CN113394511B - 一种用于锂-硫电池的共轭微孔聚合物改性隔膜的制备方法 - Google Patents

一种用于锂-硫电池的共轭微孔聚合物改性隔膜的制备方法 Download PDF

Info

Publication number
CN113394511B
CN113394511B CN202110651774.0A CN202110651774A CN113394511B CN 113394511 B CN113394511 B CN 113394511B CN 202110651774 A CN202110651774 A CN 202110651774A CN 113394511 B CN113394511 B CN 113394511B
Authority
CN
China
Prior art keywords
diaphragm
lithium
microporous polymer
conjugated microporous
sulfur battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110651774.0A
Other languages
English (en)
Other versions
CN113394511A (zh
Inventor
杨燕飞
张俊平
李步成
李凌霄
魏晋飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Institute of Chemical Physics LICP of CAS
Original Assignee
Lanzhou Institute of Chemical Physics LICP of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Institute of Chemical Physics LICP of CAS filed Critical Lanzhou Institute of Chemical Physics LICP of CAS
Priority to CN202110651774.0A priority Critical patent/CN113394511B/zh
Publication of CN113394511A publication Critical patent/CN113394511A/zh
Application granted granted Critical
Publication of CN113394511B publication Critical patent/CN113394511B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • C08J9/42Impregnation with macromolecular compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Textile Engineering (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种用于锂‑硫电池的共轭微孔聚合物改性隔膜的制备方法,是先以1,3,5‑三乙炔基苯和2‑氨基3,5‑二溴吡啶为单体,四(三苯基膦)钯(0)和碘化亚铜共为催化剂,三乙胺和二甲苯的混合溶液为介质形成反应体系,将商业锂电池隔膜于该反应体系中并置于填充惰性气体的密闭容器中,在65~90°C反应24~72 h,在商业锂电池隔膜表面原位生长共轭微孔聚合物,得到共轭微孔聚合物改性隔膜。本发明通Sonogashira‑Hagihara反应在商业锂电池隔膜表面原位生长富有含氮官能团的共轭微孔聚合物,可有效抑制聚硫化物穿梭,显著提高了锂‑硫电池的容量、活性物质利用率、循环稳定性和倍率性能。

