WO2016047491A1 - 二次電池用正極活物質及びその製造方法 - Google Patents

二次電池用正極活物質及びその製造方法 Download PDF

Info

Publication number
WO2016047491A1
WO2016047491A1 PCT/JP2015/076084 JP2015076084W WO2016047491A1 WO 2016047491 A1 WO2016047491 A1 WO 2016047491A1 JP 2015076084 W JP2015076084 W JP 2015076084W WO 2016047491 A1 WO2016047491 A1 WO 2016047491A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode active
active material
positive electrode
compound
secondary battery
Prior art date
Application number
PCT/JP2015/076084
Other languages
English (en)
French (fr)
Inventor
弘樹 山下
智紀 初森
大神 剛章
Original Assignee
太平洋セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太平洋セメント株式会社 filed Critical 太平洋セメント株式会社
Priority to JP2016550115A priority Critical patent/JP6193505B2/ja
Priority to US15/514,217 priority patent/US10461330B2/en
Priority to KR1020177005119A priority patent/KR101992614B1/ko
Priority to CN201580041136.XA priority patent/CN106575768B/zh
Publication of WO2016047491A1 publication Critical patent/WO2016047491A1/ja
Priority to US16/515,489 priority patent/US11742485B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/32Alkali metal silicates
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/16Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from products of vegetable origin or derivatives thereof, e.g. from cellulose acetate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a secondary battery in which carbon is supported and a method for producing the same.
  • lithium ion secondary batteries are widely known.
  • lithium-containing olivine-type metal phosphates such as Li (Fe, Mn) PO 4 are not greatly affected by resource constraints, and can exhibit high safety, resulting in high output.
  • it is an optimum positive electrode material for obtaining a large capacity lithium secondary battery.
  • these compounds have properties that make it difficult to sufficiently increase the conductivity due to the crystal structure, and there is room for improvement in the diffusibility of lithium ions. Has been made.
  • Patent Document 1 an attempt is made to improve the performance of the obtained battery by making primary crystal particles ultrafine particles and shortening the lithium ion diffusion distance in the olivine-type positive electrode active material.
  • Patent Document 2 a conductive carbonaceous material is uniformly deposited on the particle surface of the positive electrode active material, and a regular electric field distribution is obtained on the particle surface to increase the output of the battery.
  • Patent Document 3 discloses a method of coating carbon nanostructures such as carbon nanotubes and nanographene on the surface of positive electrode active material particles by plasma decomposition of an organic compound.
  • Patent Document 4 contains these electrode active material, conductive additive, and cellulose fiber as an aqueous binder. An electrode slurry composition is disclosed, and this is applied onto an electrode current collector and dried to form an electrode active material layer.
  • Patent Document 5 discloses a sodium secondary battery active material using marisite-type NaMnPO 4
  • Patent Document 6 discloses a positive electrode active material containing sodium phosphate transition metal having an olivine structure. Substances are disclosed, and any literature shows that a high-performance sodium ion secondary battery can be obtained.
  • JP 2010-251302 A JP 2001-15111 A JP 2011-76931 A International Publication No. 2012/074040 JP 2008-260666 A JP 2011-34963 A
  • Patent Document 3 since the method using plasma decomposition as described in Patent Document 3 requires special equipment and technology, it still exhibits excellent charge / discharge characteristics with simple means as in Patent Documents 1 and 2. It is desired to obtain a positive electrode active material. Under these circumstances, in order to further improve battery characteristics, the cellulose fiber described in Patent Document 4 can also be used as a carbon source. However, a positive electrode active material on which the cellulose fiber is supported is not yet known, and simple means. Even a detailed study of whether or not it can be obtained is not made. Further, in the active materials for sodium ion secondary batteries described in Patent Documents 5 to 6, it is desired to realize a more useful sodium ion secondary battery.
  • the rate characteristics of the positive electrode active material increase as the amount of the carbon source supported increases, but on the other hand, the proportion of the positive electrode material in the positive electrode active material is reduced. It tends to cause a decrease in capacity.
  • a new technology that has good rate characteristics even if the amount of the carbon source supported is reduced is also desired.
  • an object of the present invention is to provide a positive electrode active material for a lithium ion secondary battery or a positive electrode active material for a sodium ion secondary battery, which can effectively exhibit better charge / discharge characteristics, and a method for producing the same. There is.
  • the present inventors have made various studies, and as long as the positive electrode active material is formed by supporting carbon derived from cellulose nanofibers on an oxide represented by a specific formula, a secondary battery exhibiting a large charge / discharge capacity. Has been found, and the present invention has been completed.
  • the present invention provides the following formula (A), (B) or (C): LiFe a Mn b M c PO 4 (A) (In the formula (A), M represents Mg, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd.
  • Li 2 Fe d Mn e N f SiO 4 (B) (In the formula (B), N represents Ni, Co, Al, Zn, V, or Zr.
  • D, e, and f are 0 ⁇ d ⁇ 1, 0 ⁇ e ⁇ 1, 0 ⁇ f ⁇ 1, and 2d + 2e +.
  • the present invention provides the following formula (A), (B) or (C): LiFe a Mn b M c PO 4 (A) (In the formula (A), M represents Mg, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd.
  • Li 2 Fe d Mn e N f SiO 4 (B) (In the formula (B), N represents Ni, Co, Al, Zn, V, or Zr.
  • D, e, and f are 0 ⁇ d ⁇ 1, 0 ⁇ e ⁇ 1, 0 ⁇ f ⁇ 1, and 2d + 2e +.
  • a method for producing a positive electrode active material for a secondary battery in which carbon derived from cellulose nanofibers is supported on an oxide represented by: Step (I) of obtaining a composite X by mixing a phosphoric acid compound or a silicic acid compound with a slurry water X containing a lithium compound or a sodium compound and cellulose nanofibers, Step (II) of obtaining the composite Y by subjecting the obtained composite X and slurry water Y containing a metal salt containing at least an iron compound or a manganese compound to a hydrothermal reaction, and the obtained composite Y Step (III) of baking in a reducing or inert atmosphere
  • the manufacturing method of the said positive electrode active material for secondary batteries provided with this is provided.
  • the present invention provides the following formula (A), (B) or (C): LiFe a Mn b M c PO 4 (A)
  • M represents Mg, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd.
  • LiFe a Mn b M c SiO 4 (B) (In the formula (B), M represents Mg, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd.
  • the lithium-containing olivine-type metal phosphate, lithium-containing olivine-type metal silicate, or sodium-containing olivine-type metal phosphate is represented by the above specific formula. Since the carbon derived from cellulose nanofibers is firmly supported as carbonized carbon on the oxide, it is obtained by a simple method, but it is a lithium ion secondary battery or sodium ion secondary battery. The performance can be sufficiently improved. It is also possible to ensure high performance in a lithium ion secondary battery or a sodium ion secondary battery while sufficiently reducing the amount of carbon carried.
  • FIG. 6 is a Raman spectrum obtained by performing Raman spectrum analysis using the positive electrode active material for lithium ion secondary batteries of Example 1-3 and Comparative Example 1-7.
  • the vertical axis represents intensity (au), and the horizontal axis represents Raman shift (cm -1 ).
  • FIG. 6 is a Raman spectrum obtained by performing a Raman spectrum analysis using the positive electrode active material for a lithium ion secondary battery of Comparative Example 1-6.
  • the vertical axis represents intensity (au), and the horizontal axis represents Raman shift (cm -1 ).
  • 2 shows a TEM image near the surface of a positive electrode active material for a lithium ion secondary battery of Example 1-3.
  • FIG. 7 shows a TEM image near the surface of a positive electrode active material for a lithium ion secondary battery in Comparative Example 1-3. It is a Raman spectrum figure obtained by performing a Raman spectrum analysis using the positive electrode active material for lithium ion secondary batteries of Comparative Example 2-3. The vertical axis represents intensity (au), and the horizontal axis represents Raman shift (cm -1 ).
  • the oxide used in the present invention is represented by the following formula (A), (B) or (C): LiFe a Mn b M c PO 4 (A) (In the formula (A), M represents Mg, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd.
  • Li 2 Fe d Mn e N f SiO 4 (B) (In the formula (B), N represents Ni, Co, Al, Zn, V, or Zr.
  • D, e, and f are 0 ⁇ d ⁇ 1, 0 ⁇ e ⁇ 1, 0 ⁇ f ⁇ 1, and 2d + 2e +.
  • oxides all have an olivine structure and contain at least iron or manganese.
  • oxide represented by the formula (A) or the formula (B) is used, a positive electrode active material for a lithium ion secondary battery is obtained, and the oxide represented by the formula (C) is used. In this case, a positive electrode active material for a sodium ion secondary battery is obtained.
  • the oxide represented by the above formula (A) is an olivine-type transition metal lithium compound containing at least iron (Fe) and manganese (Mn) as so-called transition metals.
  • M represents Mg, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd, and is preferably Mg, Zr, Mo, or Co.
  • a is 0 ⁇ a ⁇ 1, preferably 0.01 ⁇ a ⁇ 0.99, and more preferably 0.1 ⁇ a ⁇ 0.9.
  • b is 0 ⁇ b ⁇ 1, preferably 0.01 ⁇ b ⁇ 0.99, and more preferably 0.1 ⁇ b ⁇ 0.9.
  • olivine-type transition metal lithium compound represented by the above formula (A) include LiFe 0.9 Mn 0.1 PO 4 , LiFe 0.2 Mn 0.8 PO 4 , LiFe 0.15 Mn 0.75 Mg 0.1 PO 4 , LiFe Examples include 0.19 Mn 0.75 Zr 0.03 PO 4 , and among them, LiFe 0.2 Mn 0.8 PO 4 is preferable.
  • the oxide represented by the above formula (B) is a so-called olivine-type transition metal lithium compound containing at least iron (Fe) and manganese (Mn) as transition metals.
  • N represents Ni, Co, Al, Zn, V, or Zr, and is preferably Co, Al, Zn, V, or Zr.
  • d is 0 ⁇ d ⁇ 1, preferably 0 ⁇ d ⁇ 1, and more preferably 0.1 ⁇ d ⁇ 0.6.
  • e is 0 ⁇ d ⁇ 1, preferably 0 ⁇ e ⁇ 1, and more preferably 0.1 ⁇ e ⁇ 0.6.
  • f is 0 ⁇ f ⁇ 1, preferably 0 ⁇ f ⁇ 1, and more preferably 0.05 ⁇ f ⁇ 0.4.
  • olivine-type transition metal lithium compound represented by the above formula (B) include, for example, Li 2 Fe 0.45 Mn 0.45 Co 0.1 SiO 4 , Li 2 Fe 0.36 Mn 0.54 Al 0.066 SiO 4 , Li 2 Fe 0.45 Mn 0.45 Zn 0.1 SiO 4 , Li 2 Fe 0.36 Mn 0.54 V 0.066 SiO 4 , Li 2 Fe 0.282 Mn 0.658 Zr 0.02 SiO 4 and the like can be mentioned, among which Li 2 Fe 0.282 Mn 0.658 Zr 0.02 SiO 4 is preferable.
  • the oxide represented by the formula (C) is an olivine-type transition metal sodium phosphate compound containing iron (Fe) and manganese (Mn) as at least transition metals.
  • Q represents Mg, Ca, Co, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd, and is preferably Mg, Zr, Mo, or Co.
  • g is 0 ⁇ g ⁇ 1, and preferably 0 ⁇ g ⁇ 1.
  • h is 0 ⁇ h ⁇ 1, and preferably 0.5 ⁇ h ⁇ 1.
  • i is 0 ⁇ i ⁇ 1, preferably 0 ⁇ i ⁇ 0.5, and more preferably 0 ⁇ i ⁇ 0.3.
  • olivine-type transition metal sodium phosphate compound represented by the above formula (C) include, for example, NaFe 0.9 Mn 0.1 PO 4 , NaFe 0.2 Mn 0.8 PO 4 , NaFe 0.15 Mn 0.7 Mg 0.15 PO 4 , NaFe Examples include 0.19 Mn 0.75 Zr 0.03 PO 4 , NaFe 0.19 Mn 0.75 Mo 0.03 PO 4 , NaFe 0.15 Mn 0.7 Co 0.15 PO 4 , and NaFe 0.2 Mn 0.8 PO 4 is preferred.
  • the positive electrode active material for a secondary battery of the present invention is obtained by supporting carbon derived from cellulose nanofibers on an oxide represented by the above formula (A), (B) or (C). Such cellulose nanofibers are carbonized into carbon, which is firmly supported on the oxide.
  • Cellulose nanofibers are skeletal components that occupy about 50% of all plant cell walls, and are lightweight high-strength fibers that can be obtained by defibrating plant fibers constituting such cell walls to nano-size.
  • the cellulose nanofibers have a fiber diameter of 1 to 1000 nm and have good dispersibility in water.
  • the cellulose molecular chains that make up the cellulose nanofibers have a periodic structure formed of carbon, they are carbonized and firmly supported by the oxides, thereby effectively improving the performance of the resulting battery.
  • a useful positive electrode active material that can be increased can be obtained.
  • the cellulose nanofibers are then carbonized and exist in the positive electrode active material for secondary batteries of the present invention as carbon supported on the oxides derived from cellulose nanofibers.
  • the atomic conversion amount of carbon derived from cellulose nanofibers supported on an oxide as carbon obtained by carbonization is preferably 0.3 to 20% by mass in the positive electrode active material for secondary battery of the present invention, More preferably, the content is 0.4 to 15% by mass, and still more preferably 0.5 to 10% by mass. More specifically, for example, when a phosphoric acid compound is used in step (I) to be described later, the amount of cellulose nanofibers converted to carbon atoms is preferably 0.3 in the positive electrode active material for a secondary battery of the present invention.
  • the carbon atom equivalent amount of cellulose nanofiber is preferably 0.5 to 20% by mass in the positive electrode active material for secondary battery of the present invention, more preferably 0.6. -15% by mass, more preferably 0.7-10% by mass.
  • the positive electrode active material for a secondary battery of the present invention comprises a slurry compound X containing a lithium compound or a sodium compound, and cellulose nanofibers, and a phosphate compound or a silicate compound.
  • a fired product in a reducing atmosphere or a fired product in an inert atmosphere of a composite Y that is a hydrothermal reaction product of a composite X derived from a mixture and a slurry water Y containing a metal salt containing at least an iron compound or a manganese compound
  • the atomic conversion amount of carbon derived from cellulose nanofibers supported on an oxide is preferably 0 in the positive electrode active material for a secondary battery of the present invention. 0.5 to 20% by mass, more preferably 1 to 15% by mass, and still more preferably 1.5 to 10% by mass.
  • the amount of carbon derived from cellulose nanofibers is preferably 0 in the positive electrode active material for secondary batteries of the present invention. 0.5 to 15% by mass, more preferably 1 to 10% by mass, and still more preferably 1.5 to 7% by mass.
  • the atomic equivalent amount of carbon derived from cellulose nanofibers is preferably 1 to 20% by mass in the positive electrode active material for secondary battery of the present invention, more preferably 1.5%. -15% by mass, more preferably 2-10% by mass.
  • the positive electrode active material for a secondary battery of the present invention includes a lithium compound or a sodium compound, a phosphoric acid compound or a silicic acid compound, and a metal containing at least an iron compound or a manganese compound.
  • Positive electrode active material for secondary battery (H ′), which is a calcined product in a reducing atmosphere or a calcined product in an inert atmosphere, of granulated product S, which is a granulated product of oxide and cellulose nanofiber, which is a synthetic reaction product of salt ),
  • the atomic conversion amount of carbon derived from cellulose nanofibers supported on the oxide is preferably 0.3 to 6% by mass in the positive electrode active material for a secondary battery of the present invention.
  • the content is preferably 0.4 to 3% by mass, and more preferably 0.5 to 1.5% by mass.
  • the atomic conversion amount of carbon derived from cellulose nanofiber is preferably in the positive electrode active material for secondary battery of the present invention. It is 0.3 to 4% by mass, more preferably 0.4 to 2.5% by mass, and still more preferably 0.5 to 1.2% by mass.
  • the amount of carbon derived from cellulose nanofibers is preferably 0.5 to 5% by mass in the positive electrode active material for secondary battery of the present invention, more preferably 0. .6 to 4% by mass, more preferably 0.7 to 3% by mass.
  • the atomic conversion amount of carbon derived from cellulose nanofibers present in the positive electrode active material for secondary batteries can be determined by measurement using a carbon / sulfur analyzer.
  • carbon derived from cellulose nanofiber exists as carbon obtained by carbonization and is characterized by crystallinity. Therefore, analysis of carbon carried on the positive electrode active material for secondary battery of the present invention by Raman spectroscopy is required. Thus, the characteristic crystallinity can be confirmed.
  • carbon derived from cellulose nanofibers supported on the positive electrode active material for a secondary battery of the present invention has a D band (peak position: around 1350 cm ⁇ 1 ) in a Raman spectrum determined by Raman spectroscopy.
  • the intensity ratio (G / D) with the G band (peak position: around 1590 cm ⁇ 1 ) is preferably 0.5 to 1.8, more preferably 0.8 to 1.3.
  • the strength ratio to the G band (SiO 4 / G) is preferably 0.01 to 0.10, more preferably 0.03 to 0.08.
  • the intensity ratio (G / D) required by Raman spectroscopy is about 2-9.
  • an RBM (Radial Breathing Mode) peak exists at 100 to 350 cm ⁇ 1 in the Raman spectrum.
  • RBM peaks are not observed in the Raman spectrum of carbon derived from cellulose nanofibers supported on the positive electrode active material for secondary batteries of the present invention.
  • the intensity ratio (G / D) in the Raman spectrum is 0.5 to 1. .8, which is the same as that supported by cellulose nanofiber-derived carbon, but the strength ratio (PO 4 / G) or strength ratio (SiO 4 / G) is supported by cellulose nanofiber-derived carbon. Unlike what is formed, it is about 0.11 to 0.25.
  • the positive electrode active material for a secondary battery according to the present invention is characterized by a Raman spectrum that is completely different from that obtained by supporting carbon nanotubes or carbon derived from general cellulose on a positive electrode active material for a secondary battery. Since it has a composite structure, it is considered that it contributes to the expression of excellent charge / discharge characteristics.
  • the carbon derived from cellulose nanofibers supported on the positive electrode active material for a secondary battery of the present invention has gaps between the oxide particles represented by the above formula (A), (B) or (C). It exists so that it may fill. That is, the conventional conductive carbonaceous material as shown in Patent Document 2 above is uniformly deposited on the surface of the positive electrode active material particles, whereas the cellulose nanofiber-derived carbon of the present invention is a positive electrode active material. It exists on part of the particle surface and fills the inter-particle voids of the packing structure formed by the oxide particles.
  • the positive electrode active material for a secondary battery of the present invention has an excellent charge because carbon having a characteristic composite structure forms a conductive path between oxide particles in a state where the packing density of the positive electrode active material is increased. It is considered that discharge characteristics are developed and the amount of such carbon can be effectively reduced.
  • the positive electrode active material for a secondary battery of the present invention includes a composite X derived from a mixture of a slurry compound X containing a lithium compound or a sodium compound, and cellulose nanofibers and a phosphate compound or a silicate compound, and at least an iron compound or manganese It is a positive electrode active material (H) for a secondary battery, which is a fired product in a reducing atmosphere or a fired product in an inert atmosphere of a composite Y that is a hydrothermal reaction product with slurry water Y containing a metal salt containing a compound.
  • H positive electrode active material
  • a granulated product of a granulated product of an oxide and cellulose nanofiber which is a synthetic reaction product of a metal salt containing a lithium compound or sodium compound, a phosphoric acid compound or a silicic acid compound, and at least an iron compound or a manganese compound S is preferably a positive electrode active material (H ′) for a secondary battery which is a fired product in a reducing atmosphere or a fired product in an inert atmosphere.
  • the positive electrode active material for a secondary battery according to the present invention is a composite X obtained by mixing a phosphoric acid compound or a silicate compound in a slurry water X containing a lithium compound or a sodium compound and cellulose nanofibers, and at least iron Positive electrode active for secondary battery obtained by firing composite Y obtained by subjecting slurry water Y containing metal salt containing compound or manganese compound to hydrothermal reaction, in reducing atmosphere or inert atmosphere
  • a positive electrode active material for a battery (H ') Preferably a positive electrode active material for a battery (H
  • the method for producing the secondary battery positive electrode active material (H) is specifically a lithium compound or sodium.
  • a step of obtaining a composite X by mixing a phosphoric acid compound or a silicic acid compound in a slurry water X containing a compound and cellulose nanofibers (I) Step (II) of obtaining the composite Y by subjecting the obtained composite X and slurry water Y containing a metal salt containing at least an iron compound or a manganese compound to a hydrothermal reaction, and the obtained composite Y Step (III) of baking in a reducing or inert atmosphere Is provided.
  • Step (I) is a step of obtaining a composite X by mixing a phosphoric acid compound or a silicic acid compound with a slurry water X containing a lithium compound or a sodium compound and cellulose nanofibers.
  • the lithium compound or sodium compound include hydroxides (for example, LiOH.H 2 O, NaOH), carbonates, sulfates, and acetates. Of these, hydroxide is preferable.
  • the content of the lithium compound or sodium compound in the slurry X is preferably 5 to 50 parts by mass, more preferably 7 to 45 parts by mass with respect to 100 parts by mass of water.
  • the content of the lithium compound or sodium compound in the mixture X is preferably 5 to 50 parts by mass with respect to 100 parts by mass of water.
  • the amount is preferably 10 to 45 parts by mass.
  • the content of the lithium compound in the mixture X is preferably 5 to 40 parts by mass, more preferably 7 to 35 parts by mass with respect to 100 parts by mass of water.
  • the cellulose nanofiber is not particularly limited as long as it is obtained by defibrating the plant fiber constituting the plant cell wall to a nano size, for example, serisch KY-100S (manufactured by Daicel Finechem Co., Ltd.), etc. Commercial products can be used.
  • the fiber diameter of the cellulose nanofiber is preferably 1 to 1000 nm, more preferably 1 to 500 nm, from the viewpoint of firmly supporting the lithium-containing olivine type metal phosphate.
  • the content of cellulose nanofibers in the slurry water X is desirably such that the carbon atom equivalent amount is 0.5 to 20% by mass in the positive electrode active material for secondary battery of the present invention.
  • the amount is preferably 0.2 to 10.6 parts by mass, more preferably 0.5 to 8 parts by mass, and still more preferably in terms of the amount of residue of carbonization treatment. Is 0.8 to 5.3 parts by mass. More specifically, when a phosphoric acid compound is used in step (I), the amount is preferably 0.2 to 8 parts by mass, more preferably 0, in terms of the amount of carbonization residue, with respect to 100 parts by mass of water.
  • silicate compound it is 0.5 to 5.3 parts by mass, and more preferably 0.8 to 3.5 parts by mass. Further, when a silicate compound is used, it is preferably 0.5 to 10.6 parts by mass, more preferably 0.8 to 8 parts by mass in terms of the amount of carbonization residue with respect to 100 parts by mass of water. More preferably 1 to 5.3 parts by mass.
  • the stirring time of the slurry water X is preferably 1 to 15 minutes, more preferably 3 to 10 minutes.
  • the temperature of the slurry water X is preferably 20 to 90 ° C, more preferably 20 to 70 ° C.
  • the phosphoric acid compound examples include orthophosphoric acid (H 3 PO 4 , phosphoric acid), metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid, ammonium phosphate, and ammonium hydrogen phosphate.
  • phosphoric acid is preferably used, and an aqueous solution having a concentration of 70 to 90% by mass is preferably used.
  • this step (I) when mixing phosphoric acid with the slurry water X, it is preferable to add phosphoric acid dropwise while stirring the slurry water.
  • the dropping rate of phosphoric acid into the slurry water X is preferably 15 to 50 mL / min, more preferably 20 to 45 mL / min, and further preferably 28 to 40 mL / min.
  • the stirring time of the slurry water X while dropping phosphoric acid is preferably 0.5 to 24 hours, more preferably 3 to 12 hours.
  • the stirring speed of the slurry water while dropping phosphoric acid is preferably 200 to 700 rpm, more preferably 250 to 600 rpm, and further preferably 300 to 500 rpm.
  • the silicic acid compound is not particularly limited as long as it is a reactive silica compound, and examples thereof include amorphous silica, sodium salts (for example, sodium metasilicate (Na 2 SiO 3 ), Na 4 SiO 4 .H 2 O), and the like. Can be mentioned.
  • the slurry water X after mixing the phosphoric acid compound or silicic acid compound preferably contains 2.0 to 4.0 moles of lithium with respect to 1 mole of phosphoric acid or silicic acid, and is preferably 2.0 to 3.1.
  • the lithium compound or sodium compound, and the phosphoric acid compound or silicic acid compound may be used so that the molar amount is more preferable. More specifically, when a phosphoric acid compound is used in step (I), the slurry water X after mixing the phosphoric acid compound contains 2.7 to 3.3 of lithium or sodium with respect to 1 mol of phosphoric acid.
  • the silicate compound when used in the step (I), the slurry water X after mixing the silicate compound is used as the silicate compound.
  • Lithium is preferably contained in an amount of 2.0 to 4.0 mol, more preferably 2.0 to 3.0, with respect to 1 mol.
  • the reaction in the slurry is completed, and the oxides represented by the above (A) to (C) A composite X which is a precursor of is obtained as a slurry.
  • the reaction can proceed in a state where the dissolved oxygen concentration in the slurry X is reduced, and the dissolved oxygen concentration of the slurry containing the complex X is effectively reduced.
  • the oxidation of the metal salt added in the next step can be suppressed.
  • the precursors of the oxides represented by the above (A) to (C) are present as fine dispersed particles.
  • the composite X is obtained as a composite of trilithium phosphate (Li 3 PO 4 ) and cellulose nanofiber.
  • the pressure for purging nitrogen is preferably 0.1 to 0.2 MPa, more preferably 0.1 to 0.15 MPa.
  • the temperature of the slurry water X after mixing the phosphoric acid compound or the silicic acid compound is preferably 20 to 80 ° C., more preferably 20 to 60 ° C.
  • the reaction time is preferably 5 to 60 minutes, more preferably 15 to 45 minutes.
  • the stirring speed at this time is preferably 200 to 700 rpm, more preferably 250 to 600 rpm.
  • the dissolved oxygen concentration in the slurry water X after mixing the phosphate compound or the silicate compound is set. 0.5 mg / L or less is preferable, and 0.2 mg / L or less is more preferable.
  • the composite X obtained in the step (I) and the slurry water Y containing a metal salt containing at least an iron compound or a manganese compound are subjected to a hydrothermal reaction to obtain the composite Y. It is.
  • the composite X obtained by the step (I) is used as a precursor of the oxides represented by the above (A) to (C) as a slurry, and a metal salt containing at least an iron compound or a manganese compound Is preferably used as slurry water Y.
  • the metal salt contains at least an iron compound or a manganese compound, and may further contain a metal (M, N, or Q) salt other than these iron compound and manganese compound.
  • iron compounds include iron acetate, iron nitrate, and iron sulfate. These may be used alone or in combination of two or more. Among these, iron sulfate is preferable from the viewpoint of improving battery characteristics.
  • manganese compounds include manganese acetate, manganese nitrate, manganese sulfate and the like. These may be used alone or in combination of two or more. Among these, manganese sulfate is preferable from the viewpoint of improving battery characteristics.
  • the use molar ratio (manganese compound: iron compound) is preferably 99: 1 to 51:49, more preferably 95: 5 to 70:30, more preferably 90:10 to 80:20, and preferably 100: 0 to 51:49, more preferably 100: 0 to 60:40 when a sodium compound is used. More preferably, it is 100: 0 to 70:30.
  • the total amount of these metal salts added is preferably 0.99 to 1.01 mole, more preferably 0.995, per mole of phosphate ion or silicate ion contained in the slurry water Y. ⁇ 1.005 mol.
  • Metal (M, N or Q) salts other than iron compounds and manganese compounds may be used.
  • M, N, and Q in the metal (M, N, or Q) salt have the same meanings as M, N, and Q in the above formulas (A) to (C), and as the metal salt, sulfate, halogen compound, organic Acid salts and hydrates thereof can be used. These may be used alone or in combination of two or more. Among them, it is more preferable to use a sulfate from the viewpoint of improving battery physical properties.
  • the total amount of iron compound, manganese compound, and metal (M, N, or Q) salt added is phosphoric acid in the aqueous solution obtained in the above step (I).
  • the amount is preferably 0.99 to 1.01 mole, more preferably 0.995 to 1.005 mole relative to 1 mole of silicic acid.
  • the amount of water used for the hydrothermal reaction is selected from phosphoric acid or silicate ions 1 contained in the slurry water Y from the viewpoint of solubility of the metal salt, easiness of stirring, efficiency of synthesis, and the like.
  • the amount is preferably 10 to 50 mol, more preferably 12.5 to 45 mol, relative to mol. More specifically, when the ions contained in the slurry water Y are phosphate ions, the amount of water used for the hydrothermal reaction is preferably 10 to 30 mol, more preferably 12 .5 to 25 moles. Further, when the ions contained in the slurry water Y are silicate ions, the amount of water used for the hydrothermal reaction is preferably 10 to 50 mol, more preferably 12.5 to 45. Is a mole.
  • the order of addition of the iron compound, manganese compound and metal (M, N or Q) salt is not particularly limited. Moreover, while adding these metal salts, you may add antioxidant as needed. As such an antioxidant, sodium sulfite (Na 2 SO 3 ), hydrosulfite sodium (Na 2 S 2 O 4 ), aqueous ammonia and the like can be used. From the viewpoint of preventing the formation of oxides represented by the above formulas (A) to (C) due to excessive addition, the antioxidant is added in an iron compound, a manganese compound, and a necessary amount. Depending on the total amount of the metal (M, N or Q) salt used, it is preferably 0.01 to 1 mol, more preferably 0.03 to 0.5 mol.
  • the content of the composite Y in the slurry Y obtained by adding an iron compound, a manganese compound and a metal (M, N or Q) salt used as necessary, and adding an antioxidant or the like as necessary is The content is preferably 10 to 50% by mass, more preferably 15 to 45% by mass, and still more preferably 20 to 40% by mass.
  • the hydrothermal reaction may be performed at 100 ° C. or higher, preferably 130 to 180 ° C.
  • the hydrothermal reaction is preferably carried out in a pressure-resistant vessel.
  • the pressure at this time is preferably 0.3 to 0.9 MPa, and the reaction is carried out at 140 to 160 ° C.
  • the pressure is preferably 0.3 to 0.6 MPa.
  • the hydrothermal reaction time is preferably 0.1 to 48 hours, more preferably 0.2 to 24 hours.
  • the obtained composite Y is a composite containing the oxides represented by the above formulas (A) to (C) and cellulose nanofibers, which is isolated by filtration, washing with water and drying. it can.
  • the drying means freeze drying or vacuum drying is used.
  • Step (III) is a step of firing the composite Y obtained in step (II) in a reducing atmosphere or an inert atmosphere.
  • a cellulose nanofiber present in the composite Y is carbonized to obtain a positive electrode active material for a secondary battery in which carbon applied to oxides represented by the formulas (A) to (C) is firmly supported.
  • the firing conditions are preferably 400 ° C. or higher, more preferably 400 to 800 ° C., preferably 10 minutes to 3 hours, more preferably 0.5 to 1.5 hours in a reducing atmosphere or an inert atmosphere. Is good.
  • the method for producing the secondary battery positive electrode active material (H ′) is specifically a synthetic reaction.
  • Step (I ′) of obtaining slurry water S by mixing slurry water Q containing oxide obtained by attaching to slurry water R containing cellulose nanofibers The step (II ′) of obtaining the granulated body S by subjecting the obtained slurry water S to spray drying, and the step of firing the obtained granulated body S in a reducing atmosphere or an inert atmosphere (III ′) Is provided.
  • step (I ′) slurry water Q containing an oxide represented by the above formula (A), (B) or (C) and slurry water R in which cellulose nanofibers are sufficiently dispersed are mixed, This is a step of obtaining slurry water S in which both oxide and cellulose nanofiber are sufficiently dispersed.
  • the above oxides are obtained by a synthesis reaction, and the methods for the synthesis reaction are roughly classified into a solid phase method (firing method, melting-annealing method) and a wet method (hydrothermal method). However, any method may be used, and it may be further pulverized or classified after being subjected to the synthesis reaction.
  • the method for obtaining the oxide by subjecting it to a hydrothermal reaction specifically does not use the slurry water X containing cellulose nanofibers in the method for producing the positive electrode active material (H) for the secondary battery. Except for the above, the method is the same as the method of obtaining the complex Y by going through the steps (I) and (II).
  • the content of the oxide in the slurry water Q is preferably 10 to 400 parts by mass, and more preferably 30 to 210 parts by mass with respect to 100 parts by mass of water.
  • the content of cellulose nanofibers in the slurry water R is preferably such that the carbon atom equivalent amount is 0.3 to 6% by mass in the positive electrode active material for secondary battery of the present invention. Specifically, for example, with respect to 100 parts by mass of water, the amount is preferably 0.1 to 300 parts by mass, and more preferably 1 to 210 parts by mass.
  • a cellulose nanofiber the thing similar to the cellulose nanofiber used in the manufacturing method of the said positive electrode active material (H) for secondary batteries can be used.
  • the slurry water R is obtained by sufficiently dispersing the cellulose nanofibers and performing a treatment using a disperser (homogenizer) from the viewpoint of uniformly dispersing the oxide and the cellulose nanofibers in the obtained slurry water S. It is preferable to break up the agglomerated cellulose nanofibers.
  • a disperser include a disaggregator, a beater, a low pressure homogenizer, a high pressure homogenizer, a grinder, a cutter mill, a ball mill, a jet mill, a short shaft extruder, a twin screw extruder, an ultrasonic stirrer, and a home juicer mixer. Can be mentioned.
  • an ultrasonic stirrer is preferable from the viewpoint of dispersion efficiency.
  • the degree of dispersion uniformity of the slurry R can be quantitatively evaluated by, for example, light transmittance using a UV / visible light spectrometer or viscosity using an E-type viscometer. By confirming that it is uniform, it is possible to simply evaluate.
  • the treatment time with the disperser is preferably 0.5 to 6 minutes, more preferably 2 to 5 minutes. Since the slurry water R thus treated can maintain a good dispersion state of the cellulose nanofibers for several days, it can be prepared and stored in advance.
  • the slurry water R is preferably further subjected to wet classification from the viewpoint of effectively removing cellulose nanofibers that are still in an aggregated state.
  • a sieve or a commercially available wet classifier can be used for wet classification.
  • the opening of the sieve may vary depending on the fiber length of the cellulose nanofiber to be used, but is preferably about 150 ⁇ m from the viewpoint of work efficiency.
  • the slurry water S is obtained by mixing the slurry water Q and the slurry water R.
  • the content of cellulose nanofibers in the slurry water S may be such that the carbon atom equivalent amount is 0.3 to 6% by mass in the positive electrode active material for secondary battery of the present invention. Is preferably 0.3 to 6.4 parts by mass, more preferably 0.4 to 3.1 parts by mass, in terms of the amount of residue in the carbonization treatment, with respect to 100 parts by mass of the oxide in the slurry water S. More preferably, it is 0.5 to 1.5 parts by mass.
  • the mixing ratio of the slurry water Q and the slurry water R may be determined so that the ratio is such that the mixing order of the slurry water Q and the slurry water R is not particularly limited.
  • Step (II ′) is a step of obtaining the granulated body S by subjecting the slurry water S obtained in the step (I ′) to spray drying.
  • the particle size of the granulated body S obtained by spray drying is a D 50 value in the particle size distribution based on the laser diffraction / scattering method, preferably 1 to 15 ⁇ m, more preferably 3 to 10 ⁇ m.
  • the D 50 value in the particle size distribution measurement is a value obtained by a volume-based particle size distribution based on the laser diffraction / scattering method, and the D 50 value means a particle size (median diameter) at a cumulative 50%. . Therefore, what is necessary is just to adjust the particle size of this granulated body S by optimizing the operating condition of a spray dryer suitably.
  • Step (III ′) is a step of firing the granulated body S obtained in Step (II ′) in a reducing atmosphere or an inert atmosphere.
  • the cellulose nanofibers present in the granulated body S are carbonized, and a positive electrode active material for a secondary battery obtained by firmly supporting the carbon on the oxides represented by the formulas (A) to (C) is obtained.
  • the firing conditions are preferably 400 ° C. or higher, more preferably 400 to 800 ° C., preferably 10 minutes to 3 hours, more preferably 0.5 to 1.5 hours in a reducing atmosphere or an inert atmosphere. Is good.
  • a positive electrode, a negative electrode, an electrolyte and a separator are essential. If it is set as a structure, it will not specifically limit.
  • the material configuration is not particularly limited, and those having a known material configuration can be used.
  • a carbon material such as lithium metal, sodium metal, graphite, or amorphous carbon. It is preferable to use an electrode formed of an intercalating material capable of electrochemically inserting and extracting lithium ions or sodium ions, particularly a carbon material.
  • the electrolytic solution is obtained by dissolving a supporting salt in an organic solvent.
  • the organic solvent is not particularly limited as long as it is an organic solvent that is usually used for an electrolyte solution of a lithium ion secondary battery or a sodium ion secondary battery.
  • carbonates, halogenated hydrocarbons, ethers, ketones Nitriles, lactones, oxolane compounds and the like can be used.
  • the type of the supporting salt is not particularly limited, but in the case of a lithium ion secondary battery, an inorganic salt selected from LiPF 6 , LiBF 4 , LiClO 4 and LiAsF 6 , a derivative of the inorganic salt, LiSO 3 CF 3 , an organic material selected from LiC (SO 3 CF 3 ) 2 and LiN (SO 3 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 and LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ) It is preferably at least one of a salt and a derivative of the organic salt.
  • an inorganic salt selected from NaPF 6 , NaBF 4 , NaClO 4 and NaAsF 6 a derivative of the inorganic salt, NaSO 3 CF 3 , NaC (SO 3 CF 3 ) 2 and NaN (SO 3 CF 3 ) 2 , NaN (SO 2 C 2 F 5 ) 2, and an organic salt selected from NaN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), and at least one derivative of the organic salt It is preferable.
  • the separator plays a role of electrically insulating the positive electrode and the negative electrode and holding the electrolytic solution.
  • a porous synthetic resin film particularly a polyolefin polymer (polyethylene, polypropylene) porous film may be used.
  • Example 1-1 12.72 g of LiOH.H 2 O, 90 mL of water, and 10.19 g of cellulose nanofiber (Cerish KY-100G, manufactured by Daicel Finechem Co., Ltd., fiber diameter 4 to 100 nm, abbreviated CNF) were mixed to obtain slurry water. Next, 11.53 g of 85% phosphoric acid aqueous solution was dropped at 35 mL / min while stirring the obtained slurry water for 5 minutes while maintaining the temperature at 25 ° C., followed by stirring at a speed of 400 rpm for 12 hours. Thus, a slurry containing the composite X was obtained. Such a slurry contained 2.97 moles of lithium per mole of phosphorus.
  • LiFePO lithium ion secondary batteries
  • Example 1-4 Lithium ions formed by supporting carbon derived from cellulose nanofibers in the same manner as in Example 1-1 except that 2.48 g of MgSO 4 .7H 2 O was further added to 2.78 g of FeSO 4 .7H 2 O.
  • Example 1-5 Lithium ions formed by supporting carbon derived from cellulose nanofibers in the same manner as in Example 1-1, except that 2.78 g of FeSO 4 ⁇ 7H 2 O and 1.81 g of ZrSO 4 ⁇ 4H 2 O were further added.
  • Example 1-6 Cellulose nanofibers were prepared in the same manner as in Example 1-1 except that the amount of cellulose nanofibers was 16.99 g, and in addition to 5.56 g of FeSO 4 .7H 2 O and 19.29 g of MnSO 4 .5H 2 O were further added.
  • Example 1-7 Cellulose nanofibers were prepared in the same manner as in Example 1-1 except that the amount of cellulose nanofibers was 23.78 g, and in addition to 5.56 g of FeSO 4 .7H 2 O and 19.29 g of MnSO 4 .5H 2 O were further added.
  • Example 1-9 LiOH ⁇ H 2 O 4.28g, was added and mixed ultrapure water 37.5mL to Na 4 SiO 4 ⁇ nH 2 O 13.97g. To this aqueous dispersion, 14.57 g of cellulose nanofiber, 3.92 g of FeSO 4 .7H 2 O, 7.93 g of MnSO 4 .5H 2 O, and 0.53 g of Zr (SO 4 ) 2 .4H 2 O were added. , Mixed. Subsequently, the obtained mixed liquid was put into an autoclave, and a hydrothermal reaction was performed at 150 ° C. for 12 hours. The pressure in the autoclave was 0.4 MPa.
  • the produced crystal was filtered, and then washed with 12 parts by mass of water with respect to 1 part by mass of the crystal.
  • the washed crystal was lyophilized at ⁇ 50 ° C. for 12 hours to obtain Complex Y.
  • Example 1-10 A slurry water was obtained by mixing 6.00 g of NaOH, 90 mL of water, and 5.10 g of cellulose nanofibers. Next, 5.77 g of 85% aqueous phosphoric acid solution was added dropwise at 35 mL / min while stirring the resulting slurry water for 5 minutes while maintaining the temperature at 25 ° C., followed by stirring at a speed of 400 rpm for 12 hours. Thus, a slurry containing the composite X was obtained. Such a slurry contained 3.00 moles of sodium per mole of phosphorus.
  • the resulting slurry was purged with nitrogen gas to adjust the dissolved oxygen concentration to 0.5 mg / L, then 1.39 g of FeSO 4 .7H 2 O, 9.64 g of MnSO 4 .5H 2 O, MgSO 4. 1.24 g of 7H 2 O was added. Subsequently, the obtained liquid mixture was thrown into the autoclave purged with nitrogen gas, and the hydrothermal reaction was performed at 200 degreeC for 3 hours. The pressure in the autoclave was 1.4 MPa. The produced crystal was filtered, and then washed with 12 parts by mass of water with respect to 1 part by mass of the crystal. The washed crystal was lyophilized at ⁇ 50 ° C. for 12 hours to obtain Complex Y.
  • Example 1-6 The same procedure as in Example 1-3 was performed except that 0.47 g of carbon nanotubes (multi-walled carbon nanotubes MWNT, manufactured by SWeNT, length 4 ⁇ m, diameter 30 nm, abbreviation CNT) was added in place of the cellulose nanofibers of Example 1-1.
  • Example 1-7 The same procedure as in Example 1-3 was performed except that 1.06 g of cellulose (crystalline cellulose Theola ST-100, manufactured by Asahi Kasei Chemicals Corporation, particle size 50 ⁇ m, abbreviation CC) was added instead of the cellulose nanofiber of Example 1-1.
  • Example 1-3 the intensity ratio (PO 4 / G) was 0.05 in Example 1-3, 5.2 in Comparative Example 1-6 and 0.12 in Comparative Example 1-7.
  • Example 1-3 and Comparative Example 1-7 are shown in FIG. 1, and Comparative Example 1-6 is shown in FIG.
  • Example 1-3 Carbon derived from cellulose nanofibers is present in a mountain shape on a part of the surface of the oxide particles, whereas in Comparative Example 1-3, carbon derived from glucose is formed from oxide particles. The entire surface was uniformly coated.
  • FIG. 3 Example 1-3: In FIG. 3, “LMP” represents LiMn 0.8 Fe 0.2 PO 4 particles, and “C” represents carbon derived from cellulose nanofibers) and FIG.
  • Comparative Example 1-3 In FIG. 4, “LMP” represents LiMn 0.8 Fe 0.2 PO 4 particles, and “C” represents glucose-derived carbon).
  • the carbon derived from the cellulose nanofiber of the present invention is three-dimensionally present on the surface of the oxide particles, and the carbon fills the gaps between the oxide particles, thereby uniformly covering the entire surface of the oxide particles. Even if it does not, it is judged that it becomes a sufficient conductive path and greatly contributes to the formation of an active material which is a dense laminated structure.
  • a coin-type secondary battery was constructed using the positive electrode.
  • a lithium foil punched to ⁇ 15 mm was used for the negative electrode.
  • the electrolytic solution a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / L in a mixed solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 1 was used.
  • the separator a known one such as a polymer porous film such as polypropylene was used.
  • a charge / discharge test at a constant current density was performed using the manufactured secondary battery.
  • the charging conditions at this time were constant current charging with a current of 0.1 CA (17 mAh / g) and a voltage of 4.5 V, and the discharging conditions were constant current discharging with a current of 3 CA and a final voltage of 2.0 V. All temperatures were 30 ° C. Table 1 shows the results of the obtained discharge capacity.
  • Examples 1-1 to 1-10 which are positive electrode active materials on which carbon derived from cellulose nanofibers is supported, can exhibit excellent battery performance.
  • the obtained mixed liquid was put into an autoclave, and a hydrothermal reaction was performed at 170 ° C. for 1 hour.
  • the pressure in the autoclave was 0.8 MPa.
  • the produced crystal was filtered, and then washed with 12 parts by mass of water with respect to 1 part by mass of the crystal.
  • the washed crystal was freeze-dried at ⁇ 50 ° C. for 12 hours to obtain oxide A (LiFe 0.3 Mn 0.7 PO 4 ).
  • the produced crystal was filtered, and then washed with 12 parts by mass of water with respect to 1 part by mass of the crystal.
  • the washed crystal was freeze-dried at ⁇ 50 ° C. for 12 hours to obtain oxide C (Li 2 Fe 0.09 Mn 0.85 Zr 0.03 SiO 4 ).
  • the obtained liquid mixture was thrown into the autoclave purged with nitrogen gas, and the hydrothermal reaction was performed at 200 degreeC for 3 hours.
  • the pressure in the autoclave was 1.4 MPa.
  • the produced crystal was filtered, and then washed with 12 parts by mass of water with respect to 1 part by mass of the crystal.
  • the washed crystal was freeze-dried at ⁇ 50 ° C. for 12 hours to obtain oxide D (NaFe 0.1 Mn 0.8 Mg 0.1 PO 4 ).
  • Preparation Example 1 Preparation of slurry water Q A ] 1220 mL of water was mixed with 1000 g of the oxide A (LiFe 0.3 Mn 0.7 PO 4 ). Next, the obtained mixed liquid was subjected to a dispersion treatment with an ultrasonic stirrer (T25, manufactured by IKA) for 1 minute to obtain slurry water Q A that was uniformly colored as a whole.
  • an ultrasonic stirrer T25, manufactured by IKA
  • Preparation Example 2 Preparation of the slurry water Q B] A slurry water Q B composed of the oxide B and water was obtained in the same manner as in Preparation Example 1, except that the oxide B (LiFe 0.9 Mn 0.1 PO 4 ) was used instead of the oxide A.
  • the oxide B LiFe 0.9 Mn 0.1 PO 4
  • Preparation Example 3 Preparation of the slurry water Q C] Except for using an oxide instead of oxide A C (Li 2 Fe 0.09 Mn 0.85 Zr 0.03 SiO 4), in the same manner as in Preparation Example 1 to obtain a slurry water Q C consisting of oxides C and water.
  • oxide A C Li 2 Fe 0.09 Mn 0.85 Zr 0.03 SiO 4
  • Preparation Example 4 Preparation of the slurry water Q D
  • a slurry water Q D composed of the oxide D and water was obtained in the same manner as in Preparation Example 1, except that the oxide D (NaFe 0.1 Mn 0.8 Mg 0.1 PO 4 ) was used instead of the oxide A.
  • Preparation Example 5 Preparation of slurry water R] 12,500 mL of water was mixed with 1119.4 g of cellulose nanofiber (Cerish FD-200L, manufactured by Daicel FineChem, Inc., average fiber diameter: 10 to 100 nm). Subsequently, the obtained mixed liquid was subjected to a dispersion treatment for 5 minutes with an ultrasonic stirrer (T25, manufactured by IKA) to obtain slurry water R having a uniform white turbidity as a whole. Thereafter, the obtained slurry water R was passed through a sieve having an opening of 150 ⁇ m to obtain slurry water R which is a dispersion of cellulose nanofibers. In addition, the sieve residue by the said sieving was not recognized.
  • a glucose solution F was obtained by mixing 333.3 mL of water with 500 g of glucose (reagent special grade, manufactured by Wako Pure Chemical Industries, Ltd.).
  • Example 2-1 Slurry water Q A 222.2g is mixed with slurry water R11.85g, and 0.5 parts by mass of cellulose nanofibers in terms of carbon amount is mixed with 100 parts by mass of oxide A (LiFe 0.3 Mn 0.7 PO 4 ).
  • a slurry water SG was obtained.
  • the resulting slurry water S G to obtain a granule S G using a spray drying (MDL-050M, Fujisaki Electric Co., Ltd.).
  • Particle size distribution measuring apparatus D 50 value (Microtrac X100, manufactured by Nikkiso Co., Ltd.) granules were measured with the S G, was 7 [mu] m.
  • oxide A LiFe 0.3 Mn 0.7 PO 4
  • oxide A LiFe 0.3 Mn 0.7 PO 4
  • oxide A LiFe 0.3 Mn 0.7 PO 4
  • oxide A LiFe 0.3 Mn 0.7 PO 4
  • oxide B LiFe 0.9 Mn 0.1 PO 4
  • Example 2-7 Except for mixing 222.2 g of slurry water Q C and 47.38 g of slurry water R, the same as in Example 2-1, with respect to 100 parts by mass of oxide C (Li 2 Fe 0.09 Mn 0.85 Zr 0.03 SiO 4 ) cellulose nanofibers to obtain a slurry water S M mixed 2 parts by mass of carbon amount conversion.
  • oxide C Li 2 Fe 0.09 Mn 0.85 Zr 0.03 SiO 4
  • a granulated body S M was obtained from the slurry water S M and then baked, whereby a lithium ion secondary battery in which carbon derived from cellulose nanofibers was supported.
  • oxide A LiFe 0.3 Mn 0.7 PO 4
  • Examples 2-1 to 2-8 which are positive electrode active materials on which carbon derived from cellulose nanofibers is supported, can exhibit excellent battery performance while a small amount of carbon is supported.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Textile Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明は、より優れた充放電特性を効果的に発現することのできるリチウムイオン二次電池用正極活物質又はナトリウムイオン二次電池用正極活物質及びこれらの製造方法を提供する。すなわち、本発明は、式(A):LiFeaMnbcPO4、式(B):LiFeaMnbcSiO4、又は式(C):NaFegMnhiPO4で表される酸化物に、セルロースナノファイバー由来の炭素が担持してなる二次電池用正極活物質である。

