WO2016052741A1 - ハースロール及びその製造方法 - Google Patents

ハースロール及びその製造方法 Download PDF

Info

Publication number
WO2016052741A1
WO2016052741A1 PCT/JP2015/078094 JP2015078094W WO2016052741A1 WO 2016052741 A1 WO2016052741 A1 WO 2016052741A1 JP 2015078094 W JP2015078094 W JP 2015078094W WO 2016052741 A1 WO2016052741 A1 WO 2016052741A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
modified
hearth roll
thermal spray
roll
Prior art date
Application number
PCT/JP2015/078094
Other languages
English (en)
French (fr)
Inventor
栗栖 泰
水津 竜夫
Original Assignee
新日鐵住金株式会社
トーカロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社, トーカロ株式会社 filed Critical 新日鐵住金株式会社
Priority to KR1020167020784A priority Critical patent/KR101765025B1/ko
Priority to EP15847128.4A priority patent/EP3202944B1/en
Priority to BR112016018241-3A priority patent/BR112016018241B1/pt
Priority to US15/116,778 priority patent/US10088236B2/en
Priority to MX2017000407A priority patent/MX2017000407A/es
Priority to CN201580009169.6A priority patent/CN106029937B/zh
Priority to JP2016552186A priority patent/JP6396485B2/ja
Publication of WO2016052741A1 publication Critical patent/WO2016052741A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/02Skids or tracks for heavy objects
    • F27D3/026Skids or tracks for heavy objects transport or conveyor rolls for furnaces; roller rails
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H27/00Special constructions, e.g. surface features, of feed or guide rollers for webs
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/562Details
    • C21D9/563Rolls; Drums; Roll arrangements
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/005Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides comprising a particular metallic binder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/24Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/36Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2401/00Materials used for the handling apparatus or parts thereof; Properties thereof
    • B65H2401/10Materials
    • B65H2401/12Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2401/00Materials used for the handling apparatus or parts thereof; Properties thereof
    • B65H2401/10Materials
    • B65H2401/13Coatings, paint or varnish
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2404/00Parts for transporting or guiding the handled material
    • B65H2404/10Rollers
    • B65H2404/18Rollers composed of several layers
    • B65H2404/187Rollers composed of several layers with wear resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2404/00Parts for transporting or guiding the handled material
    • B65H2404/50Surface of the elements in contact with the forwarded or guided material
    • B65H2404/53Surface of the elements in contact with the forwarded or guided material with particular mechanical, physical properties
    • B65H2404/532Surface of the elements in contact with the forwarded or guided material with particular mechanical, physical properties with particular durometer
    • B65H2404/5322Surface of the elements in contact with the forwarded or guided material with particular mechanical, physical properties with particular durometer surface with different hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/10Handled articles or webs
    • B65H2701/17Nature of material
    • B65H2701/173Metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/12Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/28Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity for treating continuous lengths of work

Definitions

  • This specification relates to a hearth roll and a manufacturing method thereof.
  • a sprayed coating provided on a substrate is irradiated with a laser in a pattern such as a dot or a line, and is partially heated to cause a tissue change, thereby partially modifying the coating. Sliding to form a sliding surface with excellent seizure resistance, with the laser-irradiated part or laser non-irradiated part recessed mainly due to selective wear during finishing or sliding, and becoming a puddle of oil.
  • a method for manufacturing a member is disclosed.
  • Japanese Unexamined Patent Application Publication No. 2013-95974 discloses a thermal spray coating in which the surface of the thermal spray coating is irradiated with a high energy beam to remelt and resolidify the coating composition on the surface of the thermal spray coating, thereby densifying the surface layer. Discloses a method for forming a densified layer.
  • the embodiment of the present specification mainly aims to provide a hearth roll and a method for manufacturing the same that can suppress adhesion of foreign matter to the roll surface during sheet passing.
  • an energy beam is applied to a part of or the entire surface of the thermal spray coating formed on the roll base, the thermal spray coating formed on the roll base, and the thermal spray coating.
  • a modified coating obtained by melting and solidifying the sprayed coating by irradiation to partially or fully modify the sprayed coating, and the thickness of the modified coating is 2 to 20 ⁇ m,
  • a hearth roll whose Vickers hardness HV of the modified coating is 1.2 to 1.4 times the Vickers hardness HV of the sprayed coating.
  • the sprayed coating is partially melted and solidified by irradiating an energy beam to a part or the entire surface of the sprayed coating formed on the roll substrate. Or forming a modified coating having a thickness of 2 to 20 ⁇ m and a Vickers hardness HV of 1.2 to 1.4 times the Vickers hardness HV of the thermal spray coating.
  • a method for manufacturing a hearth roll is provided.
  • a roll base material A sprayed coating formed on the roll substrate; By irradiating an energy beam to a part or the entire surface of the sprayed coating formed on the sprayed coating, the sprayed coating is melted and solidified to partially or fully modify the sprayed coating.
  • Modified film With The thickness of the modified film is 2 to 20 ⁇ m, A hearth roll is provided in which the modified coating has a Vickers hardness HV of 1.2 to 1.4 times the Vickers hardness HV of the thermal spray coating.
  • the average interval between adjacent cracks is 10 to 100 ⁇ m, and the opening width of the cracks is less than 5 ⁇ m.
  • the modified coating contains 0.5 to 2% by mass of oxygen.
  • the hearth roll of any one of (1) to (4) is preferably It further includes a chromium oxide layer formed on the modified coating or on the modified coating and the sprayed coating.
  • the sprayed coating is a cermet coating made of a ceramic and a heat-resistant alloy
  • the ceramic is, by volume, Cr 3 C 2 : 50 to 90% Al 2 O 3 : 1 to 40% Y 2 O 3 : 0 to 3% ZrB 2 : 0 to 40%
  • the balance consists of impurities and pores
  • the heat-resistant alloy is mass%, Cr: 5-20% Al: 5-20% At least one of Y or Si: 0.1 to 6%
  • the balance is made of at least one of Co and Ni and impurities, 50 to 90% by volume of the cermet film is the ceramic, and the remainder is the heat-resistant alloy.
  • the heat-resistant alloy is mass%, Nb: 0.1 to 10% Ti: 0.1 to 10% At least one of the above. According to another aspect of the specification,
  • the sprayed coating is melted and solidified by irradiating an energy beam to a part or the entire surface of the sprayed coating formed on the roll base material, thereby partially or completely modifying the sprayed coating.
  • a method of manufacturing a hearth roll comprising a step of forming a modified coating having a thickness of 2 to 20 ⁇ m and a Vickers hardness HV of 1.2 to 1.4 times the Vickers hardness HV of the thermal spray coating. Provided.
  • the energy beam is irradiated in the atmosphere.
  • the chromate treatment is performed after the modified film is formed.
  • the continuous annealing furnace 1 is equipment for continuously annealing the steel plate 2 in order to adjust the mechanical properties (hardness, etc.) of the strip-shaped steel plate 2 manufactured in the cold rolling process. is there.
  • the continuous annealing furnace 1 continuously anneals the steel sheet 2 by applying a heat cycle such as heating, soaking, and cooling when the steel sheet 2 passes between a plurality of rolls arranged in the furnace.
  • the steel plate 2 is an example of a metal strip to be annealed.
  • a thin plate for example, a strip-shaped cold-rolled steel plate having a thickness of 0.14 mm to 3.2 mm
  • a metal strip is a strip
  • the continuous annealing furnace 1 includes a heating furnace 3, a soaking furnace 4, a primary cooling furnace 5, an overaging furnace 6, a secondary cooling furnace 7, and the like in order from the entry side.
  • the steel plate 2 is continuously annealed while transporting the steel plate 2 using a plurality of hearth rolls 10 for continuous annealing furnace provided therein.
  • a pay-off reel, a shear, an inlet-side cleaning device, an inlet-side looper, and the like are provided in the front stage of the heating furnace 3, and in the rear stage of the secondary cooling furnace 7, for example, a water-cooled tank, Skin pass roll, exit looper, trimmer, winder, etc. are provided.
  • the heating furnace 3 heats the steel plate 2 to a high temperature of, for example, 700 to 900 ° C. by a heating method such as direct flame type non-oxidation heating or radiation tube heating.
  • the soaking furnace 4 performs a heat treatment for keeping the steel plate 2 at a predetermined temperature by a heating method such as radiant tube heating or indirect electric heating.
  • the primary cooling furnace 5 rapidly cools the steel plate 2 by a cooling method such as roll contact cooling, gas jet cooling, or mist cooling.
  • the overaging furnace 6 performs an overaging treatment for holding the steel sheet 2 at a predetermined temperature for a predetermined time (for example, 300 to 400 ° C. for 3 minutes) using an electric heater or the like.
  • the secondary cooling furnace 7 cools the steel plate 2 after the overaging treatment by the various cooling methods described above.
  • the continuous annealing furnace 1 adjusts the mechanical properties of the steel plate 2 by continuously passing the steel plate 2 through the plurality of furnaces and applying a predetermined thermal cycle to the steel plate 2.
  • the said heat cycle is determined so that the annealing conditions according to the quality of the steel plate (for example, a high-tensile steel plate, a general cold rolled steel plate, a tin plate steel plate, a drawing steel plate etc.) to be manufactured may be satisfied.
  • a continuous annealing furnace hearth roll 10 (hereinafter, also simply referred to as “hearth roll 10”) includes a roll shaft 12 and a roll body 14 attached to the roll shaft 12.
  • the hearth roll 10 has a roll width wider than the width of the steel plate 2 introduced into the continuous annealing furnace 1.
  • the roll width of the roll body 14 is about 1000 to 2500 mm, and the roll diameter ⁇ is 600.
  • the hearth roll 10 is a drive roll and functions as a steel sheet transport roll for transporting the steel sheet 2 in the continuous annealing furnace 1.
  • the hearth roll 10 rotates around the roll shaft 12 while bringing the peripheral surface of the roll body part 14 (hereinafter, also referred to as roll peripheral surface) into contact with the steel plate 2, whereby the roll body part 14.
  • the steel sheet 2 wound at a predetermined winding angle is conveyed while changing the direction of travel.
  • the roll body portion 14 of the hearth roll 10 includes a roll base 20, a thermal spray coating 21 formed on the surface of the roll base 20, and an outermost coating formed on the surface of the thermal spray coating 21. And a modified coating 22 which is an upper layer coating.
  • a base thermal spray consisting only of a heat-resistant alloy is performed as necessary. Then, the underlayer 24 may be formed.
  • the roll base 20 is made of a metal such as steel, and forms the basic shape of the hearth roll 10.
  • this roll base material 20 for example, stainless steel heat-resistant cast steel is used, and SCH 22 is particularly optimal.
  • the roll base 20 is subjected to a coating process such as a thermal spray process.
  • the thermal spray coating 21 is formed on the surface of the roll base 20, and the modified coating 22 is further formed on the surface of the thermal spray coating 21.
  • the thermal spray coating 21 is formed by spraying a thermal spray material made of a material (cermet material) obtained by combining ceramics and a heat-resistant alloy on the surface of the roll base 20.
  • the material of the thermal spray coating 21 will be described in detail below.
  • the thickness of the thermal spray coating 21 is not particularly limited, but is, for example, 20 to 200 ⁇ m.
  • the hardness of the thermal spray coating 21 is preferably 600 to 1000 in terms of Vickers hardness HV defined by “ISO 6507-1”.
  • the Vickers hardness HV of the thermal spray coating 21 is less than 600, foreign matter such as iron as a build-up source is likely to bite into the thermal spray coating 21 and buildup is likely to occur, which is not preferable.
  • the Vickers hardness HV of the thermal spray coating 21 is 600 to 1000, it is possible to suppress the entry of foreign matters such as iron into the hard thermal spray coating 21, and thus it is possible to suppress the occurrence of buildup.
  • the Vickers hardness HV of the thermal spray coating 21 is more than 1000, it is not preferable because the thermal spray coating 21 is easily broken and peeled off.
  • the Vickers hardness HV is measured in accordance with the test method specified in “ISO 657-1”.
  • the modified coating 22 formed by remelting the thermal spray material constituting the thermal spray coating 21 and solidifying it.
  • the modified film 22 has a small surface roughness and a dense film, and has a porosity of almost 0%.
  • the thickness of the modified film 22 is preferably 2 to 20 ⁇ m. If the thickness of the modified coating 22 is less than 2 ⁇ m, the modified coating 22 is not preferred because it is highly likely that the modified coating 22 will be worn away by abrasion when the steel plate 2 is conveyed. On the other hand, when the thickness of the modified film 22 exceeds 20 ⁇ m, the modified film 22 is easily peeled off, which is not preferable.
  • the thickness of the thermal spray coating 21 and the modified coating 22 can be measured by observing the cross section of the manufactured hearth roll 10 using a microscope such as SEM.
  • the Vickers hardness HV of the modified coating 22 according to the present embodiment preferably has a value 1.2 to 1.4 times the Vickers hardness HV of the thermal spray coating 21.
  • the Vickers hardness HV of the thermal spray coating 21 is, for example, about 600 to 1000
  • the Vickers hardness of the modified coating 22 according to the present embodiment is a value of about 720 to 1400. Since the modified coating 22 has a hardness higher than that of the sprayed coating 21, it is possible to more effectively prevent foreign substances such as iron from biting into the modified coating 22, thereby suppressing the occurrence of buildup. it can.
  • the hardness ratio with respect to the Vickers hardness Hv is less than 1.2, foreign matter such as iron is likely to bite into the modified coating 22 and buildup is likely to occur. Moreover, when the hardness ratio regarding the said Vickers hardness Hv is more than 1.4, the modified film 22 becomes easy to peel.
  • the interval L 1 between the adjacent cracks 23 is preferably 10 to 100 ⁇ m.
  • the opening width of the crack 23 is preferably less than 5 [mu] m. If the interval L 1 is less than 10 ⁇ m is made reforming film 22 is easily peeled off, which is not preferable.
  • the measurement method of the distance between the adjacent crack 23 L 1 or crack opening width L 2 is not particularly limited, it can be measured by known methods.
  • the cross section of the manufactured hearth roll 10 may be enlarged to a magnification suitable for observation using a microscope such as SEM, and the interval between adjacent cracks 23 and the opening width of the cracks 23 may be measured at arbitrary positions.
  • the oxygen content in the modified film 22 is preferably 0.5 to 2% by mass.
  • the oxygen content is less than 0.5% by mass, the hardness of the modified film tends to be small.
  • the oxygen content exceeds 2% by mass, the film is easily cracked, so that the modified film is easily peeled off.
  • Such oxygen is contained in the modified film 22 in the state of an oxide of an element contained in the modified film 22.
  • Al 2 O 3 is present dispersed on the surface of the modified coating 22.
  • Al 2 O 3 is less likely to react with the build-up source than the modified coating 22 and has excellent build-up properties.
  • the area ratio of Al 2 O 3 on the surface of the modified film 22 is preferably 5 to 40% with respect to the entire surface of the modified film 22. When the area ratio of Al 2 O 3 is less than 5%, the modified coating 22 easily reacts with the buildup source, which is not preferable. Further, when the area ratio of the Al 2 O 3 becomes 40% excess, since Al 2 O 3 present on the surface of the modified film 22 is easily peeled off, which is not preferable.
  • the method for measuring the oxygen content of the modified coating 22 and the method for measuring the area ratio of Al 2 O 3 on the surface are not particularly limited and can be measured by a known method.
  • a wavelength-dispersion electron beam microanalyzer wavelength-dispersion EPMA or the like can be used.
  • the modified coating 22 as described above irradiates the surface of the thermal spray coating 21 with a laser having an energy density of 1 ⁇ 10 5 to 1 ⁇ 10 7 W / cm 2 as described in detail below.
  • a laser having an energy density of 1 ⁇ 10 5 to 1 ⁇ 10 7 W / cm 2 as described in detail below.
  • the energy density is 1 ⁇ 10 5 W / cm 2 or less, it becomes difficult to melt the sprayed coating 21, and the processing time becomes longer than necessary.
  • the energy density is 1 ⁇ 10 7 W / cm 2 or more, the energy density for melting the thermal spray coating 21 becomes too high, and the modified coating 22 having an appropriate thickness and cracks even if the predetermined conditions are adjusted. Cannot be obtained.
  • the modified film 22 after providing the modified film 22, it is preferable to chromate the modified film 22.
  • the modified coating 22 By irradiating a part or the whole surface of the modified coating 22 with a laser beam, the modified coating 22 can be provided partially or entirely on a necessary portion of the sprayed coating 21.
  • the modified coating 22 is partially provided on the thermal spray coating 21, the fine pores of the thermal spray coating 21 in a range other than the modified coating 22 are chromated to fill the fine pores with chromium oxide, It is preferable to improve the build-up characteristics.
  • the crack 23 generated on the surface of the modified film 22 is chromated to fill the crack 23 with chromium oxide to improve the build-up resistance.
  • the chromate treatment can be performed by applying and spraying an aqueous solution containing chromic acid from the surface of the hearth roll and then heating to 350 to 550 ° C. Repeating such a process can change the thickness of the chromate treatment, but in order to fill the fine pores of the sprayed coating 21 and the cracks 23 of the modified coating 21, the chromate treatment may be performed three times or less.
  • the material of the thermal spray coating 21 that covers the hearth roll 10 will be described in detail.
  • the inventors of the present application made various types of sprayed coatings, and investigated characteristics, buildup occurrence conditions, and the like of the prototyped sprayed coatings. As a result, it was found that the cermet film made of ceramics and heat-resistant alloy shown below has a large effect of suppressing buildup, and the film is hardly deteriorated even when used for a long time in a continuous annealing furnace.
  • the thermal spray coating 21 according to this embodiment is preferably a cermet coating made of ceramics and a heat-resistant alloy.
  • ceramics a Cr 3 C 2 50 ⁇ 90% by volume, the Al 2 O 3 1 to 40 vol%, the Y 2 O 3 0 ⁇ 3 vol%, the ZrB 2 contains 0-40% by volume, The balance consists of impurities and pores.
  • Y 2 O 3 and ZrB 2 are optional components (selective components) added as necessary.
  • the heat-resistant alloy contains 5 to 20% by mass of Cr, 5 to 20% by mass of Al, and 0.1 to 6% by mass of at least one of Y or Si, and the balance is at least Co or Ni. Any and impurities.
  • volume ratio of the cermet film it is preferable that 50 to 90% by volume of the cermet film is ceramics and the balance is a heat resistant alloy.
  • the cermet film membrane which comprises the thermal spray coating 21 of the hearth roll which concerns on this embodiment is explained in full detail.
  • 50 to 90% by volume of the cermet film is ceramic, and the balance is a heat-resistant alloy such as CoNiCrAlY, CoCrAlY, NiCrAlY, CoNiCrAlSiY.
  • the ceramic content is less than 50% by volume, the amount of the heat-resistant alloy that easily reacts with iron becomes too large, so that buildup is likely to occur.
  • the ceramic ratio is more preferably 60 to 80% by volume.
  • the main component of the ceramic is Cr 3 C 2 , and 50 to 90% by volume of Cr 3 C 2 is contained in the ceramic.
  • Cr 3 C 2 is difficult to oxidize even in a high-temperature environment such as in an annealing furnace, and it is difficult to react with iron, manganese, and their oxides, and therefore build-up can be prevented.
  • Cr 3 C 2 is less than 50% by volume, a build-up suppressing effect cannot be obtained, and when it exceeds 90% by volume, a ceramic component that suppresses the diffusion of carbon in Cr 3 C 2 is a relative component. As a result, the film becomes brittle due to carbon diffusion.
  • the ratio of Cr 3 C 2 is more preferably 60 to 80% by volume.
  • the particle size of Cr 3 C 2 is preferably, for example, 1 to 10 ⁇ m.
  • the particle size of Cr 3 C 2 is less than 1 ⁇ m, the surface area in contact with the heat-resistant alloy is increased, and carbon is liable to diffuse.
  • the particle size exceeds 10 ⁇ m, the roughness of the coating surface becomes large, and iron, manganese, or an oxide thereof is easily built up.
  • the particle size of Cr 3 C 2 is more preferably 5-8 ⁇ m.
  • Al 2 O 3 is 1 to 40% by volume, and Y 2 O 3 is 3% by volume or less.
  • Y 2 O 3 is an optional component (selective component) added for the purpose of obtaining a carbon diffusion suppressing effect, if necessary, so the amount of Y 2 O 3 is 0 to 3% by volume.
  • Al 2 O 3 is less than 1% by volume, the effect of suppressing the diffusion of carbon cannot be obtained, and when it exceeds 40% by volume, the coating becomes brittle and cracks are likely to occur during use, and build-up resistance is increased. Sex is reduced.
  • Y 2 O 3 exceeds 3% by volume, Y 2 O 3 easily reacts with manganese oxide, so that build-up resistance decreases.
  • Y 2 O 3 When Y 2 O 3 is added for the purpose of obtaining an effect of suppressing the diffusion of carbon, it is effective to add 0.5% by volume or more.
  • the content of Al 2 O 3 is more preferably 10 to 30% by volume from the viewpoint of further improving the build-up resistance.
  • Al 2 O 3 or Y 2 O 3 can be added as an oxide to the raw material powder, but for the purpose of suppressing carbon diffusion from Cr 3 C 2 , during the raw material stage, during film formation, or after film formation. It is preferable to oxidize Y or Al added to the heat-resistant alloy by oxidation treatment, and to form the surface of the heat-resistant alloy in the form of Al 2 O 3 or Y 2 O 3 .
  • ZrB 2 that is stable and high hardness at high temperatures at 40% by volume or less.
  • ZrB 2 is added in excess of 40% by volume, build-up tends to occur because the build-up resistance of ZrB 2 is inferior to that of Cr 3 C 2 .
  • ZrB 2 is an optional component (selective component) added for the purpose of use at a high temperature as required, the amount of ZrB 2 is preferably 0 to 40% by volume in the film.
  • the content is more preferably 15 to 30% by volume.
  • the balance of the ceramic described above is impurities and pores.
  • the heat-resistant alloy contains 5 to 20% by mass of Cr.
  • Cr is less than 5% by mass, the oxidation resistance at high temperature is inferior, so that the film is continuously oxidized and easily peeled off.
  • Cr exceeds 20% by mass, the heat-resistant alloy becomes brittle and peels easily when carbonized, and when oxidized, it reacts with manganese oxide and build-up is likely to occur.
  • the heat-resistant alloy also contains 5 to 20% by mass of Al.
  • Al is less than 5% by mass, the target amount of Al 2 O 3 cannot be obtained even if various oxidation treatments are performed, and when Al exceeds 20% by mass, the high-temperature hardness of the film is high. Since it decreases, iron pierces the film and buildup is likely to occur.
  • Y and Si both have an effect of stably forming an oxide film and preventing peeling, and one or two of Y and Si are preferably added in an amount of 0.1 to 6% by mass.
  • Y or Si exceeds 6% by mass, the high-temperature hardness of the film decreases, so that iron pierces the film and buildup is likely to occur.
  • Nb and 0.1 to 10% by mass of Ti it is preferable to add at least one of 0.1 to 10% by mass of Nb and 0.1 to 10% by mass of Ti to the heat-resistant alloy.
  • Nb or Ti is contained in the heat-resistant alloy, a stable carbide is formed preferentially over Cr contained in the heat-resistant alloy and the reaction between Cr and carbon is suppressed, so that the brittleness of the film can be suppressed for a long period of time.
  • Nb or Ti is less than 0.1% by mass, the effect of suppressing the reaction between Cr and carbon cannot be obtained.
  • Nb or Ti exceeds 10 mass%, when it oxidizes, it will react with a manganese oxide easily and buildup will occur easily.
  • the balance of the heat-resistant alloy described above is at least one of Co and Ni and impurities.
  • FIG. 4 An example of a cross-sectional SEM photograph of the thermal spray coating 21 and the modified coating 22 having the configuration as described above is shown in FIG.
  • a dense modified coating 22 having a small roughness is formed on the surface of the thermal spray coating 21 in which gaps exist in the coating.
  • the thickness of the modified film 22 is about 5 ⁇ m. Further, it can be seen from the surface of the modified coating 22 that a plurality of cracks are formed toward the sprayed coating 21.
  • the thermal spray coating 21 is formed by spraying the thermal spray material on the peripheral surface of the roll base 20 of the hearth roll 10. (Step S101).
  • a known pre-spray blasting process or the formation of the base layer 24 is performed as necessary. Also good.
  • step S101 The formation of the thermal spray coating 21 by this thermal spraying process (step S101) will be described in detail.
  • a raw material powder in which 50 to 90% by volume is the ceramic powder and the balance is the heat-resistant alloy powder is sprayed onto the surface of the roll base 20 to thereby form the surface of the roll base 20.
  • a cermet film As the raw material powder to be sprayed, a raw material powder obtained by mixing ceramic powder such as Cr 3 C 2 or Al 2 O 3 and heat-resistant alloy powder containing Cr or Al can be used.
  • a more uniform sprayed coating 21 can be formed by thermal spraying using a raw material powder obtained by granulating and combining ceramic powder and heat-resistant alloy powder in advance.
  • HVOF High Velocity Oxygen-Fuel Thermal Spraying Process
  • the fuel gas is usually kerosene, C 3 H 8 , C 2 H 2 , or C 3 H 6
  • the fuel gas pressure is 0.1 to 1 MPa
  • the fuel gas flow rate is 10 to 500 l / min.
  • the oxygen gas pressure is 0.1 to 1 MPa
  • the oxygen gas flow rate is 100 to 1200 l / min.
  • the roll base 20 At the time of thermal spraying, it is preferable to heat the roll base 20 to 300 to 600 ° C.
  • the flame of the spray gun may be heated close to the roll base 20, or may be heated by providing a separate gas burner.
  • Al and Y in the heat-resistant alloy can be oxidized to obtain target amounts of Al 2 O 3 and Y 2 O 3 .
  • the heating temperature is higher than 600 ° C., the oxidation of the film proceeds excessively and the film becomes porous, so that buildup is likely to occur. Further, from the viewpoint of improving the buildup resistance, it is more preferable that the heating temperature range is 400 to 500 ° C.
  • the flow rate of oxygen gas which is an HVOF combustion gas component, is preferably set to 1000 to 1200 l / min.
  • the flow rate of the oxygen gas is preferably set to 1000 l / min or more.
  • Al and Y in the heat-resistant alloy can be oxidized to obtain target amounts of Al 2 O 3 and Y 2 O 3 .
  • the flow rate of oxygen gas is higher than 1200 l / min, oxidation of the raw material powder proceeds excessively during the thermal spraying, and the coating becomes porous and buildup is likely to occur.
  • the thermal spray coating 21 is oxidized at 300 to 600 ° C. for 1 to 5 hours after the thermal spraying.
  • the surface of the sprayed coating 21 may be heated by a gas burner, or a hearth roll is installed in a furnace in the atmosphere or an inert gas atmosphere (nitrogen, argon, etc.) containing a small amount of oxygen and heat-treated. It is possible.
  • Al and Y in the heat-resistant alloy can be oxidized to obtain target amounts of Al 2 O 3 and Y 2 O 3 .
  • the heating temperature is higher than 600 ° C. or longer than 5 hours, the oxidation of the film proceeds excessively, the film becomes porous, and buildup is likely to occur. Further, from the viewpoint of improving the buildup resistance, it is more preferable that the heating temperature range is 400 to 500 ° C.
  • the raw material powder When the raw material powder is oxidized and then subjected to thermal spraying, it is heat-treated at 300 to 600 ° C. for 1 to 5 hours in the air or in an inert gas (nitrogen, argon, etc.) containing a small amount of oxygen.
  • an inert gas nitrogen, argon, etc.
  • the heat treatment temperature is more preferably in the range of 400 to 500 ° C.
  • the surface layer of the thermal spray coating 21 is subsequently irradiated with a laser from the surface layer of the thermal spray coating to a predetermined depth. Are remelted and re-solidified to form the modified coating 22 (step S103).
  • the thickness of the formed modified film 22 is preferably 2 to 20 ⁇ m.
  • the laser irradiation is preferably performed in the atmosphere. This is because the oxidation reaction of the metal component contained in the thermal spray coating 21 is promoted during laser irradiation.
  • Various properties relating to the thickness, cracks, and the like of the modified coating 22 to be formed can be controlled by the energy density of the laser irradiated on the surface of the thermal spray coating 21.
  • a laser 30 emitted from a known laser irradiation apparatus while rotating the hearth roll 10 on which the sprayed coating 21 is formed. Is used to scan the surface of the thermal spray coating 21 at a predetermined speed.
  • the condensing degree and scanning speed of the laser 30 on the surface of the thermal spray coating 21 are adjusted by a known optical system.
  • the energy density of the laser irradiated on the surface of the thermal spray coating 21 is preferably 1 ⁇ 10 5 to 1 ⁇ 10 7 W / cm 2 , but the degree of light collection and the scanning speed are particularly limited. Is not to be done.
  • the laser beam may be irradiated under the following conditions. That is, using an Nd / YAG laser device (laser wavelength: 1064 nm), a laser with an output of 1000 W is condensed so as to have a diameter of 300 ⁇ m on the surface of the thermal spray coating 21 (energy density: 1.4 ⁇ 10 6 W / cm).
  • the modified coating 22 as described above can be formed.
  • This processing condition is merely an example, and the degree of light collection, the scanning speed, the pitch, and the number of scans are adjusted so that the thickness of the modified film 22 is preferably 2 to 20 ⁇ m according to the wavelength and output of the laser used. Such processing conditions may be set as appropriate.
  • an Nd / YAG laser (laser wavelength: 1064 nm) is used as the laser, but the laser wavelength of a Yb fiber laser (laser wavelength: 1070 nm), a disk laser (laser wavelength: 1030 nm), etc. is 900 to A near-infrared laser in the range of 1100 nm can be preferably used.
  • an electron beam or the like can be used. Laser beams and electron beams are examples of energy beams.
  • the hearth roll for the continuous annealing furnace according to the present embodiment can be manufactured by the treatment as described above.
  • the hearth roll for continuous annealing furnace and the manufacturing method thereof according to the present embodiment have been described.
  • the surface roughness of the roll peripheral surface of the hearth roll 10 can be appropriately controlled, and a dense and high-strength modified film can be formed. Can significantly reduce the adhesion of foreign matter. Therefore, during the operation of the continuous annealing furnace 1, it is possible to suppress foreign matters attached to the steel plate 2 being passed through and growing on the roll peripheral surface of the hearth roll 10 (that is, occurrence of buildup). Therefore, since generation
  • the hearth roll 10 can be used stably for a long time under the high temperature environment in the continuous annealing furnace 1, the life of the hearth roll 10 can be greatly extended. Moreover, since the work which removes the foreign material adhering to the roll surface of the hearth roll 10 becomes unnecessary at the time of the periodic repair of the continuous annealing furnace 1, the said work can be greatly reduced. Productivity can be improved.
  • a plurality of types of hearth rolls 10 were manufactured according to the above-described method of manufacturing a hearth roll, and each hearth roll 10 was used in the continuous annealing furnace 1 to perform a test for measuring the life of the hearth roll 10.
  • the roll peripheral surface of the hearth roll 10 is measured with portable fluorescent X-rays online in the continuous annealing furnace 1, and the adhesion amount of iron (Fe) to the roll peripheral surface exceeds 5 mass%. At that time, it was determined that it was a lifetime.
  • the roll diameter ⁇ is 1000 mm.
  • the remelting / resolidification treatment of the sprayed coating 21 is also affected by the composition and surface roughness of the sprayed coating, and therefore the remelting / resolidification treatment is performed by appropriately adjusting the degree of light collection and the scanning speed.
  • the Vickers hardness HV is 950
  • 80% by volume of the sprayed coating is ceramics (79% by volume is Cr 3 C 2 and 1% by volume is Al 2 O 3 )
  • the remainder is a heat-resistant alloy.
  • This heat-resistant alloy contains, by mass%, Cr: 10%, Al: 5%, Y: 2%, Ti: 0.1%, with the balance being Co, Nd / YAG laser.
  • the thickness of the modified film 22 was 11 ⁇ m.
  • the thickness of the modified film 22 was 13 ⁇ m. Further, under the same conditions, when the degree of light collection was 1000 ⁇ m in diameter, the thickness of the modified coating 22 was 2 ⁇ m in one scan.
  • the thickness of the modified coating 22 was 8 ⁇ m. Accordingly, in the example shown in Table 1, the degree of light collection, the scanning speed, the pitch, and the number of scans were appropriately set based on such knowledge, and the modified coating 22 having the thickness shown in Table 1 was manufactured.
  • the composition of the thermal spray coating 21 formed on the roll peripheral surface and various physical properties of the thermal spray coating 21 and the modified coating 22 are shown in Table 1.
  • Table 1 the thickness, crack interval, and crack width of the modified coating 22 were measured by observing a cross section of the obtained simultaneous sample of the hearth rolls with an SEM. The average value was calculated by measuring the crack interval and crack width in 10 field sections observed by SEM at a measurement magnification of 1000 times.
  • the area ratio of Al 2 O 3 on the surface of the modified film 22 is the portion of the surface image determined by qualitative analysis as Al 2 O 3 in a 10-field surface image observed with a wavelength dispersion type EPMA at a measurement magnification of 500 times.
  • the area ratio was measured by binarizing the reflected electron image so that the color was white and the others were black, and the average value was calculated.
  • the oxygen content of the modified film 22 was quantitatively analyzed in 10 visual fields observed with a wavelength dispersion type EPMA at a measurement magnification of 500 times, and the oxygen content was measured to calculate an average value. Further, the Vickers hardness HV of the sprayed coating 21 and the modified coating 22 was measured in accordance with the method prescribed in ISO 6507-1, and (Vickers hardness HV of the modified coating 22 / Vickers hardness of the sprayed coating 21). The ratio of the hardness change obtained in (HV) is also shown in Table 1. Table 1 also shows the roll life as a test result.
  • the hearth rolls shown in Examples 1 to 24 were found to have a modified roll 22 having a high Vickers hardness HV and an excellent roll life.
  • the examples of the examples in which the crack interval, the crack width, and the area ratio of Al 2 O 3 have appropriate values have a particularly excellent roll life. This result shows that the occurrence of build-up can be successfully suppressed by manufacturing the hearth roll in accordance with the method for manufacturing the hearth roll according to the present specification.
  • the hearth roll corresponding to the comparative example has a roll life of less than 2 years, indicating that buildup on the surface of the hearth roll cannot be suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Rolls And Other Rotary Bodies (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

 ハースロールは、ロール基材と、前記ロール基材上に形成された溶射皮膜と、前記溶射皮膜上に形成された、前記溶射皮膜の表面の一部又は全面にエネルギービームを照射することにより、前記溶射皮膜を溶融・凝固させて前記溶射皮膜を部分的又は全面的に改質させた改質皮膜と、を備え、前記改質皮膜の厚みは、2~20μmであり、前記改質皮膜のビッカース硬さHVは、前記溶射皮膜のビッカース硬さHVの1.2~1.4倍である。

Description

ハースロール及びその製造方法
 本明細書は、ハースロール及びその製造方法に関する。
 金属板材の製造設備、特に製鉄プロセスラインにおいて、搬送ロールを高速回転させて鋼板を通板する際には、鋼板のスリップ、蛇行、搬送ロール表面へのゴミ付き、ビルドアップ等の現象が発生する。特に、連続焼鈍炉用ハースロールでは、鋼板を高温状態で搬送するため、ハースロール表面にビルドアップが発生し易い。このビルドアップは、鋼板表面の鉄、マンガン酸化物等の異物がハースロール表面に付着して成長する現象である。このビルドアップが進行すると、ハースロール表面に付着した異物が徐々に成長して、例えば100μm程度の径の突起となってしまう。この結果、ハースロール表面に付着した異物の凸形状が鋼板表面に転写されて、凹状の疵(転写疵又はピックアップ疵と称する。)が発生するので、鋼板の品質が低下するだけでなく、定期修繕の際にロール表面に付着した異物を除去する作業が必要となり、生産性が低下する要因となっていた。
 このため、上記ハースロール表面への異物付着を抑制する対策として、従来から種々の提案がなされているが、特に、ハースロール表面の溶射皮膜の材質改良に関するものが多い。
 例えば、日本国特許第3234209号には、基材上に設けられた溶射被膜に点状、線状などのパターンでレーザを照射し、部分的に加熱し組織変化を生じさせて被膜の部分改質を行い、主として、仕上げ加工時又は摺動時の選択的摩耗によりレーザ照射部又はレーザ非照射部が凹み、油だまりとなるようにして、耐焼き付き性に優れる摺動面を形成させる摺動部材の製造方法が開示されている。
 また、日本国特開2013-95974号公報には、溶射皮膜の表面に高エネルギービームを照射し、溶射皮膜の表層の皮膜組成物を再溶融、再凝固させて、表層を緻密化する溶射皮膜における緻密化層の形成方法が開示されている。
 しかしながら、日本国特許第3234209号及び日本国特開2013-95974号公報に記載の技術を利用したとしても、ハースロール表面におけるビルドアップの発生を十分に抑制することは困難であり、更なる耐ビルドアップ性の向上が希求されていた。
開示の概要
 本明細書の実施の形態は、通板時におけるロール表面への異物付着を抑制可能な、ハースロール及びその製造方法を提供することを主な目的とする。
 本明細書の一態様によれば、ロール基材と、前記ロール基材上形成された溶射皮膜と、前記溶射皮膜上に形成された、前記溶射皮膜の表面の一部又は全面にエネルギービームを照射することにより、前記溶射皮膜を溶融・凝固させて前記溶射皮膜を部分的又は全面的に改質させた改質皮膜と、を備え、前記改質皮膜の厚みは、2~20μmであり、前記改質皮膜のビッカース硬さHVは、前記溶射皮膜のビッカース硬さHVの1.2~1.4倍であるハースロールが提供される。
 本明細書の他の態様によれば、ロール基材上に形成された溶射皮膜の表面の一部又は全面にエネルギービームを照射することで前記溶射皮膜を溶融・凝固させて前記溶射皮膜を部分的又は全面的に改質して、厚みが2~20μmで、ビッカース硬さHVが、前記溶射皮膜のビッカース硬さHVの1.2~1.4倍である改質皮膜を形成する工程を備える、ハースロールの製造方法が提供される。
本明細書の第1の実施形態に係る連続焼鈍炉の一例を示した模式図である。 第1の実施形態に係る連続焼鈍炉用ハースロールを示す斜視図及び部分拡大断面図である。 第1の実施形態に係る連続焼鈍炉用ハースロールを示す斜視図及び部分拡大断面図である。 第1の実施形態に係る連続焼鈍炉用ハースロールの部分拡大断面図である。 第1の実施形態に係る連続焼鈍炉用ハースロールの部分拡大断面図である。 第1の実施形態に係る連続焼鈍炉用ハースロールにおける溶射皮膜及び改質皮膜の走査型電子顕微鏡(Scanning Electron Microscope:SEM)写真の一例である。 第1の実施形態に係る連続焼鈍炉用ハースロールの製造方法の流れの一例を示した流れ図である。 第1の実施形態に係る連続焼鈍炉用ハースロールの製造方法を説明するための模式図である。
 本明細書の一態様によれば、
(1)ロール基材と、
 前記ロール基材上に形成された溶射皮膜と、
 前記溶射皮膜上に形成された、前記溶射皮膜の表面の一部又は全面にエネルギービームを照射することにより、前記溶射皮膜を溶融・凝固させて前記溶射皮膜を部分的又は全面的に改質させた改質皮膜と、
を備え、
 前記改質皮膜の厚みは、2~20μmであり、
 前記改質皮膜のビッカース硬さHVは、前記溶射皮膜のビッカース硬さHVの1.2~1.4倍である、ハースロールが提供される。
(2)(1)のハースロールにおいて、好ましくは、
 前記改質皮膜の表面には、クラックが存在し、
 前記ハースロールを厚み方向に切断した断面において、隣り合う前記クラックの平均間隔は、10~100μmであり、前記クラックの開口幅は、5μm未満である。
(3)(1)または(2)のハースロールにおいて、好ましくは、前記改質皮膜は、0.5~2質量%の酸素を含有する。
(4)(1)から(3)の何れかのハースロールにおいて、好ましくは、
 前記改質皮膜の表面にはAlが分散して存在し、前記改質皮膜の表面におけるAlの面積率が、5~40%である。
(5)(1)から(4)の何れかのハースロールは、好ましくは、
 前記改質皮膜上または、前記改質皮膜および前記溶射皮膜上に形成された酸化クロム層をさらに備える。
(6)(1)から(5)の何れかのハースロールにおいて、好ましくは、
 前記溶射皮膜は、セラミックスと耐熱合金からなるサーメット皮膜であり、
 前記セラミックスは、体積%で
  Cr:50~90%
  Al:1~40%
  Y:0~3%
  ZrB:0~40%
を含有し、残部は、不純物及び気孔からなり、
 前記耐熱合金は、質量%で、
  Cr:5~20%
  Al:5~20%
  Y又はSiの少なくとも何れか:0.1~6%
を含有し、残部は、Co又はNiの少なくとも何れか及び不純物からなり、
 前記サーメット皮膜の50~90体積%が前記セラミックスであり、残部が前記耐熱合金である。
(7)(6)のハースロールにおいて、好ましくは、
 前記耐熱合金は、質量%で、
 Nb:0.1~10%
 Ti:0.1~10%
の少なくとも何れかを更に含有する。
 本明細書の他の態様によれば、
(8)ロール基材上に形成された溶射皮膜の表面の一部又は全面にエネルギービームを照射することで前記溶射皮膜を溶融・凝固させて前記溶射皮膜を部分的又は全面的に改質して、厚みが2~20μmで、ビッカース硬さHVが、前記溶射皮膜のビッカース硬さHVの1.2~1.4倍である改質皮膜を形成する工程を備える、ハースロールの製造方法が提供される。
(9)(8)のハースロールの製造方法において、好ましくは、前記エネルギービームは、大気中で照射される。
(10)(8)または(9)のハースロールの製造方法において、好ましくは、前記改質皮膜を形成させた後に、クロメート処理を実施する。
 以下に添付図面を参照しながら、本明細書の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
(連続焼鈍炉の構成について)
 まず、図1を参照しながら、本明細書の第1の実施形態に係る連続焼鈍炉用ハースロールが適用される連続焼鈍炉について説明する。
 図1に示すように、連続焼鈍炉1は、冷延工程で製造された帯状の鋼板2の機械的性質(硬さ等)を調整するために、該鋼板2を連続的に焼鈍する設備である。この連続焼鈍炉1は、炉内に配置した複数のロール間を鋼板2が通過する際に、加熱、均熱、冷却などの熱サイクルを付与して、連続的に鋼板2を連続焼鈍する。ここで、鋼板2は、焼鈍対象となる金属帯の一例であり、例えば、不図示の連続冷延設備により冷延された薄板(例えば板厚0.14mm~3.2mmの帯状の冷延鋼板)である。なお、金属帯は、焼鈍対象となる帯状の金属材料(金属ストリップ)であれば、その材質は問わない。
 連続焼鈍炉1は、図1に示すように、入側から順に、加熱炉3、均熱炉4、一次冷却炉5、過時効炉6及び二次冷却炉7等を備えており、各炉内に設けられた複数の連続焼鈍炉用ハースロール10を用いて鋼板2を搬送しながら、当該鋼板2を連続焼鈍する。なお、図示はしないが、加熱炉3の前段には、例えば、ペイオフリール、シャー、入側洗浄装置、入側ルーパー等が設けられ、二次冷却炉7の後段には、例えば、水冷槽、スキンパスロール、出側ルーパー、トリマー、巻取機等が設けられる。
 加熱炉3は、直火型無酸化加熱、輻射管加熱等の加熱方式により、鋼板2を例えば700~900℃の高温まで加熱する。均熱炉4は、輻射管加熱、間接電気加熱、等の加熱方式により、鋼板2を所定温度に保持する熱処理を行う。また、一次冷却炉5は、ロール接触冷却、ガスジェット冷却、ミスト冷却等の冷却方式により、鋼板2を急速冷却する。過時効炉6は、電気ヒータ等を用いて、鋼板2を所定温度で所定時間(例えば300~400℃で3分間)保持する過時効処理を行う。さらに、二次冷却炉7は、上記各種の冷却方式により、過時効処理後の鋼板2を冷却する。
 以上のように、連続焼鈍炉1は、上記複数の炉に鋼板2を連続的に通過させて、所定の熱サイクルを鋼板2に与えることによって、鋼板2の機械的性質を調整する。この際、製造対象の鋼板(例えば、高張力鋼板、一般冷延鋼板、ブリキ鋼板、絞り用鋼板等)の品質に応じた焼鈍条件を満足するように、上記熱サイクルが決定される。
(ハースロールの構成について)
 次に、図2A~図4を参照しながら、本実施形態に係る連続焼鈍炉用ハースロールについて説明する。
 図2Aに示すように、連続焼鈍炉用ハースロール10(以下、単に「ハースロール10」ともいう。)は、ロール軸12と、当該ロール軸12に装着されたロール胴部14とを備える。ハースロール10は、連続焼鈍炉1に導入される鋼板2の幅よりも広いロール幅を有しており、例えば、ロール胴部14のロール幅は1000~2500mm程度であり、ロール径φは600~1000mm程度である。かかるハースロール10は、駆動式ロールであり、上記連続焼鈍炉1内において鋼板2を搬送する鋼板搬送用ロールとして機能する。つまり、ハースロール10は、ロール軸12を中心として回転しながら、ロール胴部14の周面(以下、ロール周面と称する場合もある。)を鋼板2に接触させることで、ロール胴部14に所定の巻付角度で巻き付けられた鋼板2の進行方向を方向転換させながら搬送する。
 さらに図2Aに示すように、ハースロール10のロール胴部14は、ロール基材20と、ロール基材20の表面に形成された溶射皮膜21と、当該溶射皮膜21の表面に形成された最上層皮膜である、改質皮膜22と、を備える。また、図2Bに示したように、ロール基材20と溶射皮膜21との間には、熱膨張係数差による剥離を防止するために、必要に応じて耐熱合金のみからなる下地溶射を実施して、下地層24を形成してもよい。
 ロール基材20は、例えば鋼等の金属で形成され、ハースロール10の基本形状を形成する。このロール基材20としては、例えば、ステンレス鋼系耐熱鋳鋼が用いられ、特にSCH22が最適である。かかるロール基材20に対して、溶射処理等の被覆処理が施される。本実施形態では、ロール基材20の表面に溶射皮膜21が形成され、さらに、当該溶射皮膜21の表面に改質皮膜22が形成される。
 溶射皮膜21は、セラミックスと耐熱合金を複合させた材質(サーメット材)からなる溶射材を、ロール基材20の表面に溶射することにより形成される。この溶射皮膜21の材質については、以下で詳述する。また、溶射皮膜21の厚み(図3Aにおける厚みd)は、特に限定されるものではないが、例えば20~200μmである。
 また、溶射皮膜21の硬さは、「ISO 6507-1」で規定されるビッカース硬さHVで、600~1000であることが好ましい。溶射皮膜21のビッカース硬さHVが600未満であると、ビルドアップ源である鉄等の異物が溶射皮膜21に噛み込みやすいためビルドアップが発生しやすく、好ましくない。これに対し、溶射皮膜21のビッカース硬さHVが600~1000であれば、硬質の溶射皮膜21に対する鉄等の異物の噛み込みを抑制できるので、ビルドアップの発生を抑制することができる。また、溶射皮膜21のビッカース硬さHVが1000超過であると、溶射皮膜21が割れて剥離しやすくなるため、好ましくない。なお、ビッカース硬さHVは、「ISO 6507-1」に規定された試験方法に則して測定される。
 この溶射皮膜21上には、溶射皮膜21を構成する溶射材を再溶融させた後に凝固させることで形成される、改質皮膜22が設けられる。この改質皮膜22は、表面粗度が小さく、かつ、緻密な皮膜となっており、気孔率はほぼ0%となっている。
 この改質皮膜22の厚み(図3Aにおける厚みd)は、好ましくは、2~20μmである。改質皮膜22の厚みが2μm未満である場合には、改質皮膜22が鋼板2の搬送に際して摩耗により損耗する可能性が高く、好ましくない。また、改質皮膜22の厚みが20μm超過である場合には、改質皮膜22が剥離しやすくなり、好ましくない。
 なお、溶射皮膜21及び改質皮膜22の厚みについては、製造したハースロール10の断面をSEM等の顕微鏡を利用して観察することで測定することが可能である。
 また、本実施形態に係る改質皮膜22のビッカース硬さHVは、好ましくは、溶射皮膜21のビッカース硬さHVの1.2~1.4倍の値を有している。ここで、溶射皮膜21のビッカース硬さHVが例えば600~1000程度であるため、本実施形態に係る改質皮膜22のビッカース硬さは、720~1400程度の値となる。改質皮膜22が溶射皮膜21よりも高い硬度を有していることにより、改質皮膜22に対する鉄等の異物の噛み込みを更に効果的に防止できるため、ビルドアップの発生を抑制することができる。上記ビッカース硬さHvに関する硬度比が1.2未満である場合には、改質皮膜22に対し、鉄等の異物の噛み込みが起きやすく、ビルドアップが発生しやすくなる。また、上記ビッカース硬さHvに関する硬度比が1.4超過である場合には、改質皮膜22が剥離しやすくなる。
 この改質皮膜22の表面には、図3Aに模式的に示したように、所定の間隔でクラック23が存在している。このようなクラック23が改質皮膜22に存在することで、クラック23が応力緩和機構として機能し、熱応力に伴う改質皮膜22の割れや剥離を防止することができる。ここで、ハースロールを厚み方向に切断した図3Aに示したような断面において、隣り合うクラック23の間隔Lは、10~100μmであることが好ましい。また、このクラック23の開口幅(図3Bに示した間隔L)は、5μm未満であることが好ましい。間隔Lが10μm未満である場合には、改質皮膜22が剥離しやすくなり、好ましくない。また、間隔Lが100μm超過である場合には、クラック23の開口幅Lが5μm以上となる可能性が高くなってしまう。クラック23の開口幅Lが5μm以上となると、この間隙にビルドアップ源となる鉄等の異物が噛み込み易くなり、ビルドアップの発生を抑制することが困難となる。クラック23の開口幅Lは、小さければ小さいほど良く、その下限値は特に規定するものではないが、改質皮膜22の製造上、開口幅Lの大きさは0.1μmが限界である。
 ここで、隣り合うクラック23の間隔Lやクラックの開口幅Lの測定方法は、特に限定されるものではなく、公知の方法により測定可能である。例えば、製造したハースロール10の断面をSEM等の顕微鏡を利用して観察に適した倍率に拡大し、任意の位置において、隣り合うクラック23の間隔やクラック23の開口幅を計測すればよい。
 本実施形態に係る改質皮膜22において、改質皮膜22における酸素の含有量は0.5~2質量%であることが好ましい。酸素含有量が、0.5質量%未満である場合には、改質皮膜の硬さが小さくなりやすい。また、酸素含有量が2質量%超過である場合には、皮膜が割れやすくなるため、改質皮膜が剥離しやすくなる。かかる酸素は、改質皮膜22に含まれる元素の酸化物の状態で、改質皮膜22中に含有される。
 本実施形態に係る改質皮膜22において、Alが改質被膜22の表面に分散して存在する。Alは改質皮膜22よりもビルドアップ源と反応しにくく、対ビルドアップ性が優れる。改質皮膜22の表面でのAlの面積率は、改質皮膜22の表面全体に対して5~40%であることが好ましい。Alの面積率が5%未満となる場合には、改質皮膜22がビルドアップ源と反応しやすくなるため好ましくない。また、Alの面積率が40%超過となる場合には、改質皮膜22の表面に存在するAlが剥離しやすくなるため、好ましくない。
 ここで、改質皮膜22の酸素含有量の測定方法や表面におけるAlの面積率の測定方法は、特に限定されるものではなく、公知の方法より測定することが可能であるが、例えば、波長分散型電子線マイクロアナライザ(Electron Probe MicroAnalyser)(波長分散型EPMA)等を用いることができる。
 以上説明したような改質皮膜22は、以下で詳述するように、溶射皮膜21の表面に対して、1×10~1×10W/cmのエネルギー密度を有するレーザを照射して、溶射皮膜21の表面から所定の厚さまでの範囲を改質することで形成することが好ましい。エネルギー密度が1×10W/cm以下である場合、溶射皮膜21を溶融させることが困難となり、加工時間が必要以上に長くなる。また、エネルギー密度が1×10W/cm以上である場合、溶射皮膜21を溶融させるエネルギー密度が高くなり過ぎ、所定条件の調整を行っても適切な厚さやクラックを有する改質皮膜22が得られない。また、形成する改質皮膜22の厚みや、隣り合うクラック23の間隔や、クラック23の開口幅や、Alの面積率といった諸特性は、照射されるレーザのエネルギー密度を調整することで、制御することが可能である。
 なお、改質皮膜22を設けた後に、かかる改質皮膜22に対してクロメート処理を行うことが好ましい。レーザビームを改質皮膜22の一部または全面に照射することにより改質皮膜22を、溶射皮膜21の必要な部位に対し部分的に又は全面的に設けることができる。改質皮膜22を溶射皮膜21に対し部分的に設けた場合には、改質皮膜22ではない範囲の溶射皮膜21の微細気孔をクロメート処理することにより、微細気孔を酸化クロムで充填し、耐ビルドアップ特性を向上させておくことが好ましい。また、改質皮膜22の皮膜表面に生じるクラック23をクロメート処理することにより、クラック23を酸化クロムで充填し、耐ビルドアップ特性を向上させておくことが好ましい。クロメート処理は、クロム酸を含む水溶液をハースロール表面から塗布、スプレーした後、350~550℃に加熱することで実施することができる。かかる処理を繰り返すと、クロメート処理の膜厚を変化させることができるが、溶射皮膜21の微細気孔や改質皮膜21のクラック23の充填を行うには、3回以内のクロメート処理でよい。
(溶射皮膜の材質について)
 次に、上記ハースロール10を被覆する溶射皮膜21の材質について詳述する。本願発明者らは、種々の溶射皮膜を試作して、当該試作した溶射皮膜の特性やビルドアップ発生状況等を調査した。その結果、以下に示すセラミックスと耐熱合金からなるサーメット皮膜は、ビルドアップ抑制効果が大きく、かつ連続焼鈍炉内で長時間使用しても皮膜が劣化し難いことを知見した。
 本実施形態に係る溶射皮膜21は、セラミックスと耐熱合金とからなるサーメット皮膜であることが好ましい。ここで、セラミックスは、Crを50~90体積%、Alを1~40体積%、Yを0~3体積%、ZrBを0~40体積%含有し、残部は、不純物及び気孔からなる。なお、YとZrBは、必要に応じて添加する任意成分(選択的成分)である。
 また、耐熱合金は、Crを5~20質量%、Alを5~20質量%、及び、Y又はSiの少なくとも何れかを0.1~6質量%含有し、残部は、Co又はNiの少なくとも何れか及び不純物からなる。
 そして、サーメット皮膜の体積比に関しては、サーメット皮膜の50~90体積%がセラミックスで、残部が耐熱合金であることが好ましい。
 以下に、本実施形態に係るハースロールの溶射皮膜21を成すサーメット皮膜の具体例について詳述する。
 サーメット皮膜においては、サーメット皮膜の50~90体積%がセラミックスで、残部がCoNiCrAlY、CoCrAlY、NiCrAlY、CoNiCrAlSiY等の耐熱合金である。セラミックスが50体積%未満となる場合には、鉄と反応しやすい耐熱合金の量が多くなりすぎるため、ビルドアップが発生しやすくなる。一方、セラミックスが90体積%超過となる場合には、セラミックスの融点が高いため、溶射施工時に皮膜が多孔質になり、気孔にビルドアップ源が噛み込んでビルドアップが発生しやすくなる。更に、耐ビルドアップ性を向上させる観点からは、セラミックスの割合は60~80体積%であることがより好ましい。
 次に、セラミックスの材質について説明する。
 セラミックスの主成分はCrであり、セラミック中に50~90体積%のCrが含まれる。Crは、焼鈍炉内のような高温環境下でも酸化しにくく、かつ、鉄、及びマンガンやこれらの酸化物と反応しにくいため、ビルドアップ発生を防止できる。Crが50体積%未満である場合には、ビルドアップ抑制効果が得られず、90体積%超過となる場合には、Cr中カーボンの拡散を抑制するセラミック成分が相対的に少なくなる結果、カーボン拡散により皮膜が脆化する。更に、耐ビルドアップ性を向上させる観点からは、Crの割合を60~80体積%とすることがより好ましい。
 ここで、Crの粒径は、例えば1~10μmであることが好ましい。Crの粒径が1μm未満となる場合には、耐熱合金と接する表面積が大きくなり、カーボンの拡散が起き易い。一方、粒径が10μm超過となる場合には、皮膜表面の粗度が大きくなり、鉄又はマンガンやこれらの酸化物がビルドアップしやすくなる。更に、耐ビルドアップ性を向上させる観点からは、Crの粒径を5~8μmとすることがより好ましい。
 Al及びYは、いずれもこれらの材料中でのカーボンの拡散係数が低いため、Crのカーボンが耐熱合金へ拡散することを抑制できる。
 セラミックスの材質において、Alは1~40体積%とし、Yは3体積%以下とする。なお、Yは、必要に応じて、特にカーボンの拡散抑制効果を得る目的で添加する任意成分(選択的成分)であるため、Yの量は0~3体積%である。Alが1体積%未満となる場合には、カーボンの拡散抑制効果が得られず、40体積%超過となる場合には、皮膜が脆化して使用中にクラックが生じやすく耐ビルドアップ性が低下する。Yが3体積%超過となる場合には、Yがマンガン酸化物と反応し易いため、耐ビルドアップ性が低下する。なお、カーボンの拡散抑制効果を得る目的でYを添加する場合には、0.5体積%以上添加すると効果的である。また、Alについては、更に耐ビルドアップ性を向上させる観点からは、含有量を10~30体積%とするのがより好ましい。
 Al又はYは、原料粉末に酸化物として添加することもできるが、Crからのカーボン拡散を抑制する目的から、原料段階、成膜中、又は、成膜後に酸化処理することにより耐熱合金に添加したY又はAlを酸化させ、耐熱合金表面にAl又はYの形で生成させることが好ましい。
 更に、高温で使用する目的で、溶射皮膜の高温硬度をより高くする場合には、高温で安定かつ高硬度なZrBを、40体積%以下で添加することが好ましい。40体積%を超えてZrBを添加すると、ZrBの耐ビルドアップ性がCrに比べて劣るため、ビルドアップが発生しやすくなる。なお、ZrBは必要に応じて、特に高温で使用する目的で添加する任意成分(選択的成分)であるため、ZrBの量は皮膜中に好ましくは0~40体積%である。そして、高温で使用する目的でZrBを添加する場合には、添加量が5体積%未満では、高温硬度を上げる効果が小さいので、ZrBを5体積%以上添加するのが好ましく、更に、耐ビルドアップ性を向上させる観点からは、15~30体積%とするのがより好ましい。
 以上説明したセラミックスの残部は、不純物及び気孔である。
 次に耐熱合金の材質について説明する。
 耐熱合金中には、Crを5~20質量%含有させる。Crが5質量%未満となる場合には、高温での耐酸化性が劣るため、皮膜が継続酸化し剥離しやすくなる。Crが20質量%超過となる場合には、炭化した場合には耐熱合金が脆化し剥離しやすくなり、また、酸化した場合にはマンガン酸化物と反応してビルドアップが発生しやすくなる。
 耐熱合金には、5~20質量%のAlも含有させる。Alが5質量%未満である場合には、各種酸化処理を施しても目的とする量のAlが得られず、Alが20質量%超過となる場合には、皮膜の高温硬度が低下するため、鉄が皮膜に突き刺さりビルドアップが発生しやすくなる。
 Y、Siは、いずれも酸化皮膜の安定生成、剥離防止効果があり、YとSiのいずれか1種または2種を好ましくは0.1~6質量%添加する。Y又はSiが6質量%超過となる場合には、皮膜の高温硬度が低下するため、鉄が皮膜に突き刺さりビルドアップが発生しやすくなる。また、Y、Siは、いずれも0.1質量%以上加えることが好ましく、0.5質量%以上加えると、特に効果的である。
 また、この耐熱合金中には、0.1~10質量%のNb、又は、0.1~10質量%のTiの少なくとも何れか一方を添加することが好ましい。Nb又はTiが耐熱合金中に含まれると、耐熱合金中に含まれるCrよりも優先的に安定な炭化物が形成されてCrとカーボンの反応を抑制するため、皮膜の脆化を長期間抑制できる。Nb又はTiが0.1質量%未満となる場合には、Crとカーボンの反応抑制効果が得られない。また、Nb又はTiが10質量%超過となる場合には、酸化した場合にマンガン酸化物と反応しやすく、ビルドアップが発生しやすくなる。
 以上説明した耐熱合金の残部は、Co又はNiの少なくとも何れか一方及び不純物である。
 以上説明したような構成を有する溶射皮膜21及び改質皮膜22の断面のSEM写真の一例を、図4に示した。図4に示したSEM写真では、皮膜中に間隙が存在している溶射皮膜21の表面に、粗度が小さく緻密な改質皮膜22が形成されている。図4に示した例では、改質皮膜22の厚みは5μm程度である。また、改質皮膜22の表面からは、複数のクラックが溶射皮膜21の方向に向かって形成されていることがわかる。
 このような改質皮膜22を溶射皮膜21上に形成することで、本実施形態に係るハースロール10では、ビルドアップの発生を抑制することが可能となる。
(ハースロールの製造方法について)
 次に、図5及び図6を参照しながら、本実施形態に係る連続焼鈍炉用ハースロールの製造方法について説明する。
 本実施形態に係るハースロールの製造方法では、図5に示すように、まず、ハースロール10のロール基材20の周面に対して、溶射材を溶射することで、溶射皮膜21を形成する(ステップS101)。なお、溶射皮膜21の密着力を高める目的で、溶射処理に先立って、公知の溶射前ブラスト処理や、耐熱合金のみからなる下地層24(図2B参照)の形成を、必要に応じて行ってもよい。
 この溶射処理による溶射皮膜21の形成(ステップS101)について詳述する。
 かかる溶射処理では、50~90体積%が上記セラミックの粉末であり、残部が上記耐熱合金の粉末である原料粉末を、ロール基材20の表面に溶射することによって、ロール基材20の表面にサーメット皮膜を形成する。溶射する原料粉末としては、CrやAl等のセラミックス粉末と、CrやAlを含有する耐熱合金粉末とを混合した原料粉末を使用できる。好ましくは、セラミックス粉末と耐熱合金粉末を事前に造粒複合化した原料粉末を用いて溶射すると、より均質な溶射皮膜21を形成できる。
 また、ロール周面への溶射皮膜21の形成方法としては、密着性向上及び粗さ付与のためグリッドブラストを行った後に、高速ガス溶射(High Velocity Oxygen-Fuel Thermal Spraying Process、HVOFという。)により行うことが好ましい。HVOFでは、通常、燃料ガスをケロシン、C、C、Cの何れかとし、燃料ガスの圧力を0.1~1MPa、燃料ガスの流量を10~500l/minとし、酸素ガスの圧力を0.1~1MPa、酸素ガスの流量を100~1200l/minとする。
 溶射施工時には、ロール基材20を300~600℃に加熱することが好ましい。溶射ガンの火炎をロール基材20に近づけて加熱してもよいし、又は、別途ガスバーナーを設けて加熱してもよい。ロール基材20を300℃以上に加熱することで、耐熱合金中のAl、Yを酸化し、目的とする量のAl、Yを得ることができる。加熱温度を600℃よりも高くすると、皮膜の酸化が進みすぎ皮膜が多孔質になるため、ビルドアップが発生しやすくなる。更に、耐ビルドアップ性を向上させる観点からは、加熱温度の範囲を400~500℃にするのがより好ましい。
 HVOF溶射施工時には、HVOF燃焼ガス成分である酸素ガスの流量を1000~1200l/minとすることが好ましい。酸素ガスの流量を1000l/min以上とすることで、耐熱合金中のAl、Yを酸化し、目的とする量のAl、Yを得る
ことができる。酸素ガスの流量を1200l/minよりも多くすると、溶射中に原料粉末の酸化が進みすぎ皮膜が多孔質になり、ビルドアップが発生しやすくなる。
 また、溶射施工後に、溶射皮膜21を300~600℃で1~5時間、酸化処理することが好ましい。酸化処理は、ガスバーナーにより溶射皮膜21の表面を加熱してもよいし、ハースロールを大気又は少量の酸素を含んだ不活性ガス(窒素、アルゴン等)雰囲気の炉内に設置し、熱処理することでも可能である。300℃以上で1時間以上加熱することで、耐熱合金中のAl、Yを酸化し、目的とする量のAl、Yを得ることができる。加熱温度を600℃よりも高く、又は、5時間よりも長くすると、皮膜の酸化が進みすぎて皮膜が多孔質になり、ビルドアップが発生しやすくなる。更に、耐ビルドアップ性を向上させる観点からは、加熱温度の範囲を400~500℃にするのがより好ましい。
 原料粉末を酸化処理した後、溶射に供する場合は、300~600℃で1~5時間、大気中又は少量の酸素を含んだ不活性ガス(窒素、アルゴン等)中で熱処理する。300℃未満、又は、1時間未満の加熱では、Y又はAlが酸化せず、加熱温度が600℃よりも高く、又は、5時間よりも長くすると、酸化したセラミックスの量が増加することで原料粉末の融点が高くなり、皮膜が多孔質になる。更に、耐ビルドアップ性を向上させる観点からは、熱処理温度は400~500℃の範囲にするのがより好ましい。
 以上説明したような溶射処理により、ロール基材20上に溶射皮膜21が形成されると、続いて、溶射皮膜21の表層に対してレーザを照射することで溶射皮膜の表層から所定の深さまでを再溶融・再凝固させ、改質皮膜22を形成する(ステップS103)。形成された改質皮膜22の厚みは、好ましくは、2~20μmである。レーザの照射は大気中で行うことが好ましい。レーザ照射中に溶射皮膜21に含まれる金属成分の酸化反応を促進させるためである。
 形成される改質皮膜22の厚みや、クラック等に関する諸特性は、溶射皮膜21の表面に照射されるレーザのエネルギー密度によって制御することができる。本実施形態に係るハースロールの製造方法においては、図6に模式的に示したように、溶射皮膜21の形成されたハースロール10を回転させながら、公知のレーザ照射装置から射出されるレーザ30を利用して、溶射皮膜21の表面を所定の速度で走査する。ここで、溶射皮膜21表面におけるレーザのエネルギー密度を制御するために、溶射皮膜21表面へのレーザ30の集光度合いや走査速度を、公知の光学系により調整する。
 ここで、溶射皮膜21の表面に照射されるレーザのエネルギー密度については、1×10~1×10W/cmとすることが好ましいが、集光度合いや走査速度については、特に限定されるものではない。例えば、以下のような条件でレーザビームを照射すればよい。すなわち、Nd/YAGレーザ装置(レーザ波長:1064nm)を利用し、出力1000Wのレーザを溶射皮膜21表面で直径300μmの大きさとなるように集光(エネルギー密度:1.4×10W/cm程度)させ、10m/sの走査速度で、ピッチ50μmで溶射皮膜21の表面を1又は複数回走査する。このような条件で溶射皮膜21の再溶融・再凝固を行うことで、上記のような改質皮膜22を形成することができる。なお、この処理条件はあくまでも一例であり、用いるレーザの波長や出力に応じて、改質皮膜22の厚さが好ましくは2~20μmとなるように、集光度合いや走査速度、ピッチ、走査回数などの処理条件を適宜設定すればよい。
 なお、上記では、レーザとして、Nd/YAGレーザ(レーザ波長:1064nm)を使用したが、Yb系のファイバレーザ(レーザ波長:1070nm)、ディスクレーザ(レーザ波長:1030nm)等のレーザ波長が900~1100nmの範囲の近赤外線域のレーザを好ましく使用できる。また、レーザビーム以外にも電子ビーム等を使用することができる。レーザビームや電子ビームはエネルギービームの一例である。
 上記のような処理により、本実施形態に係る連続焼鈍炉用ハースロールを製造することができる。
 以上、本実施形態に係る連続焼鈍炉用ハースロール及びその製造方法について説明した。本実施形態によれば、ハースロール10のロール周面の表面粗度を適切に制御し、緻密で高強度の改質皮膜を形成することができるので、ロール周面に対する鉄、マンガン酸化物等の異物の付着を大幅に低減できる。従って、連続焼鈍炉1の操業中に、通板中の鋼板2に付随する異物がハースロール10のロール周面に対して付着・成長すること(即ち、ビルドアップの発生)を抑制できる。よって、ビルドアップに伴う鋼板2の転写疵の発生を防止または抑制できるので、鋼板2の品質を向上できる。
 さらに、連続焼鈍炉1内の高温環境下で、ハースロール10を長時間安定して使用することができるので、ハースロール10の寿命を大幅に延長することが可能となる。また、連続焼鈍炉1の定期修繕の際に、ハースロール10のロール表面に付着した異物を除去する作業が不要となる、あるいは当該作業を大幅に削減できるので、連続焼鈍炉1による鋼板2の生産性を向上できる。
 次に、実施例について説明する。なお、以下の実施例は、本発明の効果を実証するために行った試験結果を示すものであり、本発明が以下の実施例に限定される訳ではない。
 上述したハースロールの製造方法に従って、複数種類のハースロール10を製造し、各々のハースロール10を連続焼鈍炉1で使用して、ハースロール10の寿命を測定する試験を行った。また、ロール寿命に関しては、連続焼鈍炉1のオンラインにて、ハースロール10のロール周面をポータブル蛍光X線により測定し、当該ロール周面に対する鉄(Fe)の付着量が5質量%を超えた時点で、寿命であると判定した。なお、本実施形態におけるロール径φは1000mmとした。
 なお、溶射皮膜21の再溶融・再凝固処理に際しては、溶射皮膜の組成や表面粗さの影響も受けるため集光度合いや走査速度を適宜調整して再溶融・再凝固処理を行う。例えば表1の、ビッカース硬さHVが950であり、溶射被膜の80体積%がセラミックス(79体積%がCrであり、1体積%がAl)であり、残部が耐熱合金であり、この耐熱合金は、質量%で、Cr:10%、Al:5%、Y:2%、Ti:0.1%を含有し、残部はCoである溶射被膜では、Nd/YAGレーザ装置を用い、出力1000Wのレーザを溶射皮膜21の表面において直径300μmの大きさに集光させて、50μmピッチ、10m/sの走査速度で1回走査処理を行った場合、同時試験片で確認した改質皮膜22の厚さは、11μmであった。同一の条件で、2回走査処理を行うと改質皮膜22の厚さは13μmとなった。また、同一の条件で、集光度合いを直径1000μmにすると、1回の走査で改質皮膜22の厚さは2μmとなった。出力を500Wとして、直径300μmの大きさに集光させて、60μmピッチ、8m/sの走査速度で1回走査処理を行った場合、改質皮膜22の厚さは、8μmであった。従って、表1に示した例では、かかる知見をもとに集光度合い、走査速度、ピッチ及び走査回数を適宜設定し、表1に示した厚みの改質皮膜22を製造した。
 ロール周面に形成した溶射皮膜21の組成と、溶射皮膜21及び改質皮膜22の諸物性と、をあわせて表1に示した。
 表1において、改質皮膜22の厚み、クラック間隔及びクラック幅は、得られたハースロールの同時サンプルの断面をSEM観察することにより測定した。測定倍率1000倍にてSEM観察した10視野断面においてクラック間隔及びクラック幅を測定し平均値を算出した。また、改質皮膜22の表面におけるAlの面積率は、波長分散型EPMAにより測定倍率500倍にて観察した10視野表面画像において、定性分析にてAlと判定した部分の色が白、それ以外が黒となるように反射電子像を2値化することで面積率を測定し平均値を算出した。改質皮膜22の酸素含有量は、波長分散型EPMAにより測定倍率500倍にて観察した10視野において定量分析を行い酸素含有量を測定し平均値を算出した。更に、溶射皮膜21及び改質皮膜22のビッカース硬さHVは、ISO 6507-1に規定の方法に則して測定し、(改質皮膜22のビッカース硬さHV/溶射皮膜21のビッカース硬さHV)で得られる硬度変化の割合を、表1にあわせて示した。また、表1には、試験結果であるロール寿命もあわせて示した。
Figure JPOXMLDOC01-appb-T000001
 上記表1から明らかなように、実施例1~24に示したハースロールは、高いビッカース硬さHVを有する改質皮膜22を備え、優れたロール寿命を有していることが明らかとなった。特に、クラック間隔、クラック幅及びAlの面積率が適切な値を有している実施例については、特に優れたロール寿命を有していることがわかる。かかる結果は、本明細書に係るハースロールの製造方法に則してハースロールを製造することで、ビルドアップの発生をうまく抑制できていることを示している。
 他方、比較例に対応するハースロールは、ロール寿命が2年未満となり、ハースロール表面でのビルドアップの発生を抑制できていないことを示している。
 2014年10月2日に出願された日本国特許出願2014-204108号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
 以上、種々の典型的な実施の形態を説明してきたが、本発明はそれらの実施の形態に限定されない。本発明の範囲は、次の請求の範囲によってのみ限定されるものである。

Claims (10)

  1.  ロール基材と、
     前記ロール基材上に形成された溶射皮膜と、
     前記溶射皮膜上に形成された、前記溶射皮膜の表面の一部又は全面にエネルギービームを照射することにより、前記溶射皮膜を溶融・凝固させて前記溶射皮膜を部分的又は全面的に改質させた改質皮膜と、
    を備え、
     前記改質皮膜の厚みは、2~20μmであり、
     前記改質皮膜のビッカース硬さHVは、前記溶射皮膜のビッカース硬さHVの1.2~1.4倍である、ハースロール。
  2.  前記改質皮膜の表面には、クラックが存在し、
     前記ハースロールを厚み方向に切断した断面において、隣り合う前記クラックの平均間隔は、10~100μmであり、前記クラックの開口幅は、5μm未満である、請求項1に記載のハースロール。
  3.  前記改質皮膜は、0.5~2質量%の酸素を含有する、請求項1または請求項2に記載のハースロール。
  4.  前記改質皮膜の表面にはAlが分散して存在し、前記改質皮膜の表面におけるAlの面積率が、5~40%である、請求項1から請求項3の何れか1項に記載のハースロール。
  5.  前記改質皮膜上または、前記改質皮膜および記溶射皮膜上に形成された酸化クロム層をさらに備える、請求項1から請求項4の何れか1項に記載のハースロール。
  6.  前記溶射皮膜は、セラミックスと耐熱合金からなるサーメット皮膜であり、
     前記セラミックスは、体積%で
      Cr:50~90%
      Al:1~40%
      Y:0~3%
      ZrB:0~40%
    を含有し、残部は、不純物及び気孔からなり、
     前記耐熱合金は、質量%で、
      Cr:5~20%
      Al:5~20%
      Y又はSiの少なくとも何れか:0.1~6%
    を含有し、残部は、Co又はNiの少なくとも何れか及び不純物からなり、
     前記サーメット皮膜の50~90体積%が前記セラミックスであり、残部が前記耐熱合金である、請求項1から請求項5の何れか1項に記載のハースロール。
  7.  前記耐熱合金は、質量%で、
     Nb:0.1~10%
     Ti:0.1~10%
    の少なくとも何れかを更に含有する、請求項6に記載のハースロール。
  8.  ロール基材上に形成された溶射皮膜の表面の一部又は全面にエネルギービームを照射することで前記溶射皮膜を溶融・凝固させて前記溶射皮膜を部分的又は全面的に改質して、厚みが2~20μmで、ビッカース硬さHVが、前記溶射皮膜のビッカース硬さHVの1.2~1.4倍である改質皮膜を形成する工程を備える、ハースロールの製造方法。
  9.  前記エネルギービームは、大気中で照射される、請求項8に記載のハースロールの製造方法。
  10.  前記改質皮膜を形成させた後に、クロメート処理を実施する、請求項8または請求項9に記載のハースロールの製造方法。
PCT/JP2015/078094 2014-10-02 2015-10-02 ハースロール及びその製造方法 WO2016052741A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020167020784A KR101765025B1 (ko) 2014-10-02 2015-10-02 허스 롤 및 그 제조 방법
EP15847128.4A EP3202944B1 (en) 2014-10-02 2015-10-02 Hearth roll and manufacturing method therefor
BR112016018241-3A BR112016018241B1 (pt) 2014-10-02 2015-10-02 Rolo de soleira de forno e método de fabricação do mesmo
US15/116,778 US10088236B2 (en) 2014-10-02 2015-10-02 Hearth roll and manufacturing method therefor
MX2017000407A MX2017000407A (es) 2014-10-02 2015-10-02 Rodillo de horno y metodo de fabricacion para el mismo.
CN201580009169.6A CN106029937B (zh) 2014-10-02 2015-10-02 炉底辊及其制造方法
JP2016552186A JP6396485B2 (ja) 2014-10-02 2015-10-02 ハースロール及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-204108 2014-10-02
JP2014204108 2014-10-02

Publications (1)

Publication Number Publication Date
WO2016052741A1 true WO2016052741A1 (ja) 2016-04-07

Family

ID=55630761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078094 WO2016052741A1 (ja) 2014-10-02 2015-10-02 ハースロール及びその製造方法

Country Status (9)

Country Link
US (1) US10088236B2 (ja)
EP (1) EP3202944B1 (ja)
JP (1) JP6396485B2 (ja)
KR (1) KR101765025B1 (ja)
CN (1) CN106029937B (ja)
BR (1) BR112016018241B1 (ja)
MX (1) MX2017000407A (ja)
TW (1) TWI567238B (ja)
WO (1) WO2016052741A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019157216A (ja) * 2018-03-14 2019-09-19 三菱重工業株式会社 セラミックコーティング、タービン部材、ガスタービン及びセラミックコーティングの製造方法
JP2020168646A (ja) * 2019-04-03 2020-10-15 株式会社神戸製鋼所 蛍光x線装置を備えた圧延機、及び圧延機におけるロールコーティングの制御方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018092360A1 (ja) * 2016-11-17 2018-05-24 Jfeスチール株式会社 鋼板の通板方法及び薄鋼板の製造設備
WO2019111843A1 (ja) * 2017-12-05 2019-06-13 日本製鉄株式会社 溶融金属めっき浴中ロール及び溶融金属めっき浴中ロールの製造方法
US11965251B2 (en) * 2018-08-10 2024-04-23 Praxair S.T. Technology, Inc. One-step methods for creating fluid-tight, fully dense coatings
WO2020044864A1 (ja) * 2018-08-27 2020-03-05 トーカロ株式会社 溶射皮膜の形成方法
CN109911546A (zh) * 2019-03-12 2019-06-21 富华中元江苏重机科技有限公司 一种耐磨回火托辊
RU2748004C1 (ru) * 2020-11-06 2021-05-18 Федеральное государственное бюджетное образовательное учреждение высшего образования "Башкирский государственный аграрный университет" Порошковый материал для нанесения износостойкого газотермического покрытия, получаемый самораспространяющимся высокотемпературным синтезом

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194118A (ja) * 1989-01-23 1990-07-31 Sumitomo Metal Ind Ltd 熱処理炉用ロールおよびその製造法
JPH07145467A (ja) * 1993-11-22 1995-06-06 Nippon Steel Corp 高熱膨張率硬質酸化物を含むサーメット溶射材料および溶射皮膜をもつハースロール
JP2002348677A (ja) * 2001-03-22 2002-12-04 National Institute Of Advanced Industrial & Technology 摺動部材とその作製方法
JP2004052036A (ja) * 2002-07-19 2004-02-19 Kubota Corp 耐浸炭性にすぐれる加熱炉用部材
JP2013104126A (ja) * 2011-11-16 2013-05-30 Nippon Steel & Sumitomo Metal Corp 連続焼鈍炉用ハースロール及び連続焼鈍炉用ハースロールの製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3310423A (en) * 1963-08-27 1967-03-21 Metco Inc Flame spraying employing laser heating
NL7216832A (ja) 1972-12-12 1974-06-14
JPS61113757A (ja) 1984-11-09 1986-05-31 Yoshikawa Kogyo Kk 金属基体面に形成した異種金属被膜のレ−ザ−処理方法
FR2594851A1 (fr) * 1986-02-25 1987-08-28 Cegedur Pieces metalliques dont une face au moins presente au moins une region de zones resistant a l'usure
NO162957C (no) * 1986-04-30 1990-03-14 Norske Stats Oljeselskap Fremgangsmaate for fremstilling av et kromoksydbelegg.
DE3813802A1 (de) * 1988-04-23 1989-11-09 Glyco Metall Werke Schichtwerkstoff oder schichtwerkstueck mit einer auf einer traegerschicht angebrachten funktionsschicht, insbesondere gleitschicht mit der struktur einer festen, aber schmelzbaren dispersion
US5576069A (en) * 1995-05-09 1996-11-19 Chen; Chun Laser remelting process for plasma-sprayed zirconia coating
FI112266B (fi) * 1997-04-11 2003-11-14 Metso Paper Inc Keraamipinnoitteinen puristintela vaikeisiin korroosio-olosuhteisiin, menetelmä telan valmistamiseksi ja pinnoitekoostumus
JPH11302819A (ja) 1998-04-16 1999-11-02 Advanced Materials Processing Institute Kinki Japan 耐摩耗性皮膜の形成方法及び形成装置
JP2000256822A (ja) * 1999-03-03 2000-09-19 Oriental Engineering Kk 表面改質アルミニウム合金及びその表面改質方法
US6199281B1 (en) * 1999-11-23 2001-03-13 Industrial Technology Research Institute Method of preparing a hearth roll with a coating
JP3234209B2 (ja) 2000-03-30 2001-12-04 川崎重工業株式会社 摺動部材の製造方法
JP2004001070A (ja) * 2002-04-11 2004-01-08 Jfe Steel Kk 耐摩耗性に優れたwcサーメット溶射ロール
US6933061B2 (en) * 2002-12-12 2005-08-23 General Electric Company Thermal barrier coating protected by thermally glazed layer and method for preparing same
JP4862125B2 (ja) 2005-12-06 2012-01-25 国立大学法人九州工業大学 溶射皮膜を形成した素材の改質方法
CN101878316B (zh) 2007-11-28 2012-09-19 新日本制铁株式会社 连续退火炉用炉底辊及其制造方法
JP2011006743A (ja) 2009-06-26 2011-01-13 Rezakku:Kk 金属材料の結晶組織制御方法
JP2013095973A (ja) * 2011-11-02 2013-05-20 Tocalo Co Ltd 半導体製造装置用部材
JP5670862B2 (ja) 2011-11-02 2015-02-18 トーカロ株式会社 溶射皮膜における緻密化層の形成方法
DE102012102087A1 (de) * 2012-03-13 2013-09-19 Thermico Gmbh & Co. Kg Bauteil mit einer metallurgisch angebundenen Beschichtung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194118A (ja) * 1989-01-23 1990-07-31 Sumitomo Metal Ind Ltd 熱処理炉用ロールおよびその製造法
JPH07145467A (ja) * 1993-11-22 1995-06-06 Nippon Steel Corp 高熱膨張率硬質酸化物を含むサーメット溶射材料および溶射皮膜をもつハースロール
JP2002348677A (ja) * 2001-03-22 2002-12-04 National Institute Of Advanced Industrial & Technology 摺動部材とその作製方法
JP2004052036A (ja) * 2002-07-19 2004-02-19 Kubota Corp 耐浸炭性にすぐれる加熱炉用部材
JP2013104126A (ja) * 2011-11-16 2013-05-30 Nippon Steel & Sumitomo Metal Corp 連続焼鈍炉用ハースロール及び連続焼鈍炉用ハースロールの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3202944A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019157216A (ja) * 2018-03-14 2019-09-19 三菱重工業株式会社 セラミックコーティング、タービン部材、ガスタービン及びセラミックコーティングの製造方法
JP2020168646A (ja) * 2019-04-03 2020-10-15 株式会社神戸製鋼所 蛍光x線装置を備えた圧延機、及び圧延機におけるロールコーティングの制御方法
JP7210826B2 (ja) 2019-04-03 2023-01-24 株式会社神戸製鋼所 蛍光x線装置を備えた圧延機、及び圧延機におけるロールコーティングの制御方法

Also Published As

Publication number Publication date
US20160348971A1 (en) 2016-12-01
BR112016018241B1 (pt) 2023-01-17
CN106029937A (zh) 2016-10-12
EP3202944B1 (en) 2020-02-05
JPWO2016052741A1 (ja) 2017-04-27
JP6396485B2 (ja) 2018-09-26
TWI567238B (zh) 2017-01-21
EP3202944A4 (en) 2018-03-28
TW201623658A (zh) 2016-07-01
MX2017000407A (es) 2017-05-01
BR112016018241A2 (ja) 2017-08-08
KR20160105471A (ko) 2016-09-06
KR101765025B1 (ko) 2017-08-03
US10088236B2 (en) 2018-10-02
EP3202944A1 (en) 2017-08-09
CN106029937B (zh) 2019-05-17

Similar Documents

Publication Publication Date Title
JP6396485B2 (ja) ハースロール及びその製造方法
JP5168823B2 (ja) 搬送ロールおよび連続焼鈍炉用ハースロール
RU2426815C2 (ru) Способ непрерывного отжига и подготовки полосы из высокопрочной стали для ее цинкования путем окунания с подогревом
TWI666082B (zh) 工具材料的製造方法及工具材料
TWI754127B (zh) 工具材料的再生方法及工具材料
JP5868133B2 (ja) 連続焼鈍炉用ハースロールの製造方法
JP6735497B2 (ja) 金属間化合物合金、金属部材及びクラッド層の製造方法
JP2016223017A (ja) アルミナバリア層を有するエチレン製造用反応管
EP0090428B1 (en) A highly buildup-resistant hearth roll for conveying a steel strip through a continuous annealing furnace and a method therefor
JP2006233311A (ja) 耐食性に優れた溶射被覆鋼板の製造方法および鋼板の設備列
JPH0941125A (ja) 金属表面硬化方法
JP2010012483A (ja) 高温材搬送用部材
JP2007154261A (ja) 溶射皮膜を形成した素材の改質方法
JP6697802B2 (ja) 曲部を備えた自溶合金外面被覆管の製造方法
JP4009255B2 (ja) サーメット粉末ならびに耐ビルドアップ性および耐酸化性に優れた炉内ロール
JP3889019B2 (ja) 溶融亜鉛めっき鋼板の製造方法
JP7464939B2 (ja) 硬質金属部材の製造方法及び硬質金属部材
KR101839840B1 (ko) 산화방지제, 강재의 처리방법 및 이를 이용하여 제조된 압연제품
JP3917568B2 (ja) 耐熱・耐酸化性溶射皮膜被覆部材およびその製造方法
JP6040717B2 (ja) 冷延鋼板の製造方法
JP5248216B2 (ja) ハースロール
JP2014095135A (ja) 冷延鋼板の製造方法
JP2009241081A (ja) フェライト単相系ステンレス鋼の熱間圧延鋼帯の製造方法
JP2008223114A (ja) サーメット粉末、表層にサーメットを有するロール、および、表層にサーメットを有するロールの製造方法
JP2003268483A (ja) ばね用鋼線材およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847128

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016552186

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167020784

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15116778

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015847128

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015847128

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016018241

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: IDP00201605831

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/000407

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112016018241

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160808