WO2016000276A1 - 用于改性锂离子电池用隔膜的水性组合物及改性隔膜和电池 - Google Patents

用于改性锂离子电池用隔膜的水性组合物及改性隔膜和电池 Download PDF

Info

Publication number
WO2016000276A1
WO2016000276A1 PCT/CN2014/082046 CN2014082046W WO2016000276A1 WO 2016000276 A1 WO2016000276 A1 WO 2016000276A1 CN 2014082046 W CN2014082046 W CN 2014082046W WO 2016000276 A1 WO2016000276 A1 WO 2016000276A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
ethylene
lithium ion
ion battery
separator
Prior art date
Application number
PCT/CN2014/082046
Other languages
English (en)
French (fr)
Inventor
潘中来
王璐
高建东
李仁贵
杜鸿昌
邓佳闽
邓正华
Original Assignee
成都中科来方能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都中科来方能源科技有限公司 filed Critical 成都中科来方能源科技有限公司
Priority to JP2016576050A priority Critical patent/JP2017525100A/ja
Priority to KR1020177002605A priority patent/KR20170026547A/ko
Priority to US15/322,357 priority patent/US10497914B2/en
Priority to EP14896710.2A priority patent/EP3163652B1/en
Publication of WO2016000276A1 publication Critical patent/WO2016000276A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/02Homopolymers or copolymers of hydrocarbons
    • C09D125/16Homopolymers or copolymers of alkyl-substituted styrenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D129/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Coating compositions based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Coating compositions based on derivatives of such polymers
    • C09D129/02Homopolymers or copolymers of unsaturated alcohols
    • C09D129/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/10Homopolymers or copolymers of methacrylic acid esters
    • C09D133/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to the field of lithium ion battery production technology, and more particularly to an aqueous composition for modifying a separator for a lithium ion battery, a modified polyolefin separator for a lithium ion battery, and a lithium ion battery.
  • Lithium batteries are widely used in 3C products such as personal computers and mobile phones, and are now the best choice for electric vehicles. As the development of terminal equipment continues to increase, personal computers, mobile phones, etc. tend to be larger and thinner. It requires batteries to have higher energy density, longer cycle life and more safety, and also requires batteries to be thinner and thinner. Has a certain strength.
  • the thickness of the conventional lithium battery is obviously weakened with the thickness, especially the large-area battery is not only poor in hardness, but also easily distorted and deformed, affecting the application of the device, and even having a great influence on the performance and safety of the battery.
  • the reason for the difference in strength is that in the conventional battery, the battery is a positive electrode, a separator and a negative electrode are laminated in this order, and an electrolyte is injected therein.
  • the positive electrode and the diaphragm and the diaphragm are formed due to the smooth surface of the diaphragm itself and the lubrication after the electrolyte is added.
  • the negative electrode and the negative electrode are relatively slid, and the positive electrode and the negative electrode itself are thinner pieces of metal foil and inorganic powder having a thickness of about 100 micrometers, which have insufficient strength; thereby causing the formed battery to be only about 100 micrometers.
  • the pole piece has a physical superimposed support strength, and there is a relative displacement between the layers, which causes the battery strength to fail to meet the requirements of the device application in the actual application process.
  • the battery after the battery area increases, the battery exhibits its own distortion and affects the battery. And safety even causes the battery to burn and explode.
  • the patent published on July 12, 2000: CN1259773A which uses PVDF-HFP+PP/PE as a gel polymer electrolyte, can improve the cohesive force between the pole piece and the pole piece; but the gel polymer electrolyte and Compared with the liquid electrolyte, the conductivity and other properties are significantly reduced, thereby affecting the rate, low temperature and cycle performance of the battery. More importantly, PVDF reacts with Li x C 6 , and the reaction enthalpy increases linearly with increasing X value and specific surface area of carbon material. Maleki et al. pointed out that the reaction of Li x C 6 with PVDF starts at 210 ° C.
  • CN102653656 A discloses a method for improving the wrinkle resistance of an ultra-thin battery, which uses an alcohol or a ketone as a solvent, and obtains a solvent resin under high temperature stirring at a normal temperature, and a spray gun is uniformly added by adding an antifoaming agent and a leveling agent. Sprayed on ultra-thin battery pole pieces Between aluminum plastic film; dry at room temperature or high temperature to obtain a battery with improved hardness.
  • the method can improve the strength of the lithium battery, the compaction density of the pole piece is changed due to the introduction of the resin solvent of the alcohol or the ketone in the battery, and the ion transfer between the pole piece and the diaphragm is blocked by the injection glue, which greatly affects the battery performance. Moreover, its complicated process cannot meet the requirements of large-scale production.
  • a separator for improving the bonding force with an electrode, and an electrochemical device comprising the separator, using a plurality of inorganic particles and formed on at least one surface of the porous substrate a porous coating made of a mixture of binder polymers; and a point coating formed on the surface of the porous coating layer having a plurality of dots made of a polymer and arranged at a predetermined pitch.
  • the patent uses a coating on the coating, and the point-coated rubber polymer is adhered to the electrode sheet to enhance the entire battery interface; although the method improves the battery interface and increases the overall strength of the battery,
  • the secondary coating is further performed on the porous coating layer, the process is complicated, the yield rate is difficult to control, and the scale industrialization cannot be formed.
  • the rubber compound has obvious problems such as swelling in the lithium battery, which affects battery performance.
  • Cispray a substance capable of adsorbing the electrolyte in the battery reduce the amount of free liquid, increase the friction and improve the strength of the battery.
  • Chinese Patent No. CN 102306725 A discloses a copolymer of acrylate and acrylonitrile as a separator, which has good absorption capacity for the electrolyte, reduces the adsorption of free electrolyte by the electrode, and increases the friction between the separator and the electrode. Thereby increasing the hardness of the battery.
  • the method utilizes the separator to adsorb the free electrolyte, and the battery strength is improved to some extent.
  • Chinese patent CN 102593520 A discloses a method for improving the hardness of a lithium ion battery by rapidly increasing the cell core pre-baking time and temperature, the formation temperature, and the pressure of the cell body to reduce the cell core. For the purpose of the realization, a large current is rapidly formed, and finally, the cut-off potential is adjusted, and a lithium ion battery having a higher hardness is prepared.
  • the method has a higher capacity of the prepared cell because the high temperature clamping after shaping is eliminated, and the cell is always subjected to constant (or variable) pressure during charging and discharging, thus charging The polarization at the time of discharge is smaller, and the capacity of the prepared battery is more consistent.
  • the prepared battery core not only has excellent performance but also higher hardness; although the method can be somewhat Improve the hardness of the battery, but the method involves more technical links, and the improvement of the chemical system increases the process time, which makes the equipment take up time. It is necessary to increase the equipment cost of the production line, which is relatively large, and it is difficult to achieve large industrial application.
  • An object of the present invention is to provide an aqueous composition for modifying a separator for a lithium ion battery, which is capable of improving the strength of a lithium ion battery cell, and which simplifies the battery production process, and the aqueous composition of the present invention is coated on a polyolefin.
  • the modified membrane is made on the membrane substrate, and the lithium ion battery cell prepared by the modified membrane is integrated with the positive and negative electrodes to make the battery have higher strength, good distortion resistance, and cell thickness. High temperature expansion is small.
  • a first aspect of the present invention an aqueous composition for modifying a separator for a lithium ion battery, comprising an aqueous binder for a lithium ion battery and an organic nanoparticle filler dispersed therein; wherein the organic nanoparticle filler is polymerized
  • the nanoparticles of the substance 1 or at least the surface coated with the nanoparticles of the polymer 1; the organic nanoparticles have a particle diameter of 50 to 2000 ⁇ (preferably 100 to 700 ⁇ ).
  • the polymer 1 is selected from the group consisting of polymethyl methacrylate (PMMA), ethylene-vinyl acetate copolymer (EVA), ethylene-acrylic acid copolymer (EAA), ethylene-butyl acrylate copolymer (EBA), ethylene-acrylic acid. At least one of a methyl ester copolymer (EMA), an ethylene-ethyl acrylate copolymer (EEA) or a polyurethane (PTU) polymer.
  • PMMA polymethyl methacrylate
  • EVA ethylene-vinyl acetate copolymer
  • EAA ethylene-acrylic acid copolymer
  • EBA ethylene-butyl acrylate copolymer
  • PMMA polymethyl methacrylate
  • EAA ethylene-acrylic acid copolymer
  • EBA ethylene-butyl acrylate copolymer
  • PTU polyurethane
  • the polymer 1 is preferably selected from the group consisting of polymethyl methacrylate (PMMA), ethylene-vinyl acetate copolymer (EVA), ethylene-acrylic acid copolymer (EAA), ethylene-butyl acrylate copolymer (EBA). At least one of ethylene-methyl acrylate copolymer (EMA) or ethylene-ethyl acrylate copolymer (EEA).
  • the polymer 1 is further preferably selected from the group consisting of polymethyl methacrylate (PMMA), ethylene-vinyl acetate copolymer (EVA), ethylene-acrylic acid copolymer (EAA) or ethylene-methyl acrylate copolymer (EMA). At least one of them.
  • the polymer 1 is still more preferably: at least one selected from the group consisting of ethylene-vinyl acetate copolymer (EVA), ethylene-acrylic acid copolymer (EAA) or ethylene-methyl acrylate copolymer (EMA).
  • EVA ethylene-vinyl acetate copolymer
  • EAA ethylene-acrylic acid copolymer
  • EMA ethylene-methyl acrylate copolymer
  • the at least surface-coated nanoparticles of the polymer 1 are core-shell structured organic nanoparticles, the core of the core-shell structure is polymer 2 or inorganic particles; the shell is the above polymer 1;
  • the polymerization reaction monomer 1 is obtained by polymerization, and the polymerization reaction monomer 1 is at least one of acrylonitrile, methacrylonitrile, methyl acrylate, methyl methacrylate or styrene.
  • the polymer 2 is obtained by copolymerization of a polymerization reaction monomer 1 and a polymerization reaction monomer 2 which is a monomer having a crosslinking action.
  • the polymerization monomer 2 is preferably at least one selected from the group consisting of divinylbenzene, diacetone acrylamide, hydrazine, ⁇ '-methylenebisacrylamide or allyl methacrylate.
  • the inorganic particles are A1 2 0 3, Si0 2, Zr0 2, Ti0 2, at least one of Ca0 2 or MgO.
  • the aqueous composition for modifying a separator for a lithium ion battery according to the present invention when at least the core of the nanoparticle coated with the polymer 1 is a polymer 2, at least the surface of the nanoparticle coated with the polymer 1
  • the preparation method of the particles is as follows: Dissolving the polymer 1 in water or an organic solvent, adding the polymerization reaction monomer 1 and raising the temperature to 50 to 140 ° C, and adding the initiator to initiate polymerization to obtain a polymer glue; Or after spray drying; the weight ratio of the polymerization monomer 1 to the polymer 1 is 0.1 to 6: 1, preferably 1 to 4: 1.
  • the aqueous composition for modifying a separator for a lithium ion battery according to the present invention when at least the core of the nanoparticle coated with the polymer 1 is an inorganic particle, at least the surface of the nanoparticle coated with the polymer 1
  • the preparation method is as follows: The polymer 1 and the inorganic filler are dispersed in water or an organic solvent in any order to form a polymer glue; and obtained by precipitation separation or spray drying.
  • a preferred embodiment of the aqueous composition for modifying a separator for a lithium ion battery is that the aqueous composition of the modified lithium ion battery separator includes an aqueous binder for a lithium ion battery and an organic solvent dispersed therein. In addition to the nanoparticle filler, it also contains a nano inorganic filler.
  • the nano inorganic filler is suitable for a lithium ion battery separator Inorganic fillers, such as A1 2 0 3, Si0 2, Zr0 2, Ti0 2, at least one of Ca0 2 or MgO.
  • a second technical solution of the present invention is: a modified polyolefin separator for a lithium ion battery, comprising a microporous polyolefin microporous film and a coating, the coating being an aqueous composition coated with the above-mentioned modified lithium ion battery separator Cover the surface of the polyolefin microporous membrane and dry it.
  • a third technical solution of the present invention is: a method for preparing an aqueous composition for modifying a separator for a lithium ion battery: the organic nanoparticle filler is uniformly dispersed in an aqueous binder.
  • the organic nanoparticle filler is a nanoparticle of the polymer 1 or a nanoparticle having at least a surface coated with the polymer 1.
  • At least the surface-coated nanoparticles of the polymer 1 are core-shell structured organic nanoparticle fillers, the cores being polymer 2 or inorganic particles; and the shell is the above polymer 1.
  • the preparation method is as follows: Dissolved in water or organic solvent, heated to 50 ⁇ 140 ° C after adding polymerization monomer 1, and the polymerization reaction is initiated by adding initiator to obtain polymer glue; the organic nano of the invention is obtained by precipitation separation or spray drying.
  • a particulate filler wherein, polymer 1 forms a shell, polymer 2 forms a core, and polymer 2 is a polymerization product of polymerization monomer 1.
  • the polymerization monomer 1 is at least one selected from the group consisting of acrylonitrile, methacrylonitrile, methyl acrylate, methyl methacrylate or styrene; the weight ratio of the polymerization monomer 1 to the polymer 1 is 0.1 to 6: 1, preferably 1 to 4: 1.
  • the polymer 2 is obtained by copolymerization of a polymerization reaction monomer 1 and a polymerization reaction monomer 2; the polymerization reaction monomer 2 is a monomer having a crosslinking reaction, and a polymerization reaction monomer 1 and a polymerization reaction monomer The weight ratio of 2 is: 45-55: 1, preferably 50:1.
  • the polymerization monomer 2 is preferably at least one selected from the group consisting of divinylbenzene, diacetone acrylamide, N, ⁇ '-methylenebisacrylamide or allyl methacrylate.
  • the preparation method is as follows: Polymer 1 and The inorganic particles are dispersed in water or an organic solvent to form a polymer glue; the organic nanoparticles of the invention are obtained by precipitation separation or spray drying; wherein the polymer 1 forms a shell, the inorganic particles form a core, and the inorganic particles are A1 2 0 3, Si0 2, Zr0 2, Ti0 2, Ca0 2 or MgO or the like in at least one.
  • the nano inorganic particles are monodisperse spherical particles having a particle diameter of 100 to 1000 nm, preferably spherical particles having a particle diameter of 300 to 600 nm.
  • the fourth technical scheme of the present invention is: a method for preparing a modified polyolefin separator for a lithium ion battery, and the specific steps are as follows: applying the above aqueous composition to one or both sides of the polyolefin microporous membrane at 40 ° C to 120 ° °C is dry.
  • a fifth technical solution of the present invention is: a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery, and a lithium ion polymer secondary battery prepared by using the above modified polyolefin separator for a lithium ion battery .
