WO2018062478A1 - イプシロン型鉄酸化物磁性粒子及びその製造方法、磁性粒子から構成される磁性粉ならびに磁性塗料および磁気記録媒体 - Google Patents

イプシロン型鉄酸化物磁性粒子及びその製造方法、磁性粒子から構成される磁性粉ならびに磁性塗料および磁気記録媒体 Download PDF

Info

Publication number
WO2018062478A1
WO2018062478A1 PCT/JP2017/035460 JP2017035460W WO2018062478A1 WO 2018062478 A1 WO2018062478 A1 WO 2018062478A1 JP 2017035460 W JP2017035460 W JP 2017035460W WO 2018062478 A1 WO2018062478 A1 WO 2018062478A1
Authority
WO
WIPO (PCT)
Prior art keywords
epsilon
iron oxide
type iron
magnetic
oxide magnetic
Prior art date
Application number
PCT/JP2017/035460
Other languages
English (en)
French (fr)
Inventor
和裕 山我
哲也 川人
上山 俊彦
堅之 坂根
Original Assignee
Dowaエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowaエレクトロニクス株式会社 filed Critical Dowaエレクトロニクス株式会社
Priority to JP2018542921A priority Critical patent/JP7033071B2/ja
Priority to US16/337,195 priority patent/US11264155B2/en
Publication of WO2018062478A1 publication Critical patent/WO2018062478A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/714Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the dimension of the magnetic particles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/842Coating a support with a liquid magnetic dispersion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties

Definitions

  • the present invention relates to epsilon-type iron oxide magnetic particles suitable for high-density magnetic recording media, radio wave absorbers, and the like, and more particularly, to a powder having an average particle diameter of about a dozen nanometers and reduced fine particles.
  • the epsilon-type iron oxide magnetic particles are a unique phase among many iron oxides and have not been stably extracted as a single phase for a long time.
  • recent studies have made it possible to extract it as a single phase, and it has been attracting attention as a unique magnetic material having a high coercive force.
  • the present applicant has been developing a magnetic material that can be used for magnetic recording.
  • the epsilon-type iron oxide magnetic particles described above exhibit a coercive force that can be said to be specific (1600 kA / m or more) as compared with the conventionally known magnetic powder, and the coercive force replaces the iron site. It has been clarified that it can be arbitrarily adjusted by the substitution amount of the possible elements. Since the characteristics can be adjusted according to demands, the material supplier has a high degree of freedom, and it has been expected as a magnetic particle for next-generation magnetic recording or other uses such as a radio wave absorber.
  • JP 2016-130208 A Japanese Patent No. 5966064
  • epsilon-type iron oxide magnetic powder has a large variation in the particle size of the epsilon-type iron oxide magnetic powder that constitutes the epsilon-type iron oxide magnetic powder.
  • the effect becomes large when added.
  • particle size variation can cause a large noise value in the signal-to-noise ratio (S / N ratio), which is one of the electromagnetic conversion characteristics of magnetic recording media, and is fatal. It can be. Therefore, an epsilon-type iron oxide magnetic powder having a reduced particle size variation as much as possible is desired.
  • a magnetic material having a high magnetization value good magnetic properties
  • it can be widely applied to high-density magnetic recording and magnetic parts driven using magnetism. it can.
  • the present invention has been made in view of such problems, and has a small variation in particle size distribution and reduced epsilon-type iron oxide magnetic particles having an appropriate particle size, particularly single nano-order level particles that become superparamagnetic.
  • the object is to provide a magnetic powder having a large saturation magnetization value per volume.
  • Another object is to provide a magnetic powder having a narrow particle size distribution of epsilon-type iron oxide particles and to provide a magnetic powder suitable for a magnetic recording medium by improving the particle size distribution. It is intended.
  • Epsilon iron oxide having a number average particle diameter (D 50 ) of the major axis by TEM of 10 to 20 nm, a 90% cumulative particle diameter (D 90 ) of 30 nm or less, and a geometric standard deviation ( ⁇ g ) of major axis of 1.45 or less. Magnetic particles.
  • the epsilon iron oxide magnetic particles are epsilon iron oxide magnetic particles in which at least part of the iron sites are substituted.
  • the epsilon iron oxide magnetic particles have an average volume of 5000 nm 3 or less when the epsilon iron oxide magnetic particles are approximated to a sphere.
  • the fourth configuration is a paint containing epsilon iron oxide magnetic particles belonging to any one of the first to third inventions.
  • a fifth configuration is a magnetic recording medium containing epsilon iron oxide magnetic particles belonging to any one of the first to third inventions.
  • a sixth component is a magnetic component containing epsilon iron oxide magnetic particles belonging to any one of the first to third inventions.
  • This is an epsilon-type iron oxide magnetic powder having a major axis number average particle diameter of 10 nm or more and 20 nm or less by observation with a transmission electron microscope.
  • a method for producing epsilon-type iron oxide magnetic powder By mixing a water-soluble iron salt or an aqueous solution containing a water-soluble iron salt and a salt of a metal element M other than iron and a silicon compound having a hydrolyzable group, the mixture is kept at 50 ° C. or less, thereby maintaining iron.
  • a method for producing epsilon-type iron oxide magnetic powder In the step of obtaining the iron oxide or the silicon oxide gel containing the iron salt and the metal element M, A water-soluble iron salt or an aqueous solution containing a water-soluble iron salt and a salt of a metal element M other than iron and a water-soluble organic solvent are mixed, and then the silicon compound having the hydrolyzable group is mixed. And a method for producing epsilon-type iron oxide magnetic powder to be further retained.
  • a method for producing epsilon-type iron oxide magnetic powder This is a method for producing epsilon-type iron oxide magnetic powder, wherein the iron salt is nitrate or chloride.
  • the thirteenth configuration is a paint containing epsilon-type iron oxide particles belonging to any of the seventh to ninth inventions.
  • the fourteenth configuration is a magnetic recording medium containing epsilon-type iron oxide particles belonging to any of the seventh to ninth inventions.
  • a fifteenth structure is a magnetic component containing epsilon-type iron oxide particles belonging to any of the seventh to ninth inventions.
  • the present invention it is possible to make a magnetic particle structure with improved particle size distribution.
  • the ratio of superparamagnetic particles can be reduced, and the particle size distribution can be improved so that magnetic particles suitable for magnetic recording media can be obtained.
  • FIG. 2 is a transmission electron microscope photograph of epsilon-type iron oxide magnetic powder obtained in Example 1.
  • FIG. 2 is a transmission electron microscope photograph of epsilon-type iron oxide magnetic powder obtained in Comparative Example 1.
  • the production method of the present invention is for producing epsilon-type iron oxide magnetic powder composed of epsilon-type iron oxide magnetic particles.
  • the epsilon-type iron oxide refers to an oxide obtained by substituting a part of the iron site of epsilon iron oxide ( ⁇ iron oxide) or epsilon iron oxide ( ⁇ iron oxide) with a metal element M other than iron.
  • a metal element M a known element that can replace the iron site of ⁇ iron oxide, such as In, Ga, Al, Co, Ni, Mn, Zn, Ti, or Sn, may be adopted.
  • the epsilon-type iron oxide magnetic particles refer to individual particles shown in FIG. 3, and the epsilon-type iron oxide magnetic powder according to the present invention is an aggregate of the epsilon-type iron oxide magnetic particles. .
  • the number average particle diameter of the major axis of the epsilon-type iron oxide magnetic powder constituting the epsilon-type iron oxide magnetic powder by observation with a transmission electron microscope (sometimes referred to as TEM in this specification) is 10 nm to 20 nm. It is desirable to be. If the particles are not more than 20 nm, it is easy to apply a thin magnetic layer, so that high density can be achieved. In addition, the volume of the particles can be set to an appropriate size, which is preferable because an increase in particulate noise, which is an adverse effect of increasing the density, can be suppressed.
  • number average particle diameter of major axis is also referred to as “number average value of major axis” and “average major axis”.
  • the particle size distribution refers to a variation in the major axis and minor axis of the particle by TEM observation. It can be said that the smaller the variation, that is, the narrower the particle size distribution, the more epsilon-type iron oxide magnetic powder suitable for magnetic recording media.
  • the 90% cumulative particle diameter D 90 on the basis of the number of major axes is 30 nm or less. Thereby, since there are few particles with extremely large particle diameters, it is considered that particulate noise can be suppressed.
  • the geometric standard deviation value indicating the variation in the major axis is 1.01 to 1.45, preferably 1.01 to 1.40, and more preferably 1.01 to 1.35, from the viewpoint of achieving a high level of media characteristics. It is desirable that It can be said that being in such a range is a powder suitable for high-density magnetic recording since there are few extremely large particles and extremely small particles.
  • the spherical average particle volume of the epsilon type iron oxide magnetic powder is 5000 nm 3 or less.
  • Such an epsilon type iron oxide magnetic powder having an average particle volume of 5000 nm 3 or less is preferable because it can be said to be suitable as a magnetic powder for a high-density magnetic recording medium.
  • the coefficient of variation of the long diameter by TEM observation of the epsilon type iron oxide magnetic powder which is the product of the present invention is less than 35%.
  • the production method of the present invention it is possible to obtain an epsilon-type iron oxide magnetic powder having a long axis variation coefficient of less than 35% and a narrow particle size distribution. If there is a coefficient of variation in this range, it can be said that the powder is extremely suitable for high-density magnetic recording because there are few extremely large and small particles.
  • the variation coefficient of the major axis is preferably 30% or less, and more preferably 25% or less.
  • the average aspect ratio of the epsilon-type iron oxide magnetic powder can be made 1.1 or less.
  • the average aspect ratio of the epsilon type iron oxide magnetic powder is 1.1 or less, when an epsilon type iron oxide magnetic powder and a resin are mixed to produce a magnetic recording medium or magnetic component, an external magnetic field is used.
  • the epsilon-type iron oxide particles are more easily oriented, and the output characteristics of the magnetic recording medium can be improved.
  • the production method of the present invention is an iron oxyhydroxide, ferrihydrite, wustite, magnetite, or the like, and a dry product of a silicon oxide gel containing an iron salt or an iron salt and a metal element M without generating a precursor.
  • the following processes are performed as a specific example, and the manufacturing method of an epsilon type iron oxide magnetic powder is implemented.
  • a water-soluble iron salt, or a water-soluble iron salt other than iron and iron is obtained.
  • An aqueous solution containing a salt of the metal element M and a water-soluble organic After mixing with the solvent, the silicon compound having the hydrolyzable group is mixed and further retained.
  • the water-soluble organic solvent refers to an organic compound that has a solubility in water of 30 g / 100 g (H 2 O) or more and is liquid at normal temperature and pressure.
  • the mixing ratio of water and the water-soluble organic solvent is such that the water / water-soluble organic solvent is 1.5 or less, preferably 1.0 or less in terms of molar ratio.
  • the ratio exceeds 1.5, when a silicon compound having a hydrolyzable group is added, it is not mixed and separated from water, and particularly when it is attempted to form substituted epsilon-type iron oxide magnetic particles
  • the composition is not uniform, and a magnetic powder having excellent characteristics cannot be obtained.
  • the amount of the water-soluble organic solvent added is preferably a necessary amount for dissolving the hydrolyzable silicon compound in the water-soluble organic solvent.
  • the molar ratio of the water-soluble organic solvent to the silicon compound having a hydrolyzable group is preferably 7.0 or more.
  • the “silicon compound having a hydrolyzable group” is a silicon compound having a hydrolyzable group in the molecular skeleton, and tetraethoxysilane (TEOS), tetramethoxysilane (TMOS), and other silanes as metal alkoxides.
  • TEOS tetraethoxysilane
  • TMOS tetramethoxysilane
  • a coupling agent etc. can be illustrated.
  • the ratio of “molar amount of silicon compound having hydrolyzable group” to “total molar amount of iron and substituted metal element M” is preferably 4.0 or more.
  • the iron and the substitution element are in the form of an aqueous solution or a form in which a metal is dissolved with an acid.
  • the supply source of iron and the substitution element may be an inorganic salt or an organic salt, and examples of the inorganic salt include nitrate, sulfate, and chloride. From the viewpoint of increasing the coercive force of the epsilon-type iron oxide magnetic powder and narrowing the coercive force distribution, it is preferable to use iron nitrate or chloride as the iron salt.
  • the total amount of metal ions of iron and substitution elements is 3.5 mol / L or less, preferably 2.0 mol / L or less.
  • the mixture After the addition of the hydrolyzable silicon oxide, the mixture is stirred until the solution becomes uniform, and then kept in a static state at a temperature environment of 50 ° C. or lower until the fluidity of the solution after stirring is lost. Let stand.
  • the holding temperature in the stationary state By setting the holding temperature in the stationary state to 50 ° C. or lower, the particle size distribution of the finally obtained epsilon-type iron oxide particles can be narrowed. If the holding temperature in the stationary state is more than 50 ° C., the particle size distribution of the finally obtained epsilon-type iron oxide particles becomes wide, and the effect of the present invention cannot be obtained.
  • the gel having lost fluidity is volatilized and removed from the excess solvent in a heating environment at 5 ° C. or higher, preferably 10 ° C. or higher and lower than the boiling point of the water-soluble organic solvent. . It is preferable to solidify through this drying step because composition variations in the final iron oxide can be reduced.
  • An example of a dried gel is shown in FIG.
  • the obtained solid material may be pulverized and used as a sample before heating (dry gel). It is preferably 2 mm or less, preferably 1 mm or less, and more preferably 500 ⁇ m or less.
  • the powder is preferable because uneven firing in the subsequent heating step can be reduced, the silicon oxide can be easily dissolved in the silicon oxide coating removing step, and a magnetic powder having excellent magnetic properties can be obtained.
  • the obtained pre-heat-processing sample is heat-processed and an epsilon type iron oxide is obtained.
  • washing and drying steps may be provided.
  • the heat treatment is performed in an oxidizing atmosphere, but the oxidizing atmosphere may be an air atmosphere. Heating can be performed in the range of approximately 700 ° C. to 1300 ° C., but when the heating temperature is high, ⁇ -Fe 2 O 3 (which is an impurity from ⁇ -Fe 2 O 3 ), which is a thermodynamically stable phase, is generated. Therefore, the heat treatment is preferably performed at 900 ° C. or higher and 1200 ° C. or lower, more preferably 950 ° C. or higher and 1150 ° C. or lower.
  • the heat treatment time can be adjusted in the range of 0.5 hours to 10 hours after reaching the set temperature, but good results are easily obtained in the range of 2 hours to 5 hours.
  • the presence of a silicon-containing substance covering the particles is advantageous in causing a phase change to epsilon-type iron oxide magnetic particles rather than a phase change to ⁇ -type iron-based oxides.
  • the raw material solution contains trivalent iron ions and metal elements for substituting iron sites as metal ions
  • partially substituted ⁇ -Fe 2 O 3 crystals are coated with silicon oxide. Obtained in the state.
  • ⁇ -type iron-based oxides, ⁇ -type iron-based oxides, and Fe 3 O 4 crystals may exist as impurities in the powder obtained after heat treatment. Are called epsilon-type iron oxide particles.
  • the epsilon-type iron oxide magnetic particles obtained by the production method of the present invention can be used in a state in which the silicon oxide is coated. It is also possible to use it in the removed state.
  • crushing treatment is performed with a planetary ball mill or the like as necessary for the convenience of the subsequent process (increasing the dissolution rate of silicon oxide). It doesn't matter.
  • silicon oxide is soluble in an alkaline aqueous solution, it can be dissolved and removed by immersing the powder after the heat treatment in an aqueous solution in which a strong alkali such as NaOH or KOH is dissolved and stirring. .
  • a strong alkali such as NaOH or KOH
  • the aqueous alkali solution may be heated.
  • the powder is stirred.
  • the oxide can be dissolved well.
  • the degree of silicon oxide coating removal is adjusted according to the purpose.
  • TEM observation TEM observation of the epsilon-type iron oxide magnetic powder obtained by the production method of the present invention was performed under the following conditions.
  • JEM-1011 manufactured by JEOL Ltd. was used for TEM observation.
  • particle observation a TEM photograph taken at a magnification of 100,000 times and then enlarged 3 times during development was used.
  • the selection criteria for the particles to be measured were as follows. [1] Do not measure particles that are partially outside the field of view of the photograph. [2] Measure particles that are well-defined and exist in isolation. [3] Even when deviating from the average particle shape, particles that are independent and can be measured as single particles are measured. [4] Particles that overlap each other but whose boundaries are clear and the shape of the whole particle can be determined are measured as individual particles. [5] Particles that overlap but do not have clear boundaries and do not know the full shape of the particles are not measured as the shape of the particles cannot be determined.
  • the geometric standard deviation is calculated as 10 to the power of n when the common logarithm value of each measured value of the major axis of the selected particle is calculated and the standard deviation value of each calculated common logarithm value is n.
  • the harmonic mean diameter is calculated as the reciprocal of m, where the reciprocal value of each measured value of the major axis of the selected particle is calculated, and the number average value of the calculated reciprocal values is m. .
  • the short diameter was measured.
  • the minor axis refers to the length of the short side of a rectangle having the smallest area among the rectangles circumscribing the particle.
  • the number average of the measured values of the short diameter of each selected particle is calculated to obtain the average short diameter of the epsilon type iron oxide magnetic powder.
  • the value obtained by dividing the average major axis by the average minor axis was taken as the average aspect ratio of the epsilon-type iron oxide magnetic powder.
  • the 90% cumulative particle diameter and the 10% cumulative particle diameter of the epsilon type iron oxide magnetic particles observed by TEM were calculated from the data of the long diameter distribution in the long diameter measurement.
  • composition analysis by high frequency inductively coupled plasma optical emission spectrometry ICP
  • ICP-720ES manufactured by Agilent Technologies was used, and the measurement wavelength (nm) was Fe: 259.940 nm, Ga: 294.363 nm, Co: 230.786 nm. Ti: 336.122 nm.
  • Example 1 In a 1 L reactor, 33.04 g of ferric nitrate 9-hydrate (Fe (NO 3 ) 3 ⁇ 9H 2 O) having a purity of 99.7% by mass was added to 80.0 g of pure water, and Ga concentration was 9. 44. mass% Ga (III) nitrate solution 13.60 g, purity 97 mass% cobalt nitrate (II) hexahydrate 0.79 g, Ti concentration 15.1 mass% titanium sulfate (IV) 0.83 g It melt
  • dissolved in the atmosphere, stirring mechanically with a stirring blade. To do. The molar ratio of metal ions in this charged solution is Fe: Ga: Co: Ti 1.550: 0.350: 0.050: 0.050.
  • the obtained solid was pulverized by hand and sieved with a sieve having an opening of 500 ⁇ m, and only the under powder was collected and subjected to the next step.
  • the obtained under powder was heated at 110 ° C. for 12 hours to further remove excess liquid.
  • Example 1 A transmission electron microscope photograph of the epsilon-type iron oxide magnetic particles obtained in Example 1 is shown in FIG.
  • the particle size of the epsilon-type iron oxide magnetic powder according to Example 1 on the basis of the number was 17.7 nm for the number average particle size of the major axis, and the 90% cumulative particle size (D90) on the basis of the number was 22.2 nm.
  • the major axis standard deviation (nm) was 3.59 nm, the major axis variation coefficient was 20%, and the geometric standard deviation ⁇ g was 1.24. Further, the average aspect ratio was 1.05, and ⁇ s / V (Am 2 / kg ⁇ nm 2 ) was 0.006 (Am 2 / kg ⁇ nm 2 ).
  • the X-ray diffraction pattern of the iron oxyhydroxide crystal containing a substitution element obtained in this example shows that the iron oxyhydroxide has a ferrihydrite structure.
  • the slurry obtained in the procedure 1 was collected and washed with an ultrafiltration membrane and a membrane with a UF fraction molecular weight of 50,000 until the electrical conductivity of the filtrate was 50 mS / m or less.
  • the conductivity of the cleaning slurry was 105 mS / m (procedure 2).
  • step 2 Into a 5 L reaction vessel, 3162.89 g of cleaning slurry liquid obtained in step 2 (containing 60 g of ⁇ -Fe 2 O 3 (partially substituted)) was fractionated, and pure water was added so that the liquid volume became 4000 mL. Thereafter, 212.46 g of a 22.09 mass% ammonia solution is added with stirring at 30 ° C. in the atmosphere, and then 428.95 g of tetraethoxysilane (TEOS) is added to the slurry solution over 35 minutes. Stirring was continued for about 1 day, and the product was coated with a silanol derivative produced by hydrolysis.
  • TEOS tetraethoxysilane
  • the dried powder After drying the precipitate (gel-like SiO 2 coated precursor) obtained in the procedure 3, the dried powder was pulverized. Thereafter, the dried powder was heat-treated at 1066 ° C. or higher and 1079 ° C. or lower for 4 hours in an air atmosphere furnace to obtain iron oxide powder coated with silicon oxide. In addition, the said silanol derivative changes to an oxide when it heat-processes in air
  • the heat-treated powder obtained in the procedure 4 is stirred in a 20 mass% NaOH aqueous solution at about 70 ° C. for 24 hours to remove the silicon oxide on the particle surface. Subsequently, the conductivity of the cleaning slurry was washed to 1.476 mS / m with an ultrafiltration membrane and a membrane having a UF fraction molecular weight of 50,000. (Procedure 5)
  • ultrasonic treatment is performed for 1 hour with an ultrasonic cleaning machine (BRANSON (Yamato) 5510 manufactured by Emerson Electric).
  • BRANSON Yamato 5510 manufactured by Emerson Electric
  • a centrifugal separation treatment is performed at 8000 rpm for 30 minutes in an R10A3 rotor of a centrifuge (manufactured by Hitachi Koki Co., Ltd., himac 21G2).
  • the same operation was carried out twice to obtain a slurry solution from which coarse particles were removed.
  • the resulting slurry solution is subjected to fine particle removal treatment.
  • Pure water was added to the magnetic powder-containing slurry obtained above, and an aqueous NaOH solution was added so as to have a pH of 11.0, followed by ultrasonic dispersion treatment for 2 hours using an ultrasonic homogenizer (US-600TCVP). Thereafter, a centrifuge (himac 21G2) and an R10A3 rotor were centrifuged at 8000 rpm for 30 minutes to remove the supernatant containing fine particles.
  • FIG. 1 A transmission electron microscope photograph of the epsilon-type iron oxide magnetic particles obtained in Comparative Example 1 is shown in FIG.
  • the number-based particle size of the epsilon-type iron oxide magnetic particle sample according to Comparative Example 1 is 21.4 nm in the number average particle diameter of the major axis, and 90% cumulative particle diameter (D90) in terms of the number of major axis is 31.4 nm. It was.
  • the major axis standard deviation (nm) was 7.46 nm
  • the major axis variation coefficient was 35%
  • the geometric standard deviation ⁇ g was 1.47.
  • the average aspect ratio was 1.21, and ⁇ s / V (Am 2 / kg ⁇ nm 2 ) was 0.003 (Am 2 / kg ⁇ nm 2 ).
  • Table 1 summarizes the average particle diameter (that is, the average major axis), standard deviation, geometric standard deviation, and harmonic average diameter of the magnetic powders of Example 1 and Comparative Example 1.
  • Table 2 shows the results of the average particle volume V, coercive force Hc (Oe), coercive force Hc (kA / m), saturation magnetization ⁇ s, and saturation magnetization ⁇ s / V per volume in Example 1 and Comparative Example 1. .
  • Example 2 In a 5 L reactor, 166.20 g of ferric nitrate 9-hydrate (Fe (NO 3 ) 3 ⁇ 9H 2 O) having a purity of 99.7% by mass in 400.0 g of pure water, Ga concentration 9. 68.39 g of a 44 mass% Ga (III) nitrate solution, 3.02 g of cobalt nitrate (II) hexahydrate having a purity of 97 mass%, and 4.19 g of titanium (IV) sulfate having a Ti concentration of 15.1 mass% are atmospherically charged. It melt
  • dissolved in the atmosphere, stirring mechanically with a stirring blade. The molar ratio of metal ions in this charged solution is Fe: Ga: Co: Ti 1.560: 0.350: 0.040: 0.050.
  • Example 2 Thereafter, while monitoring the mass in the same manner as in Example 1, the mixture was allowed to stand under a constant temperature condition of 40 ° C. until a mass loss of 70% was observed. After obtaining a mixture with lost fluidity, 65 ° C. for 14 hours. The resulting solid was crushed and sieved with a sieve having an opening of 500 ⁇ m, and the resulting under powder was heated at 110 ° C. for 12 hours.
  • heat treatment was performed at 1125 ° C. for 4 hours in an atmospheric furnace to obtain epsilon-type iron oxide magnetic particles coated with silicon oxide. Furthermore, after the obtained heat-treated powder is pulverized to 100 ⁇ m or less using a planetary ball mill, 20 mass% NaOH is added and stirred at about 70 ° C. for 24 hours to remove silicon oxide on the particle surface. As a result, epsilon-type iron oxide magnetic particles of Example 2 were obtained.
  • Example 3 In a 1 L reactor, 33.24 g of pure water, 33.24 g of ferric nitrate 9-hydrate (Fe (NO 3 ) 3 .9H 2 O)) with a purity of 99.7% by mass, Ga concentration 9. 14.68 g of 44% by mass Ga (III) nitrate solution, 0.60 g of cobalt (II) nitrate hexahydrate having a purity of 97% by mass, and 0.84 g of titanium sulfate (IV) having a Ti concentration of 15.1% by mass in the atmosphere It melt
  • dissolved in the atmosphere, stirring mechanically with a stirring blade. The molar ratio of metal ions in this charged solution is Fe: Ga: Co: Ti 1.560: 0.350: 0.040: 0.050.
  • Example 2 Thereafter, while monitoring the mass in the same manner as in Example 1, the mixture was allowed to stand under a constant temperature condition of 25 ° C. until a mass loss of 70% was observed. After obtaining a mixture with lost fluidity, 65 ° C. for 14 hours. The resulting solid was crushed and sieved with a sieve having an opening of 500 ⁇ m, and the resulting under powder was heated at 110 ° C. for 12 hours.
  • heat treatment was performed at 1090 ° C. for 4 hours in a furnace in an air atmosphere to obtain epsilon-type iron oxide magnetic particles coated with silicon oxide. Furthermore, after the obtained heat-treated powder is pulverized to 100 ⁇ m or less using a planetary ball mill, 20 mass% NaOH is added and stirred at about 70 ° C. for 24 hours to remove silicon oxide on the particle surface. As a result, epsilon-type iron oxide magnetic particles of Example 3 were obtained.
  • the number-based particle size of the epsilon-type iron oxide magnetic particles according to Example 3 was 19.0 nm for the major axis number average particle diameter, and 23.0 nm for the 90% cumulative particle diameter (D90) based on the number criterion.
  • the major axis standard deviation (nm) was 4.05 nm
  • the major axis variation coefficient was 21%
  • the geometric standard deviation ⁇ g was 1.23.
  • the average aspect ratio was 1.06
  • ⁇ s / V (Am 2 / kg ⁇ nm 2 ) was 0.005 (Am 2 / kg ⁇ nm 2 ).
  • Example 2 Thereafter, while monitoring the mass in the same manner as in Example 1, the mixture was allowed to stand under a constant temperature condition of 40 ° C. until a mass loss of 70% was observed. After obtaining a mixture with lost fluidity, 65 ° C. for 14 hours. The resulting solid was crushed and sieved with a sieve having an opening of 500 ⁇ m, and the resulting under powder was heated at 110 ° C. for 12 hours.
  • heat treatment was performed at 1140 ° C. for 4 hours in a furnace in an air atmosphere to obtain epsilon-type iron oxide magnetic particles coated with silicon oxide. Furthermore, after the obtained heat-treated powder is pulverized to 100 ⁇ m or less using a planetary ball mill, 20 mass% NaOH is added and stirred at about 70 ° C. for 24 hours to remove silicon oxide on the particle surface. As a result, epsilon-type iron oxide magnetic particles of Example 4 were obtained.
  • the number average particle size of the major axis was 17.7 nm, and the 90% cumulative particle size (D90) on the basis of the number was 22.0 nm.
  • the major axis standard deviation (nm) was 4.16 nm, the major axis variation coefficient was 23%, and the geometric standard deviation ⁇ g was 1.28.
  • the average aspect ratio was 1.06, and ⁇ s / V (Am 2 / kg ⁇ nm 2 ) was 0.004 (Am 2 / kg ⁇ nm 2 ).
  • Example 5 At 1L reaction vessel, the pure water 50.42G, purity 99.7% by weight of ferric nitrate nonahydrate (Fe (NO 3) 3 ⁇ 9H 2 O)) in the air atmosphere 42.63G, It melt
  • This sample is epsilon-type iron oxide particles in which part of the iron site is not substituted.
  • Example 2 Thereafter, while monitoring the mass in the same manner as in Example 1, the mixture was allowed to stand under a constant temperature condition of 25 ° C. until a mass loss of 70% was observed. After obtaining a mixture with lost fluidity, 65 ° C. for 14 hours. The resulting solid was crushed and sieved with a sieve having an opening of 500 ⁇ m, and the resulting under powder was heated at 110 ° C. for 12 hours.
  • heat treatment was performed at 1136 ° C. for 4 hours in an air atmosphere furnace to obtain epsilon-type iron oxide magnetic particles coated with silicon oxide. Furthermore, after the obtained heat-treated powder is pulverized to 100 ⁇ m or less using a planetary ball mill, 20 mass% NaOH is added and stirred at about 70 ° C. for 24 hours to remove silicon oxide on the particle surface. As a result, epsilon-type iron oxide magnetic particles of Example 5 were obtained.
  • the major axis number average particle size was 17.4 nm, and the 90% cumulative particle size (D90) based on the number basis was 22.4 nm.
  • the major axis standard deviation (nm) was 3.90 nm, the major axis variation coefficient was 22%, and the geometric standard deviation ⁇ g was 1.29.
  • the average aspect ratio was 1.07, and ⁇ s / V (Am 2 / kg ⁇ nm 2 ) was 0.005 (Am 2 / kg ⁇ nm 2 ).
  • Example 2 Thereafter, a mixture with lost fluidity was obtained in the same manner as in Example 1 except that the mixture was allowed to stand at 30 ° C., and then dried under drying conditions at 65 ° C. for 14 hours. After crushing, it was sieved with a sieve having an opening of 500 ⁇ m, and the resulting under powder was heated at 110 ° C. for 12 hours.
  • heat treatment was performed at 1100 ° C. for 4 hours in a furnace in an air atmosphere to obtain epsilon-type iron oxide magnetic particles coated with silicon oxide. Furthermore, after the obtained heat-treated powder is pulverized to 100 ⁇ m or less using a planetary ball mill, 20 mass% NaOH is added and stirred at about 70 ° C. for 24 hours to remove silicon oxide on the particle surface. As a result, epsilon-type iron oxide magnetic particles of Example 6 were obtained.
  • the number average particle size of the major axis was 18.7 nm, and the 90% cumulative particle size (D90) on the basis of the number was 22.1 nm.
  • the major axis standard deviation (nm) was 3.50 nm, the major axis variation coefficient was 19%, and the geometric standard deviation ⁇ g was 1.21.
  • the average aspect ratio was 1.05, and ⁇ s / V (Am 2 / kg ⁇ nm 2 ) was 0.005 (Am 2 / kg ⁇ nm 2 ).
  • TEOS tetraethyl orthosilicate: Si (OC 2 H 5 ) 4 , ethyl silicate 28 manufactured by Colcoat Co., Ltd.
  • 41.30 g of pure water was added, and then mixed for 30 minutes with a magnetic stirrer.
  • Si / (Fe + M) was 11.7.
  • the ratio of the number of moles of ethanol added to the number of moles of TEOS added (organic solvent / TEOS) was 8.0.
  • Example 2 Thereafter, a mixture with lost fluidity was obtained in the same manner as in Example 1 except that the mixture was allowed to stand at 60 ° C., and then dried under drying conditions at 65 ° C. for 14 hours. After crushing, it was sieved with a sieve having an opening of 500 ⁇ m, and the resulting under powder was heated at 110 ° C. for 12 hours.
  • heat treatment was performed at 1140 ° C. for 4 hours in an air atmosphere furnace to obtain epsilon-type iron oxide magnetic particles coated with silicon oxide. Furthermore, after the obtained heat-treated powder is pulverized to 100 ⁇ m or less using a planetary ball mill, 20 mass% NaOH is added and stirred at about 70 ° C. for 24 hours to remove silicon oxide on the particle surface. As a result, epsilon-type iron oxide magnetic particles of Example 3 were obtained.
  • the number-based particle size of the epsilon-type iron oxide magnetic particles according to Comparative Example 2 was 19.9 nm for the number average particle diameter of the major axis and 26.8 nm for the 90% cumulative particle diameter (D90) based on the number.
  • the major axis standard deviation (nm) was 7.91 nm
  • the major axis variation coefficient was 40%
  • the geometric standard deviation ⁇ g was 1.46.
  • the average aspect ratio was 1.13
  • ⁇ s / V (Am 2 / kg ⁇ nm 2 ) was 0.002 (Am 2 / kg ⁇ nm 2 ).
  • Table 3 summarizes the manufacturing conditions of each example and each comparative example.
  • Table 4 shows the results of each example and each comparative example.
  • the epsilon-type iron oxide magnetic particles of each example had an average major axis, a major axis 90% cumulative particle diameter, a major axis 10% cumulative particle diameter, a major axis standard deviation, a major axis variation coefficient, Considering the average aspect ratio and the like, it is presumed that the single nano-order level particles are reduced as compared with the comparative examples. When there are a plurality of particles of a single nano-order level, there is a risk of causing superparamagnetism. If superparamagnetism is brought about, the original magnetism of epsilon-type iron oxide magnetic powder is not shown, which is not preferable.
  • Epsilon-type iron oxide magnetic powder composed of epsilon-type iron oxide particles according to the present invention is excellent in particle size distribution, and therefore is easy to use as a magnetic material including high-density magnetic recording media, and is useful from an industrial viewpoint. It is also useful as a paint, magnetic recording medium, and magnetic component containing epsilon iron oxide magnetic particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)
  • Magnetic Record Carriers (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

イプシロン型鉄酸化物粒子の粒度分布が狭い磁性粉の提供を目的とする。別の目的としては、粒度分布が改善されることにより磁気記録媒体用に適した磁性粉の提供を目的とする。TEMによる長径の数平均粒子径(D50)が10~20nm、90%累積粒子径(D90)が30nm以下、長径の幾何標準偏差(σ)が1.45以下である、イプシロン酸化鉄磁性粒子及びその関連技術を提供する。

Description

イプシロン型鉄酸化物磁性粒子及びその製造方法、磁性粒子から構成される磁性粉ならびに磁性塗料および磁気記録媒体
 本発明は、高密度磁気記録媒体、電波吸収体等に好適なイプシロン型鉄酸化物磁性粒子、特に、粒子の平均粒子径が十数ナノメートル程度で微細粒子が低減された粉末に関する。
 イプシロン型鉄酸化物磁性粒子は、数ある酸化鉄の中でも特異な相であり、長らくの間単相として安定して取り出せることはなかった。ところが、昨今なされてきた研究により、単相として取り出せるようになってきており、高保磁力を有する特異な磁性材料としてにわかに脚光を浴びるようになってきた。
 磁気記録の分野では、高記録密度を達成するために、また磁性材料を用いる各電子部品においては、各部品の小型化を達成するために、磁性材料の微細化が求められるようになってきている。とくに、従来考えられ、また用いられてきていた金属磁性粉末は粒子が細かくなると、経時変化により磁気特性の劣化が顕著になり微細化のニーズに応えきれなくなることが懸念される。
 本出願人は、こうした現状に鑑みて、磁気記録に用いられうる磁性材料の開発を進めてきた。なかでも、前掲のイプシロン型鉄酸化物磁性粒子は、従来知られている磁性粉に比べて、特異的ともいえる保磁力を発現(1600kA/m以上)し、かつその保磁力は鉄サイトを置換しうる元素の置換量によって、任意に調整できることが明らかになった。要求に応じて特性を調整で出来うることから、材料供給者側の自由度が大きく、次世代の磁気記録用、もしくは他の用途、例えば電波吸収材用磁性粒子として期待されてきている。
特開2016-130208号公報 特許第5966064号
 ところが、イプシロン型鉄酸化物磁性粉は、イプシロン型鉄酸化物磁性粉を構成するイプシロン型鉄酸化物粒子の粒子径のばらつきが大きくなる場合があり、とりわけ磁気特性の調整のために置換元素を添加した場合にその影響が大になる。特に磁気記録用途においては、こうした粒子径ばらつきは、磁気記録媒体の電磁変換特性の一つである信号対雑音比(S/N比)において、雑音の値が大きくなる原因ともなり、致命的になりかねない。したがって、可能な限り粒子径ばらつきが低減されたイプシロン型鉄酸化物磁性粉が望まれている。また、同じ占有体積であっても、高い磁化値(良好な磁気特性)を有する磁性材料が得られれば、高密度磁気記録や、磁性を利用して駆動する磁性部品などに広く適用できることが期待できる。
 本発明は、こうした問題に鑑みてなされたものであり、粒度分布のばらつきが小さく、適切な粒子径を有したイプシロン型鉄酸化物磁性粒子、特に超常磁性になるシングルナノオーダーレベルの粒子が低減されることによって、体積あたりの飽和磁化値が大きくなる磁性粉の提供を目的としたものである。
 別の目的としては、イプシロン型鉄酸化物粒子の粒度分布が狭い磁性粉の提供を目的としたものであると共に、粒度分布が改善されることにより磁気記録媒体用に適した磁性粉の提供を目的としたものである。
 本発明の第1の構成としては、
 TEMによる長径の数平均粒子径(D50)が10~20nm、90%累積粒子径(D90)が30nm以下、長径の幾何標準偏差(σ)が1.45以下である、イプシロン酸化鉄磁性粒子である。
 第2の構成としては、第1の発明に記載の、
 前記イプシロン酸化鉄磁性粒子の鉄サイトの少なくとも一部は置換されているイプシロン酸化鉄磁性粒子である。
 第3の構成としては、第1または第2の発明に記載の、
 前記イプシロン酸化鉄磁性粒子を球形近似したときの平均体積が5000nm以下であるイプシロン酸化鉄磁性粒子である。
 第4の構成としては、第1ないし第3のいずれかの発明に属するイプシロン酸化鉄磁性粒子を含有する塗料である。
 第5の構成としては、第1ないし第3のいずれかの発明に属するイプシロン酸化鉄磁性粒子を含有する磁気記録媒体である。
 第6の構成として、第1ないし第3のいずれかの発明に属するイプシロン酸化鉄磁性粒子を含有する磁性部品である。
 第7の構成としては、
 透過型電子顕微鏡観察による長径の変動係数が35%未満であるイプシロン型鉄酸化物粒子からなるイプシロン型鉄酸化物磁性粉である。
 第8の構成としては、第7の発明に記載の、
 透過型電子顕微鏡観察による平均アスペクト比が1.1以下であるイプシロン型鉄酸化物粒子からなるイプシロン型鉄酸化物磁性粉である。
 第9の構成としては、第7または第8の発明に記載の、
 透過型電子顕微鏡観察による長径の個数平均粒子径が10nm以上20nm以下であるイプシロン型鉄酸化物磁性粉である。
 第10の構成としては、
 イプシロン型鉄酸化物磁性粉の製造方法であって、
 水溶性の鉄塩、または水溶性の鉄塩および鉄以外の金属元素Mの塩を含む水溶液と、加水分解性基をもつケイ素化合物とを混合した後に50℃以下にて保持することで、鉄塩または鉄塩と金属元素Mを含むケイ素酸化物のゲルを得る工程、
 前記の鉄塩または鉄塩と金属元素Mを含むケイ素酸化物のゲルを加熱してケイ素酸化物で被覆されたイプシロン型鉄酸化物の粉末を得る工程、
 前記のイプシロン型鉄酸化物を被覆しているケイ素酸化物を溶解してイプシロン型鉄酸化物磁性粉を得る工程を含む、イプシロン型鉄酸化物磁性粉の製造方法である。
 第11の構成としては、第10の発明に記載の、
 イプシロン型鉄酸化物磁性粉の製造方法であって、
 前記の鉄塩または鉄塩と金属元素Mを含むケイ素酸化物のゲルを得る工程において、
 水溶性の鉄塩、または水溶性の鉄塩および鉄以外の金属元素Mの塩を含む水溶液と、水溶性の有機溶媒とを混合した後に、前記の加水分解性基をもつケイ素化合物とを混合し、さらに保持するイプシロン型鉄酸化物磁性粉の製造方法である。
 第12の構成としては、第10または第11の発明に記載の、
 イプシロン型鉄酸化物磁性粉の製造方法であって、
 前記の鉄塩が硝酸塩もしくは塩化物であるイプシロン型鉄酸化物磁性粉の製造方法である。
 第13の構成としては、第7ないし第9のいずれかの発明に属するイプシロン型鉄酸化物粒子を含有する塗料である。
 第14の構成としては、第7ないし第9のいずれかの発明に属するイプシロン型鉄酸化物粒子を含有する磁気記録媒体である。
 第15の構成として、第7ないし第9のいずれかの発明に属するイプシロン型鉄酸化物粒子を含有する磁性部品である。
 本発明によれば、特に粒度分布が改善された磁性粒子の構成と出来る。また、超常磁性の粒子割合を小さくすることが出来、粒度分布が改善されることにより磁気記録媒体用に適した磁性粒子の構成と出来る。
ゲルの乾燥体の例を示した写真である。 本実施例におけるフローチャートを示す図である。 実施例1により得られたイプシロン型鉄酸化物磁性粉の透過型電子顕微鏡の写真である。 比較例1により得られたイプシロン型鉄酸化物磁性粉の透過型電子顕微鏡の写真である。
[イプシロン型鉄酸化鉄磁性粉]
 本発明の製造方法は、イプシロン型鉄酸化物磁性粒子からなる、イプシロン型鉄酸化物磁性粉を製造するためのものである。イプシロン型鉄酸化物とは、イプシロン酸化鉄(ε酸化鉄)、またはイプシロン酸化鉄(ε酸化鉄)の鉄サイトの一部を鉄以外の金属元素Mで置換した酸化物を指す。金属元素Mとしては、In、Ga、Al、Co、Ni、Mn、Zn、Ti、Snなど、ε酸化鉄の鉄サイトを置換することができる公知の元素を採用すればよい。本発明品であるイプシロン型鉄酸化物磁性粉を透過型電子顕微鏡による観察すると、図3のようになる。イプシロン型鉄酸化物磁性粒子とは、図3に見られる一つ一つの粒子を指し、本発明品であるイプシロン型鉄酸化物磁性粉は、このイプシロン型鉄酸化物磁性粒子の集合体である。
[鉄サイトの一部を鉄以外の金属元素で置換した酸化物]
 イプシロン型鉄酸化物の鉄サイトの少なくとも一部を置換されているイプシロン型鉄酸化物磁性粒子の金属元素Mとしては、特許文献1や特許文献2など公知文献に開示された元素を採用すればよい。
[イプシロン型鉄酸化鉄磁性粉の寸法]
 イプシロン型鉄酸化物磁性粉を構成する、イプシロン型鉄酸化物粒子の透過型電子顕微鏡(本明細書中で、TEMを呼ぶことがある)観察による長径の個数平均粒子径は10nm以上20nm以下であることが望ましい。粒子が20nm超でなければ、磁性層の薄層塗布が行いやすいので、ひいては高密度化が達成できる。また、粒子の体積も適切な大きさとすることができるので、高密度化の弊害になる粒子性ノイズの増大を抑制できるので好ましい。また、粒子が10nmよりも大きければ、超常磁性の状態になりにくく、磁場を与えた際に磁化されやすいので、情報の仲立ちをするのに十分な粒子になり得る。なお、本明細書においては「長径の個数平均粒子径」のことを「長径の個数平均値」「平均長径」とも言う。
 本明細書において、粒度分布とはTEM観察による粒子の長径や短径のばらつきを指す。このばらつきが少ないほど、すなわち粒度分布が狭いほど、磁気記録媒体用に適したイプシロン型鉄酸化物磁性粉であると言える。TEM観察による粒子の粒度分布において、長径の個数基準での90%累積粒子径D90が30nm以下であることが望ましい。これによって、極端に粒径の大きい粒子が少ないので、粒子性ノイズを抑制できると考えられる。
 長径のばらつきを示す幾何標準偏差値は、媒体特性を高レベルで両立させる観点から、1.01~1.45、好ましくは1.01~1.40、一層好ましくは1.01~1.35であることが望ましい。かような範囲内にあることは、極端に大きい粒子や極端に小さい粒子が少なく、高密度磁気記録に好適な粉末であるといえる。
 また、イプシロン型鉄酸化物磁性粉の球形近似した平均粒子体積は5000nm以下であることが好ましい。球形近似した平均粒子体積は、TEM観察から算出された平均長径の直径をもつ球の体積として算出することができる。すなわち、(平均粒子体積;nm)=(4/3)×π×(平均長径(nm)/2)。こうした平均粒子体積が5000nm以下であるイプシロン型鉄酸化物磁性粉は、高密度磁気記録媒体用の磁性粉末として好適なものといえるので好ましい。
 また、本発明品であるイプシロン型鉄酸化物磁性粉のTEM観察による長径の変動係数は35%未満である。本発明の製造方法により、長径の変動係数を35%未満とし、粒度分布が狭いイプシロン型鉄酸化物磁性粉を得ることができる。この範囲に変動係数があれば、極端に大きな粒子、小さな粒子が少なく、高密度磁気記録に好適な粉末であるといえる。記録密度をさらに高める観点から、長径の変動係数は30%以下であることが好ましく、25%以下であることがより好ましい。
 また、本発明の製造方法を採用することでイプシロン型鉄酸化物磁性粉の平均アスペクト比を1.1以下とすることができる。イプシロン型鉄酸化物磁性粉の平均アスペクト比を1.1以下とすることで、イプシロン型鉄酸化物磁性粉と樹脂等を混合して磁気記録媒体もしくは磁性部品を製造する際に、外部磁場によってイプシロン型鉄酸化物粒子がより配向しやすくなり、磁気記録媒体の出力特性を向上させることができる。
[イプシロン型鉄酸化鉄磁性粉の製造方法]
 本発明の製造方法は、オキシ水酸化鉄、フェリハイドライト、ウスタイトやマグネタイトと言った、前駆体を生成させることなく、鉄塩または鉄塩と金属元素Mを含むケイ素酸化物のゲルの乾燥体を直接焼成することにより、イプシロン型鉄酸化物磁性粒子を析出させる方法である。本実施形態においては一具体例として以下の工程を行い、イプシロン型鉄酸化物磁性粉の製造方法を実施する。
・水溶性の鉄塩、または水溶性の鉄塩および鉄以外の金属元素Mの塩を含む水溶液と、加水分解性基をもつケイ素化合物とを混合した後に50℃以下にて保持することで、鉄塩または鉄塩と金属元素Mを含むケイ素酸化物のゲルを得る工程
・前記の鉄塩または鉄塩と金属元素Mを含むケイ素酸化物のゲルを加熱してケイ素酸化物で被覆された鉄酸化物、もしくは鉄と金属元素Mの酸化物よりなる酸化物の粉末を得る工程
・前記の鉄酸化物、もしくは鉄と金属元素Mの酸化物を被覆しているケイ素酸化物を溶解してイプシロン型鉄酸化物磁性粉を得る工程
 また、前記の鉄塩または鉄塩と金属元素Mを含むケイ素酸化物のゲルを得る工程において、水溶性の鉄塩、または水溶性の鉄塩および鉄以外の金属元素Mの塩を含む水溶液と、水溶性の有機溶媒とを混合した後に、前記の加水分解性基をもつケイ素化合物とを混合し、さらに保持する。
 この方法を採用するに当たっては、鉄源(二価のものでも三価のものでも良い)と、置換元素源と、水とを混合して作成する。必要に応じて水溶性有機溶媒(例えばエタノール、メタノールなど)及び必要に応じて高分子(ポリエチレングリコールなど)を混合して作成する。置換金属元素を使用する必要がある場合には、特許文献1や特許文献2など公知文献に開示された元素を選択して用いることができる。
 ここで水溶性有機溶媒(親水性溶媒)とは、水への溶解度が30g/100g(HO)以上であり、常温常圧で液体である有機化合物を指す。
 ここで水と水溶性有機溶媒(親水性溶媒)の混合割合は、モル比で水/水溶性有機溶媒が1.5以下、好ましくは1.0以下である。割合が1.5を超えると、加水分解性基をもつケイ素化合物を添加した際に混ざらず、水と分離してしまい、特に置換をしたイプシロン型鉄酸化物磁性粒子を形成させようとしたときに、組成が不均一になり、優れた特性の磁性粉末が得られないので好ましくない。
 また、水溶性有機溶媒の添加量は、加水分解性基を有するケイ素化合物を水溶性有機溶媒中に溶解させるための必要量とすることが好ましい。その際、加水分解性基をもつケイ素化合物に対する水溶性有機溶媒のモル比(水溶性有機溶媒/加水分解性基をもつケイ素化合物)は、7.0以上とすることが好ましい。加水分解性基をもつケイ素化合物に対する水溶性有機溶媒のモル比をこの範囲とすることで、長径の変動係数が低く、粒度分布が狭いイプシロン型鉄酸化物磁性粉が得られやすくなる。
 「加水分解性基を有するケイ素化合物」とは、分子骨格内に加水分解性基を有するケイ素化合物のことであり、金属アルコキシドとしてテトラエトキシシラン(TEOS)、テトラメトキシシラン(TMOS)、その他にシランカップリング剤などを例示できる。
 また、「鉄ならびに置換金属元素Mの合計モル量」に対する「加水分解性基をもつケイ素化合物のモル量」の比は、4.0以上とすることが好ましい。このように、加水分解性基をもつケイ素化合物の量を、金属のモル量に対して十分に多くすることで、長径の変動係数が低く、粒度分布が狭いイプシロン型鉄酸化物磁性粉が得られやすくなる。   
 またここで、鉄および置換元素は水溶液形態、あるいは金属を酸で溶解した形態とする。鉄および置換元素の供給源については、無機塩でも有機塩でも良く、無機塩としては硝酸塩、硫酸塩、塩化物などが挙げられる。イプシロン型鉄酸化物磁性粉の保磁力を高め、保磁力分布を狭くする観点から、鉄塩としては硝酸鉄もしくは塩化物を用いることが好ましい。さらに、鉄および置換元素の金属イオンの総量は3.5mol/L以下、好ましくは2.0mol/L以下とするのが好ましい。
 加水分解性基をもつケイ素酸化物の添加後に液が一様になるまで撹拌した後、50℃以下の温度環境下で静置状態にて保持して、撹拌後の液の流動性がなくなるまで静置させる。この静置状態での保持温度を50℃以下とすることで、最終的に得られるイプシロン型鉄酸化物粒子の粒度分布を狭くすることができる。もし、この静置状態での保持温度を50℃超とした場合には、最終的に得られるイプシロン型鉄酸化物粒子の粒度分布が広くなってしまい、本発明の効果が得られない。
 流動性が失われたゲルを、ゲル形成時の静置環境よりも5℃以上、好ましくは10℃以上で、水溶性有機溶媒の沸点以下の加温環境下にて余剰の溶媒を揮発除去させる。この乾燥工程を経て固化することで、最終の酸化鉄における組成ばらつきを低減させることができるので好ましい。なお、ゲルの乾燥体の例を図1に示した。
 得られた固形物は解粒して加熱工程前試料(ゲルの乾燥体)としても良い。2mm以下、好ましくは1mm以下、一層好ましくは500μm以下とするのが好ましい。粉末とすることで後の加熱工程に置ける焼成ムラを低減し、ケイ素酸化物被覆除去工程においてケイ素酸化物の溶解が容易となり、磁気特性に優れた磁性粉末を得ることが出来るので好ましい。
[加熱工程]
 得られた加熱加工前試料を加熱処理してイプシロン型鉄酸化物を得る。加熱処理前に、洗浄、乾燥の工程を設けても良い。加熱処理は酸化雰囲気中で行われるが、酸化雰囲気としては大気雰囲気で構わない。加熱は概ね700℃以上1300℃以下の範囲で行うことができるが、加熱温度が高いと熱力学安定相であるα-Fe(ε-Feからすると不純物である)が生成し易くなるので、好ましくは900℃以上1200℃以下、より好ましくは950℃以上1150℃以下で加熱処理を行う。
 熱処理時間は設定温度に達してから0.5時間以上10時間以下の範囲で調整可能であるが、2時間以上5時間以下の範囲で良好な結果が得られやすい。なお、粒子を覆うケイ素含有物質の存在がαタイプの鉄系酸化物への相変化ではなくイプシロン型鉄酸化物磁性粒子への相変化を引き起こす上で有利に作用するものと考えられる。
 以上の工程により、原料溶液が金属イオンとして3価の鉄イオンと鉄サイトを置換するための金属元素を含む場合には一部置換型のε-Fe結晶をケイ素酸化物で被覆した状態で得られる。加熱処理後に得られる粉末には、イプシロン型鉄酸化物結晶以外に、不純物としてαタイプの鉄系酸化物、γタイプの鉄系酸化物、Fe結晶が存在する場合もあるが、それらを含めてイプシロン型鉄酸化物粒子と呼ぶ。
 本発明の製造方法により得られるイプシロン型鉄酸化物磁性粒子は、ケイ素酸化物を被覆した状態で用いることも可能であるが、用途によっては表面を被覆しているケイ素酸化物を後述の工程により除去した状態で用いることも可能である。ケイ素酸化物で被覆されたイプシロン型酸化鉄磁性粒子については、後の工程の便宜を図る(ケイ素酸化物の溶解速度を高める)ために必要に応じて、遊星ボールミルなどで解砕処置を施しても構わない。
[ケイ素酸化物被覆除去工程]
 イプシロン型鉄酸化物磁性粒子がケイ素酸化物による被覆を必要としない場合、ε-Fe結晶を被覆しているケイ素酸化物を除去する。塗布型磁気記録媒体用途においては、テープに塗布された磁性粒子に磁場配向処理を行う必要があること、また、ケイ素酸化物を被覆した状態では、非磁性成分であるケイ素酸化物が増えてテープ単位面積当たりの磁化量が落ちてしまうため(テープからの信号が弱くなってしまう)、被覆しているケイ素酸化物を後述の工程により除去した状態にすることが好ましい。
 具体的な方法としては、ケイ素酸化物はアルカリ性の水溶液に可溶なので、加熱処理後の粉末をNaOHやKOHなどの強アルカリを溶解させた水溶液中に浸漬し、撹拌することにより溶解・除去できる。溶解速度を上げる場合は、アルカリ水溶液を加温するとよい。
 代表的には、NaOH、KOHなどのアルカリをケイ素酸化物に対して2倍モル以上添加し、水溶液温度が40℃以上、好ましくは60℃以上80℃以下の状態で、粉末を撹拌すると、ケイ素酸化物を良好に溶解することができる。ケイ素酸化物被覆除去の程度は、目的に応じて調整する。
[透過型電子顕微鏡(TEM)観察]
 本発明の製造方法により得られたイプシロン型鉄酸化物磁性粉のTEM観察は、以下の条件で行った。 
- 撮影試料の調整-
 イプシロン型鉄酸化物磁性粉約0.005gを2質量%コロジオン溶液10mLに添加し、超音波分散処理を施し、イプシロン型鉄酸化物磁性粉を含むスラリーを得た。得られたスラリーを水に1~2滴滴下して生成したコロジオン膜を、グリッドの片面に付着させ、自然乾燥させた後にカーボン蒸着を施す。カーボン蒸着を施されたグリッドをTEM観察に供する。
 TEM観察には日本電子株式会社製JEM-1011を使用した。粒子観察については、倍率100,000倍で撮影した後、現像時に3倍引き伸ばしたTEM写真を用いた。
- 長径測定-
 長径の個数平均粒子径、粒度分布評価にデジタイズを使用した。画像処理ソフトとして、Mac-View Ver.4.0を使用した。(この画像ソフトを使用すれば、粒子について外接する長方形のうち、面積が最小となる長方形を導き出され、その長辺の長さを一つの粒子の長径として算出される。)個数については200個以上を測定した。
 透過型電子顕微鏡写真上に映っている粒子のうち、測定する粒子の選定基準は次のとおりとした。
 [1] 粒子の一部が写真の視野の外にはみだしている粒子は測定しない。
 [2] 輪郭がはっきりしており、孤立して存在している粒子は測定する。
 [3] 平均的な粒子形状から外れている場合でも、独立しており単独粒子として測定が可能な粒子は測定する。
 [4] 粒子同士に重なりがあるが、両者の境界が明瞭で、粒子全体の形状も判断可能な粒子は、それぞれの粒子を単独粒子として測定する。
 [5] 重なり合っている粒子で、境界がはっきりせず、粒子の全形も判らない粒子は、粒子の形状が判断できないものとして測定しない。
 以上の基準で選定された粒子の長径の個数平均値を算出し、イプシロン型鉄酸化物磁性粉のTEM観察による長径の個数平均粒子径とした。また、「選定された粒子の長径の標準偏差」を「選択された粒子の長径の個数平均値(=平均長径)」で除した値を算出して、イプシロン型鉄酸化物磁性粉のTEM観察による長径の変動係数とした。さらに、選定された粒子の長径の幾何標準偏差を算出してイプシロン型鉄酸化物磁性粉のTEM観察による長径の幾何標準偏差とし、選定された粒子の長径の調和平均を算出してイプシロン型鉄酸化物磁性粉のTEM観察による長径の調和平均径とした。
 なお、幾何標準偏差は、選定された粒子の長径の各測定値の常用対数値を算出し、算出された各常用対数値の標準偏差値をnとした時、10のn乗として算出される。また、調和平均径は、選定された粒子の長径の各測定値の逆数の値を算出し、算出されたそれぞれの逆数の値の個数平均値をmとした時、mの逆数として算出される。
 [短径、アスペクト比評価、90%累積粒子径ならびに10%累積粒子径]
 前記の長径測定で選定された各粒子について、短径を測定した。ここで短径とは、ある粒子について、その粒子に外接する長方形のうち面積が最小となる長方形の短辺の長さを指す。選定された各粒子の短径の測定値の個数平均を算出し、イプシロン型鉄酸化物磁性粉の平均短径とする。平均長径を平均短径で除した値を、イプシロン型鉄酸化物磁性粉の平均アスペクト比とした。
 また、イプシロン型鉄酸化物磁性粒子のTEM観察による90%累積粒子径ならびに10%累積粒子径は、長径測定における長径分布のデータから算出した。
[高周波誘導結合プラズマ発光分光分析法(ICP)による組成分析]
 得られたイプシロン型鉄酸化物磁性粉の組成分析にあたっては、アジレントテクノロジー製ICP-720ESを使用し、測定波長(nm)についてはFe;259.940nm、Ga;294.363nm、Co;230.786nm、Ti;336.122nmにて行う。
[磁気特性の測定]
 振動試料型磁力計VSM(東英工業社製VSM-5)を用い、印加磁場1035kA/m(13kOe)、M測定レンジ0.005A・m(5emu)、ステップビット80bit、時定数0.03sec、ウエイトタイム0.1secで磁気特性を測定した。B-H曲線により、保磁力Hc、飽和磁化σsについて測定によりデータを取得した。また、本測定、評価には東英工業社製付属ソフト(Ver.2.1)を使用した。
 以下、本発明を実施例によって詳細に説明するが、本発明はこれらにより何ら限定されるものではない。本実施例は図2に示すフローチャートに従って実施する。
[実施例1]
 1L反応槽にて、純水80.0gに、純度99.7質量%の硝酸第二鉄・9水和物(Fe(NO・9HO))33.04g、Ga濃度9.44質量%の硝酸Ga(III)溶液13.60g、純度97質量%の硝酸コバルト(II)6水和物0.79g、Ti濃度15.1質量%の硫酸チタン(IV)0.83gを大気雰囲気中、撹拌羽根により機械的に撹拌しながら溶解した。する。この仕込み溶液中の金属イオンのモル比は、Fe:Ga:Co:Ti=1.550:0.350:0.050:0.050である。
 次に、エタノール(特級試薬:沸点78.37℃)456.27gを添加した後、TEOS(オルトケイ酸テトラエチル:Si(OC2H5)4、コルコート株式会社製エチルシリケート28)256.96gを添加、さらに純水を40g添加した後マグネチックスターラーにて30分間混合した。混合した後の組成物の質量を測定(風袋を除いた質量:873.66g)し、その後40℃恒温条件下で、質量をモニタリング測定しながら確認し、混合後の混合物における質量(基準質量)が静置開始前の総質量の30%に達する段階、すなわち70%の質量減少が見られるまで静置した(風袋を除いた質量:257.40g)。この段階ですでに混合物の流動性は失われている。その後、65℃、14時間の乾燥条件にて乾燥させたのちに再度質量を測定することでゲルの乾燥質量を確認(風袋を除いた質量:201.15g)した。ここで、TEOSとして添加されたSiのモル数の、仕込溶液中の金属イオンの合計モル数(Fe+M)に対する比を算出したところ、Si/(Fe+M)は11.7であった。また、添加したエタノールのモル数の、添加したTEOSのモル数に対する比(有機溶媒/TEOS)を算出したところ、8.0であった。
 得られた固形物を手解砕した後、目開き500μmの篩で篩掛けし、アンダー粉のみ回収して次工程に付した。得られたアンダー粉は110℃で12時間加熱して、さらに余剰の液体分を除去した。
 その後、大気雰囲気の炉内で1125℃、4時間の熱処理を施し、ケイ素酸化物で被覆されたイプシロン型鉄酸化物磁性粒子を得た。さらに、得られた熱処理粉を遊星ボールミルを用いて100μm以下に解粒した後、20質量%NaOHを添加し、約70℃、24時間撹拌することで、粒子表面のケイ素酸化物の除去処理を行って、実施例1のイプシロン型鉄酸化物磁性粉を得た。実施例1により得られたイプシロン型酸化鉄磁性粒子の透過型電子顕微鏡の写真を図3に示す。
 実施例1にかかるイプシロン型鉄酸化物磁性粉の個数基準での粒度は、長径の数平均粒子径が17.7nm、個数基準での90%累積粒子径(D90)が22.2nmだった。また、得られた粒子の組成をICP発光分析測定により確認したところ、金属イオンのモル比は、Fe:Ga:Co:Ti=1.58:0.31:0.05:0.05と算出された。また、長径の標準偏差は(nm)は3.59nmであり、長径の変動係数は20%、幾何標準偏差σgは、1.24であった。さらに、平均アスペクト比は1.05であり、σs/V(Am/kg・nm)は0.006(Am/kg・nm)であった。
[比較例1]
 特許第5966064号に記載の実施例2の手順でイプシロン型鉄酸化物磁性粉を作成した。すなわち、30L反応槽にて、純水31368.68gに、純度99.5質量%硝酸第二鉄(III)9水和物2910.27g、Ga濃度10.3質量%の硝酸ガリウム(III)溶液786.25g、純度97質量%硝酸コバルト(II)6水和物65.76g、Ti濃度15.2質量%の硫酸チタン(IV)69.04gを大気雰囲気中、40℃の条件下で、撹拌羽根により機械的に撹拌しながら溶解する。この仕込み溶液中の金属イオンのモル比は、Fe:Ga:Co:Ti=1.635:0.265:0.050:0.050である。なお、試薬名の後の括弧内の数字は、金属元素の価数を表している。
 大気雰囲気中、40℃で、撹拌羽根により機械的に撹拌しながら、22.09質量%のアンモニア溶液を1595.91g一挙添加し、2時間撹拌を続ける。添加初期は茶色で濁った液であったが、2時間後には透明感のある茶色の反応液となり、そのpHは1.67であった。
 次にクエン酸濃度10質量%のクエン酸溶液1684.38gを、40℃の条件下で、1時間かけて連続添加した後、10質量%のアンモニア溶液を2000g一挙添加し、pHを8.51にした後、温度40℃の条件下、1時間撹拌しながら保持し、中間生成物である前駆体の置換元素を含むオキシ水酸化鉄の結晶を生成した(手順1)。
 ここで図示はしないが、本実施例において得られた置換元素を含むオキシ水酸化鉄結晶のX線回折パターンは、オキシ水酸化鉄がフェリハイドライト構造であることを示す。
 手順1で得られたスラリーを回収し、限外ろ過膜、UF分画分子量50,000の膜にて、濾液の電気伝導率が50mS/m以下になるまで洗浄した。また、洗浄スラリーの導電率は105mS/mであった(手順2)。
 5L反応槽に、手順2で得られた洗浄スラリー液3162.89g(ε-Fe(一部置換体)60g含有)を分取し、液量が4000mLになるように純水を加えた後、大気中、30℃で、撹拌しながら、22.09質量%のアンモニア溶液212.46gを添加した後、当該スラリー液にテトラエトキシシラン(TEOS)428.95gを35分で添加する。約1日そのまま撹拌し続け、加水分解により生成したシラノール誘導体で被覆した。その後、純水300gに硫酸アンモニウム202.6gを溶解した溶液を添加し、得られた溶液を洗浄・固液分離し、ケーキとして回収する(手順3)。ここで、TEOSとして添加されたSiのモル数の、仕込溶液中の金属イオンの合計モル数(Fe+M)に対する比を算出したところ、Si/(Fe+M)は2.8であった。
 手順3で得られた沈殿物(ゲル状SiOコートされた前駆体)を乾燥した後、その乾燥粉に対して粉砕処理を行った。その後、その乾燥粉に対し、大気雰囲気の炉内で、1066℃以上1079℃以下で4時間の熱処理を施し、ケイ素酸化物で被覆された鉄酸化物の粉末を得た。なお、前記のシラノール誘導体は、大気雰囲気で熱処理した際に、酸化物に変化する(手順4)。
 手順4で得られた熱処理粉を20質量%NaOH水溶液中で約70℃、24時間撹拌し、粒子表面のケイ素酸化物の除去処理を行う。次いで、限外ろ過膜、UF分画分子量50,000の膜にて、洗浄スラリーの導電率が1.476mS/mまで洗浄した。(手順5)
 得られた磁性粉体含有スラリーに純水を加え、NaOH水溶液をpH11.0になるように添加した後、超音波洗浄機(Emerson Electric社のBRANSON(Yamato)5510)にて1時間、超音波分散処理を行った後、遠心分離機(日立工機株式会社製、himac 21G2)のR10A3ローターにて、8000rpmで30分、遠心分離処理を施す。粗粒を含む沈殿物を除去した後、同様の操作を2回実施し、粗粒除去されたスラリー溶液を得た。
 続いて得られたスラリー溶液の微粒子除去処理を行う。上記で得られた磁性粉体含有スラリーに純水を加え、NaOH水溶液をpH11.0になるように添加した後、超音波ホモジナイザー(US-600TCVP)にて2時間、超音波分散処理を行った後、遠心分離機(himac 21G2)、R10A3ローターにて、8000rpmで30分、遠心分離処理を施し、微粒子を含む上澄みを除去した。
 さらに得られた沈殿物に純水を加え、NaOH水溶液をpH11.0になるように添加した後、超音波洗浄機(Emerson Electric社のBRANSON(Yamato)5510)にて1時間、超音波分散処理を行った後、遠心分離機(himac 21G2)、R10A3ローターにて、8000rpmで30分、遠心分離処理を施す。微粒子を含む上澄みを除去した後、同様の操作をもう一度実施し、微粒子除去された沈殿物をメンブレン濾過し、ケーキ回収した後、乾燥し、比較例1のサンプルを得た。比較例1により得られたイプシロン型酸化鉄磁性粒子の透過型電子顕微鏡の写真を図4に示す。比較例1にかかるイプシロン型酸化鉄磁性粒子サンプルの個数基準での粒度は、長径の数平均粒子径が21.4nm、長径の個数基準での90%累積粒子径(D90)が31.4nmだった。また、長径の標準偏差は(nm)は7.46nmであり、長径の変動係数は35%、幾何標準偏差σgは、1.47であった。さらに、平均アスペクト比は1.21であり、σs/V(Am/kg・nm)は0.003(Am/kg・nm)であった。
 以下、実施例1及び比較例1の磁性粉の平均粒子径(すなわち平均長径)、標準偏差、幾何標準偏差、調和平均径をまとめたものを表1に示す。また、実施例1及び比較例1の平均粒子体積V、保磁力Hc(Oe)、保磁力Hc(kA/m)、飽和磁化σs、体積当たりの飽和磁化σs/Vの結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
[実施例2]
 5L反応槽にて、純水400.0gに、純度99.7質量%の硝酸第二鉄・9水和物(Fe(NO・9HO))166.20g、Ga濃度9.44質量%の硝酸Ga(III)溶液68.39g、純度97質量%の硝酸コバルト(II)6水和物3.02g、Ti濃度15.1質量%の硫酸チタン(IV)4.19gを大気雰囲気中、撹拌羽根により機械的に撹拌しながら溶解した。この仕込み溶液中の金属イオンのモル比は、Fe:Ga:Co:Ti=1.560:0.350:0.040:0.050である。
 次に、エタノール(特級試薬:沸点78.37℃)2281.37gを添加した後、TEOS(オルトケイ酸テトラエチル:Si(OC、コルコート株式会社製エチルシリケート28)1284.80gを添加、さらに純水を200g添加した後マグネチックスターラーにて30分間混合した。ここで、TEOSとして添加されたSiのモル数の、仕込溶液中の金属イオンの合計モル数(Fe+M)に対する比を算出したところ、Si/(Fe+M)は11.7であった。また、添加したエタノールのモル数の、添加したTEOSのモル数に対する比(有機溶媒/TEOS)を算出したところ、8.0であった。
 その後、実施例1と同様に質量をモニタリングしながら、40℃恒温条件下で70%の質量減少がみられるまで静置し、流動性が失われた混合物を得た後、65℃、14時間の乾燥条件にて乾燥し、得られた固形物を解砕後、目開き500μmの篩で篩掛けし、得られたアンダー粉を110℃で12時間加熱した。
 次に、大気雰囲気の炉内で1125℃、4時間の熱処理を施し、ケイ素酸化物で被覆されたイプシロン型鉄酸化物磁性粒子を得た。さらに、得られた熱処理粉を遊星ボールミルを用いて100μm以下に解粒した後、20質量%NaOHを添加し、約70℃、24時間撹拌することで、粒子表面のケイ素酸化物の除去処理を行って、実施例2のイプシロン型鉄酸化物磁性粒子を得た。
 実施例2にかかるイプシロン型鉄酸化物磁性粒子の個数基準での粒度は、長径の数平均粒子径が17.6nm、個数基準での90%累積粒子径(D90)が20.8nmだった。また、得られた粒子の組成をICP発光分析測定により確認したところ、金属イオンのモル比は、Fe:Ga:Co:Ti=1.56:0.34:0.04:0.06と算出された。また、長径の標準偏差は(nm)は3.34nmであり、長径の変動係数は19%、幾何標準偏差σgは、1.22であった。さらに、平均アスペクト比は1.06であり、σs/V(Am/kg・nm)は0.006(Am/kg・nm)であった。
[実施例3]
 1L反応槽にて、純水37.39gに、純度99.7質量%の硝酸第二鉄・9水和物(Fe(NO・9HO))33.24g、Ga濃度9.44質量%の硝酸Ga(III)溶液13.68g、純度97質量%の硝酸コバルト(II)6水和物0.60g、Ti濃度15.1質量%の硫酸チタン(IV)0.84gを大気雰囲気中、撹拌羽根により機械的に撹拌しながら溶解した。この仕込み溶液中の金属イオンのモル比は、Fe:Ga:Co:Ti=1.560:0.350:0.040:0.050である。
 次に、エタノール(特級試薬:沸点78.37℃)213.27gを添加した後、TEOS(オルトケイ酸テトラエチル:Si(OC、コルコート株式会社製エチルシリケート28)120.10gを添加、さらに純水を18.70g添加した後マグネチックスターラーにて30分間混合した。ここで、TEOSとして添加されたSiのモル数の、仕込溶液中の金属イオンの合計モル数(Fe+M)に対する比を算出したところ、Si/(Fe+M)は5.5であった。また、添加したエタノールのモル数の、添加したTEOSのモル数に対する比(有機溶媒/TEOS)を算出したところ、8.0であった。
 その後、実施例1と同様に質量をモニタリングしながら、25℃恒温条件下で70%の質量減少がみられるまで静置し、流動性が失われた混合物を得た後、65℃、14時間の乾燥条件にて乾燥し、得られた固形物を解砕後、目開き500μmの篩で篩掛けし、得られたアンダー粉を110℃で12時間加熱した。
 次に、大気雰囲気の炉内で1090℃、4時間の熱処理を施し、ケイ素酸化物で被覆されたイプシロン型鉄酸化物磁性粒子を得た。さらに、得られた熱処理粉を遊星ボールミルを用いて100μm以下に解粒した後、20質量%NaOHを添加し、約70℃、24時間撹拌することで、粒子表面のケイ素酸化物の除去処理を行って、実施例3のイプシロン型鉄酸化物磁性粒子を得た。
 実施例3にかかるイプシロン型鉄酸化物磁性粒子の個数基準での粒度は、長径の数平均粒子径が19.0nm、個数基準での90%累積粒子径(D90)が23.0nmだった。また、長径の標準偏差は(nm)は4.05nmであり、長径の変動係数は21%、幾何標準偏差σgは、1.23であった。さらに、平均アスペクト比は1.06であり、σs/V(Am/kg・nm)は0.005(Am/kg・nm)であった。
[実施例4]
 1L反応槽にて、純水80.00gに、純度99.7質量%の硝酸第二鉄・9水和物(Fe(NO・9HO))30.91g、Ga濃度13.20質量%の硝酸Ga(III)溶液15.28gを大気雰囲気中、撹拌羽根により機械的に撹拌しながら溶解した。この仕込み溶液中の金属イオンのモル比は、Fe:Ga=1.450:0.550である。
 次に、エタノール(特級試薬:沸点78.37℃)を456.27gを添加した後、TEOS(オルトケイ酸テトラエチル:Si(OC、コルコート株式会社製エチルシリケート28)259.96gを添加、さらに純水を40.00g添加した後マグネチックスターラーにて30分間混合した。ここで、TEOSとして添加されたSiのモル数の、仕込溶液中の金属イオンの合計モル数(Fe+M)に対する比を算出したところ、Si/(Fe+M)は11.7であった。また、添加したエタノールのモル数の、添加したTEOSのモル数に対する比(有機溶媒/TEOS)を算出したところ、8.0であった。
 その後、実施例1と同様に質量をモニタリングしながら、40℃恒温条件下で70%の質量減少がみられるまで静置し、流動性が失われた混合物を得た後、65℃、14時間の乾燥条件にて乾燥し、得られた固形物を解砕後、目開き500μmの篩で篩掛けし、得られたアンダー粉を110℃で12時間加熱した。
 次に、大気雰囲気の炉内で1140℃、4時間の熱処理を施し、ケイ素酸化物で被覆されたイプシロン型鉄酸化物磁性粒子を得た。さらに、得られた熱処理粉を遊星ボールミルを用いて100μm以下に解粒した後、20質量%NaOHを添加し、約70℃、24時間撹拌することで、粒子表面のケイ素酸化物の除去処理を行って、実施例4のイプシロン型鉄酸化物磁性粒子を得た。
 実施例4にかかるイプシロン型鉄酸化物磁性粒子の個数基準での粒度は、長径の数平均粒子径が17.7nm、個数基準での90%累積粒子径(D90)が22.0nmだった。また、長径の標準偏差は(nm)は4.16nmであり、長径の変動係数は23%、幾何標準偏差σgは、1.28であった。さらに、平均アスペクト比は1.06であり、σs/V(Am/kg・nm)は0.004(Am/kg・nm)であった。
[実施例5]
 1L反応槽にて、純水50.42gに、純度99.7質量%の硝酸第二鉄・9水和物(Fe(NO・9HO))42.63gを大気雰囲気中、撹拌羽根により機械的に撹拌しながら溶解した。このサンプルは、鉄サイトの一部を置換していないイプシロン型酸化鉄粒子である。
 次に、エタノール(特級試薬:沸点78.37℃)を196.88gを添加した後、TEOS(オルトケイ酸テトラエチル:Si(OC、コルコート株式会社製エチルシリケート28)120.00gを添加、さらに純水を10.00g添加した後マグネチックスターラーにて30分間混合した。ここで、TEOSとして添加されたSiのモル数の、仕込溶液中の金属イオンの合計モル数(Fe+M)に対する比を算出したところ、Si/(Fe+M)は5.5であった。また、添加したエタノールのモル数の、添加したTEOSのモル数に対する比(有機溶媒/TEOS)を算出したところ、7.4であった。
 その後、実施例1と同様に質量をモニタリングしながら、25℃恒温条件下で70%の質量減少がみられるまで静置し、流動性が失われた混合物を得た後、65℃、14時間の乾燥条件にて乾燥し、得られた固形物を解砕後、目開き500μmの篩で篩掛けし、得られたアンダー粉を110℃で12時間加熱した。
 次に、大気雰囲気の炉内で1136℃、4時間の熱処理を施し、ケイ素酸化物で被覆されたイプシロン型鉄酸化物磁性粒子を得た。さらに、得られた熱処理粉を遊星ボールミルを用いて100μm以下に解粒した後、20質量%NaOHを添加し、約70℃、24時間撹拌することで、粒子表面のケイ素酸化物の除去処理を行って、実施例5のイプシロン型鉄酸化物磁性粒子を得た。
 実施例5にかかるイプシロン型鉄酸化物磁性粒子の個数基準での粒度は、長径の数平均粒子径が17.4nm、個数基準での90%累積粒子径(D90)が22.4nmだった。また、長径の標準偏差は(nm)は3.90nmであり、長径の変動係数は22%、幾何標準偏差σgは、1.29であった。さらに、平均アスペクト比は1.07であり、σs/V(Am/kg・nm)は0.005(Am/kg・nm)であった。
[実施例6]
 1L反応槽にて、純水21.43gに、純度99質量%の塩化第二鉄・6水和物(FeCl・6HO))4.18g、純度98質量%の塩化アルミニウム・6水和物(AlCl・6HO))0.85gを大気雰囲気中、撹拌羽根により機械的に撹拌しながら溶解した。この仕込み溶液中の金属イオンのモル比は、Fe:Al=1.630:0.370である。
 次に、エタノール(特級試薬:沸点78.37℃)を81.48gを添加した後、TEOS(オルトケイ酸テトラエチル:Si(OC、コルコート株式会社製エチルシリケート28)45.89gを添加した後マグネチックスターラーにて30分間混合した。ここで、TEOSとして添加されたSiのモル数の、仕込溶液中の金属イオンの合計モル数(Fe+M)に対する比を算出したところ、Si/(Fe+M)は11.7であった。また、添加したエタノールのモル数の、添加したTEOSのモル数に対する比(有機溶媒/TEOS)を算出したところ、8.0であった。
 その後、30℃で静置した以外は、実施例1と同様に、流動性が失われた混合物を得た後、65℃、14時間の乾燥条件にて乾燥し、得られた固形物を解砕後、目開き500μmの篩で篩掛けし、得られたアンダー粉を110℃で12時間加熱した。
 次に、大気雰囲気の炉内で1100℃、4時間の熱処理を施し、ケイ素酸化物で被覆されたイプシロン型鉄酸化物磁性粒子を得た。さらに、得られた熱処理粉を遊星ボールミルを用いて100μm以下に解粒した後、20質量%NaOHを添加し、約70℃、24時間撹拌することで、粒子表面のケイ素酸化物の除去処理を行って、実施例6のイプシロン型鉄酸化物磁性粒子を得た。
 実施例6にかかるイプシロン型鉄酸化物磁性粒子の個数基準での粒度は、長径の数平均粒子径が18.7nm、個数基準での90%累積粒子径(D90)が22.1nmだった。また、長径の標準偏差は(nm)は3.50nmであり、長径の変動係数は19%、幾何標準偏差σgは、1.21であった。さらに、平均アスペクト比は1.05であり、σs/V(Am/kg・nm)は0.005(Am/kg・nm)であった。
[比較例2] 
 1L反応槽にて、純水82.60gに、純度99.7質量%の硝酸第二鉄・9水和物(Fe(NO・9HO))33.24g、Ga濃度13.20質量%の硝酸Ga(III)溶液9.78g、純度97質量%の硝酸コバルト(II)6水和物0.60g、Ti濃度15.1質量%の硫酸チタン(IV)0.84gを大気雰囲気中、撹拌羽根により機械的に撹拌しながら溶解した。この仕込み溶液中の金属イオンのモル比は、Fe:Ga:Co:Ti=1.560:0.350:0.040:0.050である。
 次に、エタノール(特級試薬:沸点78.37℃)を456.27gを添加した後、TEOS(オルトケイ酸テトラエチル:Si(OC、コルコート株式会社製エチルシリケート28)256.96gを添加、さらに純水を41.30g添加した後マグネチックスターラーにて30分間混合した。ここで、TEOSとして添加されたSiのモル数の、仕込溶液中の金属イオンの合計モル数(Fe+M)に対する比を算出したところ、Si/(Fe+M)は11.7であった。また、添加したエタノールのモル数の、添加したTEOSのモル数に対する比(有機溶媒/TEOS)を算出したところ、8.0であった。
 その後、60℃で静置した以外は、実施例1と同様に、流動性が失われた混合物を得た後、65℃、14時間の乾燥条件にて乾燥し、得られた固形物を解砕後、目開き500μmの篩で篩掛けし、得られたアンダー粉を110℃で12時間加熱した。
 次に、大気雰囲気の炉内で1140℃、4時間の熱処理を施し、ケイ素酸化物で被覆されたイプシロン型酸化鉄磁性粒子を得た。さらに、得られた熱処理粉を遊星ボールミルを用いて100μm以下に解粒した後、20質量%NaOHを添加し、約70℃、24時間撹拌することで、粒子表面のケイ素酸化物の除去処理を行って、実施例3のイプシロン型酸化鉄磁性粒子を得た。
 比較例2にかかるイプシロン型鉄酸化物磁性粒子の個数基準での粒度は、長径の数平均粒子径が19.9nm、個数基準での90%累積粒子径(D90)が26.8nmだった。また、長径の標準偏差は(nm)は7.91nmであり、長径の変動係数は40%、幾何標準偏差σgは、1.46であった。さらに、平均アスペクト比は1.13であり、σs/V(Am/kg・nm)は0.002(Am/kg・nm)であった。
 以下、各実施例及び各比較例の製造条件をまとめたものを表3に示す。また、各実施例及び各比較例の結果を表4に示す。
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
 各実施例においてはいずれもイプシロン型鉄酸化物磁性粒子の粒度分布が狭い磁性粉を得ることができ、σs/V(Am/m)が良好な値を示していた。
 また、表4が示すように各実施例のイプシロン型鉄酸化物磁性粒子は、平均長径、長径の90%累積粒子径、長径の10%累積粒子径、長径の標準偏差、長径の変動係数、平均アスペクト比等を考慮すると、各比較例に比べてシングルナノオーダーレベルの粒子が低減されていることが推測される。シングルナノオーダーレベルの粒子が複数存在する場合、超常磁性をもたらすおそれがある。超常磁性がもたらされると、イプシロン型鉄酸化物磁性粉本来の磁性が示されなくなり好ましくない。その一方、各実施例だと上述の通りイプシロン型鉄酸化物粒子の粒度分布が狭い磁性粉を提供できており、だからこそ超常磁性の粒子割合を小さくすることができており、その結果、各比較例に比べ、σs/V(Am/m)が良好な値を示している。
 本発明に従うイプシロン型鉄酸化物粒子からなるイプシロン型鉄酸化物磁性粉は、粒度分布に優れるため、高密度磁気記録媒体をはじめとする磁性材料として利用しやすく、工業的に見て有用なものであり、イプシロン酸化鉄磁性粒子を含有する塗料、磁気記録媒体、磁性部品としても有用なものである。
 
 

Claims (15)

  1.  TEMによる長径の数平均粒子径(D50)が10~20nm、90%累積粒子径(D90)が30nm以下、長径の幾何標準偏差(σ)が1.45以下である、イプシロン酸化鉄磁性粒子。
  2.  前記イプシロン酸化鉄磁性粒子の鉄サイトの少なくとも一部は置換されている、請求項1に記載のイプシロン酸化鉄磁性粒子。
  3.  前記イプシロン酸化鉄磁性粒子を球形近似したときの平均体積が5000nm以下である、請求項1または2に記載のイプシロン酸化鉄磁性粒子。
  4.  請求項1ないし3のいずれかに記載のイプシロン酸化鉄磁性粒子を含有する塗料。
  5.  請求項1ないし3のいずれかに記載のイプシロン酸化鉄磁性粒子を含有する磁気記録媒体。
  6.  請求項1ないし3のいずれかに記載のイプシロン酸化鉄磁性粒子を含有する磁性部品。
  7.  透過型電子顕微鏡観察による長径の変動係数が35%未満であるイプシロン型鉄酸化物粒子からなるイプシロン型鉄酸化物磁性粉。
  8.  透過型電子顕微鏡観察による平均アスペクト比が1.1以下であるイプシロン型鉄酸化物粒子からなる、請求項7に記載のイプシロン型鉄酸化物磁性粉。
  9.  透過型電子顕微鏡観察による長径の個数平均粒子径が10nm以上20nm以下である、請求項7または8に記載のイプシロン型鉄酸化物磁性粉。
  10.  イプシロン型鉄酸化物磁性粉の製造方法であって、
     水溶性の鉄塩、または水溶性の鉄塩および鉄以外の金属元素Mの塩を含む水溶液と、加水分解性基をもつケイ素化合物とを混合した後に50℃以下にて保持することで、鉄塩または鉄塩と金属元素Mを含むケイ素酸化物のゲルを得る工程、
     前記の鉄塩または鉄塩と金属元素Mを含むケイ素酸化物のゲルを加熱してケイ素酸化物で被覆されたイプシロン型鉄酸化物の粉末を得る工程、
     前記のイプシロン型鉄酸化物を被覆しているケイ素酸化物を溶解してイプシロン型鉄酸化物磁性粉を得る工程を含む、イプシロン型鉄酸化物磁性粉の製造方法。
  11.  イプシロン型鉄酸化物磁性粉の製造方法であって、
     前記の鉄塩または鉄塩と金属元素Mを含むケイ素酸化物のゲルを得る工程において、
     水溶性の鉄塩、または水溶性の鉄塩および鉄以外の金属元素Mの塩を含む水溶液と、水溶性の有機溶媒とを混合した後に、前記の加水分解性基をもつケイ素化合物とを混合し、さらに保持することを特徴とする、請求項10記載のイプシロン型鉄酸化物磁性粉の製造方法。
  12.  イプシロン型鉄酸化物磁性粉の製造方法であって、
     前記の鉄塩が硝酸塩もしくは塩化物であることを特徴とする、請求項10または11に記載のイプシロン型鉄酸化物磁性粉の製造方法。
  13.  請求項7ないし9のいずれかに記載のイプシロン型鉄酸化物磁性粒子を含有する塗料。
  14.  請求項7ないし9のいずれかに記載のイプシロン型鉄酸化物磁性粒子を含有する磁気記録媒体。
  15.  請求項7ないし9のいずれかに記載のイプシロン型鉄酸化物磁性粒子を含有する磁性部品。
     
     
     
PCT/JP2017/035460 2016-09-30 2017-09-29 イプシロン型鉄酸化物磁性粒子及びその製造方法、磁性粒子から構成される磁性粉ならびに磁性塗料および磁気記録媒体 WO2018062478A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018542921A JP7033071B2 (ja) 2016-09-30 2017-09-29 イプシロン型鉄酸化物磁性粒子及びその製造方法、磁性粒子から構成される磁性粉ならびに磁性塗料および磁気記録媒体
US16/337,195 US11264155B2 (en) 2016-09-30 2017-09-29 Epsilon-type iron oxide magnetic particles and method for producing the same, magnetic powder, magnetic coating material and magnetic recording medium containing magnetic particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-193889 2016-09-30
JP2016193889 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018062478A1 true WO2018062478A1 (ja) 2018-04-05

Family

ID=61759747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035460 WO2018062478A1 (ja) 2016-09-30 2017-09-29 イプシロン型鉄酸化物磁性粒子及びその製造方法、磁性粒子から構成される磁性粉ならびに磁性塗料および磁気記録媒体

Country Status (3)

Country Link
US (1) US11264155B2 (ja)
JP (1) JP7033071B2 (ja)
WO (1) WO2018062478A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020110768A1 (ja) * 2018-11-30 2020-06-04 キヤノン株式会社 磁気記録媒体とその製造方法
JP2020113356A (ja) * 2019-01-16 2020-07-27 富士フイルム株式会社 マイクロ波アシスト記録用磁気記録媒体、磁気記録装置、および磁気記録媒体の製造方法
JP2020140748A (ja) * 2019-02-28 2020-09-03 富士フイルム株式会社 磁気記録媒体、イプシロン型酸化鉄粒子の製造方法、及び磁気記録媒体の製造方法
JP2020167365A (ja) * 2019-03-28 2020-10-08 Dowaエレクトロニクス株式会社 置換型ε酸化鉄磁性粒子粉、置換型ε酸化鉄磁性粒子粉の製造方法、圧粉体、圧粉体の製造方法および電波吸収体
JP2021028860A (ja) * 2019-08-09 2021-02-25 富士フイルム株式会社 磁気記録媒体、磁気記録再生装置およびε−酸化鉄粉末
JP2021144783A (ja) * 2020-03-13 2021-09-24 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気記録再生装置
JP2021144781A (ja) * 2020-03-13 2021-09-24 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気記録再生装置
EP3950598A4 (en) * 2019-03-28 2023-01-11 DOWA Electronics Materials Co., Ltd. MAGNETIC PARTICLE POWDER FROM SUBSTITUTED EPSILONE IRON OXIDE, PROCESS FOR THE PRODUCTION OF MAGNETIC PARTICLE POWDER FROM SUBSTITUTED EPSILONE IRON OXIDE, PRODUCTION PROCESS FOR GREEN PARTS AND ABSORBER FOR ELECTROMAGNETIC WAVES

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190259517A1 (en) 2018-02-21 2019-08-22 King Abdullah University Of Science And Technology Iron oxide nanoparticle-based magnetic ink for additive manufacturing
JP2021054711A (ja) * 2019-09-30 2021-04-08 国立大学法人 東京大学 鉄系酸化物磁性粉およびその製造方法
JP2021054710A (ja) * 2019-09-30 2021-04-08 Dowaエレクトロニクス株式会社 鉄系酸化物磁性粉およびその製造方法
KR102432468B1 (ko) * 2022-04-06 2022-08-18 임종수 수축필름이 구비된 튜브용기 제조장치 및 이를 이용한 튜브용기 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10269570A (ja) * 1997-03-27 1998-10-09 Fuji Photo Film Co Ltd 磁気記録媒体の製造方法
JP2007081227A (ja) * 2005-09-15 2007-03-29 Dowa Holdings Co Ltd 強磁性粉末ならびにそれを用いた塗料および磁気記録媒体
JP2009224414A (ja) * 2008-02-20 2009-10-01 Univ Of Tokyo 電波吸収材料および当該電波吸収材料を用いた電波吸収体、並びに電磁波吸収率測定方法
JP2014154177A (ja) * 2013-02-05 2014-08-25 Fujifilm Corp 塗布型磁気記録媒体、磁気記録装置、および磁気記録方法
WO2015198514A1 (ja) * 2014-06-24 2015-12-30 ソニー株式会社 磁気記録媒体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4859791B2 (ja) * 2006-09-01 2012-01-25 国立大学法人 東京大学 電波吸収材料用の磁性結晶および電波吸収体
US8444872B2 (en) * 2007-05-31 2013-05-21 The University Of Tokyo Magnetic iron oxide particle, magnetic material, and radio wave absorber
JP5966064B1 (ja) 2014-09-24 2016-08-10 Dowaエレクトロニクス株式会社 鉄系酸化物磁性粒子粉および鉄系酸化物磁性粒子粉の製造方法
JP6010181B2 (ja) 2015-01-09 2016-10-19 Dowaエレクトロニクス株式会社 鉄系酸化物磁性粒子粉およびその製造方法並びに塗料および磁気記録媒体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10269570A (ja) * 1997-03-27 1998-10-09 Fuji Photo Film Co Ltd 磁気記録媒体の製造方法
JP2007081227A (ja) * 2005-09-15 2007-03-29 Dowa Holdings Co Ltd 強磁性粉末ならびにそれを用いた塗料および磁気記録媒体
JP2009224414A (ja) * 2008-02-20 2009-10-01 Univ Of Tokyo 電波吸収材料および当該電波吸収材料を用いた電波吸収体、並びに電磁波吸収率測定方法
JP2014154177A (ja) * 2013-02-05 2014-08-25 Fujifilm Corp 塗布型磁気記録媒体、磁気記録装置、および磁気記録方法
WO2015198514A1 (ja) * 2014-06-24 2015-12-30 ソニー株式会社 磁気記録媒体

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020087497A (ja) * 2018-11-30 2020-06-04 キヤノン株式会社 磁気記録媒体とその製造方法
WO2020110768A1 (ja) * 2018-11-30 2020-06-04 キヤノン株式会社 磁気記録媒体とその製造方法
JP2020113356A (ja) * 2019-01-16 2020-07-27 富士フイルム株式会社 マイクロ波アシスト記録用磁気記録媒体、磁気記録装置、および磁気記録媒体の製造方法
JP7105202B2 (ja) 2019-01-16 2022-07-22 富士フイルム株式会社 マイクロ波アシスト記録用磁気記録媒体、磁気記録装置、および磁気記録媒体の製造方法
US11222660B2 (en) 2019-01-16 2022-01-11 Fujifilm Corporation Magnetic recording medium for microwave-assisted recording, magnetic recording device, and manufacturing method of magnetic recording medium
US11200913B2 (en) 2019-02-28 2021-12-14 Fujifilm Corporation Magnetic recording medium, manufacturing method of ϵ-type iron oxide particles, and manufacturing method of magnetic recording medium
JP2020140748A (ja) * 2019-02-28 2020-09-03 富士フイルム株式会社 磁気記録媒体、イプシロン型酸化鉄粒子の製造方法、及び磁気記録媒体の製造方法
JP7023250B2 (ja) 2019-02-28 2022-02-21 富士フイルム株式会社 磁気記録媒体、イプシロン型酸化鉄粒子の製造方法、及び磁気記録媒体の製造方法
JP2020167365A (ja) * 2019-03-28 2020-10-08 Dowaエレクトロニクス株式会社 置換型ε酸化鉄磁性粒子粉、置換型ε酸化鉄磁性粒子粉の製造方法、圧粉体、圧粉体の製造方法および電波吸収体
CN113661145A (zh) * 2019-03-28 2021-11-16 同和电子科技有限公司 置换型ε氧化铁磁性粒子粉、置换型ε氧化铁磁性粒子粉的制造方法、压粉体、压粉体的制造方法和电波吸收体
EP3950598A4 (en) * 2019-03-28 2023-01-11 DOWA Electronics Materials Co., Ltd. MAGNETIC PARTICLE POWDER FROM SUBSTITUTED EPSILONE IRON OXIDE, PROCESS FOR THE PRODUCTION OF MAGNETIC PARTICLE POWDER FROM SUBSTITUTED EPSILONE IRON OXIDE, PRODUCTION PROCESS FOR GREEN PARTS AND ABSORBER FOR ELECTROMAGNETIC WAVES
JP2021028860A (ja) * 2019-08-09 2021-02-25 富士フイルム株式会社 磁気記録媒体、磁気記録再生装置およびε−酸化鉄粉末
JP7197442B2 (ja) 2019-08-09 2022-12-27 富士フイルム株式会社 磁気記録媒体、磁気記録再生装置およびε-酸化鉄粉末
JP2021144781A (ja) * 2020-03-13 2021-09-24 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気記録再生装置
JP2021144783A (ja) * 2020-03-13 2021-09-24 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気記録再生装置
US11670333B2 (en) 2020-03-13 2023-06-06 Fujifilm Corporation Magnetic tape having characterized coefficient of variation of e-iron oxide powder particle size, magnetic tape cartridge, and magnetic recording and reproducing apparatus
JP7303770B2 (ja) 2020-03-13 2023-07-05 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気記録再生装置
JP7303768B2 (ja) 2020-03-13 2023-07-05 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気記録再生装置

Also Published As

Publication number Publication date
US11264155B2 (en) 2022-03-01
US20190228889A1 (en) 2019-07-25
JP7033071B2 (ja) 2022-03-09
JPWO2018062478A1 (ja) 2019-09-12

Similar Documents

Publication Publication Date Title
JP7033071B2 (ja) イプシロン型鉄酸化物磁性粒子及びその製造方法、磁性粒子から構成される磁性粉ならびに磁性塗料および磁気記録媒体
JP5966064B1 (ja) 鉄系酸化物磁性粒子粉および鉄系酸化物磁性粒子粉の製造方法
JP6010181B2 (ja) 鉄系酸化物磁性粒子粉およびその製造方法並びに塗料および磁気記録媒体
JP7132390B2 (ja) 鉄粉およびその製造方法並びにインダクタ用成形体およびインダクタ
JP4063749B2 (ja) 金属酸化物ナノ粉末及びその製造方法
JP5124825B2 (ja) ε酸化鉄系の磁性材料
JP6676493B2 (ja) 鉄系酸化物磁性粒子粉の製造方法
JP6714524B2 (ja) 表面改質鉄系酸化物磁性粒子粉およびその製造方法
JP5924657B2 (ja) 強磁性窒化鉄粒子粉末の製造方法、異方性磁石、ボンド磁石及び圧粉磁石
JP7458524B2 (ja) 鉄系酸化物磁性粉
KR20130106825A (ko) 강자성 입자 분말 및 그의 제조법, 이방성 자석 및 본드 자석
WO2015194647A1 (ja) 酸化鉄ナノ磁性粉およびその製造方法
WO2016047559A1 (ja) 鉄系酸化物磁性粒子粉および鉄系酸化物磁性粒子粉の製造方法
JP2008063201A (ja) 磁気特性を改善したε酸化鉄粉末
WO2016111224A1 (ja) 鉄系酸化物磁性粒子粉およびその製造方法並びに塗料および磁気記録媒体
WO2021065936A1 (ja) 鉄系酸化物磁性粉およびその製造方法
JP6480715B2 (ja) 鉄系酸化物磁性粒子粉の前駆体およびそれを用いた鉄系酸化物磁性粒子粉の製造方法
JP2017201672A (ja) 磁性粉末の製造方法
JP2019080055A (ja) 複合磁性材料、磁石、モータ、および複合磁性材料の製造方法
JP2018182301A (ja) 複合磁性材料、およびモータ
TWI701348B (zh) 鐵粉及其製造方法,以及電感器用成形體及電感器
TW200848182A (en) Nickel-iron-zinc alloy nano-grains
JP2020126942A (ja) 鉄系酸化物磁性粉およびその製造方法
JP2021054710A (ja) 鉄系酸化物磁性粉およびその製造方法
JP2021190477A (ja) 鉄系酸化物磁性粉およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856427

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018542921

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17856427

Country of ref document: EP

Kind code of ref document: A1