출구가 팩 케이스에 형성되어 있고, 냉매 유입구로부터 전지모듈에 이르는 유동 공간('유입 덕트')과 전지모듈로부터 냉매 배출구에 이르는 유동 공간('배출 덕트')이 팩 케이스에 각각 형성되어 있으며, 상기 유입 덕트의 수직 단면적은 배출 덕트의 수직 단면적보다 작게 형성되어 있는 구조로 이루어져 있다.
즉, 본 발명에 따른 중대형 전지팩 케이스는 유입 덕트의 수직 단면적을 배출 덕트의 수직 단면적보다 작게 형성함으로써, 종래의 유입 덕트의 수직 단면적이 배출 덕트의 수직 단면적보다 크거나 동일한 경우와 비교하여, 전지셀들 사이의 유로에 흐르는 냉매의 유량을 균일하게 할 수 있고, 전지셀의 충방전시에 발생한 열을 균일한 냉매의 유동에 의해 효과적으로 제거할 수 있으므로, 냉각 효율성이 높아지고 전지의 성능을 크게 향상시킬 수 있다.
본 발명에 따른 중대형 전지팩 케이스에 장착되는 전지모듈은 일반적으로 다수의 전지셀들을 높은 밀집도로 적층하는 방법으로 제조하며, 충방전시에 발생한 열을 제거할 수 있도록 인접한 전지셀들을 일정한 간격으로 이격시켜 적층한다. 예를 들어, 전지셀 자체를 별도의 부재 없이 소정의 간격으로 이격시키면서 순차적으로 적층하거나, 또는 기계적 강성이 낮은 전지셀의 경우, 하나 또는 둘 이상의 조합으로 카트리지 등에 내장하고 이러한 카트리지들을 다수 개 적층하여 전지모듈을 구성할 수 있다. 따라서, 적층된 전지셀들 사이에 축적되는 열을 효과적으로 제거할 수 있도록, 냉매의 유로가 전지셀들 사이에 형성되는 구조로 이루어진다.
상기 유입 덕트 및 배출 덕트는 전지셀들의 충방전에 따른 열의 발생을 효과적으로 냉각시키기 위한 냉매가 유입 및 배출될 수 있는 유동 공간으로서, 전지팩 케이스의 상부 또는 하부에 각각 형성되어 있다.
하나의 바람직한 예에서, 상기 유입 덕트의 수직 단면적은 배출 덕트의 수직 단면적을 기준으로 50 내지 90%의 크기를 가지는 구조로 형성될 수 있다. 냉매 유입 덕트의 수직 단면적이 너무 작은 경우에는 냉매의 유동을 위한 에너지 소비량이 지나치게 커지는 문제점이 있고, 반대로 너무 큰 경우에는 앞서 설명한 바와 같은 냉매 유량의 전지셀간 균일한 분배가 어려울 수 있으므로, 바람직하지 않다.
본 명세서에서, 상기 유입 덕트와 배출 덕트의 수직 단면적 차이는 (a) 양 덕트의 폭은 동일하고 높이에 차이가 있는 구조, (b) 높이는 동일하고 폭이 차이가 있는 구조, (c) 폭과 높이가 각각 차이가 있는 구조 등으로 달성될 수 있다. 그 중에서도, 전지팩의 구조적 효율성 등을 고려할 때, 상기 구조(b), 즉, 상호간의 폭이 동일한 상태에서 수직 높이에 차이가 있는 구조가 특히 바람직하다.
본 출원의 발명자들이 수행한 실험에 따르면, 상기 구조에서, 유입 덕트의 수직 높이가 배출 덕트의 수직 높이를 기준으로 55 내지 85%의 크기를 가지는 경우에 더욱 바람직한 것으로 확인되었다.
본 발명에 따른 전지팩 케이스는 냉각 효율성이 문제가 되는 구조, 즉, 전지셀 적층방향에 대응하는 전지팩 케이스의 길이가 전지셀의 폭방향에 대응하는 길이보다 상대적으로 길고, 상기 덕트들은 전지셀의 적층방향에 평행하게 형성되어 있는 구조에서 더욱 바람직하다.
상기 덕트들은 유입 덕트와 배출 덕트로 이루어지며, 일 예로, 유입 덕트는 전지셀의 적층방향에 평행하게 전지팩 케이스의 상부에 형성되고, 배출 덕트는 전지셀의 적층방향에 평행하게 전지팩 케이스의 하부에 형성되어 있을 수 있다. 이 경우, 냉매는 냉매 유입구로 진입하여 유입 덕트를 지나 전지셀들 사이의 유로에 균등하게 분배되고, 배출 덕트를 통과하여 배출구의 외부로 배출된다. 반대로, 상기 유입 덕트는 전지팩 케이스의 하부에 전지셀의 적층방향에 평행하게 형성되고, 배출 덕트는 전지팩 케이스의 상부에 형성될 수 있음은 물론이다.
상기 냉매 배출구에는 냉매 유입구로부터 유입된 냉매가 전지모듈을 관통한 후 신속하고 원활하게 냉매 배출구로 이동하여 전지팩 외부로 배출될 수 있도록, 바람직하게는, 흡입 팬이 추가로 장착될 수 있다. 이러한 구조에서, 흡입 팬에 의해 발생한 냉매의 유동 구동력에 의해, 좁은 유입구를 통해 유입된 냉매는 빠른 유속으로 유입구에서 멀리 떨어진 전지셀까지 충분히 도달하여, 냉매의 유량이 동일 한 조건에서 상대적으로 균일한 유량 분배 효과를 발휘한다.
경우에 따라서는, 외력에 대한 구조적 안정성을 향상시킬 수 있는 요철 형상의 비드들이 팩 케이스에 형성될 수 있으며, 이 경우, 냉매 유입구로부터 전지모듈에 이르는 유동 공간('유입 덕트') 상에서, 상기 비드들은 냉매 유입구로부터 유체의 진행 방향으로 냉매의 유동이 방해받지 않는 구조로 이루어질 수 있다.
