WO2020202584A1 - 磁気記録媒体及びカートリッジ - Google Patents

磁気記録媒体及びカートリッジ Download PDF

Info

Publication number
WO2020202584A1
WO2020202584A1 PCT/JP2019/018533 JP2019018533W WO2020202584A1 WO 2020202584 A1 WO2020202584 A1 WO 2020202584A1 JP 2019018533 W JP2019018533 W JP 2019018533W WO 2020202584 A1 WO2020202584 A1 WO 2020202584A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording medium
magnetic recording
magnetic
less
width
Prior art date
Application number
PCT/JP2019/018533
Other languages
English (en)
French (fr)
Inventor
山鹿 実
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2021511081A priority Critical patent/JP7255674B2/ja
Priority to US17/598,728 priority patent/US11651781B2/en
Publication of WO2020202584A1 publication Critical patent/WO2020202584A1/ja
Priority to JP2023055161A priority patent/JP2023082110A/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/008Recording on, or reproducing or erasing from, magnetic tapes, sheets, e.g. cards, or wires
    • G11B5/00813Recording on, or reproducing or erasing from, magnetic tapes, sheets, e.g. cards, or wires magnetic tapes
    • G11B5/00817Recording on, or reproducing or erasing from, magnetic tapes, sheets, e.g. cards, or wires magnetic tapes on longitudinal tracks only, e.g. for serpentine format recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/12Formatting, e.g. arrangement of data block or words on the record carriers
    • G11B20/1201Formatting, e.g. arrangement of data block or words on the record carriers on tapes
    • G11B20/1202Formatting, e.g. arrangement of data block or words on the record carriers on tapes with longitudinal tracks only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B21/00Head arrangements not specific to the method of recording or reproducing
    • G11B21/02Driving or moving of heads
    • G11B21/10Track finding or aligning by moving the head ; Provisions for maintaining alignment of the head relative to the track during transducing operation, i.e. track following
    • G11B21/103Track finding or aligning by moving the head ; Provisions for maintaining alignment of the head relative to the track during transducing operation, i.e. track following on tapes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/584Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on tapes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/78Tape carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/90Tape-like record carriers
    • G11B2220/93Longitudinal format, wherein tracks are in the direction of the tape, read with a static head, e.g. DCC

Definitions

  • This technology relates to technologies such as magnetic recording media.
  • magnetic recording media have been widely used for applications such as backing up electronic data.
  • a magnetic recording medium having a magnetic layer is widely used as one of the magnetic recording media.
  • the magnetic layer of the magnetic recording medium is provided with a data band including a plurality of recording tracks, and data is recorded on these recording tracks. Further, in the magnetic layer, a servo band is provided at a position where the data band is sandwiched in the width direction, and a servo signal is recorded in this servo band. The magnetic head aligns with the recording track by reading the servo signal recorded in the servo band.
  • the recording method on the magnetic recording medium includes a horizontal magnetic recording method in which the magnetic particles in the magnetic layer are magnetized in the horizontal direction to record data, and a horizontal magnetic recording method in which the magnetic particles in the magnetic layer are magnetized in the vertical direction to record data.
  • the vertical magnetic recording method is known.
  • the perpendicular magnetic recording method can record data at a higher density than the horizontal magnetic recording method.
  • the purpose of this technology is to provide a technology that can further improve the recording density of data.
  • the magnetic recording medium according to the present technology is a tape-shaped magnetic recording medium having a magnetic layer, which is long in the longitudinal direction and short in the width direction, and the magnetic layer is long data in the longitudinal direction in which a data signal is written.
  • the magnetic layer includes a band and a servo band long in the longitudinal direction in which a servo signal is written, has a vertical orientation degree of 65% or more, and has a half-value width of an isolated waveform in the reproduced waveform of the data signal of 185 nm or less.
  • the thickness of the base material is 90 nm or less, and the thickness of the base material is 4.2 ⁇ m or less.
  • the half width of the isolated waveform may be 170 nm or less.
  • the half width of the isolated waveform may be 150 nm or less.
  • the half width of the isolated waveform may be 130 nm or less.
  • the half width of the isolated waveform may be 110 nm or less.
  • the vertical orientation may be 70% or more.
  • the vertical orientation may be 75% or more.
  • the vertical orientation may be 80% or more.
  • the data band is long in the longitudinal direction, is aligned in the width direction, has a plurality of recording tracks having a predetermined recording track width for each track in the width direction, and has a servo signal recording pattern.