Description

二次電池用正極活物質及びその製造方法
 本発明は、炭素が担持されてなる二次電池用正極活物質及びその製造方法に関する。
 携帯電子機器、ハイブリッド自動車、電気自動車等に用いられる二次電池の開発が行われており、特にリチウムイオン二次電池は広く知られている。こうしたなか、Li(Fe,Mn)PO4等のリチウム含有オリビン型リン酸金属塩は、資源的な制約に大きく左右されることがなく、しかも高い安全性を発揮することができるため、高出力で大容量のリチウム二次電池を得るのには最適な正極材料となる。しかしながら、これらの化合物は、結晶構造に由来して導電性を充分に高めるのが困難な性質を有しており、またリチウムイオンの拡散性にも改善の余地があるため、従来より種々の開発がなされている。
 例えば、特許文献1では、一次結晶粒子を超微粒子化して、オリビン型正極活物質内のリチウムイオン拡散距離の短縮化を図ることにより、得られる電池の性能向上を試みている。また、特許文献2では、正極活物質の粒子表面に伝導性炭質材料を均一に堆積させ、かかる粒子表面で規則的な電場分布を得ることにより、電池の高出力化を図っている。
 一方、正極活物質の粒子表面を炭素で被覆した場合に、炭素膜の内外間でリチウム原子の移動量が制限されて、逆に充放電特性を高めることが困難となることを回避すべく、特許文献3には、有機化合物のプラズマ分解によって、正極活物質粒子の表面にカーボンナノチューブやナノグラフェン等のカーボンナノ構造体を被膜する方法が開示されている。
 他方、電極活物質と導電助剤との結着性を高めて電池物性の向上を図る技術として、特許文献4には、これら電極活物質及び導電助剤と、水系バインダーとしてセルロースファイバーを含有する電極用スラリー組成物が開示されており、これを電極集電体上に塗布して乾燥させることにより、電極活物質層を形成させている。
 さらに、リチウムは希少有価物質であることから、リチウムイオン二次電池に代えてナトリウムを用いたナトリウムイオン二次電池等も種々検討されはじめている。
 例えば、特許文献5には、マリサイト型NaMnPO4を用いたナトリウム二次電池用活物質が開示されており、また特許文献6には、オリビン型構造を有するリン酸遷移金属ナトリウムを含む正極活物質が開示されており、いずれの文献においても高性能なナトリウムイオン二次電池が得られることを示している。
特開2010-251302号公報 特開2001-15111号公報 特開2011-76931号公報 国際公開第2012/074040号 特開2008-260666号公報 特開2011-34963号公報
 しかしながら、上記特許文献3に記載のようなプラズマ分解を用いる方法では、特殊な設備や技術を要するため、依然として特許文献1~2のように、簡易な手段でありながら優れた充放電特性を示す正極活物質を得ることが望まれる。こうしたなか、より電池特性を高めようとするにあたり、特許文献4に記載されるセルロースファイバーも炭素源として用い得るものの、未だこれを担持させてなる正極活物質は知られておらず、簡易な手段で得られるか否かの詳細な検討すらなされていない。
 また、上記特許文献5~6に記載のナトリウムイオン二次電池用活物質においても、より有用なナトリウムイオン二次電池の実現が望まれている。
 そして、いずれの正極活物質においても、炭素源の担持量が増大するにつれて正極活物質のレート特性は高まるものの、一方では正極活物質中に占める正極材料の割合が減じられてしまうために、電気容量の低下を招く傾向にある。こうしたトレードオフの関係にあるレート特性と電気容量を共に高いレベルで確保するため、炭素源の担持量を減じても良好なレート特性を有する新たな技術も望まれる状況下にある。
 したがって、本発明の課題は、より優れた充放電特性を効果的に発現することのできるリチウムイオン二次電池用正極活物質又はナトリウムイオン二次電池用正極活物質及びこれらの製造方法を提供することにある。
 そこで本発明者らは、種々検討したところ、特定の式で表される酸化物に、セルロースナノファイバー由来の炭素が担持してなる正極活物質であれば、大きな充放電容量を示す二次電池が得られることを見出し、本発明を完成させるに至った。
 すなわち、本発明は、下記式(A)、(B)又は(C):
       LiFeaMnbcPO4・・・(A)
(式(A)中、MはMg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。a、b及びcは、0≦a≦1、0≦b≦1、0≦c≦0.2、及び2a+2b+(Mの価数)×c=2を満たし、かつa+b≠0を満たす数を示す。)
       Li2FedMnefSiO4・・・(B)
(式(B)中、NはNi、Co、Al、Zn、V又はZrを示す。d、e及びfは、0≦d≦1、0≦e≦1、0≦f<1、及び2d+2e+(Nの価数)×f=2を満たし、かつd+e≠0を満たす数を示す。)
       NaFegMnhiPO4・・・(C)
(式(C)中、QはMg、Ca、Co、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。を示す。g、h及びiは、0≦g≦1、0≦h≦1、0≦i<1、及び2g+2h+(Qの価数)×i=2を満たし、かつg+h≠0を満たす数を示す。)
で表される酸化物に、セルロースナノファイバー由来の炭素が担持してなる二次電池用正極活物質を提供するものである。
 また、本発明は、下記式(A)、(B)又は(C):
       LiFeaMnbcPO4・・・(A)
(式(A)中、MはMg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。a、b及びcは、0≦a≦1、0≦b≦1、0≦c≦0.2、及び2a+2b+(Mの価数)×c=2を満たし、かつa+b≠0を満たす数を示す。)
       Li2FedMnefSiO4・・・(B)
(式(B)中、NはNi、Co、Al、Zn、V又はZrを示す。d、e及びfは、0≦d≦1、0≦e≦1、0≦f<1、及び2d+2e+(Nの価数)×f=2を満たし、かつd+e≠0を満たす数を示す。)
       NaFegMnhiPO4・・・(C)
(式(C)中、QはMg、Ca、Co、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。を示す。g、h及びiは、0≦g≦1、0≦h≦1、0≦i<1、及び2g+2h+(Qの価数)×i=2を満たし、かつg+h≠0を満たす数を示す。)
で表される酸化物に、セルロースナノファイバー由来の炭素が担持してなる二次電池用正極活物質の製造方法であって、
 リチウム化合物又はナトリウム化合物と、セルロースナノファイバーを含むスラリー水Xに、リン酸化合物又はケイ酸化合物を混合して複合体Xを得る工程(I)、
 得られた複合体X、及び少なくとも鉄化合物又はマンガン化合物を含む金属塩を含有するスラリー水Yを水熱反応に付して、複合体Yを得る工程(II)、並びに
 得られた複合体Yを還元雰囲気又は不活性雰囲気中において焼成する工程(III)
を備える上記二次電池用正極活物質の製造方法を提供するものである。
 さらに、本発明は、下記式(A)、(B)又は(C):
       LiFeaMnbcPO4・・・(A)
(式(A)中、MはMg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。a、b及びcは、0≦a≦1、0≦b≦1、及び0≦c≦0.3を満たし、a及びbは同時に0ではなく、かつ2a+2b+(Mの価数)×c=2を満たす数を示す。)
       LiFeaMnbcSiO4・・・(B)
(式(B)中、MはMg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。a、b及びcは、0≦a≦1、0≦b≦1、及び0≦c≦0.3を満たし、a及びbは同時に0ではなく、かつ2a+2b+(Mの価数)×c=2を満たす数を示す。)
       NaFegMnhiPO4・・・(C)
(式(C)中、QはMg、Ca、Co、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。を示す。g、h及びiは、0≦g≦1、0≦h≦1、0≦i<1、及び2g+2h+(Qの価数)×i=2を満たし、かつg+h≠0を満たす数を示す。)
で表される酸化物に、セルロースナノファイバー由来の炭素が担持してなる二次電池用正極活物質の製造方法であって、
 合成反応に付して得られた酸化物を含むスラリー水Qと、セルロースナノファイバーを含むスラリー水Rを混合して、スラリー水Sを得る工程(I')、
 得られたスラリー水Sをスプレードライに付して、造粒体Sを得る工程(II')、並びに
 得られた造粒体Sを還元雰囲気又は不活性雰囲気中において焼成する工程(III')
を備える二次電池用正極活物質の製造方法を提供するものである。
 本発明の二次電池用正極活物質によれば、リチウム含有オリビン型リン酸金属塩、リチウム含有オリビン型ケイ酸金属塩又はナトリウム含有オリビン型リン酸金属塩である上記特定の式で表される酸化物にセルロースナノファイバーに由来する炭素が、炭化された炭素として堅固に担持してなるため、簡易な方法によって得られるものであるにもかかわらず、リチウムイオン二次電池又はナトリウムイオン二次電池における性能向上を充分に図ることができる。
 また、担持してなる炭素の量を充分に減じつつ、リチウムイオン二次電池又はナトリウムイオン二次電池における高い性能を確保することも可能である。
実施例1-3及び比較例1-7のリチウムイオン二次電池用正極活物質を用いてラマンスペクトル分析を行うことにより得られたラマンスペクトル図である。縦軸は強度(a.u.)を示し、横軸はラマンシフト(cm-1)を示す。 比較例1-6のリチウムイオン二次電池用正極活物質を用いてラマンスペクトル分析を行うことにより得られたラマンスペクトル図である。縦軸は強度(a.u.)を示し、横軸はラマンシフト(cm-1)を示す。 実施例1-3のリチウムイオン二次電池用正極活物質表面付近のTEM像を示す。 比較例1-3のリチウムイオン二次電池用正極活物質表面付近のTEM像を示す。 比較例2-3のリチウムイオン二次電池用正極活物質を用いてラマンスペクトル分析を行うことにより得られたラマンスペクトル図である。縦軸は強度(a.u.)を示し、横軸はラマンシフト(cm-1)を示す。
 以下、本発明について詳細に説明する。
 本発明で用いる酸化物は、下記式(A)、(B)又は(C):
       LiFeaMnbcPO4・・・(A)
(式(A)中、MはMg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。a、b及びcは、0≦a≦1、0≦b≦1、0≦c≦0.2、及び2a+2b+(Mの価数)×c=2を満たし、かつa+b≠0を満たす数を示す。)
       Li2FedMnefSiO4・・・(B)
(式(B)中、NはNi、Co、Al、Zn、V又はZrを示す。d、e及びfは、0≦d≦1、0≦e≦1、0≦f<1、及び2d+2e+(Nの価数)×f=2を満たし、かつd+e≠0を満たす数を示す。)
       NaFegMnhiPO4・・・(C)
(式(C)中、QはMg、Ca、Co、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。を示す。g、h及びiは、0≦g≦1、0≦h≦1、0≦i<1、及び2g+2h+(Qの価数)×i=2を満たし、かつg+h≠0を満たす数を示す。)
のいずれかの式で表される。
 これらの酸化物は、いずれもオリビン型構造を有しており、少なくとも鉄又はマンガンを含む。上記式(A)又は式(B)で表される酸化物を用いた場合には、リチウムイオン二次電池用正極活物質が得られ、上記式(C)で表される酸化物を用いた場合には、ナトリウムイオン二次電池用正極活物質が得られる。
 上記式(A)で表される酸化物は、いわゆる少なくとも遷移金属として鉄(Fe)及びマンガン(Mn)を含むオリビン型リン酸遷移金属リチウム化合物である。式(A)中、Mは、Mg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示し、好ましくはMg、Zr、Mo又はCoである。aは、0≦a≦1であって、好ましくは0.01≦a≦0.99であり、より好ましくは0.1≦a≦0.9である。bは、0≦b≦1であって、好ましくは0.01≦b≦0.99であり、より好ましくは0.1≦b≦0.9である。cは、0≦c≦0.2であって、好ましくは0≦c≦0.1である。そして、これらa、b及びcは、2a+2b+(Mの価数)×c=2を満たし、かつa+b≠0を満たす数である。上記式(A)で表されるオリビン型リン酸遷移金属リチウム化合物としては、具体的には、例えばLiFe0.9Mn0.1PO4、LiFe0.2Mn0.8PO4、LiFe0.15Mn0.75Mg0.1PO4、LiFe0.19Mn0.75Zr0.03PO4等が挙げられ、なかでもLiFe0.2Mn0.8PO4が好ましい。
 上記式(B)で表される酸化物は、いわゆる少なくとも遷移金属として鉄(Fe)及びマンガン(Mn)を含むオリビン型ケイ酸遷移金属リチウム化合物である。式(B)中、Nは、Ni、Co、Al、Zn、V又はZrを示し、好ましくはCo、Al、Zn、V又はZrである。dは、0≦d≦1であって、好ましくは0≦d<1であり、より好ましくは0.1≦d≦0.6である。eは、0≦d≦1であって、好ましくは0≦e<1であり、より好ましくは0.1≦e≦0.6である。fは、0≦f<1であって、好ましくは0<f<1であり、より好ましくは0.05≦f≦0.4である。そして、これらd、e及びfは、2d+2e+(Nの価数)×f=2を満たし、かつd+e≠0を満たす数である。上記式(B)で表されるオリビン型ケイ酸遷移金属リチウム化合物としては、具体的には、例えばLi2Fe0.45Mn0.45Co0.1SiO4、Li2Fe0.36Mn0.54Al0.066SiO4、Li2Fe0.45Mn0.45Zn0.1SiO4、Li2Fe0.36Mn0.540.066SiO4、Li2Fe0.282Mn0.658Zr0.02SiO4等が挙げられ、なかでもLi2Fe0.282Mn0.658Zr0.02SiO4が好ましい。
 上記式(C)で表される酸化物は、いわゆる少なくとも遷移金属として鉄(Fe)及びマンガン(Mn)を含むオリビン型リン酸遷移金属ナトリウム化合物である。式(C)中、QはMg、Ca、Co、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示し、好ましくはMg、Zr、Mo又はCoである。gは、0≦g≦1であって、好ましくは0<g≦1である。hは、0≦h≦1であって、好ましくは0.5≦h<1である。iは、0≦i<1であって、好ましくは0≦i≦0.5であり、より好ましくは0≦i≦0.3である。そして、これらg、h及びiは、0≦g≦1、0≦h≦1、及び0≦i<1、2g+2h+(Qの価数)×i=2を満たし、かつg+h≠0を満たす数である。上記式(C)で表されるオリビン型リン酸遷移金属ナトリウム化合物としては、具体的には、例えばNaFe0.9Mn0.1PO4、NaFe0.2Mn0.8PO4、NaFe0.15Mn0.7Mg0.15PO4、NaFe0.19Mn0.75Zr0.03PO4、NaFe0.19Mn0.75Mo0.03PO4、NaFe0.15Mn0.7Co0.15PO4等が挙げられ、なかでもNaFe0.2Mn0.8PO4が好ましい。
 本発明の二次電池用正極活物質は、上記式(A)、(B)又は(C)で表される酸化物に、セルロースナノファイバー由来の炭素が担持してなる。かかるセルロースナノファイバーは炭化されて炭素となり、これが上記酸化物に堅固に担持してなる。セルロースナノファイバーとは、全ての植物細胞壁の約5割を占める骨格成分であって、かかる細胞壁を構成する植物繊維をナノサイズまで解繊等することにより得ることができる軽量高強度繊維である。かかるセルロースナノファイバーの繊維径は1~1000nmであり、水への良好な分散性も有している。また、セルロースナノファイバーを構成するセルロース分子鎖では、炭素による周期的構造が形成されていることから、これが炭化されて上記酸化物に堅固に担持されることによって、得られる電池における性能を有効に高めることができる有用な正極活物質を得ることができる。
 セルロースナノファイバーは、その後炭化されて、上記酸化物にセルロースナノファイバー由来の担持された炭素として、本発明の二次電池用正極活物質中に存在することとなる。炭化してなる炭素として酸化物に担持してなるセルロースナノファイバー由来の炭素の原子換算量は、本発明の二次電池用正極活物質中に、好ましくは0.3~20質量%であり、より好ましくは0.4~15質量%であり、さらに好ましくは0.5~10質量%である。より具体的には、例えば、後述する工程(I)においてリン酸化合物を用いた場合、セルロースナノファイバーの炭素原子換算量が、本発明の二次電池用正極活物質中に好ましくは0.3~15質量%であり、より好ましくは0.4~10質量%であり、さらに好ましくは0.5~7質量%である。また、ケイ酸化合物を用いた場合、セルロースナノファイバーの炭素原子換算量が、本発明の二次電池用正極活物質中に好ましくは0.5~20質量%であり、より好ましくは0.6~15質量%であり、さらに好ましくは0.7~10質量%である。
 さらに具体的には、例えば、後述するように、本発明の二次電池用正極活物質が、リチウム化合物又はナトリウム化合物、及びセルロースナノファイバーを含むスラリー水Xとリン酸化合物又はケイ酸化合物との混合物由来の複合体Xと、少なくとも鉄化合物又はマンガン化合物を含む金属塩を含有するスラリー水Yとの水熱反応物である複合体Yの、還元雰囲気下焼成物又は不活性雰囲気下焼成物である二次電池用正極活物質(H)である場合、酸化物に担持してなるセルロースナノファイバー由来の炭素の原子換算量は、本発明の二次電池用正極活物質中に、好ましくは0.5~20質量%であり、より好ましくは1~15質量%であり、さらに好ましくは1.5~10質量%である。より具体的には、例えば、後述する工程(I)においてリン酸化合物を用いた場合、セルロースナノファイバー由来の炭素の原子換算量が、本発明の二次電池用正極活物質中に好ましくは0.5~15質量%であり、より好ましくは1~10質量%であり、さらに好ましくは1.5~7質量%である。また、ケイ酸化合物を用いた場合、セルロースナノファイバー由来の炭素の原子換算量が、本発明の二次電池用正極活物質中に好ましくは1~20質量%であり、より好ましくは1.5~15質量%であり、さらに好ましくは2~10質量%である。
 またさらに具体的には、例えば、後述するように、本発明の二次電池用正極活物質が、リチウム化合物又はナトリウム化合物、リン酸化合物又はケイ酸化合物、並びに少なくとも鉄化合物又はマンガン化合物を含む金属塩の合成反応物である酸化物とセルロースナノファイバーとの造粒物である造粒体Sの、還元雰囲気下焼成物又は不活性雰囲気下焼成物である二次電池用正極活物質(H')である場合、酸化物に担持してなるセルロースナノファイバー由来の炭素の原子換算量は、本発明の二次電池用正極活物質中に、好ましくは0.3~6質量%であり、より好ましくは0.4~3質量%であり、さらに好ましくは0.5~1.5質量%である。より具体的には、例えば、後述する工程(I')においてリン酸化合物を用いた場合、セルロースナノファイバー由来の炭素の原子換算量が、本発明の二次電池用正極活物質中に好ましくは0.3~4質量%であり、より好ましくは0.4~2.5質量%であり、さらに好ましくは0.5~1.2質量%である。また、ケイ酸化合物を用いた場合、セルロースナノファイバー由来の炭素の原子換算量が、本発明の二次電池用正極活物質中に好ましくは0.5~5質量%であり、より好ましくは0.6~4質量%であり、さらに好ましくは0.7~3質量%である。
 なお、二次電池用正極活物質中に存在するセルロースナノファイバー由来の炭素の原子換算量は、炭素・硫黄分析装置を用いた測定により、求めることができる。
 また、セルロースナノファイバー由来の炭素は炭化してなる炭素として存在し、結晶性に特徴があるため、ラマン分光法により本発明の二次電池用正極活物質に担持してなる炭素を分析することによって、その特徴的な結晶性を確認することができる。
 具体的には、本発明の二次電池用正極活物質に担持してなるセルロースナノファイバー由来の炭素は、ラマン分光法により求められるラマンスペクトルにおいて、Dバンド(ピーク位置:1350cm-1付近)とGバンド(ピーク位置:1590cm-1付近)との強度比(G/D)が、好ましくは0.5~1.8であり、より好ましくは0.8~1.3である。さらに、PO4 3-に係わるピーク(ピーク位置:950cm-1付近)とGバンドとの強度比(PO4/G)、又はSiO4 4-に係わるピーク(ピーク位置:840cm-1付近)とGバンドとの強度比(SiO4/G)が、好ましくは0.01~0.10、より好ましくは0.03~0.08である。
 例えば、二次電池用正極活物質に担持されてなる炭素がカーボンナノチューブ由来の炭素であると、ラマン分光法により求められる強度比(G/D)は2~9程度である。さらに、二次電池用正極活物質に担持されてなる炭素がカーボンナノチューブ由来の炭素であると、ラマンスペクトルの100~350cm-1にはRBM(Radial Breathing Mode)ピークが存在する。これに対し、本発明の二次電池用正極活物質に担持されてなるセルロースナノファイバー由来の炭素には、ラマンスペクトル中にRBMピークが認められない。
 一方、繊維径が1000nmを超える一般的なセルロース由来の炭素が、炭化されて二次電池用正極活物質に担持してなる場合、ラマンスペクトルにおける強度比(G/D)は0.5~1.8であり、セルロースナノファイバー由来の炭素が担持してなるものと同じであるが、強度比(PO4/G)又は強度比(SiO4/G)は、セルロースナノファイバー由来の炭素が担持してなるものとは異なり、0.11~0.25程度である。
 本発明の二次電池用正極活物質は、このようにカーボンナノチューブ又は一般的なセルロース由来の炭素が二次電池用正極活物質に担持してなるものとは全く異なるラマンスペクトルを示す特徴的な複合構造を有するため、優れた充放電特性の発現に寄与するものと考えられる。
 さらに、本発明の二次電池用正極活物質に担持してなる、セルロースナノファイバー由来の炭素は、上記式(A)、(B)又は(C)で表される酸化物粒子間の間隙を充填するように存在することを特徴とする。すなわち、上記特許文献2に示されるような従来の伝導性炭質材料は、正極活物質の粒子表面に均一に堆積されるのに対し、本発明のセルロースナノファイバー由来の炭素は、正極活物質の粒子表面の一部に存在して、酸化物粒子が形成するパッキング構造の粒子間空隙を充填している。
 本発明の二次電池用正極活物質は、特徴的な複合構造を有する炭素が、正極活物質のパッキング密度が増大する状態で酸化物粒子間の導電パスを形成しているため、優れた充放電特性が発現され、かかる炭素の量を有効に減じることも可能になると考えられる。
 本発明の二次電池用正極活物質は、リチウム化合物又はナトリウム化合物、及びセルロースナノファイバーを含むスラリー水Xとリン酸化合物又はケイ酸化合物との混合物由来の複合体Xと、少なくとも鉄化合物又はマンガン化合物を含む金属塩を含有するスラリー水Yとの水熱反応物である複合体Yの、還元雰囲気下焼成物又は不活性雰囲気下焼成物である二次電池用正極活物質(H)であるか、或いはリチウム化合物又はナトリウム化合物、リン酸化合物又はケイ酸化合物、並びに少なくとも鉄化合物又はマンガン化合物を含む金属塩の合成反応物である酸化物とセルロースナノファイバーとの造粒物である造粒体Sの、還元雰囲気下焼成物又は不活性雰囲気下焼成物である二次電池用正極活物質(H')であるのが好ましい。
 すなわち、本発明の二次電池用正極活物質は、リチウム化合物又はナトリウム化合物、及びセルロースナノファイバーを含むスラリー水Xにリン酸化合物又はケイ酸化合物を混合して得られる複合体X、並びに少なくとも鉄化合物又はマンガン化合物を含む金属塩を含有するスラリー水Yを水熱反応に付して得られる複合体Yを、還元雰囲気下又は不活性雰囲気下で焼成することにより得られる二次電池用正極活物質(H)であるか、或いはリチウム化合物又はナトリウム化合物、リン酸化合物又はケイ酸化合物、並びに少なくとも鉄化合物又はマンガン化合物を含む金属塩を合成反応に付して得られる酸化物とセルロースナノファイバーとを造粒して得られる造粒体Sを、還元雰囲気下又は不活性雰囲気下で焼成することにより得られる二次電池用正極活物質(H')であるのが好ましい。
 本発明の二次電池用正極活物質が上記二次電池用正極活物質(H)である場合、二次電池用正極活物質(H)の製造方法は、具体的には、リチウム化合物又はナトリウム化合物、及びセルロースナノファイバーを含むスラリー水Xに、リン酸化合物又はケイ酸化合物を混合して複合体Xを得る工程(I)、
 得られた複合体X、及び少なくとも鉄化合物又はマンガン化合物を含む金属塩を含有するスラリー水Yを水熱反応に付して、複合体Yを得る工程(II)、並びに
 得られた複合体Yを還元雰囲気又は不活性雰囲気中において焼成する工程(III)
を備える。
 工程(I)は、リチウム化合物又はナトリウム化合物、及びセルロースナノファイバーを含むスラリー水Xに、リン酸化合物又はケイ酸化合物を混合して複合体Xを得る工程である。
 リチウム化合物又はナトリウム化合物としては、水酸化物(例えばLiOH・H2O、NaOH)、炭酸化物、硫酸化物、酢酸化物が挙げられる。なかでも、水酸化物が好ましい。
 スラリーXにおけるリチウム化合物又はナトリウム化合物の含有量は、水100質量部に対し、好ましくは5~50質量部であり、より好ましくは7~45質量部である。より具体的には、工程(I)においてリン酸化合物を用いた場合、混合物Xにおけるリチウム化合物又はナトリウム化合物の含有量は、水100質量部に対し、好ましくは5~50質量部であり、より好ましくは10~45質量部である。また、ケイ酸化合物を用いた場合、混合物Xにおけるリチウム化合物の含有量は、水100質量部に対し、好ましくは5~40質量部であり、より好ましくは7~35質量部である。
 セルロースナノファイバーとしては、植物細胞壁を構成する植物繊維をナノサイズまで解繊等することにより得られたものであれば、特に制限されず、例えば、セリッシュKY-100S(ダイセルファインケム株式会社製)等の市販品を用いることができる。セルロースナノファイバーの繊維径は、リチウム含有オリビン型リン酸金属塩に堅固に担持させる観点から、好ましくは1~1000nmであり、より好ましくは1~500nmである。
 スラリー水Xにおけるセルロースナノファイバーの含有量は、その炭素原子換算量が、本発明の二次電池用正極活物質中に0.5~20質量%となるような量であるのが望ましい。具体的には、例えば水100質量部に対し、炭化処理の残渣量換算で、好ましくは0.2~10.6質量部であり、より好ましくは0.5~8質量部であり、さらに好ましくは0.8~5.3質量部である。より具体的には、工程(I)においてリン酸化合物を用いた場合、水100質量部に対し、炭化処理の残渣量換算で、好ましくは0.2~8質量部であり、より好ましくは0.5~5.3質量部であり、さらに好ましくは0.8~3.5質量部である。また、ケイ酸化合物を用いた場合、水100質量部に対し、炭化処理の残渣量換算で、好ましくは0.5~10.6質量部であり、より好ましくは0.8~8質量部であり、さらに好ましくは1~5.3質量部ある。
 スラリー水Xにリン酸化合物又はケイ酸化合物を混合する前に、予めスラリー水Xを撹拌しておくのが好ましい。かかるスラリー水Xの撹拌時間は、好ましくは1~15分であり、より好ましくは3~10分である。また、スラリー水Xの温度は、好ましくは20~90℃であり、より好ましくは20~70℃である。
 リン酸化合物としては、オルトリン酸(H3PO4、リン酸)、メタリン酸、ピロリン酸、三リン酸、四リン酸、リン酸アンモニウム、リン酸水素アンモニウム等が挙げられる。なかでもリン酸を用いるのが好ましく、70~90質量%濃度の水溶液として用いるのが好ましい。かかる工程(I)では、スラリー水Xにリン酸を混合するにあたり、スラリー水を撹拌しながらリン酸を滴下するのが好ましい。スラリー水Xにリン酸を滴下して少量ずつ加えることで、スラリー水X中において良好に反応が進行して、複合体Xがスラリー中で均一に分散しつつ生成され、かかる複合体Xが不要に凝集するのをも効果的に抑制することができる。
 リン酸の上記スラリー水Xへの滴下速度は、好ましくは15~50mL/分であり、より好ましくは20~45mL/分であり、さらに好ましくは28~40mL/分である。また、リン酸を滴下しながらのスラリー水Xの撹拌時間は、好ましくは0.5~24時間であり、より好ましくは3~12時間である。さらに、リン酸を滴下しながらのスラリー水の撹拌速度は、好ましくは200~700rpmであり、より好ましくは250~600rpmであり、さらに好ましくは300~500rpmである。
 なお、スラリー水Xを撹拌する際、さらにスラリー水Xの沸点温度以下に冷却するのが好ましい。具体的には、80℃以下に冷却するのが好ましく、20~60℃に冷却するのがより好ましい。
 ケイ酸化合物としては、反応性のあるシリカ化合物であれば特に限定されず、非晶質シリカ、ナトリウム塩(例えばメタケイ酸ナトリウム(Na2SiO3)、Na4SiO4・H2O)等が挙げられる。
 リン酸化合物又はケイ酸化合物を混合した後のスラリー水Xは、リン酸又はケイ酸1モルに対し、リチウムを2.0~4.0モル含有するのが好ましく、2.0~3.1モル含有するのがより好ましく、このような量となるよう、上記リチウム化合物又はナトリウム化合物と、リン酸化合物又はケイ酸化合物を用いればよい。より具体的には、工程(I)においてリン酸化合物を用いた場合、リン酸化合物を混合した後のスラリー水Xは、リン酸1モルに対し、リチウム又はナトリウムを2.7~3.3モル含有するのが好ましく、2.8~3.1モル含有するのがより好ましく、工程(I)においてケイ酸化合物を用いた場合、ケイ酸化合物を混合した後のスラリー水Xは、ケイ酸1モルに対し、リチウムを2.0~4.0モル含有するのが好ましく、2.0~3.0含有するのがより好ましい。
 リン酸化合物又はケイ酸化合物を混合した後のスラリー水Xに対して窒素をパージすることにより、かかるスラリー中での反応を完了させて、上記(A)~(C)で表される酸化物の前駆体である複合体Xをスラリーとして得る。窒素がパージされると、スラリーX中の溶存酸素濃度が低減された状態で反応を進行させることができ、また得られる複合体Xを含有するスラリーの溶存酸素濃度も効果的に低減されるため、次の工程で添加する金属塩の酸化を抑制することができる。かかる複合体Xを含有するスラリー中において、上記(A)~(C)で表される酸化物の前駆体は、微細な分散粒子として存在する。かかる複合体Xは、例えば上記式(A)で表される酸化物の場合、リン酸三リチウム(Li3PO4)とセルロースナノファイバーの複合体として得られる。
 窒素をパージする際における圧力は、好ましくは0.1~0.2MPaであり、より好ましくは0.1~0.15MPaである。また、リン酸化合物又はケイ酸化合物を混合した後のスラリー水Xの温度は、好ましくは20~80℃であり、より好ましくは20~60℃である。例えば上記式(A)で表される酸化物の場合、反応時間は、好ましくは5~60分であり、より好ましくは15~45分である。
 また、窒素をパージする際、反応を良好に進行させる観点から、リン酸化合物又はケイ酸化合物を混合した後のスラリー水Xを撹拌するのが好ましい。このときの撹拌速度は、好ましくは200~700rpmであり、より好ましくは250~600rpmである。
 また、より効果的に複合体Xの分散粒子表面における酸化を抑制し、分散粒子の微細化を図る観点から、リン酸化合物又はケイ酸化合物を混合した後のスラリー水X中における溶存酸素濃度を0.5mg/L以下とするのが好ましく、0.2mg/L以下とするのがより好ましい。
 工程(II)では、工程(I)で得られた複合体X、及び少なくとも鉄化合物又はマンガン化合物を含む金属塩を含有するスラリー水Yを水熱反応に付して、複合体Yを得る工程である。上記工程(I)により得られた複合体Xを、スラリーのまま、上記(A)~(C)で表される酸化物の前駆体として用い、これに少なくとも鉄化合物又はマンガン化合物を含む金属塩を添加してスラリー水Yとして用いるのが好ましい。これにより、極めて微細な粒子であって正極活物質として非常に有用な二次電池用正極活物質を得ることができる。
 金属塩は、少なくとも鉄化合物又はマンガン化合物を含み、さらにこれら鉄化合物及びマンガン化合物以外の金属(M、N又はQ)塩を含んでいてもよい。鉄化合物としては、酢酸鉄、硝酸鉄、硫酸鉄等が挙げられる。これらは1種単独で用いてもよく、2種以上組み合わせて用いてもよい。なかでも、電池特性を高める観点から、硫酸鉄が好ましい。また、マンガン化合物としては、酢酸マンガン、硝酸マンガン、硫酸マンガン等が挙げられる。これらは1種単独で用いてもよく、2種以上組み合わせて用いてもよい。なかでも、電池特性を高める観点から、硫酸マンガンが好ましい。
 金属塩として、鉄化合物及びマンガン化合物を用いる場合、その使用モル比(マンガン化合物:鉄化合物)は、リチウム化合物を用いた場合、好ましくは99:1~51:49であり、より好ましくは95:5~70:30であり、さらに好ましくは90:10~80:20であり、ナトリウム化合物を用いた場合、好ましくは100:0~51:49であり、より好ましくは100:0~60:40であり、さらに好ましくは100:0~70:30である。また、これら金属塩の合計添加量は、スラリー水Y中に含有されるリン酸イオン又はケイ酸イオン1モルに対し、好ましくは0.99~1.01モルであり、より好ましくは0.995~1.005モルである。
 鉄化合物及びマンガン化合物以外の金属(M、N又はQ)塩を用いてもよい。金属(M、N又はQ)塩におけるM、N及びQは、上記式(A)~(C)中のM、N及びQと同義であり、かかる金属塩として、硫酸塩、ハロゲン化合物、有機酸塩、及びこれらの水和物等を用いることができる。これらは1種単独で用いてもよく、2種以上用いてもよい。なかでも、電池物性を高める観点から、硫酸塩を用いるのがより好ましい。
 これら金属(M、N又はQ)塩を用いる場合、鉄化合物、マンガン化合物、及び金属(M、N又はQ)塩の合計添加量は、上記工程(I)において得られた水溶液中のリン酸又はケイ酸1モルに対し、好ましくは0.99~1.01モルであり、より好ましくは0.995~1.005モルである。
 水熱反応に付する際に用いる水の使用量は、金属塩の溶解性、撹拌の容易性、及び合成の効率等の観点から、スラリー水Y中に含有されるリン酸又はケイ酸イオン1モルに対し、好ましくは10~50モルであり、より好ましくは12.5~45モルである。より具体的には、スラリー水Y中に含有されるイオンがリン酸イオンの場合、水熱反応に付する際に用いる水の使用量は、好ましくは10~30モルであり、より好ましくは12.5~25モルである。また、スラリー水Y中に含有されるイオンがケイ酸イオンの場合、水熱反応に付する際に用いる水の使用量は、好ましくは10~50モルであり、より好ましくは12.5~45モルである。
 工程(II)において、鉄化合物、マンガン化合物及び金属(M、N又はQ)塩の添加順序は特に制限されない。また、これらの金属塩を添加するとともに、必要に応じて酸化防止剤を添加してもよい。かかる酸化防止剤としては、亜硫酸ナトリウム(Na2SO3)、ハイドロサルファイトナトリウム(Na224)、アンモニア水等を使用することができる。酸化防止剤の添加量は、過剰に添加されることにより上記式(A)~(C)で表される酸化物の生成が抑制されるのを防止する観点から、鉄化合物、マンガン化合物及び必要に応じて用いる金属(M、N又はQ)塩の合計1モルに対し、好ましくは0.01~1モルであり、より好ましくは0.03~0.5モルである。
 鉄化合物、マンガン化合物及び必要に応じて用いる金属(M、N又はQ)塩を添加し、必要に応じて酸化防止剤等を添加することにより得られるスラリーY中における複合体Yの含有量は、好ましくは10~50質量%であり、より好ましくは15~45質量%であり、さらに好ましくは20~40質量%である。
 水熱反応は、100℃以上であればよく、130~180℃が好ましい。水熱反応は耐圧容器中で行うのが好ましく、130~180℃で反応を行う場合、この時の圧力は0.3~0.9MPaであるのが好ましく、140~160℃で反応を行う場合の圧力は0.3~0.6MPaであるのが好ましい。水熱反応時間は0.1~48時間が好ましく、さらに0.2~24時間が好ましい。
 得られた複合体Yは、上記式(A)~(C)で表される酸化物並びにセルロースナノファイバーを含む複合体であり、ろ過後、水で洗浄し、乾燥することによりこれを単離できる。乾燥手段は、凍結乾燥、真空乾燥が用いられる。
 工程(III)は、工程(II)で得られた複合体Yを還元雰囲気又は不活性雰囲気中において焼成する工程である。これにより、複合体Yに存在するセルロースナノファイバーを炭化させ、式(A)~(C)で表される酸化物にかかる炭素を堅固に担持させてなる二次電池用正極活物質を得ることができる。焼成条件は、還元雰囲気又は不活性雰囲気中で、好ましくは400℃以上、より好ましくは400~800℃で、好ましくは10分~3時間、より好ましくは0.5~1.5時間とするのがよい。
 本発明の二次電池用正極活物質が上記二次電池用正極活物質(H')である場合、二次電池用正極活物質(H')の製造方法は、具体的には、合成反応に付して得られた酸化物を含むスラリー水Qと、セルロースナノファイバーを含むスラリー水Rを混合して、スラリー水Sを得る工程(I')、
 得られたスラリー水Sをスプレードライに付して、造粒体Sを得る工程(II')、並びに
 得られた造粒体Sを還元雰囲気又は不活性雰囲気中において焼成する工程(III')
を備える。
 工程(I')は、上記式(A)、(B)又は(C)で表される酸化物を含むスラリー水Qと、セルロースナノファイバーを充分に分散させたスラリー水Rを混合して、酸化物とセルロースナノファイバーが共に充分に分散してなるスラリー水Sを得る工程である。
 上記酸化物は、合成反応に付して得られるものであり、かかる合成反応に付す方法としては、固相法(焼成法、溶融-アニール法)と湿式法(水熱法)に大別されるがいずれの方法であってもよく、さらに合成反応に付した後に粉砕又は分級してもよい。なかでも、粒径が小さく、かつ粒度が揃った酸化物が得られる観点から、水熱反応に付すことにより得られる酸化物であるのが好ましい。
 なお、水熱反応に付して上記酸化物を得る方法は、具体的には、上記二次電池用正極活物質(H)の製造方法において、セルロースナノファイバーを含むスラリー水Xを用いないこと以外、上記工程(I)及び工程(II)を経ることにより複合体Yを得る方法と同様である。
 スラリー水Qにおける酸化物の含有量は、水100質量部に対し、好ましくは10~400質量部であり、より好ましくは30~210質量部である。
 スラリー水Rにおけるセルロースナノファイバーの含有量は、その炭素原子換算量が、本発明の二次電池用正極活物質中に0.3~6質量%となるような量であるのが望ましい。具体的には、例えば水100質量部に対し、好ましくは0.1~300質量部であり、より好ましくは1~210質量部である。
 セルロースナノファイバーとしては、上記二次電池用正極活物質(H)の製造方法において用いるセルロースナノファイバーと同様のものを用いることができる。
 スラリー水Rは、セルロースナノファイバーを充分に分散させて、得られるスラリー水S中においても酸化物とセルロースナノファイバーを均一に分散させる観点から、分散機(ホモジナイザー)を用いた処理を行うことにより、凝集しているセルロースナノファイバーを解砕することが好ましい。かかる分散機としては、例えば、離解機、叩解機、低圧ホモジナイザー、高圧ホモジナイザー、グラインダー、カッターミル、ボールミル、ジェットミル、短軸押出機、2軸押出機、超音波攪拌機、家庭用ジューサーミキサー等が挙げられる。なかでも、分散効率の観点から、超音波攪拌機が好ましい。スラリーRの分散均一性の程度は、例えば、UV・可視光分光装置を使用した光線透過率や、E型粘度計を使用した粘度で定量的に評価することもでき、また目視によって白濁度が均一であることを確認することで、簡便に評価することもできる。分散機で処理する時間は、好ましくは0.5~6分間であり、より好ましくは2~5分間である。このように処理されたスラリー水Rは、セルロースナノファイバーの良好な分散状態を数日間保持することができるので、予め調製し、保管しておくことも可能となる。
 上記スラリー水Rは、未だ凝集状態にあるセルロースナノファイバーを有効に取り除く観点から、さらに、湿式分級することが好ましい。湿式分級には、篩や市販の湿式分級機を使用することができる。篩の目開きは、用いるセルロースナノファイバーの繊維長により変動し得るが、作業効率の観点から、150μm前後であるのが好ましい。
 スラリー水Sは、上記スラリー水Qとスラリー水Rを混合して得られる。スラリー水Sにおけるセルロースナノファイバーの含有量は、その炭素原子換算量が、本発明の二次電池用正極活物質中に0.3~6質量%となるような量であればよく、具体的には、スラリー水S中の酸化物100質量部に対し、炭化処理の残渣量換算で、好ましくは0.3~6.4質量部であり、より好ましくは0.4~3.1質量部であり、さらに好ましくは0.5~1.5質量部である。このような割合になるように、スラリー水Qとスラリー水Rの混合割合を定めればよく、これらスラリー水Qとスラリー水Rの混合順序は特に制限されない。
 工程(II')は、工程(I')で得られたスラリー水Sをスプレードライに付して、造粒体Sを得る工程である。スプレードライで得られる造粒体Sの粒径は、レーザー回折・散乱法に基づく粒度分布におけるD50値で、好ましくは1~15μmであり、より好ましくは3~10μmである。ここで、粒度分布測定におけるD50値とは、レーザー回折・散乱法に基づく体積基準の粒度分布により得られる値であり、D50値は累積50%での粒径(メジアン径)を意味する。したがって、適宜スプレードライヤーの運転条件を最適化することにより、かかる造粒体Sの粒径を調整すればよい。
 工程(III')は、工程(II')で得られた造粒体Sを還元雰囲気又は不活性雰囲気中において焼成する工程である。これにより、造粒体Sに存在するセルロースナノファイバーを炭化させ、かかる炭素を式(A)~(C)で表される酸化物に堅固に担持させてなる二次電池用正極活物質を得ることができる。焼成条件は、還元雰囲気又は不活性雰囲気中で、好ましくは400℃以上、より好ましくは400~800℃で、好ましくは10分~3時間、より好ましくは0.5~1.5時間とするのがよい。
 本発明の二次電池用正極活物質を含む二次電池用正極を適用できる、リチウムイオン二次電池又はナトリウムイオン二次電池である二次電池としては、正極と負極と電解液とセパレータを必須構成とするものであれば特に限定されない。
 ここで、負極については、リチウムイオン又はナトリウムイオンを充電時には吸蔵し、かつ放電時には放出することができれば、その材料構成で特に限定されるものではなく、公知の材料構成のものを用いることができる。たとえば、リチウム金属、ナトリウム金属、グラファイト又は非晶質炭素等の炭素材料等である。そしてリチウムイオン又はナトリウムイオンを電気化学的に吸蔵・放出し得るインターカレート材料で形成された電極、特に炭素材料を用いることが好ましい。
 電解液は、有機溶媒に支持塩を溶解させたものである。有機溶媒は、通常リチウムイオン二次電池やナトリウムイオン二次電池の電解液の用いられる有機溶媒であれば特に限定されるものではなく、例えば、カーボネート類、ハロゲン化炭化水素、エーテル類、ケトン類、ニトリル類、ラクトン類、オキソラン化合物等を用いることができる。
 支持塩は、その種類が特に限定されるものではないが、リチウムイオン二次電池の場合、LiPF6、LiBF4、LiClO4及びLiAsF6から選ばれる無機塩、該無機塩の誘導体、LiSO3CF3、LiC(SO3CF32及びLiN(SO3CF32、LiN(SO2252及びLiN(SO2CF3)(SO249)から選ばれる有機塩、並びに該有機塩の誘導体の少なくとも1種であることが好ましい。また、ナトリウムイオン二次電池の場合、NaPF6、NaBF4、NaClO4及びNaAsF6から選ばれる無機塩、該無機塩の誘導体、NaSO3CF3、NaC(SO3CF32及びNaN(SO3CF32、NaN(SO2252及びNaN(SO2CF3)(SO249)から選ばれる有機塩、並びに該有機塩の誘導体の少なくとも1種であることが好ましい。
 セパレータは、正極及び負極を電気的に絶縁し、電解液を保持する役割を果たすものである。たとえば、多孔性合成樹脂膜、特にポリオレフィン系高分子(ポリエチレン、ポリプロピレン)の多孔膜を用いればよい。
 以下、本発明について、実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。
 なお、セルロースナノファイバーが炭化されてなる炭素量は、炭素・硫黄分析装置(EMIA-220V2、株式会社堀場製作所製)を使用した非分散赤外吸収法によって定量した。
 [実施例1-1]
 LiOH・H2O 12.72g、水 90mL、及びセルロースナノファイバー(セリッシュKY-100G、ダイセルファインケム株式会社製、繊維径4~100nm、略称CNF) 10.19gを混合してスラリー水を得た。次いで、得られたスラリー水を、25℃の温度に保持しながら5分間撹拌しつつ85%のリン酸水溶液 11.53gを35mL/分で滴下し、続いて12時間、400rpmの速度で撹拌することにより、複合体Xを含有するスラリーを得た。かかるスラリーは、リン1モルに対し、2.97モルのリチウムを含有していた。
 次に、得られたスラリー34.4gに対し、FeSO4・7H2O 27.80gを添加した。
 次いで、得られた混合液をオートクレーブに投入し、170℃で1時間水熱反応を行った。オートクレーブ内の圧力は、0.8MPaであった。生成した結晶をろ過し、次いで結晶1質量部に対し、12質量部の水により洗浄した。洗浄した結晶を-50℃で12時間凍結乾燥して複合体Yを得た。
 得られた複合体Yを、アルゴン水素雰囲気下(水素濃度3%)、700℃で1時間焼成して、セルロースナノファイバー由来の炭素が担持してなるリチウムイオン二次電池用正極活物質(LiFePO4、炭素の量=2.5質量%)を得た。
 [実施例1-2]
 FeSO4・7H2Oの代わりにMnSO4・5H2O 24.11gを添加した以外、実施例1-1と同様にして、セルロースナノファイバー由来の炭素が担持してなるリチウムイオン二次電池用正極活物質(LiMnPO4、炭素の量=2.5質量%)を得た。
 [実施例1-3]
 FeSO4・7H2O 5.56gに加え、さらにMnSO4・5H2O 19.29gを添加した以外、実施例1-1と同様にして、セルロースナノファイバー由来の炭素が担持してなるリチウムイオン二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=2.5質量%)を得た。
 [実施例1-4]
 FeSO4・7H2O 2.78gに加え、さらにMgSO4・7H2O 2.48gを添加した以外、実施例1-1と同様にして、セルロースナノファイバー由来の炭素が担持してなるリチウムイオン二次電池用正極活物質(LiFe0.1Mn0.8Mg0.1PO4、炭素の量=2.5質量%)を得た。
 [実施例1-5]
 FeSO4・7H2O 2.78gに加え、さらにZrSO4・4H2O 1.81gを添加した以外、実施例1-1と同様にして、セルロースナノファイバー由来の炭素が担持してなるリチウムイオン二次電池用正極活物質(LiFe0.1Mn0.8Zr0.05PO4、炭素の量=2.5質量%)を得た。
 [実施例1-6]
 セルロースナノファイバーの量を16.99gとし、FeSO4・7H2O 5.56gに加え、さらにMnSO4・5H2O 19.29gを添加した以外、実施例1-1と同様にして、セルロースナノファイバー由来の炭素が担持してなるリチウムイオン二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=4.7質量%)を得た。
 [実施例1-7]
 セルロースナノファイバーの量を23.78gとし、FeSO4・7H2O 5.56gに加え、さらにMnSO4・5H2O 19.29gを添加した以外、実施例1-1と同様にして、セルロースナノファイバー由来の炭素が担持してなるリチウムイオン二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=6.4質量%)を得た。
 [実施例1-8]
 セルロースナノファイバーの量を33.97gとした以外、実施例1-1と同様にして、セルロースナノファイバー由来の炭素が担持してなるリチウムイオン二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=8.2質量%)を得た。
 [実施例1-9]
 LiOH・H2O 4.28g、Na4SiO4・nH2O 13.97gに超純水37.5mLを加えて混合した。この水分散液に、セルロースナノファイバー14.57g、FeSO4・7H2O 3.92g、MnSO4・5H2O 7.93g、及びZr(SO42・4H2O 0.53gを添加し、混合した。
 次いで、得られた混合液をオートクレーブに投入し、150℃で12hr水熱反応を行った。オートクレーブの圧力は0.4MPaであった。生成した結晶をろ過し、次いで結晶1質量部に対し、12質量部の水により洗浄した。洗浄した結晶を-50℃で12時間凍結乾燥して複合体Yを得た。
 得られた複合体Yを、アルゴン水素雰囲気下(水素濃度3%)、700℃で1時間焼成して、セルロースナノファイバー由来の炭素が担持してなるリチウムイオン二次電池用正極活物質(Li2Fe0.09Mn0.85Zr0.03SiO4、炭素の量=7.2質量%)を得た。
 [実施例1-10]
 NaOH 6.00g、水 90mL、及びセルロースナノファイバー5.10gを混合してスラリー水を得た。次いで、得られたスラリー水を、25℃の温度に保持しながら5分間撹拌しつつ85%のリン酸水溶液 5.77gを35mL/分で滴下し、続いて12時間、400rpmの速度で撹拌することにより、複合体Xを含有するスラリーを得た。かかるスラリーは、リン1モルに対し、3.00モルのナトリウムを含有していた。
 得られたスラリーに対し、窒素ガスをパージして溶存酸素濃度を0.5mg/Lに調整した後、FeSO4・7H2O 1.39g、MnSO4・5H2O 9.64g、MgSO4・7H2O 1.24gを添加した。
 次いで、得られた混合液を窒素ガスでパージしたオートクレーブに投入し、200℃で3時間水熱反応を行った。オートクレーブ内の圧力は、1.4MPaであった。生成した結晶をろ過し、次いで結晶1質量部に対し、12質量部の水により洗浄した。洗浄した結晶を-50℃で12時間凍結乾燥して複合体Yを得た。
 得られた複合体Yを、アルゴン水素雰囲気下(水素濃度3%)、700℃で1時間焼成して、セルロースナノファイバー由来の炭素が担持してなるナトリウムイオン二次電池用正極活物質(NaFe0.1Mn0.8Mg0.1PO4、炭素の量=2.4質量%)を得た。
 [比較例1-1]
 LiOH・H2O 12.72g、及び水 90mLを混合してスラリー水を得た。次いで、得られたスラリー水を、25℃の温度に保持しながら5分間撹拌しつつ85%のリン酸水溶液 11.53gを35mL/分で滴下し、続いて12時間、400rpmの速度で撹拌することにより、スラリーを得た。
 次に、得られたスラリー114.3gに対し、FeSO4・7H2O 27.8gを添加した。
 次いで、得られた混合液をオートクレーブに投入し、170℃で1時間水熱反応を行った。オートクレーブ内の圧力は、0.8MPaであった。生成した結晶をろ過し、次いで結晶1質量部に対し、12質量部の水により洗浄した。洗浄した結晶を-50℃で12時間凍結乾燥して生成物を得た。
 得られた生成物2.00gと、グルコース 0.27gを混合して遊星ボールミル(P-5、フリッチュ社製)に備えられた容器に投入し、これにエタノール 90gと水 10mLを混合して得た溶媒を添加した。
 次いで、球径(1mm)を有するZrO2ボールを100g用い、回転速度400rpmにて1時間粉砕した。得られたスラリーをろ過し、エバポレーターを用いて溶媒を留去した後、アルゴン水素雰囲気下(水素濃度3%)、700℃で1時間焼成して、グルコース由来の炭素が担持してなるリチウムイオン二次電池用正極活物質(LiFePO4、炭素の量=2.5質量%)を得た。
 [比較例1-2]
 FeSO4・7H2Oの代わりにMnSO4・5H2O 24.11gを添加した以外、比較例1-1と同様にして、グルコース由来の炭素が担持してなるリチウムイオン二次電池用正極活物質(LiMnPO4、炭素の量=2.5質量%)を得た。
 [比較例1-3]
 FeSO4・7H2O 5.56gに加え、さらにMnSO4・5H2O 19.29gを添加した以外、比較例1-1と同様にして、グルコース由来の炭素が担持してなるリチウムイオン二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=2.5質量%)を得た。
 [比較例1-4]
 FeSO4・7H2O 2.78gに加え、さらにMgSO4・7H2O 2.48gを添加した以外、比較例1-1と同様にして、グルコース由来の炭素が担持してなるリチウムイオン二次電池用正極活物質(LiFe0.1Mn0.8Mg0.1PO4、炭素の量=2.5質量%)を得た。
 [比較例1-5]
 FeSO4・7H2O 2.78gに加え、さらにZrSO4・4H2O 1.81gを添加した以外、比較例1-1と同様にして、グルコース由来の炭素が担持してなるリチウムイオン二次電池用正極活物質(LiFe0.1Mn0.8Zr0.05PO4、炭素の量=2.5質量%)を得た。
 [比較例1-6]
 実施例1-1のセルロースナノファイバーに代えてカーボンナノチューブ(多層カーボンナノチューブMWNT、SWeNT社製、長さ4μm、直径30nm、略称CNT)0.47gを添加した以外、実施例1-3と同様にして、カーボンナノチューブが担持してなるリチウムイオン二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=2.5質量%)を得た。
 [比較例1-7]
 実施例1-1のセルロースナノファイバーに代えてセルロース(結晶セルロース セオラスST-100、旭化成ケミカルズ株式会社製、粒径50μm、略称CC)1.06gを添加した以外、実施例1-3と同様にして、セルロース由来の炭素が担持してなるリチウムイオン二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=2.5質量%)を得た。
 《ラマン分光法による炭素分析1》
 ラマン分光光度計 NRS-1000(日本分光株式会社製)を用い、実施例1-3、比較例1-6及び比較例1-7で得られたリチウムイオン二次電池用正極活物質のラマンスペクトル分析を行った。得られたラマンスペクトル図のDバンドとGバンドとの強度比(G/D)を求めたところ、実施例1-3では1.2に対し、比較例1-6は2.1、比較例1-7は1.2であった。また、RBMピークは比較例1-6には存在するが、実施例1-3には存在しなかった。さらに、強度比(PO4/G)は実施例1-3では0.05に対し、比較例1-6は5.2、比較例1-7は0.12であった。
 得られたラマンスペクトル図について、実施例1-3と比較例1-7を図1に、比較例1-6を図2に示す。
 《電子顕微鏡による炭素の担持状態の観察》
 透過型電子顕微鏡 ARM200F(日本電子株式会社製)を用い、実施例1-3と比較例1-3で得られたリチウム二次電池用正極活物質の炭素の担持状態を観察した。実施例1-3では、セルロースナノファイバー由来の炭素は、酸化物粒子の一部表面に山型に存在しているのに対し、比較例1-3では、グルコース由来の炭素は、酸化物粒子の表面全部を均一に被覆していた。得られたTEM写真を図3(実施例1-3:図3中、「LMP」はLiMn0.8Fe0.2PO4粒子を表し、「C」はセルロースナノファイバー由来の炭素を表す)及び図4(比較例1-3:図4中、「LMP」はLiMn0.8Fe0.2PO4粒子を表し、「C」はグルコース由来の炭素を表す)に示す。
 本発明のセルロースナノファイバー由来の炭素は、酸化物粒子表面に立体的に存在し、この炭素が酸化物粒子間の隙間を充填する状態になることで、酸化物粒子の表面全部を均一に被覆しなくても充分な導電パスとなり、かつ密な積層構造体である活物質の形成に大いに寄与していると判断される。
 《充放電特性の評価1》
 実施例1-1~1-10及び比較例1-1~1-7で得られた正極活物質を用い、リチウムイオン二次電池又はナトリウムイオン二次電池の正極を作製した。具体的には、得られた正極活物質、ケッチェンブラック、ポリフッ化ビニリデンを重量比75:15:10の配合割合で混合し、これにN-メチル-2-ピロリドンを加えて充分混練し、正極スラリーを調製した。正極スラリーを厚さ20μmのアルミニウム箔からなる集電体に塗工機を用いて塗布し、80℃で12時間の真空乾燥を行った。その後、φ14mmの円盤状に打ち抜いてハンドプレスを用いて16MPaで2分間プレスし、正極とした。
 次いで、上記の正極を用いてコイン型二次電池を構築した。負極には、φ15mmに打ち抜いたリチウム箔を用いた。電解液には、エチレンカーボネート及びエチルメチルカーボネートを体積比1:1の割合で混合した混合溶媒に、LiPF6を1mol/Lの濃度で溶解したものを用いた。セパレータには、ポリプロピレンなどの高分子多孔フィルムなど、公知のものを用いた。これらの電池部品を露点が-50℃以下の雰囲気で常法により組み込み収容し、コイン型二次電池(CR-2032)を製造した。
 製造した二次電池を用いて定電流密度での充放電試験を行った。このときの充電条件は、電流0.1CA(17mAh/g)、電圧4.5Vの定電流充電とし、放電条件を電流3CA、終止電圧2.0Vの定電流放電とした。温度は全て30℃とした。
 得られた放電容量の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 上記結果より、セルロースナノファイバー由来の炭素が担持してなる正極活物質である実施例1-1~1-10は、優れた電池性能を発揮できることがわかる。
 [合成例1:酸化物Aの合成]
 [試験体1]
 LiOH・H2O 1272gに水 3000mLを混合してスラリー水を得た。次いで、得られたスラリー水を、25℃の温度に保持しながら5分間撹拌しつつ85%のリン酸水溶液 1274gを35mL/分で滴下し、続いて12時間、400rpmの速度で撹拌することにより、Li3PO4を含有するスラリーを得た。
 得られたスラリーに対し、FeSO4・7H2O 813g、MnSO4・H2O 1154gを添加した。
 次いで、得られた混合液をオートクレーブに投入し、170℃で1時間水熱反応を行った。オートクレーブ内の圧力は、0.8MPaであった。
 生成した結晶をろ過し、次いで結晶1質量部に対し、12質量部の水により洗浄した。
 洗浄した結晶を-50℃で12時間凍結乾燥して酸化物A(LiFe0.3Mn0.7PO4)を得た。
 [合成例2:酸化物Bの合成]
 添加するFeSO4・7H2Oを2440gに、さらにMnSO4・H2Oを165gにした以外、上記正極材料Aと同様にして、酸化物B(LiFe0.9Mn0.1PO4)を得た。
 [合成例3:酸化物Cの合成]
 LiOH・H2O 428g、Na4SiO4・nH2O 1397gに水3750mLを加えて混合した。次いで、得られたスラリー水に、FeSO4・7H2O 392g、MnSO4・5H2O 793g、及びZr(SO42・4H2O 53gを添加し、混合した。
 次いで、得られた混合液をオートクレーブに投入し、150℃で12時間水熱反応を行った。オートクレーブの圧力は0.4MPaであった。
 生成した結晶をろ過し、次いで結晶1質量部に対し、12質量部の水により洗浄した。
 洗浄した結晶を-50℃で12時間凍結乾燥して酸化物C(Li2Fe0.09Mn0.85Zr0.03SiO4)を得た。
 [合成例4:酸化物Dの合成]
 NaOH 600gに水9000mLを混合した水溶液を、25℃の温度に保持しながら5分間撹拌しつつ85%のリン酸水溶液 577gを35mL/分で滴下し、続いて12時間、400rpmの速度で撹拌することにより、Na3PO4を含有するスラリーを得た。
 得られたスラリーに対し、窒素ガスをパージして溶存酸素濃度を0.5mg/Lに調整した後、FeSO4・7H2O 139g、MnSO4・5H2O 964g、MgSO4・7H2O 124gを添加した。
 次いで、得られた混合液を窒素ガスでパージしたオートクレーブに投入し、200℃で3時間水熱反応を行った。オートクレーブ内の圧力は、1.4MPaであった。生成した結晶をろ過し、次いで結晶1質量部に対し、12質量部の水により洗浄した。
 洗浄した結晶を-50℃で12時間凍結乾燥して酸化物D(NaFe0.1Mn0.8Mg0.1PO4)を得た。
 [調製例1:スラリー水QAの調製]
 上記酸化物A(LiFe0.3Mn0.7PO4)1000gに水1220mLを混合した。次いで、得られた混合液を超音波攪拌機(T25、IKA社製)で1分間分散処理して、全体が均一に呈色するスラリー水QAを得た。
 [調製例2:スラリー水QBの調製]
 酸化物Aの代わりに酸化物B(LiFe0.9Mn0.1PO4)を使用した以外、調製例1と同様にして、酸化物Bと水からなるスラリー水QBを得た。
 [調製例3:スラリー水QCの調製]
 酸化物Aの代わりに酸化物C(Li2Fe0.09Mn0.85Zr0.03SiO4)を使用した以外、調製例1と同様にして、酸化物Cと水からなるスラリー水QCを得た。
 [調製例4:スラリー水QDの調製]
 酸化物Aの代わりに酸化物D(NaFe0.1Mn0.8Mg0.1PO4)を使用した以外、調製例1と同様にして、酸化物Dと水からなるスラリー水QDを得た。
 [調製例5:スラリー水Rの調製]
 セルロースナノファイバー(セリッシュFD-200L、ダイセルファインケム株式会社製、平均繊維径10~100nm)1119.4gに水 1250mLを混合した。次いで、得られた混合液を超音波攪拌機(T25、IKA社製)で5分間分散処理して、全体が均一な白濁度を有するスラリー水Rを得た。その後、得られたスラリー水Rを目開き150μmの篩に通過させて、セルロースナノファイバーの分散液であるスラリー水Rを得た。なお、上記篩い分けでの篩残分は認められなかった。
 [調製例6:グルコース溶液の調製]
 グルコース(試薬特級、和光純薬工業株式会社製)500gに水 333.3mLを混合して、グルコース溶液Fを得た。
 [実施例2-1]
 スラリー水QA222.2gにスラリー水R11.85gを混合して、酸化物A(LiFe0.3Mn0.7PO4)100質量部に対してセルロースナノファイバーが炭素量換算で0.5質量部混合されたスラリー水SGを得た。
 得られたスラリー水SGを、スプレードライ(MDL-050M、藤崎電機株式会社製)を用いて造粒体SGを得た。粒度分布測定装置(Microtrac X100、日機装(株)製)を用いて測定した造粒体SGのD50値は、7μmであった。
 得られた造粒体SGを、アルゴン水素雰囲気下(水素濃度3%)、700℃で1時間焼成して、セルロースナノファイバー由来の炭素が担持してなるリチウムイオン二次電池用正極活物質(LiFe0.3Mn0.7PO4、炭素の量=0.3質量%)を得た。
 [実施例2-2]
 スラリー水QA222.2gに、スラリー水R23.69gを混合した以外、実施例1-1と同様にして、酸化物A(LiFe0.3Mn0.7PO4)100質量部に対してセルロースナノファイバーが炭素量換算で1質量部混合されたスラリー水SHを得た。
 次いで、実施例2-1と同様にして、スラリー水SHから造粒体SHを得た後、これを焼成することにより、セルロースナノファイバー由来の炭素が担持してなるリチウムイオン二次電池用正極活物質(LiFe0.3Mn0.7PO4、炭素の量=0.5質量%)を得た。
 [実施例2-3]
 スラリー水QA222.2gに、スラリー水R35.54gを混合した以外、実施例2-1と同様にして、酸化物A(LiFe0.3Mn0.7PO4)100質量部に対してセルロースナノファイバーが炭素量換算で1.5質量部混合されたスラリー水SIを得た。
 次いで、実施例2-1と同様にして、スラリー水SIから造粒体SIを得た後、これを焼成することにより、セルロースナノファイバー由来の炭素が担持してなるリチウムイオン二次電池用正極活物質(LiFe0.3Mn0.7PO4、炭素の量=0.8質量%)を得た。
 [実施例2-4]
 スラリー水QA222.2gに、スラリー水R47.38gを混合した以外、実施例2-1と同様にして、酸化物A(LiFe0.3Mn0.7PO4)100質量部に対してセルロースナノファイバーが炭素量換算で2質量部混合されたスラリー水SJを得た。
 次いで、実施例2-1と同様にして、スラリー水SJから造粒体SJを得た後、これを焼成することにより、セルロースナノファイバー由来の炭素が担持してなるリチウムイオン二次電池用正極活物質(LiFe0.3Mn0.7PO4、炭素の量=1.1質量%)を得た。
 [実施例2-5]
 スラリー水QA222.2gに、スラリー水R236.9gを混合した以外、実施例2-1と同様にして、酸化物A(LiFe0.3Mn0.7PO4)100質量部に対してセルロースナノファイバーが炭素量換算で10質量部混合されたスラリー水SKを得た。
 次いで、実施例2-1と同様にして、スラリー水SKから造粒体SKを得た後、これを焼成することにより、セルロースナノファイバー由来の炭素が担持してなるリチウムイオン二次電池用正極活物質(LiFe0.3Mn0.7PO4、炭素の量=4.9質量%)を得た。
 [実施例2-6]
 スラリー水QB222.2gに、スラリー水R47.38gを混合した以外、実施例2-1と同様にして、酸化物B(LiFe0.9Mn0.1PO4)100質量部に対してセルロースナノファイバーが炭素量換算で2質量部混合されたスラリー水SLを得た。
 次いで、実施例2-1と同様にして、スラリー水SLから造粒体SLを得た後、これを焼成することにより、セルロースナノファイバー由来の炭素が担持してなるリチウムイオン二次電池用正極活物質(LiFe0.9Mn0.1PO4、炭素の量=1.0質量%)を得た。
 [実施例2-7]
 スラリー水QC222.2gに、スラリー水R47.38gを混合した以外、実施例2-1と同様にして、酸化物C(Li2Fe0.09Mn0.85Zr0.03SiO4)100質量部に対してセルロースナノファイバーが炭素量換算で2質量部混合されたスラリー水SMを得た。
 次いで、実施例2-1と同様にして、スラリー水SMから造粒体SMを得た後、これを焼成することにより、セルロースナノファイバー由来の炭素が担持してなるリチウムイオン二次電池用正極活物質(Li2Fe0.09Mn0.85Zr0.03SiO4、炭素の量=1.1質量%)を得た。
 [実施例2-8]
 スラリー水QD222.2gに、スラリー水R47.38gを混合した以外、実施例2-1と同様にして、酸化物D(NaFe0.1Mn0.8Mg0.1PO4)100質量部に対してセルロースナノファイバーが炭素量換算で2質量部混合されたスラリー水SNを得た。
 次いで、実施例2-1と同様にして、スラリー水SNから造粒体SNを得た後、これを焼成することにより、セルロースナノファイバー由来の炭素が担持してなるナトリウムイオン二次電池用正極活物質(NaFe0.1Mn0.8Mg0.1PO4、炭素の量=0.9質量%)を得た。
 [比較例2-1]
 スラリー水QA222.2gに、スラリー水R9.476gを混合した以外、実施例2-1と同様にして、酸化物A(LiFe0.3Mn0.7PO4)100質量部に対してセルロースナノファイバーが炭素量換算で0.4質量部混合されたスラリー水SOを得た。
 次いで、実施例2-1と同様にして、スラリー水SOから造粒体SOを得た後、これを焼成することにより、セルロースナノファイバー由来の炭素が担持してなるリチウムイオン二次電池用正極活物質(LiFe0.3Mn0.7PO4、炭素の量=0.2質量%)を得た。
 [比較例2-2]
 スラリー水QA222.2gに、スラリー水Rに代えてグルコース溶液F4.17gを混合した以外、実施例2-1と同様にして、酸化物A(LiFe0.3Mn0.7PO4)100質量部に対してグルコースが炭素量換算で1質量部混合されたスラリー水SPを得た。
 次いで、実施例2-1と同様にして、スラリー水SPから造粒体SPを得た後、これを焼成することにより、グルコース由来の炭素が担持してなるリチウムイオン二次電池用正極活物質(LiFe0.3Mn0.7PO4、炭素の量=0.6質量%)を得た。
 [比較例2-3]
 スラリー水QA222.2gに、スラリー水Rに代えてグルコース溶液F8.33gを混合した以外、実施例2-1と同様にして、酸化物A(LiFe0.3Mn0.7PO4)100質量部に対してグルコースが炭素量換算で2質量部混合されたスラリー水SQを得た。
 次いで、実施例2-1と同様にして、スラリー水SQから造粒体SQを得た後、これを焼成することにより、グルコース由来の炭素が担持してなるリチウムイオン二次電池用正極活物質(LiFe0.3Mn0.7PO4、炭素の量=1.1質量%)を得た。
 《ラマン分光法による炭素分析2》
 ラマン分光光度計(NRS-1000、日本分光株式会社製)を用い、実施例2-3で得られたリチウムイオン二次電池用正極活物質のラマンスペクトル分析を行った。得られたラマンスペクトル図のDバンドとGバンドとの強度比(G/D)は1.1であった。また、RBMピークは存在しなかった。さらに、PO4 3-に係わるピーク(ピーク位置:950cm-1付近)とGバンドとの強度比(PO4/G)は0.03であった。
 得られたラマンスペクトル図を図5に示す。
 《充放電特性の評価2》
 実施例2-1~2-8及び比較例2-1~2-3で得られた正極活物質を用い、充放電特性の評価1と同様にしてコイン型二次電池(CR-2032)を製造し、同様の充電条件で充放電試験を行った。
 得られた放電容量の結果を、正極活物質に担持され炭素量と共に表2に示す。
Figure JPOXMLDOC01-appb-T000002
 上記結果より、セルロースナノファイバー由来の炭素が担持してなる正極活物質である実施例2-1~2-8は、担持する炭素が少量でありながら、優れた電池性能を発揮できることがわかる。

Claims (7)

  1.  下記式(A)、(B)又は(C):
           LiFeaMnbcPO4・・・(A)
    (式(A)中、MはMg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。a、b及びcは、0≦a≦1、0≦b≦1、及び0≦c≦0.3を満たし、a及びbは同時に0ではなく、かつ2a+2b+(Mの価数)×c=2を満たす数を示す。)
           LiFeaMnbcSiO4・・・(B)
    (式(B)中、MはMg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。a、b及びcは、0≦a≦1、0≦b≦1、及び0≦c≦0.3を満たし、a及びbは同時に0ではなく、かつ2a+2b+(Mの価数)×c=2を満たす数を示す。)
           NaFegMnhiPO4・・・(C)
    (式(C)中、QはMg、Ca、Co、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。を示す。g、h及びiは、0≦g≦1、0≦h≦1、0≦i<1、及び2g+2h+(Qの価数)×i=2を満たし、かつg+h≠0を満たす数を示す。)
    で表される酸化物に、セルロースナノファイバー由来の炭素が担持してなる二次電池用正極活物質。
  2.  ラマン分光法により求められるラマンスペクトルにおいて、DバンドとGバンドとの強度比(G/D)が0.5~1.8であり、PO4 3-に係るピークとGバンドとの強度比(PO4/G)又はSiO4 4-に係るピークとGバンドとの強度比(SiO4/G)が0.01~0.10であり、かつRBMピークが存在しない、請求項1に記載の二次電池用正極活物質。
  3.  酸化物に担持してなるセルロースナノファイバー由来の炭素の原子換算量が、0.3~20質量%である請求項1又は2に記載の二次電池用正極活物質。
  4.  リチウム化合物又はナトリウム化合物、及びセルロースナノファイバーを含むスラリー水Xとリン酸化合物又はケイ酸化合物との混合物由来の複合体Xと、少なくとも鉄化合物又はマンガン化合物を含む金属塩を含有するスラリー水Yとの水熱反応物である複合体Yの、還元雰囲気下焼成物又は不活性雰囲気下焼成物である請求項1~3のいずれか1項に記載の二次電池用正極活物質。
  5.  リチウム化合物又はナトリウム化合物、リン酸化合物又はケイ酸化合物、並びに少なくとも鉄化合物又はマンガン化合物を含む金属塩の合成反応物である酸化物とセルロースナノファイバーとの造粒物である造粒体Sの、還元雰囲気下焼成物又は不活性雰囲気下焼成物である請求項1~3のいずれか1項に記載の二次電池用正極活物質。
  6.  下記式(A)、(B)又は(C):
           LiFeaMnbcPO4・・・(A)
    (式(A)中、MはMg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。a、b及びcは、0≦a≦1、0≦b≦1、及び0≦c≦0.3を満たし、a及びbは同時に0ではなく、かつ2a+2b+(Mの価数)×c=2を満たす数を示す。)
           LiFeaMnbcSiO4・・・(B)
    (式(B)中、MはMg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。a、b及びcは、0≦a≦1、0≦b≦1、及び0≦c≦0.3を満たし、a及びbは同時に0ではなく、かつ2a+2b+(Mの価数)×c=2を満たす数を示す。)
           NaFegMnhiPO4・・・(C)
    (式(C)中、QはMg、Ca、Co、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。を示す。g、h及びiは、0≦g≦1、0≦h≦1、0≦i<1、及び2g+2h+(Qの価数)×i=2を満たし、かつg+h≠0を満たす数を示す。)
    で表される酸化物に、セルロースナノファイバー由来の炭素が担持してなる二次電池用正極活物質の製造方法であって、
     リチウム化合物又はナトリウム化合物、及びセルロースナノファイバーを含むスラリー水Xに、リン酸化合物又はケイ酸化合物を混合して複合体Xを得る工程(I)、
     得られた複合体X、及び少なくとも鉄化合物又はマンガン化合物を含む金属塩を含有するスラリー水Yを水熱反応に付して、複合体Yを得る工程(II)、並びに
     得られた複合体Yを還元雰囲気又は不活性雰囲気中において焼成する工程(III)
    を備える二次電池用正極活物質の製造方法。
  7.  下記式(A)、(B)又は(C):
           LiFeaMnbcPO4・・・(A)
    (式(A)中、MはMg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。a、b及びcは、0≦a≦1、0≦b≦1、及び0≦c≦0.3を満たし、a及びbは同時に0ではなく、かつ2a+2b+(Mの価数)×c=2を満たす数を示す。)
           LiFeaMnbcSiO4・・・(B)
    (式(B)中、MはMg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。a、b及びcは、0≦a≦1、0≦b≦1、及び0≦c≦0.3を満たし、a及びbは同時に0ではなく、かつ2a+2b+(Mの価数)×c=2を満たす数を示す。)
           NaFegMnhiPO4・・・(C)
    (式(C)中、QはMg、Ca、Co、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。を示す。g、h及びiは、0≦g≦1、0≦h≦1、0≦i<1、及び2g+2h+(Qの価数)×i=2を満たし、かつg+h≠0を満たす数を示す。)
    で表される酸化物に、セルロースナノファイバー由来の炭素が担持してなる二次電池用正極活物質の製造方法であって、
     合成反応に付して得られた酸化物を含むスラリー水Qと、セルロースナノファイバーを含むスラリー水Rを混合して、スラリー水Sを得る工程(I')、
     得られたスラリー水Sをスプレードライに付して、造粒体Sを得る工程(II')、並びに
     得られた造粒体Sを還元雰囲気又は不活性雰囲気中において焼成する工程(III')
    を備える二次電池用正極活物質の製造方法。
PCT/JP2015/076084 2014-09-26 2015-09-15 二次電池用正極活物質及びその製造方法 WO2016047491A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016550115A JP6193505B2 (ja) 2014-09-26 2015-09-15 二次電池用正極活物質及びその製造方法
US15/514,217 US10461330B2 (en) 2014-09-26 2015-09-15 Positive-electrode active material for secondary cell, and method for manufacturing same
KR1020177005119A KR101992614B1 (ko) 2014-09-26 2015-09-15 이차전지용 양극활물질 및 그 제조방법
CN201580041136.XA CN106575768B (zh) 2014-09-26 2015-09-15 二次电池用正极活性物质及其制造方法
US16/515,489 US11742485B2 (en) 2014-09-26 2019-07-18 Positive-electrode active material for secondary cell, and method for manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-197025 2014-09-26
JP2014197025 2014-09-26
JP2015-116284 2015-06-09
JP2015116284 2015-06-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/514,217 A-371-Of-International US10461330B2 (en) 2014-09-26 2015-09-15 Positive-electrode active material for secondary cell, and method for manufacturing same
US16/515,489 Division US11742485B2 (en) 2014-09-26 2019-07-18 Positive-electrode active material for secondary cell, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2016047491A1 true WO2016047491A1 (ja) 2016-03-31

Family

ID=55581018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076084 WO2016047491A1 (ja) 2014-09-26 2015-09-15 二次電池用正極活物質及びその製造方法

Country Status (6)

Country Link
US (2) US10461330B2 (ja)
JP (1) JP6193505B2 (ja)
KR (1) KR101992614B1 (ja)
CN (1) CN106575768B (ja)
TW (1) TWI633698B (ja)
WO (1) WO2016047491A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016171057A (ja) * 2015-03-09 2016-09-23 太平洋セメント株式会社 二次電池用正極活物質及びその製造方法
JP2016184569A (ja) * 2015-03-26 2016-10-20 太平洋セメント株式会社 二次電池用正極活物質及びその製造方法
JP2018006156A (ja) * 2016-07-01 2018-01-11 太平洋セメント株式会社 ポリアニオン系正極活物質及びその製造方法
JP2018026302A (ja) * 2016-08-12 2018-02-15 株式会社Ihi 正極活物質、正極及びナトリウムイオン電池、並びに、正極活物質の製造方法
JP2018026253A (ja) * 2016-08-10 2018-02-15 太平洋セメント株式会社 ポリアニオン系正極活物質造粒体及びその製造方法
JP2018147854A (ja) * 2017-03-09 2018-09-20 太平洋セメント株式会社 ナノアレイ状リチウムイオン二次電池用正極活物質、及びその製造方法
JP2018155746A (ja) * 2017-03-16 2018-10-04 太平洋セメント株式会社 抵抗型酸素センサ用酸化物半導体ナノ粒子集合体、及びその製造方法
JP2018166100A (ja) * 2017-03-16 2018-10-25 太平洋セメント株式会社 リチウムイオン二次電池用負極活物質の製造方法
WO2018220972A1 (ja) * 2017-05-29 2018-12-06 太平洋セメント株式会社 リチウムイオン二次電池用正極活物質複合体及びこれを用いた二次電池、並びにリチウムイオン二次電池用正極活物質複合体の製造方法
JP2019033016A (ja) * 2017-08-09 2019-02-28 太平洋セメント株式会社 リチウムイオン二次電池用正極活物質又はナトリウムイオン二次電池用正極活物質、並びにこれらの製造方法
JP2019050105A (ja) * 2017-09-08 2019-03-28 太平洋セメント株式会社 リチウムイオン二次電池用正極活物質複合体の製造方法
JP2019125465A (ja) * 2018-01-16 2019-07-25 太平洋セメント株式会社 二次電池用正極活物質の製造方法
JP2019169323A (ja) * 2018-03-23 2019-10-03 太平洋セメント株式会社 リチウムイオン二次電池用正極活物質複合物及びその製造方法
JP2020102322A (ja) * 2018-12-20 2020-07-02 太平洋セメント株式会社 二次電池用正極活物質及びその製造方法
JP2020111859A (ja) * 2019-01-16 2020-07-27 日本電信電話株式会社 セルロースナノファイバーカーボンとその製造方法
JP2020155225A (ja) * 2019-03-18 2020-09-24 太平洋セメント株式会社 全固体リチウムイオン二次電池用複合正極活物質粒子の製造方法
JP2021057107A (ja) * 2019-09-26 2021-04-08 住友大阪セメント株式会社 リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、及びリチウムイオン二次電池
WO2021234917A1 (ja) * 2020-05-21 2021-11-25 日本電信電話株式会社 カーボン被覆リチウム酸化物の製造方法、および、カーボン被覆リチウム酸化物
JP7478587B2 (ja) 2020-05-14 2024-05-07 太平洋セメント株式会社 リチウムイオン二次電池用正極活物質粒子及びその製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106575768B (zh) * 2014-09-26 2019-07-23 太平洋水泥株式会社 二次电池用正极活性物质及其制造方法
JP6981621B2 (ja) * 2017-08-08 2021-12-15 第一工業製薬株式会社 リチウムイオン電池用電極材料、リチウムイオンキャパシタ用電極材料、電極、電池、キャパシタ、電気機器、リチウムイオン電池用電極材料の製造方法、およびリチウムイオンキャパシタ用電極材料の製造方法
KR101960453B1 (ko) * 2017-10-27 2019-03-20 한국교통대학교 산학협력단 나트륨-철-금속인산화물-탄소 복합 나노섬유 양극활물질, 이의 제조방법 및 이를 이용한 나트륨 이온 2차전지

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011134550A (ja) * 2009-12-24 2011-07-07 Sumitomo Chemical Co Ltd 電極の製造方法、電極ペーストの製造方法およびナトリウム二次電池
JP2014055085A (ja) * 2012-09-13 2014-03-27 Asahi Glass Co Ltd リン酸化合物、二次電池用正極材料、および二次電池の製造方法
JP2014091657A (ja) * 2012-11-06 2014-05-19 Taiheiyo Cement Corp 二次電池正極活物質前駆体の製造方法
JP2014096345A (ja) * 2012-10-12 2014-05-22 Taiheiyo Cement Corp 二次電池用正極材活物質の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2270771A1 (fr) 1999-04-30 2000-10-30 Hydro-Quebec Nouveaux materiaux d'electrode presentant une conductivite de surface elevee
JP2008260666A (ja) 2007-04-13 2008-10-30 Kyushu Univ ナトリウム二次電池用活物質およびその製造方法
US20090309072A1 (en) * 2008-06-13 2009-12-17 Shiaw-Min Hwang Bacterial cellulose film and carbon nanotubes-like thin film structures developed from bacterial cellulose
US8435677B2 (en) * 2008-08-05 2013-05-07 Dow Global Technologies Llc Lithium metal phosphate/carbon nanocomposites as cathode active materials for rechargeable lithium batteries
JP5509918B2 (ja) * 2009-03-27 2014-06-04 住友大阪セメント株式会社 リチウムイオン電池用正極活物質の製造方法とリチウムイオン電池用正極活物質及びリチウムイオン電池用電極並びにリチウムイオン電池
US20110008233A1 (en) 2009-07-10 2011-01-13 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material
JP5594656B2 (ja) 2009-09-30 2014-09-24 国立大学法人名古屋大学 リチウムイオン二次電池の正極材の製造方法
KR20120039472A (ko) * 2010-10-15 2012-04-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 축전 장치용 정극 활물질의 제작 방법
WO2012074040A1 (ja) 2010-12-02 2012-06-07 学校法人日本大学 ビグアニド誘導体化合物
JP2014201459A (ja) * 2013-04-02 2014-10-27 Jfeケミカル株式会社 リン酸鉄リチウムの製造方法
JP6125916B2 (ja) * 2013-06-11 2017-05-10 デンカ株式会社 導電性複合粒子、およびそれを用いた二次電池用正極、二次電池
US9742028B2 (en) * 2013-08-21 2017-08-22 GM Global Technology Operations LLC Flexible membranes and coated electrodes for lithium based batteries
CN106575768B (zh) * 2014-09-26 2019-07-23 太平洋水泥株式会社 二次电池用正极活性物质及其制造方法
KR102289992B1 (ko) * 2015-03-09 2021-08-18 다이헤이요 세멘토 가부시키가이샤 이차전지용 양극 활물질 및 그 제조방법
WO2018220972A1 (ja) * 2017-05-29 2018-12-06 太平洋セメント株式会社 リチウムイオン二次電池用正極活物質複合体及びこれを用いた二次電池、並びにリチウムイオン二次電池用正極活物質複合体の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011134550A (ja) * 2009-12-24 2011-07-07 Sumitomo Chemical Co Ltd 電極の製造方法、電極ペーストの製造方法およびナトリウム二次電池
JP2014055085A (ja) * 2012-09-13 2014-03-27 Asahi Glass Co Ltd リン酸化合物、二次電池用正極材料、および二次電池の製造方法
JP2014096345A (ja) * 2012-10-12 2014-05-22 Taiheiyo Cement Corp 二次電池用正極材活物質の製造方法
JP2014091657A (ja) * 2012-11-06 2014-05-19 Taiheiyo Cement Corp 二次電池正極活物質前駆体の製造方法

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016171057A (ja) * 2015-03-09 2016-09-23 太平洋セメント株式会社 二次電池用正極活物質及びその製造方法
JP2016184569A (ja) * 2015-03-26 2016-10-20 太平洋セメント株式会社 二次電池用正極活物質及びその製造方法
JP2018006156A (ja) * 2016-07-01 2018-01-11 太平洋セメント株式会社 ポリアニオン系正極活物質及びその製造方法
JP2018026253A (ja) * 2016-08-10 2018-02-15 太平洋セメント株式会社 ポリアニオン系正極活物質造粒体及びその製造方法
JP2018026302A (ja) * 2016-08-12 2018-02-15 株式会社Ihi 正極活物質、正極及びナトリウムイオン電池、並びに、正極活物質の製造方法
JP2018147854A (ja) * 2017-03-09 2018-09-20 太平洋セメント株式会社 ナノアレイ状リチウムイオン二次電池用正極活物質、及びその製造方法
JP2021052007A (ja) * 2017-03-09 2021-04-01 太平洋セメント株式会社 ナノアレイ状リチウムイオン二次電池用正極活物質
JP2018156935A (ja) * 2017-03-16 2018-10-04 太平洋セメント株式会社 ナノアレイ状リチウムイオン二次電池用正極活物質、及びその製造方法
JP2018155746A (ja) * 2017-03-16 2018-10-04 太平洋セメント株式会社 抵抗型酸素センサ用酸化物半導体ナノ粒子集合体、及びその製造方法
JP2018166100A (ja) * 2017-03-16 2018-10-25 太平洋セメント株式会社 リチウムイオン二次電池用負極活物質の製造方法
JP2018154545A (ja) * 2017-03-16 2018-10-04 太平洋セメント株式会社 ナノ粒子集合体、ナノ粒子焼成物、及びこれらの製造方法
JPWO2018221263A1 (ja) * 2017-05-29 2019-06-27 太平洋セメント株式会社 リチウムイオン二次電池用正極活物質複合体及びこれを用いた二次電池、並びにリチウムイオン二次電池用正極活物質複合体の製造方法
WO2018221263A1 (ja) * 2017-05-29 2018-12-06 太平洋セメント株式会社 リチウムイオン二次電池用正極活物質複合体及びこれを用いた二次電池、並びにリチウムイオン二次電池用正極活物質複合体の製造方法
WO2018220972A1 (ja) * 2017-05-29 2018-12-06 太平洋セメント株式会社 リチウムイオン二次電池用正極活物質複合体及びこれを用いた二次電池、並びにリチウムイオン二次電池用正極活物質複合体の製造方法
US10868295B2 (en) 2017-05-29 2020-12-15 Taiheiyo Cement Corporation Positive electrode active material complex for lithium-ion secondary battery, secondary battery using same, and method for producing positive electrode active material complex for lithium-ion secondary battery
JP2019033016A (ja) * 2017-08-09 2019-02-28 太平洋セメント株式会社 リチウムイオン二次電池用正極活物質又はナトリウムイオン二次電池用正極活物質、並びにこれらの製造方法
JP2019050105A (ja) * 2017-09-08 2019-03-28 太平洋セメント株式会社 リチウムイオン二次電池用正極活物質複合体の製造方法
JP2019125465A (ja) * 2018-01-16 2019-07-25 太平洋セメント株式会社 二次電池用正極活物質の製造方法
JP2019169323A (ja) * 2018-03-23 2019-10-03 太平洋セメント株式会社 リチウムイオン二次電池用正極活物質複合物及びその製造方法
JP2020102322A (ja) * 2018-12-20 2020-07-02 太平洋セメント株式会社 二次電池用正極活物質及びその製造方法
JP7158269B2 (ja) 2018-12-20 2022-10-21 太平洋セメント株式会社 二次電池用正極活物質及びその製造方法
JP2020111859A (ja) * 2019-01-16 2020-07-27 日本電信電話株式会社 セルロースナノファイバーカーボンとその製造方法
JP7273286B2 (ja) 2019-01-16 2023-05-15 日本電信電話株式会社 セルロースナノファイバーカーボンとその製造方法
JP7152974B2 (ja) 2019-03-18 2022-10-13 太平洋セメント株式会社 全固体リチウムイオン二次電池用複合正極活物質粒子の製造方法
JP2020155225A (ja) * 2019-03-18 2020-09-24 太平洋セメント株式会社 全固体リチウムイオン二次電池用複合正極活物質粒子の製造方法
JP2021057107A (ja) * 2019-09-26 2021-04-08 住友大阪セメント株式会社 リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、及びリチウムイオン二次電池
JP7478587B2 (ja) 2020-05-14 2024-05-07 太平洋セメント株式会社 リチウムイオン二次電池用正極活物質粒子及びその製造方法
WO2021234917A1 (ja) * 2020-05-21 2021-11-25 日本電信電話株式会社 カーボン被覆リチウム酸化物の製造方法、および、カーボン被覆リチウム酸化物
JP7464879B2 (ja) 2020-05-21 2024-04-10 日本電信電話株式会社 電池用カーボン被覆リチウム酸化物の製造方法、および、電池用カーボン被覆リチウム酸化物

Also Published As

Publication number Publication date
US20190348680A1 (en) 2019-11-14
US10461330B2 (en) 2019-10-29
CN106575768A (zh) 2017-04-19
JPWO2016047491A1 (ja) 2017-04-27
TW201618357A (zh) 2016-05-16
KR20170063540A (ko) 2017-06-08
KR101992614B1 (ko) 2019-06-25
TWI633698B (zh) 2018-08-21
CN106575768B (zh) 2019-07-23
JP6193505B2 (ja) 2017-09-06
US20170301919A1 (en) 2017-10-19
US11742485B2 (en) 2023-08-29

Similar Documents

Publication Publication Date Title
JP6193505B2 (ja) 二次電池用正極活物質及びその製造方法
JP6163579B1 (ja) ポリアニオン正極活物質及びその製造方法
JP6042511B2 (ja) 二次電池用正極活物質及びその製造方法
JP7158269B2 (ja) 二次電池用正極活物質及びその製造方法
JP6357193B2 (ja) ポリアニオン系正極活物質及びその製造方法
JP6527201B2 (ja) リチウムイオン二次電池用正極活物質複合体の製造方法
JP6180568B1 (ja) ポリアニオン正極活物質及びその製造方法
JP2019033016A (ja) リチウムイオン二次電池用正極活物質又はナトリウムイオン二次電池用正極活物質、並びにこれらの製造方法
JP2017142967A (ja) ポリアニオン正極活物質の製造方法
WO2016143171A1 (ja) 二次電池用正極活物質及びその製造方法
JP7108504B2 (ja) 混合正極活物質用オリビン型リチウム系酸化物一次粒子及びその製造方法
JP6042512B2 (ja) 二次電池用正極活物質及びその製造方法
JP6273327B1 (ja) ポリアニオン系正極活物質造粒体及びその製造方法
JP2019050105A (ja) リチウムイオン二次電池用正極活物質複合体の製造方法
JP6394391B2 (ja) ポリアニオン系正極活物質複合体粒子の製造方法
JP6527972B1 (ja) 二次電池用正極活物質の製造方法
JP6322730B1 (ja) リチウムイオン二次電池用正極活物質及びその製造方法
JP2020102321A (ja) 二次電池用正極活物質及びその製造方法
JP6322729B1 (ja) リチウムイオン二次電池用正極活物質及びその製造方法
JP6590973B2 (ja) リチウムイオン二次電池用正極活物質複合物及びその製造方法
JP2016058237A (ja) リチウムイオン二次電池用正極材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15844213

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016550115

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177005119

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15514217

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15844213

Country of ref document: EP

Kind code of ref document: A1