즉, 상기 비드는 팩 케이스의 기계적 강성을 효과적으로 보완함으로써, 뒤틀림, 진동 등과 같은 외력에 대해 우수한 내구성 또는 구조적 안정성을 제공하며, 더욱이, 냉매 유입구를 통해 케이스 내부로 유입된 냉매의 유동을 방해하지 않음으로써, 전지셀의 충방전시에 발생한 열을 보다 효과적으로 제거할 수 있도록 해준다.
하나의 바람직한 예에서, 비드는 폭 대비 길이가 큰 요철 형상의 구조로 이루어져 있고, 이러한 비드들은 상호 평행한 배열 구조로 형성될 수 있다.
상기에서 냉매의 유동을 방해하지 않는 비드 구조와 관련하여, 하나의 바람직한 예에서, 전지팩 케이스는 전지셀 적층방향에 대응하는 전지팩 케이스의 길이가 전지셀의 폭방향에 대응하는 길이보다 상대적으로 길고, 상기 비드들은 전지셀의 폭방향에 평행하게 형성되어 있으며, 상기 유입 덕트 중, 냉매 유입구에 인접한 부위에는 비드가 형성되어 있지 않은 구조일 수 있다.
냉매의 유동이 비드로부터 받은 영향은 냉매 유입구 부근에서 가장 크므로, 냉매 유입구로부터 소정의 간격만큼 떨어진 곳에서부터 비드를 형성하면, 비드가 냉매의 유동에 미치는 영향을 최소화할 수 있다.
또 다른 예로서, 상기 전지팩 케이스는 전지셀 적층방향에 대응하는 길이가 전지셀의 폭방향에 대응하는 길이보다 상대적으로 길고, 상기 비드들은 전지셀의 폭방향에 평행하게 형성되어 있으며, 상기 유입 덕트 중, 냉매 유입구에 인접한 부위에서 비드의 요철 깊이는 냉매 유입구 방향으로 순차적으로 감소하는 구조로 이루어질 수 있다.
이러한 구조는, 전지팩 케이스의 구조적 안정성 저하를 최소화하면서 셀 사이의 유량 분배 균일성을 더욱 증가시키기 위해, 냉매 유입구쪽 비드의 깊이를 상대적으로 작게 하고, 냉매 유입구로부터 멀어지는 방향에서 순차적으로 비드의 깊이를 증가시키거나, 또는 소정의 깊이까지 순차적으로 증가시킨 후 다음 특정 비드부터 원래의 비드 깊이를 유지하는 구조 등을 모두 포함한다. 이 경우, 깊이가 변하는 비드의 개수는 비드 깊이 조정에 따른 전지팩 케이스의 구조적 강도가 감소하는 정도를 고려하여 적절히 결정할 수 있다.
본 발명은 또한 상기 중대형 전지팩 케이스에 전지모듈이 장착되어 있는 구조의 중대형 전지팩을 제공한다.
본 명세서에서 사용된 용어 "전지모듈"은 둘 또는 그 이상의 충방전 전지셀들을 기계적으로 체결하고 동시에 전기적으로 연결하여 고출력 대용량의 전기를 제공할 수 있는 전지 시스템의 구조를 포괄적으로 의미하므로, 그 자체로서 하나의 장치를 구성하거나, 또는 대형 장치의 일부를 구성하는 경우를 모두 포함한다. 예를 들어, 소형 전지모듈을 다수 개 연결한 대형 전지모듈의 구성도 가능하다.
따라서, 상기 전지모듈은 충방전이 가능한 다수의 판상형 전지셀들로 이루어 질 수 있으며, 본 명세서에서 '판상형'은 폭 대비 길이가 상대적으로 큰 직육면체 형상을 의미한다.
상기 전지셀은 이차전지로서, 대표적으로 니켈 수소 이차전지, 리튬 이차전지 등을 들 수 있으며, 그 중에서도 에너지 밀도가 높고 방전 전압이 큰 리튬 이차전지가 특히 바람직하다. 전지모듈을 구성하는 충방전 단위셀로서 형상 면에서는 각형 전지와 파우치형 전지가 바람직하며, 제조비용이 낮고 중량이 적은 파우치형 전지가 더욱 바람직하다.
본 발명에 따른 중대형 전지팩은 고출력 대용량의 달성을 위해 다수의 전지셀들을 포함함으로써, 충방전시 발생하는 고열이 안전성 측면에서 심각하게 대두되는 전기자동차, 하이브리드 전기자동차 등의 전원에 특히 바람직하게 사용될 수 있다.
이하에서는, 본 발명의 실시예에 따른 도면을 참조하여 설명하지만, 이는 본 발명의 더욱 용이한 이해를 위한 것으로, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
도 1에는 종래의 중대형 전지팩 케이스에 전지모듈을 장착한 중대형 전지팩의 사시도가 모식적으로 도시되어 있고, 도 2에는 도 1의 중대형 전지팩 케이스에 전지모듈을 장착한 중대형 전지팩의 단면 모식도가 도시되어 있다.
이들 도면을 참조하면, 중대형 전지팩(100)은 다수의 판상형 전지셀들(30)이 전기적 및 기계적으로 연결된 전지모듈(32)과, 이러한 전지모듈(32)이 장착되는 팩 케이스(70), 냉매 유입구(10)로부터 전지모듈(32)에 이르는 유동 공간인 유입 덕트(40)와 전지모듈(32)로부터 냉매 배출구(20)에 이르는 유동 공간인 배출 덕트(50)로 구성되어 있다.
냉매 유입구(10)로부터 유입된 냉매는 유입 덕트(40) 및 전지셀들(30) 사이에 형성된 유로(60)를 통과하면서 전지셀들(30)을 냉각시키고 배출 덕트(50)를 지나 냉매 배출구(20)를 통하여 외부로 배출된다.
유입 덕트(40)의 수직 높이(a)는 배출 덕트(50)의 수직 높이(b)와 동일한 크기로 형성되어 있어서, 냉매 유량은 냉매 유입구(10) 근처의 전지셀(30N)에 많이 분포되고 냉매 유입구(10)보다 먼 거리에 위치한 전지셀(30R)에는 적게 분포된다.
도 3에는 본 발명의 하나의 실시예에 따른 전지팩 케이스에 전지모듈을 장착한 중대형 전지팩의 단면 모식도가 도시되어 있다.
도 3을 참조하면, 팩 케이스(70')는 전지셀(30)의 적층방향(L)에 대응하는 길이가 전지셀(30)의 폭방향(W)에 대응하는 길이보다 상대적으로 긴 형상으로 이루어져 있다. 또한, 전지셀 적층방향(L)에 수직한 방향으로, 냉매가 전지모듈(32)의 일측으로부터 대향측으로 유동할 수 있도록 냉매 유입구(10')와 냉매 배출구(20')가 형성되어 있다.
전지모듈(32)의 전지셀들(30) 사이에는 냉매가 이동할 수 있는 작은 유로(60)가 형성되어 있어서, 냉매 유입구(10')로부터 유입된 냉매가 유로(60)를 통해 이동하면서 전지셀(30)에서 발생한 열을 제거한 후, 냉매 배출구(20')를 통해 배출되게 된다.
도 1 및 도 2에 개시되어 있는 전지팩 케이스(70)와의 차이점은, 냉매 유입구(10')와 연결되어 있는 유입 덕트(40')의 수직 높이(a')가 냉매 배출구(20')와 연결되어 있는 배출 덕트(50')의 수직 높이(b')를 기준으로 50 내지 90%의 크기로 형성되어 있다는 점이다. 즉, 유입 덕트(40')의 수직 높이(a')가 배출 덕트(50')의 수직 높이(b')보다 작은 크기로 형성되어 있어서, 냉매 유량이 전지셀들(30N, 30R)에 균일하게 분배될 수 있다.
이와 관련하여, 도 4에는 도 2 및 도 3의 구조로 제작된 중대형 전지팩에서 전지셀들 간 유로의 유량 분포를 측정한 각각의 비교 결과를 나타낸 그래프가 도시되어 있다. 즉, 도 2의 중대형 전지팩(100)에서 유량 분포를 측정한 결과(X)와, 도 3의 중대형 전지팩에서 유입 덕트의 수직 높이에 대해 배출 덕트의 수직 높이를 소정의 크기로 작게 하였을 때의 유량 분포를 측정한 결과(Y)가 각각 도시되어 있다.
구체적으로, X의 유량차(x)와 Y의 유량차(y)를 비교하여 보면, Y의 유량차(y)는 냉매 유입구(10)에 인접한 전지셀(30N)에서의 냉매의 유동이 X의 유량차(x)보다 적고, 따라서 냉매의 유량 분배 균일성이 향상됨을 알 수 있다.
이는, 유입 덕트(40')의 수직 단면적이 배출 덕트(50')의 수직 단면적보다 작으므로, 유입 덕트(40')내의 냉매 유속이 배출 덕트(50')의 냉매 유속보다 상대적으로 높게 되어, 냉매가 냉매 유입구(10')로부터 먼거리에 위치한 전지셀들(30R)까지 균등하게 분포될 수 있음을 의미한다.
도 5에는 도 3의 중대형 전지팩에서 전지팩 케이스에 비드가 형성된 구조를 나타낸 단면 모식도가 도시되어 있다.
도 3에 개시되어 있는 전지팩 케이스(70)와의 차이점은, 냉매 유입구(10')에 인접한 부위(S)를 제외하고, 비드들(72)이 냉매 유입구(10')로부터 유체의 진행 방향으로 냉매의 유동을 방해하지 않는 구조로 폭 대비 길이가 큰 요철 형상의 구조로 형성되어 있다는 점이다.
부위(S)를 제외한 전지팩 케이스(70')의 부위에 비드(72)가 형성되어 있어서 냉매 유입구(10')보다 먼 거리에 위치한 전지셀들(30R)에 냉매를 보다 효율적으로 균등하게 분포시킬 수 있고, 냉매 유량 분배를 더욱 균일하게 할 수 있다. 즉, 냉매 유입구(10')와 전지셀들(30) 간의 거리차에 따른 유량차의 차이를 더욱 줄일 수 있다.
도 6에는 본 발명의 또 다른 실시예에 따른 전지팩 케이스에 전지모듈을 장착한 중대형 전지팩의 단면이 모식적으로 도시되어 있다.
도 6을 참조하면, 전지팩 케이스(70')는 전지셀 적층방향(L)에 대응하는 길이가 전지셀 폭방향(W)에 대응하는 길이보다 상대적으로 길고, 비드들(72)은 전지셀 폭방향(W)에 평행하게 형성되어 있으며, 유입 덕트(40') 중, 냉매 유입구(10')에 인접한 부위에서 비드(72)의 요철 깊이는 냉매 유입구(10') 방향으로 순차적으로 줄어드는 구조(h1<h2<h3)로 이루어져 있다. 이러한 비드(72) 구조로 인해 냉매 유량 분배의 균일성을 더욱 높일 수 있다.
이상 본 발명의 실시예에 따른 도면을 참조하여 설명하였지만, 본 발명이 속 한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
이상에서 설명한 바와 같이, 본 발명에 따른 중대형 전지팩 케이스는 유입 덕트의 수직 단면적을 배출 덕트의 수직 단면적보다 작게 형성함으로써, 냉매의 유량 분배 균일성을 향상시킬 수 있고, 전지셀들 사이에 축적되는 열을 효과적으로 제거할 수 있으며, 궁극적으로 전지의 성능 및 수명을 크게 향상시킬 수 있다.

Claims (14)

  1. 충방전이 가능한 다수의 전지셀들을 적층한 전지모듈이 장착되는 전지팩 케이스로서, 전지셀들의 냉각을 위한 냉매가 유입되는 냉매 유입구가 팩 케이스의 일측에 형성되어 있고, 상기 냉매가 배출되는 냉매 배출구가 전지모듈을 중심으로 냉매 유입구에 대향하는 팩 케이스 상에 형성되어 있어서, 상기 냉매 유입구로 유입된 냉매는 전지셀 적층방향에 수직한 방향으로 전지모듈의 일측으로부터 대향측으로 유동한 후 냉매 배출구를 통해 팩 케이스 외부로 배출되며, 냉매 유입구로부터 전지모듈에 이르는 유동 공간('유입 덕트')과 전지모듈로부터 냉매 배출구에 이르는 유동 공간('배출 덕트')이 팩 케이스에 각각 형성되어 있, 상기 유입 덕트의 수직 단면적은 배출 덕트의 수직 단면적보다 작게 형성되어 있는 것을 특징으로 하는 중대형 전지팩 케이스.
  2. 제 1 항에 있어서, 상기 유입 덕트의 수직 단면적은 배출 덕트의 수직 단면적을 기준으로 50 내지 90%의 크기를 가지는 것을 특징으로 하는 중대형 전지팩 케이스.
  3. 제 1 항에 있어서, 상기 덕트들의 수직 단면적 차이는 상호간의 폭이 동일한 상태에서 수직 높이의 차이로 인한 것을 특징으로 하는 중대형 전지팩 케이스.
  4. 제 3 항에 있어서, 상기 유입 덕트의 수직 높이는 배출 덕트의 수직 높이를 기준으로 55 내지 85%의 크기를 가지는 것을 특징으로 하는 중대형 전지팩 케이스.
  5. 제 1 항에 있어서, 상기 전지팩 케이스는 전지셀 적층방향에 대응하는 길이가 전지셀의 폭방향에 대응하는 길이보다 상대적으로 길고, 상기 덕트들은 전지셀의 적층방향에 평행하게 형성되어 있는 것을 특징으로 하는 중대형 전지팩 케이스.
  6. 제 1 항에 있어서, 상기 냉매 배출구에는 냉매 유입구로부터 유입된 냉매가 전지모듈을 관통한 후 배출구로 이동할 수 있도록 흡입 팬이 장착되어 있는 것을 특징으로 하는 중대형 전지팩 케이스.
  7. 제 1 항에 있어서, 외력에 대한 구조적 안정성을 향상시킬 수 있는 요철 형상의 비드들이 팩 케이스에 형성되어 있으며, 냉매 유입구로부터 전지모듈에 이르는 유동 공간('유입 덕트') 상에서, 상기 비드들이 냉매 유입구로부터 유체의 진행 방향으로 냉매의 유동이 방해받지 않는 구조로 형성되어 있는 것을 특징으로 하는 중대형 전지팩 케이스.
  8. 제 7 항에 있어서, 상기 비드는 폭 대비 길이가 큰 요철 형상의 구조로 이루어져 있고, 다수의 비드들이 상호 평행한 배열 구조로 형성되어 있는 것을 특징으로 하는 중대형 전지팩 케이스.
  9. 제 7 항에 있어서, 상기 전지팩 케이스는 전지셀 적층방향에 대응하는 길이가 전지셀의 폭방향에 대응하는 길이보다 상대적으로 길고, 상기 비드들은 전지셀 의 폭방향에 평행하게 형성되어 있으며, 상기 유입 덕트 중, 냉매 유입구에 인접한 부위에는 비드가 형성되어 있지 않은 것을 특징으로 하는 중대형 전지팩 케이스.
  10. 제 7 항에 있어서, 상기 전지팩 케이스는 전지셀 적층방향에 대응하는 길이가 전지셀의 폭방향에 대응하는 길이보다 상대적으로 길고, 상기 비드들은 전지셀의 폭방향에 평행하게 형성되어 있으며, 상기 유입 덕트 중, 냉매 유입구에 인접한 부위에서 비드의 요철 깊이는 냉매 유입구 방향으로 순차적으로 줄어드는 것을 특징으로 하는 중대형 전지팩 케이스.
  11. 제 1 항 내지 제 10 항 중 어느 하나에 따른 중대형 전지팩 케이스에 전지모듈이 장착되어 있는 구조의 중대형 전지팩.
  12. 제 11 항에 있어서, 상기 전지모듈은 충방전이 가능한 다수의 판상형 전지셀들로 이루어진 것을 특징으로 하는 중대형 전지팩.
  13. 제 12 항에 있어서, 상기 전지셀은 리튬 이차전지인 것을 특징으로 하는 중대형 전지팩.
  14. 제 12 항에 있어서, 상기 전지팩은 전기자동차 또는 하이브리드 전기자동차의 전원으로 사용되는 것을 특징으로 하는 중대형 전지팩.
KR1020070027401A 2007-03-21 2007-03-21 냉매 유량의 분배 균일성이 향상된 중대형 전지팩 케이스 KR100942985B1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020070027401A KR100942985B1 (ko) 2007-03-21 2007-03-21 냉매 유량의 분배 균일성이 향상된 중대형 전지팩 케이스
EP07851678.8A EP2130243B1 (en) 2007-03-21 2007-12-21 Middle or large-sized battery pack case providing improved distribution uniformity in coolant flux
PCT/KR2007/006712 WO2008114923A1 (en) 2007-03-21 2007-12-21 Middle or large-sized battery pack case providing improved distribution uniformity in coolant flux
US12/532,068 US9614206B2 (en) 2007-03-21 2007-12-21 Middle or large-sized battery pack case providing improved distribution uniformity in coolant flux
JP2009554433A JP5550912B2 (ja) 2007-03-21 2007-12-21 冷却剤流の配分一様性を改良した中型または大型バッテリーパックケース
CN2007800519948A CN101622733B (zh) 2007-03-21 2007-12-21 在冷却剂通量中提供改进的分配均匀性的中型或大型电池组壳
JP2013101625A JP2013179076A (ja) 2007-03-21 2013-05-13 冷却剤流の配分一様性を改良した中型または大型バッテリーパックケース