  • P2 the distance between the P1 and the P2 in the length direction may be 0.08 ⁇ m or more.
  • the distance between P1 and P2 in the length direction may be 0.62 ⁇ m or less.
  • the magnetic layer may have a longitudinal orientation degree of 35% or less.
  • the magnetic recording medium may have a coercive force of 2000 Oe or less in the longitudinal direction.
  • the ratio of the area of the servo band to the area of the entire surface of the magnetic layer may be 4.0% or less.
  • the magnetic layer may contain magnetic powder, and the particle volume of the magnetic powder may be 2300 nm 3 or less.
  • the number of data bands may be 4n (n is an integer of 2 or more), and the number of servo bands may be 4n + 1.
  • the width of the servo band may be 95 ⁇ m or less.
  • the data band has a plurality of recording tracks that are long in the longitudinal direction, aligned in the width direction, and have a predetermined recording track width for each track in the width direction, and the recording track width. May be 2.0 ⁇ m or less.
  • the 1-bit length in the longitudinal direction of the data signal recorded in the data band may be 48 nm or less.
  • the magnetic layer may contain magnetic powder of hexagonal ferrite, ⁇ -iron oxide, or cobalt-containing ferrite.
  • the load when the elongation rate of the magnetic recording medium is 0.5% is ⁇ 0.5, and the elongation rate of the magnetic recording medium is 1.5%.
  • the load is ⁇ 1.5, the value of ⁇ 1.5- ⁇ 0.5 may be 0.6N or less.
  • the magnetic recording medium may have a shrinkage rate of 0.1% or less in the longitudinal direction when stored at 60 ° C. for 72 hours.
  • the thickness of the magnetic recording medium may be 5.6 ⁇ m or less.
  • the value of (TL-TB) / TB may be 0.41 or less.
  • the Young's modulus in the longitudinal direction of the magnetic recording medium may be 8.5 GPa or less.
  • the Young's modulus in the longitudinal direction of the base material may be 8.0 GPa or less.
  • the width of the magnetic recording medium may be adjusted by increasing or decreasing the tension in the longitudinal direction of the magnetic recording medium.
  • the cartridge according to the present technology is a cartridge having a base material and a magnetic layer and including a tape-shaped magnetic recording medium long in the longitudinal direction and short in the width direction, and the magnetic layer is the cartridge on which a data signal is written.
  • a data band long in the longitudinal direction and a servo band long in the longitudinal direction in which the servo signal is written are included, the degree of vertical orientation is 65% or more, and the half-value width of the isolated waveform in the reproduced waveform of the data signal is 185 nm or less.
  • the thickness of the magnetic layer is 90 nm or less, and the thickness of the base material is 4.2 ⁇ m or less.
  • FIG. 1 is a schematic view of the magnetic recording medium 1 as viewed from the side.
  • the magnetic recording medium 1 is formed in a tape shape that is long in the longitudinal direction (X-axis direction), short in the width direction (Y-axis direction), and thin in the thickness direction (Z-axis direction).
  • X-axis direction long in the longitudinal direction
  • Y-axis direction short in the width direction
  • Z-axis direction thin in the thickness direction
  • the coordinate system based on the magnetic recording medium 1 is represented by the XYZ coordinate system.
  • the magnetic recording medium 1 is configured to be capable of recording a signal at the shortest recording wavelength of preferably 96 nm or less, more preferably 75 nm or less, even more preferably 60 nm or less, and particularly preferably 50 nm or less.
  • the magnetic recording medium 1 is preferably used in a data recording device including a ring-shaped head as a recording head.
  • the magnetic recording medium 1 has a tape-shaped base material 11 long in the longitudinal direction (X-axis direction), a non-magnetic layer 12 provided on one main surface of the base material 11, and non-magnetic base material 11. It includes a magnetic layer 13 provided on the magnetic layer 12 and a back layer 14 provided on the other main surface of the base material 11.
  • the back layer 14 may be provided as needed, and the back layer 14 may be omitted.
  • the base material 11 is a non-magnetic support that supports the non-magnetic layer 12 and the magnetic layer 13.
  • the base material 11 has a long film shape.
  • the upper limit of the average thickness of the base material 11 is preferably 4.2 ⁇ m or less, more preferably 3.8 ⁇ m or less, and even more preferably 3.4 ⁇ m or less.
  • the recording capacity that can be recorded in one cartridge 21 can be increased as compared with a general magnetic recording medium.