  • the organic nanoparticle filler contained in the aqueous composition for modifying the separator for a lithium ion battery of the present invention is an organic nanoparticle having a heat softening adhesion, or is coated on the surface of the inorganic nanoparticle or the polymer nanoparticle. Covering an organic substance having a heat-softening adhesion, the present invention is hot-pressed in a battery core compared to a conventional method In the process, the separator can be quickly bonded to the positive and negative electrodes, and the effective bonding can be achieved through the nano-dots during the hot pressing process, thereby effectively preventing the electrode or the diaphragm caused by the excessively large bonding area and blocking the diaphragm and the electrode micropores. Problems such as deterioration of absorption electrolyte and reduction of transmission passage of lithium ions, thereby improving battery strength without affecting battery performance.
  • the modified separator prepared in the invention has good positive and negative electrode adhesion while maintaining the heat resistance, high liquid retention and high ionic conductivity of the conventional ceramic coated separator; and the modified diaphragm is positive and negative.
  • the size of the polar bond can be adjusted by the size and amount of the organic nanoparticle filler to meet the requirements of different types of cells.
  • the lithium ion battery separator prepared by the invention can greatly simplify the battery production process, improve the production efficiency and reduce the production cost; the lithium ion battery prepared by using the diaphragm has high energy density, good structural strength and good distortion resistance.
  • the cell core has a high temperature expansion at a high temperature, which greatly improves the yield of the battery.
  • the composition of the present invention is suitable for producing a thin battery while simplifying the battery production process, reducing the cost and maintaining good battery performance.
  • Fig. 1 is a schematic view of an organic nanoparticle filler having a core-shell structure, in which 1 represents a shell composed of polymer 1, and 2 represents a core composed of polymer 2 or inorganic particles.
  • 2 is a schematic view of a coated membrane, 0 represents a polyolefin microporous membrane, 3 represents an inorganic nanofiller, 4 represents an aqueous binder, and 5 represents an organic nanoparticle filler; wherein the coated membrane can be coated on one side or both sides Coating, the coating may be all organic nanoparticle fillers, or may be combined with inorganic nanofillers to form a coating.
  • Figure 3 is an electron micrograph of the organic nanoparticle filler of Example 1.
  • Fig. 4 is a graph showing the particle size distribution of the organic nanoparticle filler described in Example 1.
  • Fig. 5 is a cycle diagram of six batteries prepared in Test Example 1. As is apparent from the figure, after 1000 cycles (1C charge and discharge), the capacity retention ratio was 90% or more.
  • Fig. 6 is a graph showing the comparison of the rate performance of the battery prepared in Test Example 1 and the battery prepared in Comparative Example 1.
  • Fig. 7 is a graph showing the comparison of the low-temperature properties of the battery prepared in Test Example 1 and the battery prepared in Comparative Example 1.
  • Fig. 8 is a view showing the comparison of the appearance of the cells after the cycle of the battery prepared in Test Example 1 and the battery prepared in Comparative Example 1 for 100 weeks.
  • Fig. 9 is a graph showing the thickness distribution of the battery prepared in Test Example 1 and the battery prepared by using the Comparative Example 1 (statistic data of 50 batteries for each separator).
  • Figure 10 is a transmission electron micrograph of the organic nanofiller particles described in Example 3.
  • Figure 11 is a scanning electron micrograph of the organic nanofiller particles described in Example 3.
  • Figure 12 is a graph showing the particle size distribution of the organic nanofiller particles described in Example 3.
  • a first aspect of the present invention an aqueous composition for modifying a separator for a lithium ion battery, comprising an aqueous binder for a lithium ion battery and organic nanoparticles dispersed therein; the organic nanoparticle being a polymer 1 Nanoparticles or nanoparticles having at least a surface coated with polymer 1; the nanoparticles have a particle size of 50 ⁇ 2000 nm (preferably 100 to 700 nm).
  • the polymer 1 is selected from the group consisting of polymethyl methacrylate (PMMA), ethylene-vinyl acetate copolymer (EVA), ethylene-acrylic acid copolymer (EAA), ethylene-butyl acrylate copolymer (EBA), ethylene-acrylic acid. At least one of a methyl ester copolymer (EMA), an ethylene-ethyl acrylate copolymer (EEA) or a polyurethane (PTU) polymer.
  • PMMA polymethyl methacrylate
  • EVA ethylene-vinyl acetate copolymer
  • EAA ethylene-acrylic acid copolymer
  • EBA ethylene-butyl acrylate copolymer
  • PMMA polymethyl methacrylate
  • EAA ethylene-acrylic acid copolymer
  • EBA ethylene-butyl acrylate copolymer
  • PTU polyurethane
  • the polymer 1 is preferably selected from the group consisting of polymethyl methacrylate (PMMA), ethylene-vinyl acetate copolymer (EVA), ethylene-acrylic acid copolymer (EAA), ethylene-butyl acrylate copolymer (EBA). At least one of ethylene-methyl acrylate copolymer (EMA) or ethylene-ethyl acrylate copolymer (EEA).
  • the polymer 1 is further preferably: polymethyl methacrylate (PMMA), ethylene-vinyl acetate copolymer (EVA), ethylene-acrylic acid copolymer (EAA) or ethylene-methyl acrylate copolymer (EMA) At least one.
  • the polymer 1 is still more preferably: at least one of ethylene-vinyl acetate copolymer (EVA), ethylene-acrylic acid copolymer (EAA) or ethylene-methyl acrylate copolymer (EMA).
  • the polymer 1 nanoparticle may be purchased from a commercially available product, or the commercially available polymer 1 may be dissolved in water or an organic solvent, spray dried or precipitated to obtain nanoparticles; the particle size of the nanoparticle is 50 ⁇ 2000 nm (preferably 100 to 700 nm).
  • the at least surface-coated nanoparticles of the polymer 1 are core-shell structured organic nanoparticles, the core of the core-shell structure is polymer 2 or inorganic particles; the shell is the above polymer 1;
  • the polymer 1 is selected from the group consisting of polymethyl methacrylate (PMMA), ethylene-vinyl acetate copolymer (EVA), ethylene-acrylic acid copolymer (EAA), ethylene-butyl acrylate copolymer (EBA), ethylene.
  • PMMA polymethyl methacrylate
  • EVA ethylene-vinyl acetate copolymer
  • EAA ethylene-acrylic acid copolymer
  • EBA ethylene-butyl acrylate copolymer
  • a methyl acrylate copolymer EMA
  • EAA ethylene-ethyl acrylate copolymer
  • PTU polyurethane
  • the polymer 1 is preferably selected from the group consisting of polymethyl methacrylate (PMMA), ethylene -vinyl acetate copolymer (EVA), ethylene-acrylic acid copolymer (EAA), ethylene-butyl acrylate copolymer (EBA), ethylene-methyl acrylate copolymer (EMA) or ethylene-ethyl acrylate copolymer (EEA)
  • the polymer 2 is formed by polymerization of a polymerization monomer 1 selected from at least one of acrylonitrile, methacrylonitrile, methyl acrylate, methyl methacrylate or styrene. kind.
  • the polymer 2 is formed by copolymerization of a polymerization reaction monomer 1 and a polymerization reaction monomer 2, the polymerization reaction monomer 2 being a monomer having a crosslinking reaction; a polymerization reaction monomer 1 and a polymerization reaction monomer.
  • the weight ratio of 2 is: 45-55: 1, preferably 50:1.
  • the polymerization monomer 2 is at least one selected from the group consisting of divinylbenzene, diacetone acrylamide, hydrazine, ⁇ '-methylenebisacrylamide or allyl methacrylate.
  • the preparation method is as follows: The polymer 1 is dissolved in water or an organic solvent, and after the polymerization monomer 1 is added, the temperature is raised to 50 to 140 ° C, and the polymerization reaction is initiated by dropwise addition of an initiator to obtain a polymer glue; after separation by precipitation or spray drying, The organic nanoparticle of the present invention, wherein the polymer 1 forms a shell, the polymer 2 forms a core, and the polymer 2 is a polymerization product of the polymerization monomer 1.
  • the preparation method is as follows: Dispersing the polymer 1 and the inorganic particles in water or an organic solvent in any order to form a polymer glue; separation is obtained after spray drying or organic nanoparticles of the present invention; polymer shell 1 is formed, the inorganic particles form a core; said inorganic particles are A1 2 0 3, Si0 2, Zr0 2, Ti0 2, Ca0 2, MgO , etc. Any one or a mixture of two or more.
  • the nano inorganic particles are monodisperse spherical particles having a particle diameter of 100 to 1000 nm, preferably spherical particles having a particle diameter of 300 to 600 nm.
  • the aqueous composition of the modified lithium ion battery further contains a nano inorganic filler, and the nano inorganic filler is a lithium ion battery.
  • a separator suitable inorganic filler or other suitable inorganic fillers such as A1 2 0 3, Si0 2, Zr0 2, Ti0 2, Ca0 2, MgO , and the like; preferably is A1 2 0 3 nanoparticles.
  • the amount of the inorganic filler to be added can be determined by those skilled in the art according to the actual conditions, and the amount of addition is generally not more than 90%, preferably 40 to 70%.
  • the nano inorganic filler has a particle diameter of preferably 10 to 2000 nm, more preferably 100 to 100 Omo.
  • the aqueous binder may be an aqueous binder for lithium ion batteries well known to those skilled in the art, such as an acrylate based aqueous binder, a styrene butadiene rubber emulsion aqueous binder, a styrene rubber emulsion aqueous binder; Or an aqueous binder prepared from water-soluble polymers such as polyacrylic acid and salts thereof, polymethacrylic acid and salts thereof, sodium carboxymethylcellulose, polyacrylamide, polyvinyl alcohol and the like.
  • a second technical solution of the present invention is: a modified polyolefin separator for a lithium ion battery, comprising a polyolefin microporous film and a coating, the coating being the above aqueous composition for modifying a separator for a lithium ion battery Cover the surface of the polyolefin microporous membrane and dry it.
  • the polyolefin microporous membrane is a polypropylene microporous membrane, a polyethylene microporous membrane or a polypropylene/polyethylene/polypropylene three-layer composite microporous membrane.
  • a third technical solution of the present invention is a method for producing an aqueous composition for modifying a separator for a lithium ion battery, that is, the organic nanoparticle filler is uniformly dispersed in an aqueous binder.
  • the organic nanoparticle filler is a nanoparticle of the polymer 1 or a nanoparticle having at least a surface coated with the polymer 1.
  • At least the nanoparticle having the surface coated with the polymer 1 is an organic nanoparticle filler having a core-shell structure, and the core is a polymer 2 or an inorganic particle.
  • the shell is the above polymer 1.
  • the preparation method of the particles is as follows: The polymer 1 is dissolved in water or an organic solvent, and after the polymerization monomer 1 is added, the temperature is raised to 50 to 140 ° C, and the polymerization reaction is initiated by dropwise addition of an initiator to obtain a polymer glue; after separation by precipitation or spray drying, The organic nanoparticle of the present invention, wherein the polymer 1 forms a shell, the polymer 2 forms a core, and the polymer 2 is a polymerization product of the polymerization monomer 1.
  • the polymerization monomer 1 is at least one selected from the group consisting of acrylonitrile, methacrylonitrile, methyl acrylate, methyl methacrylate or styrene; the weight ratio of the polymerization monomer 1 to the polymer 1 is 0.1 ⁇ 6: 1, the formation of the core-shell structure is determined by the reaction mode and the process conditions, and the weight ratio of the polymerization monomer 1 to the polymer 1 determines the thickness of the core layer and the shell layer and the particle size of the formed nano-filler. Therefore, the weight ratio of the polymerization monomer 1 to the polymer 1 can be adjusted according to the filler size or the function of the shell layer to form a nano-filler particle of a desired core-shell structure.
  • the initiator may be a water-soluble or oil-soluble initiator commonly used in the field of emulsion polymerization, such as ammonium persulfate, benzoyl peroxide, azobisisobutyronitrile, etc., and the amount of the initiator is the total weight of the polymerized monomers. 0.1 to 3%.
  • the polymer 2 is obtained by copolymerization of a polymerization reaction monomer 1 and a polymerization reaction monomer 2; the polymerization reaction monomer 2 is a monomer having a crosslinking action, and the polymerization reaction monomer 2 is preferably two. At least one of vinylbenzene, diacetone acrylamide, hydrazine, ⁇ '-methylenebisacrylamide or allyl methacrylate.
  • the preparation method is as follows: Polymer 1 and inorganic in any order
  • the particles are dispersed in water or an organic solvent to form a polymer glue; the organic nanoparticles of the invention are obtained by precipitation separation or spray drying; the polymer 1 forms a shell, and the inorganic particles form a core; the inorganic particles are A1 2 0 any one of 3, Si0 2, Zr0 2, Ti0 2, Ca0 2, MgO and the like, or a mixture of two or more.
  • the nano inorganic particles are monodisperse spherical particles having a particle diameter of 100 to 1000 nm, preferably spherical particles having a particle diameter of 300 to 600 nm.
  • a preferred embodiment of the aqueous composition for modifying a separator for a lithium ion battery is that the aqueous composition of the modified lithium ion battery separator includes an aqueous binder for a lithium ion battery and an organic solvent dispersed therein. outside the nanoparticles, the nano inorganic filler is further contained, the nano inorganic filler is a lithium ion battery separator suitable inorganic filler or other suitable inorganic fillers, such as A1 2 0 3, Si0 2, Zr0 2, Ti0 2, Ca0 2, At least one of MgO and the like. Preferred are A1 2 0 3 nanoparticles.
  • the nano inorganic filler and the organic nanoparticle filler are uniformly dispersed in an aqueous binder to obtain an aqueous composition for modifying a separator for a lithium ion battery of the present invention.
  • the amount of the inorganic filler to be added can be determined by those skilled in the art according to the actual conditions, and the amount of addition is generally not more than 90%, preferably 40 to 70%.
  • the nano inorganic filler has a particle diameter of preferably 10 to 2000 nm, more preferably 100 to 1000 nm.
  • a fourth technical solution of the present invention is: a method for preparing a modified polyolefin separator for a lithium ion battery, the specific steps are as follows: applying the aqueous composition of the modified lithium ion battery separator to one side of the polyolefin microporous membrane or On both sides, dry.
  • the drying temperature is 40 ° C ⁇ 120 ° C; after drying, the modified polyolefin microporous membrane of the present invention is obtained, and the thickness of the dried coating is controlled to be 2 to 20 ⁇ m.
  • the method for coating the aqueous composition for modifying a separator for a lithium ion battery on a polyolefin microporous film may be in an industry such as immersion pulling, roll coating, spray coating or doctor blade method.
  • a fifth technical solution of the present invention is: a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery, and a lithium ion polymer secondary battery prepared by using the above modified polyolefin separator for a lithium ion battery .
  • vehicles such as hybrid vehicles and electric vehicles.
  • the electrode which can be used together with the separator of the present invention is not particularly limited, and the electrode can be fabricated into an electrode according to any conventional method well known in the art.
  • the positive electrode active material may be a positive electrode active material of a conventional electrochemical device.
  • the positive electrode active material is preferably lithium manganese oxide, lithium cobalt oxide, lithium nickel oxide, lithium iron oxide, or a lithium composite oxide thereof, but is not limited thereto.
  • the negative electrode active material may be a conventional electrochemical device negative electrode active material.
  • non-limiting examples of the negative active material are lithium intercalation materials such as lithium metal, lithium alloy, carbon, petroleum coke, activated carbon, graphite, silicon, and silicon carbon composite materials, or other carbonaceous materials.
  • the electrolyte which can be used in the present invention includes a salt represented by the formula A + B_, wherein A + represents an alkali metal cation such as Li + , and B_ represents an anion such as PF 6 _, BF 4 _, C10 4 _, AsF 6 _, CH 3 C0 2 —, CF 3 S0 3 _, N(CF 3 S0 2 ) 2 ⁇ C(CF 2 S0 2 ) 3 ", or a combination thereof.
  • the salt may be Dissolution or dissociation in organic solvent of material composition: propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), dimethyl Sulfoxide, acetonitrile, dimethoxyethane, diethoxyethane, tetrahydrofuran, N-methyl-2-pyrrolidone (NMP), ethyl methyl carbonate (EMC), ⁇ -butyrolactone, or their