Description

一种用于锂-硫电池的共轭微孔聚合物改性隔膜的制备方法
技术领域
本发明涉及一种适用于锂-硫电池隔膜的制备方法,尤其涉及一种用于锂-硫电池的共轭微孔聚合物改性隔膜的制备方法,属于锂金属电池领域。
背景技术
锂-硫电池因具有高理论容量和理论能量密度而倍受关注,但高能量密度锂-硫电池中严重的聚硫化物穿梭限制了其实际应用。隔膜作为锂电池中关键组成部件,不仅对锂电池的安全性至关重要,且在锂-硫电池中能够有效抑制中间产物穿梭等。然而,目前商业化隔膜孔径较大且不均匀,远大于聚硫化物的分子尺寸,且非极性聚烯烃与极性聚硫化物之间无任何化学所用。因此,聚硫化物可自由通过聚烯烃隔膜,沉积在锂金属负极上。这不仅会导致锂金属负极的钝化和活性物质的损失,而且会严重降低锂-硫电池的循环稳定性和库伦效率。商业化隔膜表面功能化是解决聚硫化物穿梭和提高锂-硫电池综合性能的有效途径之一,也是高端锂电池隔膜的主要发展方向。
2012年,Manthiram等人将微孔碳纸置于隔膜表面,在抑制聚硫化物穿梭的同时提高了活性物质利用率(Nat. Commun. 2012, 3, 1166,期刊论文)。随后,各种碳材料被用于聚烯烃隔膜改性并取得了良好效果。但非极性碳材料对极性聚硫化物仅有较弱的物理吸附作用,不能维持锂-硫电池的长期循环稳定性(CN202010873841,CN201810998056…)。因此,一些极性材料(功能化碳材料、金属氧化物、硫化物和氮化物)被用来改性聚烯烃隔膜(CN201810129954,CN201710592113,CN201910901681,CN201710592113…),通过化学吸附、物理吸附的方式抑制聚硫化物穿梭,进而提高锂-硫电池的循环稳定性。上述专利报道均是基于粘结剂将各种纳米粒子和导电剂通过涂布等技术涂覆于商业化锂电池隔膜得到。但涂覆制得的涂层容易增加隔膜的厚度、堵塞孔道和降低孔隙率等,从而严重制约了锂离子的传递、增加了电池内电阻,降低了电池的倍率放电性能。
共轭微孔聚合物是一类由碳碳三键和芳香环构成的具有刚性结构的三维网状多孔有机聚合物材料。其刚性的骨架结构和三维网状结构使共轭微孔聚合物具有较高的比表面积、良好的孔性能、优异的热稳定性和化学稳定性,因此已经广泛应用于吸附、催化等领域(CN201610023077,CN 102492117A…)。共轭微孔聚合物因具有丰富的官能团和可控的孔结构,有望提高锂电池的容量和循环稳定性等;特别是在应用于锂-硫电池,有望抑制聚硫化物的穿梭,提高锂-硫电池的电化学性能。例如: CN103367748A 将通过1,3,5- 三乙炔基苯聚合制备的微孔共轭聚合物,在高温下炭化得到碳材料,应用于锂电池负极展示了较好容量; CN108623787A通过1,3,5-三(4-二苯胺基苯基)三嗪单体的聚合反应制得了聚[1,3,5-三(4-二苯胺基苯基)三嗪],将其作为锂离子电池正极材料,改善了电池的容量和循环稳定性、充放电电压平台;CN109686976A将单质硫与四氟苯醌或含氟多孔聚合物在特定温度范围下进行交联聚合反应,制得了含氟共轭微孔硫共聚物,作为锂-硫电池的正极材料,有效提高了电池循环稳定性和容量。目前,共轭微孔聚合物在锂电池领域的应用较少,特别是在锂-硫电池中的应用。基于共轭微孔聚合物良好的刚性性能,使其很难形成具有良好机械性能的自支撑薄膜。CN105731418A报道了通过1,3,5-三乙炔基苯和2-氨基-3,5-二溴吡啶之间的反应制备了管状的共轭微孔聚合物,随后经过碳化制得了高纯碳纳米管,但仍然很难形成均匀的膜结构。
发明内容
本发明的目的是为了解决现有商业化隔膜在锂-硫电池中应用中存在的技术缺陷,提供一种用于锂-硫电池的共轭微孔聚合物改性隔膜的制备方法,以推动下一代高能量密度锂-硫电池的快速发展。
一、共轭微孔聚合物改性隔膜的制备
本发明用于锂-硫电池的共轭微孔聚合物改性隔膜的制备方法,先以1,3,5-三乙炔基苯和2-氨基3,5-二溴吡啶为单体,四(三苯基膦)钯(0)和碘化亚铜共为催化剂,三乙胺和二甲苯的混合溶液为介质形成反应体系,将商业锂电池隔膜于该反应体系中完全浸润后与反应体系一起置于填充惰性气体的密闭容器中,在65~90°C下反应24~72 h,在商业锂电池隔膜表面原位生长共轭微孔聚合物,经洗涤、干燥,得到共轭微孔聚合物改性隔膜。
单体1,3,5-三乙炔基苯和2-氨基-3,5-二溴吡啶的摩尔比为1:0.2~1:1;两种单体在反应体系中的总摩尔浓度为0.10~0.30 mol/ L。
催化剂四(三苯基膦)钯(0)和碘化亚铜催化剂的摩尔比为1:1~1:5,催化剂在反应体系中的总摩尔浓度为0.01~0.04 mol L-1
所述三乙胺和二甲苯混合溶剂中,三乙胺和二甲苯的体积比为4:1~0.4:1。
所述商业锂电池隔膜为聚乙烯隔膜、聚丙烯隔膜、聚乙烯/聚丙烯混合隔膜、聚偏氟乙烯隔膜、聚(偏氟乙烯-co-六氟丙烯)隔膜、玻璃纤维隔膜、聚酰亚胺隔膜、聚酰胺隔膜。
所述洗涤是采用三氯甲烷、丙酮和甲醇依次漂洗一次,最后采用去离子水冲洗数次。
所述干燥是通过氮气气流烘干,最后置于50~65 °C真空环境中10~12 h。
所述共轭微孔聚合物改性隔膜具有丰富的含氮官能团,能有效抑制锂-硫电池中聚硫化物穿梭,显著改善了锂-硫电池的容量、活性物质利用率、循环稳定性和倍率性能。
二、共轭微孔聚合物改性隔膜的性能
以实施例1制备的共轭微孔聚合物改性隔膜与商业聚丙烯隔膜的各项性能进行对比分析,对本发明做进一步详细、完整的说明。
1、形貌对比
图1为实施例1发明的共轭微孔聚合物改性隔膜与商业聚丙烯隔膜(厚度为25 μm,孔隙率为41%)的扫描电子显微镜图片。不难发现,实施例1中制备得到的隔膜与原始的商业聚丙烯隔膜的形貌没有明显改变。说明制备的隔膜没有明显增加隔膜的厚度和堵孔现象发生。进一步表明本申请发明制备的共轭微孔聚合物改性隔膜没有对基底隔膜造成负面影响。
2、H-型渗透试验
图2为实施例1制备的共轭微孔聚合物改性隔膜与商业聚丙烯隔膜(厚度为25 μm,孔隙率为41%)的H-型渗透试验。在左边添加含聚硫化物的溶液,在右边添加空白的溶剂,如果隔膜不能有效抑制聚硫化物的穿梭,则聚硫化物会发生扩散现象,从而使右边空白溶剂的颜色由无色逐渐变为深色。从实验结果可以发现,商业聚丙烯隔膜不能抑制聚硫化物穿梭,而实施例1制备的改性隔膜能在长时间内抑制聚硫化物的穿梭。
3、锂-硫电池中电化学性能
图3是以实施例1制备的共轭微孔聚合物改性隔膜与商业聚丙烯隔膜(厚度为25 μm,孔隙率为41%)组装的锂-硫的倍率性能对比。在0.1 C下,实施例1的改性隔膜与商业聚丙烯隔膜组装的锂-硫电池的初始容量分别可达1365 mA h g−1、895 mA h g−1。随着放电倍率的增加,商业聚丙烯隔膜组装的锂-硫电池的容量出现快速的下降,而共轭微孔聚合物改性隔膜组装的锂-硫电池表现出了更优异的倍率性能。当倍率增加到2.0 C时,其容量仍保留在867 mA h g−1,相对于0.1 C,其容量保留率高达63.52%。相反,以商业聚丙烯隔膜组装的电池,容量仅为 136 mA h g−1,相对于0.1 C,其容量保留率高达15.20%。
综上所述,本发明通过1,3,5-三乙炔基苯和2-氨基3,5-二溴吡啶之间的Sonogashira-Hagihara反应在商业锂电池隔膜表面原位生长共轭微孔聚合物,在商业化锂电池隔膜表面原位形成一种具有大量官能团的涂层,可有效抑制聚硫化物穿梭,显著提高了锂-硫电池的容量、活性物质利用率、循环稳定性和倍率性能。同时解决了商业隔膜易掉粉、涂层太厚、不均匀孔结构等问题。
附图说明
图1为实施例1发明共轭微孔聚合物改性隔膜与商业聚丙烯隔膜的形貌对比。
图2为实施例1发明共轭微孔聚合物改性隔膜与商业聚丙烯隔膜对聚硫化物的渗透性实验对比。
图3是以实施例1发明共轭微孔聚合物改性隔膜与对商业聚丙烯隔膜组装的锂-硫在0.2 C下的循环稳定性对比。
具体实施方式
下面通过具体实施例对本发明共轭微孔聚合物改性隔膜的制备和性能作进一步说明。
实施例1
称取225.27 mg(1.70 mol)1,3,5-三乙炔基苯,377.865 mg(1.49 mol) 2-氨基3,5-二溴吡啶,100 mg(0.09 mol)四(三苯基膦)钯(0)和50 mg(0.26 mol)碘化亚铜,加入到烧杯中,再加入8 mL甲苯和4 mL三乙胺,磁力搅拌使其完全溶解;将聚丙烯隔膜浸入配好的溶液体系中使其完全润湿随后将隔膜取出;将润湿的隔膜与配好的溶液一起置于填充惰性气体的密封容器中,在65°C条件下反应46h。然后将隔膜依次用三氯甲烷、丙酮、甲醇漂洗一次,随后采用去离子水冲洗数次;以氮气气流烘干后,置于60°C真空环境中12 h,得到微孔共轭聚合物改性聚丙烯隔膜。
H-型渗透试验研究表明:微孔共轭聚合物改性聚丙烯隔膜能有效抑制聚硫化物穿梭。以其组装的锂-硫电池在0.2C下的初始容量可达1152 mA h g−1,经过200次循环之后,容量保持率仍然保持在95.31%。
实施例2
称取300.36mg(1.99 mol) 1,3,5-三乙炔基苯,251.91 mg(0.99 mol) 2-氨基3,5-二溴吡啶、60 mg(0.05 mol)四(三苯基膦)钯(0)和40 mg(0.21 mol)碘化亚铜加入到烧杯中,再加入7.5 mL甲苯和7.5 mL三乙胺,磁力搅拌使其完全溶解;将聚酰亚胺隔膜浸入配好的溶液中,使其完全润湿随后将隔膜取出;将润湿的隔膜与配好的溶液一起置于填充惰性气体的密封容器中,在85°C条件下反应30h。然后将隔膜依次用三氯甲烷、丙酮、甲醇漂洗一次,随后采用去离子水冲洗数次;以氮气气流烘干之后,置于60 °C真空环境中12 h,得到微孔共轭聚合物改性聚酰亚胺隔膜。
H-型渗透试验研究表明:微孔共轭聚合物改性聚酰亚胺隔膜能有效抑制聚硫化物穿梭。以其组装的锂-硫电池在0.2 C下的初始容量可达1087 mA h g−1,经过200次循环之后,容量保持率仍然保持在92.11%。
实施例3
称取75.09 mg(0.50 mol) 1,3,5-三乙炔基苯,188.10 mg (0.75 mol)2-氨基3,5-二溴吡啶、15 mg(0.01 mol)四(三苯基膦)钯(0)和50 mg(0.26 mol)碘化亚铜加入到烧杯中,再加入7.5 mL甲苯和3.5 mL三乙胺,磁力搅拌使其完全溶解;将聚乙烯隔膜浸入配好的溶液中,使其完全润湿随后将隔膜取出;将润湿的隔膜与配好的溶液一起置于填充惰性气体的密封容器中,在90 °C条件下反应24 h。然后将隔膜依次用三氯甲烷、丙酮、甲醇漂洗一次,随后采用去离子水冲洗数次;以氮气气流烘干之后,置于60 °C真空环境中12 h,得到微孔共轭聚合物改性聚乙烯隔膜。
H-型渗透试验研究表明:微孔共轭聚合物改性聚乙烯隔膜能有效抑制聚硫化物穿梭。以其组装的锂-硫电池在0.2 C下的初始容量可达1211 mA h g−1,经过200次循环之后,容量保持率仍然保持在94.10%。
实施例4
称取315.38 mg(2.10 mol) 1,3,5-三乙炔基苯,75.57 mg(0.30 mol) 2-氨基3,5-二溴吡啶、54 mg(0.05 mol)四(三苯基膦)钯(0)和90 mg(0.47 mol)碘化亚铜加入到烧杯中,再加入3 mL甲苯和12 mL三乙胺,磁力搅拌使其完全溶解;将玻璃纤维隔膜浸入配好的溶液中,使其完全润湿随后将隔膜取出;将润湿的隔膜与配好的溶液一起置于填充惰性气体的密封容器中,在80°C条件下反应72 h。然后将隔膜依次用三氯甲烷、丙酮、甲醇漂洗一次,随后采用去离子水冲洗数次;以氮气气流烘干之后,置于60 °C真空环境中12 h,得到微孔共轭聚合物改性玻璃纤维隔膜。
H-型渗透试验研究表明:微孔共轭聚合物改性玻璃纤维隔膜能有效抑制聚硫化物穿梭。以其组装的锂-硫电池在0.2 C下的初始容量可达1023 mA h g−1,经过200次循环之后,容量保持率仍然保持在89.32%。
实施例5
称取112.64 mg (0.75 mol)1,3,5-三乙炔基苯,62.98 mg (0.25 mol)2-氨基3,5-二溴吡啶、10 mg(0.01 mol)四(三苯基膦)钯(0)和63 mg(0.33 mol)碘化亚铜加入到烧杯中,再加入7.5 mL甲苯和2.5 mL三乙胺,磁力搅拌使其完全溶解;将聚偏氟乙烯隔膜浸入配好的溶液中,使其完全润湿随后将隔膜取出;将润湿的隔膜与配好的溶液一起置于填充惰性气体的密封容器中,在70°C条件下反应24 h。然后将隔膜依次用三氯甲烷、丙酮、甲醇漂洗一次,随后采用去离子水冲洗数次;以氮气气流烘干之后,置于60 °C真空环境中12 h,得到微孔共轭聚合物改性聚偏氟乙烯隔膜。
H-型渗透试验研究表明:微孔共轭聚合物改性聚偏氟乙烯隔膜能有效抑制聚硫化物穿梭。以其组装的锂-硫电池在0.2C下的初始容量可达1178 mA h g−1,经过200次循环之后,容量保持率仍然保持在93.22%。

Claims (5)

1.一种用于锂-硫电池的共轭微孔聚合物改性隔膜的制备方法,是以1,3,5-三乙炔基苯和2-氨基3,5-二溴吡啶为单体,四(三苯基膦)钯(0)和碘化亚铜共为催化剂,三乙胺和二甲苯的混合溶液为介质形成反应体系,将商业锂电池隔膜于该反应体系中完全浸润后与反应体系一起置于填充惰性气体的密闭容器中,在65~90℃ 下反应24~72 h,在商业锂电池隔膜表面原位生长共轭微孔聚合物,经洗涤、干燥,得到共轭微孔聚合物改性隔膜;
所述单体1,3,5-三乙炔基苯和2-氨基-3,5-二溴吡啶的摩尔比为1:0.2~1:1;两种单体在反应体系中的总摩尔浓度为0.10~0.30 mol/ L;
所述催化剂四(三苯基膦)钯(0)和碘化亚铜催化剂的摩尔比为1:1~1:5,催化剂在反应体系中的总摩尔浓度为0.01~0.04 mol L-1
2.如权利要求1所述一种用于锂-硫电池的共轭微孔聚合物改性隔膜的制备方法,其特征在于:所述三乙胺和二甲苯混合溶剂中,三乙胺和二甲苯的体积比为4:1~0.4:1。
3.如权利要求1所述一种用于锂-硫电池的共轭微孔聚合物改性隔膜的制备方法,其特征在于:所述商业锂电池隔膜为聚乙烯隔膜、聚丙烯隔膜、聚乙烯/聚丙烯混合隔膜、聚偏氟乙烯隔膜、聚(偏氟乙烯-co-六氟丙烯)隔膜、玻璃纤维隔膜、聚酰亚胺隔膜、聚酰胺隔膜。
4.如权利要求1所述一种用于锂-硫电池的共轭微孔聚合物改性隔膜的制备方法,其特征在于:所述洗涤是采用三氯甲烷、丙酮和甲醇依次漂洗一次,最后采用去离子水冲洗数次。
5.如权利要求1所述一种用于锂-硫电池的共轭微孔聚合物改性隔膜的制备方法,其特征在于:所述干燥是通过氮气气流烘干,最后置于50~65℃真空环境中10~12 h。
CN202110651774.0A 2021-06-11 2021-06-11 一种用于锂-硫电池的共轭微孔聚合物改性隔膜的制备方法 Active CN113394511B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110651774.0A CN113394511B (zh) 2021-06-11 2021-06-11 一种用于锂-硫电池的共轭微孔聚合物改性隔膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110651774.0A CN113394511B (zh) 2021-06-11 2021-06-11 一种用于锂-硫电池的共轭微孔聚合物改性隔膜的制备方法

Publications (2)

Publication Number Publication Date
CN113394511A CN113394511A (zh) 2021-09-14
CN113394511B true CN113394511B (zh) 2022-09-09

Family

ID=77620737

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110651774.0A Active CN113394511B (zh) 2021-06-11 2021-06-11 一种用于锂-硫电池的共轭微孔聚合物改性隔膜的制备方法