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070027401A KR100942985B1 (ko) 2007-03-21 2007-03-21 냉매 유량의 분배 균일성이 향상된 중대형 전지팩 케이스

Publications (2)

Publication Number Publication Date
KR20080085949A KR20080085949A (ko) 2008-09-25
KR100942985B1 true KR100942985B1 (ko) 2010-02-17

Family

ID=39766015

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070027401A KR100942985B1 (ko) 2007-03-21 2007-03-21 냉매 유량의 분배 균일성이 향상된 중대형 전지팩 케이스

Country Status (6)

Country Link
US (1) US9614206B2 (ko)
EP (1) EP2130243B1 (ko)
JP (2) JP5550912B2 (ko)
KR (1) KR100942985B1 (ko)
CN (1) CN101622733B (ko)
WO (1) WO2008114923A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098598A3 (ko) * 2009-02-27 2010-12-09 주식회사 엘지화학 냉매 유량의 분배 균일성이 향상된 중대형 전지팩 케이스
WO2012060558A3 (ko) * 2010-11-05 2012-06-28 주식회사 엘지화학 안전성이 향상된 이차전지
KR101274937B1 (ko) * 2011-04-14 2013-06-14 주식회사 엘지화학 중대형 전지팩
WO2013133636A1 (ko) * 2012-03-08 2013-09-12 주식회사 엘지화학 신규한 공냉식 구조의 전지팩

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4857896B2 (ja) * 2006-05-11 2012-01-18 トヨタ自動車株式会社 組電池および車両
KR100951324B1 (ko) * 2007-06-14 2010-04-08 주식회사 엘지화학 냉매 유량의 분배 균일성이 향상된 중대형 전지팩 케이스
US8628872B2 (en) * 2008-01-18 2014-01-14 Lg Chem, Ltd. Battery cell assembly and method for assembling the battery cell assembly
US8486552B2 (en) 2008-06-30 2013-07-16 Lg Chem, Ltd. Battery module having cooling manifold with ported screws and method for cooling the battery module
US9759495B2 (en) 2008-06-30 2017-09-12 Lg Chem, Ltd. Battery cell assembly having heat exchanger with serpentine flow path
US8403030B2 (en) 2009-04-30 2013-03-26 Lg Chem, Ltd. Cooling manifold
US8663829B2 (en) 2009-04-30 2014-03-04 Lg Chem, Ltd. Battery systems, battery modules, and method for cooling a battery module
CN102511091B (zh) 2009-06-18 2014-09-24 江森自控帅福得先进能源动力系统有限责任公司 具有带有热管理部件的电池单元托盘的电池模块
US8399118B2 (en) 2009-07-29 2013-03-19 Lg Chem, Ltd. Battery module and method for cooling the battery module
US8399119B2 (en) 2009-08-28 2013-03-19 Lg Chem, Ltd. Battery module and method for cooling the battery module
US9093727B2 (en) * 2010-04-01 2015-07-28 GM Global Technology Operations LLC Cooling system for a battery pack
US8662153B2 (en) 2010-10-04 2014-03-04 Lg Chem, Ltd. Battery cell assembly, heat exchanger, and method for manufacturing the heat exchanger
JP5732241B2 (ja) * 2010-12-03 2015-06-10 Udトラックス株式会社 蓄電セル、蓄電装置、及び蓄電装置を搭載する車両
CN102544567B (zh) * 2010-12-30 2014-10-29 上海航天电源技术有限责任公司 带有液冷系统的动力电池模块
JP5853417B2 (ja) * 2011-05-17 2016-02-09 日産自動車株式会社 電気自動車のバッテリパック構造
US20130052491A1 (en) * 2011-08-26 2013-02-28 Roger Neil Bull Thermal management system for a multi-cell array
KR101586197B1 (ko) * 2011-09-29 2016-01-19 주식회사 엘지화학 신규한 냉각구조를 가진 전지팩
KR101866345B1 (ko) * 2011-12-02 2018-06-12 에스케이이노베이션 주식회사 배터리모듈
JP5924025B2 (ja) * 2012-02-20 2016-05-25 日産自動車株式会社 電気自動車のバッテリパック温調構造
US9105950B2 (en) 2012-03-29 2015-08-11 Lg Chem, Ltd. Battery system having an evaporative cooling member with a plate portion and a method for cooling the battery system
US9605914B2 (en) 2012-03-29 2017-03-28 Lg Chem, Ltd. Battery system and method of assembling the battery system
US9379420B2 (en) 2012-03-29 2016-06-28 Lg Chem, Ltd. Battery system and method for cooling the battery system
US8852781B2 (en) 2012-05-19 2014-10-07 Lg Chem, Ltd. Battery cell assembly and method for manufacturing a cooling fin for the battery cell assembly
JP2014029797A (ja) * 2012-07-31 2014-02-13 Toyota Auto Body Co Ltd 車両用バッテリー装置
US9306199B2 (en) 2012-08-16 2016-04-05 Lg Chem, Ltd. Battery module and method for assembling the battery module
US9083066B2 (en) 2012-11-27 2015-07-14 Lg Chem, Ltd. Battery system and method for cooling a battery cell assembly
US8852783B2 (en) 2013-02-13 2014-10-07 Lg Chem, Ltd. Battery cell assembly and method for manufacturing the battery cell assembly
US9647292B2 (en) 2013-04-12 2017-05-09 Lg Chem, Ltd. Battery cell assembly and method for manufacturing a cooling fin for the battery cell assembly
US9184424B2 (en) 2013-07-08 2015-11-10 Lg Chem, Ltd. Battery assembly
US9257732B2 (en) 2013-10-22 2016-02-09 Lg Chem, Ltd. Battery cell assembly
US9444124B2 (en) 2014-01-23 2016-09-13 Lg Chem, Ltd. Battery cell assembly and method for coupling a cooling fin to first and second cooling manifolds
US9446681B2 (en) * 2014-01-29 2016-09-20 GM Global Technology Operations LLC Flow uniformity of air-cooled battery packs
US10084218B2 (en) 2014-05-09 2018-09-25 Lg Chem, Ltd. Battery pack and method of assembling the battery pack
US10770762B2 (en) 2014-05-09 2020-09-08 Lg Chem, Ltd. Battery module and method of assembling the battery module
US9484559B2 (en) 2014-10-10 2016-11-01 Lg Chem, Ltd. Battery cell assembly
US9412980B2 (en) 2014-10-17 2016-08-09 Lg Chem, Ltd. Battery cell assembly
KR101829093B1 (ko) * 2014-10-22 2018-03-29 주식회사 엘지화학 배터리 시스템의 냉각 공기 흐름 제어 시스템 및 방법
US9786894B2 (en) 2014-11-03 2017-10-10 Lg Chem, Ltd. Battery pack
US9627724B2 (en) 2014-12-04 2017-04-18 Lg Chem, Ltd. Battery pack having a cooling plate assembly
CN106450562B (zh) * 2015-08-07 2021-07-02 宝马股份公司 能量存储装置、电池装置、机动车和冷却剂流控制方法
JP6755741B2 (ja) * 2016-07-29 2020-09-16 株式会社東芝 電池装置及び電池システム
WO2018033880A2 (en) 2016-08-17 2018-02-22 Shape Corp. Battery support and protection structure for a vehicle
JP2018032545A (ja) * 2016-08-25 2018-03-01 トヨタ自動車株式会社 電池冷却装置
US10381621B2 (en) * 2016-11-01 2019-08-13 Ford Global Technologies, Llc Traction battery energy absorbing method and assembly
CN110383526A (zh) 2017-01-04 2019-10-25 形状集团 节点模块化的车辆电池托盘结构
WO2018213383A1 (en) 2017-05-16 2018-11-22 Shape Corp. Vehicle battery tray with integrated battery retention and support features
WO2018213475A1 (en) 2017-05-16 2018-11-22 Shape Corp. Polarized battery tray for a vehicle
US10886513B2 (en) 2017-05-16 2021-01-05 Shape Corp. Vehicle battery tray having tub-based integration
CN111108015A (zh) 2017-09-13 2020-05-05 形状集团 具有管状外围壁的车辆电池托盘
WO2019071013A1 (en) 2017-10-04 2019-04-11 Shape Corp. BATTERY SUPPORT BOTTOM ASSEMBLY FOR ELECTRIC VEHICLES
WO2019169080A1 (en) 2018-03-01 2019-09-06 Shape Corp. Cooling system integrated with vehicle battery tray
US11688910B2 (en) 2018-03-15 2023-06-27 Shape Corp. Vehicle battery tray having tub-based component
CN114784420B (zh) * 2018-11-21 2024-02-20 宁德时代新能源科技股份有限公司 换热板及电池模组
US10801789B2 (en) 2019-02-05 2020-10-13 Senior Uk Limited Heat exchangers with improved fluid distribution
US10935330B2 (en) 2019-03-20 2021-03-02 Senior Uk Limited Heat exchangers capable of bidirectional fluid flow
US11633799B2 (en) * 2020-10-01 2023-04-25 Hamilton Sundstrand Corporation Control assembly fabrication via brazing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060037627A (ko) * 2004-10-28 2006-05-03 삼성에스디아이 주식회사 전지 모듈 및 전지 모듈용 냉각장치
JP2006286519A (ja) * 2005-04-04 2006-10-19 Toyota Motor Corp 電池パック
JP2006294336A (ja) * 2005-04-07 2006-10-26 Toyota Motor Corp 電池パック
JP2006302606A (ja) * 2005-04-19 2006-11-02 Nissan Motor Co Ltd 燃料電池収納ケース

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1152246A (en) 1915-03-17 1915-08-31 William L Walker Battery-cell.
US6255015B1 (en) * 1998-08-23 2001-07-03 Ovonic Battery Company, Inc. Monoblock battery assembly
JP2000067934A (ja) * 1998-08-24 2000-03-03 Toyota Motor Corp バッテリ冷却装置
JP2000133225A (ja) * 1998-10-30 2000-05-12 Sanyo Electric Co Ltd 組電池
JP4423695B2 (ja) * 1999-02-23 2010-03-03 トヨタ自動車株式会社 集電池
EP1207581A4 (en) * 1999-08-27 2007-04-25 Tokyo R & D Kk BATTERIEKÜHUNGSSTRUKTUR
JP4543464B2 (ja) * 1999-12-09 2010-09-15 トヨタ自動車株式会社 電池パック
JP4272387B2 (ja) 2002-05-22 2009-06-03 パナソニック株式会社 組電池の冷却装置
JP2004006089A (ja) 2002-05-31 2004-01-08 Toyota Motor Corp 電池システム
JP4366100B2 (ja) * 2003-03-24 2009-11-18 パナソニックEvエナジー株式会社 電池パック
JP4395316B2 (ja) * 2003-04-16 2010-01-06 パナソニックEvエナジー株式会社 電池パック
JP4742515B2 (ja) * 2004-04-20 2011-08-10 トヨタ自動車株式会社 電池パックおよびその筐体
JP4742514B2 (ja) * 2004-04-14 2011-08-10 トヨタ自動車株式会社 電池パックおよびその筐体
US20060093901A1 (en) * 2004-10-28 2006-05-04 Gun-Goo Lee Secondary battery module and cooling apparatus for secondary battery module
KR20060037600A (ko) * 2004-10-28 2006-05-03 삼성에스디아이 주식회사 전지 모듈 및 전지 모듈용 냉각장치
KR100658715B1 (ko) * 2004-10-28 2006-12-15 삼성에스디아이 주식회사 전지 모듈
EP1848051A4 (en) * 2005-01-04 2009-09-02 Nec Corp CASE FOR A FILM PACKED ELECTRICAL EQUIPMENT AND FILM PACKED ELECTRICAL EQUIPMENT ASSEMBLY
JP5270915B2 (ja) 2005-03-01 2013-08-21 日本電気株式会社 モジュール用筐体、フィルム外装電気デバイス用ケース、および組電池
KR100696624B1 (ko) * 2005-04-14 2007-03-19 삼성에스디아이 주식회사 전지 모듈과 전지 모듈의 격벽
KR100938626B1 (ko) 2006-12-30 2010-01-22 주식회사 엘지화학 냉매 유량의 분배 균일성이 향상된 중대형 전지팩 케이스
JP5193660B2 (ja) * 2008-04-03 2013-05-08 株式会社日立製作所 電池モジュール及びそれを備えた蓄電装置並びに電機システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060037627A (ko) * 2004-10-28 2006-05-03 삼성에스디아이 주식회사 전지 모듈 및 전지 모듈용 냉각장치
JP2006286519A (ja) * 2005-04-04 2006-10-19 Toyota Motor Corp 電池パック
JP2006294336A (ja) * 2005-04-07 2006-10-26 Toyota Motor Corp 電池パック
JP2006302606A (ja) * 2005-04-19 2006-11-02 Nissan Motor Co Ltd 燃料電池収納ケース

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098598A3 (ko) * 2009-02-27 2010-12-09 주식회사 엘지화학 냉매 유량의 분배 균일성이 향상된 중대형 전지팩 케이스
KR101084972B1 (ko) 2009-02-27 2011-11-23 주식회사 엘지화학 냉매 유량의 분배 균일성이 향상된 중대형 전지팩 케이스
US8951655B2 (en) 2009-02-27 2015-02-10 Lg Chem, Ltd. Middle or large-sized battery pack case providing improved distribution uniformity in coolant flux
WO2012060558A3 (ko) * 2010-11-05 2012-06-28 주식회사 엘지화학 안전성이 향상된 이차전지
US9799859B2 (en) 2010-11-05 2017-10-24 Lg Chem, Ltd. Secondary battery having improved safety
KR101274937B1 (ko) * 2011-04-14 2013-06-14 주식회사 엘지화학 중대형 전지팩
WO2013133636A1 (ko) * 2012-03-08 2013-09-12 주식회사 엘지화학 신규한 공냉식 구조의 전지팩
US9660304B2 (en) 2012-03-08 2017-05-23 Lg Chem, Ltd. Battery pack of novel air cooling structure

Also Published As

Publication number Publication date
JP2013179076A (ja) 2013-09-09
CN101622733A (zh) 2010-01-06
EP2130243B1 (en) 2017-07-19
JP2010521791A (ja) 2010-06-24
KR20080085949A (ko) 2008-09-25
EP2130243A4 (en) 2010-03-24
WO2008114923A1 (en) 2008-09-25
US9614206B2 (en) 2017-04-04
EP2130243A1 (en) 2009-12-09
US20100203376A1 (en) 2010-08-12
JP5550912B2 (ja) 2014-07-16
CN101622733B (zh) 2013-04-10

Similar Documents

Publication Publication Date Title
KR100942985B1 (ko) 냉매 유량의 분배 균일성이 향상된 중대형 전지팩 케이스
KR100981878B1 (ko) 냉매 유량의 분배 균일성이 향상된 중대형 전지팩 케이스
KR100938626B1 (ko) 냉매 유량의 분배 균일성이 향상된 중대형 전지팩 케이스
KR100951324B1 (ko) 냉매 유량의 분배 균일성이 향상된 중대형 전지팩 케이스
KR101143279B1 (ko) 신규한 냉각구조를 가진 전지팩
KR101338258B1 (ko) 냉매의 분배 균일성이 향상된 전지팩
KR101020587B1 (ko) 냉매 유량의 분배 균일성이 향상된 중대형 전지팩 케이스
KR101084972B1 (ko) 냉매 유량의 분배 균일성이 향상된 중대형 전지팩 케이스
KR100993127B1 (ko) 우수한 냉각 효율성의 중대형 전지팩
KR20100012018A (ko) 우수한 냉각 효율성의 중대형 전지팩 케이스
KR101535795B1 (ko) 공냉식 구조의 전지팩
KR20130122057A (ko) 전지팩 냉각 시스템
KR20220096198A (ko) 강도향상을 위한 냉각 핀을 포함하는 전지모듈
KR20220096199A (ko) 전지들을 균일하게 냉각시키는 전지모듈

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130111

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140103

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150119

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160128

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170202

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180116

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190116

Year of fee payment: 10