  • the mixture may further include a functional additive.
  • the electrolyte which can be used in the present invention is not limited to the above examples.
  • the electrolyte can be injected in a suitable step in the battery manufacturing process according to the manufacturing method and the desired final product properties. In other words, the electrolyte can be in the final step of the battery assembly process prior to battery assembly. Cheng moderate injection.
  • separator of the present invention When the separator of the present invention is used for a battery, in addition to the usual winding method, a separator and an electrode folding method and a lamination or stacking method may be employed, but are not limited thereto.
  • Acrylic-ethylene copolymer (grade: Dow Chemical EAA5959, particle size 4 ⁇ 6mm,) 100 parts, dissolved in a lithium hydroxide aqueous solution of pH 14 at 95 °C for 12 hours, added deionized water to adjust the pH value 10, obtaining precipitated particles having a D90 of less than 1800 nm; separating by centrifugation and drying.
  • the size of the nanoparticles was characterized by scanning electron microscopy and laser particle size analyzer. The dimensional results are shown in Fig. 3 and Fig. 4; JEOL JSM-5900LV scanning electron microscope and Dandong Baite Instrument Co., Ltd. BT-2003 laser particle size distribution analyzer were used.
  • the particles are nanometer-sized, and the particle diameter is ⁇ 180 ( ⁇ 1 ⁇ , the particle size distribution is narrow.
  • the aqueous binder is uniformly dispersed by stirring at high speed in 200 parts of steamed water. Then, 75 parts of EAA organic nano-filler particles prepared in (a) and 20 parts of alumina were added. After stirring at 2000 rpm for 1 hour, the uniformly dispersed mixture was added to the ball mill, and the ball mill was stirred for 12 hours (200 rpm).
  • the water-based adhesive was purchased from LA132 water-based adhesive produced by Chengdu Yindile Co., Ltd., with a solid content of 15%.
  • the aqueous composition for modifying a separator for a lithium ion battery prepared above was applied in a gravure coating manner on both sides of a 9 ⁇ m thickness ⁇ / ⁇ / ⁇ three-layer microporous film; a coating speed of 20 m/min and a temperature of 80°. C, a modified polyolefin microporous film having a thickness of 13 um was obtained.
  • PVDF Polyvinylidene fluoride
  • Gas permeability was measured using a Gurley type gas permeability tester in accordance with JIS Gurley (Japanese Industrial Standard Gurley); gas permeability is the time (seconds) taken for 100 cc of air to pass through a 1 square inch diaphragm at a pressure of 4.8 inches.
  • Heat shrinkage rate The 10cm*10cm diaphragm is placed in the ⁇ 1 °C oven for 1 hour according to the set temperature requirement. After taking out the cooling, test the length and width dimensions and calculate the shrinkage rate.
  • the modified polyolefin separator prepared in Example 1 not only maintains the excellent gas permeability of the conventional polyolefin separator (indirectly indicating the ion permeability), but also improves the heat resistance of the separator due to the heat resistant coating. , thereby improving the safety of the battery.
  • Test example 1 Battery fabrication and performance test
  • negative electrode active material artificial graphite 96%, binder polyacrylate 3%, and conductive material carbon black (super-p) 1% to deionized water to prepare a negative electrode mixture slurry; coating the negative electrode mixture slurry On a copper (Cu) foil current collector having a thickness of 12 ⁇ m, then dried and rolled to form a negative electrode tab having an areal density of 20 mg/cm 2 and a compacted density of 1.65 g/cm 3 ; the binder is Chengdu Yindi Power Co., Ltd. produces LA132.
  • LiPF6 lithium hexafluorophosphate
  • EMC ethyl methyl carbonate
  • the above obtained electric core is placed in an environment of 45 ° C for 20 h, and then the cell is shaped by heat pressing at 95 ° C for 1 min; the cell is placed directly on the chemical conversion device, and no clamp is required, at 30 ⁇
  • the cell is formed in a 2 ° C environment, and the formation current is lCfC" is the theoretical capacity of the cell;), the formation time is lOOmin, and the cut-off potential is 4.35V; then it is placed in the charge and discharge test machine to perform charging/discharging/charging in sequence.
  • the cut-off potential is 3.8V, then the battery is degassed and the air bag is cut off to obtain the battery. In this process, only 8 minutes of hot and cold pressing is required, and each battery is clamped without other fixtures.
  • the entire composition time is 270min.
  • Comparative Example 1 cannot be achieved according to the above-mentioned chemical conversion method, which will cause serious deformation of the battery and affect the normal performance of the battery; therefore, it must be formed using the generalization conditions in the current industry, and the specific conditions are as follows: After standing at 45 °C for 20 h, the fully infiltrated cells were placed in a chemical fixture, and the surface of the cell was pressed by a clamp. The pressure was 0.6 MPa, and then the cell was pre-baked at 85 °C.
  • the pre-baked chemical forming fixture to be formed into a cell is first placed in a chemical conversion machine, and the formation temperature is 60 ° C, the formation current is 1 C, the formation time is lOOmin, and the cut-off potential is 4.35 V;
  • the charging/discharging and discharging/charging operations are sequentially performed in the charging and discharging tester, the charging/discharging temperature is 35 ° C, the current is 1 C, the cut-off potential is 3.8 V, the discharging/charging temperature is 35 ° C, and the current is 1 C.
  • the cut-off potential is 3.8V; the cell is taken out, and the cell is hot-cold and pressed, the hot pressing temperature is 120 ° C, the cold pressing temperature is 45 ° C, the pressure is 2 MPa, cold
  • the time is 15min; then the battery is degassed and the air bag is cut off to obtain the battery; the process directly takes 420 minutes, and a large number of fixtures are used in the formation, which is not only expensive, but also the battery is placed in the fixture and The time taken to remove and maintain consistency in the fixture is also greater than 60 minutes for fixture adjustment, maintenance, etc.; total time is about 480 minutes.
  • the capacity, internal resistance and thickness of the battery are shown in Table 2. As can be seen from Table 2, in Test Example 1, the battery was kept the same or even better than the comparative example 1 in terms of internal resistance, thickness, and battery capacity.
  • the current of 1C rate is charged to 4.35V and is constant voltage of 4.35V; then the battery is discharged with a current of 1C rate, the cut-off voltage is 3.0V, and one cycle is completed; the cycle performance is shown in Figure 5, as seen from Figure 5,
  • the colloidal particle modified membrane of the invention of the core-shell structure is excellent in cycle performance, and after 1000 cycles (1C charge and discharge), the capacity retention rate is above 90%, which fully satisfies the application requirements of the lithium ion battery. 5.3, rate test
  • the current of 0.5C rate is charged to 4.35V and is constant voltage of 4.35V; then discharge is performed with different currents (0.2C, 0.5C, 1C, 2C), and the cut-off voltage is 3.0V.
  • Fig. 6 The comparison between the battery prepared by the test example 1 and the battery prepared by the comparative example 1 is shown in Fig. 6; from Fig. 6, it can be seen that the core-shell structured colloidal particle modified film is superior to the comparative example 1 in terms of rate and low temperature performance.
  • the good adhesion between the separator and the electrode does not adversely affect the rate and low temperature performance of the battery, but plays a positive role.
  • the battery Under normal temperature conditions, the battery is charged to 4.35V at a current of 0.2C, and at a constant voltage of 4.35V; then the battery is placed at different temperatures, left for 16 hours, and 0.2C current is discharged to discharge at the corresponding temperature. , the cutoff voltage is 3.0V.
  • the battery prepared in Test Example 1 and the low temperature performance of the battery prepared in Comparative Example 1 are shown in Fig. 7.
  • the battery Under normal temperature conditions, the battery is charged to 4.35V at a current of 0.2C, and is kept at a constant voltage of 4.35V; then it is fully charged in a constant temperature oven at 85 °C, left for 5 hours, and the battery core is taken out at a constant temperature for 5 hours.
  • the 0.2C rate current discharge is performed, and the cut-off voltage is 3.0V, thereby calculating the high-temperature capacity retention rate; and then the battery is charged and discharged at a normal temperature of 0.2 C constant current to obtain a capacity recovery rate after high-temperature storage.
  • the battery prepared in Test Example 1 and the high temperature performance of the battery prepared in Comparative Example 1 are shown in Table 4.
  • the battery prepared in Test Example 1 and the battery prepared in Comparative Example 1 were cycled for 100 weeks, and the appearance of the battery cell was shown in Fig. 8; the thickness distribution of the battery core (statistic data of 50 batteries for each type of diaphragm) is shown in Fig. 9.
  • the battery prepared in Comparative Example 1 was able to see significant warpage after 100 cycles of circulation. It can be seen from Fig. 9 that the cell made of the comparative PVDF modified film has relatively poor thickness uniformity, indicating that the warpage ratio is high; and the thickness of the battery obtained in Test Example 1 is good; and during the battery use process Among the batteries prepared in Test Example 1, the dimensional stability and high strength were maintained, and the battery performance was fully improved.
  • the organic nanoparticle filler is a commercially available EEA nanopowder, which is sieved to obtain a nanoparticle having a D98 of 1800 nm.
  • the preparation method and operating conditions of the aqueous composition of the present embodiment are basically the same as those of the first embodiment, the only difference being the aqueous binder: EEA nanoparticles: the weight ratio of the inorganic filler is 10:30:60, wherein the aqueous binder is Water-based plastic sodium polyacrylate (molecular weight 5 million), inorganic filler is MgO.
  • the manufacturing process of the aqueous composition-modified olefin microporous membrane in this embodiment is the same as that in the first embodiment.
  • PMMA polymethyl methacrylate
  • acetone solution 100 parts of polymethyl methacrylate (PMMA) was added to 500 parts of acetone solution to dissolve fully, and then 300 parts of particles of D50 of 300 nm of aluminum oxide (A1 2 0 3 ) were added, stirred and dispersed, and then sprayed. Drying was carried out to obtain A1 2 0 3 /PMMA core-shell type nanoparticles having a particle diameter D50 of about 350 nm and coated with methyl methacrylate (PMMA).
  • Transmission electron microscopy and scanning electron micrograph are shown in Figure 10 and Figure 11.
  • the particle size distribution is shown in Figure 12. It can be seen from the figure that the particles having a particle nucleation shell structure have a particle diameter distribution of ⁇ 5001 1 ⁇ narrow.
  • the preparation method and operating conditions of the aqueous composition of this embodiment are basically the same as those of the first embodiment, the only difference being the aqueous binder: A1 2 0 3 /PMMA : the weight ratio of the inorganic filler is 5:90:5, wherein the water-viscous
  • the mixture is a mixture of styrene-acrylic emulsion and carboxymethylcellulose (the weight ratio of the two is 1:1), and the inorganic filler is Si0 2 .
  • the manufacturing process of the aqueous composition-modified olefin microporous membrane in this embodiment is the same as that in the first embodiment.
  • Embodiment 4 Preparation and battery of modified polyolefin separator for lithium ion battery of the present invention
  • Methyl acrylate-ethylene copolymer (grade: France Karma 14MGC02) 50 parts into a four-necked bottle with a condenser and thermometer, add 1000 parts of xylene solvent, dissolve at 70 ° C, after the copolymer is completely dissolved, once 100 parts of methyl methacrylate and 100 parts of acrylonitrile monomer were added, and 200 parts of a xylene solution containing 5 parts of benzoyl peroxide was added dropwise, and the addition time was about 3 hours, and then the reaction was continued at this temperature. In hours, a polymer latex was obtained. The polymer latex is precipitated in water, centrifuged and dried to obtain core-shell nanoparticles.
  • the preparation of the aqueous composition and the preparation process of the aqueous composition-modified olefin microporous membrane in this embodiment are the same as those in the first embodiment.
  • Ethylene-vinyl acetate (EVA) copolymer brand: Sinopec V4110F 100 parts, dissolved in 800 parts of organic solvent xylene at 65 ° C for 2 hours, adding 150 parts of methyl methacrylate (MMA) and 3 parts Co-agent allyl methacrylate (AMA), then add 50 parts of xylene dissolved in 1.0 part of azobisisobutyronitrile
  • MMA methyl methacrylate
  • AMA Co-agent allyl methacrylate
  • the solution initiates the polymerization reaction, and after the dropwise addition in 3 hours, the reaction is further carried out for 6 hours to obtain a polymer glue having a methyl methacrylate crosslinked polymer as a core and an ethylene-vinyl acetate copolymer as a shell structure;
  • the polymer gum solution is spray dried to obtain P MMA / EVA nano organic particles having a D90 of less than 100 nm.
  • organic nano-filler 100 parts of ethylene-vinyl acetate (EVA) copolymer (brand: Sinopec V4110F), dissolved in 800 parts of organic solvent xylene at 65 °C for 2 hours, adding 10 parts of methacrylic acid Methyl ester (MMA) and P 0.2 parts of crosslinker allyl methacrylate (AMA), then add 0.1 part of azobisisobutyronitrile in 50 parts of xylene solution to initiate polymerization, add dropwise within 1 hour After 6 hours of constant temperature reaction, a polymer glue solution with methyl methacrylate and a core and an ethylene-vinyl acetate copolymer as a shell structure is obtained; then the polymer glue is spray-dried to obtain a P having a D90 of less than 300 nm.
  • EVA ethylene-vinyl acetate
  • AMA crosslinker allyl methacrylate
  • Examples 1-6 the gas permeability of different separators prepared in Comparative Example 1 and the shrinkage at different temperatures are shown in Table 1;
  • Test Example 1 Examples 2-6, Comparative Diaphragm Cells Prepared in Comparative Example 1 The thickness, internal resistance and capacity comparison are shown in Table 2;
  • Test Example 1, Example 2-6 the low temperature and rate performance of the battery prepared in Comparative Example 1 are shown in Table 3;
  • the preparation of the organic nano-filler particles, the preparation of the aqueous composition, the aqueous composition-modified olefin microporous film, and the battery manufacturing process in this embodiment are basically the same as those in the first embodiment and the test example 1. The only difference is that the size of the fabricated battery is increased. The size specification is 446379. After the battery size increases, the battery deformation warpage is more serious.
  • the hot pressing condition changes slightly in the chemical conversion process, as follows: After the battery cell is placed in a 45 °C environment for 20 hours, the hot pressing condition is 95 °C. The hot pressing lmin was changed to 100 °C hot pressing for 5 min, cold pressing for 5 min to shape the cell; other conditions were unchanged, the total composition time was increased to 280 min (increase 9 min); battery performance and strength are shown in Table 5.
  • the preparation of the PVDF coating film and the battery manufacturing process were basically the same as those of Comparative Example 1, except that the size of the fabricated battery was increased, and the battery size specification was 446379, and the corresponding chemical conversion process was changed.
  • the chemical conversion process conditions are as follows: The cell is placed in a 45 ° C environment for 20 h, and the cell is pre-baked at 85 ° C for 90 min under a pressure of 0.6 MPa, and the composition time is increased. Up to 510min (30min increase). The specific performance and strength are shown in Table 5.
  • the battery prepared in Comparative Example 2 has a severe warpage and a significant increase in the thickness change rate, which cannot be applied in practical applications, and even affects the basic performance of the battery, and the internal resistance of the battery increases significantly.
  • the storage capacity retention rate has dropped significantly. While the battery strength, process and battery performance in Example 7 did not change significantly with increasing size, performance and cost advantages would be realized in practical applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

用于改性锂离子电池用隔膜的水性组合物及锂离子电池用改性聚烯烃隔膜和锂离子电池,属于锂离子电池制备技术领域。目的在于提高锂离子电池电芯的强度,减小电芯厚度高温膨胀,简化电池生产工艺。用于改性锂离子电池用隔膜的水性组合物,包括锂离子电池用水性粘合剂(4)和分散于其中的有机纳米颗粒填料(5);所述有机纳米颗粒填料(5)为聚合物(1)的纳米颗粒或至少表面包覆有聚合物(1)的纳米颗粒;所述有机纳米颗粒填料(5)的粒径为50~2000nm;所述聚合物(1)选自聚甲基丙烯酸甲酯、乙烯-醋酸乙烯共聚物、乙烯-丙烯酸共聚物、乙烯-丙烯酸丁酯共聚物、乙烯-丙烯酸甲酯共聚物、乙烯-丙烯酸乙酯共聚物或聚氨酯中至少一种。

Description

用于改性锂离子电池用隔膜的水性组合物及改性隔膜和电池
技术领域
本发明属于锂离子电池制备技术领域, 特别涉及用于改性锂离子电池用隔膜的水 性组合物及锂离子电池用改性聚烯烃隔膜和锂离子电池。
背景技术
锂电池目前广泛应用于个人电脑、 移动电话等 3C产品, 而且目前成为电动汽车 动力源的最佳选择。 随着终端设备发展需求的不断提高, 个人电脑、 移动电话等趋向 于大型化、 薄型化发展, 要求电池除具有高能量密度、 长循环寿命和更加安全外, 也 要求电池越来越薄的同时具有一定的强度。
而传统锂电池随着厚度变薄强度明显减弱, 特别是大面积尺寸电池不但硬度差, 且容易扭曲变形, 影响器件应用, 甚至对电池性能和安全性有较大影响。 造成其强度 差的原因是在传统电池中电池是正极、 隔膜和负极依次叠层组合, 并在其中注入电解 液, 由于隔膜自身表面光滑以及加入电解液后的润滑作用, 使得正极与隔膜、 隔膜与 负极之间都是相对滑动的, 而正极和负极片本身又是由金属箔和无机粉体构成的厚度 100微米左右的薄片, 没有足够的强度; 从而导致形成的电池只能靠 100微米左右的 极片物理叠加支撑强度, 且其层间还有相对的位移, 造成在实际应用过程中出现电池 强度不能满足器件应用的要求, 另外电池面积增大后电池出现自身的扭曲变形, 影响 电池性和安全性甚至导致电池的燃烧和爆炸。
针对以上问题, 目前有以下几种解决方法:
1、 使用 PVDF类聚合物替代传统的聚烯烃隔膜或者是在聚烯烃隔膜表面涂覆 PVDF类聚合物, 其中 PVDF类聚合物与电解液作用, 生产凝胶电解质; 依靠凝胶在电 极微孔的渗透, 改善电池强度。 例如 2000年 7月 12日公开的专利: CN1259773A, 其以 PVDF-HFP+PP/PE 等作为凝胶聚合物电解质, 能够改善极片与极片之间的凝聚力; 但 该凝胶聚合物电解质与液体电解液相比, 电导率等性能明显降低, 从而影响电池的倍 率、 低温和循环性能。 更重要的是, PVDF 会与 LixC6发生反应, 反应的焓变随 X值和 碳材料的比表面积增加而线性增加, Maleki 等指出 LixC6与 PVDF的反应在 210°C开始, 在 287°C达到最大放热峰, 放热量为 317J/g。 因此 PVDF系列凝胶聚合物电解质的安全 性应用受到一定限制。 另外, 采用该技术制作电池的工艺复杂, 即使采用目前最优化 的技术,在电池化成过程中也要使用大压力工装夹具夹压电池化成,时间在 4小时以上, 占用大量工装夹具, 能耗很大, 成本高昂。
2、 在电池中引入胶黏剂, 粘接电池组份, 提高电池强度。 如 CN102653656 A公开 了一种提高超薄电池抗褶皱能力的方法, 其以醇类或酮类物质作为溶剂, 在常温状态 下高速搅拌得到溶剂性树脂, 加入消泡剂和流平剂用喷枪均匀喷涂于超薄电池极片与 铝塑膜之间; 在常温或高温干燥得到硬度改善的电池。 该方法虽可提高锂电池强度, 但由于在电池中引入醇或酮的树脂溶剂, 使得极片压实密度变化, 同时注入胶堵塞极 片、 隔膜间的离子传输, 极大的影响电池性能, 而且其繁杂的工艺, 不能满足规模化 生产的要求。 另如专利 WO2009/096671公开了一种用于改进与电极的结合力的隔膜以 及含有所述隔膜的电化学装置, 利用在所述多孔基体的至少一个表面上形成的、 由多 个无机颗粒和一种粘合剂聚合物的混合物制成的多孔涂层; 和在所述多孔涂层的表面 上形成的、 具有多个由聚合物制成并以预定间距排列的点的点涂层。 该专利使用涂层 上再进行点涂层, 利用点涂层橡胶类聚合物与电极片粘附, 增强整个电池界面; 该方 法虽然很好的改善了电池界面, 增加电池的整体强度, 但由于在多孔涂层上再进行二 次涂覆, 工艺复杂, 成品率很难控制, 不能形成规模产业化。 另外其橡胶类化合物在 锂电池中均存在明显的溶胀等问题, 影响电池性能。
3、在电池中引入能够吸附电解液的物质,减少游离液体的量提高摩擦力进而改善 电池强度。 如中国专利 CN 102306725 A公开了一种用丙烯酸盐与丙烯腈的共聚物为隔 离膜, 其对电解液具有良好的吸收能力, 减少电极未吸附游离电解液, 增加隔膜与电 极间的摩擦力, 从而提高电池硬度。 该方法利用隔膜吸附掉游离电解液, 从一定程度 上改善电池强度, 但由于隔膜与极片的界面自身的摩擦力较小, 仅吸附掉游离电解液 对电池强度改善是有限的, 而且由于该隔膜吸附电液量增大, 生产成本增加同时增大 了电池的安全性风险;另外隔膜允许的厚度误差将给电池注液量的控制带来很大难度, 不能批量化控制电池一致性。
4、 电池生产工艺改进, 增加电池强度。 如中国专利 CN 102593520 A公开了一种 通过快速化成提高锂离子电池硬度的方法, 该方法通过调节电芯预烘烤时间和温度、 化成温度以及电芯主体所受压强, 达到减小电芯极化的目的, 进而实现大电流快速化 成, 最后调节化成截止电位, 制备得到具有较高硬度的锂离子电池。 与之前技术相比, 该方法具因为取消了化成后的高温夹住烘烤整形, 所以制备的电芯容量更高; 电芯充 放电过程中始终受到恒定( 或者可变) 的压力, 因此充放电时的极化更小, 制备的电 芯容量一致性更好; 因为采用了不同温度及 SOC截止方式化成, 所以制备的电芯不但 性能优良, 而且硬度更高; 该方法虽可一定程度上改善电池硬度, 但该方法涉及的技 术环节较多, 且改善化成制度增加了工艺时间, 使得设备占用时间增长, 需增加生产 线中成本占比较大的化成等设备的配备, 难以实现大工业化应用。
发明内容
本发明的目的在于提供一种用以改性锂离子电池用隔膜的水性组合物, 其能够提 高锂离子电池电芯的强度, 而且简化电池生产工艺, 本发明的水性组合物涂覆于聚烯 烃等隔膜基材上制成改性隔膜, 用该改性隔膜制备的锂离子电池电芯, 隔膜与正负极 粘成为一体, 使电池具有更高的强度, 抗扭曲变形性好, 电芯厚度高温膨胀小。 本发明的第一个技术方案: 用于改性锂离子电池用隔膜的水性组合物, 包括锂离 子电池用水性粘合剂和分散于其中的有机纳米颗粒填料; 所述有机纳米颗粒填料为聚 合物 1的纳米颗粒或至少表面包覆有聚合物 1的纳米颗粒; 所述有机纳米颗粒的粒径为 50〜2000匪(优选 100〜700匪)。
所述聚合物 1选自聚甲基丙烯酸甲酯(PMMA) 、 乙烯-醋酸乙烯共聚物(EVA) 、 乙烯-丙烯酸共聚物 (EAA) 、 乙烯 -丙烯酸丁酯共聚物 (EBA) 、 乙烯-丙烯酸甲酯共 聚物(EMA)、 乙烯 -丙烯酸乙酯共聚物(EEA)或聚氨酯(PTU)聚合物中至少一种。 所述聚合物 1优选的是: 选自聚甲基丙烯酸甲酯 (PMMA) 、 乙烯-醋酸乙烯共聚物 (EVA) 、 乙烯-丙烯酸共聚物 (EAA) 、 乙烯 -丙烯酸丁酯共聚物 (EBA) 、 乙烯-丙 烯酸甲酯共聚物(EMA)或乙烯 -丙烯酸乙酯共聚物(EEA) 中至少一种。 所述聚合物 1进一步优选的是:选自聚甲基丙烯酸甲酯(PMMA)、乙烯-醋酸乙烯共聚物(EVA)、 乙烯-丙烯酸共聚物 (EAA) 或乙烯 -丙烯酸甲酯共聚物 (EMA) 中至少一种。 所述聚 合物 1更进一步优选的是: 选自乙烯-醋酸乙烯共聚物 (EVA) 、 乙烯-丙烯酸共聚物 (EAA) 或乙烯 -丙烯酸甲酯共聚物 (EMA) 中至少一种。
上述至少表面包覆有聚合物 1的纳米颗粒是核壳结构的有机纳米颗粒,所述核壳结 构的核是聚合物 2或无机颗粒; 所述壳是上述聚合物 1 ; 所述聚合物 2由聚合反应单体 1 经聚合反应而成, 所述聚合反应单体 1为丙烯腈、 甲基丙烯腈、 丙烯酸甲酯、 甲基丙烯 酸甲酯或苯乙烯中的至少一种。 进一步, 所述聚合物 2由聚合反应单体 1和聚合反应单 体 2共聚而成,所述聚合反应单体 2为具有交联作用的单体。所述聚合反应单体 2优选的 是, 选自二乙烯基苯、 双丙酮丙烯酰胺、 Ν, Ν'-亚甲基双丙烯酰胺或甲基丙烯酸烯丙 酯中的至少一种。
优选的, 所述无机颗粒为 A1203、 Si02、 Zr02、 Ti02、 Ca02或 MgO中的至少一种。 本发明所述用于改性锂离子电池用隔膜的水性组合物, 当所述至少表面包覆有聚 合物 1的纳米颗粒的核是聚合物 2时,至少表面包覆有聚合物 1的纳米颗粒的制备方法如 下: 将聚合物 1溶解在水或有机溶剂中, 加入聚合反应单体 1后升温至 50~140°C, 滴加 引发剂引发聚合反应即得聚合物胶液; 通过沉淀分离或喷雾干燥后即得; 所述聚合反 应单体 1与聚合物 1的重量比为 0.1〜6: 1, 优选为 1〜4: 1。
本发明所述用于改性锂离子电池用隔膜的水性组合物, 当所述至少表面包覆有聚 合物 1的纳米颗粒的核是无机颗粒时, 至少表面包覆有聚合物 1的纳米颗粒的制备方法 如下: 任意顺序将聚合物 1与无机填料分散在水或有机溶剂中, 形成聚合物胶液; 通过 沉淀分离或喷雾干燥后即得。
本发明用于改性锂离子电池用隔膜的水性组合物优选的方案是, 所述改性锂离子 电池用隔膜的水性组合物中除了包括锂离子电池用水性粘合剂和分散于其中的有机纳 米颗粒填料外, 还含有纳米无机填料。 所述的纳米无机填料为锂离子电池隔膜适用的 无机填料, 比如 A1203、 Si02、 Zr02、 Ti02、 Ca02或 MgO中的至少一种。
本发明的第二个技术方案是: 锂离子电池用改性聚烯烃隔膜, 包括微孔聚烯烃微 孔膜及涂层, 所述涂层是上述改性锂离子电池用隔膜的水性组合物涂覆于聚烯烃微孔 膜的表面, 干燥而成。
本发明的第三个技术方案是: 用于改性锂离子电池用隔膜的水性组合物的制备方 法: 将所述有机纳米颗粒填料均匀分散在水性粘合剂中即得。 所述有机纳米颗粒填料 为聚合物 1的纳米颗粒或至少表面包覆有聚合物 1的纳米颗粒。
至少表面包覆有聚合物 1的纳米颗粒是核壳结构的有机纳米颗粒填料,所述核是聚 合物 2或无机颗粒; 所述壳是上述聚合物 1。
进一步, 用于改性锂离子电池用隔膜的水性组合物的制备方法中, 所述至少表面 包覆有聚合物 1的纳米颗粒的核是聚合物 2时,其制备方法如下: 将聚合物 1溶解在水或 有机溶剂中,加入聚合反应单体 1后升温至 50~140°C,滴加引发剂引发聚合反应即得聚 合物胶液; 通过沉淀分离或喷雾干燥后即得本发明有机纳米颗粒填料; 其中, 聚合物 1 形成壳, 聚合物 2形成核, 聚合物 2是聚合反应单体 1的聚合产物。
所述聚合反应单体 1选自丙烯腈、 甲基丙烯腈、丙烯酸甲酯、 甲基丙烯酸甲酯或苯 乙烯中的至少一种; 所述聚合反应单体 1与聚合物 1的重量比为 0.1〜6: 1, 优选 1〜 4 : 1。进一步地, 所述聚合物 2由聚合反应单体 1和聚合反应单体 2共聚而成; 所述聚合 反应单体 2为具有交联作用的单体,聚合反应单体 1与聚合反应单体 2的重量比为: 45-55 : 1,优选为 50: 1。所述聚合反应单体 2优选的是,选自二乙烯基苯、双丙酮丙烯酰胺、 N, Ν'-亚甲基双丙烯酰胺或甲基丙烯酸烯丙酯中的至少一种。
用于改性锂离子电池用隔膜的水性组合物的制备方法中, 当所述表面包覆有聚合 物 1的纳米颗粒的核是无机颗粒时, 其制备方法如下: 任意顺序将聚合物 1与无机颗粒 分散在水或有机溶剂中, 形成聚合物胶液; 通过沉淀分离或喷雾干燥后即得本发明有 机纳米颗粒;其中,聚合物 1形成壳,无机颗粒形成核,所述的无机颗粒为 A1203、 Si02、 Zr02、 Ti02、 Ca02或 MgO等中的至少一种。 优选的是, 所述纳米无机颗粒为单分散的 球形颗粒, 粒径 100〜1000nm, 优选粒径 300〜600nm的球形颗粒。
本发明第四个技术方案是: 锂离子电池用改性聚烯烃隔膜的制备方法, 具体步骤 如下:将上述水性组合物涂覆于聚烯烃微孔膜的一面或两面,于 40°C ~120°C干燥即得。
本发明第五个技术方案是: 使用上述锂离子电池用改性聚烯烃隔膜制备而成的锂 金属二次电池、 锂离子二次电池、 锂聚合物二次电池和锂离子聚合物二次电池。
本发明在工艺、 性能和成本的优势:
1、由于本发明用于改性锂离子电池用隔膜的水性组合物中含有的有机纳米颗粒填 料为具有加热软化粘合作用的有机纳米颗粒, 或为在无机纳米颗粒或者聚合物纳米颗 粒表面包覆了具有加热软化粘合作用的有机物, 相对于传统方法, 本发明在电芯热压 过程中可以迅速使隔膜与正负极粘接良好, 并且在热压过程中可通过纳米点实现有效 的粘接, 可有效避免因粘合面积过大堵塞隔膜、 电极微孔造成的电极或隔膜吸收电解 液变差以及锂离子的传输通道减少等问题, 从而在提高电池强度的同时不影响电池性 能。
因此, 本发明中制备的改性隔膜在保持传统陶瓷涂层隔膜耐热性、 高保液, 高离 子电导率的同时, 还具有良好的正负极粘接性; 而且该改性隔膜对正负极粘接力大小 可通过有机纳米颗粒填料的大小和加入量进行调节以满足不同种类电芯的要求。
2、使用本发明所制备的锂离子电池隔膜, 可极大地简化电池生产工艺, 提高生产 效率, 降低生产成本; 使用该隔膜制备的锂离子电池能量密度高, 结构强度好, 抗扭 曲变形性好, 电芯厚度高温膨胀很小, 极大地提高了电池的成品率, 本发明组合物适 合用于生产薄型电池, 同时简化电池生产工艺, 降低成本并保持好的电池性能。 附图说明
图 1是具有核壳结构的有机纳米颗粒填料的示意图, 其图中 1表示聚合物 1构成 的壳, 2表示聚合物 2或无机颗粒构成的核。
图 2是涂覆隔膜示意图, 0表示聚烯烃微孔膜, 3表示无机纳米填料, 4表示水 性粘合剂, 5 表示有机纳米颗粒填料; 其中, 涂覆隔膜可单面涂覆也可双面涂覆, 涂 层可全部为有机纳米颗粒填料, 也可以与无机纳米填料共同构成涂层。
图 3是实施例 1所述的有机纳米颗粒填料的电镜扫描图。
图 4是实施例 1所述的有机纳米颗粒填料的粒径分布图。
图 5是试验例 1制备的 6只电芯的循环性, 由图可知, 1000次循环 (1C充放) 后, 容量保持率均在 90%以上。
图 6是试验例 1制备的电池与采用对比例 1隔膜制备的电池倍率性能比较图。 图 7是试验例 1制备的电池与采用对比例 1隔膜制备的电池低温性能比较图。 图 8是试验例 1制备的电池与采用对比例 1隔膜制备的电池循环 100周后的电芯 外观比较图。
图 9是试验例 1制备的电池与采用对比例 1隔膜制备的电池电芯厚度分布图 (每 种隔膜制作 50只电芯的统计数据)。
图 10是实施例 3所述的有机纳米填料颗粒的透射电镜图。
图 11是实施例 3所述的有机纳米填料颗粒的扫描电镜图。
图 12是实施例 3所述的有机纳米填料颗粒的粒径分布图。
具体实施方式
本发明的第一个技术方案: 用于改性锂离子电池用隔膜的水性组合物, 包括锂离 子电池用水性粘合剂和分散于其中的有机纳米颗粒;所述有机纳米颗粒为聚合物 1的纳 米颗粒或至少表面包覆有聚合物 1的纳米颗粒; 所述纳米颗粒的粒径为 50〜 2000nm(优选 100〜700nm)。
所述聚合物 1选自聚甲基丙烯酸甲酯(PMMA) 、 乙烯-醋酸乙烯共聚物(EVA) 、 乙烯-丙烯酸共聚物 (EAA) 、 乙烯 -丙烯酸丁酯共聚物 (EBA) 、 乙烯-丙烯酸甲酯共 聚物(EMA)、 乙烯 -丙烯酸乙酯共聚物(EEA)或聚氨酯(PTU)聚合物中至少一种。 所述聚合物 1优选的是: 选自聚甲基丙烯酸甲酯 (PMMA) 、 乙烯-醋酸乙烯共聚物 (EVA) 、 乙烯-丙烯酸共聚物 (EAA) 、 乙烯 -丙烯酸丁酯共聚物 (EBA) 、 乙烯-丙 烯酸甲酯共聚物(EMA)或乙烯 -丙烯酸乙酯共聚物(EEA) 中至少一种。 所述聚合物 1进一步优选的是: 聚甲基丙烯酸甲酯 (PMMA) 、 乙烯-醋酸乙烯共聚物 (EVA) 、 乙烯-丙烯酸共聚物 (EAA) 或乙烯 -丙烯酸甲酯共聚物 (EMA) 中至少一种。 所述聚 合物 1更进一步优选的是: 乙烯-醋酸乙烯共聚物(EVA)、 乙烯-丙烯酸共聚物(EAA) 或乙烯 -丙烯酸甲酯共聚物 (EMA) 中至少一种。
所述聚合物 1纳米颗粒可以购自市售产品, 也可以将市售的聚合物 1溶解在水或有 机溶剂中, 经喷雾干燥或沉淀得纳米颗粒; 所述纳米颗粒的粒径为 50〜2000nm(优选 100〜700nm)。
上述至少表面包覆有聚合物 1的纳米颗粒是核壳结构的有机纳米颗粒,所述核壳结 构的核是聚合物 2或无机颗粒; 所述壳是上述聚合物 1 ;
其中, 所述聚合物 1选自聚甲基丙烯酸甲酯 (PMMA) 、 乙烯-醋酸乙烯共聚物 (EVA) 、 乙烯-丙烯酸共聚物 (EAA) 、 乙烯 -丙烯酸丁酯共聚物 (EBA) 、 乙烯-丙 烯酸甲酯共聚物 (EMA) 、 乙烯 -丙烯酸乙酯共聚物 (EEA) 或聚氨酯 (PTU)聚合物 中至少一种; 聚合物 1优选的选自聚甲基丙烯酸甲酯 (PMMA) 、 乙烯-醋酸乙烯共聚 物 (EVA) 、 乙烯-丙烯酸共聚物 (EAA) 、 乙烯 -丙烯酸丁酯共聚物 (EBA) 、 乙烯- 丙烯酸甲酯共聚物(EMA)或乙烯 -丙烯酸乙酯共聚物(EEA) 中至少一种; 更优选的 是选自聚甲基丙烯酸甲酯 (PMMA) 、 乙烯-醋酸乙烯共聚物 (EVA) 、 乙烯-丙烯酸 共聚物 (EAA) 、 乙烯 -丙烯酸甲酯共聚物 (EMA) 的纳米颗粒中至少一种。 最优选 的: 选自乙烯-醋酸乙烯共聚物 (EVA) 、 乙烯-丙烯酸共聚物 (EAA) 或乙烯-丙烯酸 甲酯共聚物 (EMA) 中至少一种;
所述聚合物 2由聚合反应单体 1经聚合反应而成, 所述聚合反应单体 1选自丙烯腈、 甲基丙烯腈、 丙烯酸甲酯、 甲基丙烯酸甲酯或苯乙烯中的至少一种。
进一步地,所述聚合物 2由聚合反应单体 1和聚合反应单体 2共聚而成,所述聚合反 应单体 2为具有交联作用的单体; 聚合反应单体 1与聚合反应单体 2的重量比为: 45-55 : 1, 优选为 50: 1。
优选的, 所述聚合反应单体 2选自二乙烯基苯、 双丙酮丙烯酰胺、 Ν, Ν'-亚甲基双 丙烯酰胺或甲基丙烯酸烯丙酯中的至少一种。
所述至少表面包覆有聚合物 1的纳米颗粒的核是聚合物 2时, 其制备方法如下: 将聚合物 1溶解在水或有机溶剂中, 加入聚合反应单体 1后升温至 50~140°C, 滴加 引发剂引发聚合反应即得聚合物胶液; 通过沉淀分离或喷雾干燥后即得本发明有机纳 米颗粒, 其中, 聚合物 1形成壳, 聚合物 2形成核, 聚合物 2是聚合反应单体 1的聚合产 物。
所述至少表面包覆有聚合物 1的纳米颗粒的核是无机颗粒时,其制备方法如下: 任 意顺序将聚合物 1与无机颗粒分散在水或有机溶剂中, 形成聚合物胶液; 通过沉淀分离 或喷雾干燥后即得本发明有机纳米颗粒; 聚合物 1形成壳, 无机颗粒形成核; 所述的无 机颗粒为 A1203、 Si02、 Zr02、 Ti02、 Ca02、 MgO等中的任意一种或两种以上的混合物。 优选的是,所述纳米无机颗粒为单分散的球形颗粒,粒径 100〜1000nm,优选粒径 300〜 600nm的球形颗粒。
本发明用于改性锂离子电池用隔膜的水性组合物优选的方案是, 所述改性锂离子 电池用隔膜的水性组合物中还含有纳米无机填料, 所述的纳米无机填料为锂离子电池 隔膜适用的无机填料或其它适用的无机填料, 比如 A1203、 Si02、 Zr02、 Ti02、 Ca02、 MgO等中的至少一种; 优选的为 A1203纳米颗粒。
关于无机填料的添加量, 本领域技术人员可以根据实际的具体情况决定, 添加量 一般不超过 90%,优选 40〜70%。所述纳米无机填料粒径优选 10〜2000nm,更优选 100〜 lOOOnmo
所述水性粘合剂可以是本领域技术人员熟知的锂离子电池用水性粘合剂, 比如丙 烯酸酯类水性粘合剂、 丁苯橡胶乳液水性粘合剂、 苯丙橡胶乳液水性粘合剂; 或以水 溶性聚合物如聚丙烯酸及其盐、聚甲基丙烯酸及其盐、羧甲基纤维素钠、聚丙烯酰胺、 聚乙烯醇等制备的水性粘合剂。
本发明的第二个技术方案是: 锂离子电池用改性聚烯烃隔膜, 包括聚烯烃微孔膜 及涂层, 所述涂层是上述用于改性锂离子电池用隔膜的水性组合物涂覆于聚烯烃微孔 膜的表面, 干燥而成。 所述聚烯烃微孔膜为聚丙烯微孔膜、 聚乙烯微孔膜或聚丙烯 / 聚乙烯 /聚丙烯三层复合微孔膜。
本发明的第三个技术方案是: 用于改性锂离子电池用隔膜的水性组合物的制备方 法, 即将所述有机纳米颗粒填料均匀分散在水性粘合剂中即得。 所述有机纳米颗粒填 料为聚合物 1的纳米颗粒或至少表面包覆有聚合物 1的纳米颗粒。
上述用于改性锂离子电池用隔膜的水性组合物的制备方法中, 至少表面包覆有聚 合物 1的纳米颗粒是核壳结构的有机纳米颗粒填料, 所述核是聚合物 2或无机颗粒; 所 述壳是上述聚合物 1。
上述用于改性锂离子电池用隔膜的水性组合物的制备方法中, 所述至少表面包覆 有聚合物 1的纳米颗粒的核是聚合物 2时,至少表面包覆有聚合物 1的纳米颗粒的制备方 法如下: 将聚合物 1溶解在水或有机溶剂中, 加入聚合反应单体 1后升温至 50~140°C, 滴加 引发剂引发聚合反应即得聚合物胶液; 通过沉淀分离或喷雾干燥后即得本发明有机纳 米颗粒, 其中, 聚合物 1形成壳, 聚合物 2形成核, 聚合物 2是聚合反应单体 1的聚合产 物。
所述聚合反应单体 1选自丙烯腈、 甲基丙烯腈、丙烯酸甲酯、 甲基丙烯酸甲酯或苯 乙烯中的至少一种; 所述聚合反应单体 1与聚合物 1的重量比为 0.1〜6: 1, 形成核壳结 构由反应方式和工艺条件决定, 而聚合反应单体 1与聚合物 1的重量比例决定了核层与 壳层的厚度以及所形成的纳米填料的颗粒大小, 因此可根据填料尺寸或壳层功能的要 求调整聚合反应单体 1与聚合物 1的重量比例, 形成需求的核壳结构的纳米填料颗粒。
所述的引发剂可以采用乳液聚合领域中常用的水溶性或油溶性引发剂, 如过硫酸 铵、 过氧化苯甲酰、 偶氮二异丁腈等, 引发剂的用量为聚合单体总重量的 0.1〜3%。
进一步地,所述聚合物 2由聚合反应单体 1和聚合反应单体 2共聚而成; 所述聚合反 应单体 2为具有交联作用的单体, 所述聚合反应单体 2优选为二乙烯基苯、 双丙酮丙烯 酰胺、 Ν, Ν'-亚甲基双丙烯酰胺或甲基丙烯酸烯丙酯中的至少一种。
上述用于改性锂离子电池用隔膜的水性组合物的制备方法中, 至少表面包覆有聚 合物 1的纳米颗粒的核是无机颗粒时, 其制备方法如下: 任意顺序将聚合物 1与无机颗 粒分散在水或有机溶剂中, 形成聚合物胶液; 通过沉淀分离或喷雾干燥后即得本发明 有机纳米颗粒; 聚合物 1形成壳, 无机颗粒形成核; 所述的无机颗粒为 A1203、 Si02、 Zr02、 Ti02、 Ca02、 MgO等中的任意一种或两种以上的混合物。 优选的是, 所述纳米 无机颗粒为单分散的球形颗粒,粒径 100〜1000nm,优选粒径 300〜600nm的球形颗粒。
本发明用于改性锂离子电池用隔膜的水性组合物优选的方案是, 所述改性锂离子 电池用隔膜的水性组合物中除了包括锂离子电池用水性粘合剂和分散于其中的有机纳 米颗粒外, 还含有纳米无机填料, 所述的纳米无机填料为锂离子电池隔膜适用的无机 填料或其它适用的无机填料, 比如 A1203、 Si02、 Zr02、 Ti02、 Ca02、 MgO等中的至少 —种。优选的为 A1203纳米颗粒。所述纳米无机填料与所述有机纳米颗粒填料均匀分散 在水性粘合剂中即得本发明用于改性锂离子电池用隔膜的水性组合物。 关于无机填料 的添加量, 本领域技术人员可以根据实际的具体情况决定, 添加量一般不超过 90%, 优选 40〜70%。 所述纳米无机填料粒径优选 10〜2000nm, 更优选 100〜1000nm。
本发明第四个技术方案是: 锂离子电池用改性聚烯烃隔膜的制备方法, 具体步骤 如下:将上述改性锂离子电池用隔膜的水性组合物涂覆于聚烯烃微孔膜的一面或两面, 干燥即可。 干燥温度为 40°C ~120°C ; 干燥后得到本发明所述改性聚烯烃微孔隔膜, 干 燥后的涂层厚度控制在 2〜20um。
本发明中, 在聚烯烃微孔膜上涂覆所述用于改性锂离子电池用隔膜的水性组合物 的方法可以是浸渍提拉法、 辊涂法、 喷涂法或刮膜法等行业中通用方法。 本发明第五个技术方案是: 使用上述锂离子电池用改性聚烯烃隔膜制备而成的锂 金属二次电池、 锂离子二次电池、 锂聚合物二次电池和锂离子聚合物二次电池。 也适 于车辆, 例如混合动力车辆和电动车辆。
对可与本发明隔膜一起使用的电极无特别限定, 所述电极可根据本领域熟知的任 何常规方法制造成的电极。 在电极活性材料中, 正极活性材料可采用常规电化学装置 的正极活性材料。 特别地, 正极活性材料优选使用锂锰氧化物、 锂钴氧化物、 锂镍氧 化物、 锂铁氧化物, 或其锂复合氧化物, 但不限于此。 此外, 负极活性材料可采用常 规电化学装置负极活性材料。 特别地, 负极活性材料的非限制性实例有锂嵌入材料, 例如锂金属、 锂合金、 碳、 石油焦、 活性炭、 石墨、 硅以及硅碳复合材料, 或其他碳 质材料。
可在本发明中使用的电解质包括由式 A+B_表示的盐, 其中 A+代表一种碱金属阳 离子, 例如 Li+, B_代表一种阴离子, 例如 PF6_、 BF4_、 C104_、 AsF6_、 CH3C02—、 CF3S03_、 N(CF3S02)2\ C(CF2S02)3", 或它们的结合。所述盐可在由以下物质组成的有 机溶剂中溶解或离解: 碳酸丙烯酯 (PC)、 碳酸乙烯酯 (EC)、 碳酸二乙酯 (DEC)、 碳 酸二甲酯 (DMC)、 碳酸二丙酯 (DPC)、 二甲亚砜、 乙腈、 二甲氧基乙烷、 二乙 氧基乙烷、 四氢呋喃、 N- 甲基 -2- 吡咯烷酮 (NMP)、 碳酸甲乙酯 (EMC)、 γ- 丁内 酯, 或它们的混合物, 还可以包括功能性添加剂。 但是, 可在本发明中使用的电解质 不限于上述实例。 所述电解质可在电池制造过程中根据制造方法和所需的最终产品性 能在适宜的步骤中注入。 换言之, 所述电解质可在电池组装之前、 电池组装过程的最 后步骤过程中等注入。
将本发明的隔膜用于电池时, 除了可以采用通常的卷绕方法外, 还可以采用隔膜 和电极折叠方法和层压或堆叠方法, 但并不仅限于此。
以下通过具体实施例对本发明做进一步详述。
实施例 1 本发明锂离子电池用改性聚烯烃隔膜的制备
( a) 有机纳米颗粒填料的制备
丙烯酸 -乙烯共聚物 (牌号: 陶氏化学 EAA5959, 粒径 4~6mm,) 100份, 在 pH 为 14的氢氧化锂水溶液中于 95 °C搅拌 12小时溶解, 加入去离子水调节 pH值为 10, 得到 D90小于 1800nm的沉淀颗粒; 离心分离、 干燥备用。
纳米颗粒的尺寸通过扫描电子显微镜和激光粒度仪进行表征, 尺寸结果见图 3、 图 4; 采用 JEOL JSM-5900LV型扫描电子显微镜和丹东市百特仪器有限公司 BT-2003 激光粒度分布仪。
由图 3和图 4可以看出, 颗粒成纳米尺寸, 粒子直径<180(^1^ 粒径分布窄。 (b) 用于改性锂离子电池用隔膜的水性组合物的制备
5份(按固形物质量计算)水性粘合剂在 200份蒸熘水中通过高速搅拌均匀分散, 然后加入(a)中制备的 EAA有机纳米填料颗粒 75份和三氧化二铝 20份, 2000转 /min 高速搅拌 1小时后将分散均匀的混合物添加到球磨机中,搅拌球磨 12 小时 (转速 200 转 /min), 保持温度在 20~30°C, 制备固含量 30.5%的用于改性锂离子电池用隔膜的水 性组合物, 粘度 300厘泊 (28±1 °C ) , 备用, 本发明中, 水性粘合剂购自成都茵地乐 有限公司生产的 LA132水性粘合剂, 固含量 15%。
本发明中, 除特别指出, 所有份数为重量份数, 百分比为重量百分比。
(c) 锂离子电池用改性聚烯烃隔膜的制备
将上述制备的用于改性锂离子电池用隔膜的水性组合物以凹版涂布方式涂覆在 9μιη厚度 ΡΡ/ΡΕ/ΡΡ三层微孔膜双面;涂布速度 20m/min,温度 80°C,制得厚度为 13um 的改性聚烯烃微孔膜。
对比例 1 PVDF涂覆膜的制备及电池
将聚偏氟乙烯 (PVDF) 溶解在丙酮溶剂中, 形成 3%固含量的的浆液, 然后以凹 版涂布方式涂覆在 9μιη厚度 PP/PE/PP三层微孔膜双面, 每面涂层厚度 2μιη, 制得厚 度为 13um的 PVDF改性聚烯烃微孔膜; 涂布速度 20m/min, 烘干温度 50°C。
未改性的 PP/PE/PP三层膜、实施例 1制备锂离子电池用改性聚烯烃隔膜的和对比 例 1制备的 PVDF涂覆膜的热收缩率和透气性结果见表 1。
透气性 (Gurley ) 使用 Gurley 型透气度测定仪依照 JIS Gurley(Japanese IndustrialStandard Gurley)测定;透气性指 lOOcc空气在 4.8英寸的气压下穿过 1平方英 寸的隔膜时所用的时间 (秒)。
热收缩率: 将面积 10cm* 10cm 隔膜按设定温度要求自由状态放在 ±1 °C烘箱中 1 小时, 取出冷却后测试长宽尺寸, 计算收缩率。
由表 1可知,实施例 1制备的改性聚烯烃隔膜既保持了传统聚烯烃隔膜优异的透 气性能(间接可以表明离子的透过性能), 而且由于耐热涂层改善了隔膜的耐热性, 从 而提高了电池的安全性。
试验例 1 电池的制作及性能测试
1、 负极极片的制备
将负极活性材料人造石墨 96 %、粘合剂聚丙烯酸盐 3 %,和导电材料炭黑(super-p) 1 %添加到去离子水中,制备负极混合物浆料;将该负极混合物浆料涂覆于厚度为 12μιη 铜 (Cu)箔集电体上, 然后干燥、 辊压, 形成面密度为 20mg/cm2, 压实密度 1.65g/cm3的 负极极片; 粘合剂为成都茵地乐电源有限公司生产 LA132。
2、 正极极片的制备
将正极活性材料锂钴氧化物 94 %、 导电材料炭黑 (super-p) 2 % , 和粘合剂聚偏 1, 1- 二氟乙烯 (PVdF)4 %添加到 N- 甲基 -2- 吡咯烷酮 (NMP) 溶剂中,制备正极混合物浆 料; 将该正极混合物浆料涂覆在 18微米厚度的铝箔集电体上, 干燥、 辊压, 形成面密 度为 39 mg/cm2, 压实密度 4.1g/cm3的正极极片。
3、 电池卷绕及电解液注入
使用上述制备的电极以及实施例 1制得的隔膜来制备规格为 403040的电池; 所述 电池通过对正极、 隔膜和负极卷绕制成, 电池使用铝塑复合进行包装; 向该电池中注 入溶有 1摩尔 /升的六氟磷酸锂 (LiPF6) 的电解质(碳酸亚乙酯 (EC)/碳酸甲乙酯 (EMC) = 1/2( 体积比;), 抽真空密封, 得准备进入激活状态的电芯。
4、 电池化成:
将上述得到电芯放于 45 °C环境中静置 20h, 然后再通过 95 °C热压 lmin对电芯进 行整形; 将电芯直接放在化成设备上, 不需夹具夹压, 在 30±2°C环境中对电芯进行化 成,化成电流为 lCfC" 为电芯理论容量;),化成时间 lOOmin,化成截止电位为 4.35V; 然后置于充放电测试机中依次进行充电 /放电 /充电, 截止电位 3.8V, 然后对电芯进行 除气和切掉气袋操作, 得到电池; 在此过程中, 只需 8分钟的热冷压, 不需其他夹具 对每个电池进行夹住化成, 整个化成分容时间 270min。
这里需要指出: 对比例 1中化成是无法按照上述化成方法实现的, 会造成电池的 严重变形, 影响电池正常性能; 因此必须使用目前行业里通用化成条件进行化成, 具 体条件为: 将电芯放在 45 °C环境中静置 20h, 将浸润充分的待化成电芯置于化成夹具 中通过夹具向电芯表面施压, 压力大小为 0.6MPa, 然后将电芯置于 85 °C下预烘烤 60min,将预烘烤后的放置有待化成电芯的化成夹具先置于化成机中化成,化成温度为 60°C, 化成电流为 1C, 化成时间为 lOOmin, 化成截止电位为 4.35V; 然后置于充放 电测试机中依次进行充电 /放电和放电 /充电操作, 充电 /放电温度为 35 °C, 电流为 1C, 截止电位为 3.8V ; 放电 /充电温度为 35 °C, 电流为 1C, 截止电位为 3.8V ; 将电芯 取出, 并对电芯进行热冷压操作, 热压温度为 120°C, 冷压温度 45 °C, 压力为 2MPa, 冷压时间为 15min; 然后对电芯进行除气和切掉气袋操作, 得到电池; 该过程直接的 化成时间为 420分钟, 而在化成中使用大量夹具, 不但费用高昂, 而且电池放入夹具 和从夹具中取出以及保持一致性对夹具调节、 保养等花费的时间也要大于 60min; 总 计时间约 480min。
5、 电池性能测试:
5.1、 电池的容量发挥、 内阻及厚度如表 2所示。 由表 2可知, 试验例 1中, 电池在内 阻、 厚度及电池容量方面, 均与对比例 1电池保持相同甚至更优。
5.2、 循环性能
1C倍率的电流充至 4.35V, 并以 4.35V恒压; 然后采用 1C倍率的电流对电池进 行放电, 截止电压为 3.0V, 完成一个循环; 循环性能如图 5, 由图 5看出, 本发明核- 壳结构的胶体粒子改性膜在循环性能方面表现优异, 1000次循环 (1C充放) 后, 容 量保持率在 90%以上, 完全满足锂离子电池应用要求。 5.3、 倍率测试
0.5C倍率的电流充至 4.35V, 并以 4.35V恒压; 然后采用不同倍率电流 (0.2C、 0.5C、 1C、 2C ) 进行放电, 截止电压为 3.0V。
试验例 1制备的电池与对比例 1制备的电池倍率性能比较详见图 6; 从图 6可知, 核-壳结构的胶体粒子改性膜在倍率及低温性能方面, 优于对比例 1隔膜, 隔膜与电极 良好的粘接性并未对电池的倍率及低温性能产生不良影响, 而是起到了正面的作用。
5.4、 低温放电测试
常温条件下, 将电芯按 0.2C倍率的电流充至 4.35V, 并以 4.35V恒压; 然后将电 芯置于不同温度下, 搁置 16小时, 进行 0.2C倍率电流进行对应温度下的放电, 截止 电压为 3.0V。 试验例 1制备的电池与对比例 1制备的电池低温性能比较详见图 7。
5.5、 高温储存性能测试
常温条件下, 将电芯按 0.2C倍率的电流充至 4.35V, 并以 4.35V恒压; 然后满电 置于 85 °C恒温烘箱中, 搁置 5小时, 取出电芯在常温环境恒温 5小时, 进行 0.2C倍 率电流放电, 截止电压为 3.0V, 可以由此计算出高温容量保持率; 然后将该电芯进行 常温 0.2C恒流充放, 得到高温存储后容量恢复率。试验例 1制备的电池与对比例 1制 备的电池高温性能详见表 4。
由表 4可以看出,采用试验例 1制备的电池高温性能突出, 85 °C高温储存 5小时, 电芯在内阻、 厚度方面仅有微小增加, 容量保持恢复情况良好, 较对比例 1隔膜性能 更加优异。
6、 电池翘曲及硬度:
试验例 1制备的电池与对比例 1制备的电池循环 100周后, 电芯外观比较详见图 8; 电芯厚度分布 (每种隔膜制作 50只电芯的统计数据) 详见图 9。
从图 8可以看出, 在电池循环或高温储存过程中, 对比例 1制备的电池循环 100 周后能看到明显的翘曲变形。 从图 9可以看出, 对比例 PVDF改性膜制作的电芯, 厚 度一致性相对较差, 说明其发生翘曲比例较高; 而试验例 1所得电池厚度一致性好; 且在电池使用过程中, 试验例 1制备的电池保持很好的尺寸稳定性和高强度, 为电池 性能充分发挥提高保障。
在电池强度方面现在还没有较好的方法直接表征其强度, 但本发明的发明人通过 手感明显感觉到本发明试验例 1制备的电池有很好的硬度, 从图 8也可以反映出本发 明试验例 1制备的电池有很好的强度和硬度。
实施例 2 本发明锂离子电池用改性聚烯烃隔膜的制备及电池
( a) 有机纳米颗粒填料制备
本实施例中有机纳米颗粒填料为市场购买的 EEA纳米粉末,经筛分处理得到 D98 为 1800nm的纳米颗粒。 (b) 水性组合物的制备
本实施例水性组合物的制备方法和操作条件与实施例 1基本相同, 唯一不同的是 水性粘合剂: EEA纳米颗粒: 无机填料的重量比为 10: 30: 60, 其中水性粘合剂为水 性胶聚丙烯酸钠 (分子量 500万) , 无机填料为 MgO。
本实施例中水性组合物改性烯烃微孔膜制作工艺同实施例 1、 电池制作工艺同试 验例 1。
实施例 3本发明锂离子电池用改性聚烯烃隔膜的制备及电池
(a) 有机纳米颗粒填料制备
将 100份聚甲基丙烯酸甲酯 (PMMA) 加入到 500份的丙酮溶液中充分溶解, 然 后加入 300份粒径 D50为 300nm三氧化二铝 (A1203) 颗粒, 搅拌分散均匀后进行喷 雾干燥, 得到粒径 D50 为 350nm 左右表面包覆有甲基丙烯酸甲酯 (PMMA) 的 A1203/PMMA核壳型纳米颗粒。透射电镜和扫描电镜图见图 10、 图 11, 粒度分布图见 图 12。 从图中可以看出, 颗粒成核壳结构的纳米粒子, 粒子直径<5001 1^ 粒径分布 窄。
(b) 水性组合物的制备
本实施例水性组合物的制备方法和操作条件与实施例 1基本相同, 唯一不同的是 水性粘合剂: A1203/PMMA: 无机填料的重量比为 5: 90: 5, 其中水性粘合剂为苯丙 乳液与羧甲基纤维素的混合液 (两者重量比为 1: 1), 无机填料为 Si02
本实施例中水性组合物改性烯烃微孔膜制作工艺同实施例 1、 电池制作工艺同试 验例 1。
实施例 4本发明锂离子电池用改性聚烯烃隔膜的制备及电池
(a) 有机纳米颗粒填料制备
丙烯酸甲酯 -乙烯共聚物 (牌号: 法国珂玛 14MGC02) 50份投入带冷凝管和温度 计的四口瓶中, 加入 1000份二甲苯溶剂, 升温 70°C溶解, 待共聚物完全溶解后, 一 次性加入 100份甲基丙烯酸甲酯和 100份丙烯腈单体, 同时滴加 200份含有 5份过氧 化苯甲酰的二甲苯溶液, 滴加时间约 3小时, 随后在此温度下继续反应 12小时, 得到 聚合物胶乳。 聚合物胶乳在水中沉淀析出, 离心分离、 干燥得核壳结构纳米粒子。
本实施例中水性组合物的制备、 水性组合物改性烯烃微孔膜制作工艺同实施例 1、 电池制作工艺同试验例 1。
实施例 5 本发明锂离子电池用改性聚烯烃隔膜的制备及电池
(a) 有机纳米颗粒填料制备
乙烯-醋酸乙烯 (EVA) 共聚物 (牌号: 中国石化 V4110F) 100份, 在 800份有 机溶剂二甲苯中于 65°C溶解 2小时, 加入 150份甲基丙烯酸甲酯 (MMA) 和 3份交 联剂甲基丙烯酸烯丙酯 (AMA) , 然后滴加溶有 1.0份偶氮二异丁腈的 50份二甲苯 溶液引发聚合反应, 3小时内滴加完再恒温反应 6小时后得到以甲基丙烯酸甲酯交联 聚合物为核, 乙烯-醋酸乙烯共聚物为壳层结构的聚合物胶液; 然后将此聚合物胶液喷 雾干燥后得到 D90小于 lOOOnm的 P MMA /EVA纳米有机颗粒。
本实施例中其他步骤如水性组合物的制备、 水性组合物改性烯烃微孔膜制作工艺 同实施例 1、 电池制作工艺同试验例 1。
实施例 6 本发明锂离子电池用改性聚烯烃隔膜的制备及电池
本实施例中其他步骤同实施例 1、 电池制作工艺同试验例 1。 唯不同的是有机纳米 填料制备: 乙烯-醋酸乙烯(EVA)共聚物(牌号: 中国石化 V4110F) 100份, 在 800 份有机溶剂二甲苯中于 65 °C溶解 2小时, 加入 10份甲基丙烯酸甲酯 (MMA) 禾 P 0.2 份交联剂甲基丙烯酸烯丙酯 (AMA) , 然后滴加溶有 0.1份偶氮二异丁腈的 50份二 甲苯溶液引发聚合反应, 1小时内滴加完再恒温反应 6小时后得到以甲基丙烯酸甲酯 和为核, 乙烯-醋酸乙烯共聚物为壳层结构的聚合物胶液; 然后将此聚合物胶液喷雾干 燥后得到 D90小于 300nm的 P MMA /EVA纳米有机颗粒。
实施例 1-6, 对比例 1 制得的不同隔膜的透气率及不同温度下的收缩情况如表 1 所示; 试验例 1、 实施例 2-6, 对比例 1制得的不同隔膜电芯的厚度、 内阻及容量比较 情况如表 2所示; 试验例 1、 实施例 2-6, 对比例 1制得的电池低温及倍率性能如表 3 所示; 试验例 1、 实施例 2-6, 对比例 1制得的电池 85 °C/5h存放厚度、 内阻、 容量及 平整度等性能如表 4所示。
表 1 隔膜透气率和在不同温度条件下的收缩情况
Figure imgf000016_0001
表 1中"一"表示无法检测。
由表 1 可知, 本发明所得改性隔膜在不同温度下的收缩性数据, 与未改性的隔膜 和对比例 1涂覆 PVDF隔膜相比, 既保持了较好的透气性, 又在 160°C时保持较好形
Figure imgf000017_0001
表 4电池 85 °C/5h存放时厚度、 内阻、 容量及平整度
Figure imgf000017_0002
由表 2、 表 3、 表 4可知, 利用实施例 2-6中制备的有机纳米填料水性组合物改性 隔膜制造的电池容量、 内阻、 低温、 倍率、 循环、 高温恢复等电性能优于使用对比例 1 中 PVDF改性隔膜的电池; 并且在原始厚度、 高温存储后的厚度变化率、 内阻变化 率和平整性方面,本发明试验例 1、实施例 2-6中的电池强度更高,未发生翘曲等现象。 另外, 如上化成工艺部分所述, 试验例 1的工艺较目前行业中使用的对比例 1中的化 成工艺极大简化, 从而提高生产效率、 降低成本。
实施例 7锂离子电池用改性聚烯烃隔膜的制备及电池
本实施例中有机纳米填料颗粒制备、 水性组合物的制备、 水性组合物改性烯烃微 孔膜以及电池制作工艺基本与实施例 1、 试验例 1相同, 唯一不同的是制作的电池尺 寸增大, 尺寸规格为 446379。 电池尺寸增大后电池变形翘曲更加严重, 在化成工艺中 热压条件有少许变化, 具体如下: 将电芯放在 45 °C环境中静置 20h后, 热压条件由原 来的 95 °C热压 lmin改变为 100°C热压 5min, 冷压 5min对电芯进行整形; 其他条件不 变, 整个化成分容时间增加至 280min (增加 9min); 电池性能和强度见表 5。
对比例 2 PVDF涂覆膜的制备及电池
PVDF涂覆膜的制备以及电池制作工艺基本与对比例 1相同, 唯不同的是制作电 池尺寸增大, 电池尺寸规格为 446379, 对应的化成工艺有所变化。
化成工艺条件变化如下: 将电芯放在 45 °C环境中静置 20h, 将电芯在压力大小为 0.6MPa的条件下置于 85 °C的温度下预烘烤 90min, 化成分容时间增加至 510min (增 加 30min)。 具体性能和强度见表 5。
表 5 电池性能表
Figure imgf000018_0001
如表 5所示, 增大电池尺寸后, 对比例 2制备的电池翘曲严重, 厚度变化率明显 增大, 在实际应用中无法应用, 甚至影响电池的基本性能, 电池内阻增加明显, 高温 存放容量保持率明显下降。 而实施例 7中的电池强度、 工艺和电池性能没有随尺寸增 加而发生明显变化, 在实际应用中将会体现出性能和成本优势。

Claims

权利要求书
1、用于改性锂离子电池用隔膜的水性组合物,包括锂离子电池用水性粘合剂和分 散于其中的有机纳米颗粒填料;所述有机纳米颗粒填料为聚合物 1纳米颗粒或至少表面 包覆有聚合物 1的纳米颗粒; 所述纳米颗粒填料的粒径为 50〜2000nm, 优选 100〜 700nm;
所述聚合物 1选自聚甲基丙烯酸甲酯、乙烯 -醋酸乙烯共聚物、乙烯-丙烯酸共聚物、 乙烯-丙烯酸丁酯共聚物、 乙烯-丙烯酸甲酯共聚物、 乙烯-丙烯酸乙酯共聚物或聚氨酯 中至少一种。
2、根据权利要求 1所述的用于改性锂离子电池用隔膜的水性组合物,其特征在于: 所述聚合物 1选自聚甲基丙烯酸甲酯、乙烯 -醋酸乙烯共聚物、乙烯-丙烯酸共聚物、 乙烯-丙烯酸丁酯共聚物、 乙烯-丙烯酸甲酯共聚物或乙烯-丙烯酸乙酯共聚物中的至少 一种;
所述聚合物 1优选为: 选自聚甲基丙烯酸甲酯、 乙烯 -醋酸乙烯共聚物、 乙烯 -丙烯 酸共聚物或乙烯-丙烯酸甲酯共聚物中的至少一种;
进一步, 所述聚合物 1优选为: 选自乙烯 -醋酸乙烯共聚物、 乙烯-丙烯酸共聚物或 乙烯-丙烯酸甲酯共聚物中的至少一种。
3、根据权利要求 1或 2所述的用于改性锂离子电池用隔膜的水性组合物,其特征在 于: 所述至少表面包覆有聚合物 1的纳米颗粒填料是核壳结构的纳米颗粒,所述核壳结 构的壳是上述聚合物 1 ; 核是聚合物 2或无机填料; 所述聚合物 2由聚合反应单体 1经聚 合反应而成, 所述聚合反应单体 1选自丙烯腈、 甲基丙烯腈、 丙烯酸甲酯、 甲基丙烯酸 甲酯或苯乙烯中的至少一种。
4、根据权利要求 3所述的用于改性锂离子电池用隔膜的水性组合物,其特征在于: 所述聚合物 2由聚合反应单体 1和聚合反应单体 2共聚而成, 所述聚合反应单体 2为具有 交联作用的单体; 所述聚合反应单体 1与聚合反应单体 2的重量比为: 45-55: 1, 优选 为 50: 1。
5、 根据权利要求 4所述的用于改性锂离子电池用隔膜的水性组合物, 其特征在于: 所述聚合反应单体 2选自二乙烯基苯、双丙酮丙烯酰胺、 N, Ν'-亚甲基双丙烯酰胺或甲 基丙烯酸烯丙酯中的至少一种。
6、 根据权利要求 3-5任一项所述的用于改性锂离子电池用隔膜的水性组合物, 其 特征在于: 所述至少表面包覆有聚合物 1的纳米颗粒的核是聚合物 2, 至少表面包覆有 聚合物 1的纳米颗粒的制备方法如下:
将聚合物 1溶解在水或有机溶剂中, 加入聚合反应单体 1后升温至 50~140°C, 滴加 引发剂引发聚合反应即得聚合物胶液; 通过沉淀分离或喷雾干燥后即得; 所述聚合反 应单体 1与聚合物 1的重量比为 0.1〜6: 1, 优选 1〜4: 1。
7、根据权利要求 3所述的用于改性锂离子电池用隔膜的水性组合物,其特征在于: 所述至少表面包覆有聚合物 1的纳米颗粒的核是无机颗粒, 至少表面包覆有聚合物 1的 纳米颗粒的制备方法如下: 任意顺序将聚合物 1与无机填料分散在水或有机溶剂中, 形 成聚合物胶液; 通过沉淀分离或喷雾干燥后即得。
8、根据权利要求 7所述的用于改性锂离子电池用隔膜的水性组合物,其特征在于: 所述无机填料为 A1203、 Si02、 Zr02、 Ti02、 Ca02或 MgO中的至少一种; 优选的是, 所 述无机填料为单分散的球形颗粒, 粒径 100〜1000nm, 优选粒径 300〜600nm。
9、根据权利要求 1-8任一项所述的用于改性锂离子电池用隔膜的水性组合物,其特 征在于: 所述用于改性锂离子电池用隔膜的水性组合物中还含有纳米无机填料, 所述 的纳米无机填料为锂离子电池隔膜适用的无机填料,所述纳米无机填料为 A1203、 Si02、 Zr02、 Ti02、 Ca02或 MgO中的至少一种。
10、 锂离子电池用改性聚烯烃隔膜, 其特征在于: 包括聚烯烃微孔膜及涂层, 所 述涂层是权利要求 1-9任一项所述的用于改性锂离子电池用隔膜的水性组合物涂覆于 聚烯烃微孔膜的表面, 干燥而成。
11、 用于改性锂离子电池用隔膜的水性组合物的制备方法, 其特征在于: 将所述 有机纳米颗粒填料均匀分散在水性粘合剂中即得, 所述有机纳米颗粒填料为聚合物 1 的纳米颗粒或至少表面包覆有聚合物 1的纳米颗粒; 所述聚合物 1纳米颗粒的粒径为 50〜2000nm, 优选 100〜700nm; 所述聚合物 1选自聚甲基丙烯酸甲酯、 乙烯-醋酸乙烯 共聚物、 乙烯-丙烯酸共聚物、 乙烯-丙烯酸丁酯共聚物、 乙烯-丙烯酸甲酯共聚物、 乙 烯-丙烯酸乙酯共聚物或聚氨酯中至少一种。
12、根据权利要求 11所述的用于改性锂离子电池用隔膜的水性组合物的制备方法, 其特征在于: 所述聚合物 1选自聚甲基丙烯酸甲酯、 乙烯 -醋酸乙烯共聚物、 乙烯 -丙烯 酸共聚物、 乙烯-丙烯酸丁酯共聚物、 乙烯-丙烯酸甲酯共聚物或乙烯-丙烯酸乙酯共聚 物中的至少一种;
所述聚合物 1优选为: 选自聚甲基丙烯酸甲酯、 乙烯 -醋酸乙烯共聚物、 乙烯 -丙烯 酸共聚物或乙烯-丙烯酸甲酯共聚物中的至少一种;
进一步, 所述聚合物 1优选为: 选自乙烯 -醋酸乙烯共聚物、 乙烯-丙烯酸共聚物或 乙烯-丙烯酸甲酯共聚物中的至少一种。
13、 根据权利要求 11或 12所述的用于改性锂离子电池用隔膜的水性组合物的制备 方法,其特征在于: 所述至少表面包覆有聚合物 1的纳米颗粒是核壳结构的有机纳米颗 粒, 所述核是聚合物 2或无机颗粒; 所述壳是聚合物 1, 所述聚合物 2由聚合反应单体 1 经聚合反应而成, 所述聚合反应单体 1选自丙烯腈、 甲基丙烯腈、 丙烯酸甲酯、 甲基丙 烯酸甲酯或苯乙烯中的至少一种。
14、根据权利要求 13所述的用于改性锂离子电池用隔膜的水性组合物的制备方法, 其特征在于: 所述聚合物 2由聚合反应单体 1和聚合反应单体 2共聚而成,所述聚合反应 单体 2为具有交联作用的单体,聚合反应单体 1与聚合反应单体 2的重量比为:45-55: 1, 优选为 50: 1。
15、根据权利要求 14所述的用于改性锂离子电池用隔膜的水性组合物的制备方法, 其特征在于: 所述聚合反应单体 2选自二乙烯基苯、 双丙酮丙烯酰胺、 Ν, Ν'-亚甲基双 丙烯酰胺或甲基丙烯酸烯丙酯中的至少一种。
16、根据权利要求 13-15任一项所述的用于改性锂离子电池用隔膜的水性组合物的 制备方法, 其特征在于: 所述至少表面包覆有聚合物 1的纳米颗粒的核是聚合物 2, 至 少表面包覆有聚合物 1的纳米颗粒的制备方法如下:
将聚合物 1溶解在水或有机溶剂中, 加入聚合反应单体 1后升温至 50~140°C, 滴加 引发剂引发聚合反应即得聚合物胶液; 通过沉淀分离或喷雾干燥后即得; 所述聚合反 应单体 1与聚合物 1的重量比为 0.1〜6: 1, 优选 1〜4: 1。
17、根据权利要求 13所述的用于改性锂离子电池用隔膜的水性组合物的制备方法, 其特征在于: 所述至少表面包覆有聚合物 1的纳米颗粒的核是无机颗粒, 至少表面包覆 有聚合物 1的纳米颗粒的制备方法如下: 任意顺序将聚合物 1与无机颗粒分散在水或有 机溶剂中, 形成聚合物胶液; 通过沉淀分离或喷雾干燥后即得。
18、根据权利要求 17所述的用于改性锂离子电池用隔膜的水性组合物的制备方法, 其特征在于: 所述的无机颗粒为 A1203、 Si02、 Zr02、 Ti02、 Ca02或 MgO中的至少一种; 优选的是, 所述无机颗粒为单分散的球形颗粒, 粒径 100〜1000nm, 优选粒径 300〜 600nm。
19、 锂离子电池用改性聚烯烃隔膜的制备方法, 具体步骤如下: 权利要求 1-9任一 项所述的用于改性锂离子电池用隔膜的水性组合物涂覆于聚烯烃微孔膜的一面或两 面, 40°C~120°C干燥即得。
20、 使用权利要求 10所述的锂离子电池用改性聚烯烃隔膜制备而成的锂金属二次 电池、 锂离子二次电池、 锂聚合物二次电池和锂离子聚合物二次电池。
PCT/CN2014/082046 2014-06-30 2014-07-11 用于改性锂离子电池用隔膜的水性组合物及改性隔膜和电池 WO2016000276A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016576050A JP2017525100A (ja) 2014-06-30 2014-07-11 リチウムイオン電池用セパレータの改良に用いられる水性組成物ならびに改良されたセパレータおよび電池
KR1020177002605A KR20170026547A (ko) 2014-06-30 2014-07-11 리튬이온 배터리용 다이어프램을 수정하기 위해 사용된 수성 조성물, 수정된 다이어프램, 및 배터리
US15/322,357 US10497914B2 (en) 2014-06-30 2014-07-11 Water-based composition used for modifying diaphragm for lithium batteries and modified diaphragm and batteries
EP14896710.2A EP3163652B1 (en) 2014-06-30 2014-07-11 Water-based composition used for modifying a diaphragm for lithium ion batteries and modified diaphragm and batteries

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410304690.X 2014-06-30
CN201410304690.XA CN105440770B (zh) 2014-06-30 2014-06-30 用于改性锂离子电池用隔膜的水性组合物及改性隔膜和电池

Publications (1)

Publication Number Publication Date
WO2016000276A1 true WO2016000276A1 (zh) 2016-01-07

Family

ID=55018347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082046 WO2016000276A1 (zh) 2014-06-30 2014-07-11 用于改性锂离子电池用隔膜的水性组合物及改性隔膜和电池

Country Status (7)

Country Link
US (1) US10497914B2 (zh)
EP (1) EP3163652B1 (zh)
JP (1) JP2017525100A (zh)
KR (1) KR20170026547A (zh)
CN (1) CN105440770B (zh)
TW (1) TWI539647B (zh)
WO (1) WO2016000276A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105845870A (zh) * 2016-04-15 2016-08-10 合肥国轩高科动力能源有限公司 一种用于锂离子电池隔膜涂覆的陶瓷浆料及含该陶瓷浆料的锂离子电池隔膜的制备方法
CN113782844A (zh) * 2021-08-24 2021-12-10 中国科学院合肥物质科学研究院 一种水系锌离子储能电池用水凝胶电解质的制备方法
CN114361710A (zh) * 2020-09-29 2022-04-15 宁德新能源科技有限公司 一种隔离膜、包含该隔离膜的电化学装置及电子装置
CN113782844B (zh) * 2021-08-24 2024-05-31 中国科学院合肥物质科学研究院 一种水系锌离子储能电池用水凝胶电解质的制备方法

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10109843B2 (en) 2016-08-17 2018-10-23 Hong Kong Applied Science and Technology Research Institute Company Limited Separator for a rechargeable battery
CN106463683A (zh) * 2016-08-17 2017-02-22 香港应用科技研究院有限公司 一种用于充电电池的隔离膜
US10608226B2 (en) 2016-08-17 2020-03-31 Hong Kong Applied Sciene and Technology Research Institute Co. Ltd. Separator for a rechargeable battery
CN106654123B (zh) * 2017-01-20 2020-01-24 东莞市卓高电子科技有限公司 一种含pvdf或pvdf共聚物涂层隔膜的制备方法
CN107959002A (zh) * 2017-10-11 2018-04-24 宁波维科新能源科技有限公司 一种锂离子电池
CN107814964A (zh) * 2017-10-23 2018-03-20 东莞理工学院 一种水性浆料及制备方法、电池隔膜与锂离子电池
KR102233770B1 (ko) * 2018-02-01 2021-03-30 삼성에스디아이 주식회사 분리막, 이를 채용한 리튬전지 및 분리막의 제조 방법
KR102209826B1 (ko) 2018-03-06 2021-01-29 삼성에스디아이 주식회사 분리막, 이의 제조방법 및 이를 포함하는 리튬전지
CN110945683B (zh) * 2018-06-22 2022-10-28 株式会社Lg化学 用于电化学装置的隔膜、含有该隔膜的电化学装置以及该隔膜的制造方法
CN109065805B (zh) * 2018-07-18 2021-07-20 湖南烁普新材料有限公司 一种高吸液率水性聚合物隔膜的制备方法
CN108807807B (zh) * 2018-08-23 2021-06-15 河北金力新能源科技股份有限公司 电池用隔膜及其制备方法
CN109119680B (zh) * 2018-08-27 2021-04-02 江苏中兴派能电池有限公司 一种高能量密度锂离子电池的制备方法
CN109167008B (zh) * 2018-09-05 2021-05-11 江苏安瑞达新材料有限公司 锂电池用低水分陶瓷隔膜制备方法、水性浆料及陶瓷隔膜
KR20200032542A (ko) * 2018-09-18 2020-03-26 삼성에스디아이 주식회사 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
CN109742290A (zh) * 2018-12-13 2019-05-10 中航锂电(洛阳)有限公司 一种压敏耐高温型功能隔膜、压敏耐高温颗粒及制备方法
CN109728233A (zh) * 2018-12-19 2019-05-07 乐凯胶片股份有限公司 陶瓷浆料、陶瓷隔膜和锂离子电池
KR102307978B1 (ko) * 2018-12-20 2021-09-30 삼성에스디아이 주식회사 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
TWI686978B (zh) 2018-12-28 2020-03-01 財團法人工業技術研究院 金屬離子電池
KR102342669B1 (ko) * 2019-01-16 2021-12-22 삼성에스디아이 주식회사 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
EP3950831A4 (en) * 2019-03-29 2023-01-04 Mitsui Chemicals, Inc. COATING MATERIAL FOR SECONDARY BATTERY SEPARATORS
CN111916624B (zh) * 2019-05-08 2022-02-01 宁德新能源科技有限公司 隔离膜和电化学装置
CN112086608B (zh) * 2019-06-13 2022-05-13 万向一二三股份公司 一种锂离子电池Janus隔膜
CN112421178A (zh) * 2019-08-05 2021-02-26 付冬 一种制备陶瓷浆料涂覆的锂离子电池隔膜的方法
CN110707263A (zh) * 2019-09-02 2020-01-17 深圳市劢全新材料科技有限责任公司 一种电池隔膜的涂覆方法
CN112531290B (zh) * 2019-09-18 2022-03-29 珠海冠宇电池股份有限公司 一种陶瓷微球、含有该陶瓷微球的隔膜及含有该隔膜的锂离子电池
CN110838567A (zh) * 2019-10-25 2020-02-25 河北金力新能源科技股份有限公司 一种pvdf隔膜浆料、制备方法及其制备的隔膜和电芯
CN111029514B (zh) * 2019-11-14 2021-09-28 珠海冠宇电池股份有限公司 一种隔膜及包括该隔膜的高电压电池
CN110911617A (zh) * 2019-12-10 2020-03-24 安徽新衡新材料科技有限公司 一种高韧聚烯烃锂离子电池隔膜及其制备方法
CN111081947B (zh) * 2019-12-25 2022-07-29 武汉中兴创新材料技术有限公司 一种凝胶聚合物涂层隔膜的制备方法及隔膜
CN113130982B (zh) * 2019-12-30 2023-06-06 北京卫蓝新能源科技有限公司 一种高保液电解质的制备方法及在锂电池中的应用
CN111048786B (zh) * 2019-12-30 2021-05-25 珠海冠宇电池股份有限公司 一种含有无机/有机核壳结构的乳液型粘结剂及锂离子电池
WO2021257759A1 (en) * 2020-06-18 2021-12-23 Celgard, Llc Improved membranes with nanoparticle inorganic filler
CN115769430A (zh) * 2020-06-30 2023-03-07 株式会社Lg新能源 用于锂二次电池的隔板、用于其的制造方法、和通过该制造方法制造的隔板
CN112382797A (zh) * 2020-07-17 2021-02-19 万向一二三股份公司 一种复合叠片的方法
CN112142995A (zh) * 2020-08-24 2020-12-29 深圳市德立新材料科技有限公司 有机无机复合葡萄颗粒结构材料、浆料、隔膜及制备方法
CN112259913A (zh) * 2020-09-25 2021-01-22 东莞维科电池有限公司 一种隔膜浆料及其制备方法与用途
CN112341961B (zh) * 2020-10-28 2023-01-13 欣旺达电动汽车电池有限公司 粘结剂、隔膜及其制备方法
CN112271406B (zh) * 2020-10-30 2022-08-19 湖北第二师范学院 一种用于锂离子电池的氮化硼纤维包覆隔膜及其制备方法
CN112635909B (zh) * 2020-12-18 2023-05-09 汕头市广油美联新材料研究院有限公司 一种原位合成水性陶瓷浆料的制备方法
CN112688024B (zh) * 2020-12-31 2022-03-22 界首市天鸿新材料股份有限公司 一种动力锂电池的隔膜材料
CN112920430B (zh) * 2021-01-21 2022-12-27 河北金力新能源科技股份有限公司 多层包覆无机物颗粒及其制备方法、水系功能性涂覆浆料、锂电池隔膜和锂电池
CN112940650A (zh) * 2021-02-03 2021-06-11 深圳好电科技有限公司 锂离子电池复合隔膜用水性涂料及锂离子电池复合隔膜及锂离子电池
CN112920747A (zh) * 2021-02-03 2021-06-08 深圳好电科技有限公司 锂离子电池隔膜用水性粘结剂
CN112646303B (zh) * 2021-03-15 2021-06-22 江苏厚生新能源科技有限公司 一种高粘接性、高润湿效率Al2O3-PMMA复合材料及其制备方法、聚烯烃复合隔膜
JP2024510512A (ja) * 2021-03-31 2024-03-07 寧徳新能源科技有限公司 セパレータならびに該セパレータを含む電気化学装置および電子装置
CN113214717B (zh) * 2021-05-25 2022-08-02 中国电子科技集团公司第十八研究所 一种可自愈合的锂电池隔膜涂层制备方法
CN113394511B (zh) * 2021-06-11 2022-09-09 中国科学院兰州化学物理研究所 一种用于锂-硫电池的共轭微孔聚合物改性隔膜的制备方法
CN113745751B (zh) * 2021-08-31 2023-07-25 远景动力技术(江苏)有限公司 锂离子电池隔膜及其制备方法与应用
CN114497899A (zh) * 2022-02-11 2022-05-13 北京宇程科技有限公司 一种耐高温聚合物微球涂覆改性复合隔膜及其制备方法
CN114142168A (zh) * 2021-11-09 2022-03-04 惠州锂威电子科技有限公司 一种复合隔膜的制备方法及复合隔膜、锂离子电池
CN114243207A (zh) * 2021-11-26 2022-03-25 四川大学 一种紫外光固化改性聚烯烃电池隔膜的制备方法
JP2023085047A (ja) * 2021-12-08 2023-06-20 三菱鉛筆株式会社 セパレータの製造用の架橋アクリル系ポリマー粒子
WO2023145742A1 (ja) * 2022-01-31 2023-08-03 日本ゼオン株式会社 電気化学素子機能層用重合体及びその製造方法、電気化学素子機能層用組成物、電気化学素子用機能層付き基材、及び電気化学素子
CN114649638B (zh) * 2022-05-20 2022-09-06 宁德卓高新材料科技有限公司 一种涂覆隔膜及其制备方法及应用
CN114784457B (zh) * 2022-06-17 2022-09-13 宁波长阳科技股份有限公司 一种锂离子电池复合隔膜及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101981727A (zh) * 2008-03-31 2011-02-23 日本瑞翁株式会社 多孔膜以及二次电池电极
CN102089901A (zh) * 2008-07-16 2011-06-08 东丽株式会社 蓄电装置用隔膜
CN102917876A (zh) * 2011-06-02 2013-02-06 三菱树脂株式会社 叠层多孔膜、电池用隔板及电池
CN103236511A (zh) * 2013-04-18 2013-08-07 广东工业大学 一种超耐热有机/无机复合隔膜的制备方法
CN103603178A (zh) * 2013-11-21 2014-02-26 中国海诚工程科技股份有限公司 柔性锂离子电池隔膜用涂料、含有该涂料的隔膜及其制备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1244168A1 (en) * 2001-03-20 2002-09-25 Francois Sugnaux Mesoporous network electrode for electrochemical cell
JP2005053728A (ja) * 2003-08-01 2005-03-03 Dsl Japan Co Ltd 高吸油性および高い構造性を有する非晶質シリカ粒子
TWI318018B (en) * 2004-09-02 2009-12-01 Lg Chemical Ltd Organic/inorganic composite porous film and electrochemical device prepared thereby
JP4743747B2 (ja) * 2004-12-08 2011-08-10 日立マクセル株式会社 セパレータおよびその製造方法、並びに非水電解質電池
JP2006182925A (ja) * 2004-12-28 2006-07-13 Hitachi Maxell Ltd コアシェル型微粒子、および該微粒子を有するリチウム二次電池
JP2008041581A (ja) * 2006-08-10 2008-02-21 Hitachi Maxell Ltd 巻回体電極群、角形二次電池およびラミネート形二次電池
US8865797B2 (en) * 2007-05-23 2014-10-21 Carnegie Mellon University Hybrid particle composite structures with reduced scattering
CN101434708B (zh) * 2008-12-19 2012-01-11 成都中科来方能源科技有限公司 水性聚合物改性微孔聚烯烃隔膜及其制备方法和用途
WO2011040474A1 (ja) * 2009-09-30 2011-04-07 日本ゼオン株式会社 二次電池用多孔膜及び二次電池
CN103069612B (zh) * 2010-08-09 2015-05-06 日本瑞翁株式会社 二次电池用多孔膜、制造方法及用途
CN102501524A (zh) * 2011-11-03 2012-06-20 南京大学 具有均匀可调孔尺寸复合结构的隔膜及制备方法
CN102719046B (zh) * 2012-06-28 2014-02-26 成都中科来方能源科技有限公司 离子聚合物/陶瓷复合膜材料及其制备方法和锂二次电池
CN103035866B (zh) * 2013-01-09 2015-01-07 厦门大学 一种陶瓷隔膜及其在电池中的应用及含该陶瓷隔膜的电池
CN103078076B (zh) * 2013-01-11 2015-08-26 宁波晶一新材料科技有限公司 复合隔离膜及使用此隔离膜的锂离子电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101981727A (zh) * 2008-03-31 2011-02-23 日本瑞翁株式会社 多孔膜以及二次电池电极
CN102089901A (zh) * 2008-07-16 2011-06-08 东丽株式会社 蓄电装置用隔膜
CN102917876A (zh) * 2011-06-02 2013-02-06 三菱树脂株式会社 叠层多孔膜、电池用隔板及电池
CN103236511A (zh) * 2013-04-18 2013-08-07 广东工业大学 一种超耐热有机/无机复合隔膜的制备方法
CN103603178A (zh) * 2013-11-21 2014-02-26 中国海诚工程科技股份有限公司 柔性锂离子电池隔膜用涂料、含有该涂料的隔膜及其制备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3163652A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105845870A (zh) * 2016-04-15 2016-08-10 合肥国轩高科动力能源有限公司 一种用于锂离子电池隔膜涂覆的陶瓷浆料及含该陶瓷浆料的锂离子电池隔膜的制备方法
CN114361710A (zh) * 2020-09-29 2022-04-15 宁德新能源科技有限公司 一种隔离膜、包含该隔离膜的电化学装置及电子装置
CN113782844A (zh) * 2021-08-24 2021-12-10 中国科学院合肥物质科学研究院 一种水系锌离子储能电池用水凝胶电解质的制备方法
CN113782844B (zh) * 2021-08-24 2024-05-31 中国科学院合肥物质科学研究院 一种水系锌离子储能电池用水凝胶电解质的制备方法

Also Published As

Publication number Publication date
EP3163652A1 (en) 2017-05-03
JP2017525100A (ja) 2017-08-31
TWI539647B (zh) 2016-06-21
EP3163652B1 (en) 2019-02-20
US10497914B2 (en) 2019-12-03
US20170162848A1 (en) 2017-06-08
KR20170026547A (ko) 2017-03-08
CN105440770A (zh) 2016-03-30
TW201601367A (zh) 2016-01-01
CN105440770B (zh) 2021-05-04
EP3163652A4 (en) 2017-05-31

Similar Documents

Publication Publication Date Title
WO2016000276A1 (zh) 用于改性锂离子电池用隔膜的水性组合物及改性隔膜和电池
US10297819B2 (en) Slurry composition for lithium ion secondary battery negative electrode, negative electrode for lithium ion secondary battery and method for producing the same, and lithium ion secondary battery
JP6191597B2 (ja) 二次電池用セパレータ
JP5430778B2 (ja) 電池用セパレータおよびそれを用いた非水電解液電池
CN110622339B (zh) 非水系二次电池用隔膜、非水系二次电池及非水系二次电池的制造方法
WO2010069189A1 (zh) 水性聚合物改性微孔聚烯烃隔膜及其制备方法和用途
KR20160069431A (ko) 리튬이차전지용 복합 세퍼레이터 및 이를 채용한 리튬이차전지
WO2013146515A1 (ja) 二次電池用多孔膜及びその製造方法、二次電池用電極、二次電池用セパレーター並びに二次電池
JP2018163872A (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP6371905B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
WO2022141508A1 (zh) 一种电化学装置和电子装置
WO2018036309A1 (zh) 正极添加剂及其制备方法、正极片及锂离子二次电池
CN113708008A (zh) 一种隔离膜及其制备方法、应用
WO2019054310A1 (ja) 非水系二次電池用セパレータ、および非水系二次電池
JP6436101B2 (ja) 電気化学素子用電極及び電気化学素子
CN114144932A (zh) 一种隔离膜及包含所述隔离膜的电化学装置和电子装置
JP2023174884A (ja) 電気化学素子用複合分離膜及びそれを含む電気化学素子
WO2022016378A1 (zh) 电池及电子装置
WO2019004459A1 (ja) 電気化学素子用バインダー組成物、電気化学素子機能層用スラリー組成物、電気化学素子接着層用スラリー組成物、および複合膜
JP2017152207A (ja) 非水電解質二次電池用セパレータ(separator)、非水電解質二次電池、及び非水電解質二次電池の製造方法
JPWO2020137435A5 (zh)
CN113728504B (zh) 聚合物粘结剂、叠层多孔膜、电池及电子装置
JP2014203805A (ja) リチウムイオン二次電池負極用粒子状バインダー、リチウムイオン二次電池負極用スラリー組成物およびリチウムイオン二次電池
WO2019004460A1 (ja) 電気化学素子用バインダー組成物、電気化学素子機能層用スラリー組成物、電気化学素子接着層用スラリー組成物、および複合膜
US20230231101A1 (en) Negative electrode, method of manufacturing negative electrode, and secondary battery including negative electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896710

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014896710

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014896710

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15322357

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016576050

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177002605

Country of ref document: KR

Kind code of ref document: A