Country Status (1)

Country Link
CN (1) CN113394511B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103490027A (zh) * 2013-08-12 2014-01-01 中国科学院化学研究所 锂-硫电池用隔膜及其制备方法
CN110452184A (zh) * 2019-06-14 2019-11-15 浙江工业大学 共轭微孔聚合物材料及其制备单体和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105440770B (zh) * 2014-06-30 2021-05-04 四川茵地乐材料科技集团有限公司 用于改性锂离子电池用隔膜的水性组合物及改性隔膜和电池
CN105731418B (zh) * 2016-01-14 2018-01-05 兰州理工大学 高纯管状共轭微孔聚合物碳化高纯碳纳米管的制备方法
US10147974B2 (en) * 2017-05-01 2018-12-04 Dioxide Materials, Inc Battery separator membrane and battery employing same
CN107978717A (zh) * 2017-11-30 2018-05-01 中山大学 一种复合型锂硫电池隔膜及其制备方法和应用
CN108963149A (zh) * 2018-05-28 2018-12-07 中国科学院青岛生物能源与过程研究所 一种石墨炔类材料修饰隔膜的制备及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103490027A (zh) * 2013-08-12 2014-01-01 中国科学院化学研究所 锂-硫电池用隔膜及其制备方法
CN110452184A (zh) * 2019-06-14 2019-11-15 浙江工业大学 共轭微孔聚合物材料及其制备单体和应用

Also Published As

Publication number Publication date
CN113394511A (zh) 2021-09-14

Similar Documents

Publication Publication Date Title
Luo et al. A review of advanced separators for rechargeable batteries
Song et al. A new polysulfide blocker-poly (acrylic acid) modified separator for improved performance of lithium-sulfur battery
JP6463785B2 (ja) ゲルポリマー層を含む電池用分離膜
Zhu et al. In situ extracted poly (acrylic acid) contributing to electrospun nanofiber separators with precisely tuned pore structures for ultra-stable lithium–sulfur batteries
Pan et al. PAA/PEDOT: PSS as a multifunctional, water-soluble binder to improve the capacity and stability of lithium–sulfur batteries
CN105261721B (zh) 一种不对称隔膜及在锂硫二次电池中的应用
CN108565464B (zh) 一种载硫mof@导电聚合物材料及其制备方法和应用
Mong et al. Tough and flexible, super ion‐conductive electrolyte membranes for lithium‐based secondary battery applications
Feng et al. Taming polysulfides and facilitating lithium-ion migration: Novel electrospinning MOFs@ PVDF-based composite separator with spiderweb-like structure for Li-S batteries
CN110212162B (zh) 一种锂硫电池用柔性凝胶硫正极及制备方法
CN110957455A (zh) 一种锂硫电池用功能化隔膜及其制备方法
CN114784452B (zh) 一种含氟的共价有机框架材料用于制备锂硫电池隔膜材料的方法
CN113725421B (zh) 基于共价有机框架材料修饰的锌负极制备方法及其应用
CN114497506A (zh) 一种硬碳-无机锂盐复合电极材料及其制备方法和应用
CN109851704B (zh) 聚合物隔膜及其制备方法和应用及锂电池
CN115441048A (zh) 具有稳定梯度分布结构的复合电解质及电池与制备方法
Zhang et al. Electrochemical construction of functional polymers and their application advances in lithium batteries
Deng et al. In-situ MOFs coating on 3D-channeled separator with superior electrolyte uptake capacity for ultrahigh cycle stability and dendrite-inhibited lithium-ion batteries
CN114204217A (zh) 一种凝胶电解质隔膜及其制备方法和应用
CN112382759B (zh) 一种氮掺杂多孔碳包覆硅复合纳米纤维的制备方法
CN113394511B (zh) 一种用于锂-硫电池的共轭微孔聚合物改性隔膜的制备方法
CN116646593A (zh) 一种全固态聚合物电解质及其制备方法与应用
Zhao et al. Recent progress of metal-organic frameworks based high performance batteries separators: A review
CN115882163A (zh) 一种分子筛改性隔膜及其制备方法和应用
CN113346191A (zh) 一种含导电层的不对称隔膜、其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant