WO2015198514A1 - 磁気記録媒体 - Google Patents

磁気記録媒体 Download PDF

Info

Publication number
WO2015198514A1
WO2015198514A1 PCT/JP2015/002029 JP2015002029W WO2015198514A1 WO 2015198514 A1 WO2015198514 A1 WO 2015198514A1 JP 2015002029 W JP2015002029 W JP 2015002029W WO 2015198514 A1 WO2015198514 A1 WO 2015198514A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic powder
average
recording medium
cubic
Prior art date
Application number
PCT/JP2015/002029
Other languages
English (en)
French (fr)
Inventor
栄治 中塩
山鹿 実
潤 寺川
印牧 洋一
前嶋 克紀
橋本 淳
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2016528986A priority Critical patent/JP6565908B2/ja
Priority to CN201580032701.6A priority patent/CN106471581B/zh
Priority to US15/316,436 priority patent/US10204651B2/en
Publication of WO2015198514A1 publication Critical patent/WO2015198514A1/ja
Priority to US16/176,825 priority patent/US10839848B2/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70626Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances
    • G11B5/70642Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70605Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material metals or alloys
    • G11B5/70621Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material metals or alloys containing Co metal or alloys
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70626Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances
    • G11B5/70642Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides
    • G11B5/70678Ferrites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/714Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the dimension of the magnetic particles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/78Tape carriers

Definitions

  • This technology relates to a magnetic recording medium.
  • the present invention relates to a magnetic recording medium including a support and a magnetic layer containing magnetic powder.
  • Magnetic recording media are widely used to store electronic data.
  • magnetic tape is widely used.
  • As a magnetic tape one having a configuration in which a nonmagnetic layer and a magnetic layer containing magnetic powder are laminated on a flexible support is known.
  • magnetic layers in which magnetic powders such as ferromagnetic iron oxide, Co-modified ferromagnetic iron oxide, CrO 2 , and ferromagnetic alloys are dispersed in a binder are widely used. It is done. These magnetic powders are generally acicular and magnetized in the longitudinal direction.
  • ultrashort wavelength recording reducing the recording wavelength to an ultrashort wavelength
  • the coercive force is lowered. This is because the expression of the coercive force of the acicular particles is caused by the shape of the acicular particles. Further, if short wavelength recording is performed, the self-demagnetization becomes large and sufficient output cannot be obtained.
  • hexagonal barium ferrite magnetic powder is used in recent magnetic tapes compatible with LTO6 (abbreviation of LTO: Linear Tape Open).
  • LTO6 abbreviation of LTO: Linear Tape Open
  • a technique using a cubic CoMn spinel ferrite magnetic powder see, for example, Patent Document 1
  • a technique using ⁇ -Fe 2 O 3 magnetic powder see, for example, Patent Document 2 Etc.
  • an object of the present technology is to provide a magnetic recording medium capable of recording at a short wavelength and having a high signal-noise ratio.
  • the present technology A support; A magnetic layer containing magnetic powder,
  • the magnetic powder includes at least one of magnetic powder made of magnetic particles containing cubic ferrite and magnetic powder made of magnetic particles containing ⁇ -phase iron oxide,
  • the average particle size of the magnetic powder is 14 nm or less,
  • the average aspect ratio of the magnetic powder is 0.75 or more and 1.25 or less,
  • the ten-point average roughness Rz is a magnetic recording medium having a thickness of 35 nm or less.
  • FIG. 1 is a schematic cross-sectional view showing an example of the configuration of the magnetic recording medium according to the first embodiment of the present technology.
  • FIG. 2A is a schematic diagram illustrating an example of the shape of a magnetic particle.
  • FIG. 2B is a cross-sectional view showing an example of a cross section of the magnetic layer.
  • FIG. 2C is a plan view showing an example of the surface of the magnetic layer.
  • FIG. 3A is a schematic diagram illustrating an example of the shape of a magnetic particle.
  • FIG. 3B is a cross-sectional view showing an example of a cross section of the magnetic layer.
  • FIG. 3C is a plan view showing an example of the surface of the magnetic layer.
  • 4A is a cross-sectional TEM image of the magnetic tape of Example 1.
  • FIG. 4B is an enlarged view of a part of the magnetic layer of FIG. 4A.
  • 5A is a cross-sectional TEM image of the magnetic tape of Comparative Example 13.
  • FIG. 5B is an enlarged view of a part of the magnetic layer in FIG. 5A.
  • 6A is a cross-sectional TEM image of the magnetic tape of Comparative Example 17.
  • FIG. 6B is an enlarged view of a part of the magnetic layer in FIG. 6A.
  • Magnetic recording media using barium ferrite magnetic powder are currently in practical use as magnetic recording media compatible with LTO6.
  • the magnetic powder of next-generation magnetic recording media is barium ferrite magnetic powder. It is considered.
  • the barium ferrite magnetic powder has the following problems.
  • barium ferrite particles have a hexagonal plate shape (a hexagonal column shape with a low height), when barium ferrite particles are made ultrafine, hexagons of adjacent barium ferrite particles There is a possibility that the shape surfaces are in close contact with each other and the magnetic powder is aggregated. That is, even if the barium ferrite particles are made ultrafine, the dispersion of individual barium ferrite particles may not proceed.
  • the barium ferrite particles are subjected to a vertical alignment treatment by a vertical magnetic field, the surface of the nonmagnetic support and the hexagonal surface of the barium ferrite particles are naturally parallel.
  • the easy magnetization axis direction of the barium ferrite particles is a direction perpendicular to the hexagonal surface, and the hexagonal surface is arranged on the medium surface.
  • the contact area of the barium ferrite particles in the thickness direction of the medium increases, the possibility that the particles aggregate will increase. Therefore, in order to improve the dispersibility of magnetic powder composed of ultrafine particles and realize high-density recording, which is an advantage of making fine particles, the contact area between adjacent supermagnetic particles is reduced to suppress aggregation as much as possible. It seems to be effective.
  • Unit lattice size The crystal structure of barium ferrite particles is a magnetoplumbite type, and the unit cell has a relatively large C-axis of 2.3 nm. Although barium ferrite is currently in practical use, cubic iron oxide with the smallest unit cell size is considered suitable for future ultrafine particle formation.
  • the short wavelength magnetic recording is performed from the three viewpoints of (1) the contact area between adjacent particles, (2) the exposed area of the particle on the medium surface, and (3) the unit cell size.
  • the following are used as the magnetic powder. That is, the unit crystallite has a crystal structure such as a small cubic crystal, has a cubic shape with a small aspect ratio, a spherical shape, or a shape close to them, and the magnetic particle exposed on the recording surface of the magnetic recording medium has a small area. Use powder.
  • At least one of cubic ferrite magnetic powder having a cubic shape or a substantially cubic shape and ⁇ -Fe 2 O 3 magnetic powder ( ⁇ -phase iron oxide magnetic powder) having a spherical shape or a substantially spherical shape is used.
  • the particle size and aspect ratio of cubic or nearly cubic magnetic particles are referred to as plate diameter and plate ratio, respectively, and the particle size and aspect ratio of spherical or nearly spherical magnetic particles are referred to as particle size and spherical shape, respectively.
  • ratio usually called ratio.
  • the particle size and aspect ratio of hexagonal plate-like or almost hexagonal plate-like magnetic particles are referred to as plate diameter and plate-like ratio.
  • the particle size and aspect ratio of needle-like or almost needle-like magnetic particles are referred to as major axis diameter and needle-like ratio. There is.
  • the magnetic recording medium according to the first embodiment of the present technology is a so-called perpendicular magnetic recording medium, and is provided on a nonmagnetic support 1 and one main surface of the nonmagnetic support 1. And a magnetic layer 3 provided on the underlayer 2.
  • the magnetic recording medium may further include a backcoat layer 4 provided on the other main surface of the nonmagnetic support 1 as necessary. Further, a protective layer and a lubricant layer may be further provided on the magnetic layer 3.
  • the nonmagnetic support 1 is, for example, a long film having flexibility.
  • the material of the nonmagnetic support 1 include polyesters such as polyethylene terephthalate, polyolefins such as polyethylene and polypropylene, cellulose derivatives such as cellulose triacetate, cellulose diacetate, and cellulose butyrate, polyvinyl chloride, and polyvinylidene chloride. Vinyl resins, polycarbonates, polyimides, polyamideimides and other plastics, light metals such as aluminum alloys and titanium alloys, and ceramics such as alumina glass. Furthermore, in order to increase the mechanical strength, a thin film containing an oxide of Al or Cu formed on at least one of the main surfaces of the nonmagnetic support 1 containing a vinyl resin may be used. .
  • the magnetic layer 3 is a perpendicular recording layer capable of short wavelength recording or ultrashort wave super recording.
  • the magnetic layer 3 has magnetic anisotropy in the thickness direction of the magnetic layer 3. That is, the easy axis of magnetization of the magnetic layer 3 is oriented in the thickness direction of the magnetic layer 3.
  • the average thickness of the magnetic layer 3 is preferably 30 nm to 100 nm, more preferably 50 nm to 70 nm.
  • the coercive force Hc of the magnetic layer 3 is preferably 230 kA / m or more and 400 kA / m or less. If the coercive force Hc is less than 230 kA / m, the output in a short wavelength region necessary for a high-density magnetic recording medium may be reduced, and a good S / N ratio may not be obtained. On the other hand, if the coercive force Hc exceeds 400 kA / m, saturation recording becomes difficult during signal writing, and as a result, a good S / N ratio may not be obtained.
  • the sum “d + a” of the spacing d and the transition width a is preferably 30 nm or less. Spacing d strongly depends on the surface roughness of the magnetic recording medium, and is the distance between the magnetic head and the magnetic recording medium.
  • the transition width a is the width of the region where the magnetization is reversed, and also depends on the spacing d, and a steep magnetization transition is formed as the spacing d is smaller. This is because the recording magnetic field shape of the magnetic head changes depending on the spacing d.
  • “d + a” is described in H. Neal Bertram, Theory of Magnetic Recording.
  • the ten-point average roughness Rz of the recording surface (outermost surface) of the magnetic recording medium is preferably 35 nm or less.
  • Rz exceeds 35 nm, the spacing d increases and “d + a” may exceed 30 nm. That is, there is a possibility that good electromagnetic conversion characteristics cannot be obtained.
  • the 10-point average roughness Rz of the surface of the thin film is 10-point average roughness of the recording surface of the magnetic recording medium.
  • the squareness ratio Rs (residual magnetization Mr / saturation magnetization Ms) measured in the perpendicular direction of the magnetic layer 3 is preferably 0.6 or more, specifically 0.6 or more and 1.0 or less. When the squareness ratio in the vertical direction is less than 0.6, the S / N ratio can be further improved.
  • the upper limit value of the squareness ratio Rs is 1.0 in principle.
  • the magnetic layer 3 includes, for example, magnetic powder, a binder, and conductive particles.
  • the magnetic layer 3 may further contain additives such as a lubricant, an abrasive, and a rust preventive as necessary.
  • Magnetic powder is cubic ferrite magnetic powder.
  • magnetic powder composed of cubic ferrite magnetic particles is referred to as cubic ferrite magnetic powder.
  • the magnetic recording medium has a high S / N ratio.
  • a higher output tends to be obtained when the coercive force Hc is higher due to the influence of the demagnetizing field.
  • the higher coercive force is excellent in thermal stability when microparticulated.
  • the next generation magnetic recording medium preferably has a high coercive force Hc.
  • cubic ferrite magnetic powder having a high possibility of developing a coercive force Hc higher than that of hexagonal barium ferrite magnetic powder is used.
  • the cubic ferrite magnetic powder 21 has a cubic shape or a substantially cubic shape.
  • “cubic ferrite magnetic powder 21 is substantially cubic” means that the average plate ratio (average aspect ratio (average plate diameter L AM / average plate thickness L BM )) of cubic ferrite magnetic powder 21 is 0.
  • a rectangular parallelepiped shape that is 75 or more and 1.25 or less. Since the cubic ferrite magnetic powder 21 has a small unit cell size, it is advantageous from the viewpoint of ultrafine particles in the future.
  • the cubic ferrite magnetic powder 21 is dispersed in the magnetic layer 3.
  • the easy magnetization axis of the cubic ferrite magnetic powder 21 is oriented in the thickness direction of the magnetic layer 3 or substantially in the thickness direction of the magnetic layer 3. That is, a cubic ferrite magnetic powder 21, the square-shaped surface S A is such that the thickness direction perpendicular or nearly perpendicular magnetic layer 3, is dispersed in the magnetic layer 3.
  • the contact area between the particles in the thickness direction of the medium can be reduced and aggregation of the particles can be suppressed as compared with the hexagonal plate-shaped barium ferrite magnetic powder 21. That is, the dispersibility of the magnetic powder can be enhanced.
  • the square surface S A is exposed from the surface of the magnetic layer 3. Performing the short wavelength recording by the magnetic head to the square plane S A, as compared with the case where the hexagonal surface of the hexagonal plate-like barium ferrite magnetic powder having the same volume performing short wavelength recording, in view of high density recording Is advantageous. As shown in the plan view of FIG. 2C, on the surface of the magnetic layer 3, from the viewpoint of high density recording, it is preferable that a square surface S A cubic ferrite magnetic powder 21 is spread.
  • the cubic ferrite magnetic particles are so-called spinel ferrimagnetic particles.
  • the cubic ferrite magnetic particles are iron oxide particles having cubic ferrite as a main phase.
  • the cubic ferrite contains one or more selected from the group consisting of Co, Ni, Mn, Al, Cu and Zn.
  • the cubic ferrite contains at least Co, and further contains at least one selected from the group consisting of Ni, Mn, Al, Cu and Zn in addition to Co. More specifically, for example, cubic ferrite has an average composition represented by the general formula MFe 2 O 4 .
  • M is one or more metals selected from the group consisting of Co, Ni, Mn, Al, Cu and Zn.
  • M is a combination of Co and one or more metals selected from the group consisting of Ni, Mn, Al, Cu and Zn.
  • the average plate diameter (average particle size) of the cubic ferrite magnetic powder 21 is preferably 14 nm or less, more preferably 10 nm or more and 14 nm or less.
  • the average plate diameter exceeds 14 nm, the exposed area of particles on the medium surface increases, and the S / N ratio may decrease.
  • the average plate diameter is less than 10 nm, it may be difficult to produce the cubic ferrite magnetic powder 21.
  • the average plate diameter of the cubic ferrite magnetic powder 21 is obtained as follows. First, the surface of the magnetic layer is observed with an atomic force microscope (AFM), and the length L A of one side of the square surface S A of several hundred cubic ferrite magnetic powders 21 included in the AFM image is observed. Is obtained as a plate diameter (see FIGS. 2A and 2C). Then, simply mean a plate diameter of several hundred cubic ferrite magnetic powders 21 to (arithmetic mean) to obtain an average plate diameter L AM.
  • AFM atomic force microscope
  • the average plate ratio (average aspect ratio (average plate diameter L AM / average plate thickness L BM )) of the cubic ferrite magnetic powder 21 is preferably 0.75 or more and 1.25 or less. If the average plate ratio is out of this numerical range, the shape of the cubic ferrite magnetic powder 21 is not a cubic shape or a substantially cubic shape, so that aggregation occurs and short wavelength recording may be difficult.
  • the average plate ratio of the cubic ferrite magnetic powder 21 is obtained as follows. First, as described above, obtaining an average plate diameter L AM cubic ferrite magnetic powders 21. Next, the cross section of the magnetic layer is observed with a transmission electron microscope (TEM), and the side face width L B of the hundreds of cubic ferrite magnetic powders 21 included in the TEM image, that is, the side face is formed. determining the side of the square-shaped surface S B of length L B as the plate thickness (Fig. 2A, see FIG. 2B). Next, the plate thickness L B of several hundreds of cubic ferrite magnetic powders 21 is simply averaged (arithmetic average) to obtain the average plate thickness L BM . Next, an average plate ratio (average plate diameter L AM / average plate thickness L BM ) is determined using the average plate diameter L AM and the average plate thickness L BM determined as described above.
  • TEM transmission electron microscope
  • the binder a resin having a structure in which a crosslinking reaction is imparted to a polyurethane resin, a vinyl chloride resin, or the like is preferable.
  • the binder is not limited to these, and other resins may be appropriately blended depending on the physical properties required for the magnetic recording medium.
  • the resin to be blended is not particularly limited as long as it is a resin generally used in a coating type magnetic recording medium.
  • thermosetting resins or reactive resins examples include phenol resins, epoxy resins, urea resins, melamine resins, alkyd resins, silicone resins, polyamine resins, urea formaldehyde resins, and the like.
  • Each binder described above is introduced with a polar functional group such as —SO 3 M, —OSO 3 M, —COOM, P ⁇ O (OM) 2 for the purpose of improving the dispersibility of the magnetic powder. It may be.
  • M in the formula is a hydrogen atom or an alkali metal such as lithium, potassium, or sodium.
  • examples of the polar functional group include a side chain type having terminal groups of —NR1R2 and —NR1R2R3 + X—, and a main chain type of> NR1R2 + X—.
  • R1, R2, and R3 in the formula are hydrogen atoms or hydrocarbon groups
  • X- is a halogen element ion such as fluorine, chlorine, bromine, or iodine, or an inorganic or organic ion.
  • examples of the polar functional group include —OH, —SH, —CN, and an epoxy group.
  • the conductive particles fine particles containing carbon as a main component, for example, carbon black can be used.
  • carbon black for example, Asahi # 15, # 15HS manufactured by Asahi Carbon Co., Ltd. can be used.
  • the magnetic layer 3 is made of aluminum oxide ( ⁇ , ⁇ , or ⁇ alumina), chromium oxide, silicon oxide, diamond, garnet, emery, boron nitride, titanium carbide, silicon carbide, titanium carbide, titanium oxide (non-magnetic reinforcing particles). Rutile type or anatase type titanium oxide) may be further contained.
  • the underlayer 2 is a nonmagnetic layer containing nonmagnetic powder and a binder as main components.
  • the underlayer 2 may further contain various additives such as conductive particles and a lubricant as necessary.
  • the nonmagnetic powder may be an inorganic substance or an organic substance. Carbon black can also be used.
  • the inorganic substance include metals, metal oxides, metal carbonates, metal sulfates, metal nitrides, metal carbides, and metal sulfides.
  • the shape of the nonmagnetic powder include various shapes such as a needle shape, a spherical shape, and a plate shape, but are not limited thereto.
  • polyisocyanate may be used in combination with the resin, and this may be crosslinked and cured.
  • the polyisocyanate include toluene diisocyanate and adducts thereof, alkylene diisocyanate, and adducts thereof.
  • conductive particles of the underlayer 2 as with the conductive particles of the magnetic layer 3 described above, for example, carbon black, hybrid carbon in which carbon is attached to the surface of silica particles, or the like can be used.
  • Examples of the lubricant contained in the magnetic layer 3 and the underlayer 2 include esters of monobasic fatty acids having 10 to 24 carbon atoms and monohydric to hexahydric alcohols having 2 to 12 carbon atoms, and mixtures thereof. Esters, difatty acid esters, and trifatty acid esters can be used as appropriate.
  • lubricants include lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, oleic acid, linoleic acid, linolenic acid, elaidic acid, butyl stearate, pentyl stearate, heptyl stearate, octyl stearate , Isooctyl stearate, octyl myristate, and the like.
  • a coating for forming an underlayer is prepared by kneading and dispersing nonmagnetic powder, conductive particles, a binder and the like in a solvent.
  • a magnetic layer forming coating material is prepared by kneading and dispersing magnetic powder, conductive particles, a binder, and the like in a solvent. The same solvent, dispersing apparatus and kneading apparatus can be applied to the preparation of the magnetic layer forming paint and the underlayer forming paint.
  • Examples of the solvent used for the above-mentioned coating preparation include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, alcohol solvents such as methanol, ethanol, and propanol, methyl acetate, ethyl acetate, butyl acetate, and propyl acetate.
  • ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone
  • alcohol solvents such as methanol, ethanol, and propanol, methyl acetate, ethyl acetate, butyl acetate, and propyl acetate.
  • Ester solvents such as ethyl lactate and ethylene glycol acetate, ether solvents such as diethylene glycol dimethyl ether, 2-ethoxyethanol, tetrahydrofuran and dioxane, aromatic hydrocarbon solvents such as benzene, toluene and xylene, methylene chloride, ethylene chloride, Halogenated hydrocarbon solvents such as carbon tetrachloride, chloroform, chlorobenzene and the like. These may be used singly or may be mixed as appropriate.
  • Examples of the kneading apparatus used for the coating preparation described above include a continuous biaxial kneader, a continuous biaxial kneader capable of diluting in multiple stages, a kneader, a pressure kneader, and a roll kneader.
  • the present invention is not particularly limited to these devices.
  • a dispersing device such as a sonic disperser can be used, but is not particularly limited to these devices.
  • the base layer 2 is formed by applying the base layer-forming coating material to one main surface of the nonmagnetic support 1 and drying it.
  • the magnetic layer 3 is formed on the underlayer 2 by applying a coating for forming the magnetic layer on the underlayer 2 and drying it.
  • the cubic ferrite magnetic powder contained in the magnetic powder is magnetically oriented so that the easy axis of magnetization of the cubic ferrite magnetic powder is oriented in the thickness direction of the magnetic layer 3 or substantially the magnetic layer 3. It is preferable to direct in the thickness direction.
  • the backcoat layer 4 is formed by applying the coating material for forming the backcoat layer to the other main surface of the nonmagnetic support 1 and drying it.
  • the nonmagnetic support 1 on which the underlayer 2, the magnetic layer 3, and the backcoat layer 4 are formed is rewound around a large-diameter core and subjected to a curing treatment.
  • the nonmagnetic support 1 on which the underlayer 2, the magnetic layer 3, and the backcoat layer 4 are formed is calendered and then cut into a predetermined width. In this way, a pancake cut to a predetermined width can be obtained.
  • the step of forming the back coat layer 4 may be after the calendar process.
  • the formation process of the underlayer 2 and the magnetic layer 3 is not limited to the above example.
  • an undercoat layer-forming coating material is applied to one main surface of the nonmagnetic support 1 to form a coating film, and the magnetic layer-forming coating material is applied on the coating film in a wet state.
  • both the coating films may be dried to form the underlayer 2 and the magnetic layer 3 on one main surface of the nonmagnetic support 1.
  • the magnetic layer 3 includes cubic ferrite magnetic powder 21 that is cubic iron oxide magnetic powder. Moreover, the average plate diameter of the cubic ferrite magnetic powder 21 is 14 nm or less, the average plate ratio of the cubic ferrite magnetic powder 21 is 0.75 or more and 1.25 or less, and the ten-point average roughness of the magnetic layer 3. Rz is 35 nm or less. Therefore, it is possible to provide a magnetic recording medium capable of short wavelength recording suitable for the perpendicular magnetic recording system and having a high S / N ratio.
  • the magnetic recording medium according to the second embodiment differs from the magnetic recording medium according to the first embodiment in that the magnetic layer 3 includes ⁇ -Fe 2 O 3 magnetic powder instead of the cubic ferrite magnetic powder 21. Is different.
  • magnetic powder composed of ⁇ -Fe 2 O 3 magnetic particles is referred to as ⁇ -Fe 2 O 3 magnetic powder.
  • next-generation magnetic recording medium one having a high coercive force Hc is preferable as described in the first embodiment.
  • ⁇ -Fe 2 O 3 magnetic powder having a higher possibility of developing a coercive force Hc higher than that of hexagonal barium ferrite magnetic powder is used.
  • the ⁇ -Fe 2 O 3 magnetic powder 22 is spherical or almost spherical. Since ⁇ -Fe 2 O 3 magnetic powder 22 has a small unit cell size, it is advantageous from the viewpoint of ultrafine particles in the future. As shown in the sectional view of FIG. 3B, the ⁇ -Fe 2 O 3 magnetic powder 22 is dispersed in the magnetic layer 3. The easy magnetization axis of the ⁇ -Fe 2 O 3 magnetic powder 22 is oriented in the thickness direction of the magnetic layer 3 or substantially in the thickness direction of the magnetic layer 3.
  • the spherical or nearly spherical ⁇ -Fe 2 O 3 magnetic powder 22 can reduce the contact area between the particles in the thickness direction of the medium and suppress the aggregation of the particles compared to the hexagonal plate-shaped barium ferrite magnetic powder. . That is, the dispersibility of the magnetic powder can be enhanced.
  • a part SA of the spherical surface is exposed from the surface of the magnetic layer 3.
  • This portion S A spherical surface to perform a short wavelength recording by the magnetic head as compared with the case where the hexagonal surface of the hexagonal plate-like barium ferrite magnetic powder having the same volume performing short wavelength recording, high density recording It is advantageous from the viewpoint.
  • a portion S A spherical surface of the ⁇ -Fe 2 O 3 magnetic powder 22 is spread .
  • the average particle size (average particle size) of the ⁇ -Fe 2 O 3 magnetic powder 22 is preferably 14 nm or less, more preferably 10 nm or more and 14 nm or less.
  • the average particle diameter of the ⁇ -Fe 2 O 3 magnetic powder 22 is determined by observing a cross section of the magnetic layer with a TEM, and the particle diameter D of several hundreds of ⁇ -Fe 2 O 3 magnetic powder 22 included in the TEM image. , that determine the particle size D of a portion S B of the spherical surface (Fig. 3A, see Fig. 3B).
  • the average particle diameter D M is obtained by simply averaging (arithmetic average) the particle diameters D of several hundred ⁇ -Fe 2 O 3 magnetic powders 22.
  • ⁇ -Fe 2 O 3 magnetic powder 22 Since ⁇ -Fe 2 O 3 magnetic powder 22 because it has a spherical or substantially spherical, it is ⁇ -Fe 2 O 3 particle size of the magnetic powder 22 regardless of the measurement direction constant or nearly constant, ⁇ -Fe 2 O 3
  • the average spherical ratio (average aspect ratio) of the magnetic powder 22 is defined as 1 or about 1.
  • the ⁇ -Fe 2 O 3 magnetic powder 22 is an iron oxide particle powder whose main phase is ⁇ -Fe 2 O 3 crystals (including those in which part of the Fe site is replaced with the metal element M).
  • the ⁇ -Fe 2 O 3 crystal includes a pure ⁇ -Fe 2 O 3 crystal in which the Fe site is not substituted with another element, and a part of the Fe site is trivalent. And a crystal having the same space group as that of a pure ⁇ -Fe 2 O 3 crystal (that is, the space group is Pna2 1 ).
  • the configuration of the magnetic recording medium other than the above is the same as that of the magnetic recording medium according to the first embodiment described above.
  • the configuration in which the magnetic layer 3 includes the ⁇ -Fe 2 O 3 magnetic powder 22 instead of the cubic ferrite magnetic powder 21 has been described.
  • the configuration of the magnetic recording medium is not limited to this. Absent.
  • the magnetic layer 3 may include both the cubic ferrite magnetic powder 21 and the ⁇ -Fe 2 O 3 magnetic powder 22.
  • the average particle size (average plate diameter, average particle diameter, average major axis diameter) and average aspect ratio (average plate ratio, average spherical ratio, average needle ratio) of the magnetic powder are as follows: I asked for it.
  • the average plate diameter of the cubic magnetic powder (Co-based ferrite magnetic powder) contained in the magnetic layer was determined as follows. Using a Nanoscope IV of Veeco, a 200 nm ⁇ 200 nm area was observed in Phase mode, and using one of the grain sizes in the analysis process, the mean grain size was determined, and this was taken as the average plate diameter.
  • the average plate ratio of the cubic magnetic powder (Co-based ferrite magnetic powder) contained in the magnetic layer was determined as follows. First, a cross section of the magnetic layer was taken with a TEM at a magnification of 400,000 times. Next, from the cross-sectional TEM image, hundreds of particles with visible side surfaces were randomly selected. Next, the average plate thickness of several hundred particles selected was simply averaged (arithmetic average) to obtain the average plate thickness. Next, the average plate ratio (average plate diameter / average plate thickness) was determined using the average plate diameter and average plate thickness determined as described above.
  • the average spherical ratio of the spherical magnetic powder ( ⁇ -Fe 2 O 3 crystalline magnetic powder) contained in the magnetic layer was determined as follows. First, a cross section of the magnetic layer was taken with a TEM at a magnification of 400,000 times. Next, from the cross-sectional TEM image, hundreds of particles with visible side surfaces were randomly selected. Next, the particle size (diameter) of several hundred particles selected was measured, and they were simply averaged (arithmetic average) to obtain the average particle size.
  • the average plate diameter of hexagonal plate-like magnetic powder (hexagonal barium ferrite magnetic powder) contained in the magnetic layer was determined in the same manner as the above-mentioned “average plate diameter of cubic magnetic powder”.
  • the average plate ratio of hexagonal plate-like magnetic powder (hexagonal barium ferrite magnetic powder) contained in the magnetic layer was determined as follows. First, a cross section of the magnetic layer was taken with a TEM at a magnification of 400,000 times. Next, from the cross-sectional TEM image, hundreds of particles with visible side surfaces were randomly selected. Next, the average plate thickness of several hundred particles selected was simply averaged (arithmetic average) to obtain the average plate thickness. Next, the average plate ratio (average plate diameter / average plate thickness) was determined using the average plate diameter and average plate thickness determined as described above.
  • the average major axis diameter of the acicular magnetic powder (metal magnetic powder) contained in the magnetic layer was determined in the same manner as the “average plate diameter of the cubic magnetic powder” described above.
  • the average acicular ratio of the acicular magnetic powder (metal magnetic powder) contained in the magnetic layer was determined as follows. First, a cross section of the magnetic layer was taken with a TEM at a magnification of 400,000 times. Next, from the cross-sectional TEM image, hundreds of particles with visible side surfaces were randomly selected. Next, the short axis diameter of several hundred particles selected was simply averaged (arithmetic average) to obtain the average short axis diameter. Next, the average needle diameter ratio (average major axis diameter / average minor axis diameter) was determined using the average plate diameter and average plate thickness determined as described above.
  • Examples 1 to 6, Comparative Examples 1 to 6) The first composition having the following composition was kneaded with an extruder. Then, the 1st composition and the 2nd composition of the following mixing
  • Vinyl chloride resin 27.8 parts by mass (resin solution: resin content 30% by mass, cyclohexanone 70% by mass)
  • n-butyl stearate 2 parts by mass
  • Methyl ethyl ketone 121.3 parts by mass
  • Toluene 121.3 parts by mass
  • Cyclohexanone 60.7 parts by mass
  • a third composition having the following composition was kneaded with an extruder. Then, the 3rd composition and the 4th composition of the following mixing
  • an underlayer and a magnetic layer were formed as follows on a polyethylene naphthalate film (PEN film) as a nonmagnetic support.
  • PEN film polyethylene naphthalate film
  • the underlayer was formed on the PEN film by applying and drying the underlayer-forming paint on the 6.2 ⁇ m-thick PEN film as a nonmagnetic support.
  • the magnetic layer was formed on the underlayer by applying and drying the magnetic layer-forming paint on the underlayer. Note that the magnetic powder was magnetically oriented during drying.
  • the PEN film on which the underlayer and the magnetic layer were formed was calendered with a metal roll to smooth the surface of the magnetic layer. The ten-point average roughness Rz was adjusted as shown in Tables 1 and 2 by adjusting the conditions of the calendar process.
  • a coating material having the following composition was applied to a thickness of 0.6 ⁇ m on the surface opposite to the magnetic layer and dried.
  • Carbon black (Asahi Co., Ltd., trade name: # 80): 100 parts by mass Polyester polyurethane: 100 parts by mass (Nippon Polyurethanes, trade name: N-2304) Methyl ethyl ketone: 500 parts by mass Toluene: 400 parts by mass Cyclohexanone: 100 parts by mass
  • the PEN film on which the underlayer, the magnetic layer, and the backcoat layer were formed as described above was cut into a 1 ⁇ 2 inch (12.65 mm) width to obtain a magnetic tape.
  • Example 7 In the preparation process of the first composition, CoNiMn ferrite magnetic powder having an average particle size (average plate diameter) and an average aspect ratio (average plate ratio) shown in Table 1 was used instead of the CoNi ferrite magnetic powder.
  • the ten-point average roughness Rz was adjusted as shown in Table 1 by adjusting the calendar processing conditions. Except for this, a magnetic tape was obtained in the same manner as in Example 1.
  • Example 9 In the preparation process of the first composition, CoNiMnZn ferrite magnetic powder having an average particle size (average plate diameter) and an average aspect ratio (average plate ratio) shown in Table 1 was used instead of the CoNi ferrite magnetic powder.
  • the ten-point average roughness Rz was adjusted as shown in Table 1 by adjusting the calendar processing conditions. Except for this, a magnetic tape was obtained in the same manner as in Example 1.
  • Examples 10 to 15, Comparative Examples 7 to 12 In the preparation process of the first composition, in place of the CoNi ferrite magnetic powder, ⁇ -Fe 2 O 3 crystals having the average particle size (average particle size) and the average aspect ratio (average spherical ratio) shown in Tables 1 and 2 Magnetic powder was used. The ten-point average roughness Rz was adjusted as shown in Tables 1 and 2 by adjusting the conditions of the calendar process. Except for this, a magnetic tape was obtained in the same manner as in Example 1.
  • Magnetic properties Magnetic properties (coercive force Hc, squareness ratio Rs) were measured using an oscillating sample magnetometer (manufactured by Lakeshore) at 23 to 25 ° C. and an applied magnetic field of 15 kOe.
  • Hc, Rs magnetic properties in the direction perpendicular to the magnetic layer surface (the thickness direction of the magnetic layer) were measured.
  • Comparative Examples 17 and 18 Magnetic properties (Hc, Rs) in the horizontal direction (longitudinal direction of the magnetic layer surface) with respect to the magnetic layer surface were measured.
  • S / N ratio (S / N ratio) First, the tape was run with a commercially available LFF manufactured by Magnetic Mountain Engineering, and recording / reproduction was performed using a head for a linear tape drive to obtain the S / N ratio. The recording wavelength was 270 kFCI (kilo Flux Changes per Inch). Next, the obtained S / N ratio was evaluated according to the following criteria. A: S / N ratio is 17 dB or more. A: The S / N ratio is 15 dB or more and less than 17 dB. X: S / N ratio is less than 15 dB. The S / N ratio required to establish the recording / reproducing system is generally about 15 dB, so 15 dB was used as a criterion for determining the S / N ratio.
  • Table 1 shows the configurations and evaluation results of the magnetic tapes of Examples 1 to 15.
  • Table 2 shows the structures and evaluation results of the magnetic tapes of Comparative Examples 1 to 18.
  • a CoNi ferrite magnetic powder having a cubic shape or a substantially cubic shape that is, a rectangular parallelepiped shape having an average plate ratio of 0.75 or more and 1.25 or less
  • the average plate diameter is 10 nm or more and 14 nm or less.
  • CoNiMn ferrite magnetic powder obtained by adding Mn to CoNi ferrite and CoNiMnZn ferrite magnetic powder obtained by adding MnZn to CoNi ferrite are used. Also in this case, recording and reproduction at a short wavelength is possible by making the shape (average plate ratio), average plate diameter, coercive force, and ten-point average roughness Rz of the magnetic powder as described above, and A high S / N ratio is obtained.
  • the shape of the CoNi ferrite magnetic powder is not a cubic shape or a substantially cubic shape (that is, a rectangular parallelepiped shape having an average plate ratio of 0.75 to 1.25). Also, the ten-point average roughness Rz exceeds 35 nm.
  • Examples 10 to 15 spherical ⁇ -Fe 2 O 3 magnetic powder was used, the average particle size was 10 nm to 14 nm, the coercive force was 230 kA / m to 400 kA / m, and the ten-point average roughness Rz was 35 nm or less. It is said. For this reason, recording / reproduction of a short wavelength is possible and a high S / N ratio is obtained. In Comparative Example 7, the ten-point average roughness Rz exceeds 35 nm. For this reason, a high S / N ratio is not obtained. In Comparative Example 8, the average plate diameter of the magnetic powder exceeds 14 nm. Also, the ten-point average roughness Rz exceeds 35 nm.
  • the present technology can also employ the following configurations.
  • the magnetic recording medium according to (1), wherein the coercive force in the vertical direction is 230 kA / m or more and 400 kA / m or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

 磁気記録媒体は、支持体と、磁性粉を含む磁性層とを備える。磁性粉は、立方晶フェライトを含む磁性粒子およびε相酸化鉄を含む磁性粒子の少なくとも一方を含んでいる。磁性粉の平均粒子サイズは、10nm以上14nm以下であり、磁性粉の平均アスペクト比は、0.75以上1.25以下であり、磁性層の十点平均粗さRzは、35nm以下である。

Description

磁気記録媒体
 本技術は、磁気記録媒体に関する。詳しくは、支持体と、磁性粉を含む磁性層とを備える磁気記録媒体に関する。
 電子データの保存のため、磁気記録媒体が幅広く利用されている。その媒体の一つとして磁気テープが普及している。磁気テープとしては、可撓性の支持体上に、非磁性層と、磁性粉を含む磁性層が積層された構成のものが知られている。
 オ-ディオ用、ビデオ用、データ用などの磁気テープでは、強磁性酸化鉄、Co変性強磁性酸化鉄、CrO2、強磁性合金などの磁性粉を結合剤中に分散した磁性層が広く用いられる。これらの磁性粉は、一般には針状でその長手方向に磁化される。針状磁性粉を用いた磁気テープでは、高記録密度を実現するためには、超短波長記録(記録波長の超短波長化)が必要となる。しかし、超短波長記録を実現するために、針状磁性粉の長軸を短くすると、保磁力が低下してしまう。これは、針状粒子の保磁力の発現が針状というその形状に起因するものであるからである。さらに短波長記録がなされると、自己減磁が大きくなり、十分な出力が得られなくなる。
 そこで、LTO6(LTO:Linear Tape Openの略)対応の最近の磁気テープでは、六方晶のバリウムフェライト磁性粉が用いられている。針状磁性粒子の長手記録方式からバリウムフェライト磁性粉の垂直記録方式へ移行する高密度記録化のロードマップが描かれている(例えば非特許文献1参照)。垂直記録方式の磁気テープの磁性粉としては、立方晶のCoMn系スピネルフェライト磁性粉を用いる技術(例えば特許文献1参照)、ε-Fe23磁性粉を用いる技術(例えば特許文献2参照)などが報告されている。
特許第4687136号公報
特許第5013505号公報
IEEE Trans. Magn. Vol.47, No.1,P137(2011)
 したがって、本技術の目的は、短波長記録が可能で、かつ高いS/N比(signal-noise ratio)を有する磁気記録媒体を提供することにある。
 上述の課題を解決するために、本技術は、
 支持体と、
 磁性粉を含む磁性層と
 を備え、
 磁性粉は、立方晶フェライトを含む磁性粒子からなる磁性粉、およびε相酸化鉄を含む磁性粒子からなる磁性粉の少なくとも一方を含み、
 磁性粉の平均粒子サイズは、14nm以下であり、
 磁性粉の平均アスペクト比は、0.75以上1.25以下であり、
 十点平均粗さRzは、35nm以下である磁気記録媒体である。
 以上説明したように、本技術によれば、短波長記録が可能で、かつ高いS/N比を有する磁気記録媒体を提供できる。
図1は、本技術の第1の実施形態に係る磁気記録媒体の構成の一例を示す概略断面図である。 図2Aは、磁性粒子の形状の一例を示す概略図である。図2Bは、磁性層の断面の一例を示す断面図である。図2Cは、磁性層の表面の一例を示す平面図である。 図3Aは、磁性粒子の形状の一例を示す概略図である。図3Bは、磁性層の断面の一例を示す断面図である。図3Cは、磁性層の表面の一例を示す平面図である。 図4Aは、実施例1の磁気テープの断面TEM像である。図4Bは、図4Aの磁性層の一部を拡大して表す図である。 図5Aは、比較例13の磁気テープの断面TEM像である。図5Bは、図5Aの磁性層の一部を拡大して表す図である。 図6Aは、比較例17の磁気テープの断面TEM像である。図6Bは、図6Aの磁性層の一部を拡大して表す図である。
 バリウムフェライト磁性粉を用いた磁気記録媒体は、現在、LTO6対応の磁気記録媒体にて実用化されており、次世代の磁気記録媒体の磁性粉は、バリウムフェライト磁性粉であると一般的には考えられている。しかしながら、本発明者らの知見によれば、バリウムフェライト磁性粉には以下の問題点がある。
(1)隣接粒子間の接触面積
 バリウムフェライト粒子は六角板状(高さが低い六角柱状)を有しているため、バリウムフェライト粒子を超微粒子化した場合には、隣接するバリウムフェライト粒子の六角形状面同士が密着し、磁性粉が凝集してしまう可能性がある。すなわち、バリウムフェライト粒子を超微粒子化したとしても、バリウムフェライト粒子個々の分散が進行しない可能性がある。また、バリウムフェライト粒子に垂直磁界による垂直配向処理を施した場合、おのずと非磁性支持体表面とバリウムフェライト粒子の六角形状面が並行になる。これは、バリウムフェライト粒子の磁化容易軸方向は六角形状面に垂直な方向であるため、六角形状面が媒体表面に配列することになるためである。このような粒子配列では、媒体の厚さ方向におけるバリウムフェライト粒子の接触面積が増えるため、粒子同士が凝集する可能性が増大する。したがって、超微粒子からなる磁性粉の分散性を高めて、微粒子化の利点である高密度記録を実現するためには、隣接する超磁性粒子同士の接触面積を小さくして、できる限り凝集を抑制することが有効になると考えられる。
(2)媒体表面における粒子の露出面積
 垂直配向方式では、六角板状のバリウムフェライト粒子では、最も面積が大きい六角形状面が磁気記録媒体の表面に露出することになる。この六角形状面に磁気ヘッドにより短波長記録を行うことは、同一体積の立方体状磁性粒子の正方形状面、あるいは球状磁性粉の球面に短波長記録を行う場合に比べて、高密度記録の観点で明らかに不利である。
(3)単位格子サイズ
 バリウムフェライト粒子の結晶構造は、マグネトプラムバイト型であり単位格子のC軸が2.3nmと比較的大きい。バリウムフェライトが現在実用化されているとはいえ、将来の超微粒子化に対しては、単位格子サイズができる限り小さい立方晶酸化鉄の方が好適であると考えられる。
 本技術の実施形態に係る磁気記録媒体では、(1)隣接粒子間の接触面積、(2)媒体表面における粒子の露出面積、(3)単位格子サイズの3つの観点から、短波長の磁気記録を可能とすべく、磁性粉として以下のものを用いる。すなわち、単位結晶子が小さい立方晶などの結晶構造を有し、アスペクト比の小さい立方体状、球状またはそれらに近い形状を有し、磁気記録媒体の記録面に露出する磁性粒子の面積が小さい磁性粉を用いる。具体的には、立方体状またはほぼ立方体状を有する立方晶フェライト磁性粉、および球状またはほぼ球状を有しているε-Fe23磁性粉(ε相酸化鉄磁性粉)の少なくとも一方を用いる。
 本明細書では、立方体状またはほぼ立方体状の磁性粒子の粒子サイズ、アスペクト比をそれぞれ板径、板状比といい、球状またはほぼ球状の磁性粒子の粒子サイズ、アスペクト比をそれぞれ粒径、球状比ということがある。六角板状またはほぼ六角板状の磁性粒子の粒子サイズ、アスペクト比を板径、板状比といい、針状またはほぼ針状の磁性粒子の粒子サイズ、アスペクト比を長軸径、針状比ということがある。
 本技術の実施形態について図面を参照しながら以下の順序で説明する。
1 第1の実施形態
 1.1 磁気記録媒体の構成
 1.2 磁気記録媒体の製造方法
 1.3 効果
2 第2の実施形態
 2.1 磁気記録媒体の構成
 2.2 効果
 2.3 変形例
<1 第1の実施形態>
[1.1 磁気記録媒体の構成]
 図1に示すように、本技術の第1の実施形態に係る磁気記録媒体は、いわゆる垂直磁気記録媒体であり、非磁性支持体1と、非磁性支持体1の一方の主面上に設けられた下地層2と、下地層2上に設けられた磁性層3とを備える。磁気記録媒体が、必要に応じて、非磁性支持体1の他方の主面に設けられたバックコート層4をさらに備えるようにしてもよい。また、磁性層3上に保護層および潤滑剤層などをさらに設けるようにしてもよい。
(非磁性支持体)
 非磁性支持体1は、例えば、可撓性を有する長尺状のフィルムである。非磁性支持体1の材料としては、例えば、ポリエチレンテレフタレートなどのポリエステル類、ポリエチレン、ポリプロピレンなどのポリオレフィン類、セルローストリアセテート、セルロースダイアセテート、セルロースブチレートなどのセルロース誘導体、ポリ塩化ビニル、ポリ塩化ビニリデンなどのビニル系樹脂、ポリカーボネート、ポリイミド、ポリアミドイミドなどのプラスチック、アルミニウム合金、チタン合金などの軽金属、アルミナガラスなどのセラミックなどを用いることができる。さらには、機械的強度を高めるために、AlまたはCuの酸化物を含む薄膜を、ビニル系樹脂などを含む非磁性支持体1の主面のうち少なくとも一方に成膜したものを用いてもよい。
(磁性層)
 磁性層3は、短波長記録または超短波超記録が可能な垂直記録層である。磁性層3は、磁性層3の厚さ方向に磁気異方性を有する。すなわち、磁性層3の磁化容易軸は、磁性層3の厚さ方向に向いている。磁性層3の平均厚さは、好ましくは30nm以上100nm以下、より好ましくは50nm以上70nm以下である。
 磁性層3の保磁力Hcが、好ましくは230kA/m以上400kA/m以下である。保磁力Hcが230kA/m未満であると、高密度磁気記録媒体として必要な、波長が短い領域の出力が低下してしまい、良好なS/N比が得られなくなる虞がある。一方、保磁力Hcが400kA/mを超えてしまうと、信号書き込み時に飽和記録が難しくなってしまい、結果として良好なS/N比が得られなくなる虞がある。
 スペーシングdと遷移幅aの和“d+a”が、好ましくは30nm以下である。スペーシングdは磁気記録媒体の表面粗さに強く依存し、磁気ヘッドと磁気記録媒体の距離となる。遷移幅aは、磁化が反転している領域の幅であり、スペーシングdにも依存し、スペーシングdが小さいほど急峻な磁化転移が形成される。これは、磁気ヘッドの記録磁界形状がスペーシングdによって変化するためである。“d+a”を30nm以下に低減することで、遷移幅が狭く短波長の記録再生を実現し、良好な電磁変換特性を有する磁気記録媒体を実現できる。なお、“d+a”については、H. Neal Bertram著、Theory of Magnetic Recordingに記載されている。
 磁気記録媒体の記録面(最表面)の十点平均粗さRz、すなわち磁性層3の表面の十点平均粗さRzが、好ましくは35nm以下である。Rzが35nmを超えると、スペーシングdが大きくなり、“d+a”が30nmを超える虞がある。すなわち、良好な電磁変換特性が得られなくなる虞がある。なお、磁性層3上に保護層および潤滑剤層などの薄膜がさらに設けられている場合には、その薄膜の表面の十点平均粗さRzが、磁気記録媒体の記録面の十点平均粗さRzとなる。
 磁性層3の垂直方向に測定した角型比Rs(残留磁化Mr/飽和磁化Ms)が、好ましくは0.6以上、具体的には0.6以上1.0以下である。垂直方向の角型比が0.6未満であると、S/N比を更に向上することができる。角型比Rsの上限値は原理上1.0である。
 磁性層3は、例えば、磁性粉、結着剤および導電性粒子を含んでいる。磁性層3が、必要に応じて、潤滑剤、研磨剤、防錆剤などの添加剤をさらに含んでいてもよい。
 磁性粉は、立方晶フェライト磁性粉である。本明細書では、立方晶フェライト磁性粒子からなる磁性粉を立方晶フェライト磁性粉という。磁気記録媒体の記録密度向上のためには、磁気記録媒体が高いS/N比を有していることが望ましい。一般に記録減磁や短波長記録した際の自己減磁を抑制するために保磁力Hcを増大させ、ノイズを抑制することを考慮すると、磁性粉の粒子サイズをできるだけ小さく設計することが望ましい。特に垂直配向膜では、反磁界の影響のため保磁力Hcが高い場合の方が、高出力が得られる傾向がある。さらに高保磁力化は微粒子化した際の熱的安定性にも優れる。したがって、次世代の磁気記録媒体としては、高い保磁力Hcを有するものが好ましい。この点を考慮して、第1の実施形態では、六方晶バリウムフェライト磁性粉よりも高い保磁力Hcを発現する可能性の高い立方晶フェライト磁性粉を用いる。
 図2Aに示すように、立方晶フェライト磁性粉21が立方体状またはほぼ立方体状を有している。ここで、“立方晶フェライト磁性粉21がほぼ立方体状”とは、立方晶フェライト磁性粉21の平均板状比(平均アスペクト比(平均板径LAM/平均板厚LBM))が0.75以上1.25以下である直方体状のことをいう。立方晶フェライト磁性粉21は、単位格子サイズが小さいので、将来の超微粒子化の観点で有利である。
 図2Bの断面図に示すように、立方晶フェライト磁性粉21は、磁性層3内に分散されている。立方晶フェライト磁性粉21の磁化容易軸は、磁性層3の厚さ方向を向いているか、もしくはほぼ磁性層3の厚さ方向を向いている。すなわち、立方晶フェライト磁性粉21は、その正方形状面SAが磁性層3の厚さ方向と垂直またはほぼ垂直となるように、磁性層3内に分散されている。立方体状またはほぼ立方体状の立方晶フェライト磁性粉21では、六角板状のバリウムフェライト磁性粉に比べて、媒体の厚さ方向における粒子同士の接触面積を低減し、粒子同士の凝集を抑制できる。すなわち、磁性粉の分散性を高めることができる。
 正方形状面SAが、磁性層3の表面から露出している。この正方形状面SAに磁気ヘッドにより短波長記録を行うことは、同一体積を有する六角板状のバリウムフェライト磁性粉の六角形状面に短波長記録を行う場合に比べて、高密度記録の観点で有利である。図2Cの平面図に示すように、磁性層3の表面には、高密度記録の観点からすると、立方晶フェライト磁性粉21の正方形状面SAが敷き詰められていることが好ましい。
 立方晶フェライト磁性粒子は、いわゆるスピネルフェリ磁性粒子である。立方晶フェライト磁性粒子は、立方晶フェライトを主相とする鉄酸化物の粒子である。立方晶フェライトは、Co、Ni、Mn、Al、CuおよびZnからなる群より選ばれる1種以上を含んでいる。好ましくは、立方晶フェライトは、Coを少なくとも含み、Co以外にNi、Mn、Al、CuおよびZnからなる群より選ばれる1種以上をさらに含んでいる。より具体的には例えば、立方晶フェライトは、一般式MFe24で表される平均組成を有する。但し、Mは、Co、Ni、Mn、Al、CuおよびZnからなる群より選ばれる1種以上の金属である。好ましくは、Mは、Coと、Ni、Mn、Al、CuおよびZnからなる群より選ばれる1種以上の金属との組み合わせである。
 立方晶フェライト磁性粉21の平均板径(平均粒子サイズ)は、好ましくは14nm以下、より好ましくは10nm以上14nm以下である。平均板径が14nmを超えると、媒体表面における粒子の露出面積が大きくなり、S/N比が低下する虞がある。一方、平均板径が10nm未満であると、立方晶フェライト磁性粉21の作製が困難となる虞がある。
 ここで、立方晶フェライト磁性粉21の平均板径は、以下のようにして求められる。まず、原子間力顕微鏡(Atomic Force Microscope:AFM)により磁性層表面を観察し、そのAFM像に含まれる数百個の立方晶フェライト磁性粉21の正方形状面SAの一辺の長さLAを板径として求める(図2A、図2C参照)。次に、数百個の立方晶フェライト磁性粉21の板径を単純に平均(算術平均)して、平均板径LAMを求める。
 立方晶フェライト磁性粉21の平均板状比(平均アスペクト比(平均板径LAM/平均板厚LBM))が、0.75以上1.25以下であることが好ましい。平均板状比がこの数値範囲から外れると、立方晶フェライト磁性粉21の形状が立方体状またはほぼ立方体状ではなくなるため、凝集が発生し、短波長記録が困難になる虞がある。
 ここで、立方晶フェライト磁性粉21の平均板状比は、以下のようにして求められる。まず、上述したようにして、立方晶フェライト磁性粉21の平均板径LAMを求める。次に、透過型電子顕微鏡(Transmission Electron Microscope:TEM)により磁性層断面を観察し、そのTEM像に含まれる数百個の立方晶フェライト磁性粉21の側面の幅LB、すなわち側面を構成する正方形状面SBの辺の長さLBを板厚として求める(図2A、図2B参照)。次に、数百個の立方晶フェライト磁性粉21の板厚LBを単純に平均(算術平均)して、平均板厚LBMを求める。次に、上述のようにして求めた平均板径LAMおよび平均板厚LBMを用いて、平均板状比(平均板径LAM/平均板厚LBM)を求める。
 結着剤としては、ポリウレタン系樹脂、塩化ビニル系樹脂などに架橋反応を付与した構造の樹脂が好ましい。しかしながら結着剤はこれらに限定されるものではなく、磁気記録媒体に対して要求される物性などに応じて、その他の樹脂を適宜配合してもよい。配合する樹脂としては、通常、塗布型の磁気記録媒体において一般的に用いられる樹脂であれば、特に限定されない。
 例えば、塩化ビニル、酢酸ビニル、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-アクリロニトリル共重合体、アクリル酸エステル-アクリロニトリル共重合体、アクリル酸エステル-塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-アクリロニトリル共重合体、アクリル酸エステル-アクリロニトリル共重合体、アクリル酸エステル-塩化ビニリデン共重合体、メタクリル酸エステル-塩化ビニリデン共重合体、メタクリル酸エステル-塩化ビニル共重合体、メタクリル酸エステル-エチレン共重合体、ポリ弗化ビニル、塩化ビニリデン-アルリロニトリル共重合体、アクリロニトリル-ブタジエン共重合体、ポリアミド樹脂、ポリビニルブチラール、セルロース誘導体(セルロースアセテートブチレート、セルロースダイアセテート、セルローストリアセテート、セルロースプロピオネート、ニトロセルロース)、スチレンブタジエン共重合体、ポリエステル樹脂、アミノ樹脂、合成ゴムなどが挙げられる。
 また、熱硬化性樹脂、または反応型樹脂の例としては、フェノール樹脂、エポキシ樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂、シリコーン樹脂、ポリアミン樹脂、尿素ホルムアルデヒド樹脂などが挙げられる。
 また、上述した各結着剤には、磁性粉の分散性を向上させる目的で、-SO3M、-OSO3M、-COOM、P=O(OM)2などの極性官能基が導入されていてもよい。ここで、式中Mは、水素原子、あるいはリチウム、カリウム、ナトリウムなどのアルカリ金属である。
 更に、極性官能基としては、-NR1R2、-NR1R2R3+X-の末端基を有する側鎖型のもの、>NR1R2+X-の主鎖型のものが挙げられる。ここで、式中R1、R2、R3は、水素原子、または炭化水素基であり、X-は弗素、塩素、臭素、ヨウ素などのハロゲン元素イオン、または無機もしくは有機イオンである。また、極性官能基としては、-OH、-SH、-CN、エポキシ基なども挙げられる。
 導電性粒子としては、炭素を主成分とする微粒子、例えば、カーボンブラックを用いることができる。カーボンブラックとしては、例えば、旭カーボン社の旭#15、#15HSなどを用いることができる。また、シリカ粒子表面にカーボンを付着させたハイブリッドカーボンを用いてもよい。
 磁性層3は、非磁性補強粒子として、酸化アルミニウム(α、βまたはγアルミナ)、酸化クロム、酸化珪素、ダイヤモンド、ガーネット、エメリー、窒化ホウ素、チタンカーバイト、炭化珪素、炭化チタン、酸化チタン(ルチル型またはアナターゼ型の酸化チタン)などをさらに含有していてもよい。
(下地層)
 下地層2は、非磁性粉および結着剤を主成分として含む非磁性層である。下地層2が、必要に応じて、導電性粒子、潤滑剤などの各種添加剤をさらに含んでいてもよい。
 非磁性粉は、無機物質でも有機物質でもよい。また、カーボンブラックなども使用できる。無機物質としては、例えば、金属、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物などが挙げられる。非磁性粉の形状としては、例えば、針状、球状、板状などの各種形状が挙げられるが、これに限定されるものではない。
 結着剤としては、上述した磁性層3において適用可能なものをいずれも使用することができる。また、下地層2においては、樹脂にポリイソシアネートを併用して、これを架橋硬化させるようにしてもよい。ポリイソシアネートとしては、例えば、トルエンジイソシアネート、およびこれらの付加体、アルキレンジイソシアネート、およびこれらの付加体などが挙げられる。
 下地層2の導電性粒子としては、上述した磁性層3の導電性粒子と同様に、例えば、カーボンブラック、シリカ粒子表面にカーボンを付着させたハイブリッドカーボンなどを用いることができる。
 磁性層3および下地層2に含有させる潤滑剤としては、例えば、炭素数10~24の一塩基性脂肪酸と、炭素数2~12の1価~6価アルコールのいずれかとのエステル、これらの混合エステル、またはジ脂肪酸エステル、トリ脂肪酸エステルを適宜用いることができる。潤滑剤の具体例としては、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、オレイン酸、リノール酸、リノレン酸、エライジン酸、ステアリン酸ブチル、ステアリン酸ペンチル、ステアリン酸ヘプチル、ステアリン酸オクチル、ステアリン酸イソオクチル、ミリスチン酸オクチルなどが挙げられる。
[1.2 磁気記録媒体の製造方法]
 次に、上述の構成を有する磁気記録媒体の製造方法の一例について説明する。
 まず、非磁性粉、導電性粒子および結着剤などを溶剤に混練、分散させることにより、下地層形成用塗料を調製する。次に、磁性粉、導電性粒子および結着剤などを溶剤に混練、分散させることにより、磁性層形成用塗料を調製する。磁性層形成用塗料および下地層形成用塗料の調製には、同様の溶剤、分散装置および混練装置を適用することができる。
 上述の塗料調製に用いられる溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン系溶媒、メタノール、エタノール、プロパノールなどのアルコール系溶媒、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸プロピル、乳酸エチル、エチレングリコールアセテートなどのエステル系溶媒、ジエチレングリコールジメチルエーテル、2-エトキシエタノール、テトラヒドロフラン、ジオキサンなどのエーテル系溶媒、ベンゼン、トルエン、キシレンなどの芳香族炭化水素系溶媒、メチレンクロライド、エチレンクロライド、四塩化炭素、クロロホルム、クロロベンゼンなどのハロゲン化炭化水素系溶媒などが挙げられる。これらは単独で用いてもよく、適宜混合して用いてもよい。
 上述の塗料調製に用いられる混練装置としては、例えば、連続二軸混練機、多段階で希釈可能な連続二軸混練機、ニーダー、加圧ニーダー、ロールニーダーなどの混練装置を用いることができるが、特にこれらの装置に限定されるものではない。また、上述の塗料調製に用いられる分散装置としては、例えば、ロールミル、ボールミル、横型サンドミル、縦型サンドミル、スパイクミル、ピンミル、タワーミル、パールミル(例えばアイリッヒ社製「DCPミル」など)、ホモジナイザー、超音波分散機などの分散装置を用いることができるが、特にこれらの装置に限定されるものではない。
 次に、下地層形成用塗料を非磁性支持体1の一方の主面に塗布して乾燥させることにより、下地層2を形成する。次に、この下地層2上に磁性層形成用塗料を塗布して乾燥させることにより、磁性層3を下地層2上に形成する。なお、乾燥の際に、磁性粉に含まれる立方晶フェライト磁性粉を磁場配向させることにより、立方晶フェライト磁性粉の磁化容易軸を磁性層3の厚さ方向に向けるか、もしくはほぼ磁性層3の厚さ方向に向けることが好ましい。次に、バックコート層形成用塗料を非磁性支持体1の他方の主面に塗布して乾燥させることにより、バックコート層4を形成する。
 次に、下地層2、磁性層3、およびバックコート層4が形成された非磁性支持体1を大径コアに巻き直し、硬化処理を行う。次に、下地層2、磁性層3、およびバックコート層4が形成された非磁性支持体1に対してカレンダー処理を行った後、所定の幅に裁断する。このようにして、所定の幅に裁断されたパンケーキを得ることができる。なお、バックコート層4を形成する工程は、カレンダー処理後であってもよい。
 下地層2および磁性層3の形成工程は、上述の例に限定されるものではない。例えば、下地層形成用塗料を非磁性支持体1の一方の主面に塗布して塗膜を形成し、この湿潤状態にある塗膜上に磁性層形成用塗料を重ねて塗布して塗膜を形成した後、両塗膜を乾燥させることにより、下地層2および磁性層3を非磁性支持体1の一主面上に形成するようにしてもよい。
[1.3 効果]
 本技術の第1の実施形態に係る磁気記録媒体では、磁性層3は、立方晶酸化鉄磁性粉である立方晶フェライト磁性粉21を含んでいる。また、立方晶フェライト磁性粉21の平均板径が14nm以下であり、立方晶フェライト磁性粉21の平均板状比が0.75以上1.25以下であり、磁性層3の十点平均粗さRzが35nm以下である。したがって、垂直磁気記録方式に好適な短波長記録が可能で、かつ高いS/N比を有する磁気記録媒体を提供できる。
<2 第2の実施形態>
[2.1 磁気記録媒体の構成]
 第2の実施形態に係る磁気記録媒体は、磁性層3が立方晶フェライト磁性粉21に代えてε-Fe23磁性粉を含む点において、第1の実施形態に係る磁気記録媒体とは異なっている。本明細書では、ε-Fe23磁性粒子からなる磁性粉をε-Fe23磁性粉という。
 次世代の磁気記録媒体としては、第1の実施形態にて説明したように、高い保磁力Hcを有するものが好ましい。この点を考慮して、第2の実施形態では、六方晶バリウムフェライト磁性粉よりも高い保磁力Hcを発現する可能性の高いε-Fe23磁性粉を用いる。
 図3Aに示すように、ε-Fe23磁性粉22が球状またはほぼ球状を有している。ε-Fe23磁性粉22は、単位格子サイズが小さいので、将来の超微粒子化の観点で有利である。図3Bの断面図に示すように、ε-Fe23磁性粉22は、磁性層3内に分散されている。ε-Fe23磁性粉22の磁化容易軸は、磁性層3の厚さ方向を向いているか、もしくはほぼ磁性層3の厚さ方向を向いている。球状またはほぼ球状のε-Fe23磁性粉22では、六角板状のバリウムフェライト磁性粉に比べて、媒体の厚さ方向における粒子同士の接触面積を低減し、粒子同士の凝集を抑制できる。すなわち、磁性粉の分散性を高めることができる。
 球状面の一部分SAが、磁性層3の表面から露出している。この球状面の一部分SAに磁気ヘッドにより短波長記録を行うことは、同一体積を有する六角板状のバリウムフェライト磁性粉の六角形状面に短波長記録を行う場合に比べて、高密度記録の観点で有利である。図3Cの平面図に示すように、磁性層3の表面には、高密度記録の観点からすると、ε-Fe23磁性粉22の球状面の一部分SAが敷き詰められていることが好ましい。
 ε-Fe23磁性粉22の平均粒径(平均粒子サイズ)は、好ましくは14nm以下、より好ましくは10nm以上14nm以下である。ここで、ε-Fe23磁性粉22の平均粒径は、TEMにより磁性層断面を観察し、そのTEM像に含まれる数百個のε-Fe23磁性粉22の粒径D、すなわち球状面の一部分SBの粒径Dを求める(図3A、図3B参照)。次に、数百個のε-Fe23磁性粉22の粒径Dを単純に平均(算術平均)して、平均粒径DMを求める。ε-Fe23磁性粉22は球状またはほぼ球状を有するため、ε-Fe23磁性粉22の粒径は測定方向に依らず一定またはほぼ一定であることから、ε-Fe23磁性粉22の平均球状比(平均アスペクト比)は1または約1と定義する。
 ε-Fe23磁性粉22は、ε-Fe23結晶(Feサイトの一部が金属元素Mで置換されたものを含む)を主相とする鉄酸化物の粒子粉である。金属元素Mは、例えば、Al、GaおよびInからなる群より選ばれる1種以上である。但し、鉄酸化物におけるMとFeのモル比をM:Fe=x:(2-x)と表すとき、0≦x<1である。
 本技術において、ε-Fe23結晶には、特に断らない限り、Feサイトが他の元素で置換されていない純粋なε-Fe23結晶の他、Feサイトの一部が3価の金属元素Mで置換されており、純粋なε-Fe23結晶と空間群が同じである(すなわち空間群がPna21である)結晶が含まれる。
 上記以外の磁気記録媒体の構成は、上述の第1の実施形態に係る磁気記録媒体と同様である。
[2.2 効果]
 本技術の第2の実施形態では、第1の実施形態と同様に、垂直磁気記録方式に好適な短波長記録が可能で、かつ高いS/N比を有する磁気記録媒体を提供できる。
[2.3 変形例]
 第2の実施形態では、磁性層3が立方晶フェライト磁性粉21に代えてε-Fe23磁性粉22を含む構成について説明したが、磁気記録媒体の構成はこれに限定されるものではない。例えば、磁性層3が立方晶フェライト磁性粉21とε-Fe23磁性粉22の両方を含んでいてもよい。
 以下、実施例により本技術を具体的に説明するが、本技術はこれらの実施例のみに限定されるものではない。
 以下の実施例および比較例において、磁性粉の平均粒子サイズ(平均板径、平均粒径、平均長軸径)および平均アスペクト比(平均板状比、平均球状比、平均針状比)は以下のようにして求めた。
(立方体状磁性粉の平均板径)
 磁性層に含まれる立方体状磁性粉(Co系フェライト磁性粉)の平均板径を以下のようにして求めた。Veeco社のNanoscopeIVを用いて200nm×200nmのエリアをPhaseモードで粒子観察を行い、解析処理の一つのGrain Sizeを用いて、Mean Grain sizeを求め、これを平均板径とした。
(立方体状磁性粉の平均板状比)
 磁性層に含まれる立方体状磁性粉(Co系フェライト磁性粉)の平均板状比を以下のようにして求めた。まず、TEMで磁性層断面を40万倍で撮影した。次に、断面TEM像から、側面が見える粒子を無作為に数百個選び出した。次に、選び出した数百個の粒子の平均板厚を単純に平均(算術平均)して、平均板厚を求めた。次に、上述のようにして求められた平均板径および平均板厚を用いて、平均板状比(平均板径/平均板厚)を求めた。
(球状磁性粉の平均粒径)
 磁性層に含まれる球状磁性粉(ε-Fe23結晶磁性粉)の平均球状比を以下のようにして求めた。まず、TEMで磁性層断面を40万倍で撮影した。次に、断面TEM像から、側面が見える粒子を無作為に数百個選び出した。次に、選び出した数百個の粒子の粒径(直径)を測定し、それらを単純に平均(算術平均)して、平均粒径を求めた。
(球状磁性粉の平均球状比)
 磁性粉が球状である場合には、粒径は測定方向に依らず一定であることから、平均球状比を実測値から求めずに、“1”と定義した。
(六角板状磁性粉の平均板径)
 上述の“立方体状磁性粉の平均板径”と同様にして、磁性層に含まれる六角板状磁性粉(六方晶バリウムフェライト磁性粉)の平均板径を求めた。
(六角板状磁性粉の平均板状比)
 磁性層に含まれる六角板状磁性粉(六方晶バリウムフェライト磁性粉)の平均板状比を以下のようにして求めた。まず、TEMで磁性層断面を40万倍で撮影した。次に、断面TEM像から、側面が見える粒子を無作為に数百個選び出した。次に、選び出した数百個の粒子の平均板厚を単純に平均(算術平均)して、平均板厚を求めた。次に、上述のようにして求められた平均板径および平均板厚を用いて、平均板状比(平均板径/平均板厚)を求めた。
(針状磁性粉の平均長軸径)
 上述の“立方体状磁性粉の平均板径”と同様にして、磁性層に含まれる針状磁性粉(メタル磁性粉)の平均長軸径を求めた。
(針状磁性粉の平均針状比)
 磁性層に含まれる針状磁性粉(メタル磁性粉)の平均針状比を以下のようにして求めた。まず、TEMで磁性層断面を40万倍で撮影した。次に、断面TEM像から、側面が見える粒子を無作為に数百個選び出した。次に、選び出した数百個の粒子の短軸径を単純に平均(算術平均)して、平均短軸径を求めた。次に、上述のようにして求められた平均板径および平均板厚を用いて、平均針状比(平均長軸径/平均短軸径)を求めた。
(実施例1~6、比較例1~6)
 下記配合の第一組成物をエクストルーダで混練した。その後、ディスパーを備えた攪拌タンクに、第一組成物と、下記配合の第二組成物を加えて予備混合を行った。その後、さらにサンドミル混合を行い、フィルター処理を行い、磁性層形成用塗料を調製した。
(第一組成物)
CoNiフェライト結晶磁性粉:100質量部
(但し、CoNiフェライト結晶磁性粉としては、表1、表2に示す平均粒子サイズ(平均板径)および平均アスペクト比(平均板状比)を有するものを用いた。)
塩化ビニル系樹脂(シクロヘキサノン溶液30質量%):55.6質量部
(重合度300、Mn=10000、極性基としてOSO3K=0.07mmol/g、2級OH=0.3mmol/gを含有する。)
酸化アルミニウム粉末:5質量部
(α-Al23、平均粒径0.2μm)
カーボンブラック:2質量部
(東海カーボン社製、商品名:シーストTA)
(第二組成物)
塩化ビニル系樹脂:27.8質量部
(樹脂溶液:樹脂分30質量%、シクロヘキサノン70質量%)
n-ブチルステアレート:2質量部
メチルエチルケトン:121.3質量部
トルエン:121.3質量部
シクロヘキサノン:60.7質量部
 次に、下記配合の第三組成物をエクストルーダで混練した。その後、ディスパーを備えた攪拌タンクに、第三組成物と、下記配合の第四組成物を加えて予備混合を行った。その後、さらにサンドミル混合を行い、フィルター処理を行い、下地層形成用塗料を調製した。
(第三組成物)
針状酸化鉄粉末:100質量部
(α-Fe23、平均長軸長0.15μm)
塩化ビニル系樹脂:55.6質量部
(樹脂溶液:樹脂分30質量%、シクロヘキサノン70質量%)
カーボンブラック:10質量部
(平均粒径20nm)
(第四組成物)
ポリウレタン系樹脂UR8200(東洋紡績製):18.5質量部
n-ブチルステアレート:2質量部
メチルエチルケトン:108.2質量部
トルエン:108.2質量部
シクロヘキサノン:18.5質量部
 次に、上述のようにして調製した磁性層形成用塗料、および下地層形成用塗料のそれぞれに、硬化剤として、ポリイソシアネート(商品名:コロネートL、日本ポリウレタン社製)を4質量部と、ミリスチン酸を2質量部添加した。
 次に、これらの塗料を用いて、非磁性支持体であるポリエチレンナフタレートフィルム(PENフィルム)上に下地層、および磁性層を以下のようにして形成した。まず、非磁性支持体である厚さ6.2μmのPENフィルム上に、下地層形成用塗料を塗布、乾燥させることにより、PENフィルム上に下地層を形成した。次に、下地層上に、磁性層形成用塗料を塗布、乾燥させることにより、下地層上に磁性層を形成した。なお、乾燥の際に、磁性粉を磁場配向させた。次に、下地層、および磁性層が形成されたPENフィルムに対して、金属ロールによるカレンダー処理を行い、磁性層表面を平滑化した。なお、カレンダー処理の条件を調整することで、十点平均粗さRzを表1、表2に示すように調整した。
 次に、バックコート層として、磁性層とは反対側の面に、下記の組成の塗料を膜厚0.6μmに塗布し乾燥処理を行った。
カーボンブラック(旭社製、商品名:#80):100質量部
ポリエステルポリウレタン:100質量部
(日本ポリウレタン社製、商品名:N-2304)
メチルエチルケトン:500質量部
トルエン:400質量部
シクロヘキサノン:100質量部
 次に、上述のようにして下地層、磁性層、およびバックコート層が形成されたPENフィルムを1/2インチ(12.65mm)幅に裁断し、磁気テープを得た。
(実施例7、8)
 第一組成物の調製工程において、CoNiフェライト磁性粉に代えて、表1に示す平均粒子サイズ(平均板径)および平均アスペクト比(平均板状比)を有するCoNiMnフェライト磁性粉を用いた。カレンダー処理の条件を調整することで、十点平均粗さRzを表1に示すように調整した。これ以外のことは、実施例1と同様にして磁気テープを得た。
(実施例9)
 第一組成物の調製工程において、CoNiフェライト磁性粉に代えて、表1に示す平均粒子サイズ(平均板径)および平均アスペクト比(平均板状比)を有するCoNiMnZnフェライト磁性粉を用いた。カレンダー処理の条件を調整することで、十点平均粗さRzを表1に示すように調整した。これ以外のことは、実施例1と同様にして磁気テープを得た。
(実施例10~15、比較例7~12)
 第一組成物の調製工程において、CoNiフェライト磁性粉に代えて、表1、表2に示す平均粒子サイズ(平均粒径)および平均アスペクト比(平均球状比)を有するε-Fe23結晶磁性粉を用いた。カレンダー処理の条件を調整することで、十点平均粗さRzを表1、表2に示すように調整した。これ以外のことは、実施例1と同様にして磁気テープを得た。
(比較例13~16)
 第一組成物の調製工程において、CoNiフェライト磁性粉に代えて、表2に示す平均粒子サイズ(平均板径)および平均アスペクト比(平均板状比)を有する六方晶バリウムフェライト磁性粉を用いた。カレンダー処理の条件を調整することで、十点平均粗さRzを表2に示すように調整した。これ以外のことは、実施例1と同様にして磁気テープを得た。
(比較例17、18)
 第一組成物の調製工程において、CoNiフェライト磁性粉に代えて、表2に示す平均粒子サイズ(平均長軸径)および平均アスペクト比(平均針状比)を有する針状メタル磁性粉を用いた。カレンダー処理の条件を調整することで、十点平均粗さRzを表2に示すように調整した。これ以外のことは、実施例1と同様にして磁気テープを得た。
(磁気特性)
 磁気特性(保磁力Hc、角型比Rs)は、振動試料型磁束計(Lakeshore社製)を用い、23~25℃で印加磁界15kOeで測定した。なお、実施例1~15、比較例1~16では、磁性層表面に対して垂直方向(磁性層の厚さ方向)の磁気特性(Hc、Rs)を測定し、比較例17、18では、磁性層表面に対して水平方向(磁性層表面の長手方向)の磁気特性(Hc、Rs)を測定した。
(十点平均粗さRz)
 Veeco社のNanoscopeIVを用いてタッピングAFM(Atomic Force Microscope)のモードで40μmμm×40μmのエリアの測定行い、解析処理の一つRoughnessを用いて十点平均粗さRzを導出した。
(d+a)
 まず、磁気テープの周波数特性から求められるスペーシングdと遷移幅aの和(d+a)を求めた(H. Neal Bertram著、Theory of Magnetic Recording参照)。次に、この和(d+a)を評価指標とし、以下のように評価した。なお、スペーシングdに影響を与える十点平均粗さRzは、テープ作製後の金属ロールによるプレス処理(カレンダー処理)により変化させた。
 ○:d+aが30nm以下である
 ×:d+aが30nmを超える
(S/N比)
 まず、市販の磁気Mountain Engineering社製のLFFでテープを走行させ、リニアテープドライブ用のヘッドを用いて記録再生を行うことにより、S/N比を求めた。なお、記録波長を270kFCI(kilo Flux Changes per Inch)とした。次に、求めたS/N比を以下の基準で評価した。
 ◎:S/N比が17dB以上である。
 ○:S/N比が15dB以上17dB未満である。
 ×:S/N比が15dB未満である。
 なお、記録再生システムを成立させるのに最低必要となるS/N比は、一般に15dB程度といわれているため、15dBをS/N比の判断基準とした。
(断面TEM像)
 実施例1、比較例13、17の磁気テープの断面TEM像を取得した。その結果を図4A、図4B、図5A、図5B、図6A、図6Bに示す。
 表1は、実施例1~15の磁気テープの構成および評価結果を示す。
Figure JPOXMLDOC01-appb-T000001
 表2は、比較例1~18の磁気テープの構成および評価結果を示す。
Figure JPOXMLDOC01-appb-T000002
 表1、表2から以下のことがわかる。
 実施例1~15では、十点平均粗さRzは35nm以下であるため、d+aが30nm以下になっている。
 比較例1、2、5~8、11~18では、十点平均粗さRzは35nmを超えているため、d+aが30nmを超えている。
 実施例1~6では、立方体状またはほぼ立方体状(すなわち平均板状比0.75以上1.25以下の直方体状)のCoNiフェライト磁性粉を用い、平均板径を10nm以上14nm以下、保磁力を230kA/m以上400kA/m以下、十点平均粗さRzを35nm以下としている。このため、短波長の記録再生が可能で、かつ高いS/N比が得られる。
 実施例7~9では、CoNiフェライトにMnを添加したCoNiMnフェライト磁性粉、およびCoNiフェライトにMnZnを添加したCoNiMnZnフェライト磁性粉を用いている。この場合にも、磁性粉の形状(平均板状比)、平均板径、保磁力、および十点平均粗さRzを、上述のようにすることで、短波長の記録再生が可能で、かつ高いS/N比が得られる。
 比較例1では、CoNiフェライト磁性粉の形状が、立方体状またはほぼ立方体状(すなわち平均板状比0.75以上1.25以下の範囲の直方体状)でない。また、十点平均粗さRzも35nmを超えている。このため、高いS/N比が得られていない。
 比較例2では、CoNiフェライト磁性粉の形状が、立方体状またはほぼ立方体状ではない。また、磁性粉の平均板径が、14nmを超えている。さらに、十点平均粗さRzが35nmを超えている。このため、高いS/N比が得られていない。
 比較例3では、保磁力が230kA/m未満であるため、高いS/N比が得られていない。
 比較例4では、CoNiフェライト磁性粉の磁性粉の平均板径が14nmを超えている。また、保磁力が400kA/mを超えている。このため、高いS/N比が得られていない。
 比較例5、6では、十点平均粗さRzが35nmを超えている。このため、高いS/N比が得られていない。
 実施例10~15では、球状のε―Fe23磁性粉を用い、平均粒径を10nm以上14nm以下、保磁力を230kA/m以上400kA/m以下、十点平均粗さRzを35nm以下としている。このため、短波長の記録再生が可能で、かつ高いS/N比が得られる。
 比較例7では、十点平均粗さRzが35nmを超えている。このため、高いS/N比が得られていない。
 比較例8では、磁性粉の平均板径が14nmを超えている。また、十点平均粗さRzも35nmを超えている。このため、高いS/N比が得られていない。
 比較例9では、保磁力が230kA/m未満である。このため、高いS/N比が得られていない。
 比較例10では、磁性粉の平均板径が14nmを超えている。また、保磁力が400kA/mを超えている。このため、高いS/N比が得られていない。
 比較例11、12では、十点平均粗さRzが35nmを超えている。このため、高いS/N比が得られていない。
 比較例13~16では、六方晶バリウムフェライト磁性粉を用いているので、平均板径が10nm以上14nm以下の範囲を外れ、また平均板状比も0.75以上1.25以下の範囲を外れている。さらに、十点平均粗さRzが35nmを超えている。このため、高いS/N比が得られていない。
 比較例17、18では、針状メタル磁性粉を用いているので、平均長軸径が10nm以上14nm以下の範囲を外れ、また平均針状比も0.75以上1.25以下の範囲を外れている。更に、十点平均粗さRzも35nmを超えている。このため、高いS/N比が得られていない。
 以上、本技術の実施形態およびその変形例、ならびに実施例について具体的に説明したが、本技術は、上述の実施形態およびその変形例、ならびに実施例に限定されるものではなく、本技術の技術的思想に基づく各種の変形が可能である。
 例えば、上述の実施形態およびその変形例、ならびに実施例において挙げた構成、方法、工程、形状、材料および数値などはあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値などを用いてもよい。
 また、上述の実施形態およびその変形例、ならびに実施例の構成、方法、工程、形状、材料および数値などは、本技術の主旨を逸脱しない限り、互いに組み合わせることが可能である。
 また、本技術は以下の構成を採用することもできる。
(1)
 支持体と、
 磁性粉を含む磁性層と
 を備え、
 上記磁性粉は、立方晶フェライトを含む磁性粒子からなる磁性粉、およびε相酸化鉄を含む磁性粒子からなる磁性粉の少なくとも一方を含み、
 上記磁性粉の平均粒子サイズは、14nm以下であり、
 上記磁性粉の平均アスペクト比は、0.75以上1.25以下であり、
 十点平均粗さRzは、35nm以下である磁気記録媒体。
(2)
 垂直方向の保磁力は、230kA/m以上400kA/m以下である(1)に記載の磁気記録媒体。
(3)
 垂直方向の角型比は、0.6以上である(1)または(2)に記載の磁気記録媒体。
(4)
 上記立方晶フェライトは、Coを含んでいる(1)から(3)のいずれかに記載の磁気記録媒体。
(5)
 上記立方晶フェライトは、Ni、MnおよびZnのうちの1種以上をさらに含んでいる(4)に記載の磁気記録媒体。
(6)
 上記立方晶フェライトを含む磁性粒子からなる磁性粉は、立方体状またはほぼ立方体状を有し、
 上記ε相酸化鉄を含む磁性粒子からなる磁性粉は、球状またはほぼ球状を有している(1)から(5)のいずれかに記載の磁気記録媒体。
(7)
 上記磁性層は、垂直記録層である(1)から(6)のいずれかに記載の磁気記録媒体。
(8)
 上記磁性粉は、立方晶フェライトを含む磁性粒子からなる磁性粉を含んでいる(1)から(7)のいずれかに記載の磁気記録媒体。
(9)
 上記磁性粉は、ε相酸化鉄を含む磁性粒子からなる磁性粉を含んでいる(1)から(7)のいずれかに記載の磁気記録媒体。
(10)
 上記磁性粉の平均アスペクト比は、1または約1である(9)に記載の磁気記録媒体。
 1  非磁性支持体
 2  下地層
 3  磁性層
 4  バックコート層
 21  立方晶フェライト磁性粉
 22  ε-Fe23磁性粉
 LAM  平均板径
 LBM  平均板厚
 SA、SB  正方形状面

Claims (10)

  1.  支持体と、
     磁性粉を含む磁性層と
     を備え、
     上記磁性粉は、立方晶フェライトを含む磁性粒子からなる磁性粉、およびε相酸化鉄を含む磁性粒子からなる磁性粉の少なくとも一方を含み、
     上記磁性粉の平均粒子サイズは、14nm以下であり、
     上記磁性粉の平均アスペクト比は、0.75以上1.25以下であり、
     十点平均粗さRzは、35nm以下である磁気記録媒体。
  2.  垂直方向の保磁力は、230kA/m以上400kA/m以下である請求項1に記載の磁気記録媒体。
  3.  垂直方向の角型比は、0.6以上である請求項1に記載の磁気記録媒体。
  4.  上記立方晶フェライトは、Coを含んでいる請求項1に記載の磁気記録媒体。
  5.  上記立方晶フェライトは、Ni、MnおよびZnのうちの1種以上をさらに含んでいる請求項4に記載の磁気記録媒体。
  6.  上記立方晶フェライトを含む磁性粒子からなる磁性粉は、立方体状またはほぼ立方体状を有し、
     上記ε相酸化鉄を含む磁性粒子からなる磁性粉は、球状またはほぼ球状を有している請求項1に記載の磁気記録媒体。
  7.  上記磁性層は、垂直記録層である請求項1に記載の磁気記録媒体。
  8.  上記磁性粉は、立方晶フェライトを含む磁性粒子からなる磁性粉を含んでいる請求項1に記載の磁気記録媒体。
  9.  上記磁性粉は、ε相酸化鉄を含む磁性粒子からなる磁性粉を含んでいる請求項1に記載の磁気記録媒体。
  10.  上記磁性粉の平均アスペクト比は、1または約1である請求項9に記載の磁気記録媒体。
PCT/JP2015/002029 2014-06-24 2015-04-10 磁気記録媒体 WO2015198514A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016528986A JP6565908B2 (ja) 2014-06-24 2015-04-10 磁気記録媒体
CN201580032701.6A CN106471581B (zh) 2014-06-24 2015-04-10 磁记录介质
US15/316,436 US10204651B2 (en) 2014-06-24 2015-04-10 Magnetic recording medium having cubic ferrite or e-phase iron oxide magnetic particles
US16/176,825 US10839848B2 (en) 2014-06-24 2018-10-31 Magnetic recording medium having cubic ferrite or e-phase iron oxide magnetic particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-129517 2014-06-24
JP2014129517 2014-06-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/316,436 A-371-Of-International US10204651B2 (en) 2014-06-24 2015-04-10 Magnetic recording medium having cubic ferrite or e-phase iron oxide magnetic particles
US16/176,825 Continuation US10839848B2 (en) 2014-06-24 2018-10-31 Magnetic recording medium having cubic ferrite or e-phase iron oxide magnetic particles

Publications (1)

Publication Number Publication Date
WO2015198514A1 true WO2015198514A1 (ja) 2015-12-30

Family

ID=54937628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002029 WO2015198514A1 (ja) 2014-06-24 2015-04-10 磁気記録媒体

Country Status (4)

Country Link
US (2) US10204651B2 (ja)
JP (3) JP6565908B2 (ja)
CN (1) CN106471581B (ja)
WO (1) WO2015198514A1 (ja)

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017125981A1 (ja) * 2016-01-20 2017-07-27 ソニー株式会社 磁気記録媒体
WO2018062478A1 (ja) * 2016-09-30 2018-04-05 Dowaエレクトロニクス株式会社 イプシロン型鉄酸化物磁性粒子及びその製造方法、磁性粒子から構成される磁性粉ならびに磁性塗料および磁気記録媒体
JP2018133120A (ja) * 2017-02-14 2018-08-23 マクセルホールディングス株式会社 磁気記録媒体及びその記録再生機構
JP2018181396A (ja) * 2017-04-20 2018-11-15 マクセルホールディングス株式会社 高記録密度用磁気記録媒体及びその記録再生機構
JP2018206463A (ja) * 2017-06-05 2018-12-27 マクセルホールディングス株式会社 高記録密度用磁気記録媒体及びその記録再生機構
JP2019003711A (ja) * 2017-06-09 2019-01-10 富士フイルム株式会社 磁気記録媒体
JP2019003712A (ja) * 2017-06-09 2019-01-10 富士フイルム株式会社 磁気記録媒体
JP2019021366A (ja) * 2017-07-19 2019-02-07 富士フイルム株式会社 磁気記録媒体
JP2019021365A (ja) * 2017-07-19 2019-02-07 富士フイルム株式会社 磁気テープ
JP2019023950A (ja) * 2017-07-24 2019-02-14 マクセルホールディングス株式会社 磁気記録媒体
WO2019159466A1 (ja) * 2018-02-16 2019-08-22 ソニー株式会社 磁気記録媒体
JP2019175532A (ja) * 2018-03-29 2019-10-10 富士フイルム株式会社 磁気記録媒体、イプシロン型酸化鉄系化合物の粒子の製造方法、及び磁気記録媒体の製造方法
JP2019212354A (ja) * 2018-06-07 2019-12-12 マクセルホールディングス株式会社 熱アシスト記録用塗布型磁気記録媒体及びそれを用いたサーボ信号記録装置
JP2020017332A (ja) * 2015-04-13 2020-01-30 ソニー株式会社 磁気記録媒体
WO2020050371A1 (ja) * 2018-09-05 2020-03-12 ソニー株式会社 磁気記録媒体
US10614847B2 (en) 2016-12-28 2020-04-07 Maxell Holdings, Ltd. Magnetic recording medium
US10720181B1 (en) 2019-04-26 2020-07-21 Sony Corporation Magnetic recording cartridge
JP2020113356A (ja) * 2019-01-16 2020-07-27 富士フイルム株式会社 マイクロ波アシスト記録用磁気記録媒体、磁気記録装置、および磁気記録媒体の製造方法
JP2020140748A (ja) * 2019-02-28 2020-09-03 富士フイルム株式会社 磁気記録媒体、イプシロン型酸化鉄粒子の製造方法、及び磁気記録媒体の製造方法
US10796724B1 (en) 2019-04-05 2020-10-06 Sony Corporation Magnetic recording medium
JP2020166918A (ja) * 2019-10-23 2020-10-08 ソニー株式会社 磁気記録媒体
JP2020166922A (ja) * 2019-11-14 2020-10-08 ソニー株式会社 磁気記録媒体
JP2020166914A (ja) * 2019-03-29 2020-10-08 ソニー株式会社 磁気記録媒体
JPWO2020202584A1 (ja) * 2019-03-29 2020-10-08
JP2020166915A (ja) * 2019-03-29 2020-10-08 ソニー株式会社 磁気記録媒体
JP2020166916A (ja) * 2019-03-29 2020-10-08 ソニー株式会社 磁気記録媒体
JP2020166925A (ja) * 2020-06-18 2020-10-08 ソニー株式会社 磁気記録媒体
JP2020166920A (ja) * 2019-10-23 2020-10-08 ソニー株式会社 磁気記録媒体
JP2020166921A (ja) * 2019-11-14 2020-10-08 ソニー株式会社 磁気記録媒体
JP2020166923A (ja) * 2019-11-14 2020-10-08 ソニー株式会社 磁気記録媒体
JP2020173882A (ja) * 2019-07-18 2020-10-22 ソニー株式会社 磁気記録媒体
JP2020173883A (ja) * 2019-10-28 2020-10-22 ソニー株式会社 磁気記録媒体およびカートリッジ
JP2020173884A (ja) * 2019-12-11 2020-10-22 ソニー株式会社 磁気記録媒体およびカートリッジ
JP2020184399A (ja) * 2019-11-14 2020-11-12 ソニー株式会社 磁気記録カートリッジ
JP2020184389A (ja) * 2019-04-26 2020-11-12 ソニー株式会社 磁気記録媒体
JP2020184400A (ja) * 2020-06-17 2020-11-12 ソニー株式会社 磁気記録媒体
JP2020184388A (ja) * 2019-04-26 2020-11-12 ソニー株式会社 磁気記録媒体
JP2020184398A (ja) * 2019-09-18 2020-11-12 ソニー株式会社 磁気記録媒体
JP2020184396A (ja) * 2019-09-18 2020-11-12 ソニー株式会社 磁気記録カートリッジ
JP2020184397A (ja) * 2019-09-18 2020-11-12 ソニー株式会社 磁気記録媒体
JP2021007063A (ja) * 2020-06-05 2021-01-21 ソニー株式会社 カートリッジ
WO2021033333A1 (ja) * 2019-08-20 2021-02-25 ソニー株式会社 磁気記録媒体、磁気記録再生装置および磁気記録媒体カートリッジ
WO2021033340A1 (ja) * 2019-08-16 2021-02-25 ソニー株式会社 磁気記録媒体、テープカートリッジ、及びデータ処理方法
WO2021033339A1 (ja) * 2019-08-16 2021-02-25 ソニー株式会社 磁気記録媒体
WO2021059542A1 (ja) * 2019-09-26 2021-04-01 ソニー株式会社 磁気記録媒体、磁気記録再生装置および磁気記録媒体カートリッジ
JP2021064436A (ja) * 2019-09-26 2021-04-22 ソニー株式会社 磁気記録媒体、磁気記録再生装置および磁気記録媒体カートリッジ
JP2022017509A (ja) * 2020-06-05 2022-01-25 ソニーグループ株式会社 カートリッジ
US11270726B2 (en) 2019-03-27 2022-03-08 Fujifilm Corporation Magnetic recording medium and magnetic recording and reproducing device
JP7052940B1 (ja) 2021-11-05 2022-04-12 ソニーグループ株式会社 カートリッジ
JP2022088604A (ja) * 2022-02-10 2022-06-14 ソニーグループ株式会社 カートリッジ

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10255938B2 (en) * 2016-02-01 2019-04-09 Maxell Holdings, Ltd. Magnetic recording medium using ϵ-iron oxide particle magnetic powder
US11031034B2 (en) * 2016-12-20 2021-06-08 Sony Corporation Magnetic recording medium having a recording layer including epsilon-iron oxide
US10861487B2 (en) * 2017-06-05 2020-12-08 Maxell Holdings, Ltd. High recording density magnetic recording medium and recording/reproduction mechanism for the same
JP6691512B2 (ja) 2017-06-23 2020-04-28 富士フイルム株式会社 磁気記録媒体
JP6884220B2 (ja) 2017-09-29 2021-06-09 富士フイルム株式会社 磁気テープおよび磁気記録再生装置
WO2019065199A1 (ja) * 2017-09-29 2019-04-04 富士フイルム株式会社 磁気テープおよび磁気記録再生装置
JP7029319B2 (ja) * 2018-03-13 2022-03-03 マクセル株式会社 熱アシスト記録用塗布型磁気記録媒体及びそれを用いた熱アシスト磁気記録装置と熱アシスト磁気記録方法
US11361792B2 (en) 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11514944B2 (en) 2018-03-23 2022-11-29 Fujifilm Corporation Magnetic tape and magnetic tape device
US11514943B2 (en) 2018-03-23 2022-11-29 Fujifilm Corporation Magnetic tape and magnetic tape device
US11361793B2 (en) 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
JP7036323B2 (ja) * 2018-03-29 2022-03-15 国立大学法人 東京大学 記録方法、記録装置、再生方法、及び、再生装置
JP7207399B2 (ja) * 2018-03-30 2023-01-18 ソニーグループ株式会社 磁性粉末の製造方法および磁気記録媒体の製造方法
JP6830931B2 (ja) 2018-07-27 2021-02-17 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP6784738B2 (ja) 2018-10-22 2020-11-11 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP6830945B2 (ja) 2018-12-28 2021-02-17 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP7042737B2 (ja) 2018-12-28 2022-03-28 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP7003073B2 (ja) 2019-01-31 2022-01-20 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
US11238890B2 (en) * 2019-03-27 2022-02-01 Sony Corporation Servo signal verifying device for magnetic recording tape, servo writer, method of producing magnetic recording tape, and servo signal reading head
JP7132192B2 (ja) * 2019-08-09 2022-09-06 富士フイルム株式会社 磁気記録媒体および磁気記録再生装置
JP6778804B1 (ja) 2019-09-17 2020-11-04 富士フイルム株式会社 磁気記録媒体および磁気記録再生装置
JP2021054710A (ja) * 2019-09-30 2021-04-08 Dowaエレクトロニクス株式会社 鉄系酸化物磁性粉およびその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005109191A (ja) * 2003-09-30 2005-04-21 Meiji Univ スピネル型フェリ磁性粉及び当該磁性粉を含有する磁気記録用媒体
JP2006229037A (ja) * 2005-02-18 2006-08-31 Meiji Univ スピネル型フェリ磁性粒子、その製造方法および磁気記録媒体
JP2008060293A (ja) * 2006-08-31 2008-03-13 Univ Of Tokyo 磁性材料
JP2010113743A (ja) * 2008-11-04 2010-05-20 Fujifilm Corp 粉末用表面改質剤、それを含む磁性塗料および非磁性塗料、ならびに磁気記録媒体
JP2014081986A (ja) * 2012-09-28 2014-05-08 Fujifilm Corp 六方晶フェライト磁性粒子の製造方法およびこれにより得られた六方晶フェライト磁性粒子、ならびにそれらの利用

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798134A (en) * 1980-12-11 1982-06-18 Fuji Photo Film Co Ltd Magnetic recording body
DE3515517A1 (de) * 1985-04-30 1986-11-06 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung isometrischer kobalt- und titanhaltiger magnetischer eisenoxide
DE3633130A1 (de) * 1986-09-30 1988-03-31 Basf Ag Feinteilige, sphaerische, zweischichtige feststoffteilchen
US5358660A (en) * 1988-01-14 1994-10-25 Showa Denko Kabushiki Kaisha Magnetic particles for perpendicular magnetic recording
JP5013505B2 (ja) 2006-03-31 2012-08-29 国立大学法人 東京大学 磁性材料
JP2008009616A (ja) 2006-06-28 2008-01-17 Glory Ltd 指紋検出機能付きタッチパッド、指紋検出方法および指紋検出プログラム
JP4859791B2 (ja) * 2006-09-01 2012-01-25 国立大学法人 東京大学 電波吸収材料用の磁性結晶および電波吸収体
JP2007200547A (ja) 2007-05-01 2007-08-09 Tdk Corp 磁気記録媒体
US9886978B2 (en) * 2009-06-24 2018-02-06 The University Of Tokyo Process for production of magnetic thin film, magnetic thin film, and magnetic material
JP5802224B2 (ja) 2013-01-31 2015-10-28 富士フイルム株式会社 磁気記録媒体
JP6084305B2 (ja) * 2013-01-31 2017-02-22 ヒューレット パッカード エンタープライズ デベロップメント エル ピーHewlett Packard Enterprise Development LP 磁気テープ処理
JP5799035B2 (ja) * 2013-02-05 2015-10-21 富士フイルム株式会社 塗布型磁気記録媒体、磁気記録装置、および磁気記録方法
JP5763803B1 (ja) 2014-02-26 2015-08-12 日本写真印刷株式会社 タッチパネル、タッチパネルの押圧位置検出方法
CN104050405B (zh) 2014-07-02 2017-05-03 南昌欧菲生物识别技术有限公司 指纹识别检测组件及其电子装置
JP5966064B1 (ja) * 2014-09-24 2016-08-10 Dowaエレクトロニクス株式会社 鉄系酸化物磁性粒子粉および鉄系酸化物磁性粒子粉の製造方法
US10427183B2 (en) * 2015-01-15 2019-10-01 University Of Utah Research Foundation Discrete magnetic nanoparticles
CN204480195U (zh) 2015-02-03 2015-07-15 宸鸿科技(厦门)有限公司 触控装置
US10204621B2 (en) * 2016-09-07 2019-02-12 International Business Machines Corporation Adjusting a deep neural network acoustic model
JP7195241B2 (ja) 2019-01-09 2022-12-23 東京エレクトロン株式会社 窒化膜の成膜方法、および窒化膜の成膜装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005109191A (ja) * 2003-09-30 2005-04-21 Meiji Univ スピネル型フェリ磁性粉及び当該磁性粉を含有する磁気記録用媒体
JP2006229037A (ja) * 2005-02-18 2006-08-31 Meiji Univ スピネル型フェリ磁性粒子、その製造方法および磁気記録媒体
JP2008060293A (ja) * 2006-08-31 2008-03-13 Univ Of Tokyo 磁性材料
JP2010113743A (ja) * 2008-11-04 2010-05-20 Fujifilm Corp 粉末用表面改質剤、それを含む磁性塗料および非磁性塗料、ならびに磁気記録媒体
JP2014081986A (ja) * 2012-09-28 2014-05-08 Fujifilm Corp 六方晶フェライト磁性粒子の製造方法およびこれにより得られた六方晶フェライト磁性粒子、ならびにそれらの利用

Cited By (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021119553A (ja) * 2015-04-13 2021-08-12 ソニーグループ株式会社 磁気記録媒体
JP2020017332A (ja) * 2015-04-13 2020-01-30 ソニー株式会社 磁気記録媒体
JP2020191153A (ja) * 2015-04-13 2020-11-26 ソニー株式会社 データカートリッジ
JP7136273B2 (ja) 2015-04-13 2022-09-13 ソニーグループ株式会社 磁気記録媒体
JPWO2017125981A1 (ja) * 2016-01-20 2018-11-15 ソニー株式会社 磁気記録媒体
US11355145B2 (en) 2016-01-20 2022-06-07 Sony Corporation Magnetic recording medium
JP7073718B2 (ja) 2016-01-20 2022-05-24 ソニーグループ株式会社 磁気記録媒体
WO2017125981A1 (ja) * 2016-01-20 2017-07-27 ソニー株式会社 磁気記録媒体
US11264155B2 (en) 2016-09-30 2022-03-01 Dowa Electronics Materials Co., Ltd. Epsilon-type iron oxide magnetic particles and method for producing the same, magnetic powder, magnetic coating material and magnetic recording medium containing magnetic particles
WO2018062478A1 (ja) * 2016-09-30 2018-04-05 Dowaエレクトロニクス株式会社 イプシロン型鉄酸化物磁性粒子及びその製造方法、磁性粒子から構成される磁性粉ならびに磁性塗料および磁気記録媒体
JPWO2018062478A1 (ja) * 2016-09-30 2019-09-12 Dowaエレクトロニクス株式会社 イプシロン型鉄酸化物磁性粒子及びその製造方法、磁性粒子から構成される磁性粉ならびに磁性塗料および磁気記録媒体
JP7033071B2 (ja) 2016-09-30 2022-03-09 Dowaエレクトロニクス株式会社 イプシロン型鉄酸化物磁性粒子及びその製造方法、磁性粒子から構成される磁性粉ならびに磁性塗料および磁気記録媒体
US10614847B2 (en) 2016-12-28 2020-04-07 Maxell Holdings, Ltd. Magnetic recording medium
JP2018133120A (ja) * 2017-02-14 2018-08-23 マクセルホールディングス株式会社 磁気記録媒体及びその記録再生機構
JP2018181396A (ja) * 2017-04-20 2018-11-15 マクセルホールディングス株式会社 高記録密度用磁気記録媒体及びその記録再生機構
JP7112245B2 (ja) 2017-06-05 2022-08-03 マクセル株式会社 高記録密度用磁気記録媒体及びその記録再生機構
JP2018206463A (ja) * 2017-06-05 2018-12-27 マクセルホールディングス株式会社 高記録密度用磁気記録媒体及びその記録再生機構
JP2019003712A (ja) * 2017-06-09 2019-01-10 富士フイルム株式会社 磁気記録媒体
US11100949B2 (en) 2017-06-09 2021-08-24 Fujifilm Corporation Magnetic recording medium
JP2019003711A (ja) * 2017-06-09 2019-01-10 富士フイルム株式会社 磁気記録媒体
JP2019021365A (ja) * 2017-07-19 2019-02-07 富士フイルム株式会社 磁気テープ
JP2019021366A (ja) * 2017-07-19 2019-02-07 富士フイルム株式会社 磁気記録媒体
JP2019023950A (ja) * 2017-07-24 2019-02-14 マクセルホールディングス株式会社 磁気記録媒体
WO2019159466A1 (ja) * 2018-02-16 2019-08-22 ソニー株式会社 磁気記録媒体
JPWO2019159466A1 (ja) * 2018-02-16 2020-12-03 ソニー株式会社 磁気記録媒体
US11741991B2 (en) 2018-02-16 2023-08-29 Sony Corporation Magnetic recording medium
JP2019175532A (ja) * 2018-03-29 2019-10-10 富士フイルム株式会社 磁気記録媒体、イプシロン型酸化鉄系化合物の粒子の製造方法、及び磁気記録媒体の製造方法
US11508406B2 (en) 2018-03-29 2022-11-22 Fujifilm Corporation Magnetic recording medium, manufacturing method of particles of epsilon type iron oxide-based compound, and manufacturing method of magnetic recording medium
JP2019212354A (ja) * 2018-06-07 2019-12-12 マクセルホールディングス株式会社 熱アシスト記録用塗布型磁気記録媒体及びそれを用いたサーボ信号記録装置
JP7132755B2 (ja) 2018-06-07 2022-09-07 マクセル株式会社 熱アシスト記録用塗布型磁気記録媒体及びそれを用いたサーボ信号記録装置
WO2020050371A1 (ja) * 2018-09-05 2020-03-12 ソニー株式会社 磁気記録媒体
US11514941B2 (en) 2018-09-05 2022-11-29 Sony Corporation Magnetic recording medium having controlled saturation flux density
JPWO2020050371A1 (ja) * 2018-09-05 2021-08-30 ソニーグループ株式会社 磁気記録媒体
JP7371635B2 (ja) 2018-09-05 2023-10-31 ソニーグループ株式会社 磁気記録媒体
JP2020113356A (ja) * 2019-01-16 2020-07-27 富士フイルム株式会社 マイクロ波アシスト記録用磁気記録媒体、磁気記録装置、および磁気記録媒体の製造方法
JP7105202B2 (ja) 2019-01-16 2022-07-22 富士フイルム株式会社 マイクロ波アシスト記録用磁気記録媒体、磁気記録装置、および磁気記録媒体の製造方法
US11222660B2 (en) 2019-01-16 2022-01-11 Fujifilm Corporation Magnetic recording medium for microwave-assisted recording, magnetic recording device, and manufacturing method of magnetic recording medium
US11200913B2 (en) 2019-02-28 2021-12-14 Fujifilm Corporation Magnetic recording medium, manufacturing method of ϵ-type iron oxide particles, and manufacturing method of magnetic recording medium
JP7023250B2 (ja) 2019-02-28 2022-02-21 富士フイルム株式会社 磁気記録媒体、イプシロン型酸化鉄粒子の製造方法、及び磁気記録媒体の製造方法
JP2020140748A (ja) * 2019-02-28 2020-09-03 富士フイルム株式会社 磁気記録媒体、イプシロン型酸化鉄粒子の製造方法、及び磁気記録媒体の製造方法
US11270726B2 (en) 2019-03-27 2022-03-08 Fujifilm Corporation Magnetic recording medium and magnetic recording and reproducing device
US11017809B2 (en) 2019-03-29 2021-05-25 Sony Corporation Magnetic recording medium having a controlled dimensional variation
US11302353B2 (en) 2019-03-29 2022-04-12 Sony Corporation Magnetic recording medium having controlled dimensional variation
JP7255674B2 (ja) 2019-03-29 2023-04-11 ソニーグループ株式会社 データ再生装置
JP2020166916A (ja) * 2019-03-29 2020-10-08 ソニー株式会社 磁気記録媒体
US11749304B2 (en) 2019-03-29 2023-09-05 Sony Corporation Magnetic recording medium having controlled dimensional variation
US10839847B2 (en) 2019-03-29 2020-11-17 Sony Corporation Magnetic recording medium having a dimensional variation
US10839846B2 (en) 2019-03-29 2020-11-17 Sony Corporation Magnetic recording medium having a dimensional variation
JP2020166915A (ja) * 2019-03-29 2020-10-08 ソニー株式会社 磁気記録媒体
JPWO2020202584A1 (ja) * 2019-03-29 2020-10-08
JP2020166914A (ja) * 2019-03-29 2020-10-08 ソニー株式会社 磁気記録媒体
US11651781B2 (en) 2019-03-29 2023-05-16 Sony Group Corporation Tape-shaped magnetic recording medium and cartridge
US11521650B2 (en) 2019-03-29 2022-12-06 Sony Corporation Magnetic recording medium having a controlled dimensional variation
WO2020202584A1 (ja) * 2019-03-29 2020-10-08 ソニー株式会社 磁気記録媒体及びカートリッジ
US11315594B2 (en) 2019-03-29 2022-04-26 Sony Corporation Magnetic recording medium having controlled dimensional variation
US10796724B1 (en) 2019-04-05 2020-10-06 Sony Corporation Magnetic recording medium
US11107505B2 (en) 2019-04-05 2021-08-31 Sony Corporation Cartridge
US11423946B2 (en) 2019-04-05 2022-08-23 Sony Group Corporation Cartridge including tape-shaped magnetic recording medium
US11664054B2 (en) 2019-04-05 2023-05-30 Sony Corporation Cartridge including tape-shaped magnetic recording medium
JP2020170579A (ja) * 2019-04-05 2020-10-15 ソニー株式会社 カートリッジおよびカートリッジメモリ
US11056143B2 (en) 2019-04-26 2021-07-06 Sony Corporation Magnetic recording medium
JP2020184388A (ja) * 2019-04-26 2020-11-12 ソニー株式会社 磁気記録媒体
US10984833B2 (en) 2019-04-26 2021-04-20 Sony Corporation Magnetic recording cartridge
JP2020184389A (ja) * 2019-04-26 2020-11-12 ソニー株式会社 磁気記録媒体
US11250884B2 (en) 2019-04-26 2022-02-15 Sony Corporation Magnetic recording cartridge
US10937457B2 (en) 2019-04-26 2021-03-02 Sony Corporation Magnetic recording medium
JP2020184387A (ja) * 2019-04-26 2020-11-12 ソニー株式会社 磁気記録カートリッジ
US10720181B1 (en) 2019-04-26 2020-07-21 Sony Corporation Magnetic recording cartridge
US10803904B1 (en) 2019-04-26 2020-10-13 Sony Corporation Magnetic recording cartridge
US11631430B2 (en) 2019-04-26 2023-04-18 Sony Group Corporation Magnetic recording medium
JP2020173882A (ja) * 2019-07-18 2020-10-22 ソニー株式会社 磁気記録媒体
JP2021034112A (ja) * 2019-08-16 2021-03-01 ソニー株式会社 磁気記録媒体
JP2021034095A (ja) * 2019-08-16 2021-03-01 ソニー株式会社 磁気記録媒体、テープカートリッジ、及びデータ処理方法
US11804243B2 (en) 2019-08-16 2023-10-31 Sony Group Corporation Magnetic recording medium
JP7363450B2 (ja) 2019-08-16 2023-10-18 ソニーグループ株式会社 磁気記録媒体、テープカートリッジ、及びデータ処理方法
JP7358966B2 (ja) 2019-08-16 2023-10-11 ソニーグループ株式会社 磁気記録媒体
US11749305B2 (en) 2019-08-16 2023-09-05 Sony Group Corporation Magnetic recording medium, tape cartridge, and data processing method
WO2021033340A1 (ja) * 2019-08-16 2021-02-25 ソニー株式会社 磁気記録媒体、テープカートリッジ、及びデータ処理方法
WO2021033339A1 (ja) * 2019-08-16 2021-02-25 ソニー株式会社 磁気記録媒体
JP2021034094A (ja) * 2019-08-16 2021-03-01 ソニー株式会社 磁気記録媒体
US11482245B2 (en) 2019-08-20 2022-10-25 Sony Group Corporation Tape-shaped magnetic recording medium including magnetic layer having recesses on a surface, magnetic recording/reproducing device, and magnetic recording medium cartridge
WO2021033333A1 (ja) * 2019-08-20 2021-02-25 ソニー株式会社 磁気記録媒体、磁気記録再生装置および磁気記録媒体カートリッジ
JP2020184396A (ja) * 2019-09-18 2020-11-12 ソニー株式会社 磁気記録カートリッジ
JP2020184397A (ja) * 2019-09-18 2020-11-12 ソニー株式会社 磁気記録媒体
JP2020184398A (ja) * 2019-09-18 2020-11-12 ソニー株式会社 磁気記録媒体
JP7052903B2 (ja) 2019-09-18 2022-04-12 ソニーグループ株式会社 磁気記録カートリッジ
JP2021108235A (ja) * 2019-09-18 2021-07-29 ソニーグループ株式会社 磁気記録カートリッジ
JP2021057089A (ja) * 2019-09-26 2021-04-08 ソニー株式会社 磁気記録媒体、磁気記録再生装置および磁気記録媒体カートリッジ
JP2021064436A (ja) * 2019-09-26 2021-04-22 ソニー株式会社 磁気記録媒体、磁気記録再生装置および磁気記録媒体カートリッジ
JP7359168B2 (ja) 2019-09-26 2023-10-11 ソニーグループ株式会社 磁気記録媒体、磁気記録再生装置および磁気記録媒体カートリッジ
WO2021059542A1 (ja) * 2019-09-26 2021-04-01 ソニー株式会社 磁気記録媒体、磁気記録再生装置および磁気記録媒体カートリッジ
JP2020166918A (ja) * 2019-10-23 2020-10-08 ソニー株式会社 磁気記録媒体
JP2021106071A (ja) * 2019-10-23 2021-07-26 ソニーグループ株式会社 磁気記録媒体
JP2020166920A (ja) * 2019-10-23 2020-10-08 ソニー株式会社 磁気記録媒体
JP7226469B2 (ja) 2019-10-23 2023-02-21 ソニーグループ株式会社 磁気記録媒体
JP2020173883A (ja) * 2019-10-28 2020-10-22 ソニー株式会社 磁気記録媒体およびカートリッジ
JP2020166922A (ja) * 2019-11-14 2020-10-08 ソニー株式会社 磁気記録媒体
JP2020184399A (ja) * 2019-11-14 2020-11-12 ソニー株式会社 磁気記録カートリッジ
JP2020166921A (ja) * 2019-11-14 2020-10-08 ソニー株式会社 磁気記録媒体
JP2020166923A (ja) * 2019-11-14 2020-10-08 ソニー株式会社 磁気記録媒体
JP2020173884A (ja) * 2019-12-11 2020-10-22 ソニー株式会社 磁気記録媒体およびカートリッジ
JP2022017509A (ja) * 2020-06-05 2022-01-25 ソニーグループ株式会社 カートリッジ
JP2021007063A (ja) * 2020-06-05 2021-01-21 ソニー株式会社 カートリッジ
JP7024907B2 (ja) 2020-06-05 2022-02-24 ソニーグループ株式会社 カートリッジ
JP7226467B2 (ja) 2020-06-17 2023-02-21 ソニーグループ株式会社 磁気記録媒体
JP2021106070A (ja) * 2020-06-17 2021-07-26 ソニーグループ株式会社 磁気記録媒体
JP2020184400A (ja) * 2020-06-17 2020-11-12 ソニー株式会社 磁気記録媒体
JP2021103607A (ja) * 2020-06-18 2021-07-15 ソニーグループ株式会社 磁気記録媒体
JP2020166925A (ja) * 2020-06-18 2020-10-08 ソニー株式会社 磁気記録媒体
JP7226468B2 (ja) 2020-06-18 2023-02-21 ソニーグループ株式会社 磁気記録媒体
JP7052940B1 (ja) 2021-11-05 2022-04-12 ソニーグループ株式会社 カートリッジ
JP2022062225A (ja) * 2021-11-05 2022-04-19 ソニーグループ株式会社 カートリッジ
JP7260027B2 (ja) 2022-02-10 2023-04-18 ソニーグループ株式会社 カートリッジ
JP2022088604A (ja) * 2022-02-10 2022-06-14 ソニーグループ株式会社 カートリッジ

Also Published As

Publication number Publication date
JP2019021372A (ja) 2019-02-07
JP6565908B2 (ja) 2019-08-28
US20190066723A1 (en) 2019-02-28
JP6604412B2 (ja) 2019-11-13
CN106471581A (zh) 2017-03-01
JP2020009526A (ja) 2020-01-16
JPWO2015198514A1 (ja) 2017-04-20
US20170162220A1 (en) 2017-06-08
US10839848B2 (en) 2020-11-17
US10204651B2 (en) 2019-02-12
JP6766938B2 (ja) 2020-10-14
CN106471581B (zh) 2019-11-08

Similar Documents

Publication Publication Date Title
JP6604412B2 (ja) 磁気記録媒体
JP6318540B2 (ja) 磁気記録媒体
JP7147751B2 (ja) 磁気記録媒体
JP7136273B2 (ja) 磁気記録媒体
JP6565933B2 (ja) 磁性粉末およびその製造方法、ならびに磁気記録媒体
JP7207298B2 (ja) 磁気記録媒体
JP2023068040A (ja) 磁気記録媒体及びカートリッジ
JP7073718B2 (ja) 磁気記録媒体
JP2023082110A (ja) データ再生装置
WO2017138532A1 (ja) 磁性粉およびその製造方法、ならびに磁気記録媒体およびその製造方法
JP2001181754A (ja) 磁気記録媒体とこれに用いる希土類−鉄−ホウ素系磁性粉末およびこの磁性粉末の製造方法
WO2016157681A1 (ja) 磁気記録媒体
US20220392488A1 (en) Magnetic recording medium
JP7439771B2 (ja) 磁気記録媒体
JP7371635B2 (ja) 磁気記録媒体
JP6508386B2 (ja) 磁気記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15810814

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016528986

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15316436

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15810814

Country of ref document: EP

Kind code of ref document: A1