WO2016143171A1 - 二次電池用正極活物質及びその製造方法 - Google Patents

二次電池用正極活物質及びその製造方法 Download PDF

Info

Publication number
WO2016143171A1
WO2016143171A1 PCT/JP2015/076384 JP2015076384W WO2016143171A1 WO 2016143171 A1 WO2016143171 A1 WO 2016143171A1 JP 2015076384 W JP2015076384 W JP 2015076384W WO 2016143171 A1 WO2016143171 A1 WO 2016143171A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
composite
positive electrode
electrode active
active material
Prior art date
Application number
PCT/JP2015/076384
Other languages
English (en)
French (fr)
Inventor
弘樹 山下
智紀 初森
充志 中村
大神 剛章
Original Assignee
太平洋セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015177532A external-priority patent/JP6023295B2/ja
Priority claimed from JP2015177531A external-priority patent/JP6042512B2/ja
Priority claimed from JP2015177530A external-priority patent/JP6042511B2/ja
Application filed by 太平洋セメント株式会社 filed Critical 太平洋セメント株式会社
Priority to KR1020177023595A priority Critical patent/KR20170127422A/ko
Priority to CN201580077600.0A priority patent/CN107408693B/zh
Priority to EP15884656.8A priority patent/EP3270447B1/en
Priority to US15/556,936 priority patent/US11646405B2/en
Priority to KR1020217007063A priority patent/KR102289992B1/ko
Publication of WO2016143171A1 publication Critical patent/WO2016143171A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode for a secondary battery in which graphite, carbon obtained by carbonizing a water-soluble carbon material, or metal fluoride is supported on a composite containing oxide and carbon obtained by carbonizing cellulose nanofibers.
  • the present invention relates to an active material and a manufacturing method thereof.
  • lithium ion secondary batteries are widely known as the most excellent secondary batteries that operate near room temperature.
  • lithium-containing olivine-type phosphate metal salts such as Li (Fe, Mn) PO 4 and Li 2 (Fe, Mn) SiO 4 are more resource-constrained than lithium transition metal oxides such as LiCoO 2. Therefore, it is possible to exhibit high safety, and therefore, it is an optimum positive electrode material for obtaining a high-output and large-capacity lithium ion secondary battery.
  • these compounds have the property that it is difficult to sufficiently increase the conductivity due to the crystal structure, and there is room for improvement in the diffusibility of lithium ions. Has been made.
  • Patent Document 1 an attempt is made to improve the performance of the obtained battery by making primary crystal particles ultrafine particles and shortening the lithium ion diffusion distance in the olivine-type positive electrode active material.
  • Patent Document 2 a conductive carbonaceous material is uniformly deposited on the particle surface of the positive electrode active material, and a regular electric field distribution is obtained on the particle surface to increase the output of the battery.
  • lithium ion secondary batteries which are spreading, it is known that the internal resistance gradually increases when the battery is left for a long time after charging, and the battery performance is deteriorated.
  • Patent Document 4 While it is desired to reduce the water content of the positive electrode active material, for example, in Patent Document 4, after the firing treatment of the raw material mixture containing the carbonaceous material precursor, the pulverization treatment and the classification treatment are dried.
  • a technique for reducing the water content to a certain value or less by performing in an atmosphere is disclosed.
  • Patent Document 5 considers that an active material obtained using primary particles having an increased specific surface area may be sensitive to deterioration due to moist air when the surface is coated with carbon.
  • a technique is disclosed in which a predetermined raw material is subjected to a synthesis reaction in a dry atmosphere to maintain a humidity level below a certain level during manufacture, storage, and use of a positive electrode material.
  • Patent Document 6 a predetermined lithium phosphate compound, lithium silicate compound, and the like and a conductive carbon material are mixed by a wet ball mill, and then a mechanochemical treatment is performed, so that the conductive carbon material is uniformly formed on the surface.
  • a technique for obtaining a composite oxide obtained by deposition is also disclosed.
  • Patent Document 7 discloses a sodium secondary battery active material using marisite-type NaMnPO 4
  • Patent Document 8 discloses a positive electrode active material containing sodium phosphate transition metal having an olivine structure. Substances are disclosed, and any literature shows that a high-performance sodium ion secondary battery can be obtained.
  • JP 2010-251302 A JP 2001-15111 A JP 2013-152911 A JP 2003-292309 A Special table 2010-508234 gazette US Patent Application Publication No. 2004/0140458 JP 2008-260666 A JP 2011-34963 A
  • the process up to obtaining the battery may be complicated, for example, through a drying process for reducing the water content of the positive electrode active material.
  • the surface of the lithium acid compound or the like is not sufficiently covered with the carbon source, and a part of the surface is exposed.
  • a lithium ion secondary battery but realization of a more useful sodium ion secondary battery as an alternative battery of this lithium ion secondary battery is also desired.
  • an object of the present invention is to effectively reduce the water content while giving the positive electrode active material the property of hardly adsorbing moisture in order to obtain a high-performance lithium ion secondary battery or sodium ion secondary battery.
  • the present invention provides a positive electrode active material for a secondary battery and a method for producing the same.
  • the present inventors have made various studies and found that a specific amount of graphite and a specific amount of carbonized water-soluble carbon material are combined with a composite containing a specific oxide and carbon obtained by carbonizing cellulose nanofibers. If it is a positive electrode active material for a secondary battery on which carbon or a specific amount of metal fluoride is supported, the amount of water can be effectively reduced, and lithium ions or sodium ions can effectively carry electrical conduction. It has been found that it is extremely useful as a positive electrode active material for a secondary battery, and the present invention has been completed.
  • the present invention includes at least the following formula (A), (B) or (C) containing iron or manganese: LiFe a Mn b M c PO 4 (A) (In the formula (A), M represents Mg, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd.
  • Li 2 Fe d Mn e N f SiO 4 (B) (In the formula (B), N represents Ni, Co, Al, Zn, V, or Zr.
  • D, e, and f are 0 ⁇ d ⁇ 1, 0 ⁇ e ⁇ 1, and 0 ⁇ f ⁇ 1, 2d + 2e +.
  • the present invention provides the following formula (A), (B) or (C) containing at least iron or manganese: LiFe a Mn b M c PO 4 (A) (In the formula (A), M represents Mg, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd.
  • Li 2 Fe d Mn e N f SiO 4 (B) (In the formula (B), N represents Ni, Co, Al, Zn, V, or Zr.
  • D, e, and f are 0 ⁇ d ⁇ 1, 0 ⁇ e ⁇ 1, and 0 ⁇ f ⁇ 1, 2d + 2e +.
  • Step (III-1) for obtaining composite (Z-1) by adding graphite to the obtained composite (Y-1) and mixing for 6 to 90 minutes while applying compressive force and shearing force, and obtaining Step of firing the obtained composite (Z-1) in a reducing atmosphere or an inert atmosphere (IV-1) The manufacturing method of the positive electrode active material for secondary batteries provided with this is provided.
  • the present invention provides the following formula (A), (B) or (C) containing at least iron or manganese: LiFe a Mn b M c PO 4 (A) (In the formula (A), M represents Mg, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd.
  • Li 2 Fe d Mn e N f SiO 4 (B) (In the formula (B), N represents Ni, Co, Al, Zn, V, or Zr.
  • D, e, and f are 0 ⁇ d ⁇ 1, 0 ⁇ e ⁇ 1, and 0 ⁇ f ⁇ 1, 2d + 2e +.
  • a specific amount of graphite, carbon obtained by carbonizing a water-soluble carbon material, or metal fluoride is supported on a composite containing a predetermined oxide and carbon obtained by carbonizing cellulose nanofibers.
  • graphite and a water-soluble carbon material are carbonized in a part of the composite surface in a part where the carbon obtained by carbonizing the cellulose nanofiber does not exist and the oxide is exposed.
  • the positive electrode active material for a secondary battery in which the exposed portion on the oxide surface is effectively reduced can be obtained.
  • the positive electrode active material for a secondary battery of the present invention has the following formula (A), (B) or (C) containing at least iron or manganese: LiFe a Mn b M c PO 4 (A) (In the formula (A), M represents Mg, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd.
  • Li 2 Fe d Mn e N f SiO 4 (B) (In the formula (B), N represents Ni, Co, Al, Zn, V, or Zr.
  • D, e, and f are 0 ⁇ d ⁇ 1, 0 ⁇ e ⁇ 1, and 0 ⁇ f ⁇ 1, 2d + 2e +.
  • a composite containing an oxide represented by and carbon obtained by carbonizing cellulose nanofibers 0.3 to 5% by mass of graphite, 0.1 to 4% by mass of carbon obtained by carbonizing a water-soluble carbon material, or 0.1 to 5% by mass of metal fluoride is supported. That is, as the positive electrode active material for a secondary battery of the present invention, specifically, for example, a composite containing 0.3 to 5% by mass of the oxide and carbon obtained by carbonizing cellulose nanofibers is used.
  • a composite comprising the positive electrode active material for secondary battery (P-1) on which graphite is supported, the oxide and carbon obtained by carbonizing cellulose nanofibers, and a water-soluble carbon material is carbonized.
  • a composite containing a positive electrode active material (P-2a) for a secondary battery in which 1 to 4% by mass of carbon is supported and carbon obtained by carbonizing the oxide and cellulose nanofibers 0.1 to Examples include a positive electrode active material (P-2b) for a secondary battery in which 5% by mass of a metal fluoride is supported.
  • the oxide used in the present invention contains at least iron or manganese and has the following formula (A), (B) or (C): LiFe a Mn b M c PO 4 (A) (In the formula (A), M represents Mg, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd.
  • Li 2 Fe d Mn e N f SiO 4 (B) (In the formula (B), N represents Ni, Co, Al, Zn, V, or Zr.
  • D, e, and f are 0 ⁇ d ⁇ 1, 0 ⁇ e ⁇ 1, 0 ⁇ f ⁇ 1, and 2d + 2e +.
  • oxides all have an olivine structure and contain at least iron or manganese.
  • oxide represented by the above formula (A) or (B) a positive electrode active material for a lithium ion battery is obtained, and when the oxide represented by the above formula (C) is used.
  • a positive electrode active material for a sodium ion battery is obtained.
  • the oxide represented by the above formula (A) is an olivine-type transition metal lithium compound containing at least iron (Fe) and manganese (Mn) as so-called transition metals.
  • M represents Mg, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd, and is preferably Mg, Zr, Mo, or Co.
  • a is 0 ⁇ a ⁇ 1, preferably 0.01 ⁇ a ⁇ 0.99, and more preferably 0.1 ⁇ a ⁇ 0.9.
  • b is 0 ⁇ b ⁇ 1, preferably 0.01 ⁇ b ⁇ 0.99, and more preferably 0.1 ⁇ b ⁇ 0.9.
  • olivine-type transition metal lithium compound represented by the above formula (A) include LiFe 0.2 Mn 0.8 PO 4 , LiFe 0.9 Mn 0.1 PO 4 , LiFe 0.15 Mn 0.75 Mg 0.1 PO 4 , LiFe Examples include 0.19 Mn 0.75 Zr 0.03 PO 4 , and among them, LiFe 0.2 Mn 0.8 PO 4 is preferable.
  • the oxide represented by the above formula (B) is a so-called olivine-type transition metal lithium compound containing at least iron (Fe) and manganese (Mn) as transition metals.
  • N represents Ni, Co, Al, Zn, V, or Zr, and is preferably Co, Al, Zn, V, or Zr.
  • d is 0 ⁇ d ⁇ 1, preferably 0 ⁇ d ⁇ 1, and more preferably 0.1 ⁇ d ⁇ 0.6.
  • e is 0 ⁇ d ⁇ 1, preferably 0 ⁇ e ⁇ 1, and more preferably 0.1 ⁇ e ⁇ 0.6.
  • f is 0 ⁇ f ⁇ 1, preferably 0 ⁇ f ⁇ 1, and more preferably 0.05 ⁇ f ⁇ 0.4.
  • olivine-type transition metal lithium compound represented by the above formula (B) include, for example, Li 2 Fe 0.45 Mn 0.45 Co 0.1 SiO 4 , Li 2 Fe 0.36 Mn 0.54 Al 0.066 SiO 4 , Li 2 Fe 0.45 Mn 0.45 Zn 0.1 SiO 4 , Li 2 Fe 0.36 Mn 0.54 V 0.066 SiO 4 , Li 2 Fe 0.282 Mn 0.658 Zr 0.02 SiO 4 and the like can be mentioned, among which Li 2 Fe 0.282 Mn 0.658 Zr 0.02 SiO 4 is preferable.
  • the oxide represented by the formula (C) is an olivine-type transition metal sodium phosphate compound containing iron (Fe) and manganese (Mn) as at least transition metals.
  • Q represents Mg, Ca, Co, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd, and is preferably Mg, Zr, Mo, or Co.
  • g is 0 ⁇ g ⁇ 1, and preferably 0 ⁇ g ⁇ 1.
  • h is 0 ⁇ h ⁇ 1, and preferably 0.5 ⁇ h ⁇ 1.
  • i is 0 ⁇ i ⁇ 1, preferably 0 ⁇ i ⁇ 0.5, and more preferably 0 ⁇ i ⁇ 0.3.
  • olivine-type transition metal sodium phosphate compound represented by the above formula (C) include, for example, NaFe 0.2 Mn 0.8 PO 4 , NaFe 0.9 Mn 0.1 PO 4 , NaFe 0.15 Mn 0.7 Mg 0.15 PO 4 , NaFe Examples include 0.19 Mn 0.75 Zr 0.03 PO 4 , NaFe 0.19 Mn 0.75 Mo 0.03 PO 4 , NaFe 0.15 Mn 0.7 Co 0.15 PO 4 , and NaFe 0.2 Mn 0.8 PO 4 is preferred.
  • the positive electrode active material for a secondary battery of the present invention includes a composite containing an oxide represented by the above formula (A), (B) or (C) and carbon obtained by carbonizing cellulose nanofibers, and graphite. Further, carbon obtained by carbonizing a water-soluble carbon material or a metal fluoride is supported. That is, it is obtained by using cellulose nanofibers as a carbon source, and the cellulose nanofibers contained in the composite (primary particles) containing oxides and cellulose nanofibers are carbonized carbon (cellulose nanofibers). (Derived carbon) is firmly supported on the oxide.
  • Cellulose nanofiber is a skeletal component that occupies about 50% of all plant cell walls, and is a lightweight high-strength fiber that can be obtained by defibrating plant fibers constituting such cell walls to nano size, It also has good dispersibility in water.
  • the cellulose molecular chain constituting the cellulose nanofiber has a periodic structure formed of carbon, it is carbonized and firmly supported on the oxide, so that graphite and water-soluble carbon material are carbonized.
  • carbon carbon derived from a water-soluble carbon material
  • a metal fluoride a useful positive electrode active material that can effectively improve discharge characteristics in the obtained secondary battery can be obtained.
  • the cellulose nanofiber that can be used is not particularly limited as long as it is obtained by defibrating the plant fiber constituting the plant cell wall to nano size, for example, serisch KY-100S (manufactured by Daicel Finechem), etc. Commercial products can be used.
  • the fiber diameter of the cellulose nanofiber is preferably 4 to 500 nm, more preferably 5 to 400 nm, and still more preferably 10 to 300 nm, from the viewpoint of firmly supporting the above-mentioned oxide.
  • the cellulose nanofibers are then carbonized and present in the positive electrode active material for a secondary battery of the present invention as carbon supported on the oxide.
  • the carbon atom equivalent amount of the cellulose nanofiber is preferably 0.5 to 15% by mass, more preferably 0.7 to 10% by mass in the positive electrode active material for a secondary battery of the present invention. More specifically, in the positive electrode active material for secondary batteries in which the oxide is represented by the above formula (A) or (C), preferably 0.5 to 5% by mass in the positive electrode active material for secondary batteries. More preferably, it is 0.7 to 3.5% by mass. In the positive electrode active material for a secondary battery in which the oxide is represented by the above formula (B), it is preferably 0.5 to 15% by mass. More preferably, it is 1 to 10% by mass.
  • the carbon atom equivalent amount of cellulose nanofibers present in the positive electrode active material for secondary batteries is calculated based on the amount of carbon measured using a carbon / sulfur analyzer in the case of the positive electrode active material for secondary batteries (P-1). Is obtained by subtracting the amount of graphite added later, and in the case of the positive electrode active material for secondary batteries (P-2a), by subtracting the carbon amount of the water-soluble carbon material added later, In the case of the positive electrode active material for secondary batteries (P-2b), it can be confirmed by the carbon amount.
  • the composite (primary particles) containing the oxide and the cellulose nanofiber contains a lithium compound or a sodium compound, a phosphoric acid compound or a silicic acid compound, and at least an iron compound or a manganese compound. It is preferable that it is obtained by subjecting slurry water containing fibers to a hydrothermal reaction. That is, the composite (primary particles) is a hydrothermal reaction product of slurry water containing a lithium compound or a sodium compound, a phosphoric acid compound or a silicic acid compound, and at least an iron compound or a manganese compound, and containing cellulose nanofibers. Preferably there is.
  • the secondary battery positive electrode active material of the present invention is a secondary battery in which 0.3 to 5% by mass of graphite is supported on a composite containing the oxide and carbon obtained by carbonizing cellulose nanofibers.
  • the positive electrode active material (P-1) for a secondary battery is obtained by using cellulose nanofibers and graphite as a carbon source, and is included in the composite. Both carbon obtained by carbonizing the cellulose nanofiber and graphite are firmly supported on the oxide.
  • the graphite supported on the oxide represented by the above formula (A), (B) or (C) may be any of artificial graphite (scale-like, massive, earthy, graphene) or natural graphite.
  • the BET specific surface area of the graphite that can be used is preferably 1 to 750 m 2 / g, more preferably 3 to 500 m 2 / g, from the viewpoint of effectively reducing the amount of adsorbed moisture.
  • the average particle size of such graphite is preferably 0.5 to 20 ⁇ m, more preferably 1.0 to 15 ⁇ m.
  • the oxide may be added to a mixture (X-1) containing a lithium compound or a sodium compound and cellulose nanofibers, a phosphoric acid compound or A step (I-1) for obtaining a composite (X-1) by mixing a silicate compound, and a slurry containing the obtained composite (X-1) and a metal salt containing at least an iron compound or a manganese compound A step of subjecting water (Y-1) to a hydrothermal reaction to obtain a composite (Y-1) (II-1) It is preferable that it is obtained by a manufacturing method provided with.
  • Step (I-1) is a step of obtaining a composite (X-1) by mixing a phosphoric acid compound or a silicic acid compound with a mixture (X-1) containing a lithium compound or sodium compound and cellulose nanofibers.
  • the lithium compound or sodium compound that can be used include hydroxides (for example, LiOH.H 2 O, NaOH), carbonates, sulfates, and acetates. Of these, hydroxide is preferable.
  • the content of the lithium compound or silicate compound in the mixture (X-1) is preferably 5 to 50 parts by mass, more preferably 7 to 45 parts by mass with respect to 100 parts by mass of water.
  • the content of the lithium compound or sodium compound in the mixture (X-1) is preferably 5 to 50 with respect to 100 parts by mass of water. Part by mass, more preferably 10 to 45 parts by mass.
  • the content of the silicate compound in the mixture (X-1) is preferably 5 to 40 parts by mass, more preferably 7 to 35 parts by mass with respect to 100 parts by mass of water. It is.
  • the content of cellulose nanofibers in the mixture (X-1) is preferably 0.5 to 60 parts by mass, more preferably 0.8 to 100 parts by mass with respect to 100 parts by mass of water in the mixture (X-1), for example. 40 parts by mass. More specifically, when a phosphoric acid compound is used in step (I-1), the content of cellulose nanofibers in the mixture (X-1) is preferably 0.5 to 20 parts by mass, more preferably Is 0.8 to 15 parts by mass. When a silicate compound is used, the content of cellulose nanofibers in the mixture (X-1) is preferably 0.5 to 60 parts by mass, more preferably 1 to 40 parts by mass.
  • the stirring time of the mixture (X-1) is preferably 1 to 15 minutes, more preferably 3 to 10 minutes.
  • the temperature of the mixture (X-1) is preferably 20 to 90 ° C, more preferably 20 to 70 ° C.
  • Examples of the phosphoric acid compound used in the step (I-1) include orthophosphoric acid (H 3 PO 4 , phosphoric acid), metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid, ammonium phosphate, and ammonium hydrogen phosphate. Can be mentioned. Of these, phosphoric acid is preferably used, and an aqueous solution having a concentration of 70 to 90% by mass is preferably used. In the step (I-1), when phosphoric acid is mixed into the mixture (X-1), it is preferable to add phosphoric acid dropwise while stirring the mixture (X-1).
  • the dropping rate of phosphoric acid into the mixture (X-1) is preferably 15 to 50 mL / min, more preferably 20 to 45 mL / min, and further preferably 28 to 40 mL / min.
  • the stirring time of the mixture (X-1) while dropping phosphoric acid is preferably 0.5 to 24 hours, and more preferably 3 to 12 hours.
  • the stirring speed of the mixture (X-1) while dropping phosphoric acid is preferably 200 to 700 rpm, more preferably 250 to 600 rpm, and further preferably 300 to 500 rpm.
  • the silicic acid compound used in the step (I-1) is not particularly limited as long as it is a reactive silica compound, and amorphous silica, Na 4 SiO 4 (for example, Na 4 SiO 4 .H 2 O), etc. may be used. Can be mentioned.
  • the mixture (X-1) after mixing the phosphoric acid compound or silicic acid compound preferably contains 2.0 to 4.0 mol of lithium or sodium per mol of phosphoric acid or silicic acid.
  • the content is preferably 0 to 3.1 mol, and the above lithium compound or sodium compound and the phosphoric acid compound or silicic acid compound may be used so as to obtain such an amount.
  • the mixture (X-1) after mixing the phosphoric acid compound contains 2. lithium or sodium with respect to 1 mol of phosphoric acid.
  • the content is preferably 7 to 3.3 mol, more preferably 2.8 to 3.1 mol, and when the silicate compound is used in step (I-1), the silicate compound is mixed.
  • the mixture (X-1) preferably contains 2.0 to 4.0 moles of lithium, more preferably 2.0 to 3.0 moles per mole of silicic acid.
  • the reaction in the mixture is completed, and the compounds represented by the above (A) to (C) are obtained.
  • a composite (X-1) which is a precursor of an oxide is formed in the mixture.
  • the reaction can proceed in a state where the dissolved oxygen concentration in the mixture (X-1) is reduced, and the dissolved oxygen in the mixture containing the resulting complex (X-1) Since the concentration is also effectively reduced, oxidation of iron compounds, manganese compounds, etc. added in the next step can be suppressed.
  • the precursors of the oxides represented by the above (A) to (C) are present as fine dispersed particles.
  • the composite (X-1) is obtained as a composite of trilithium phosphate (Li 3 PO 4 ) and cellulose nanofiber.
  • the pressure for purging nitrogen is preferably 0.1 to 0.2 MPa, more preferably 0.1 to 0.15 MPa.
  • the temperature of the mixture (X-1) after mixing the phosphoric acid compound or silicic acid compound is preferably 20 to 80 ° C., more preferably 20 to 60 ° C.
  • the reaction time is preferably 5 to 60 minutes, more preferably 15 to 45 minutes.
  • the stirring speed at this time is preferably 200 to 700 rpm, more preferably 250 to 600 rpm.
  • the mixture (X-1) after mixing the phosphoric acid compound or the silicic acid compound. ) Is preferably 0.5 mg / L or less, more preferably 0.2 mg / L or less.
  • step (II-1) slurry water (Y-1) containing the composite (X-1) obtained in step (I-1) and a metal salt containing at least an iron compound or a manganese compound is hydrothermally treated.
  • the complex (Y-1) is obtained by the reaction.
  • the composite (X-1) obtained by the step (I-1) is used as a precursor of the oxide represented by the above (A) to (C) as a mixture, and at least an iron compound or It is preferable to add a metal salt containing a manganese compound and use it as slurry water (Y-1).
  • the oxides represented by the above (A) to (C) become very fine particles, and carbon derived from cellulose nanofibers can be efficiently converted into such oxides in the subsequent process. It becomes possible to carry
  • iron compounds examples include iron acetate, iron nitrate, and iron sulfate. These may be used alone or in combination of two or more. Among these, iron sulfate is preferable from the viewpoint of improving battery characteristics.
  • manganese compounds examples include manganese acetate, manganese nitrate, and manganese sulfate. These may be used alone or in combination of two or more. Among these, manganese sulfate is preferable from the viewpoint of improving battery characteristics.
  • the use molar ratio of these manganese compound and iron compound is preferably 99: 1 to 1:99, more preferably 90. : 10 to 10:90.
  • the total addition amount of these iron compound and manganese compound is preferably 0.99 to 1.01 mol, more preferably 1 mol with respect to 1 mol of Li 3 PO 4 contained in the slurry water (Y-1). Is 0.995 to 1.005 mol.
  • metal (M, N, or Q) salts other than an iron compound and a manganese compound as a metal salt as needed.
  • M, N, and Q in the metal (M, N, or Q) salt have the same meanings as M, N, and Q in the above formulas (A) to (C), and as the metal salt, sulfate, halogen compound, organic Acid salts and hydrates thereof can be used. These may be used alone or in combination of two or more. Among them, it is more preferable to use a sulfate from the viewpoint of improving battery physical properties.
  • the amount is preferably 0.99 to 1.01 mol, more preferably 0.995 to 1.005 mol, per mol of phosphoric acid or silicic acid.
  • the amount of water used for the hydrothermal reaction is phosphoric acid contained in the slurry water (Y-1) from the viewpoints of solubility of the metal salt used, ease of stirring, efficiency of synthesis, etc.
  • the amount is preferably 10 to 50 mol, more preferably 12.5 to 45 mol per mol of silicate ion. More specifically, when the ions contained in the slurry water (Y-1) are phosphate ions, the amount of water used for the hydrothermal reaction is preferably 10 to 30 mol, More preferably, it is 12.5 to 25 mol.
  • the amount of water used for the hydrothermal reaction is preferably 10 to 50 mol, more preferably 12 .5 to 45 moles.
  • the order of addition of the iron compound, manganese compound and metal (M, N or Q) salt is not particularly limited. Moreover, while adding these metal salts, you may add antioxidant as needed. As such an antioxidant, sodium sulfite (Na 2 SO 3 ), hydrosulfite sodium (Na 2 S 2 O 4 ), aqueous ammonia and the like can be used. From the viewpoint of preventing the formation of oxides represented by the above formulas (A) to (C) due to excessive addition, the antioxidant is added in an iron compound, a manganese compound, and a necessary amount. Depending on the total amount of the metal (M, N, or Q) salt used, it is preferably 0.01 to 1 mol, more preferably 0.03 to 0.5 mol.
  • the content of the composite (Y-1) in the slurry (Y-1) obtained by adding an iron compound, a manganese compound, and a metal (M, N or Q) salt or an antioxidant used as necessary is as follows:
  • the content is preferably 10 to 50% by mass, more preferably 15 to 45% by mass, and still more preferably 20 to 40% by mass.
  • the hydrothermal reaction in the step (II-1) may be 100 ° C. or higher, and preferably 130 to 180 ° C.
  • the hydrothermal reaction is preferably carried out in a pressure-resistant vessel.
  • the pressure at this time is preferably 0.3 to 0.9 MPa, and the reaction is carried out at 140 to 160 ° C.
  • the pressure is preferably 0.3 to 0.6 MPa.
  • the hydrothermal reaction time is preferably 0.1 to 48 hours, more preferably 0.2 to 24 hours.
  • the obtained composite (Y-1) is a composite containing the oxides represented by the above formulas (A) to (C) and cellulose nanofibers, which is filtered, washed with water, and dried. This can be isolated as composite particles (primary particles) containing cellulose nanofibers.
  • the drying means freeze drying or vacuum drying is used.
  • the BET specific surface area of the resulting composite (Y-1) is preferably 5 to 40 m 2 / g, more preferably 5 to 20 m 2 / g, from the viewpoint of effectively reducing the amount of adsorbed moisture. If the BET specific surface area of the composite (Y-1) is less than 5 m 2 / g, the primary particles of the positive electrode active material for the secondary battery become too large, and the battery characteristics may be deteriorated. On the other hand, if the BET specific surface area exceeds 40 m 2 / g, the amount of adsorbed moisture of the positive electrode active material for the secondary battery may increase and affect the battery characteristics.
  • the positive electrode active material (P-1) for a secondary battery of the present invention is a composite containing an oxide represented by the above formulas (A) to (C) and carbon obtained by carbonizing cellulose nanofibers. More specifically, the positive electrode active material (P-1) for secondary batteries is an active material on which 3 to 5% by mass of graphite is supported, and is specifically represented by the above formulas (A) to (C).
  • Step (III-1) for obtaining the complex (Z-1) obtained in a reducing atmosphere Preferably, to obtain a production method comprising a step of firing in an inert atmosphere (IV-1).
  • the composite (Y-1) and graphite are uniformly dispersed, and the graphite is deformed or stretched to be firmly agglomerated.
  • the positive electrode active material for a secondary battery can be formed as particles, in which the BET specific surface area can be effectively reduced, and in combination with cellulose nanofibers to be carbonized in the subsequent baking step, it is possible to effectively suppress moisture adsorption. .
  • step (III-1) the composite (Y-1) (composite containing oxides represented by formulas (A) to (C) and cellulose nanofibers) is used as a carbon source other than cellulose nanofibers.
  • This is a step for adding graphite. Specifically, the graphite is added to the composite (Y-1) obtained through steps (I-1) and (II-1), and the compression force and In this step, the composite (Z-1) is obtained by mixing while applying a shearing force.
  • the amount of graphite added is preferably 0.3 to 5% by mass, more preferably 0.5 to 4% by mass, and still more preferably 0.6% in the positive electrode active material for a secondary battery of the present invention. To 3% by mass.
  • the composite (Y-1) and graphite are secondary particles obtained in combination with cellulose nanofibers while the graphite efficiently and uniformly coats the surface of the oxide represented by the above formulas (A) to (C). From the viewpoint of effectively reducing the amount of adsorbed moisture of the positive electrode active material for batteries, it is preferably mixed at a mass ratio (composite (Y-1): graphite) 99: 1 to 91: 9, more preferably 98: 2 to Mix at 93: 7.
  • the mixing treatment while applying compressive force and shear force is preferably performed for 5 to 90 minutes, more preferably for 10 to 80 minutes.
  • Such treatment is preferably performed in a closed container equipped with an impeller that rotates at a peripheral speed of 25 to 40 m / s.
  • the peripheral speed of such an impeller is preferably 27 to 40 m / s from the viewpoint of increasing the tap density of the obtained positive electrode active material and effectively reducing the amount of adsorbed moisture by reducing the BET specific surface area.
  • the peripheral speed of the impeller means the speed of the outermost end of the rotary stirring blade (impeller), which can be expressed by the following formula (1), and is mixed while applying compressive force and shearing force.
  • Impeller peripheral speed (m / s) Impeller radius (m) ⁇ 2 ⁇ ⁇ ⁇ rotational speed (rpm) ⁇ 60 (1)
  • the processing time and / or the impeller peripheral speed in the step (III-1) needs to be appropriately adjusted according to the amount of the composite Y-1 and the graphite charged into the container. Then, by operating the container, it becomes possible to perform a process of mixing the impeller and the inner wall of the mixture while applying a compressive force and a shearing force to the mixture.
  • composite particles that are positive electrode active materials for secondary batteries that can effectively reduce the amount of adsorbed moisture together with carbon in which graphite is densely and uniformly dispersed and carbonized from cellulose nanofibers can be formed.
  • the amount of the composite (Y-1) and the amount of graphite added to the container is preferably 0.1 to 0.7 g per 1 cm 3 of an effective container (a container corresponding to a part capable of accommodating the composite (Y-1) and graphite among the sealed containers including an impeller). More preferably, it is 0.15 to 0.4 g.
  • the composite ( Y-1) and graphite may be mixed in advance before introducing them.
  • Examples of the apparatus provided with a closed container capable of performing the mixing process while applying the compressive force and the shearing force include a high-speed shearing mill, a blade-type kneader, and the like. Chemical device Nobilta (manufactured by Hosokawa Micron Corporation) can be preferably used. By using such an apparatus, it is possible to easily carry out a mixing process while applying a predetermined compressive force and shearing force. Only by performing such a process, the positive electrode active material (P- 1) can be obtained.
  • the treatment temperature is preferably 5 to 80 ° C., more preferably 10 to 50 ° C.
  • the treatment atmosphere is not particularly limited, but is preferably an inert gas atmosphere or a reducing gas atmosphere.
  • Step (IV-1) is a step of firing the composite (Z-1) obtained through the step (III-1) in a reducing atmosphere or an inert atmosphere.
  • the carbon obtained by carbonizing the cellulose nanofiber is firmly supported on the surface of the oxide represented by the above formulas (A) to (C), and the composite
  • the graphite added to (Y-1) also exists as carbon covering the surface of the oxide represented by the above formulas (A) to (C). Furthermore, since the crystallinity of both the oxide and the graphite, which have been reduced by applying compressive force and shear force, can be recovered by this firing, the conductivity in the obtained positive electrode active material can be effectively increased. .
  • the firing temperature is preferably 500 to 800 ° C., more preferably 600 to 770 ° C., and further preferably 650 to 750 ° C. from the viewpoint of effectively carbonizing the cellulose nanofibers.
  • the firing time is preferably 10 minutes to 3 hours, more preferably 30 minutes to 1.5 hours.
  • the positive electrode active material (P-1) for secondary battery of the present invention preferably has a mass ratio (graphite / cellulose nanofiber) between the amount of graphite added and the amount of carbon derived from cellulose nanofibers. Is 0.08 to 6, more preferably 0.1 to 4, and still more preferably 1 to 3.
  • the carbon and graphite derived from cellulose nanofibers supported or coated on the surfaces of the oxides represented by the above formulas (A) to (C) act synergistically to produce a positive electrode active material for a secondary battery.
  • the amount of adsorbed moisture in the substance (P-1) can be effectively reduced.
  • the positive electrode active material for a secondary battery of the present invention comprises 0.1 to 4% by mass of carbon obtained by carbonizing a water-soluble carbon material in a composite containing the above oxide and carbon obtained by carbonizing cellulose nanofibers.
  • the positive electrode active material for secondary battery (P-2a) is represented by the above formula (A), (B) or (C).
  • a composite containing the oxide represented and carbon derived from cellulose nanofibers carries 0.1 to 4% by mass of carbon derived from a water-soluble carbon material.
  • the positive electrode active material (P-2a) for a secondary battery is obtained by using cellulose nanofibers and a specific amount of water-soluble carbon material as a carbon source, and is obtained by carbonizing cellulose nanofibers.
  • the carbonized water-soluble carbon material is effectively supported on the portion where the oxide surface is exposed without the presence of carbon derived from cellulose nanofibers. Therefore, since the cellulose nanofibers and the water-soluble carbon material are both carbonized and are firmly supported over the entire surface of the oxide while effectively suppressing the exposure of the oxide surface, It is possible to effectively prevent moisture adsorption in the positive electrode active material for secondary batteries.
  • the positive electrode active material for a secondary battery of the present invention is formed by supporting 0.1 to 5% by mass of a metal fluoride on a composite containing the above oxide and carbon obtained by carbonizing cellulose nanofibers.
  • the positive electrode active material for secondary battery (P-2b) is an oxide represented by the above formula (A), (B) or (C)
  • 0.1 to 5% by mass of a metal fluoride is supported on a composite containing carbon obtained by carbonizing cellulose nanofibers.
  • the positive electrode active material (P-2b) for a secondary battery is obtained by using cellulose nanofibers as a carbon source and using a specific amount of metal fluoride as a supplement to the cellulose nanofibers.
  • the metal fluoride is effectively supported on the exposed portion of the oxide surface without the carbon derived from cellulose nanofibers. Become. Therefore, since the carbon derived from cellulose nanofibers and the metal fluoride are combined and are effectively supported on the entire surface of the oxide while effectively suppressing the exposure of the oxide surface, the secondary battery of the present invention. It is possible to effectively prevent moisture adsorption in the positive electrode active material.
  • the composite (primary particles) containing the above oxide and cellulose nanofiber in the positive electrode active material for secondary battery (P-2a) and (P-2b) is the same as the positive electrode active material for secondary battery (P-1).
  • the composite (primary particles) containing the oxide and cellulose nanofiber in the case specifically, including a lithium compound or a sodium compound, a phosphoric acid compound or a silicic acid compound, and at least an iron compound or a manganese compound, And it is preferable that it is a thing obtained by attaching
  • the composite is preferably a hydrothermal reaction product of slurry water containing a lithium compound or sodium compound, a phosphoric acid compound or a silicic acid compound, and at least an iron compound or a manganese compound and containing cellulose nanofibers. .
  • the water-soluble carbon material supported as carbon carbonized in the composite is the amount of carbon atom equivalent of the water-soluble carbon material in 100 g of water at 25 ° C.
  • the water-soluble carbon material include one or more selected from saccharides, polyols, polyethers, and organic acids.
  • monosaccharides such as glucose, fructose, galactose and mannose
  • disaccharides such as maltose, sucrose and cellobiose
  • polysaccharides such as starch and dextrin
  • polyols and polyethers such as diol, propanediol, polyvinyl alcohol, and glycerin
  • organic acids such as citric acid, tartaric acid, and ascorbic acid.
  • glucose, fructose, sucrose, and dextrin are preferable, and glucose is more preferable from the viewpoint of improving the solubility and dispersibility in a solvent and effectively functioning as a carbon material.
  • Such a water-soluble carbon material is effective as a carbon derived from 0.1 to 4% by mass of the water-soluble carbon material in a portion where the surface of the oxide is exposed without the presence of carbon derived from cellulose nanofibers in the composite. From the viewpoint of supporting, it is preferable that the composite is wet-mixed with the composite and supported on the composite as carbonized carbon. That is, the positive electrode active material for a secondary battery of the present invention includes an oxide and cellulose. It is preferable that a composite containing carbon obtained by carbonizing nanofibers is supported by carbon obtained by carbonizing a water-soluble carbon material.
  • the amount of carbon derived from the water-soluble carbon material is determined from the viewpoint of effectively supporting the water-soluble carbon material on the surface of the oxide in which the carbon obtained by carbonizing the cellulose nanofiber does not exist.
  • the amount of the active material is preferably 0.1 to 4% by mass, more preferably 0.2 to 3.5% by mass, and still more preferably 0.3 to 3% by mass.
  • Examples of the metal fluoride metal supported on the composite in the positive electrode active material (P-2b) for secondary batteries include lithium (Li), sodium (Na), magnesium (Mg), calcium (Ca), aluminum (Al), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), zirconium (Zr), niobium (Nb), molybdenum (Mo), tantalum (Ta), tin (Sn), tungsten (W), potassium (K), barium (Ba), and strontium (Sr).
  • it is a metal chosen from lithium, sodium, magnesium, calcium, and aluminum from a viewpoint of improving the hydrophobicity of metal fluoride, and improving ion conductivity, and is chosen from lithium and magnesium. More preferably, it is a metal.
  • the metal fluoride precursor for forming the metal fluoride is preferably used, and the composite and the metal fluoride precursor are wet-mixed and supported on the composite. Specifically, Thereafter, it is baked and supported as a metal fluoride, and is present in the positive electrode active material for a secondary battery of the present invention. That is, the positive electrode active material for a secondary battery of the present invention is preferably a fired product of a wet mixture of a composite containing an oxide and cellulose nanofibers and a metal fluoride precursor.
  • the amount of the metal fluoride supported is 0.1% in the positive electrode active material for the secondary battery of the present invention from the viewpoint of effectively supporting the metal fluoride on the surface of the oxide not containing carbon derived from cellulose nanofibers. Is 5 to 5% by mass, preferably 0.2 to 4.5% by mass, and more preferably 0.3 to 4% by mass. If the supported amount of the metal fluoride is less than 0.1% by mass, the amount of adsorbed water cannot be sufficiently suppressed, and if the supported amount of the metal fluoride is more than 5% by mass, the details Although it is unknown, there is a possibility that the cycle characteristics of the secondary battery may deteriorate even if the amount of adsorbed moisture is suppressed.
  • the amount of fluorine present in the positive electrode active material for a secondary battery can be confirmed by an ion analyzer using a solution obtained by dissolving the secondary battery active material with an acid.
  • the positive electrode active material (P-2a) or (P-2b) for the secondary battery of the present invention contains phosphorus (N-2) or sodium compound and cellulose nanofiber in a mixture (X-2) containing phosphorus.
  • a step of obtaining a complex (X-2) by mixing an acid compound or a silicate compound (I-2), The obtained composite (X-2) and slurry water (Y-2) containing a metal salt containing at least an iron compound or a manganese compound are subjected to a hydrothermal reaction to give the composite (Y-2) (primary particles).
  • Steps (I-2) and (II-2) are the same as steps (I-1) and (II-1) in the method for producing the positive electrode active material for secondary battery (P-1).
  • the method for producing a positive electrode active material (P-2a) for a secondary battery according to the present invention is obtained by combining a composite (Y-2) obtained through steps (I-2) and (II-2) with a composite.
  • a step (III-2a) of adding 0.1 to 16 parts by mass of a water-soluble organic compound to 100 parts by mass, wet-mixing, and firing is provided.
  • the addition amount of the water-soluble carbon material may be an amount such that the supported amount of the water-soluble carbon material as carbon obtained by carbonization falls within the above range in terms of carbon atom as described above. From the viewpoint of effectively supporting carbon obtained by carbonizing a water-soluble carbon material on the surface of an oxide containing no carbon derived from fiber in an amount of 0.1 to 4% by mass, 100 parts by mass of the composite (Y-2) The amount is 0.1 to 16 parts by mass, preferably 0.2 to 14 parts by mass, and more preferably 0.3 to 12 parts by mass. Moreover, it is preferable to add water with a water-soluble carbon material. The amount of water added is preferably 30 to 300 parts by mass, more preferably 50 to 250 parts by mass, and further preferably 75 to 200 parts by mass with respect to 100 parts by mass of the composite (Y-2). .
  • the wet mixing means in the step (III-2a) is not particularly limited and can be performed by a conventional method.
  • the mixing temperature is preferably 5 to 80 ° C., more preferably 10 to 60 ° C.
  • the resulting mixture is preferably dried before firing. Examples of the drying means include spray drying, vacuum drying, freeze drying and the like.
  • step (III-2a) the mixture obtained by the wet mixing is fired. Firing is preferably performed in a reducing atmosphere or an inert atmosphere.
  • the firing temperature is preferably 500 to 800 ° C., more preferably 600 to 770 ° C., and further preferably 650 to 750 ° C. from the viewpoint of effectively carbonizing the cellulose nanofibers.
  • the firing time is preferably 10 minutes to 3 hours, more preferably 30 minutes to 1.5 hours.
  • the method for producing a positive electrode active material (P-2b) for a secondary battery of the present invention is obtained by adding a composite to the composite (Y-2) obtained through steps (I-2) and (II-2).
  • (Y-2) A step (III-2b) in which 0.1 to 40 parts by mass of a metal fluoride precursor is added to 100 parts by mass, wet mixed, and fired is provided. This effectively suppresses the exposure of the oxide surfaces represented by the above (A) to (C), and the oxides of the carbon fluoride are baked into the carbons derived from cellulose nanofibers.
  • the metal fluoride formed from the precursor can be firmly supported together.
  • the addition amount of the metal fluoride precursor may be an amount that falls within the above range in terms of the amount of metal fluoride supported in the obtained positive electrode active material for a secondary battery, as described above.
  • cellulose From the viewpoint of effectively supporting the metal fluoride in an amount of 0.1 to 5% by mass on the surface of the oxide free from carbon derived from nanofibers, 0.1% to 100 parts by mass of the composite (Y-2). -40 mass parts, preferably 0.2-36 mass parts, more preferably 0.3-32 mass parts.
  • water is preferable to add water together with the metal fluoride precursor.
  • the amount of water added is preferably 30 to 300 parts by mass, more preferably 50 to 250 parts by mass, and further preferably 75 to 200 parts by mass with respect to 100 parts by mass of the composite (Y-2). .
  • the metal fluoride precursor may be any compound that can be fired later to form a metal fluoride to be supported on an oxide.
  • a metal fluoride precursor It is preferable to use a fluorine compound and a metal compound which are compounds other than the metal fluoride in combination.
  • the fluorine compound that is a compound other than the metal fluoride include hydrofluoric acid, ammonium fluoride, and hypofluoric acid. Among them, ammonium fluoride is preferably used.
  • metal compound which is a compound other than the metal fluoride examples include metal acetate, metal nitrate, metal lactate, metal oxalate, metal hydroxide, metal ethoxide, metal isopropoxide, metal butoxide and the like. Of these, metal hydroxides are preferred.
  • the metal of a metal compound is synonymous with the metal of the said metal fluoride.
  • the wet mixing means and firing conditions in the step (III-2b) are the same as those in the step (III-2a) in the method for producing the positive electrode active material for secondary battery (P-2a).
  • the amount of adsorbed water of the positive electrode active material for secondary battery of the present invention is such that the oxide in the positive electrode active material for secondary battery is an oxide whose secondary battery positive electrode active material is represented by the above formula (A) or (C).
  • the oxide in the positive electrode active material for a secondary battery in which the oxide is represented by the above formula (B) preferably it is 2500 ppm or less, more preferably 2000 ppm or less. is there.
  • the amount of adsorbed moisture is such that moisture is adsorbed until equilibrium is reached at a temperature of 20 ° C. and a relative humidity of 50%, the temperature is raised to 150 ° C. and held for 20 minutes, and further raised to a temperature of 250 ° C.
  • the positive electrode active material for a secondary battery of the present invention hardly adsorbs moisture, the amount of adsorbed moisture can be effectively reduced without requiring strong drying conditions as a production environment, and the resulting lithium Both the secondary battery and the sodium secondary battery can stably exhibit excellent battery characteristics even under various usage environments.
  • water is adsorbed until equilibrium is reached at a temperature of 20 ° C. and a relative humidity of 50%, the temperature is raised to 150 ° C. and held for 20 minutes, and further raised to a temperature of 250 ° C. and held for 20 minutes.
  • the amount of water volatilized between the start point and the end point, starting from when the temperature rise is resumed from 150 ° C. and the end point when the constant temperature state at 250 ° C. is completed, is measured using, for example, a Karl Fischer moisture meter Can be measured.
  • the tap density of the positive electrode active material for a secondary battery of the present invention is preferably 0.5 to 1.6 g / cm 3 , more preferably 0.8 from the viewpoint of effectively reducing the amount of adsorbed moisture. ⁇ 1.6 g / cm 3 .
  • the BET specific surface area of the positive electrode active material for a secondary battery of the present invention is preferably 5 to 21 m 2 / g, more preferably 7 to 20 m 2 / g, from the viewpoint of effectively reducing the amount of adsorbed moisture. It is.
  • the secondary battery to which the positive electrode for the secondary battery including the positive electrode active material for the secondary battery of the present invention can be applied is not particularly limited as long as the positive electrode, the negative electrode, the electrolytic solution, and the separator are essential components.
  • the material configuration is not particularly limited, and those having a known material configuration can be used.
  • a carbon material such as lithium metal, sodium metal, graphite, or amorphous carbon. It is preferable to use an electrode formed of an intercalating material capable of electrochemically inserting and extracting lithium ions or sodium ions, particularly a carbon material.
  • the electrolytic solution is obtained by dissolving a supporting salt in an organic solvent.
  • the organic solvent is not particularly limited as long as it is an organic solvent that is usually used for an electrolyte solution of a lithium ion secondary battery or a sodium ion secondary battery.
  • carbonates, halogenated hydrocarbons, ethers, ketones Nitriles, lactones, oxolane compounds and the like can be used.
  • the type of the supporting salt is not particularly limited, but in the case of a lithium ion secondary battery, an inorganic salt selected from LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , a derivative of the inorganic salt, LiSO 3 CF 3 , an organic material selected from LiC (SO 3 CF 3 ) 2 , LiN (SO 3 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 and LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ) It is preferably at least one of a salt and a derivative of the organic salt.
  • an inorganic salt selected from NaPF 6 , NaBF 4 , NaClO 4 and NaAsF 6 a derivative of the inorganic salt, NaSO 3 CF 3 , NaC (SO 3 CF 3 ) 2 and NaN (SO 3 CF 3 ) 2 , NaN (SO 2 C 2 F 5 ) 2, and an organic salt selected from NaN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), and at least one derivative of the organic salt It is preferable.
  • the separator plays a role of electrically insulating the positive electrode and the negative electrode and holding the electrolytic solution.
  • a porous synthetic resin film particularly a polyolefin polymer (polyethylene, polypropylene) porous film may be used.
  • Example 1-1 12.72 g of LiOH.H 2 O, 90 mL of water, and 5.10 g of cellulose nanofiber (Cerish KY-100G, manufactured by Daicel Finechem, fiber diameter 4 to 100 nm, abbreviated CNF) were mixed to obtain slurry water. Next, 11.53 g of 85% aqueous phosphoric acid solution was added dropwise at 35 mL / min while stirring the resulting slurry water at a temperature of 25 ° C. for 5 minutes, followed by 12 hours under a nitrogen gas purge at 400 rpm. By stirring at a speed, slurry water (X 11 -1) (dissolved oxygen concentration 0.5 mg / L) containing the complex (X 11 -1) was obtained. The slurry water (X 11 -1) contained 2.97 moles of lithium per mole of phosphorus.
  • a composite (Y 11 -1) (chemical composition of the oxide represented by the formula (A): LiFe 0.2 Mn 0.8 PO 4 , BET specific surface area of 21 m 2 / g, average particle diameter of 60 nm, CNF-derived carbon content of 1.5% by mass).
  • the mixture (Y 11 -1) was obtained by mixing in advance with a carbon atom equivalent amount in the substance corresponding to 2.0% by mass.
  • the obtained mixture (Y 11 -1) was charged into a fine particle composite apparatus Nobilta (NOB-130, manufactured by Hosokawa Micron Corporation, power 5.5 kw), the processing temperature was 25 to 35 ° C., and the impeller peripheral speed was 30 m. / S and the treatment time was 15 minutes to obtain composite preparatory particles (Y 11 -1).
  • the obtained composite preliminary particles (Y 11 -1) were calcined at a temperature of 750 ° C. for 90 minutes to obtain a composite (Z 11 -1) for a lithium ion secondary battery.
  • Example 1-2 A slurry water (X 12 -1) was obtained in the same manner as the slurry water (X 11 -1) obtained in Example 1-1, except that CNF was changed to 1.70 g, and then obtained in Example 1-1. In the same manner as in the composite (Y 11 -1), a composite (Y 12 -1) (BET specific surface area 22 m 2 / g, average particle size 58 nm, CNF-derived carbon content 0.5% by mass) was obtained.
  • Example 1-3 A slurry water (X 13 -1) was obtained in the same manner as the slurry water (X 11 -1) obtained in Example 1-1, except that CNF was changed to 3.40 g, and then obtained in Example 1-1. In the same manner as in the composite (Y 11 -1), a composite (Y 13 -1) (BET specific surface area of 21 m 2 / g, average particle size of 55 nm, CNF-derived carbon content of 1.0% by mass) was obtained.
  • Example 1-5 Using the composite (Y 11 -1) obtained in Example 1-1, 99.5 g of the composite (Y 11 -1) and 0.5 g of graphite (0.5 equivalent in terms of carbon atoms in the active material)
  • Example 1-7 Slurry water obtained in Example 1-1 (X 11 -1) using, according slurry water (X 11 -1) to FeSO 4 ⁇ 7H 2 of O 5.00 g and MnSO 4 ⁇ 5H 2 O 19.29g
  • the composite (Y 17 -1) (chemical composition of the oxide represented by the formula (A): LiFe 0.18 was added in the same manner as in Example 1-1 except that 0.50 g of MgSO 4 ⁇ 7H 2 O was added.
  • Mn 0.80 Mg 0.02 PO 4 BET specific surface area 21 m 2 / g, average particle size 56 nm).
  • Example 1-8 Using the slurry water (X 11 -1) obtained in Example 1-1, in addition to 5.00 g of FeSO 4 .7H 2 O and 19.29 g of MnSO 4 .5H 2 O, the slurry water (X 11 -1) Except for adding 0.36 g of Zr (SO 4 ) 2 .4H 2 O, in the same manner as in Example 1-1, the composite (Y 18 -1) (chemical composition of the oxide represented by the formula (A): LiFe 0.18 Mn 0.80 Zr 0.01 PO 4 , BET specific surface area 21 m 2 / g, average particle size 60 nm, CNF-derived carbon content 1.5% by mass).
  • the composite (Y 18 -1) chemical composition of the oxide represented by the formula (A): LiFe 0.18 Mn 0.80 Zr 0.01 PO 4 , BET specific surface area 21 m 2 / g, average particle size 60 nm, CNF-derived carbon content 1.5% by mass.
  • Example 1 except that the composite (Y 11 -1) obtained in Example 1-1 was used and no carbon source other than cellulose nanofibers such as graphite was added to the composite (Y 11 -1).
  • a slurry water (X c13 -1) was obtained in the same manner as the slurry water (X 11 -1) obtained in Example 1-1 except that CNF was not used, and then the composite obtained in Example 1-1. Similar to (Y 11 -1), composite (Y c13 -1) (chemical composition of oxide represented by formula (A): LiFe 0.2 Mn 0.8 PO 4 , BET specific surface area 21 m 2 / g, average particle size 60 nm in diameter and 0.0% by mass of CNF-derived carbon).
  • Example 1-1 [Comparative Example 1-4] Example 1-1, except that only 27.80 g of FeSO 4 .7H 2 O was added to the slurry water (X 11 -1) using the slurry water (X 11 -1) obtained in Example 1-1. Similarly to the composite (Y 14 -1) (chemical composition of the oxide represented by the formula (A): LiFePO 4 , BET specific surface area 19 m 2 / g, average particle size 85 nm, CNF-derived carbon content 1. 5% by mass) was obtained.
  • the composite (Y 14 -1) chemical composition of the oxide represented by the formula (A): LiFePO 4 , BET specific surface area 19 m 2 / g, average particle size 85 nm, CNF-derived carbon content 1. 5% by mass
  • the resulting composite (Y 14 -1) using, such complexes (Y 14 -1) 98.0g and in terms of carbon atoms content in the ketjen black 2.0 g (active substance 2.0 wt%
  • Example 2-1 3.75 kg of ultrapure water was mixed with 0.428 kg of LiOH.H 2 O and 1.40 kg of Na 4 SiO 4 .nH 2 O to obtain slurry water (X 21 -1). Next, the obtained slurry (X 21 -1) was purged with nitrogen gas to adjust the dissolved oxygen concentration to 0.5 mg / L, and then added to this slurry water (X 21 -1) with 1.49 kg of CNF. FeSO 4 ⁇ 7H 2 O 0.39 kg, MnSO 4 ⁇ 5H 2 O 0.79 kg and Zr (SO 4 ) 2 ⁇ 4H 2 O 0.053 kg are added and mixed, and slurry water (Y 21 -1) is added. Obtained.
  • the obtained slurry water (Y 21 -1) was put into an autoclave purged with nitrogen gas, and a hydrothermal reaction was performed at 150 ° C. for 12 hours.
  • the pressure in the autoclave was 0.4 MPa.
  • the produced crystal was filtered, and then washed with 12 parts by mass of water with respect to 1 part by mass of the crystal.
  • the washed crystal was freeze-dried at ⁇ 50 ° C. for 12 hours to obtain a composite (Y 21 -1) (powder, chemical composition represented by the formula (B): Li 2 Fe 0.28 Mn 0.66 Zr 0.03 SiO 4 , derived from CNF Carbon amount 7.0 mass%) was obtained.
  • a positive electrode active material Li 2 Fe
  • a lithium ion secondary battery as a composite (Z 21 -1).
  • 0.28 Mn 0.66 Zr 0.03 SiO 4 , amount of carbon 9.0% by mass).
  • Example 3-1 0.60 kg of NaOH, 9.0 L of water, and 0.51 kg of CNF were mixed to obtain slurry water. Next, 0.577 kg of 85% phosphoric acid aqueous solution is dropped at 35 mL / min while stirring the obtained slurry water for 5 minutes while maintaining the temperature at 25 ° C., followed by stirring at a speed of 400 rpm for 12 hours. by to obtain a slurry (X 31 -1) containing complexes (X 31 -1). The slurry (X 31 -1) contained 3.00 mol of sodium per mol of phosphorus.
  • the obtained slurry (X 31 -1) was purged with nitrogen gas to adjust the dissolved oxygen concentration to 0.5 mg / L, then 0.139 kg of FeSO 4 .7H 2 O, MnSO 4 .5H 2 0.964 kg of O and 0.124 kg of MgSO 4 .7H 2 O were added and mixed to obtain slurry water (Y 31 -1).
  • the obtained slurry water (Y 31 -1) was put into an autoclave purged with nitrogen gas, and a hydrothermal reaction was performed at 200 ° C. for 3 hours.
  • the pressure in the autoclave was 1.4 MPa.
  • the produced crystal was filtered, and then washed with 12 parts by mass of water with respect to 1 part by mass of the crystal.
  • composite (Y 31 -1) powder, chemical composition represented by the formula (C): NaFe 0.1 Mn 0.8 Mg 0.1 PO 4 , carbon content derived from CNF 1.5% by mass
  • the resulting composite (Y 31 -1) 98.0 g was fractionated and mixed with 2.0 g of graphite (corresponding to 2.0% by mass in terms of carbon atoms in the active material) by a dry method using a ball mill to obtain a mixture (Y 31 -1).
  • the obtained mixture (Y 31 -1) was mixed for 15 minutes at a peripheral speed of 30 m / s with an impeller using Nobilta (NOB-130, manufactured by Hosokawa Micron Corporation, power 5.5 kw) to prepare a composite preliminary. Particles (Y 31 -1) were obtained.
  • the obtained composite preliminary particles (Y 31 -1) were fired at a temperature of 700 ° C. for 1 hour to obtain a positive electrode active material (NaFe 0.1 Mn) for a sodium ion secondary battery.
  • 0.8 Mg 0.1 PO 4 , amount of carbon 3.5% by mass).
  • Example 3-2 Using the composite (Y 31 -1) obtained in Example 3-1, 97.0 g of the composite (Y 31 -1) and 3.0 g of graphite (3.0 equivalent in terms of carbon atoms in the active material)
  • the amount of adsorbed moisture of each positive electrode active material obtained in Examples 1-1 to 3-2 and Comparative Examples 1-1 to 3-2 was measured according to the following method.
  • About the positive electrode active material (composite particle) after allowing it to stand for 1 day in an environment of a temperature of 20 ° C. and a relative humidity of 50% and adsorbing moisture until reaching equilibrium, raising the temperature to 150 ° C. and holding for 20 minutes, Furthermore, when the temperature is raised to 250 ° C. and held for 20 minutes, the start point is when the temperature rise is resumed from 150 ° C., and the end point is when the constant temperature state at 250 ° C. is finished.
  • the amount of water that volatilized was measured with a Karl Fischer moisture meter (MKC-610, manufactured by Kyoto Electronics Industry Co., Ltd.) and determined as the amount of water adsorbed on the positive electrode active material. The results are shown in Tables 1 to 3.
  • LiPF 6 in the case of a lithium ion secondary battery
  • NaPF 6 in the case of a sodium ion secondary battery
  • a known one such as a polymer porous film such as polypropylene was used.
  • These battery components were assembled and housed in a conventional manner in an atmosphere having a dew point of ⁇ 50 ° C. or lower to produce a coin-type secondary battery (CR-2032).
  • the charging condition is a constant current and constant voltage charge with a current of 1 CA (330 mA / g) and a voltage of 4.5 V
  • the discharge condition is 1 CA (330 mA / g)
  • a constant current discharge with a final voltage of 1.5 V.
  • the discharge capacity at 1 CA was obtained.
  • the charging conditions are a constant current and constant voltage charging with a current of 1 CA (154 mA / g) and a voltage of 4.5 V
  • the discharging conditions are a constant current discharge of 1 CA (154 mA / g) and a final voltage of 2.0 V.
  • Example 4-1 12.72 g of LiOH.H 2 O, 90 mL of water, and 6.8 g of cellulose nanofiber (Cerish KY-100G, manufactured by Daicel Finechem, fiber diameter of 4 to 100 nm, abbreviated as CNF) (2. (Corresponding to 0% by mass) was mixed to obtain slurry water. Next, 11.53 g of 85% aqueous phosphoric acid solution was added dropwise at 35 mL / min while stirring the resulting slurry water at a temperature of 25 ° C. for 5 minutes, followed by 12 hours under a nitrogen gas purge at 400 rpm.
  • CNF cellulose nanofiber
  • a mixture (X 41 -2a) containing the complex (X 41 -2a) (slurry water (X 41 -2a), dissolved oxygen concentration 0.5 mg / L) was obtained.
  • the slurry water (X 41 -2a) contained 2.97 mol of lithium with respect to 1 mol of phosphorus.
  • a composite (Y 41 -2a) (chemical composition of the oxide represented by the formula (A): LiMn 0.8 Fe 0.2 PO 4 , BET specific surface area of 21 m 2 / g, average particle diameter 60 nm).
  • Example 5-1 LiOH ⁇ H 2 O 4.28g, a mixture of ultra-pure water 37.5mL to Na 4 SiO 4 ⁇ nH 2 O 13.97g obtain a slurry water.
  • a slurry water 14.9 g of cellulose nanofiber (Cerish KY-100G, manufactured by Daicel Finechem, fiber diameter 4 to 100 nm, abbreviated CNF) (corresponding to 8.0% by mass in terms of carbon atom in the active material), FeSO 4 ⁇ 7H 2 O 3.92g, was added MnSO 4 ⁇ 5H 2 O 7.93g, and Zr a (SO 4) 2 ⁇ 4H 2 O 0.53g, at a speed 400rpm while maintaining the temperature of 25 ° C.
  • CNF cellulose nanofiber
  • the mixture was stirred for minutes to obtain slurry water (Y 51 -2a).
  • the obtained slurry water (Y 51 -2a) was charged into a synthesis vessel installed in a steam heating autoclave.
  • the mixture was heated with stirring at 150 ° C. for 12 hours using saturated steam obtained by heating water (dissolved oxygen concentration less than 0.5 mg / L) with a membrane separator.
  • the pressure in the autoclave was 0.4 MPa.
  • the produced crystal was filtered, and then washed with 12 parts by mass of water with respect to 1 part by mass of the crystal. The washed crystal was freeze-dried at ⁇ 50 ° C.
  • Y 51 -2a chemical composition of the oxide represented by the formula (B): Li 2 Fe 0.28 Mn 0.66 Zr 0.03 SiO 4 , BET ratio Surface area of 35 m 2 / g, average particle size of 50 nm).
  • Example 6-1 A slurry water was obtained by mixing 6.00 g of NaOH, 90 mL of water, and 5.10 g of cellulose nanofiber (corresponding to 1.3% by mass in terms of carbon atom in the active material). Next, 5.77 g of 85% aqueous phosphoric acid solution was added dropwise at 35 mL / min while stirring the resulting slurry water for 5 minutes while maintaining the temperature at 25 ° C., followed by stirring at a speed of 400 rpm for 12 hours. by to obtain a slurry (X 61 -2a)) containing complexes (X 61 -2a). This slurry (X 61 -2a) contained 3.00 moles of sodium per mole of phosphorus.
  • the resulting slurry was purged with nitrogen gas to adjust the dissolved oxygen concentration to 0.5 mg / L, then 1.39 g of FeSO 4 .7H 2 O, 9.64 g of MnSO 4 .5H 2 O, MgSO 4. 7.24 g of 7H 2 O was added to obtain slurry water (Y 61 -2a).
  • the obtained slurry water (Y 61 -2a) was charged into a synthesis vessel purged with nitrogen gas, which was installed in a steam heating autoclave. After the addition, the mixture was heated with stirring at 200 ° C. for 3 hours using saturated steam obtained by heating water (dissolved oxygen concentration less than 0.5 mg / L) with a membrane separator.
  • the pressure in the autoclave was 1.4 MPa.
  • the produced crystal was filtered, and then washed with 12 parts by mass of water with respect to 1 part by mass of the crystal.
  • the washed crystal was freeze-dried at ⁇ 50 ° C. for 12 hours to give a composite (Y 61 -2a) (chemical composition of the oxide represented by the formula (C): NaFe 0.1 Mn 0.8 Mg 0.1 PO 4 , BET specific surface area of 15 m 2 / g, average particle size 100 nm).
  • Example 6-2 The amount of glucose added to the complex (Y 61 -2a) was changed to 0.25 g (corresponding to 2.0% by mass in terms of carbon atom in the active material), in the same manner as in Example 6-1.
  • Example 6-3 The amount of glucose added to the complex (Y 61 -2a) was 0.375 g (corresponding to 2.9% by mass in terms of carbon atoms in the active material), and the same procedure as in Example 6-1 was performed.
  • Example 7-1 12.72 g of LiOH.H 2 O, 90 mL of water, and 6.8 g of cellulose nanofiber (Cerish KY-100G, manufactured by Daicel Finechem, fiber diameter of 4 to 100 nm, abbreviated as CNF) (2. (Corresponding to 0% by mass) was mixed to obtain slurry water. Next, 11.53 g of 85% aqueous phosphoric acid solution was added dropwise at 35 mL / min while stirring the resulting slurry water at a temperature of 25 ° C. for 5 minutes, followed by 12 hours under a nitrogen gas purge at 400 rpm.
  • CNF cellulose nanofiber
  • a composite (Y 71 -2b) (chemical composition of the oxide represented by the formula (A): LiMn 0.8 Fe 0.2 PO 4 , BET specific surface area of 21 m 2 / g, average particle diameter 60 nm).
  • Example 7-2 0.066 g of LiOH and 0.059 g of ammonium fluoride to be added to the composite (Y 71 -2b) (corresponding to 1.0% by mass in terms of the amount of LiF supported in the positive electrode active material for a lithium ion secondary battery)
  • Example 7-3 0.132 g of LiOH and 0.118 g of ammonium fluoride added to the composite (Y 71 -2b) (corresponding to 2.0% by mass in terms of the amount of LiF supported in the positive electrode active material for a lithium ion secondary battery)
  • Example 7-5 Instead of LiOH added to the composite (Y 71 -2b), 0.277 g of Mg (CH 3 COO) 2 .4H 2 O and 0.236 g of ammonium fluoride (MgF 2 in the positive electrode active material for a lithium ion secondary battery)
  • Example 8-1 LiOH ⁇ H 2 O 4.28g, was obtained by mixing ultrapure water 37.5mL to Na 4 SiO 4 ⁇ nH 2 O 13.97g slurry water (X 81 -2b).
  • slurry water (X 81 -2b) 14.9 g of cellulose nanofiber (Cerish KY-100G, manufactured by Daicel Finechem, fiber diameter 4 to 100 nm, abbreviated CNF) (7.2 mass in terms of carbon atom in the active material) % corresponds to), was added FeSO 4 ⁇ 7H 2 O 3.92g, MnSO 4 ⁇ 5H 2 O 7.93g, and Zr a (SO 4) 2 ⁇ 4H 2 O 0.53g, held at a temperature of 25 ° C.
  • CNF cellulose nanofiber
  • slurry water (X 81 -2b) was obtained.
  • the obtained slurry water (X 81 -2b) was charged into a synthesis vessel installed in a steam heating autoclave.
  • the mixture was heated with stirring at 150 ° C. for 12 hours using saturated steam obtained by heating water (dissolved oxygen concentration less than 0.5 mg / L) with a membrane separator.
  • the pressure in the autoclave was 0.4 MPa.
  • the produced crystal was filtered, and then washed with 12 parts by mass of water with respect to 1 part by mass of the crystal. The washed crystal was freeze-dried at ⁇ 50 ° C.
  • Example 8-2 0.066 g of LiOH and 0.059 g of ammonium fluoride added to the composite (Y 81 -2b) (corresponding to 1.0% by mass in terms of the amount of LiF supported in the positive electrode active material for a lithium ion secondary battery)
  • Example 8-3 0.132 g of LiOH and 0.118 g of ammonium fluoride added to the composite (Y 81 -2b) (corresponding to 2.0% by mass in terms of the amount of LiF supported in the positive electrode active material for a lithium ion secondary battery)
  • Example 8-4 Instead of LiOH added to the composite (Y 81 -2b), 0.078 g of Al (OH) 3 and 0.353 g of ammonium fluoride (in terms of the amount of AlF 2 supported in the positive electrode active material for a lithium ion secondary battery)
  • Example 8-5 Instead of LiOH added to the composite (Y 81 -2b), 0.277 g of Mg (CH 3 COO) 2 .4H 2 O and 0.236 g of ammonium fluoride (MgF 2 in the positive electrode active material for a lithium ion secondary battery)
  • Example 9-1 A slurry water was obtained by mixing 6.00 g of NaOH, 90 mL of water, and 5.10 g of cellulose nanofiber (corresponding to 2.4 mass% in terms of carbon atom in the active material). Next, 5.77 g of 85% aqueous phosphoric acid solution was added dropwise at 35 mL / min while stirring the resulting slurry water for 5 minutes while maintaining the temperature at 25 ° C., followed by stirring at a speed of 400 rpm for 12 hours. by to obtain a slurry (X 91-2b) containing complexes (X 91 -2b). This slurry (X 91 -2b) contained 3.00 moles of sodium per mole of phosphorus.
  • the obtained slurry (X 91 -2b) was purged with nitrogen gas to adjust the dissolved oxygen concentration to 0.5 mg / L, then 1.39 g of FeSO 4 .7H 2 O, MnSO 4 .5H 2 O 9 .64 g and MgSO 4 .7H 2 O 1.24 g were added to obtain slurry water (Y 91 -2b).
  • the obtained slurry water (Y 91 -2b) was charged into a synthesis vessel purged with nitrogen gas, which was installed in a steam heating autoclave. After the addition, the mixture was heated with stirring at 200 ° C. for 3 hours using saturated steam obtained by heating water (dissolved oxygen concentration less than 0.5 mg / L) with a membrane separator.
  • the pressure in the autoclave was 1.4 MPa.
  • the produced crystal was filtered, and then washed with 12 parts by mass of water with respect to 1 part by mass of the crystal.
  • the washed crystal was freeze-dried at ⁇ 50 ° C. for 12 hours to give a composite (Y 91 -2b) (chemical composition of the oxide represented by the formula (C): NaFe 0.1 Mn 0.8 Mg 0.1 PO 4 , BET specific surface area of 15 m 2 / g, average particle size 100 nm).
  • Example 9-2 0.066 g of LiOH and 0.059 g of ammonium fluoride to be added to the composite (Y 91 -2b) (corresponding to 1.0% by mass in terms of the amount of LiF supported in the positive electrode active material for sodium ion secondary battery)
  • Example 9-3 0.132 g of LiOH and 0.118 g of ammonium fluoride to be added to the composite (Y 91 -2b) (corresponding to 2.0% by mass in terms of the amount of LiF supported in the positive electrode active material for a sodium ion secondary battery)
  • Example 9-4 Instead of LiOH to be added to the composite (Y 91 -2b), 0.078 g of Al (OH) 3 and 0.353 g of ammonium fluoride (in terms of supported amount of AlF 3 in the positive electrode active material for sodium ion secondary battery)
  • the positive electrode active material of the example can surely reduce the amount of adsorbed moisture as compared with the positive electrode active material of the comparative example, and can also exhibit excellent performance in the obtained battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明は、高性能なリチウムイオン二次電池又はナトリウムイオン二次電池を得るべく、水分の吸着を効果的に抑制することのできる二次電池用正極活物質及びその製造方法を提供する。すなわち、本発明は、少なくとも鉄又はマンガンを含む式(A):LiFeaMnbcPO4、式(B):Li2FedMnefSiO4、又は式(C):NaFegMnhiPO4で表される酸化物と、セルロースナノファイバーが炭化されてなる炭素とを含む複合体に、0.3~5質量%のグラファイト、水溶性炭素材料が炭化されてなる0.1~4質量%の炭素、又は0.1~5質量%の金属フッ化物が担持されてなる二次電池用正極活物質である。

Description

二次電池用正極活物質及びその製造方法
 本発明は、酸化物とセルロースナノファイバーが炭化されてなる炭素とを含む複合体に、グラファイト、水溶性炭素材料が炭化されてなる炭素、又は金属フッ化物が担持されてなる二次電池用正極活物質及びその製造方法に関する。
 携帯電子機器、ハイブリッド自動車、電気自動車等に用いられる二次電池の開発が行われており、特にリチウムイオン二次電池は、室温付近で動作する最も優れた二次電池として広く知られている。こうしたなか、Li(Fe,Mn)PO4やLi2(Fe,Mn)SiO4等のリチウム含有オリビン型リン酸金属塩は、LiCoO2等のリチウム遷移金属酸化物に比べて、資源的な制約に大きく左右されることがなく、しかも高い安全性を発揮することができるため、高出力で大容量のリチウムイオン二次電池を得るのには最適な正極材料となる。しかしながら、これらの化合物は、結晶構造に由来して導電性を十分に高めるのが困難な性質を有しており、またリチウムイオンの拡散性にも改善の余地があるため、従来より種々の開発がなされている。
 例えば、特許文献1では、一次結晶粒子を超微粒子化して、オリビン型正極活物質内のリチウムイオン拡散距離の短縮化を図ることにより、得られる電池の性能向上を試みている。また、特許文献2では、正極活物質の粒子表面に伝導性炭質材料を均一に堆積させ、かかる粒子表面で規則的な電場分布を得ることにより、電池の高出力化を図っている。さらに、普及が進んでいるリチウムイオン二次電池では、充電後長時間放置すると内部抵抗が徐々に上昇し、電池性能の劣化が生じる現象が知られている。これは、製造時に電池材料が含有していた水分が、電池の充放電が繰り返される中で材料から脱離し、かかる水分と電池に充満している非水電解液LiPF6との化学反応によって、フッ化水素が発生するためである。こうした電池性能の劣化を有効に抑制するには、特許文献3に記載されるように、二次電池に用いる正極活物質の水分含有量を低減することが有効であることも知られている。
 このように、正極活物質の水分含有量を低減することが望まれるなか、例えば、特許文献4には、炭素質物質前駆体を含む原料混合物の焼成処理後は、粉砕処理や分級処理を乾燥雰囲気下で行うことにより、かかる水分含有量を一定値以下に低減する技術が開示されている。また、特許文献5には、比表面積を増大させた一次粒子を用いて得られる活物質は、その表面に炭素を被覆すると、かえって湿った空気による劣化に敏感となる場合もあることを考慮し、乾燥雰囲気において所定の原料を合成反応等させることにより、正極用材料の製造、保管及び使用の間にわたって湿度レベルを一定以下に保持する技術が開示されている。さらに、特許文献6には、所定のリン酸リチウム化合物やケイ酸リチウム化合物等と導電性炭素材料を湿式ボールミルにより混合した後、メカノケミカル処理を行うことにより、表面に均一に導電性炭素材料が沈着されてなる複合酸化物を得る技術も開示されている。
 一方、リチウムは希少有価物質であることから、リチウムイオン二次電池に代えてナトリウムを用いたナトリウムイオン二次電池等も種々検討されはじめている。
 例えば、特許文献7には、マリサイト型NaMnPO4を用いたナトリウム二次電池用活物質が開示されており、また特許文献8には、オリビン型構造を有するリン酸遷移金属ナトリウムを含む正極活物質が開示されており、いずれの文献においても高性能なナトリウムイオン二次電池が得られることを示している。
特開2010-251302号公報 特開2001-15111号公報 特開2013-152911号公報 特開2003-292309号公報 特表2010-508234号公報 米国特許出願公開第2004/0140458号明細書 特開2008-260666号公報 特開2011-34963号公報
 しかしながら、上記いずれの文献に記載の技術においても、敢えて正極活物質の水分含有量を低減するための乾燥工程を介する等、電池を得るに至るまでの工程が煩雑になりかねない上、依然としてリン酸リチウム化合物等の表面が炭素源によって充分に被覆されずに一部の表面が露出している。そのため、水分の吸着を抑制できずに水分含有量が高まり、サイクル特性等の電池物性が充分に高い二次電池用正極活物質を得るのは困難であることが判明した。そして、リチウムイオン二次電池のみならず、かかるリチウムイオン二次電池の代替電池として、より有用なナトリウムイオン二次電池の実現も望まれている。
 したがって、本発明の課題は、高性能なリチウムイオン二次電池又はナトリウムイオン二次電池を得るべく、正極活物質自体に水分を吸着しにくい性質を付与しつつ、水分含有量を効果的に低減された二次電池用正極活物質及びその製造方法を提供することにある。
 そこで本発明者らは、種々検討したところ、特定の酸化物とセルロースナノファイバーが炭化されてなる炭素とを含む複合体に、特定量のグラファイト、水溶性炭素材料が炭化されてなる特定量の炭素、又は特定量の金属フッ化物が担持してなる二次電池用正極活物質であれば、効果的に水分量が低減され、リチウムイオン又はナトリウムイオンが有効に電気伝導を担うことのできる二次電池用正極活物質として極めて有用であることを見出し、本発明を完成させるに至った。
 すなわち、本発明は、少なくとも鉄又はマンガンを含む下記式(A)、(B)又は(C):
       LiFeaMnbcPO4・・・(A)
(式(A)中、MはMg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。a、b及びcは、0≦a≦1、0≦b≦1、0≦c≦0.2、及び2a+2b+(Mの価数)×c=2を満たし、かつa+b≠0を満たす数を示す。)
       Li2FedMnefSiO4・・・(B)
(式(B)中、NはNi、Co、Al、Zn、V又はZrを示す。d、e及びfは、0≦d≦1、0≦e≦1、及び0≦f<1、2d+2e+(Nの価数)×f=2を満たし、かつd+e≠0を満たす数を示す。)
       NaFegMnhiPO4・・・(C)
(式(C)中、QはMg、Ca、Co、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。を示す。g、h及びiは、0≦g≦1、0≦h≦1、0≦i<1、及び2g+2h+(Qの価数)×i=2を満たし、かつg+h≠0を満たす数を示す。)
で表される酸化物と、セルロースナノファイバーが炭化されてなる炭素とを含む複合体に、
 0.3~5質量%のグラファイト、水溶性炭素材料が炭化されてなる0.1~4質量%の炭素、又は0.1~5質量%の金属フッ化物が担持されてなる二次電池用正極活物質を提供するものである。
 また、本発明は、少なくとも鉄又はマンガンを含む下記式(A)、(B)又は(C):
       LiFeaMnbcPO4・・・(A)
(式(A)中、MはMg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。a、b及びcは、0≦a≦1、0≦b≦1、0≦c≦0.2、及び2a+2b+(Mの価数)×c=2を満たし、かつa+b≠0を満たす数を示す。)
       Li2FedMnefSiO4・・・(B)
(式(B)中、NはNi、Co、Al、Zn、V又はZrを示す。d、e及びfは、0≦d≦1、0≦e≦1、及び0≦f<1、2d+2e+(Nの価数)×f=2を満たし、かつd+e≠0を満たす数を示す。)
       NaFegMnhiPO4・・・(C)
(式(C)中、QはMg、Ca、Co、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。を示す。g、h及びiは、0≦g≦1、0≦h≦1、0≦i<1、及び2g+2h+(Qの価数)×i=2を満たし、かつg+h≠0を満たす数を示す。)
で表される酸化物と、セルロースナノファイバーが炭化されてなる炭素とを含む複合体に、0.3~5質量%のグラファイトが担持されてなる二次電池用正極活物質の製造方法であって、
 リチウム化合物又はナトリウム化合物と、セルロースナノファイバーを含む混合物(X-1)に、リン酸化合物又はケイ酸化合物を混合して複合体(X-1)を得る工程(I-1)、
 得られた複合体(X-1)と、少なくとも鉄化合物又はマンガン化合物を含む金属塩を含有するスラリー水(Y-1)を水熱反応に付して複合体(Y-1)を得る工程(II-1)、
 得られた複合体(Y-1)にグラファイトを添加して圧縮力及びせん断力を付加しながら6~90分間混合し、複合体(Z-1)を得る工程(III-1)、並びに
 得られた複合体(Z-1)を還元雰囲気又は不活性雰囲気中で焼成する工程(IV-1)
を備える二次電池用正極活物質の製造方法を提供するものである。
 さらに、本発明は、少なくとも鉄又はマンガンを含む下記式(A)、(B)又は(C):
       LiFeaMnbcPO4・・・(A)
(式(A)中、MはMg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。a、b及びcは、0≦a≦1、0≦b≦1、0≦c≦0.2、及び2a+2b+(Mの価数)×c=2を満たし、かつa+b≠0を満たす数を示す。)
       Li2FedMnefSiO4・・・(B)
(式(B)中、NはNi、Co、Al、Zn、V又はZrを示す。d、e及びfは、0≦d≦1、0≦e≦1、及び0≦f<1、2d+2e+(Nの価数)×f=2を満たし、かつd+e≠0を満たす数を示す。)
       NaFegMnhiPO4・・・(C)
(式(C)中、QはMg、Ca、Co、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。を示す。g、h及びiは、0≦g≦1、0≦h≦1、0≦i<1、及び2g+2h+(Qの価数)×i=2を満たし、かつg+h≠0を満たす数を示す。)
で表される酸化物と、セルロースナノファイバーが炭化されてなる炭素とを含む複合体に、水溶性炭素材料が炭化されてなる0.1~4質量%の炭素、又は0.1~5質量%の金属フッ化物が担持されてなる二次電池用正極活物質の製造方法であって、
 リチウム化合物又はナトリウム化合物と、セルロースナノファイバーを含む混合物(X-2)に、リン酸化合物又はケイ酸化合物を混合して複合体(X-2)を得る工程(I-2)、
 得られた複合体(X-2)と、少なくとも鉄化合物又はマンガン化合物を含む金属塩を含有するスラリー水(Y-2)を水熱反応に付して複合体(Y-2)を得る工程(II-2)、並びに
 得られた複合体(Y-2)に、複合体(Y-2)100質量部に対して0.1~16質量部の水溶性有機化合物、又は複合体(Y-2)100質量部に対して0.1~40質量部の金属フッ化物の前駆体を添加して湿式混合し、焼成する工程(III-2)
を備える二次電池用正極活物質の製造方法を提供するものである。
 本発明によれば、所定の酸化物とセルロースナノファイバーが炭化されてなる炭素とを含む複合体に、特定量のグラファイト、水溶性炭素材料が炭化されてなる炭素、又は金属フッ化物が担持されてなることにより、複合体表面の一部において、セルロースナノファイバーが炭化されてなる炭素が存在せずに酸化物が露出しているような部位にも、グラファイト、水溶性炭素材料が炭化されてなる炭素又は金属フッ化物が有効に担持されてなることとなり、酸化物表面における露出部が効果的に低減された二次電池用正極活物質を得ることができる。そのため、強い乾燥工程を介することなく、二次電池用正極活物質に、水分を吸着しにくい性質を有効に付与することが可能となり、かかる二次電池用正極活物質を用いたリチウムイオン二次電池又はナトリウムイオン二次電池において、リチウムイオン又はナトリウムイオンが有効に電気伝導を担いつつ、様々な使用環境下でも優れた電池特性を安定して発現することができる。
 以下、本発明について詳細に説明する。
 本発明の二次電池用正極活物質は、少なくとも鉄又はマンガンを含む下記式(A)、(B)又は(C):
       LiFeaMnbcPO4・・・(A)
(式(A)中、MはMg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。a、b及びcは、0≦a≦1、0≦b≦1、0≦c≦0.2、及び2a+2b+(Mの価数)×c=2を満たし、かつa+b≠0を満たす数を示す。)
       Li2FedMnefSiO4・・・(B)
(式(B)中、NはNi、Co、Al、Zn、V又はZrを示す。d、e及びfは、0≦d≦1、0≦e≦1、及び0≦f<1、2d+2e+(Nの価数)×f=2を満たし、かつd+e≠0を満たす数を示す。)
       NaFegMnhiPO4・・・(C)
(式(C)中、QはMg、Ca、Co、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。を示す。g、h及びiは、0≦g≦1、0≦h≦1、0≦i<1、及び2g+2h+(Qの価数)×i=2を満たし、かつg+h≠0を満たす数を示す。)
で表される酸化物と、セルロースナノファイバーが炭化されてなる炭素とを含む複合体に、
 0.3~5質量%のグラファイト、水溶性炭素材料が炭化されてなる0.1~4質量%の炭素、又は0.1~5質量%の金属フッ化物が担持されてなる。すなわち、本発明の二次電池用正極活物質としては、具体的には、例えば、上記酸化物とセルロースナノファイバーが炭化されてなる炭素とを含む複合体に、0.3~5質量%のグラファイトが担持されてなる二次電池用正極活物質(P-1)、上記酸化物とセルロースナノファイバーが炭化されてなる炭素とを含む複合体に、水溶性炭素材料が炭化されてなる0.1~4質量%の炭素が担持されてなる二次電池用正極活物質(P-2a)、並びに上記酸化物とセルロースナノファイバーが炭化されてなる炭素とを含む複合体に、0.1~5質量%の金属フッ化物が担持されてなる二次電池用正極活物質(P-2b)が挙げられる。
  本発明で用いる酸化物は、少なくとも鉄又はマンガンを含み、かつ下記式(A)、(B)又は(C):
       LiFeaMnbcPO4・・・(A)
(式(A)中、MはMg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。a、b及びcは、0≦a≦1、0≦b≦1、0≦c≦0.2、及び2a+2b+(Mの価数)×c=2を満たし、かつa+b≠0を満たす数を示す。)
       Li2FedMnefSiO4・・・(B)
(式(B)中、NはNi、Co、Al、Zn、V又はZrを示す。d、e及びfは、0≦d≦1、0≦e≦1、0≦f<1、及び2d+2e+(Nの価数)×f=2を満たし、かつd+e≠0を満たす数を示す。)
       NaFegMnhiPO4・・・(C)
(式(C)中、QはMg、Ca、Co、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。を示す。g、h及びiは、0≦g≦1、0≦h≦1、0≦i<1、及び2g+2h+(Qの価数)×i=2を満たし、かつg+h≠0を満たす数を示す。)
のいずれかの式で表される。
 これらの酸化物は、いずれもオリビン型構造を有しており、少なくとも鉄又はマンガンを含む。上記式(A)又は式(B)で表される酸化物を用いた場合には、リチウムイオン電池用正極活物質が得られ、上記式(C)で表される酸化物を用いた場合には、ナトリウムイオン電池用正極活物質が得られる。
 上記式(A)で表される酸化物は、いわゆる少なくとも遷移金属として鉄(Fe)及びマンガン(Mn)を含むオリビン型リン酸遷移金属リチウム化合物である。式(A)中、Mは、Mg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示し、好ましくはMg、Zr、Mo又はCoである。aは、0≦a≦1であって、好ましくは0.01≦a≦0.99であり、より好ましくは0.1≦a≦0.9である。bは、0≦b≦1であって、好ましくは0.01≦b≦0.99であり、より好ましくは0.1≦b≦0.9である。cは、0≦c≦0.2をであって、好ましくは0≦c≦0.1である。そして、これらa、b及びcは、2a+2b+(Mの価数)×c=2を満たし、かつa+b≠0を満たす数である。上記式(A)で表されるオリビン型リン酸遷移金属リチウム化合物としては、具体的には、例えばLiFe0.2Mn0.8PO4、LiFe0.9Mn0.1PO4、LiFe0.15Mn0.75Mg0.1PO4、LiFe0.19Mn0.75Zr0.03PO4等が挙げられ、なかでもLiFe0.2Mn0.8PO4が好ましい。
 上記式(B)で表される酸化物は、いわゆる少なくとも遷移金属として鉄(Fe)及びマンガン(Mn)を含むオリビン型ケイ酸遷移金属リチウム化合物である。式(B)中、Nは、Ni、Co、Al、Zn、V又はZrを示し、好ましくはCo、Al、Zn、V又はZrである。dは、0≦d≦1であって、好ましくは0≦d<1であり、より好ましくは0.1≦d≦0.6である。eは、0≦d≦1であって、好ましくは0≦e<1であり、より好ましくは0.1≦e≦0.6である。fは、0≦f<1であって、好ましくは0<f<1であり、より好ましくは0.05≦f≦0.4である。そして、これらd、e及びfは、2d+2e+(Nの価数)×f=2を満たし、かつd+e≠0を満たす数である。上記式(B)で表されるオリビン型ケイ酸遷移金属リチウム化合物としては、具体的には、例えばLi2Fe0.45Mn0.45Co0.1SiO4、Li2Fe0.36Mn0.54Al0.066SiO4、Li2Fe0.45Mn0.45Zn0.1SiO4、Li2Fe0.36Mn0.540.066SiO4、Li2Fe0.282Mn0.658Zr0.02SiO4等が挙げられ、なかでもLi2Fe0.282Mn0.658Zr0.02SiO4が好ましい。
 上記式(C)で表される酸化物は、いわゆる少なくとも遷移金属として鉄(Fe)及びマンガン(Mn)を含むオリビン型リン酸遷移金属ナトリウム化合物である。式(C)中、QはMg、Ca、Co、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示し、好ましくはMg、Zr、Mo又はCoである。gは、0≦g≦1であって、好ましくは0<g≦1である。hは、0≦h≦1であって、好ましくは0.5≦h<1である。iは、0≦i<1であって、好ましくは0≦i≦0.5であり、より好ましくは0≦i≦0.3である。そして、これらg、h及びiは、0≦g≦1、0≦h≦1、及び0≦i<1、2g+2h+(Qの価数)×i=2を満たし、かつg+h≠0を満たす数である。上記式(C)で表されるオリビン型リン酸遷移金属ナトリウム化合物としては、具体的には、例えばNaFe0.2Mn0.8PO4、NaFe0.9Mn0.1PO4、NaFe0.15Mn0.7Mg0.15PO4、NaFe0.19Mn0.75Zr0.03PO4、NaFe0.19Mn0.75Mo0.03PO4、NaFe0.15Mn0.7Co0.15PO4等が挙げられ、なかでもNaFe0.2Mn0.8PO4が好ましい。
 本発明の二次電池用正極活物質は、上記式(A)、(B)又は(C)で表される酸化物と、セルロースナノファイバーが炭化されてなる炭素とを含む複合体に、グラファイト、水溶性炭素材料が炭化されてなる炭素、又は金属フッ化物が担持してなる。すなわち、セルロースナノファイバーを炭素源として用いることにより得られるものであって、酸化物とセルロースナノファイバーとを含む複合体(一次粒子)に含まれるセルロースナノファイバーが、炭化された炭素(セルロースナノファイバー由来の炭素)として、上記酸化物に堅固に担持してなる。セルロースナノファイバーとは、全ての植物細胞壁の約5割を占める骨格成分であって、かかる細胞壁を構成する植物繊維をナノサイズまで解繊等することにより得ることができる軽量高強度繊維であり、水への良好な分散性も有している。また、セルロースナノファイバーを構成するセルロース分子鎖では、炭素による周期的構造が形成されていることから、これが炭化されて上記酸化物に堅固に担持されることにより、グラファイト、水溶性炭素材料が炭化されてなる炭素(水溶性炭素材料由来の炭素)、又は金属フッ化物とも相まって、得られる二次電池における放電特性を有効に高めることができる有用な正極活物質を得ることができる。
 用い得るセルロースナノファイバーとしては、植物細胞壁を構成する植物繊維をナノサイズまで解繊等することにより得られたものであれば、特に制限されず、例えば、セリッシュKY-100S(ダイセルファインケム製)等の市販品を用いることができる。セルロースナノファイバーの繊維径は、上記酸化物に堅固に担持させる観点から、好ましくは4~500nmであり、より好ましくは5~400nmであり、さらに好ましくは10~300nmである。
 セルロースナノファイバーは、その後炭化されて、上記酸化物に担持された炭素として、本発明の二次電池用正極活物質中に存在することとなる。かかるセルロースナノファイバーの炭素原子換算量は、本発明の二次電池用正極活物質中に、好ましくは0.5~15質量%であり、より好ましくは0.7~10質量%である。より具体的には、酸化物が上記式(A)又は(C)で表される二次電池用正極活物質では、二次電池用正極活物質中に、好ましくは0.5~5質量%であり、より好ましくは0.7~3.5質量%であり、酸化物が上記式(B)で表される二次電池用正極活物質では、好ましくは0.5~15質量%であり、より好ましくは1~10質量%である。二次電池用正極活物質中に存在するセルロースナノファイバーの炭素原子換算量は、炭素・硫黄分析装置を用いて測定した炭素量から、二次電池用正極活物質(P-1)の場合には、後から添加したグラファイトの添加量を差し引くことにより、また二次電池用正極活物質(P-2a)の場合には、後から添加した水溶性炭素材料の炭素量を差し引くことにより、さらに二次電池用正極活物質(P-2b)の場合には、その炭素量をもって確認することができる。
 上記酸化物とセルロースナノファイバーとを含む複合体(一次粒子)は、具体的には、リチウム化合物又はナトリウム化合物、リン酸化合物又はケイ酸化合物、並びに少なくとも鉄化合物又はマンガン化合物を含み、かつセルロースナノファイバーを含むスラリー水を水熱反応に付すことにより得られるものであるのが好ましい。すなわち、上記複合体(一次粒子)は、リチウム化合物又はナトリウム化合物、リン酸化合物又はケイ酸化合物、並びに少なくとも鉄化合物又はマンガン化合物を含み、かつセルロースナノファイバーを含むスラリー水の、水熱反応物であるのが好ましい。
 本発明の二次電池用正極活物質が、上記酸化物とセルロースナノファイバーが炭化されてなる炭素とを含む複合体に、0.3~5質量%のグラファイトが担持されてなる二次電池用正極活物質(P-1)である場合、かかる二次電池用正極活物質(P-1)は、炭素源としてセルロースナノファイバー及びグラファイトを用いることにより得られるものであって、複合体に含まれるセルロースナノファイバーが炭化された炭素と、グラファイトが共に、上記酸化物に堅固に担持してなる。
 上記式(A)、(B)又は(C)で表される酸化物に担持されるグラファイトとしては、人造グラファイト(鱗片状、塊状、土状、グラフェン)、天然グラファイトのいずれであってもよい。用い得るグラファイトのBET比表面積は、吸着水分量を効果的に低減する観点から、好ましくは1~750m2/gであり、より好ましくは3~500m2/gである。また、かかるグラファイトの平均粒子径は、同様の観点から、好ましくは0.5~20μmであり、より好ましくは1.0~15μmである。
 上記二次電池用正極活物質(P-1)において、上記酸化物は、より具体的には、リチウム化合物又はナトリウム化合物と、セルロースナノファイバーを含む混合物(X-1)に、リン酸化合物又はケイ酸化合物を混合して複合体(X-1)を得る工程(I-1)、並びに
 得られた複合体(X-1)と、少なくとも鉄化合物又はマンガン化合物を含む金属塩を含有するスラリー水(Y-1)を水熱反応に付して複合体(Y-1)を得る工程(II-1)
を備える製造方法により得られるものであるのが好ましい。
 工程(I-1)は、リチウム化合物又はナトリウム化合物と、セルロースナノファイバーを含む混合物(X-1)に、リン酸化合物又はケイ酸化合物を混合して複合体(X-1)を得る工程である。
 用い得るリチウム化合物又はナトリウム化合物としては、水酸化物(例えばLiOH・H2O、NaOH)、炭酸化物、硫酸化物、酢酸化物が挙げられる。なかでも、水酸化物が好ましい。
 混合物(X-1)におけるリチウム化合物又はケイ酸化合物の含有量は、水100質量部に対し、好ましくは5~50質量部であり、より好ましくは7~45質量部である。より具体的には、工程(I-1)においてリン酸化合物を用いた場合、混合物(X-1)におけるリチウム化合物又はナトリウム化合物の含有量は、水100質量部に対し、好ましくは5~50質量部であり、より好ましくは10~45質量部である。また、ケイ酸化合物を用いた場合、混合物(X-1)におけるケイ酸化合物の含有量は、水100質量部に対し、好ましくは5~40質量部であり、より好ましくは7~35質量部である。
 混合物(X-1)におけるセルロースナノファイバーの含有量は、例えば混合物(X-1)中の水100質量部に対し、好ましくは0.5~60質量部であり、より好ましくは0.8~40質量部である。より具体的には、工程(I-1)においてリン酸化合物を用いた場合、混合物(X-1)におけるセルロースナノファイバーの含有量は、好ましくは0.5~20質量部であり、より好ましくは0.8~15質量部である。また、ケイ酸化合物を用いた場合、混合物(X-1)におけるセルロースナノファイバーの含有量は、好ましくは0.5~60質量部であり、より好ましくは1~40質量部である。
 混合物(X-1)にリン酸化合物又はケイ酸化合物を混合する前に、予め混合物(X-1)を撹拌しておくのが好ましい。かかる混合物(X-1)の撹拌時間は、好ましくは1~15分であり、より好ましくは3~10分である。また、混合物(X-1)の温度は、好ましくは20~90℃であり、より好ましくは20~70℃である。
 工程(I-1)で用いるリン酸化合物としては、オルトリン酸(H3PO4、リン酸)、メタリン酸、ピロリン酸、三リン酸、四リン酸、リン酸アンモニウム、リン酸水素アンモニウム等が挙げられる。なかでもリン酸を用いるのが好ましく、70~90質量%濃度の水溶液として用いるのが好ましい。かかる工程(I-1)では、混合物(X-1)にリン酸を混合するにあたり、混合物(X-1)を撹拌しながらリン酸を滴下するのが好ましい。混合物(X-1)にリン酸を滴下して少量ずつ加えることで、混合物(X-1)中において良好に反応が進行して、複合体(X-1)がスラリー中で均一に分散しつつ生成され、かかる複合体(X-1)が不要に凝集するのをも効果的に抑制することができる。
 リン酸の上記混合物(X-1)への滴下速度は、好ましくは15~50mL/分であり、より好ましくは20~45mL/分であり、さらに好ましくは28~40mL/分である。また、リン酸を滴下しながらの混合物(X-1)の撹拌時間は、好ましくは0.5~24時間であり、より好ましくは3~12時間である。さらに、リン酸を滴下しながらの混合物(X-1)の撹拌速度は、好ましくは200~700rpmであり、より好ましくは250~600rpmであり、さらに好ましくは300~500rpmである。
 なお、混合物(X-1)を撹拌する際、さらに混合物(X-1)の沸点温度以下に冷却するのが好ましい。具体的には、80℃以下に冷却するのが好ましく、20~60℃に冷却するのがより好ましい。
 工程(I-1)で用いるケイ酸化合物としては、反応性のあるシリカ化合物であれば特に限定されず、非晶質シリカ、Na4SiO4(例えばNa4SiO4・H2O)等が挙げられる。
 リン酸化合物又はケイ酸化合物を混合した後の混合物(X-1)は、リン酸又はケイ酸1モルに対し、リチウム又はナトリウムを2.0~4.0モル含有するのが好ましく、2.0~3.1モル含有するのがより好ましく、このような量となるよう、上記リチウム化合物又はナトリウム化合物と、リン酸化合物又はケイ酸化合物を用いればよい。より具体的には、工程(I-1)においてリン酸化合物を用いた場合、リン酸化合物を混合した後の混合物(X-1)は、リン酸1モルに対し、リチウム又はナトリウムを2.7~3.3モル含有するのが好ましく、2.8~3.1モル含有するのがより好ましく、工程(I-1)においてケイ酸化合物を用いた場合、ケイ酸化合物を混合した後の混合物(X-1)は、ケイ酸1モルに対し、リチウムを2.0~4.0モル含有するのが好ましく、2.0~3.0含有するのがより好ましい。
 リン酸化合物又はケイ酸化合物を混合した後の混合物(X-1)に対して窒素をパージすることにより、かかる混合物中での反応を完了させて、上記(A)~(C)で表される酸化物の前駆体である複合体(X-1)を混合物中に生成させる。窒素がパージされると、混合物(X-1)中の溶存酸素濃度が低減された状態で反応を進行させることができ、また得られる複合体(X-1)を含有する混合物中の溶存酸素濃度も効果的に低減されるため、次の工程で添加する鉄化合物やマンガン化合物等の酸化を抑制することができる。かかる複合体(X-1)を含有する混合物中において、上記(A)~(C)で表される酸化物の前駆体は、微細な分散粒子として存在する。かかる複合体(X-1)は、例えば上記式(A)で表される酸化物の場合、リン酸三リチウム(Li3PO4)とセルロースナノファイバーの複合体として得られる。
 窒素をパージする際における圧力は、好ましくは0.1~0.2MPaであり、より好ましくは0.1~0.15MPaである。また、リン酸化合物又はケイ酸化合物を混合した後の混合物(X-1)の温度は、好ましくは20~80℃であり、より好ましくは20~60℃である。例えば上記式(A)で表される酸化物の場合、反応時間は、好ましくは5~60分であり、より好ましくは15~45分である。
 また、窒素をパージする際、反応を良好に進行させる観点から、リン酸化合物又はケイ酸化合物を混合した後の混合物(X-1)を撹拌するのが好ましい。このときの撹拌速度は、好ましくは200~700rpmであり、より好ましくは250~600rpmである。
 また、より効果的に複合体(X-1)の分散粒子表面における酸化を抑制し、分散粒子の微細化を図る観点から、リン酸化合物又はケイ酸化合物を混合した後の混合物(X-1)中における溶存酸素濃度を0.5mg/L以下とするのが好ましく、0.2mg/L以下とするのがより好ましい。
 工程(II-1)では、工程(I-1)で得られた複合体(X-1)と、少なくとも鉄化合物又はマンガン化合物を含む金属塩を含有するスラリー水(Y-1)を水熱反応に付して、複合体(Y-1)を得る工程である。上記工程(I-1)により得られた複合体(X-1)を、混合物のまま、上記(A)~(C)で表される酸化物の前駆体として用い、これに少なくとも鉄化合物又はマンガン化合物を含む金属塩を添加して、スラリー水(Y-1)として用いるのが好ましい。これにより、工程を簡略化させつつ、上記(A)~(C)で表される酸化物が極めて微細な粒子になるとともに、後工程において効率的にセルロースナノファイバー由来の炭素をかかる酸化物に担持させることが可能となり、非常に有用な二次電池用正極活物質を得ることができる。
 用い得る鉄化合物としては、酢酸鉄、硝酸鉄、硫酸鉄等が挙げられる。これらは1種単独で用いてもよく、2種以上組み合わせて用いてもよい。なかでも、電池特性を高める観点から、硫酸鉄が好ましい。
 用い得るマンガン化合物としては、酢酸マンガン、硝酸マンガン、硫酸マンガン等が挙げられる。これらは1種単独で用いてもよく、2種以上組み合わせて用いてもよい。なかでも、電池特性を高める観点から、硫酸マンガンが好ましい。
 金属塩として、鉄化合物とマンガン化合物の双方を用いる場合、これらマンガン化合物及び鉄化合物の使用モル比(マンガン化合物:鉄化合物)は、好ましくは99:1~1:99であり、より好ましくは90:10~10:90である。また、これら鉄化合物及びマンガン化合物の合計添加量は、スラリー水(Y-1)中に含有されるLi3PO4 1モルに対し、好ましくは0.99~1.01モルであり、より好ましくは0.995~1.005モルである。
 さらに、必要に応じて、金属塩として、鉄化合物及びマンガン化合物以外の金属(M、N又はQ)塩を用いてもよい。金属(M、N又はQ)塩におけるM、N及びQは、上記式(A)~(C)中のM、N及びQと同義であり、かかる金属塩として、硫酸塩、ハロゲン化合物、有機酸塩、及びこれらの水和物等を用いることができる。これらは1種単独で用いてもよく、2種以上用いてもよい。なかでも、電池物性を高める観点から、硫酸塩を用いるのがより好ましい。
 これら金属(M、N又はQ)塩を用いる場合、鉄化合物、マンガン化合物、及び金属(M、N又はQ)塩の合計添加量は、上記工程(I-1)において得られた混合物中のリン酸又はケイ酸1モルに対し、好ましくは0.99~1.01モルであり、より好ましくは0.995~1.005モルである。
 水熱反応に付する際に用いる水の使用量は、用いる金属塩の溶解性、撹拌の容易性、及び合成の効率等の観点から、スラリー水(Y-1)中に含有されるリン酸又はケイ酸イオン1モルに対し、好ましくは10~50モルであり、より好ましくは12.5~45モルである。より具体的には、スラリー水(Y-1)中に含有されるイオンがリン酸イオンの場合、水熱反応に付する際に用いる水の使用量は、好ましくは10~30モルであり、より好ましくは12.5~25モルである。また、スラリー水(Y-1)中に含有されるイオンがケイ酸イオンの場合、水熱反応に付する際に用いる水の使用量は、好ましくは10~50モルであり、より好ましくは12.5~45モルである。
 工程(II-1)において、鉄化合物、マンガン化合物及び金属(M、N又はQ)塩の添加順序は特に制限されない。また、これらの金属塩を添加するとともに、必要に応じて酸化防止剤を添加してもよい。かかる酸化防止剤としては、亜硫酸ナトリウム(Na2SO3)、ハイドロサルファイトナトリウム(Na224)、アンモニア水等を使用することができる。酸化防止剤の添加量は、過剰に添加されることで上記式(A)~(C)で表される酸化物の生成が抑制されるのを防止する観点から、鉄化合物、マンガン化合物及び必要に応じて用いる金属(M、N又はQ)塩の合計1モルに対し、好ましくは0.01~1モルであり、より好ましくは0.03~0.5モルである。
 鉄化合物、マンガン化合物及び必要に応じて用いる金属(M、N又はQ)塩や酸化防止剤を添加することにより得られるスラリー(Y-1)中における複合体(Y-1)の含有量は、好ましくは10~50質量%であり、より好ましくは15~45質量%であり、さらに好ましくは20~40質量%である。
 工程(II-1)における水熱反応は、100℃以上であればよく、130~180℃が好ましい。水熱反応は耐圧容器中で行うのが好ましく、130~180℃で反応を行う場合、この時の圧力は0.3~0.9MPaであるのが好ましく、140~160℃で反応を行う場合の圧力は0.3~0.6MPaであるのが好ましい。水熱反応時間は0.1~48時間が好ましく、さらに0.2~24時間が好ましい。
 得られた複合体(Y-1)は、上記式(A)~(C)で表される酸化物及びセルロースナノファイバーを含む複合体であり、ろ過後、水で洗浄し、乾燥することによりこれを、セルロースナノファイバーを含む複合体粒子(一次粒子)として単離できる。なお、乾燥手段は、凍結乾燥、真空乾燥が用いられる。
 得られる複合体(Y-1)のBET比表面積は、吸着水分量を効果的に低減する観点から、好ましくは5~40m2/gであり、より好ましくは5~20m2/gである。複合体(Y-1)のBET比表面積が5m2/g未満であると、二次電池用正極活物質の一次粒子が大きくなりすぎ、電池特性が低下してしまうおそれがある。また、BET比表面積が40m2/gを超えると、二次電池用正極活物質の吸着水分量が増大して電池特性に影響を与えるおそれがある。
 本発明の二次電池用正極活物質(P-1)は、上記式(A)~(C)で表される酸化物とセルロースナノファイバーが炭化されてなる炭素とを含む複合体に、0.3~5質量%のグラファイトが担持してなる活物質であり、かかる二次電池用正極活物質(P-1)は、具体的には、上記式(A)~(C)で表される酸化物とセルロースナノファイバーとを含む複合体粒子(一次粒子)に、グラファイトを添加する工程を含み、上記工程(I-1)及び(II-1)を経ることにより酸化物及びセルロースナノファイバーを含む複合体(Y-1)を得た後、得られた複合体(Y-1)にグラファイトを添加して圧縮力及びせん断力を付加しながら混合し、複合体(Z-1)を得る工程(III-1)、並びに得られた複合体(Z-1)を還元雰囲気又は不活性雰囲気中で焼成する工程(IV-1)を備える製造方法により得るのが好ましい。このように、圧縮力及びせん断力を付加しながら混合する処理を行うことにより、複合体(Y-1)とグラファイトとが均一に分散しつつ、グラファイトを変形又は延展させながら堅固に凝集して、BET比表面積が有効に減じられ、かつ後の焼成工程で炭化されるセルロースナノファイバーとも相まって水分が吸着するのを効果的に抑制できる二次電池用正極活物質を粒子として形成させることができる。
 工程(III-1)は、上記複合体(Y-1)(式(A)~(C)で表される酸化物及びセルロースナノファイバーを含む複合体)に、セルロースナノファイバー以外の炭素源としてグラファイトを添加するための工程であり、具体的には、工程(I-1)及び(II-1)を経ることにより得られた複合体(Y-1)にグラファイトを添加して圧縮力及びせん断力を付加しながら混合し、複合体(Z-1)を得る工程である。
 グラファイトの添加量は、本発明の二次電池用正極活物質中に、好ましくは0.3~5質量%であり、より好ましくは0.5~4質量%であり、さらに好ましくは0.6~3質量%である。
 上記複合体(Y-1)とグラファイトは、グラファイトが上記式(A)~(C)で表される酸化物の表面を効率的かつ均一に被覆しつつ、セルロースナノファイバーとも相まって得られる二次電池用正極活物質の吸着水分量を有効に低減する観点から、好ましくは質量比(複合体(Y-1):グラファイト)99:1~91:9で混合し、より好ましくは98:2~93:7で混合するのがよい。
 圧縮力及びせん断力を付加しながら混合する処理は、好ましくは5~90分間行い、より好ましくは10~80分間行う。かかる処理は、周速度25~40m/sで回転するインペラを備える密閉容器内で行うのが好ましい。かかるインペラの周速度は、得られる正極活物質のタップ密度を高め、またBET比表面積を減じて吸着水分量を有効に低減する観点から、好ましくは27~40m/sである。
 なお、インペラの周速度とは、回転式攪拌翼(インペラ)の最外端部の速度を意味し、下記式(1)により表すことができ、また圧縮力及びせん断力を付加しながら混合する処理を行う時間は、インペラの周速度が遅いほど長くなるように、インペラの周速度によっても変動し得る。
  インペラの周速度(m/s)=
  インペラの半径(m)×2×π×回転数(rpm)÷60・・・(1)
 工程(III-1)における処理時間及び/又はインペラの周速度は、容器に投入する複合体Y-1及びグラファイトの量に応じて適宜調整する必要がある。そして、容器を稼動させることにより、インペラと容器内壁との間でこれら混合物に圧縮力及びせん断力が付加されつつ、これを混合する処理を行うことが可能となり、一次粒子の表面又は粒子の間隙において、グラファイトが緻密かつ均一に分散し、セルロースナノファイバーが炭化されてなる炭素とも相まって吸着水分量を有効に低減できる二次電池用正極活物質である複合体粒子を形成することできる。
 例えば、上記混合する処理を、周速度25~40m/sで回転するインペラを備える密閉容器内で5~90分間行う場合、容器に投入する複合体(Y-1)の量及びグラファイトの添加量の合計量は、有効容器(インペラを備える密閉容器のうち、複合体(Y-1)及びグラファイトを収容可能な部位に相当する容器)1cm3当たり、好ましくは0.1~0.7gであり、より好ましくは0.15~0.4gである。
 なお、得られる二次電池用正極活物質の均一性を高める観点、および複合体(Y-1)及びグラファイトを混合する処理の効率化を図る観点から、インペラを備える密閉容器内へ複合体(Y-1)及びグラファイトを投入する前に、予めこれらを混合してもよい。
 このような圧縮力及びせん断力を付加しながら混合する処理を行うことができる密閉容器を備える装置としては、高速せん断ミル、ブレード型混練機等が挙げられ、具体的には、例えば、微粒子複合化装置 ノビルタ(ホソカワミクロン(株)製)を好適に用いることができる。かかる装置を用いることにより、容易に所定の圧縮力とせん断力を付加しながら混合する処理を行うことができ、このような処理を施すのみで本発明の二次電池用正極活物質(P-1)を得ることができる。
 上記混合の処理条件としては、処理温度が、好ましくは5~80℃、より好ましくは10~50℃である。処理雰囲気としては、特に限定されないが、不活性ガス雰囲気下、又は還元ガス雰囲気下が好ましい。
 工程(IV-1)は、工程(III-1)を経ることにより得られた複合体(Z-1)を還元雰囲気又は不活性雰囲気中で焼成する工程である。かかる工程(IV-1)を経ることにより、上記セルロースナノファイバーが炭化してなる炭素が上記式(A)~(C)で表される酸化物の表面に堅固に担持されるとともに、複合体(Y-1)に添加したグラファイトも、上記式(A)~(C)で表される酸化物の表面を被覆する炭素として存在することとなる。さらに、この焼成により、圧縮力及びせん断力が付加されたことにより低下した酸化物及びグラファイト双方の結晶性を回復させることができるため、得られる正極活物質における導電性を有効に高めることができる。
 焼成温度は、セルロースナノファイバーを有効に炭化させる観点から、好ましくは500~800℃であり、より好ましくは600~770℃であり、さらに好ましくは650~750℃である。また、焼成時間は、好ましくは10分~3時間、より好ましくは30分~1.5時間とするのがよい。
 このようにして得られる本発明の二次電池用正極活物質(P-1)は、上記グラファイトの添加量とセルロースナノファイバー由来の炭素量との質量比(グラファイト/セルロースナノファイバー)が、好ましくは0.08~6であり、より好ましくは0.1~4であり、さらに好ましくは1~3である。これにより、上記式(A)~(C)で表される酸化物の表面に担持又は被覆してなるセルロースナノファイバー由来の炭素及びグラファイトが、相乗的に作用して、二次電池用正極活物質(P-1)における吸着水分量を有効に低減することができる。
 本発明の二次電池用正極活物質が、上記酸化物とセルロースナノファイバーが炭化されてなる炭素とを含む複合体に、水溶性炭素材料が炭化されてなる0.1~4質量%の炭素が担持されてなる二次電池用正極活物質(P-2a)である場合、かかる二次電池用正極活物質(P-2a)は、上記式(A)、(B)又は(C)で表される酸化物と、セルロースナノファイバー由来の炭素とを含む複合体に、0.1~4質量%の水溶性炭素材料由来の炭素が担持してなるものである。すなわち、二次電池用正極活物質(P-2a)は、炭素源としてセルロースナノファイバー及び特定量の水溶性炭素材料を用いることにより得られるものであって、セルロースナノファイバーが炭化された炭素となって酸化物表面を被覆してなる複合体において、セルロースナノファイバー由来の炭素が存在することなく酸化物表面が露出した部位に、炭化した水溶性炭素材料が有効に担持されてなる。したがって、これらセルロースナノファイバーと水溶性炭素材料が、共に炭化されたのち、上記酸化物表面の露出を効果的に抑制しながら、酸化物の全表面にわたり堅固に担持されてなるため、本発明の二次電池用正極活物質における水分吸着を有効に防止することができる。
 また、本発明の二次電池用正極活物質が、上記酸化物とセルロースナノファイバーが炭化されてなる炭素とを含む複合体に、0.1~5質量%の金属フッ化物が担持されてなる二次電池用正極活物質(P-2b)である場合、かかる二次電池用正極活物質(P-2b)は、上記式(A)、(B)又は(C)で表される酸化物と、セルロースナノファイバーが炭化されてなる炭素とを含む複合体に、0.1~5質量%の金属フッ化物が担持してなるものである。すなわち、二次電池用正極活物質(P-2b)は、炭素源としてセルロースナノファイバーを用いつつ、これを補うものとして特定量の金属フッ化物を用いることにより得られるものであって、セルロースナノファイバーが炭化された炭素となって酸化物表面を被覆してなる複合体において、セルロースナノファイバー由来の炭素が存在することなく酸化物表面が露出した部位に、金属フッ化物が有効に担持してなる。したがって、これらセルロースナノファイバー由来の炭素と金属フッ化物とが相まって上記酸化物表面の露出を効果的に抑制しながら、酸化物の全表面にわたり堅固に担持されてなるため、本発明の二次電池用正極活物質における水分吸着を有効に防止することができる。
 二次電池用正極活物質(P-2a)及び(P-2b)における上記酸化物とセルロースナノファイバーとを含む複合体(一次粒子)は、二次電池用正極活物質(P-1)の場合における上記酸化物とセルロースナノファイバーとを含む複合体(一次粒子)と同様、具体的には、リチウム化合物又はナトリウム化合物、リン酸化合物又はケイ酸化合物、並びに少なくとも鉄化合物又はマンガン化合物を含み、かつセルロースナノファイバーを含むスラリー水を水熱反応に付すことにより得られるものであるのが好ましい。すなわち、上記複合体は、リチウム化合物又はナトリウム化合物、リン酸化合物又はケイ酸化合物、並びに少なくとも鉄化合物又はマンガン化合物を含み、かつセルロースナノファイバーを含むスラリー水の、水熱反応物であるのが好ましい。
 二次電池用正極活物質(P-2a)における、上記複合体に炭化された炭素として担持される水溶性炭素材料とは、25℃の水100gに、水溶性炭素材料の炭素原子換算量で0.4g以上、好ましくは1.0g以上溶解する炭素材料を意味し、上記式(A)~(C)で表される酸化物に担持される炭素源として機能する。かかる水溶性炭素材料としては、例えば、糖類、ポリオール、ポリエーテル、及び有機酸から選ばれる1種又は2種以上が挙げられる。より具体的には、例えば、グルコース、フルクトース、ガラクトース、マンノース等の単糖類;マルトース、スクロース、セロビオース等の二糖類;デンプン、デキストリン等の多糖類;エチレングリコール、プロピレングリコール、ジエチレングリコール、ポリエチレングリコール、ブタンジオール、プロパンジオール、ポリビニルアルコール、グリセリン等のポリオールやポリエーテル;クエン酸、酒石酸、アスコルビン酸等の有機酸が挙げられる。なかでも、溶媒への溶解性及び分散性を高めて炭素材料として効果的に機能させる観点から、グルコース、フルクトース、スクロース、デキストリンが好ましく、グルコースがより好ましい。
 かかる水溶性炭素材料は、上記複合体において、セルロースナノファイバー由来の炭素が存在することなく酸化物表面が露出した部位に、0.1~4質量%の水溶性炭素材料由来の炭素として有効に担持させる観点から、上記複合体と湿式混合され、炭化された炭素として複合体に担持されてなるものであるのが好ましく、すなわち、本発明の二次電池用正極活物質は、酸化物とセルロースナノファイバーが炭化されてなる炭素とを含む複合体に、水溶性炭素材料が炭化されてなる炭素が担持してなるものが好ましい。かかる水溶性炭素材料由来の炭素の担持量は、セルロースナノファイバーが炭化されてなる炭素が存在しない酸化物の表面に水溶性炭素材料を有効に担持させる観点から、本発明の二次電池用正極活物質中に、好ましくは0.1~4質量%であり、より好ましくは0.2~3.5質量%であり、さらに好ましくは0.3~3質量%である。
 二次電池用正極活物質(P-2b)における、上記複合体に担持させる上記金属フッ化物の金属としては、リチウム(Li)、ナトリウム(Na)、マグネシウム(Mg)、カルシウム(Ca)、アルミニウム(Al)、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、タンタル(Ta)、錫(Sn)、タングステン(W)、カリウム(K)、バリウム(Ba)、ストロンチウム(Sr)が挙げられる。なかでも、金属フッ化物の疎水性を向上させ、且つイオン伝導性を向上させる観点から、リチウム、ナトリウム、マグネシウム、カルシウム、及びアルミニウムから選ばれる金属であることが好ましく、リチウム、及びマグネシウムから選ばれる金属であることがより好ましい。
 かかる金属フッ化物は、上記複合体において、セルロースナノファイバーが炭化されてなる炭素が存在することなく酸化物表面が露出した部位に、0.1~5質量%の量で有効に担持させる観点から、金属フッ化物を形成させるための金属フッ化物の前駆体を用い、上記複合体と金属フッ化物の前駆体とが湿式混合されて複合体に担持されてなるのが好ましく、具体的には、その後焼成されて、金属フッ化物として担持され、本発明の二次電池用正極活物質中に存在することとなる。すなわち、本発明の二次電池用正極活物質は、酸化物とセルロースナノファイバーとを含む複合体と、金属フッ化物の前駆体との湿式混合物の焼成物であるのが好ましい。
 かかる金属フッ化物の担持量は、セルロースナノファイバー由来の炭素が存在しない酸化物の表面に金属フッ化物を有効に担持させる観点から、本発明の二次電池用正極活物質中に、0.1~5質量%であり、好ましくは0.2~4.5質量%であり、より好ましくは0.3~4質量%である。上記金属フッ化物の担持量の担持量が0.1質量%未満であると、吸着水分量を充分に抑制できず、上記金属フッ化物の担持量の担持量が5質量%を超えると、詳細は不明であるが、吸着水分量が抑制されていても二次電池のサイクル特性が低下してしまうおそれがある。二次電池用正極活物質中に存在するフッ素量は、二次電池活物質を酸溶解させた溶解液を用いてイオン分析計により、確認することができる。
 本発明の二次電池用正極活物質(P-2a)又は(P-2b)は、より具体的には、リチウム化合物又はナトリウム化合物と、セルロースナノファイバーを含む混合物(X-2)に、リン酸化合物又はケイ酸化合物を混合して複合体(X-2)を得る工程(I-2)、
 得られた複合体(X-2)と、少なくとも鉄化合物又はマンガン化合物を含む金属塩を含有するスラリー水(Y-2)を水熱反応に付して複合体(Y-2)(一次粒子)を得る工程(II-2)、並びに
 得られた複合体(Y-2)に、複合体(Y-2)100質量部に対して0.1~16質量部の水溶性有機化合物、又は複合体(Y-2)100質量部に対して0.1~40質量部の金属フッ化物の前駆体を添加して湿式混合し、焼成する工程(III-2)
を備える製造方法により得られるものであるのが好ましい。
 工程(I-2)及び(II-2)は、上記二次電池用正極活物質(P-1)の製造方法での工程(I-1)及び(II-1)と同様であり、これにより、上記式(A)~(C)で表される酸化物及びセルロースナノファイバーを含む、上記複合体(Y-1)(一次粒子)と同じ複合体(Y-2)(一次粒子)を得ることができる。
 本発明の二次電池用正極活物質(P-2a)の製造方法は、工程(I-2)及び(II-2)を経ることにより得られた複合体(Y-2)に、複合体100質量部に対して0.1~16質量部の水溶性有機化合物を添加して湿式混合し、焼成する工程(III-2a)を備える。これにより、上記(A)~(C)で表される酸化物表面が露出するのを有効に抑制しつつ、かかる酸化物に炭素源であるセルロースナノファイバーと水溶性炭素材料を、共に炭化してなる炭素として堅固に担持させることができる。
 水溶性炭素材料の添加量は、上記のとおり、炭化されてなる炭素としての水溶性炭素材料の担持量が炭素原子換算量で上記範囲内になるような量であればよく、例えば、セルロースナノファイバー由来の炭素が存在しない酸化物の表面に水溶性炭素材料が炭化されてなる炭素を0.1~4質量%の量で有効に担持させる観点から、複合体(Y-2)100質量部に対し、0.1~16質量部であり、好ましくは0.2~14質量部であり、より好ましくは0.3~12質量部である。また、水溶性炭素材料とともに、水を添加するのが好ましい。水の添加量は、複合体(Y-2)100質量部に対し、好ましくは30~300質量部であり、より好ましくは50~250質量部であり、さらに好ましくは75~200質量部である。
 工程(III-2a)における湿式混合手段としては、特に制限されず、常法により行うことができる。複合体(Y-2)に上記量で水溶性炭素材料を添加した後、混合する際の温度は、好ましくは5~80℃であり、より好ましくは10~60℃である。得られる混合物は、焼成するまでの間に乾燥するのが好ましい。乾燥手段としては、噴霧乾燥、真空乾燥、凍結乾燥等が挙げられる。
 工程(III-2a)において、上記湿式混合により得られた混合物を焼成する。焼成は、還元雰囲気又は不活性雰囲気中で行うのが好ましい。焼成温度は、セルロースナノファイバーを有効に炭化させる観点から、好ましくは500~800℃であり、より好ましくは600~770℃であり、さらに好ましくは650~750℃である。また、焼成時間は、好ましくは10分~3時間、より好ましくは30分~1.5時間とするのがよい。
 本発明の二次電池用正極活物質(P-2b)の製造方法は、工程(I-2)及び(II-2)を経ることにより得られた複合体(Y-2)に、複合体(Y-2)100質量部に対して0.1~40質量部の金属フッ化物の前駆体を添加して湿式混合し、焼成する工程(III-2b)を備える。これにより、上記(A)~(C)で表される酸化物表面が露出するのを有効に抑制しつつ、かかる酸化物にセルロースナノファイバー由来の炭素と、焼成されることにより金属フッ化物の前駆体から形成される金属フッ化物とを、共に堅固に担持させることができる。
 金属フッ化物の前駆体の添加量は、上記のとおり、得られる二次電池用正極活物質中における金属フッ化物担持量換算で、上記範囲内になるような量であればよく、例えば、セルロースナノファイバー由来の炭素が存在しない酸化物の表面に金属フッ化物を0.1~5質量%の量で有効に担持させる観点から、複合体(Y-2)100質量部に対し、0.1~40質量部であり、好ましくは0.2~36質量部であり、より好ましくは0.3~32質量部である。また、金属フッ化物を有効に担持させる観点から、金属フッ化物の前駆体とともに、水を添加するのが好ましい。水の添加量は、複合体(Y-2)100質量部に対し、好ましくは30~300質量部であり、より好ましくは50~250質量部であり、さらに好ましくは75~200質量部である。
 金属フッ化物の前駆体とは、後に焼成されることにより、酸化物に担持させるための金属フッ化物を形成することのできる化合物であればよく、具体的には、金属フッ化物の前駆体として、金属フッ化物以外の化合物である、フッ素化合物及び金属化合物を併用するのが好ましい。かかる金属フッ化物以外の化合物であるフッ素化合物としては、フッ化水素酸、フッ化アンモニウム、次亜フッ素酸等が挙げられ、なかでもフッ化アンモニウムを用いるのが好ましい。かかる金属フッ化物以外の化合物である金属化合物としては、酢酸金属塩、硝酸金属塩、乳酸金属塩、シュウ酸金属塩、金属水酸化物、金属エトキシド、金属イソプロポキシド、金属ブトキシド等が挙げられ、なかでも金属水酸化物が好ましい。
 なお、金属化合物の金属とは、上記金属フッ化物の金属と同義である。
 工程(III-2b)における湿式混合手段、及び焼成条件は、上記二次電池用正極活物質(P-2a)の製造方法での工程(III-2a)と同様である。
 本発明の二次電池用正極活物質の吸着水分量は、酸化物が上記式(A)又は(C)で表される二次電池用正極活物質では、二次電池用正極活物質中に、好ましくは1200ppm以下であり、より好ましくは1000ppm以下であり、酸化物が上記式(B)で表される二次電池用正極活物質では、好ましくは2500ppm以下であり、より好ましくは2000ppm以下である。なお、かかる吸着水分量は、温度20℃及び相対湿度50%にて平衡に達するまで水分を吸着させ、温度150℃まで昇温して20分間保持した後、さらに温度250℃まで昇温して20分間保持したときの、150℃から昇温を再開するときを始点、及び250℃での恒温状態を終えたときを終点とする、始点から終点までの間に揮発した水分量として測定される値であって、二次電池用正極活物質の吸着水分量と、上記始点から終点までの間に揮発した水分量とが、同量であるとみなし、かかる揮発する水分量の測定値を二次電池用正極活物質の吸着水分量とするものである。
 このように、本発明の二次電池用正極活物質は、水分を吸着しにくいため、製造環境として強い乾燥条件を必要とすることなく吸着水分量を有効に低減することができ、得られるリチウム二次電池及びナトリウム二次電池の双方において、様々な使用環境下でも優れた電池特性を安定して発現することが可能となる。
 なお、温度20℃及び相対湿度50%にて平衡に達するまで水分を吸着させ、温度150℃まで昇温して20分間保持した後、さらに温度250℃まで昇温して20分間保持したときの、150℃から昇温を再開するときを始点、及び250℃での恒温状態を終えたときを終点とする、始点から終点までの間に揮発した水分量は、例えばカールフィッシャー水分計を用いて測定することができる。
 また、本発明の二次電池用正極活物質のタップ密度は、吸着水分量を効果的に低減する観点から、好ましくは0.5~1.6g/cm3であり、より好ましくは0.8~1.6g/cm3である。
 さらに、本発明の二次電池用正極活物質のBET比表面積は、吸着水分量を効果的に低減する観点から、好ましくは5~21m2/gであり、より好ましくは7~20m2/gである。
 本発明の二次電池用正極活物質を含む二次電池用正極を適用できる二次電池としては、正極と負極と電解液とセパレータを必須構成とするものであれば特に限定されない。
 ここで、負極については、リチウムイオン又はナトリウムイオンを充電時には吸蔵し、かつ放電時には放出することができれば、その材料構成で特に限定されるものではなく、公知の材料構成のものを用いることができる。たとえば、リチウム金属、ナトリウム金属、グラファイト又は非晶質炭素等の炭素材料等である。そしてリチウムイオン又はナトリウムイオンを電気化学的に吸蔵・放出し得るインターカレート材料で形成された電極、特に炭素材料を用いることが好ましい。
 電解液は、有機溶媒に支持塩を溶解させたものである。有機溶媒は、通常リチウムイオン二次電池やナトリウムイオン二次電池の電解液の用いられる有機溶媒であれば特に限定されるものではなく、例えば、カーボネート類、ハロゲン化炭化水素、エーテル類、ケトン類、ニトリル類、ラクトン類、オキソラン化合物等を用いることができる。
 支持塩は、その種類が特に限定されるものではないが、リチウムイオン二次電池の場合、LiPF6、LiBF4、LiClO4、LiAsF6から選ばれる無機塩、該無機塩の誘導体、LiSO3CF3、LiC(SO3CF32、LiN(SO3CF32、LiN(SO2252及びLiN(SO2CF3)(SO249)から選ばれる有機塩、並びに該有機塩の誘導体の少なくとも1種であることが好ましい。また、ナトリウムイオン二次電池の場合、NaPF6、NaBF4、NaClO4及びNaAsF6から選ばれる無機塩、該無機塩の誘導体、NaSO3CF3、NaC(SO3CF32及びNaN(SO3CF32、NaN(SO2252及びNaN(SO2CF3)(SO249)から選ばれる有機塩、並びに該有機塩の誘導体の少なくとも1種であることが好ましい。
 セパレータは、正極及び負極を電気的に絶縁し、電解液を保持する役割を果たすものである。たとえば、多孔性合成樹脂膜、特にポリオレフィン系高分子(ポリエチレン、ポリプロピレン)の多孔膜を用いればよい。
 以下、本発明について、実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。
 [実施例1-1]
 LiOH・H2O 12.72g、水 90mL、及びセルロースナノファイバー(セリッシュKY-100G、ダイセルファインケム製、繊維径4~100nm、略称CNF)5.10gを混合してスラリー水を得た。次いで、得られたスラリー水を、25℃の温度に保持しながら5分間撹拌しつつ85%のリン酸水溶液 11.53gを35mL/分で滴下し、続いて窒素ガスパージ下で12時間、400rpmの速度で撹拌することにより、複合体(X11-1)を含有するスラリー水(X11-1)(溶存酸素濃度0.5mg/L)を得た。かかるスラリー水(X11-1)は、リン1モルに対し、2.97モルのリチウムを含有していた。
 次に、得られたスラリー水(X11-1) 119.4gに対し、FeSO4・7H2O 4.17g及びMnSO4・5H2O 19.29gを添加し、混合してスラリー水(Y11-1)を得た。次いで、得られたスラリー水(Y11-1)を窒素ガスでパージしたオートクレーブに投入し、170℃で1時間水熱反応を行った。オートクレーブ内の圧力は、0.8MPaであった。生成した結晶をろ過し、次いで結晶1質量部に対し、12質量部の水により洗浄した。洗浄した結晶を-50℃で12時間凍結乾燥して複合体(Y11-1)(式(A)で表される酸化物の化学組成:LiFe0.2Mn0.8PO4、BET比表面積21m2/g、平均粒径60nm、CNF由来の炭素量1.5質量%)を得た。
 得られた複合体(Y11-1) 98.0gとグラファイト(高純度黒鉛粉末、日本黒鉛工業(株)製、BET比表面積5m2/g、平均粒子径6.1μm) 2.0g(活物質中における炭素原子換算量で2.0質量%に相当)とを予め混合して混合物(Y11-1)を得た。得られた混合物(Y11-1)を微粒子複合化装置 ノビルタ(NOB-130、ホソカワミクロン(株)製、動力5.5kw)に投入し、処理温度を25~35℃、インペラの周速度を30m/s、処理時間を15分として混合し、複合体予備粒子(Y11-1)を得た。
 次いで、窒素ガスをパージした電気炉を用い、得られた複合体予備粒子(Y11-1)を温度750℃で90分焼成し、複合体(Z11-1)としてリチウムイオン二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=3.5質量%)を得た。
 [実施例1-2]
 CNFを1.70gとした以外、実施例1-1で得たスラリー水(X11-1)と同様にしてスラリー水(X12-1)を得た後、実施例1-1で得た複合体(Y11-1)と同様にして複合体(Y12-1)(BET比表面積22m2/g、平均粒径58nm、CNF由来の炭素量0.5質量%)を得た。次いで、得られた複合体(Y12-1)を用い、かかる複合体(Y12-1) 98.0gとグラファイト 2.0g(活物質中における炭素原子換算量で2.0質量%に相当)とを混合した以外、実施例1-1と同様にしてリチウムイオン二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=2.5質量%)を得た。
 [実施例1-3]
 CNFを3.40gとした以外、実施例1-1で得たスラリー水(X11-1)と同様にしてスラリー水(X13-1)を得た後、実施例1-1で得た複合体(Y11-1)と同様にして複合体(Y13-1)(BET比表面積21m2/g、平均粒径55nm、CNF由来の炭素量1.0質量%)を得た。次いで、得られた複合体(Y13-1)を用い、かかる複合体(Y13-1) 98.0gとグラファイト 2.0g(活物質中における炭素原子換算量で2.0質量%に相当)とを混合した以外、実施例1-1と同様にしてリチウムイオン二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=3.0質量%)を得た。
 [実施例1-4]
 実施例1-1で得られた複合体(Y11-1)を用い、かかる複合体(Y11-1) 98.0gと鱗片黒鉛(伊藤黒鉛工業(株)製、BET比表面積13.2m2/g、平均粒子径8.6μm) 2.0g(活物質中における炭素原子換算量で2.0質量%に相当)とを混合した以外、実施例1-1と同様にしてリチウムイオン二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=3.5質量%)を得た。
 [実施例1-5]
 実施例1-1で得られた複合体(Y11-1)を用い、かかる複合体(Y11-1) 99.5gとグラファイト 0.5g(活物質中における炭素原子換算量で0.5質量%に相当)とを混合した以外、実施例1-1と同様にしてリチウムイオン二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=2.0質量%)を得た。
 [実施例1-6]
 実施例1-1で得られた複合体(Y11-1)を用い、かかる複合体(Y11-1) 97.0gとグラファイト 3.0g(活物質中における炭素原子換算量で3.0質量%に相当)とを混合した以外、実施例1-1と同様にしてリチウムイオン二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=4.5質量%)を得た。
 [実施例1-7]
 実施例1-1で得られたスラリー水(X11-1)を用い、かかるスラリー水(X11-1)にFeSO4・7H2O 5.00g及びMnSO4・5H2O 19.29gのほか、MgSO4・7H2O 0.50gを添加した以外、実施例1-1と同様にして複合体(Y17-1)(式(A)で表される酸化物の化学組成:LiFe0.18Mn0.80Mg0.02PO4、BET比表面積21m2/g、平均粒径56nm)を得た。
 次いで、得られた複合体(Y17-1)を用い、かかる複合体(Y17-1) 98.0gとグラファイト 2.0g(活物質中における炭素原子換算量で2.0質量%に相当)とを混合した以外、実施例1-1と同様にしてリチウムイオン二次電池用正極活物質(LiFe0.18Mn0.80Mg0.02PO4、炭素の量=3.5質量%)を得た。
 [実施例1-8]
 実施例1-1で得られたスラリー水(X11-1)を用い、かかるスラリー水(X11-1)にFeSO4・7H2O5.00g及びMnSO4・5H2O19.29gのほか、Zr(SO42・4H2O0.36gを添加した以外、実施例1-1と同様にして複合体(Y18-1)(式(A)で表される酸化物の化学組成:LiFe0.18Mn0.80Zr0.01PO4、BET比表面積21m2/g、平均粒径60nm、CNF由来の炭素量1.5質量%)を得た。
 次いで、得られた複合体(Y18-1)を用い、かかる複合体(Y18-1) 98.0gとグラファイト 2.0g(活物質中における炭素原子換算量で2.0質量%に相当)とを混合した以外、実施例1-1と同様にしてリチウムイオン二次電池用正極活物質(LiFe0.18Mn0.80Zr0.01PO4、炭素の量=3.5質量%)を得た。
 [比較例1-1]
 実施例1-1で得られた複合体(Y11-1)を用い、かかる複合体(Y11-1)にグラファイト等のセルロースナノファイバー以外の炭素源を添加しなかった以外、実施例1-1と同様にしてリチウムイオン二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=1.5質量%)を得た。
 [比較例1-2]
 実施例1-1で得られた複合体(Y11-1)を用い、かかる複合体(Y11-1) 98.0gとケッチェンブラック(ライオン(株)製、BET比表面積800m2/g、平均粒子径30.0μm) 2.0g(活物質中における炭素原子換算量で2.0質量%に相当)とを混合した以外、実施例1-1と同様にしてリチウムイオン二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=3.5質量%)を得た。
 [比較例1-3]
 CNFを用いなかった以外、実施例1-1で得たスラリー水(X11-1)と同様にしてスラリー水(Xc13-1)を得た後、実施例1-1で得た複合体(Y11-1)と同様にして複合体(Yc13-1)(式(A)で表される酸化物の化学組成:LiFe0.2Mn0.8PO4、BET比表面積21m2/g、平均粒径60nm、CNF由来の炭素量0.0質量%)を得た。次いで、得られた一次粒子(Yc13-1)を用い、かかる複合体(Yc13-1) 98.0gとグラファイト 2.0g(活物質中における炭素原子換算量で2.0質量%に相当)とを混合した以外、実施例1-1と同様にしてリチウムイオン二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=2.0質量%)を得た。
 [比較例1-4]
 実施例1-1で得られたスラリー水(X11-1)を用い、かかるスラリー水(X11-1)にFeSO4・7H2O 27.80gのみを添加した以外、実施例1-1と同様にして複合体(Y14-1)(式(A)で表される酸化物の化学組成:LiFePO4、BET比表面積19m2/g、平均粒径85nm、CNF由来の炭素量1.5質量%)を得た。
 次いで、得られた複合体(Y14-1)を用い、かかる複合体(Y14-1)98.0gとケッチェンブラック 2.0g(活物質中における炭素原子換算量で2.0質量%に相当)とを混合した以外、実施例1-1と同様にしてリチウムイオン二次電池用正極活物質(LiFePO4、炭素の量=3.5質量%)を得た。
 [実施例2-1]
 LiOH・H2O 0.428kg、Na4SiO4・nH2O 1.40kgに超純水3.75Lを混合してスラリー水(X21-1)を得た。次いで、得られたスラリー(X21-1)に対し、窒素ガスをパージして溶存酸素濃度を0.5mg/Lに調整した後、このスラリー水(X21-1)に、CNF 1.49kg、FeSO4・7H2O 0.39kg、MnSO4・5H2O 0.79kg、及びZr(SO42・4H2O 0.053kgを添加、混合し、スラリー水(Y21-1)を得た。次いで、得られたスラリー水(Y21-1)を窒素ガスでパージしたオートクレーブに投入し、150℃で12時間水熱反応を行った。オートクレーブの圧力は0.4MPaであった。生成した結晶をろ過し、次いで結晶1質量部に対し、12質量部の水により洗浄した。洗浄した結晶を-50℃で12時間凍結乾燥して複合体(Y21-1)(粉末、式(B)で表される化学組成:Li2Fe0.28Mn0.66Zr0.03SiO4、CNF由来の炭素量7.0質量%)を得た。
 得られた複合体(Y21-1) 98.0gを分取し、グラファイト 2.0g(活物質中における炭素原子換算量で2.0質量%に相当)とともにボールミルにより乾式で混合して混合物(Y21-1)を得た。得られた混合物(Y21-1)に対し、ノビルタ(NOB-130、ホソカワミクロン社製、動力5.5kw)を用いてインペラの周速度30m/sで15分間、混合処理を行って複合体予備粒子(Y21-1)を得た。得られた複合体予備粒子(Y21-1)を、還元雰囲気下において650℃で1時間焼成して、複合体(Z21-1)としてリチウムイオン二次電池用正極活物質(Li2Fe0.28Mn0.66Zr0.03SiO4、炭素の量=9.0質量%)を得た。
 [実施例2-2]
 実施例2-1で得られた複合体(Y21-1)を用い、かかる複合体(Y21-1) 97.0gとグラファイト3.0g(活物質中における炭素原子換算量で3.0質量%に相当)とを混合した以外、実施例2-1と同様にしてリチウムイオン二次電池用正極活物質(Li2Fe0.28Mn0.66Zr0.03SiO4、炭素の量=10.0質量%)を得た。
 [比較例2-1]
 実施例2-1で得られた複合体(Y21-1)を用い、かかる複合体(Y21-1)にグラファイト等のセルロースナノファイバー以外の炭素源を添加しなかった以外、実施例2-1と同様にしてリチウムイオン二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=7.0質量%)を得た。
 [実施例3-1]
 NaOH0.60kg、水 9.0L、及びCNF 0.51kgを混合してスラリー水を得た。次いで、得られたスラリー水を、25℃の温度に保持しながら5分間撹拌しつつ85%のリン酸水溶液0.577kgを35mL/分で滴下し、続いて12時間、400rpmの速度で撹拌することにより、複合体(X31-1)を含有するスラリー(X31-1)を得た。かかるスラリー(X31-1)は、リン1モルに対し、3.00モルのナトリウムを含有していた。次いで、得られたスラリー(X31-1)に対し、窒素ガスをパージして溶存酸素濃度を0.5mg/Lに調整した後、FeSO4・7H2O 0.139kg、MnSO4・5H2O 0.964kg、MgSO4・7H2O 0.124kgを添加し、混合してスラリー水(Y31-1)を得た。次いで、得られたスラリー水(Y31-1)を窒素ガスでパージしたオートクレーブに投入し、200℃で3時間水熱反応を行った。オートクレーブ内の圧力は、1.4MPaであった。生成した結晶をろ過し、次いで結晶1質量部に対し、12質量部の水により洗浄した。洗浄した結晶を-50℃で12時間凍結乾燥して複合体(Y31-1)(粉末、式(C)で表される化学組成:NaFe0.1Mn0.8Mg0.1PO4、CNF由来の炭素量1.5質量%)を得た。
 得られた複合体(Y31-1) 98.0gを分取し、グラファイト 2.0g(活物質中における炭素原子換算量で2.0質量%に相当)とともにボールミルにより乾式で混合して混合物(Y31-1)を得た。得られた混合物(Y31-1)に対し、ノビルタ(NOB-130、ホソカワミクロン社製、動力5.5kw)を用いてインペラの周速度30m/sで15分間、混合処理を行って複合体予備粒子(Y31-1)を得た。
 次いで、窒素ガスをパージした電気炉を用い、得られた複合体予備粒子(Y31-1)を、温度700℃で1時間焼成して、ナトリウムイオン二次電池用正極活物質(NaFe0.1Mn0.8Mg0.1PO4、炭素の量=3.5質量%)を得た。
 [実施例3-2]
 実施例3-1で得られた複合体(Y31-1)を用い、かかる複合体(Y31-1) 97.0gとグラファイト3.0g(活物質中における炭素原子換算量で3.0質量%に相当)とを混合した以外、実施例3-1と同様にしてナトリウムイオン二次電池用正極活物質(NaFe0.1Mn0.8Mg0.1PO4、炭素の量=4.5質量%)を得た。
 [比較例3-1]
 実施例3-1で得られた複合体(Y31-1)を用い、かかる複合体(Y31-1)99.9gとケッチェンブラック0.1g(活物質中における炭素原子換算量で0.1質量%に相当)とを混合した以外、実施例3-1と同様にしてナトリウムイオン二次電池用正極活物質(NaFe0.1Mn0.8Mg0.1PO4、炭素の量=1.6質量%)を得た。
 [比較例3-2]
 実施例3-1で得られた複合体(Y31-1)を用い、かかる複合体(Y31-1)にグラファイト等のセルロースナノファイバー以外の炭素源を添加しなかった以外、実施例3-1と同様にしてナトリウムイオン二次電池用正極活物質(NaFe0.1Mn0.8Mg0.1PO4、炭素の量=1.5質量%)を得た。
 《吸着水分量の測定》
 実施例1-1~3-2及び比較例1-1~3-2で得られた各正極活物質の吸着水分量は、下記方法にしたがって測定した。
 正極活物質(複合体粒子)について、温度20℃、相対湿度50%の環境に1日間静置して平衡に達するまで水分を吸着させ、温度150℃まで昇温して20分間保持した後、さらに温度250℃まで昇温して20分間保持したときの、150℃から昇温を再開するときを始点、及び250℃での恒温状態を終えたときを終点とし、始点から終点までの間に揮発した水分量を、カールフィッシャー水分計(MKC-610、京都電子工業(株)製)で測定し、正極活物質における吸着水分量として求めた。
 結果を表1~3に示す。
 《二次電池を用いた充放電特性の評価》
 実施例1-1~3-2及び比較例1-1~3-2で得られた正極活物質を用い、リチウムイオン二次電池又はナトリウムイオン二次電池の正極を作製した。具体的には、得られた正極活物質、ケッチェンブラック、ポリフッ化ビニリデンを重量比90:3:7の配合割合で混合し、これにN-メチル-2-ピロリドンを加えて充分混練し、正極スラリーを調製した。正極スラリーを厚さ20μmのアルミニウム箔からなる集電体に塗工機を用いて塗布し、80℃で12時間の真空乾燥を行った。その後、φ14mmの円盤状に打ち抜いてハンドプレスを用いて16MPaで2分間プレスし、正極とした。
 次いで、上記の正極を用いてコイン型二次電池を構築した。負極には、φ15mmに打ち抜いたリチウム箔を用いた。電解液には、エチレンカーボネート及びエチルメチルカーボネートを体積比1:1の割合で混合した混合溶媒に、LiPF6(リチウムイオン二次電池の場合)もしくはNaPF6(ナトリウムイオン二次電池の場合)を1mol/Lの濃度で溶解したものを用いた。セパレータには、ポリプロピレンなどの高分子多孔フィルムなど、公知のものを用いた。これらの電池部品を露点が-50℃以下の雰囲気で常法により組み込み収容し、コイン型二次電池(CR-2032)を製造した。
 製造した二次電池を用い、充放電試験を行った。リチウムイオン電池の場合には、充電条件を電流1CA(330mA/g)、電圧4.5Vの定電流定電圧充電とし、放電条件を1CA(330mA/g)、終止電圧1.5Vの定電流放電として、1CAにおける放電容量を求めた。ナトリウムイオン電池の場合には、充電条件を電流1CA(154mA/g)、電圧4.5Vの定電流定電圧充電とし、放電条件を1CA(154mA/g)、終止電圧2.0Vの定電流放電として、1CAにおける放電容量を求めた。さらに、同様の充放電条件において、50サイクル繰り返し試験を行い、下記式(2)により容量保持率(%)を求めた。なお、充放電試験は全て30℃で行った。
  容量保持率(%)=(50サイクル後の放電容量)/(2サイクル後の
    放電容量)×100                 ・・・(2)
 結果を表1~3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 [実施例4-1]
 LiOH・H2O 12.72g、水 90mL、及びセルロースナノファイバー(セリッシュKY-100G、ダイセルファインケム製、繊維径4~100nm、略称CNF)6.8g(活物質中における炭素原子換算量で2.0質量%に相当)を混合してスラリー水を得た。次いで、得られたスラリー水を、25℃の温度に保持しながら5分間撹拌しつつ85%のリン酸水溶液 11.53gを35mL/分で滴下し、続いて窒素ガスパージ下で12時間、400rpmの速度で撹拌することにより、複合体(X41-2a)を含有する混合物(X41-2a)(スラリー水(X41-2a)、溶存酸素濃度0.5mg/L)を得た。かかるスラリー水(X41-2a)は、リン1モルに対し、2.97モルのリチウムを含有していた。
 次に、得られたスラリー水(X41-2a)121.0gに対し、FeSO4・7H2O 5.56g及びMnSO4・5H2O 19.29gを添加し、混合してスラリー水(Y41-2a)を得た。次いで、得られたスラリー水(Y41-2a)をオートクレーブに投入し、170℃で1時間水熱反応を行った。オートクレーブ内の圧力は、0.8MPaであった。生成した結晶をろ過し、次いで結晶1質量部に対し、12質量部の水により洗浄した。洗浄した結晶を-50℃で12時間凍結乾燥して複合体(Y41-2a)(式(A)で表される酸化物の化学組成:LiMn0.8Fe0.2PO4、BET比表面積21m2/g、平均粒径60nm)を得た。
 得られた複合体(Y41-2a)を10g分取し、これにグルコース0.25g(活物質中における炭素原子換算量で1.0質量%に相当)及び水10mLを添加し、混合して80℃で12時間乾燥を行い、還元雰囲気下で700℃で1時間焼成して、リチウム二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=3.0質量%)を得た。
 [実施例4-2]
 複合体(Y41-2a)に添加するグルコースを0.5g(活物質中における炭素原子換算量で2.0質量%に相当)とした以外、実施例4-1と同様の方法でリチウム二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=4.0質量%)を得た。
 [実施例4-3]
 複合体(Y41-2a)に添加するグルコースを0.75g(活物質中における炭素原子換算量で2.9質量%に相当)とした以外、実施例4-1と同様の方法でリチウム二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=4.9質量%)を得た。
 [比較例4-1]
 グルコースを添加しなかった以外、実施例4-1と同様の方法でリチウム二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=2.0質量%)を得た。
 [実施例5-1]
 LiOH・H2O 4.28g、Na4SiO4・nH2O 13.97gに超純水37.5mLを混合してスラリー水を得た。このスラリー水に、セルロースナノファイバー(セリッシュKY-100G、ダイセルファインケム製、繊維径4~100nm、略称CNF)14.9g(活物質中における炭素原子換算量で8.0質量%に相当)、FeSO4・7H2O 3.92g、MnSO4・5H2O 7.93g、及びZr(SO42・4H2O 0.53gを添加し、25℃の温度に保持しながら速度400rpmにて30分間撹拌して、スラリー水(Y51-2a)を得た。
 次いで、得られたスラリー水(Y51-2a)を蒸気加熱式オートクレーブ内に設置した合成容器に投入した。投入後、隔膜分離装置により水(溶存酸素濃度0.5mg/L未満)を加熱して得た飽和蒸気を用いて、150℃で12時間攪拌しながら加熱した。オートクレーブの圧力は0.4MPaであった。生成した結晶をろ過し、次いで結晶1質量部に対し、12質量部の水により洗浄した。洗浄した結晶を-50℃で12時間凍結乾燥して複合体(Y51-2a)(式(B)で表される酸化物の化学組成:Li2Fe0.28Mn0.66Zr0.03SiO4、BET比表面積35m2/g、平均粒径50nm)を得た。
 得られた複合体(Y51-2a)を5.0g分取し、これにグルコース0.125g(活物質中における炭素原子換算量で1.0質量%に相当)及び水5mLを添加し、混合して80℃で12時間乾燥を行い、還元雰囲気下で650℃で1時間焼成して、リチウム二次電池用正極活物質(Li2Fe0.28Mn0.66Zr0.03SiO4、炭素の量=9.0質量%)を得た。
 [実施例5-2]
 複合体(Y51-2a)に添加するグルコースを0.25g(活物質中における炭素原子換算量で2.0質量%に相当)とした以外、実施例5-1と同様の方法でリチウム二次電池用正極活物質(Li2Fe0.28Mn0.66Zr0.03SiO4、炭素の量=10.0質量%)を得た。
 [実施例5-3]
 複合体(Y51-2a)に添加するグルコースを0.375g(活物質中における炭素原子換算量で2.9質量%に相当)とした以外、実施例5-1と同様の方法でリチウム二次電池用正極活物質(Li2Fe0.28Mn0.66Zr0.03SiO4、炭素の量=10.9質量%)を得た。
 [比較例5-1]
 複合体(Y51-2a)に添加するグルコースを0.75g(活物質中における炭素原子換算量で5.7質量%に相当)とした以外、実施例5-1と同様の方法でリチウム二次電池用正極活物質(Li2Fe0.28Mn0.66Zr0.03SiO4、炭素の量=13.7質量%)を得た。
 [比較例5-2]
 グルコースを添加しなかった以外、実施例5-1と同様の方法でリチウム二次電池用正極活物質(Li2Fe0.28Mn0.66Zr0.03SiO4、炭素の量=8.0質量%)を得た。
 [実施例6-1]
 NaOH 6.00g、水 90mL、及びセルロースナノファイバー5.10g(活物質中における炭素原子換算量で1.3質量%に相当)を混合してスラリー水を得た。次いで、得られたスラリー水を、25℃の温度に保持しながら5分間撹拌しつつ85%のリン酸水溶液 5.77gを35mL/分で滴下し、続いて12時間、400rpmの速度で撹拌することにより、複合体(X61-2a)を含有するスラリー(X61-2a))を得た。かかるスラリー(X61-2a)は、リン1モルに対し、3.00モルのナトリウムを含有していた。得られたスラリーに対し、窒素ガスをパージして溶存酸素濃度を0.5mg/Lに調整した後、FeSO4・7H2O 1.39g、MnSO4・5H2O 9.64g、MgSO4・7H2O 1.24gを添加してスラリー水(Y61-2a)を得た。次いで、得られたスラリー水(Y61-2a)を蒸気加熱式オートクレーブ内に設置した、窒素ガスでパージした合成容器に投入した。投入後、隔膜分離装置により水(溶存酸素濃度0.5mg/L未満)を加熱して得た飽和蒸気を用いて、200℃で3時間攪拌しながら加熱した。オートクレーブ内の圧力は、1.4MPaであった。生成した結晶をろ過し、次いで結晶1質量部に対し、12質量部の水により洗浄した。洗浄した結晶を-50℃で12時間凍結乾燥して複合体(Y61-2a)(式(C)で表される酸化物の化学組成:NaFe0.1Mn0.8Mg0.1PO4、BET比表面積15m2/g、平均粒径100nm)を得た。
 得られた複合体(Y61-2a)を5.0g分取し、これにグルコース0.125g(活物質中における炭素原子換算量で1.0質量%に相当)及び水5mLを添加し、混合して80℃で12時間乾燥を行い、還元雰囲気下で700℃で1時間焼成して、ナトリウム二次電池用正極活物質(NaFe0.2Mn0.8PO4、炭素の量=2.3質量%)を得た。
 [実施例6-2]
 複合体(Y61-2a)に添加するグルコースを0.25g(活物質中における炭素原子換算量で2.0質量%に相当)とした以外、実施例6-1と同様の方法でナトリウム二次電池用正極活物質(NaFe0.2Mn0.8PO4、炭素の量=3.3質量%)を得た。
 [実施例6-3]
 複合体(Y61-2a)に添加するグルコースを0.375g(活物質中における炭素原子換算量で2.9質量%に相当)とした以外、実施例6-1と同様の方法でナトリウム二次電池用正極活物質(NaFe0.2Mn0.8PO4、炭素の量=4.2質量%)を得た。
 [比較例6-1]
 グルコースを添加しなかった以外、実施例6-1と同様の方法でナトリウム二次電池用正極活物質(NaFe0.2Mn0.8PO4、炭素の量=1.3質量%)を得た。
 《吸着水分量の測定、及び二次電池を用いた充放電特性の評価》
 実施例4-1~6-3及び比較例4-1~6-1で得られた各正極活物質について、上記実施例1-1~3-2及び比較例1-1~3-2と同様にして、吸着水分量の測定、及び二次電池を用いた充放電特性の評価を行った。
 結果を表4~5に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 [実施例7-1]
 LiOH・H2O 12.72g、水 90mL、及びセルロースナノファイバー(セリッシュKY-100G、ダイセルファインケム製、繊維径4~100nm、略称CNF)6.8g(活物質中における炭素原子換算量で2.0質量%に相当)を混合してスラリー水を得た。次いで、得られたスラリー水を、25℃の温度に保持しながら5分間撹拌しつつ85%のリン酸水溶液 11.53gを35mL/分で滴下し、続いて窒素ガスパージ下で12時間、400rpmの速度で撹拌することにより、複合体(X71-2b)を含有する混合物(X71-2b)(スラリー水(X71-2b)、溶存酸素濃度0.5mg/L)を得た。
 かかるスラリー水(X71-2b)は、リン1モルに対し、2.97モルのリチウムを含有していた。
 次に、得られたスラリー水(X71-2b) 121.0gに対し、FeSO4・7H2O 5.56g及びMnSO4・5H2O 19.29gを添加し、混合してスラリー水(Y71-2b)を得た。次いで、得られたスラリー水(Y71-2b)をオートクレーブに投入し、170℃で1時間水熱反応を行った。オートクレーブ内の圧力は、0.8MPaであった。生成した結晶をろ過し、次いで結晶1質量部に対し、12質量部の水により洗浄した。洗浄した結晶を-50℃で12時間凍結乾燥して複合体(Y71-2b)(式(A)で表される酸化物の化学組成:LiMn0.8Fe0.2PO4、BET比表面積21m2/g、平均粒径60nm)を得た。
 得られた複合体(Y71-2b) 4.0gと、LiOHを0.033g及びフッ化アンモニウムを0.029g(リチウムイオン二次電池用正極活物質中におけるLiFの担持量換算で0.5質量%に相当)とを水5mlと混合し、1時間の撹拌によりLiFを担持してなる複合体(Y71-2b)を得た。次いで、還元雰囲気下で700℃で1時間焼成して、リチウムイオン二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=2.0質量%、LiFの量=0.5質量%)を得た。
 [実施例7-2]
 複合体(Y71-2b)に添加するLiOHを0.066g、フッ化アンモニウムを0.059g(リチウムイオン二次電池用正極活物質中におけるLiFの担持量換算で1.0質量%に相当)とした以外、実施例7-1と同様の方法でリチウムイオン二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=2.0質量%、LiFの量=1.0質量%)を得た。
 [実施例7-3]
 複合体(Y71-2b)に添加するLiOHを0.132g、フッ化アンモニウムを0.118g(リチウムイオン二次電池用正極活物質中におけるLiFの担持量換算で2.0質量%に相当)とした以外、実施例7-1と同様の方法でリチウムイオン二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=2.0質量%、LiFの量=2.0質量%)を得た。
 [実施例7-4]
 複合体(Y71-2b)に添加するLiOHの代わりにAl(OH)30.078g、フッ化アンモニウムを0.353g(リチウムイオン二次電池用正極活物質中におけるAlF3の担持量換算で2.0質量%部に相当)とした以外、実施例7-1と同様の方法でリチウムイオン二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=2.0質量%、AlF3の量=2.0質量%)を得た。
 [実施例7-5]
 複合体(Y71-2b)に添加するLiOHの代わりにMg(CH3COO)2・4H2O0.277g、フッ化アンモニウムを0.236g(リチウムイオン二次電池用正極活物質中におけるMgF2の担持量換算で2.0質量%に相当)とした以外、実施例7-1と同様の方法でリチウムイオン二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=2.0質量%、MgF3の量=2.0質量%)を得た。
 [比較例7-1]
 複合体(Y71-2b)に添加するLiOHを0.396g、フッ化アンモニウムを0.353g(リチウムイオン二次電池用正極活物質中におけるLiFの担持量換算で6.0質量%に相当)とした以外、実施例7-1と同様の方法でリチウムイオン二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=2.0質量%、LiFの量=6.0質量%)を得た。
 [比較例7-2]
 金属フッ化物を添加しなかった以外、実施例7-1と同様の方法でリチウムイオン二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=2.0質量%、金属フッ化物の量=0.0質量%)を得た。
 [実施例8-1]
 LiOH・H2O 4.28g、Na4SiO4・nH2O 13.97gに超純水37.5mLを混合してスラリー水(X81-2b)を得た。このスラリー水(X81-2b)に、セルロースナノファイバー(セリッシュKY-100G、ダイセルファインケム製、繊維径4~100nm、略称CNF)14.9g(活物質中における炭素原子換算量で7.2質量%に相当)、FeSO4・7H2O 3.92g、MnSO4・5H2O 7.93g、及びZr(SO42・4H2O 0.53gを添加し、25℃の温度に保持しながら速度400rpmにて30分間撹拌して、スラリー水(X81-2b)を得た。
 次いで、得られたスラリー水(X81-2b)を蒸気加熱式オートクレーブ内に設置した合成容器に投入した。投入後、隔膜分離装置により水(溶存酸素濃度0.5mg/L未満)を加熱して得た飽和蒸気を用いて、150℃で12時間攪拌しながら加熱した。オートクレーブの圧力は0.4MPaであった。生成した結晶をろ過し、次いで結晶1質量部に対し、12質量部の水により洗浄した。洗浄した結晶を-50℃で12時間凍結乾燥して複合体(Y81-2b)(式(B)で表される酸化物の化学組成:Li2Fe0.28Mn0.66Zr0.03SiO4、BET比表面積35m2/g、平均粒径50nm)を得た。
 得られた複合体(Y81-2b)を4.0g分取し、これにLiOH0.033g、及びフッ化アンモニウム0.029g(リチウムイオン二次電池用正極活物質中におけるLiFの担持量換算で0.5質量%に相当)、及び水5mlを混合し、1時間撹拌した後、還元雰囲気下で650℃で1時間焼成して、リチウムイオン二次電池用正極活物質(Li2Fe0.28Mn0.66Zr0.03SiO4、炭素の量=7.2質量%、LiFの量=0.5質量%)を得た。
 [実施例8-2]
 複合体(Y81-2b)に添加するLiOHを0.066g、フッ化アンモニウムを0.059g(リチウムイオン二次電池用正極活物質中におけるLiFの担持量換算で1.0質量%に相当)とした以外、実施例8-1と同様の方法でリチウムイオン二次電池用正極活物質(Li2Fe0.28Mn0.66Zr0.03SiO4、炭素の量=7.2質量%、LiFの量=1.0質量%)を得た。
 [実施例8-3]
 複合体(Y81-2b)に添加するLiOHを0.132g、フッ化アンモニウムを0.118g(リチウムイオン二次電池用正極活物質中におけるLiFの担持量換算で2.0質量%に相当)とした以外、実施例8-1と同様の方法でリチウムイオン二次電池用正極活物質(Li2Fe0.28Mn0.66Zr0.03SiO4、炭素の量=7.2質量%、LiFの量=2.0質量%)を得た。
 [実施例8-4]
 複合体(Y81-2b)に添加するLiOHの代わりにAl(OH)30.078g、フッ化アンモニウムを0.353g(リチウムイオン二次電池用正極活物質中におけるAlF2の担持量換算で2.0質量%に相当)とした以外、実施例8-1と同様の方法でリチウムイオン二次電池用正極活物質(Li2Fe0.28Mn0.66Zr0.03SiO4、炭素の量=7.2質量%、AlF2の量=2.0質量%)を得た。
 [実施例8-5]
 複合体(Y81-2b)に添加するLiOHの代わりにMg(CH3COO)2・4H2O0.277g、フッ化アンモニウムを0.236g(リチウムイオン二次電池用正極活物質中におけるMgF2の担持量換算で2.0質量%に相当)とした以外、実施例8-1と同様の方法でリチウムイオン二次電池用正極活物質(Li2Fe0.28Mn0.66Zr0.03SiO4、炭素の量=7.2質量%、MgF2の量=2.0質量%)を得た。
 [比較例8-1]
 複合体(Y81-2b)に添加するLiOHを0.396g、フッ化アンモニウムを0.353g(リチウムイオン二次電池用正極活物質中におけるLiFの担持量換算で6.0質量%に相当)とした以外、実施例8-1と同様の方法でリチウムイオン二次電池用正極活物質(Li2Fe0.28Mn0.66Zr0.03SiO4、炭素の量=7.2質量%、LiFの量=6.0質量%)を得た。
 [比較例8-2]
 金属フッ化物を添加しなかった以外、実施例8-1と同様の方法でリチウムイオン二次電池用正極活物質(Li2Fe0.28Mn0.66Zr0.03SiO4、炭素の量=7.2質量%、金属フッ化物の量=0.0質量%)を得た。
 [実施例9-1]
 NaOH 6.00g、水 90mL、及びセルロースナノファイバー5.10g(活物質中における炭素原子換算量で2.4質量%に相当)を混合してスラリー水を得た。次いで、得られたスラリー水を、25℃の温度に保持しながら5分間撹拌しつつ85%のリン酸水溶液 5.77gを35mL/分で滴下し、続いて12時間、400rpmの速度で撹拌することにより、複合体(X91-2b)を含有するスラリー(X91-2b)を得た。かかるスラリー(X91-2b)は、リン1モルに対し、3.00モルのナトリウムを含有していた。得られたスラリー(X91-2b)に対し、窒素ガスをパージして溶存酸素濃度を0.5mg/Lに調整した後、FeSO4・7H2O 1.39g、MnSO4・5H2O 9.64g、MgSO4・7H2O 1.24gを添加してスラリー水(Y91-2b)を得た。次いで、得られたスラリー水(Y91-2b)を蒸気加熱式オートクレーブ内に設置した、窒素ガスでパージした合成容器に投入した。投入後、隔膜分離装置により水(溶存酸素濃度0.5mg/L未満)を加熱して得た飽和蒸気を用いて、200℃で3時間攪拌しながら加熱した。オートクレーブ内の圧力は、1.4MPaであった。生成した結晶をろ過し、次いで結晶1質量部に対し、12質量部の水により洗浄した。洗浄した結晶を-50℃で12時間凍結乾燥して複合体(Y91-2b)(式(C)で表される酸化物の化学組成:NaFe0.1Mn0.8Mg0.1PO4、BET比表面積15m2/g、平均粒径100nm)を得た。
 得られた複合体(Y91-2b)を4.0g分取し、これにLiOH0.033g、及びフッ化アンモニウムを0.029g(ナトリウムイオン二次電池用正極活物質中におけるLiFの担持量換算で0.5質量%に相当)、及び水5mLを混合し、1時間撹拌した後、還元雰囲気下で700℃で1時間焼成して、ナトリウムイオン二次電池用正極活物質(NaFe0.2Mn0.8PO4、炭素の量=2.4質量%、LiFの量=0.5質量%)を得た。
 [実施例9-2]
 複合体(Y91-2b)に添加するLiOHを0.066g、フッ化アンモニウムを0.059g(ナトリウムイオン二次電池用正極活物質中におけるLiFの担持量換算で1.0質量%に相当)とした以外、実施例9-1と同様の方法でナトリウムイオン二次電池用正極活物質(NaFe0.2Mn0.8PO4、炭素の量=2.4質量%、LiFの量=1.0質量%)を得た。
 [実施例9-3]
 複合体(Y91-2b)に添加するLiOHを0.132g、フッ化アンモニウムを0.118g(ナトリウムイオン二次電池用正極活物質中におけるLiFの担持量換算で2.0質量%に相当)とした以外、実施例9-1と同様の方法でナトリウムイオン二次電池用正極活物質(NaFe0.2Mn0.8PO4、炭素の量=2.4質量%、LiFの量=2.0質量%)を得た。
 [実施例9-4]
 複合体(Y91-2b)に添加するLiOHの代わりにAl(OH)30.078g、フッ化アンモニウムを0.353g(ナトリウムイオン二次電池用正極活物質中におけるAlF3の担持量換算で2.0質量%に相当)とした以外、実施例9-1と同様の方法でナトリウムイオン二次電池用正極活物質(NaFe0.2Mn0.8PO4、炭素の量=2.4質量%、AlF3の量=2.0質量%)を得た。
 [実施例9-5]
 複合体(Y91-2b)に添加するLiOHの代わりにMg(CH3COO)2・4H2O0.277g、フッ化アンモニウムを0.236g(ナトリウムイオン二次電池用正極活物質中におけるMgF3の担持量換算で2.0質量%に相当)とした以外、実施例9-1と同様の方法でナトリウムイオン二次電池用正極活物質(NaFe0.2Mn0.8PO4、炭素の量=2.4質量%、MgF3の量=2.0質量%)を得た。
 [比較例9-1]
 複合体(Y91-2b)に添加するLiOHを0.396g、フッ化アンモニウムを0.353g(ナトリウムイオン二次電池用正極活物質中におけるLiFの担持量換算で6.0質量%に相当)とした以外、実施例9-1と同様の方法でナトリウムイオン二次電池用正極活物質(NaFe0.2Mn0.8PO4、炭素の量=2.4質量%、LiFの量=6.0質量%)を得た。
 [比較例9-2]
 金属フッ化物を添加しなかった以外、実施例9-1と同様の方法でナトリウムイオン二次電池用正極活物質(NaFe0.2Mn0.8PO4、炭素の量=2.4質量%、金属フッ化物の量=0.0質量%)を得た。
 《吸着水分量の測定、及び二次電池を用いた充放電特性の評価》
 実施例7-1~9-5及び比較例7-1~9-2で得られた各正極活物質について、上記実施例1-1~3-2及び比較例1-1~3-2と同様にして、吸着水分量の測定、及び二次電池を用いた充放電特性の評価を行った。
 結果を表6~7に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 上記結果より、実施例の正極活物質は、比較例の正極活物質に比して、確実に吸着水分量を低減することができるとともに、得られる電池においても優れた性能を発揮できることがわかる。

Claims (10)

  1.  少なくとも鉄又はマンガンを含む下記式(A)、(B)又は(C):
           LiFeaMnbcPO4・・・(A)
    (式(A)中、MはMg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。a、b及びcは、0≦a≦1、0≦b≦1、0≦c≦0.2、及び2a+2b+(Mの価数)×c=2を満たし、かつa+b≠0を満たす数を示す。)
           Li2FedMnefSiO4・・・(B)
    (式(B)中、NはNi、Co、Al、Zn、V又はZrを示す。d、e及びfは、0≦d≦1、0≦e≦1、及び0≦f<1、2d+2e+(Nの価数)×f=2を満たし、かつd+e≠0を満たす数を示す。)
           NaFegMnhiPO4・・・(C)
    (式(C)中、QはMg、Ca、Co、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。を示す。g、h及びiは、0≦g≦1、0≦h≦1、0≦i<1、及び2g+2h+(Qの価数)×i=2を満たし、かつg+h≠0を満たす数を示す。)
    で表される酸化物と、セルロースナノファイバーが炭化されてなる炭素とを含む複合体に、
     0.3~5質量%のグラファイト、水溶性炭素材料が炭化されてなる0.1~4質量%の炭素、又は0.1~5質量%の金属フッ化物が担持されてなる二次電池用正極活物質。
  2.  セルロースナノファイバーの炭素原子換算量が、0.5~15質量%である請求項1に記載の二次電池用正極活物質。
  3.  酸化物とセルロースナノファイバーとを含む複合体に、グラファイトを添加して、圧縮力及びせん断力を付加しながら混合する処理を6~90分間行うことにより得られ、
     セルロースナノファイバーの炭素原子換算量に対するグラファイトの添加量が、質量比(グラファイト/セルロースナノファイバー)で0.08~6である請求項1又は2に記載の二次電池用正極活物質。
  4.  水溶性炭素材料が、酸化物とセルロースナノファイバーとを含む複合体と湿式混合され、炭化されてなる炭素として複合体に担持されてなる請求項1又は2に記載の二次電池用正極活物質。
  5.  水溶性炭素材料が、糖類、ポリオール、ポリエーテル、及び有機酸から選ばれる1種又は2種以上である請求項1、2又は4に記載の二次電池用正極活物質。
  6.  金属フッ化物が、酸化物とセルロースナノファイバーとを含む複合体と金属フッ化物の前駆体とが湿式混合されて複合体に担持されてなる請求項1又は2に記載の二次電池用正極活物質。
  7.  金属フッ化物の金属が、リチウム、ナトリウム、マグネシウム、カルシウム、及びアルミニウムから選ばれ、かつ
     金属フッ化物の前駆体が、フッ化アンモニウム、フッ化水素酸、及び次亜フッ素酸から選ばれるフッ素化合物、並びに酢酸金属塩、硝酸金属塩、乳酸金属塩、シュウ酸金属塩、金属水酸化物、金属エトキシド、金属イソプロポキシド、及び金属ブトキシドから選ばれる金属化合物である請求項1、2、又は6に記載の二次電池用正極活物質。
  8.  酸化物とセルロースナノファイバーとを含む複合体が、リチウム化合物又はナトリウム化合物、リン酸化合物又はケイ酸化合物、並びに少なくとも鉄化合物又はマンガン化合物を含み、かつセルロースナノファイバーを含むスラリー水を水熱反応に付すことにより得られるものである請求項1~7のいずれか1項に記載の二次電池用正極活物質。
  9.  少なくとも鉄又はマンガンを含む下記式(A)、(B)又は(C):
           LiFeaMnbcPO4・・・(A)
    (式(A)中、MはMg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。a、b及びcは、0≦a≦1、0≦b≦1、0≦c≦0.2、及び2a+2b+(Mの価数)×c=2を満たし、かつa+b≠0を満たす数を示す。)
           Li2FedMnefSiO4・・・(B)
    (式(B)中、NはNi、Co、Al、Zn、V又はZrを示す。d、e及びfは、0≦d≦1、0≦e≦1、及び0≦f<1、2d+2e+(Nの価数)×f=2を満たし、かつd+e≠0を満たす数を示す。)
           NaFegMnhiPO4・・・(C)
    (式(C)中、QはMg、Ca、Co、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。を示す。g、h及びiは、0≦g≦1、0≦h≦1、0≦i<1、及び2g+2h+(Qの価数)×i=2を満たし、かつg+h≠0を満たす数を示す。)
    で表される酸化物と、セルロースナノファイバーが炭化されてなる炭素とを含む複合体に、0.3~5質量%のグラファイトが担持されてなる二次電池用正極活物質の製造方法であって、
     リチウム化合物又はナトリウム化合物と、セルロースナノファイバーを含む混合物(X-1)に、リン酸化合物又はケイ酸化合物を混合して複合体(X-1)を得る工程(I-1)、
     得られた複合体(X-1)と、少なくとも鉄化合物又はマンガン化合物を含む金属塩を含有するスラリー水(Y-1)を水熱反応に付して複合体(Y-1)を得る工程(II-1)、
     得られた複合体(Y-1)にグラファイトを添加して圧縮力及びせん断力を付加しながら6~90分間混合し、複合体(Z-1)を得る工程(III-1)、並びに
     得られた複合体(Z-1)を還元雰囲気又は不活性雰囲気中で焼成する工程(IV-1)
    を備える二次電池用正極活物質の製造方法。
  10.  少なくとも鉄又はマンガンを含む下記式(A)、(B)又は(C):
           LiFeaMnbcPO4・・・(A)
    (式(A)中、MはMg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。a、b及びcは、0≦a≦1、0≦b≦1、0≦c≦0.2、及び2a+2b+(Mの価数)×c=2を満たし、かつa+b≠0を満たす数を示す。)
           Li2FedMnefSiO4・・・(B)
    (式(B)中、NはNi、Co、Al、Zn、V又はZrを示す。d、e及びfは、0≦d≦1、0≦e≦1、及び0≦f<1、2d+2e+(Nの価数)×f=2を満たし、かつd+e≠0を満たす数を示す。)
           NaFegMnhiPO4・・・(C)
    (式(C)中、QはMg、Ca、Co、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。を示す。g、h及びiは、0≦g≦1、0≦h≦1、0≦i<1、及び2g+2h+(Qの価数)×i=2を満たし、かつg+h≠0を満たす数を示す。)
    で表される酸化物と、セルロースナノファイバーが炭化されてなる炭素とを含む複合体に、水溶性炭素材料が炭化されてなる0.1~4質量%の炭素、又は0.1~5質量%の金属フッ化物が担持されてなる二次電池用正極活物質の製造方法であって、
     リチウム化合物又はナトリウム化合物と、セルロースナノファイバーを含む混合物(X-2)に、リン酸化合物又はケイ酸化合物を混合して複合体(X-2)を得る工程(I-2)、
     得られた複合体(X-2)と、少なくとも鉄化合物又はマンガン化合物を含む金属塩を含有するスラリー水(Y-2)を水熱反応に付して複合体(Y-2)を得る工程(II-2)、並びに
     得られた複合体(Y-2)に、複合体(Y-2)100質量部に対して0.1~16質量部の水溶性有機化合物、又は複合体(Y-2)100質量部に対して0.1~40質量部の金属フッ化物の前駆体を添加して湿式混合し、焼成する工程(III-2)
    を備える二次電池用正極活物質の製造方法。
PCT/JP2015/076384 2015-03-09 2015-09-17 二次電池用正極活物質及びその製造方法 WO2016143171A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020177023595A KR20170127422A (ko) 2015-03-09 2015-09-17 이차전지용 양극 활물질 및 그 제조방법
CN201580077600.0A CN107408693B (zh) 2015-03-09 2015-09-17 二次电池用正极活性物质及其制造方法
EP15884656.8A EP3270447B1 (en) 2015-03-09 2015-09-17 Positive electrode active substance for secondary cell and method for producing same
US15/556,936 US11646405B2 (en) 2015-03-09 2015-09-17 Positive electrode active substance for secondary cell and method for producing same
KR1020217007063A KR102289992B1 (ko) 2015-03-09 2015-09-17 이차전지용 양극 활물질 및 그 제조방법

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2015-045646 2015-03-09
JP2015045646 2015-03-09
JP2015-064390 2015-03-26
JP2015-064391 2015-03-26
JP2015064390 2015-03-26
JP2015064391 2015-03-26
JP2015177532A JP6023295B2 (ja) 2015-03-26 2015-09-09 二次電池用正極活物質及びその製造方法
JP2015-177531 2015-09-09
JP2015177531A JP6042512B2 (ja) 2015-03-26 2015-09-09 二次電池用正極活物質及びその製造方法
JP2015177530A JP6042511B2 (ja) 2015-03-09 2015-09-09 二次電池用正極活物質及びその製造方法
JP2015-177530 2015-09-09
JP2015-177532 2015-09-09

Publications (1)

Publication Number Publication Date
WO2016143171A1 true WO2016143171A1 (ja) 2016-09-15

Family

ID=56880018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076384 WO2016143171A1 (ja) 2015-03-09 2015-09-17 二次電池用正極活物質及びその製造方法

Country Status (1)

Country Link
WO (1) WO2016143171A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017157414A (ja) * 2016-03-02 2017-09-07 太平洋セメント株式会社 ポリアニオン正極活物質及びその製造方法
JP6322730B1 (ja) * 2017-01-06 2018-05-09 太平洋セメント株式会社 リチウムイオン二次電池用正極活物質及びその製造方法
JP6322729B1 (ja) * 2017-01-06 2018-05-09 太平洋セメント株式会社 リチウムイオン二次電池用正極活物質及びその製造方法
CN114014369A (zh) * 2021-10-29 2022-02-08 蜂巢能源科技有限公司 一种锰铁二元氢氧化物前驱体、其制备方法和应用
WO2024060761A1 (zh) * 2022-09-22 2024-03-28 深圳市贝特瑞新能源技术研究院有限公司 正极材料及其制备方法、钠离子电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005041327A1 (ja) * 2003-10-27 2005-05-06 Mitsui Engineering & Shipbuilding Co.,Ltd. 二次電池用正極材料、二次電池用正極材料の製造方法、および二次電池
JP2011210693A (ja) * 2010-03-12 2011-10-20 Equos Research Co Ltd 二次電池用正極
WO2013128936A1 (ja) * 2012-02-28 2013-09-06 株式会社豊田自動織機 活物質複合体及びその製造方法、非水電解質二次電池用正極活物質、並びに非水電解質二次電池
JP2013225471A (ja) * 2012-03-23 2013-10-31 Taiheiyo Cement Corp 二次電池用正極活物質及びその製造方法
WO2014063244A1 (en) * 2012-10-22 2014-05-01 HYDRO-QUéBEC Method of producing electrode material for lithium-ion secondary battery and lithium-ion battery using such electrode material
JP2014143032A (ja) * 2013-01-23 2014-08-07 Hitachi Ltd リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池
JP2014241229A (ja) * 2013-06-11 2014-12-25 電気化学工業株式会社 導電性複合粒子、およびそれを用いた二次電池用正極、二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005041327A1 (ja) * 2003-10-27 2005-05-06 Mitsui Engineering & Shipbuilding Co.,Ltd. 二次電池用正極材料、二次電池用正極材料の製造方法、および二次電池
JP2011210693A (ja) * 2010-03-12 2011-10-20 Equos Research Co Ltd 二次電池用正極
WO2013128936A1 (ja) * 2012-02-28 2013-09-06 株式会社豊田自動織機 活物質複合体及びその製造方法、非水電解質二次電池用正極活物質、並びに非水電解質二次電池
JP2013225471A (ja) * 2012-03-23 2013-10-31 Taiheiyo Cement Corp 二次電池用正極活物質及びその製造方法
WO2014063244A1 (en) * 2012-10-22 2014-05-01 HYDRO-QUéBEC Method of producing electrode material for lithium-ion secondary battery and lithium-ion battery using such electrode material
JP2014143032A (ja) * 2013-01-23 2014-08-07 Hitachi Ltd リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池
JP2014241229A (ja) * 2013-06-11 2014-12-25 電気化学工業株式会社 導電性複合粒子、およびそれを用いた二次電池用正極、二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3270447A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017157414A (ja) * 2016-03-02 2017-09-07 太平洋セメント株式会社 ポリアニオン正極活物質及びその製造方法
JP6322730B1 (ja) * 2017-01-06 2018-05-09 太平洋セメント株式会社 リチウムイオン二次電池用正極活物質及びその製造方法
JP6322729B1 (ja) * 2017-01-06 2018-05-09 太平洋セメント株式会社 リチウムイオン二次電池用正極活物質及びその製造方法
JP2018113101A (ja) * 2017-01-06 2018-07-19 太平洋セメント株式会社 リチウムイオン二次電池用正極活物質及びその製造方法
JP2018113102A (ja) * 2017-01-06 2018-07-19 太平洋セメント株式会社 リチウムイオン二次電池用正極活物質及びその製造方法
CN114014369A (zh) * 2021-10-29 2022-02-08 蜂巢能源科技有限公司 一种锰铁二元氢氧化物前驱体、其制备方法和应用
CN114014369B (zh) * 2021-10-29 2022-12-16 蜂巢能源科技有限公司 一种锰铁二元氢氧化物前驱体、其制备方法和应用
WO2024060761A1 (zh) * 2022-09-22 2024-03-28 深圳市贝特瑞新能源技术研究院有限公司 正极材料及其制备方法、钠离子电池

Similar Documents

Publication Publication Date Title
JP6042515B2 (ja) 二次電池用正極活物質及びその製造方法
JP6042511B2 (ja) 二次電池用正極活物質及びその製造方法
JP6357193B2 (ja) ポリアニオン系正極活物質及びその製造方法
JP6042514B2 (ja) 二次電池用正極活物質及びその製造方法
KR102289992B1 (ko) 이차전지용 양극 활물질 및 그 제조방법
JP6023295B2 (ja) 二次電池用正極活物質及びその製造方法
JP2016081866A (ja) リン酸マンガン鉄リチウム正極活物質及びその製造方法
TWI676592B (zh) 二次電池用正極活性物質及其製造方法
WO2016143171A1 (ja) 二次電池用正極活物質及びその製造方法
WO2013054457A1 (ja) リチウムシリケート系化合物とリチウムイオン二次電池用正極活物質及びこれを用いたリチウムイオン二次電池
JP5807730B1 (ja) 蓄電デバイスの電極用チタン酸リチウム粉末および活物質材料、並びにそれを用いた電極シートおよび蓄電デバイス
JP5909131B2 (ja) リチウム二次電池用活物質、それを用いたリチウム二次電池用電極及びリチウム二次電池
JP6042512B2 (ja) 二次電池用正極活物質及びその製造方法
KR102385969B1 (ko) 이차전지용 양극 활물질 및 그 제조방법
JP5862172B2 (ja) 二次電池用活物質及び二次電池用活物質用電極、並びに、それを用いた二次電池
JP7421372B2 (ja) リチウムイオン二次電池用正極活物質複合体の製造方法
JP6042513B2 (ja) 二次電池用正極活物質及びその製造方法
JP6322730B1 (ja) リチウムイオン二次電池用正極活物質及びその製造方法
KR102336781B1 (ko) 이차전지용 양극 활물질 및 그 제조방법
JP2022094799A (ja) チタン酸リチウム粉末、それを用いた電極シート、及び蓄電デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884656

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177023595

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015884656

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15556936

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE