JP2019157216A - セラミックコーティング、タービン部材、ガスタービン及びセラミックコーティングの製造方法 - Google Patents

セラミックコーティング、タービン部材、ガスタービン及びセラミックコーティングの製造方法 Download PDF

Info

Publication number
JP2019157216A
JP2019157216A JP2018046425A JP2018046425A JP2019157216A JP 2019157216 A JP2019157216 A JP 2019157216A JP 2018046425 A JP2018046425 A JP 2018046425A JP 2018046425 A JP2018046425 A JP 2018046425A JP 2019157216 A JP2019157216 A JP 2019157216A
Authority
JP
Japan
Prior art keywords
layer
ceramic
melt
ceramic coating
solidified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018046425A
Other languages
English (en)
Inventor
秀次 谷川
Hidetsugu Tanigawa
秀次 谷川
妻鹿 雅彦
Masahiko Mega
雅彦 妻鹿
匠 坊野
Takumi Bono
匠 坊野
鳥越 泰治
Taiji Torigoe
泰治 鳥越
芳史 岡嶋
Yoshifumi Okajima
芳史 岡嶋
大祐 工藤
Daisuke Kudo
大祐 工藤
三井 裕之
Hiroyuki Mitsui
裕之 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2018046425A priority Critical patent/JP2019157216A/ja
Priority to US16/255,193 priority patent/US20190284104A1/en
Priority to DE102019000558.9A priority patent/DE102019000558A1/de
Publication of JP2019157216A publication Critical patent/JP2019157216A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4586Non-chemical aspects relating to the substrate being coated or impregnated
    • C04B41/4588Superficial melting of the substrate before or during the coating or impregnating step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0036Laser treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0054Plasma-treatment, e.g. with gas-discharge plasma
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0072Heat treatment
    • C04B41/0081Heat treatment characterised by the subsequent cooling step
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5042Zirconium oxides or zirconates; Hafnium oxides or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/007Preventing corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/005Repairing methods or devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/284Selection of ceramic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/24Rotors for turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics
    • F05D2300/2118Zirconium oxides

Abstract

【課題】セラミックコーティングの耐久性を向上させる。【解決手段】一実施形態に係るセラミックコーティングは、セラミック層と、前記セラミック層の表面に形成された溶融凝固層と、前記溶融凝固層の厚さ方向に延在するクラックに充填されたセラミックを含む充填層と、を有する。【選択図】図1

Description

本開示は、セラミックコーティング、タービン部材、ガスタービン及びセラミックコーティングの製造方法に関する。
例えばガスタービンなどの発電装置は、高温環境で使用される。そのため、ガスタービンを構成する静翼や動翼、あるいは燃焼器の壁材などは、耐熱部材で構成される。更に、この耐熱部材の基材上に、遮熱コーティング(Thermal Barrier Coating,TBC)を形成して、耐熱部材を高温から保護することが行われている。
例えば、特許文献1には、耐熱基材上に形成された高気孔層と、高気孔層上に形成された緻密層と、緻密層上に緻密層が溶融された溶融層とを有する遮熱コーティングが記載されている。
国際公開第2017/213113号公報
ところで、セラミックコーティングに要求される仕様として、腐食性物質がセラミックコーティングを透過しないことが望まれる。
そこで、例えば特許文献1に記載の遮熱コーティングでは、高気孔層上に形成された緻密層と、緻密層上に緻密層が溶融された溶融層とによって腐食性物質の浸透を抑制するようにしている。しかし、溶融層には溶融後に凝固する際の収縮によって溶融層の厚さ方向に延在するクラック(縦割れ)が生じるおそれがあり、緻密層にも気孔が存在することから、特許文献1に記載の遮熱コーティングでは、腐食性物質の浸透を十分に抑制できないおそれがあり、耐久性が低下するおそれがある。
上述の事情に鑑みて、本発明の少なくとも一実施形態は、セラミックコーティングの耐久性を向上することを目的とする。
(1)本発明の少なくとも一実施形態に係るセラミックコーティングは、
セラミック層と、
前記セラミック層の表面に形成された溶融凝固層と、
前記溶融凝固層の厚さ方向に延在するクラックに充填されたセラミックを含む充填層と、を有する。
上記(1)の構成によれば、溶融凝固層では溶融時に気孔が消滅するため、気孔がほとんど残存しない。また、凝固時の熱収縮に起因する厚さ方向に延在するクラックが溶融凝固層に存在したとしても、上記充填層によってクラックが封止されている。このように、上記(1)の構成によれば、セラミック層の表面に溶融凝固層及び充填層による緻密な層が形成されているので、腐食性物質のセラミック層への浸透が溶融凝固層及び充填層によって抑制される。これにより、セラミックコーティングの耐久性を向上することができる。
(2)幾つかの実施形態では、上記(1)の構成において、前記セラミック層の気孔率は、1%以上30%以下である。
セラミック層の気孔率を1%未満にするためには、例えば化学蒸着法によるコーティングのように、チャンバを備える大掛かりな装置が必要となる。これに対して、セラミック層の気孔率が1%以上であれば、例えば大気プラズマ溶射のように、チャンバが不要な成膜方法によってセラミック層を形成できる。また、セラミック層の気孔率が大きくなるとセラミック層が形成される相手側との密着性が低下する傾向にあるので、セラミック層の気孔率が30%を超えると、セラミック層が形成される相手側との密着性が不十分になるおそれがある。
その点、上記(2)の構成によれば、セラミック層の気孔率が1%以上30%以下であるので、耐久性を有するセラミック層の形成が容易になる。
(3)幾つかの実施形態では、上記(1)又は(2)の構成において、前記充填層は、積算粒度50%粒径が5マイクロメートル以下であるセラミック粒子を含む。
凝固時の熱収縮に起因する溶融凝固層のクラックの隙間の大きさは、例えば10マイクロメートル程度以下とされる。したがって、上記(3)の構成によれば、充填層が積算粒度50%粒径が5マイクロメートル以下であるセラミック粒子を含むことで、上記クラックにおけるセラミック粒子の充填率を向上できるので、充填層による上記クラックの封止効果を高めることができる。
(4)幾つかの実施形態では、上記(1)乃至(3)の何れかの構成において、前記溶融凝固層の厚さは、5マイクロメートル以上100マイクロメートル以下である。
溶融凝固層の厚さが5マイクロメートル未満であると、溶融凝固層の形成時の厚さのばらつきにより、局部的に厚さが極端に薄くなってセラミック層が露出するおそれがある。そのため、溶融凝固層の厚さは5マイクロメートル以上であることが望ましい。また、溶融凝固層の厚さが100μmを超えると、溶融凝固層の熱サイクル耐久性が低下するおそれがあるため、溶融凝固層の厚さは100μm以下とすることが望ましい。
その点、上記(4)の構成によれば、溶融凝固層の厚さが5マイクロメートル以上100マイクロメートル以下であるので、腐食性物質のセラミック層への浸透を抑制する効果を確保しつつ、溶融凝固層の熱サイクル耐久性を確保できる。
(5)幾つかの実施形態では、上記(1)乃至(4)の何れかの構成において、前記充填層は、前記セラミック層と同じ材質で構成される。
溶融凝固層がセラミック層の表層を溶融凝固させた層であれば溶融凝固層とセラミック層とは同じ材質で構成される。上記(5)の構成によれば、溶融凝固層がセラミック層の表層を溶融凝固させた層であれば、セラミック層と溶融凝固層と充填層とは同じ材質で構成される。これにより、セラミック層と溶融凝固層と充填層とで、高温環境下における線膨張係数や相安定性等が同じになるので、高温環境下におけるセラミックコーティングの品質劣化を抑制できる。
(6)幾つかの実施形態では、上記(5)の構成において、前記充填層及び前記セラミック層の材質は、イットリア安定化ジルコニアである。
イットリア安定化ジルコニアは、セラミックス材料の中では比較的低い熱伝導率と比較的高い熱膨張率を有している。そのため、イットリア安定化ジルコニアをセラミックコーティングの材料として用いた場合、高い遮熱性を確保できるとともに、金属製基材との熱膨張率の差を小さくすることができる。したがって、上記(6)の構成によれば、イットリア安定化ジルコニアによって充填層及びセラミック層を構成することで、セラミックコーティングが例えば金属製基材の遮熱用途に適したものとなる。
(7)本発明の少なくとも一実施形態に係るタービン部材は、上記構成(1)乃至(6)の何れかのセラミックコーティングを有する。
上記(7)の構成によれば、腐食性物質が存在する環境下であってもタービン部材の耐久性を向上できる。
(8)本発明の少なくとも一実施形態に係るガスタービンは、上記構成(7)のタービン部材を有する。
上記(8)の構成によれば、燃焼ガスに腐食性物質が含まれる環境下であってもガスタービンにおけるタービン部材の耐久性を向上できる。
(9)本発明の少なくとも一実施形態に係るセラミックコーティングの製造方法は、
セラミック層を形成する工程と、
前記セラミック層の表層部を加熱溶融させた後冷却することで縦割れを有する溶融凝固層を形成する工程と、
前記溶融凝固層の表面にセラミック粒子を含むスラリを塗布する工程と、
を有する。
上記(9)の方法によれば、セラミック層の表層部が加熱溶融されると、該表層部に含まれていた気孔が消滅するため、このようにして形成された溶融凝固層には気孔がほとんど残存しない。また、溶融凝固層の表面にセラミック粒子を含むスラリを塗布することで、溶融凝固層の凝固時の熱収縮に起因する厚さ方向に延在するクラック(縦割れ)にセラミック粒子を導入することができ、セラミック粒子によって縦割れを封止できる。
そのため、上記(9)の方法によれば、気孔がほとんど存在せず、且つ、縦割れがセラミック粒子で封止されるので、溶融凝固層が緻密化される。
したがって、上記(9)の方法によれば、緻密化した溶融凝固層によって腐食性物質のセラミック層への浸透を抑制できる。これにより、セラミックコーティングの耐久性を向上することができる。
(10)幾つかの実施形態では、上記(9)の方法において、前記スラリを塗布する工程の後で、減圧環境下で前記縦割れに前記スラリを供給する工程をさらに有する。
上記(10)の方法によれば、縦割れの脱気を行うことができ、縦割れにスラリを効率的に供給できる。
(11)幾つかの実施形態では、上記(9)又は(10)の方法において、前記スラリを塗布する工程の後で、前記縦割れ内に存在する前記スラリに含まれる前記セラミック粒子を焼成させる工程をさらに有する。
上記(11)の方法によれば、縦割れ内のセラミック粒子を焼成することで縦割れの封止効果を向上できる。
(12)幾つかの実施形態では、上記(9)乃至(11)の何れかの方法において、前記溶融凝固層を形成する工程において、レーザ、電子ビーム、又はプラズマの何れかを照射することで、前記セラミック層の前記表層部を加熱溶融させる。
上記(12)の方法によれば、例えば炉等を用いてセラミック層の表層部を加熱する場合と比べて、セラミック層における上記表層部よりも内部の領域に加熱による熱の影響が及ぶことを抑制でき、セラミック層の熱的損傷を抑制できる。
(13)幾つかの実施形態では、上記(9)乃至(12)の何れかの方法において、前記セラミック層を形成する工程において、気孔率が1%以上30%以下の前記セラミック層を形成する。
セラミック層の気孔率を1%未満にするためには、例えば化学蒸着法によるコーティングのように、チャンバを備える大掛かりな装置が必要となる。これに対して、セラミック層の気孔率が1%以上であれば、例えば大気プラズマ溶射のように、チャンバが不要な成膜方法によってセラミック層を形成できる。また、セラミック層の気孔率が大きくなるとセラミック層が形成される相手側との密着性が低下する傾向にあるので、セラミック層の気孔率が30%を超えると、セラミック層が形成される相手側との密着性が不十分になるおそれがある。
その点、上記(13)の方法によれば、形成するセラミック層の気孔率が1%以上30%以下であるので、耐久性を有するセラミック層を容易に形成できる。
本発明の少なくとも一実施形態によれば、セラミックコーティングの耐久性を向上できる。
幾つかの実施形態に係るセラミックコーティングを備えるタービン部材の断面の模式図である。 幾つかの実施形態に係るセラミックコーティングの製造方法の手順を示すフローチャートである。 セラミック層形成工程でボンドコート層の表面にセラミック層を形成した後のセラミックコーティングの断面を模式的に示す図である。 溶融凝固層形成工程で溶融凝固層を形成した後のセラミックコーティングの断面を模式的に示す図である。 スラリ塗布工程で溶融凝固層の表面にスラリを塗布した後のセラミックコーティングの断面を模式的に示す図である。 セラミックコーティングを有する試験片に対して腐食性物質の浸透試験を実施し、試験片への腐食性物質の浸透状態を分析した結果を示す図である。(a)は、図1に示す一実施形態と同様の充填層を有する溶融凝固層が形成された試験片について、その断面におけるナトリウム分の濃度をEPMAにより分析した結果を示す図である。(b)は、従来のセラミックコーティングと同様に、充填層を有する溶融凝固層が形成されていない試験片について、その断面におけるナトリウム分の濃度をEPMAにより分析した結果を示す図である。 ガスタービン動翼の構成例を示す斜視図である。 ガスタービン静翼の構成例を示す斜視図である。 一実施形態係るガスタービンの部分断面構造を模式的に示す図である。
以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
(セラミックコーティング)
図1は、幾つかの実施形態に係るセラミックコーティングを備えるタービン部材の断面の模式図である。以下で説明する幾つかの実施形態では、セラミックコーティングの一例として、タービン部材の遮熱のための遮熱コーティングについて説明する。
幾つかの実施形態では、タービンの動翼、静翼などの耐熱基材(母材)11上に、遮熱コーティングとして金属結合層(ボンドコート層)12、セラミック層13、及び、溶融凝固層14が順に形成される。即ち、図1に示すように、幾つかの実施形態では、セラミックコーティング10は、遮熱コーティング(Thermal Barrier Coating : TBC)層であり、ボンドコート層12、セラミック層13、及び、溶融凝固層14を含んでいる。
ボンドコート層12は、MCrAlY合金(Mは、Ni,Co,Fe等の金属元素またはこれらのうち2種類以上の組合せを示す)などで構成される。
幾つかの実施形態におけるセラミック層13は、YSZ(イットリア安定化ジルコニア)で構成される。なお、セラミック層13は、YbSZ(イッテルビア安定化ジルコニア)、SmYbZr、DySZ(ジスプロシア安定化ジルコニア)、ErSZ(エルビア安定化ジルコニア)などの何れかで構成されてもよい。
幾つかの実施形態では、セラミック層13は、遮熱性を確保するため、気孔を含むポーラスな組織とされる。セラミック層13の気孔率及び厚さは、要求される熱伝導性に応じて適宜設定される。幾つかの実施形態では、セラミック層13の気孔率は、1%以上30%以下である。
セラミック層13の気孔率を1%未満にするためには、例えば化学蒸着法によるコーティングのように、チャンバを備える大掛かりな装置が必要となる。これに対して、セラミック層13の気孔率が1%以上であれば、例えば大気プラズマ溶射のように、チャンバが不要な成膜方法によってセラミック層13を形成できる。また、セラミック層13の気孔率が大きくなるとセラミック層13が形成される相手側であるボンドコート層12との密着性が低下する傾向にあるので、セラミック層13の気孔率が30%を超えると、セラミック層が形成される相手側であるボンドコート層12との密着性が不十分になるおそれがある。
その点、幾つかの実施形態では、セラミック層13の気孔率が1%以上30%以下であるので、耐久性を有するセラミック層13の形成が容易になる。
図1に示す幾つかの実施形態のセラミックコーティング10では、セラミック層13の表面に溶融凝固層14が形成される。また、図1に示す幾つかの実施形態のセラミックコーティング10では、溶融凝固層14は、充填層16を有する。
以下、幾つかの実施形態における溶融凝固層14について説明する。
(溶融凝固層14について)
セラミックコーティング10に要求される仕様として、腐食性物質がセラミックコーティング10を透過しないことが望まれる。腐食性物質は、例えば油燃料を使用する油焚きガスタービン等において、燃焼ガスに含まれる場合がある。具体的には、例えば重油等の石油を燃料とした油焚きガスタービンでは、燃焼ガスには、例えば硫酸ナトリウム(NaSO)等が腐食性物質として含まれる場合がある。
燃焼ガスに腐食性物質が含まれる場合、腐食性物質がセラミックコーティング10のセラミック層13の気孔からセラミック層13に浸透してセラミック層13を劣化させてしまい、セラミックコーティング10の耐久性を低下させるおそれがあることが分かってきた。
そこで、図1に示す幾つかの実施形態のセラミックコーティング10では、セラミック層13の表層部を加熱溶融させることで気孔を消滅させて緻密化した溶融凝固層14を形成することで、腐食性物質の浸透の抑制を図っている。
しかし、セラミック層13の表面に溶融凝固層14を形成する過程で、溶融凝固層14には加熱溶融後の凝固時の熱収縮に起因する厚さ方向に延在するクラック(縦割れ)15が生じることとなる。そのため、そのままでは、クラック15を介して腐食性物質がセラミック層13に浸透してしまう。
そこで、図1に示す幾つかの実施形態のセラミックコーティング10では、溶融凝固層14内に充填層16を形成することでクラック15を封止するようにしている。図1に示す幾つかの実施形態のセラミックコーティング10では、充填層16は、クラック15に充填されたセラミックを含む。
すなわち、図1に示す幾つかの実施形態のセラミックコーティング10は、セラミック層13と、セラミック層13の表面に形成された溶融凝固層14と、溶融凝固層14の厚さ方向に延在するクラック15に充填されたセラミックを含む充填層16とを有する。
これにより、溶融凝固層14では溶融時に気孔が消滅するため、気孔がほとんど残存しない。また、凝固時の熱収縮に起因する厚さ方向に延在するクラック15が溶融凝固層14に存在したとしても、充填層16によってクラックが封止されている。このように、図1に示す幾つかの実施形態のセラミックコーティング10では、セラミック層13の表面に溶融凝固層14及び充填層16による緻密な層が形成されているので、腐食性物質のセラミック層13への浸透が溶融凝固層14及び充填層16によって抑制される。これにより、セラミックコーティング10の耐久性を向上することができる。
セラミックコーティング10において加熱溶融させた後に凝固した部分は、加熱溶融させていない部分と比べて硬度が高い。その点、図1に示す幾つかの実施形態のセラミックコーティング10では、セラミック層13の表面に溶融凝固層14が形成されているので、セラミックコーティング10の耐エロ―ジョン性を向上できる。
なお、充填層16の有無によりセラミックコーティング10の熱サイクル耐久性に特段の違いがないことが発明者らの実験によって確認されている。
図1に示す幾つかの実施形態のセラミックコーティング10では、溶融凝固層14の厚さは、5マイクロメートル以上100マイクロメートル以下である。
溶融凝固層14の厚さが5マイクロメートル未満であると、溶融凝固層14の形成時の厚さのばらつきにより、局部的に厚さが極端に薄くなってセラミック層13が露出するおそれがある他、セラミック層13が露出しないまでも、溶融凝固層14による腐食性物質の浸透抑制効果が不十分となるおそれがある。そのため、溶融凝固層14の厚さは5マイクロメートル以上であることが望ましい。また、溶融凝固層14の厚さが100μmを超えると、溶融凝固層14の熱サイクル耐久性が低下するおそれがあるため、溶融凝固層14の厚さは100μm以下とすることが望ましい。
その点、図1に示す幾つかの実施形態のセラミックコーティング10では、溶融凝固層14の厚さが5マイクロメートル以上100マイクロメートル以下であるので、腐食性物質のセラミック層13への浸透を抑制する効果を確保しつつ、溶融凝固層14の熱サイクル耐久性を確保できる。
なお、溶融凝固層14と、セラミック層13とは、その気孔率の違いや、溶融凝固しているか否かの違い等に起因して、図1に示すような断面における見え方が異なるため、溶融凝固層14と、セラミック層13とを見分けること、及び、溶融凝固層14が溶融後に凝固したことで形成された領域であることを視認によって判断することは容易である。
(充填層16について)
以下、幾つかの実施形態に係る充填層16について説明する。
図1に示す幾つかの実施形態のセラミックコーティング10では、充填層16は、積算粒度50%粒径が5マイクロメートル以下であるセラミック粒子17を含む。
凝固時の熱収縮に起因する溶融凝固層14のクラック15の隙間の大きさは、例えば10マイクロメートル程度以下とされる。したがって、充填層16が積算粒度50%粒径が5マイクロメートル以下であるセラミック粒子17を含むようにすることで、クラック15におけるセラミック粒子17の充填率を向上できるので、充填層16によるクラック15の封止効果を高めることができる。
また、図1に示す幾つかの実施形態のセラミックコーティング10では、充填層16は、セラミック層13と同じ材質で構成される。
溶融凝固層14がセラミック層13の表層を溶融凝固させた層であるので、溶融凝固層14とセラミック層13とは同じ材質で構成される。したがって、図1に示す幾つかの実施形態では、セラミック層13と溶融凝固層14と充填層16とは同じ材質で構成される。これにより、セラミック層13と溶融凝固層14と充填層16とで、高温環境下における線膨張係数や相安定性等が同じになるので、高温環境下におけるセラミックコーティング10の品質劣化を抑制できる。
なお、図1に示す幾つかの実施形態のセラミックコーティング10では、充填層16及びセラミック層13の材質は、YSZ(イットリア安定化ジルコニア)である。
イットリア安定化ジルコニアは、セラミックス材料の中では比較的低い熱伝導率と比較的高い熱膨張率を有している。そのため、イットリア安定化ジルコニアをセラミックコーティング10の材料として用いた場合、高い遮熱性を確保できるとともに、金属製の母材11との熱膨張率の差を小さくすることができる。したがって、イットリア安定化ジルコニアによって充填層16及びセラミック層13を構成することで、セラミックコーティング10が金属製の母材11の遮熱用途に適したものとなる。
(セラミックコーティング10の製造方法について)
以下、幾つかの実施形態に係るセラミックコーティングの製造方法について説明する。図2は、幾つかの実施形態に係るセラミックコーティングの製造方法の手順を示すフローチャートである。
幾つかの実施形態に係るセラミックコーティングの製造方法は、セラミック層形成工程S10と、溶融凝固層形成工程S20と、スラリ塗布工程S30と、脱気工程S40と、乾燥工程S50と、焼成工程S60とを有する。
セラミック層形成工程S10は、セラミック層13を形成する工程であり、母材11上に形成されたボンドコート層12上にセラミック層13を積層させる。幾つかの実施形態に係るセラミックコーティングの製造方法では、セラミック層形成工程S10において、例えば、YSZの溶射粒子を大気プラズマ溶射によってボンドコート層12の表面に溶射することでセラミック層13を形成する。図3は、セラミック層形成工程S10でボンドコート層12の表面にセラミック層13を形成した後のセラミックコーティング10の断面を模式的に示す図である。
なお、幾つかの実施形態では、セラミック層形成工程S10において、気孔率が1%以上30%以下のセラミック層13を形成する。
セラミック層13の気孔率を1%未満にするためには、上述したように、チャンバを備える大掛かりな装置が必要となる。これに対して、セラミック層13の気孔率が1%以上であれば、上述したように、例えば大気プラズマ溶射のように、チャンバが不要な成膜方法によってセラミック層13を形成できる。また、上述したように、セラミック層の気孔率が30%を超えると、セラミック層が形成される相手側であるボンドコート層12との密着性が不十分になるおそれがある。
その点、幾つかの実施形態では、セラミック層形成工程S10で形成するセラミック層13の気孔率が1%以上30%以下であるので、耐久性を有するセラミック層13を容易に形成できる。
溶融凝固層形成工程S20は、セラミック層13の表層部13aを加熱溶融させた後冷却することでクラック15を有する溶融凝固層14を形成する工程である。図4は、溶融凝固層形成工程S20で溶融凝固層14を形成した後のセラミックコーティング10の断面を模式的に示す図である。
幾つかの実施形態では、溶融凝固層形成工程S20において、レーザ、電子ビーム、又はプラズマの何れかを照射することで、セラミック層13の表層部13aを加熱溶融させる。
これにより、例えば炉等を用いてセラミック層13の表層部13aを加熱する場合と比べて、セラミック層13における表層部13aよりも内部の領域に加熱による熱の影響が及ぶことを抑制でき、セラミック層13の熱的損傷を抑制できる。
なお、溶融凝固層形成工程S20では、溶融凝固層14の厚さが、上述したように5マイクロメートル以上100マイクロメートル以下となるように、セラミック層13の表層部13aを加熱溶融させる。
例えば、レーザの照射によって加熱溶融させる場合のレーザの照射条件の一例を以下に示す。例えば平均出力は20Wであり、照射速度は2.4m/minであり、ビーム径は0.3mmである。レーザビームの走査については、例えば6軸ロボットを用いて走査するようにしてもよく、ガルバノレンズを用いて走査するようにしてもよい。
スラリ塗布工程S30は、溶融凝固層14の表面にセラミック粒子17を含むスラリ18を塗布する工程である。上述のようにして形成された溶融凝固層14には、複数のクラック15が存在するため、クラック15の封孔のために、スラリ塗布工程S30において、溶融凝固層14の表面にセラミック粒子17を含むスラリ18を塗布する。図5は、スラリ塗布工程S30で溶融凝固層14の表面にスラリ18を塗布した後のセラミックコーティング10の断面を模式的に示す図である。
幾つかの実施形態では、スラリ18に含まれるセラミック粒子17は、積算粒度50%粒径が5マイクロメートル以下である。なお、幾つかの実施形態では、セラミック粒子17の粒径は、例えば湿式の光散乱法によって測定された値として示す。
スラリ18の組成の一例として、例えば、次のような組成であってもよい。
例えば、積算粒度10%粒径、積算粒度50%粒径、及び積算粒度90%粒径がそれぞれ0.4マイクロメートル、0.7マイクロメートル、及び2.1マイクロメートルのYSZ粒子を用い、溶媒にエタノールと分散剤を用い、固液比を1:3、すなわち濃度25wt%としてもよい。
また、スラリ18の組成の他の一例として、例えば、次のような組成であってもよい。
例えば、積算粒度50%粒径が0.04マイクロメートルのYSZ粒子を用い、溶媒に水と分散剤を用い、固液比を1:5、すなわち濃度20wt%としてもよい。
脱気工程S40は、スラリ塗布工程S30の後で、減圧環境下でクラック15にスラリ18を供給する工程である。すなわち、脱気工程S40では、減圧用のチャンバ内でクラック15に残存する空気を脱気することでクラック15内に残存した空気とスラリ18との置換を図る。
これにより、クラック15の脱気を行うことができ、クラック15にスラリ18を効率的に供給できる。
乾燥工程S50は、スラリ塗布工程S30で塗布したスラリ18を加熱乾燥する工程である。なお、乾燥工程S50では、スラリ18の乾燥後、溶融凝固層14の表面に残存する乾燥したスラリ18を研磨して除去する。
焼成工程S60は、スラリ塗布工程S30の後で、クラック15内に存在するスラリ18に含まれるセラミック粒子17を焼成させる工程である。焼成工程S60では、例えば、600℃以上の温度でクラック15内のセラミック粒子17を焼成させる。
このようにクラック15内のセラミック粒子17を焼成することでクラック15の封止効果を向上できる。
なお、焼成工程S60におけるセラミック粒子17の焼成度合いは、焼成前のセラミック粒子17の形状が例えばセラミックコーティング10の破断観察等によって視認可能な程度の焼成度合いであってもよく、焼成前のセラミック粒子17の形状が分からなくなるほど焼成度合いが進んでいてもよい。
また、焼成工程S60は、セラミックコーティング10を有する部材の製造段階で行われてもよく、セラミックコーティング10を有する部材の使用時の温度環境を利用して行うようにしてもよい。例えば、幾つかの実施形態に係るセラミックコーティング10を産業用ガスタービンの静翼に形成する場合、未焼成のセラミックコーティング10を有する静翼をガスタービンに取付け、ガスタービンの運転によって生じる燃焼ガスによって、クラック15内に存在するスラリ18に含まれるセラミック粒子17を焼成させてもよい。
このように、幾つかの実施形態に係るセラミックコーティングの製造方法は、セラミック層形成工程S10と、溶融凝固層形成工程S20と、スラリ塗布工程S30とを有する。
溶融凝固層形成工程S20において、セラミック層13の表層部13aが加熱溶融されると、上述したように、表層部13aに含まれていた気孔が消滅するため、このようにして形成された溶融凝固層14には気孔がほとんど残存しない。また、溶融凝固層14の表面にセラミック粒子17を含むスラリ18を塗布することで、溶融凝固層14のクラック15にセラミック粒子17を導入することができ、セラミック粒子17によってクラック15を封止できる。
そのため、幾つかの実施形態に係るセラミックコーティングの製造方法によれば、気孔がほとんど存在せず、且つ、クラック15がセラミック粒子17で封止されるので、溶融凝固層14が緻密化される。
したがって、幾つかの実施形態に係るセラミックコーティングの製造方法によれば、緻密化した溶融凝固層14によって腐食性物質のセラミック層13への浸透を抑制できる。これにより、セラミックコーティング10の耐久性を向上することができる。
図6は、セラミックコーティングを有する試験片に対して腐食性物質の浸透試験を実施し、試験片への腐食性物質の浸透状態を分析した結果を示す図である。図6(a)は、図1に示す一実施形態と同様に、母材11上に、ボンドコート層12と、セラミック層13と、充填層16を有する溶融凝固層14とを順に形成した試験片について、その断面におけるナトリウム分の濃度をEPMAにより分析した結果を示す図である。図6(b)は、従来のセラミックコーティングと同様に、母材11上に、ボンドコート層12とセラミック層13とを順に形成し、溶融凝固層14を有さない試験片について、その断面におけるナトリウム分の濃度をEPMAにより分析した結果を示す図である。なお、図6(a),(b)において、図示の都合上、ナトリウム分の濃度が所定の濃度以上の場所を黒く着色して表すこととしている。
図6(a)に示すように、セラミック層13上に充填層16を有する溶融凝固層14が積層された試験片では、セラミック層13にはほとんどナトリウム分が浸透していないことが分かる。
これに対し、図6(b)に示すように、セラミック層13上に溶融凝固層14が積層されていない試験片では、セラミック層13にナトリウム分が浸透していることが分かる。
(タービン部材及びガスタービン)
上述した幾つかの実施形態に係るセラミックコーティング10は、産業用ガスタービンの動翼や静翼、あるいは燃焼器の内筒や尾筒などの高温部品に適用して有用である。また、産業用ガスタービンに限らず、自動車やジェット機などのエンジンの高温部品の遮熱コーティング膜にも適用することができる。これらの部材に上述した幾つかの実施形態に係るセラミックコーティング10を設けることで、耐食性に優れるガスタービン翼や高温部品を構成することができる。
図7及び図8は、上述した幾つかの実施形態に係るセラミックコーティング10を適用可能なタービン部材としてのタービン翼の構成例を示す斜視図である。図7に示すガスタービン動翼4は、ディスク側に固定されるタブテイル41、プラットフォーム42、翼部43等を備えて構成されている。また、図8に示すガスタービン静翼5は、内シュラウド51、外シュラウド52、翼部53等を備えて構成されており、翼部53にはシールフィン冷却孔54、スリット55等が形成されている。
次に、図7,8に示すタービン翼4,5を適用可能なガスタービンについて図9を参照して以下に説明する。図9は、一実施形態係るガスタービンの部分断面構造を模式的に示す図である。このガスタービン6は、互いに直結された圧縮機61とタービン62とを備える。圧縮機61は、例えば軸流圧縮機として構成されており、大気又は所定のガスを吸込口から作動流体として吸い込んで昇圧させる。この圧縮機61の吐出口には、燃焼器63が接続されており、圧縮機61から吐出された作動流体は、燃焼器63によって所定のタービン入口温度まで加熱される。そして所定温度まで昇温された作動流体がタービン62に供給されるようになっている。図9に示すように、タービン62のケーシング内部には、上述したガスタービン静翼5が、複数段設けられている。また、上述したガスタービン動翼4が、各静翼5と一組の段を形成するように主軸64に取り付けられている。主軸64の一端は、圧縮機61の回転軸65に接続されており、その他端には、図示しない発電機の回転軸が接続されている。
このような構成により、燃焼器63からタービン62のケーシング内に高温高圧の作動流体を供給すれば、ケーシング内で作動流体が膨張することにより、主軸64が回転し、このガスタービン6と接続された図示しない発電機が駆動される。即ち、ケーシングに固定された各静翼5によって圧力降下させられ、これにより発生した運動エネルギは、主軸64に取り付けられた各動翼4を介して回転トルクに変換される。そして、発生した回転トルクは、主軸64に伝達され、発電機が駆動される。
一般に、ガスタービン動翼に用いられる材料は、耐熱合金(例えばIN738LC=インコ社の市販の合金材料)であり、ガスタービン静翼に用いられる材料は、同様に耐熱合金(例えばIN939=インコ社の市販の合金材料)である。即ち、タービン翼を構成する材料は、上述した幾つかの実施形態に係るセラミックコーティング10において母材11として採用可能な耐熱合金が使用されている。従って、上述した幾つかの実施形態に係るセラミックコーティング10を、これらのタービン翼に適用すれば、遮熱効果と、耐食性に優れたタービン翼を得ることができるので、より高い温度環境で使用することができ、長寿命のタービン翼を実現することができる。また、より高い温度環境において適用可能であることは、作動流体の温度を高められることを意味し、これによりガスタービン効率を向上させることも可能となる。
このように、幾つかの実施形態に係るタービン部材であるタービン翼4,5は、上述した幾つかの実施形態に係るセラミックコーティング10を有するので、腐食性物質が存在する環境下であってもタービン部材の耐久性を向上できる。
また、幾つかの実施形態に係るガスタービン6は、上記タービン部材であるタービン翼4,5を有するので、燃焼ガスに腐食性物質が含まれる環境下であってもガスタービン6におけるタービン部材の耐久性を向上できる。
本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
例えば、上述した幾つかの実施形態に係るセラミックコーティングの製造方法は、セラミック層形成工程S10と、溶融凝固層形成工程S20と、スラリ塗布工程S30とを有する。しかし、例えばセラミック層13の厚さに余裕があるのであれば、使用によって摩耗した充填層16を有するセラミックコーティング10に対して、再び溶融凝固層形成工程S20と、スラリ塗布工程S30とを実施することで、充填層16を有する溶融凝固層14の厚さを回復するようにしてもよい。
4 ガスタービン動翼
5 ガスタービン静翼
6 ガスタービン
10 セラミックコーティング
11 耐熱基材(母材)
12 金属結合層(ボンドコート層)
13 セラミック層
13a 表層部
14 溶融凝固層
15 クラック(縦割れ)
16 充填層
17 セラミック粒子
18 スラリ

Claims (13)

  1. セラミック層と、
    前記セラミック層の表面に形成された溶融凝固層と、
    前記溶融凝固層の厚さ方向に延在するクラックに充填されたセラミックを含む充填層と、
    を有するセラミックコーティング。
  2. 前記セラミック層の気孔率は、1%以上30%以下である
    請求項1に記載のセラミックコーティング。
  3. 前記充填層は、積算粒度50%粒径が5マイクロメートル以下であるセラミック粒子を含む
    請求項1又は2に記載のセラミックコーティング。
  4. 前記溶融凝固層の厚さは、5マイクロメートル以上100マイクロメートル以下である
    請求項1乃至3の何れか一項に記載のセラミックコーティング。
  5. 前記充填層は、前記セラミック層と同じ材質で構成される
    請求項1乃至4の何れか一項に記載のセラミックコーティング。
  6. 前記充填層及び前記セラミック層の材質は、イットリア安定化ジルコニアである
    請求項5に記載のセラミックコーティング。
  7. 請求項1乃至6の何れか一項に記載のセラミックコーティングを有するタービン部材。
  8. 請求項7に記載のタービン部材を有するガスタービン。
  9. セラミック層を形成する工程と、
    前記セラミック層の表層部を加熱溶融させた後冷却することで縦割れを有する溶融凝固層を形成する工程と、
    前記溶融凝固層の表面にセラミック粒子を含むスラリを塗布する工程と、
    を有するセラミックコーティングの製造方法。
  10. 前記スラリを塗布する工程の後で、減圧環境下で前記縦割れに前記スラリを供給する工程
    をさらに有する請求項9に記載のセラミックコーティングの製造方法。
  11. 前記スラリを塗布する工程の後で、前記縦割れ内に存在する前記スラリに含まれる前記セラミック粒子を焼成させる工程
    をさらに有する請求項9又は10に記載のセラミックコーティングの製造方法。
  12. 前記溶融凝固層を形成する工程において、レーザ、電子ビーム、又はプラズマの何れかを照射することで、前記セラミック層の前記表層部を加熱溶融させる
    請求項9乃至11の何れか一項に記載のセラミックコーティングの製造方法。
  13. 前記セラミック層を形成する工程において、気孔率が1%以上30%以下の前記セラミック層を形成する
    請求項9乃至12の何れか一項に記載のセラミックコーティングの製造方法。
JP2018046425A 2018-03-14 2018-03-14 セラミックコーティング、タービン部材、ガスタービン及びセラミックコーティングの製造方法 Pending JP2019157216A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018046425A JP2019157216A (ja) 2018-03-14 2018-03-14 セラミックコーティング、タービン部材、ガスタービン及びセラミックコーティングの製造方法
US16/255,193 US20190284104A1 (en) 2018-03-14 2019-01-23 Ceramic coating, turbine member, gas turbine, method of producing ceramic coating, and method of repairing cermic coating
DE102019000558.9A DE102019000558A1 (de) 2018-03-14 2019-01-25 Keramiküberzug, turbinenelement, gasturbine, verfahren zur herstellung von keramiküberzug, und verfahren zur reparatur von keramiküberzug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018046425A JP2019157216A (ja) 2018-03-14 2018-03-14 セラミックコーティング、タービン部材、ガスタービン及びセラミックコーティングの製造方法

Publications (1)

Publication Number Publication Date
JP2019157216A true JP2019157216A (ja) 2019-09-19

Family

ID=67774455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018046425A Pending JP2019157216A (ja) 2018-03-14 2018-03-14 セラミックコーティング、タービン部材、ガスタービン及びセラミックコーティングの製造方法

Country Status (3)

Country Link
US (1) US20190284104A1 (ja)
JP (1) JP2019157216A (ja)
DE (1) DE102019000558A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996273A (ja) * 1982-11-26 1984-06-02 Toshiba Corp 耐熱部品
JPS6130658A (ja) * 1984-07-19 1986-02-12 Showa Denko Kk 溶射基板の表面処理方法
JPH04503833A (ja) * 1989-10-20 1992-07-09 ユニオン カーバイド コーティングズ サービス テクノロジー コーポレイション 断熱層コーティングで被覆された基材及びその製造方法
US5576069A (en) * 1995-05-09 1996-11-19 Chen; Chun Laser remelting process for plasma-sprayed zirconia coating
JPH10102789A (ja) * 1996-09-25 1998-04-21 Rinotetsuku:Kk 漏水コンクリートクラックの補修装置とその施工方法
JP2001226759A (ja) * 1999-10-01 2001-08-21 General Electric Co <Ge> 保護皮膜の表面を平滑化する方法
JP2004155598A (ja) * 2002-11-01 2004-06-03 Honda Motor Co Ltd 高温耐酸化性炭素質成形体及びその製造方法
WO2016052741A1 (ja) * 2014-10-02 2016-04-07 新日鐵住金株式会社 ハースロール及びその製造方法
WO2017213113A1 (ja) * 2016-06-08 2017-12-14 三菱重工業株式会社 遮熱コーティング、タービン部材およびガスタービン

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602005021599D1 (de) * 2004-12-14 2010-07-15 Mitsubishi Heavy Ind Ltd Bauteil mit Wärmdämmschichtung und Verfahren zur dessen Herstellung.
US9816392B2 (en) * 2013-04-10 2017-11-14 General Electric Company Architectures for high temperature TBCs with ultra low thermal conductivity and abradability and method of making
JP6364494B2 (ja) * 2014-09-05 2018-07-25 三菱日立パワーシステムズ株式会社 溶射用粉末の製造方法、溶射用粉末の製造装置、及び、該製造方法により製造された溶射用粉末

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996273A (ja) * 1982-11-26 1984-06-02 Toshiba Corp 耐熱部品
JPS6130658A (ja) * 1984-07-19 1986-02-12 Showa Denko Kk 溶射基板の表面処理方法
JPH04503833A (ja) * 1989-10-20 1992-07-09 ユニオン カーバイド コーティングズ サービス テクノロジー コーポレイション 断熱層コーティングで被覆された基材及びその製造方法
US5576069A (en) * 1995-05-09 1996-11-19 Chen; Chun Laser remelting process for plasma-sprayed zirconia coating
JPH10102789A (ja) * 1996-09-25 1998-04-21 Rinotetsuku:Kk 漏水コンクリートクラックの補修装置とその施工方法
JP2001226759A (ja) * 1999-10-01 2001-08-21 General Electric Co <Ge> 保護皮膜の表面を平滑化する方法
JP2004155598A (ja) * 2002-11-01 2004-06-03 Honda Motor Co Ltd 高温耐酸化性炭素質成形体及びその製造方法
WO2016052741A1 (ja) * 2014-10-02 2016-04-07 新日鐵住金株式会社 ハースロール及びその製造方法
WO2017213113A1 (ja) * 2016-06-08 2017-12-14 三菱重工業株式会社 遮熱コーティング、タービン部材およびガスタービン

Also Published As

Publication number Publication date
US20190284104A1 (en) 2019-09-19
DE102019000558A1 (de) 2019-09-19

Similar Documents

Publication Publication Date Title
JP6908973B2 (ja) 遮熱コーティング、タービン部材、ガスタービン、ならびに遮熱コーティングの製造方法
JP2003160852A (ja) 遮熱コーティング材、その製造方法、タービン部材及びガスタービン
KR101681195B1 (ko) 자가치유능을 갖는 열차폐 코팅 시스템
JP6365969B2 (ja) 遮熱コーティング材、これを有するタービン部材及び遮熱コーティング方法
EP2882551B1 (fr) Revetement en materiau abradable a faible rugosite de surface
KR102486067B1 (ko) 차열 코팅, 터빈 부재, 가스 터빈 및 차열 코팅의 제조 방법
JP5656528B2 (ja) 耐高温部材及びガスタービン
JP5657048B2 (ja) 耐高温部材及びガスタービン
JP6947851B2 (ja) スキーラ先端を備えるタービンブレードおよび高密度酸化物分散強化層
JP2015113255A (ja) コーティング構造、タービン部材、ガスタービン、及びコーティング構造の製造方法
JP5702749B2 (ja) ガスタービン翼、燃焼器、シュラウド及びこれらを用いたガスタービン
JP7045236B2 (ja) 遮熱コーティング、タービン部材及びガスタービン
JP2019157216A (ja) セラミックコーティング、タービン部材、ガスタービン及びセラミックコーティングの製造方法
WO2016076305A1 (ja) 遮熱コーティング、および、タービン部材
JP2019157202A (ja) セラミックコーティングの補修方法、セラミックコーティング、タービン部材及びガスタービン
JP2020158859A (ja) 遮熱コーティング、タービン部材、ガスタービン及び遮熱コーティングの製造方法
US10994301B2 (en) Method for constructing abradable coating, and shroud
JP6877217B2 (ja) 遮熱コーティング、タービン翼及び遮熱コーティングの製造方法
KR102245879B1 (ko) 차열 코팅막, 터빈 부재 및 차열 코팅 방법
JP6632407B2 (ja) アブレイダブルコーティングの施工方法
JP2013136845A (ja) 耐高温部材及びガスタービン
JP2022178306A (ja) 耐熱部材、および、発電システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210216

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210824