  • the average thickness of the base material 11 is obtained as follows. First, a 1/2 inch wide magnetic recording medium 1 is prepared and cut into a length of 250 mm to prepare a sample. Subsequently, the layers other than the base material 11 of the sample (that is, the non-magnetic layer 12, the magnetic layer 13 and the back layer 14) are removed with a solvent such as MEK (methyl ethyl ketone) or dilute hydrochloric acid. Next, using a laser holo gauge manufactured by Mitutoyo as a measuring device, the thickness of the sample (base material 11) is measured at 5 or more points, and the measured values are simply averaged (arithmetic mean) to form a base. The average thickness of the material 11 is calculated. The measurement position shall be randomly selected from the sample.
  • a 1/2 inch wide magnetic recording medium 1 is prepared and cut into a length of 250 mm to prepare a sample. Subsequently, the layers other than the base material 11 of the sample (that is, the non-magnetic layer 12, the magnetic
  • the base material 11 contains, for example, at least one of polyesters, polyolefins, cellulose derivatives, vinyl resins, and other polymer resins.
  • the base material 11 contains two or more of the above materials, the two or more materials may be mixed, copolymerized, or laminated.
  • polyesters examples include PET (polyethylene terephthalate), PEN (polyethylene terephthalate), PBT (polybutylene terephthalate), PBN (polybutylene terephthalate), PCT (polycyclohexylene methylene terephthalate), and PEB (polyethylene-p- It contains at least one of oxybenzoate) and polyethylene bisphenoxycarboxylate.
  • Polyolefins include, for example, at least one of PE (polyethylene) and PP (polypropylene).
  • Cellulose derivatives include, for example, at least one of cellulose diacetate, cellulose triacetate, CAB (cellulose acetate butyrate) and CAP (cellulose acetate propionate).
  • the vinyl resin contains, for example, at least one of PVC (polyvinyl chloride) and PVDC (polyvinylidene chloride).
  • polymer resins include, for example, PA (polyamide, nylon), aromatic PA (aromatic polyamide, aramid), PI (polyimide), aromatic PI (aromatic polyimide), PAI (polyamideimide), aromatic PAI.
  • PA polyamide, nylon
  • aromatic PA aromatic polyamide, aramid
  • PI polyimide
  • aromatic PI aromatic polyimide
  • PAI polyamideimide
  • aromatic PAI aromatic PAI.
  • PBO polybenzoxazole, eg, Zyrone®
  • polyether polyether ketone
  • PES polyether sulfone
  • PEI polyetherimide
  • the magnetic layer 13 is a recording layer for recording a data signal. Contains magnetic powder, binder, conductive particles, etc.
  • the magnetic layer 13 may further contain additives such as a lubricant, an abrasive, and a rust preventive, if necessary.
  • the magnetic layer 13 has a surface provided with a large number of holes. Lubricant is stored in these many holes. The large number of holes preferably extend perpendicular to the surface of the magnetic layer.
  • the vertical orientation of the magnetic layer 13 (without demagnetic field correction: the same applies hereinafter) is typically 65% or more.
  • the longitudinal orientation of the magnetic layer 13 is typically 35% or less.
  • the thickness of the magnetic layer 13 is typically 35 nm or more and 90 nm or less. By setting the thickness of the magnetic layer 13 to 35 nm or more and 90 nm or less in this way, the electromagnetic conversion characteristics can be improved. Further, from the viewpoint of the full width at half maximum (described later) of the isolated waveform in the reproduced waveform of the data signal, the thickness of the magnetic layer 13 is preferably 90 nm or less, more preferably 80 nm or less, more preferably 60 nm or less, and even more preferably. It is 40 nm or less.
  • the thickness of the magnetic layer 13 By setting the thickness of the magnetic layer 13 to 90 nm or less, the half width of the isolated waveform in the reproduced waveform of the data signal can be narrowed (185 nm or less), and the peak of the reproduced waveform of the data signal can be sharpened. As a result, the reading accuracy of the data signal is improved, so that the number of recording tracks can be increased and the data recording density can be improved (details will be described later).
  • the thickness of the magnetic layer 13 can be obtained, for example, as follows. First, the magnetic recording medium 1 is thinly processed perpendicular to its main surface to prepare a sample piece, and the cross section of the test piece is observed with a transmission electron microscope (TEM) under the following conditions. I do. Equipment: TEM (H9000NAR manufactured by Hitachi, Ltd.) Acceleration voltage: 300kV Magnification: 100,000 times
  • the thickness of the magnetic layer 13 is measured at at least 10 points or more in the longitudinal direction of the magnetic recording medium 10, and then the measured values are simply averaged (arithmetic mean).
  • the thickness of the magnetic layer 13 is set.
  • the measurement position shall be randomly selected from the test pieces.
  • the magnetic powder includes powder of nanoparticles containing ⁇ -iron oxide (hereinafter referred to as “ ⁇ -iron oxide particles”). High coercive force can be obtained even with fine particles of ⁇ iron oxide particles. It is preferable that the ⁇ -iron oxide contained in the ⁇ -iron oxide particles is preferentially crystal-oriented in the thickness direction (vertical direction) of the magnetic recording medium 1.
  • ⁇ Iron oxide particles have a spherical or almost spherical shape, or have a cubic shape or a nearly cubic shape. Since the ⁇ -iron oxide particles have the above-mentioned shape, when the ⁇ -iron oxide particles are used as the magnetic particles, the magnetic recording medium is compared with the case where the hexagonal plate-shaped barium ferrite particles are used as the magnetic particles. It is possible to reduce the contact area between the particles in the thickness direction of 1 and suppress the aggregation of the particles. Therefore, it is possible to improve the dispersibility of the magnetic powder and obtain a better SNR (Signal-to-Noise Ratio).
  • the ⁇ -iron oxide particles have a core-shell type structure.
  • the ⁇ -iron oxide particles include a core portion and a shell portion having a two-layer structure provided around the core portion.
  • the shell portion having a two-layer structure includes a first shell portion provided on the core portion and a second shell portion provided on the first shell portion.
  • the core part contains ⁇ iron oxide.
  • the iron oxide contained in the core portion preferably has ⁇ -Fe 2 O 3 crystals as the main phase, and more preferably one composed of single-phase ⁇ -Fe 2 O 3 .
  • the first shell part covers at least a part of the circumference of the core part.
  • the first shell portion may partially cover the periphery of the core portion, or may cover the entire periphery of the core portion. From the viewpoint of making the exchange coupling between the core portion and the first shell portion sufficient and improving the magnetic characteristics, it is preferable to cover the entire surface of the core portion 21.
  • the first shell portion is a so-called soft magnetic layer, and contains, for example, a soft magnetic material such as ⁇ -Fe, Ni-Fe alloy or Fe-Si-Al alloy.
  • ⁇ -Fe may be obtained by reducing ⁇ -iron oxide contained in the core portion 21.
  • the second shell portion is an oxide film as an antioxidant layer.
  • the second shell portion contains ⁇ -iron oxide, aluminum oxide or silicon oxide.
  • the ⁇ -iron oxide contains, for example, at least one iron oxide of Fe 3 O 4 , Fe 2 O 3 and Fe O.
  • the ⁇ -iron oxide may be obtained by oxidizing ⁇ -Fe contained in the first shell portion 22a.
  • the coercive force Hc of the core portion alone is maintained at a large value in order to ensure thermal stability, and the entire ⁇ iron oxide particles (core shell particles) are maintained.
  • the coercive force Hc can be adjusted to a coercive force Hc suitable for recording.
  • the ⁇ -iron oxide particles have the second shell portion as described above, the ⁇ -iron oxide particles are exposed to the air in the manufacturing process of the magnetic recording medium and before the process, and the surface of the particles is rusted or the like. It is possible to suppress the deterioration of the characteristics of the ⁇ iron oxide particles due to the occurrence of. Therefore, deterioration of the characteristics of the magnetic recording medium 1 can be suppressed.
  • the average particle size (average maximum particle size) of the magnetic powder is preferably 22 nm or less, more preferably 8 nm or more and 22 nm or less, and even more preferably 12 nm or more and 22 nm or less.
  • the average aspect ratio of the magnetic powder is preferably 1 or more and 2.5 or less, more preferably 1 or more and 2.1 or less, and even more preferably 1 or more and 1.8 or less.
  • the average aspect ratio of the magnetic powder is in the range of 1 or more and 2.5 or less, the aggregation of the magnetic powder can be suppressed, and when the magnetic powder is vertically aligned in the process of forming the magnetic layer 13, the magnetism The resistance applied to the powder can be suppressed. Therefore, the vertical orientation of the magnetic powder can be improved.
  • Average volume Vave of the magnetic powder is preferably 2300 nm 3 or less, more preferably 2200 nm 3 or less, more preferably 2100 nm 3 or less, more preferably 1950 nm 3 or less, more preferably 1600 nm 3 or less, even more preferably It is 1300 nm 3 or less.
  • the average volume Vave of the magnetic powder is 2300 nm 3 or less, the half width of the isolated waveform in the reproduced waveform of the data signal can be narrowed (185 nm or less), and the peak of the reproduced waveform of the data signal can be sharpened.
  • the reading accuracy of the data signal is improved, so that the number of recording tracks can be increased and the data recording density can be improved (details will be described later).
  • the smaller the average volume Vave of the magnetic powder, the better, so the lower limit of the volume is not particularly limited.
  • the lower limit is 1000 nm 3 or more.
  • the average particle size, average aspect ratio, and average volume Vave of the above magnetic powder can be obtained as follows (for example, when the magnetic powder has a shape such as a sphere such as ⁇ iron oxide particles).
  • the magnetic recording medium 1 to be measured is processed by the FIB (Focused Ion Beam) method or the like to prepare flakes, and the cross section of the flakes is observed by TEM.
  • 50 magnetic powders are randomly selected from the TEM photographs taken, and the major axis length DL and the minor axis length DS of each magnetic powder are measured.
  • the major axis length DL means the maximum distance (so-called maximum ferret diameter) between two parallel lines drawn from all angles so as to be in contact with the contour of the magnetic powder.
  • the minor axis length DS means the maximum length of the magnetic powder in the direction orthogonal to the major axis of the magnetic powder.
  • the average major axis length DLave of the measured 50 magnetic powders is simply averaged (arithmetic mean) to obtain the average major axis length DLave. Then, the average major axis length DLave thus obtained is taken as the average particle size of the magnetic powder. Further, the average minor axis length DSave of the measured 50 magnetic powders is simply averaged (arithmetic mean) to obtain the average minor axis length DSave. Next, the average aspect ratio (DLave / DSave) of the magnetic powder is obtained from the average major axis length DLave and the average minor axis length DSave.
  • the average volume Vave (particle volume) of the magnetic powder is obtained from the following formula using the average major axis length DLave.
  • Vave ⁇ / 6 x DLave 3
  • the ⁇ -iron oxide particles may have a shell portion having a single-layer structure.
  • the shell portion has the same configuration as the first shell portion.
  • the ⁇ -iron oxide particles it is preferable that the ⁇ -iron oxide particles have a shell portion having a two-layer structure, as described above.
  • the ⁇ -iron oxide particles may contain an additive instead of the core-shell structure, or have a core-shell structure and are added. It may contain an agent. In this case, a part of Fe of the ⁇ iron oxide particles is replaced with an additive. Even when the ⁇ -iron oxide particles contain an additive, the coercive force Hc of the entire ⁇ -iron oxide particles can be adjusted to a coercive force Hc suitable for recording, so that the ease of recording can be improved.
  • the additive is a metal element other than iron, preferably a trivalent metal element, more preferably at least one of Al, Ga and In, and even more preferably at least one of Al and Ga.
  • the ⁇ -iron oxide containing the additive is an ⁇ -Fe 2-x M x O 3 crystal (where M is a metal element other than iron, preferably a trivalent metal element, more preferably Al, Ga. And at least one of In, and even more preferably at least one of Al and Ga.
  • X is, for example, 0 ⁇ x ⁇ 1).
  • the magnetic powder may contain powder of nanoparticles containing hexagonal ferrite (hereinafter referred to as "hexagonal ferrite particles").
  • the hexagonal ferrite particles have, for example, a hexagonal plate shape or a substantially hexagonal plate shape.
  • the hexagonal ferrite preferably contains at least one of Ba, Sr, Pb and Ca, and more preferably at least one of Ba and Sr.
  • the hexagonal ferrite may be, for example, barium ferrite or strontium ferrite.
  • the barium ferrite may further contain at least one of Sr, Pb and Ca in addition to Ba.
  • the strontium ferrite may further contain at least one of Ba, Pb and Ca in addition to Sr.
  • hexagonal ferrite has an average composition represented by the general formula MFe 12 O 19 .
  • M is, for example, at least one metal among Ba, Sr, Pb and Ca, preferably at least one metal among Ba and Sr.
  • M may be a combination of Ba and one or more metals selected from the group consisting of Sr, Pb and Ca. Further, M may be a combination of Sr and one or more metals selected from the group consisting of Ba, Pb and Ca.
  • a part of Fe may be replaced with another metal element.
  • the average particle size of the magnetic powder is preferably 50 nm or less, more preferably 10 nm or more and 40 nm or less, and even more preferably 15 nm or more and 30 nm or less.
  • the average aspect ratio of the magnetic powder and the average volume Vave of the magnetic powder are as described above.
  • the average particle size, average aspect ratio, and average volume Vave of the magnetic powder can be obtained as follows (for example, when the magnetic powder has a plate-like shape such as hexagonal ferrite).
  • the magnetic recording medium 1 to be measured is processed by the FIB method or the like to prepare flakes, and the cross section of the flakes is observed by TEM.
  • 50 magnetic powders oriented at an angle of 75 degrees or more with respect to the horizontal direction are randomly selected from the TEM photographs taken, and the maximum plate thickness DA of each magnetic powder is measured.
  • the maximum plate thickness DA of the 50 measured magnetic powders is simply averaged (arithmetic mean) to obtain the average maximum plate thickness DAave.
  • the surface of the magnetic layer 13 of the magnetic recording medium 1 is observed by TEM.
  • 50 magnetic powders are randomly selected from the TEM photographs taken, and the maximum plate diameter DB of each magnetic powder is measured.
  • the maximum plate diameter DB means the maximum distance between two parallel lines drawn from all angles so as to be in contact with the contour of the magnetic powder (so-called maximum ferret diameter).
  • the maximum plate diameter DB of the 50 measured magnetic powders is simply averaged (arithmetic mean) to obtain the average maximum plate diameter DBave.
  • the average maximum plate diameter DBave thus obtained is defined as the average particle size of the magnetic powder.
  • the average aspect ratio (DBave / DAave) of the magnetic powder is obtained from the average maximum plate thickness DAave and the average maximum plate diameter DBave.
  • the average volume Vave (particle volume) of the magnetic powder is calculated from the following formula using the average maximum plate thickness DAave and the average maximum plate diameter DBave.
  • Vave 3 ⁇ 3 / 8 x DAave x DBave 2
  • the magnetic powder may contain powder of nanoparticles containing Co-containing spinel ferrite (hereinafter referred to as "cobalt ferrite particles").
  • the cobalt ferrite particles preferably have uniaxial anisotropy.
  • the cobalt ferrite particles have, for example, a cubic shape or a substantially cubic shape.
  • the Co-containing spinel ferrite may further contain at least one of Ni, Mn, Al, Cu and Zn in addition to Co.
  • the Co-containing spinel ferrite has, for example, an average composition represented by the following formula (1).
  • Co x M y Fe 2 O Z ⁇ (1) M is, for example, at least one metal of Ni, Mn, Al, Cu and Zn.
  • X is within the range of 0.4 ⁇ x ⁇ 1.0.
  • the value y is a value within the range of 0 ⁇ y ⁇ 0.3.
  • x and y satisfy the relationship of (x + y) ⁇ 1.0.
  • Z is within the range of 3 ⁇ z ⁇ 4. It is a value of.
  • a part of Fe may be replaced with another metal element.
  • the average particle size of the magnetic powder is preferably 25 nm or less, more preferably 23 nm or less.
  • the average aspect ratio of the magnetic powder is determined by the above method, and the average volume Vave of the magnetic powder is determined by the method shown below.
  • Binder a resin having a structure in which a cross-linking reaction is applied to a polyurethane resin, a vinyl chloride resin, or the like is preferable.
  • the binder is not limited to these, and other resins may be appropriately blended depending on the physical properties required for the magnetic recording medium 1.
  • the resin to be blended is not particularly limited as long as it is a resin generally used in the coating type magnetic recording medium 1.
  • polyvinyl chloride polyvinyl acetate, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, acrylic acid ester-acrylonitrile copolymer, acrylic acid ester-chloride.
  • thermosetting resin or the reactive resin examples include phenol resin, epoxy resin, urea resin, melamine resin, alkyd resin, silicone resin, polyamine resin, urea formaldehyde resin and the like.
  • M in the formula is a hydrogen atom or an alkali metal such as lithium, potassium, or sodium.
  • polar functional group -NR1R2, -NR1R2R3 + X - as the side chain type having an end group of,> NR1R2 + X - include those of the main chain type.
  • R1, R2, and R3 in the formula are hydrogen atoms or hydrocarbon groups
  • X ⁇ is a halogen element ion such as fluorine, chlorine, bromine, or iodine, or an inorganic or organic ion.
  • examples of the polar functional group include -OH, -SH, -CN, and an epoxy group.
  • the lubricant preferably contains a compound represented by the following general formula (1) and a compound represented by the following general formula (2).
  • the coefficient of dynamic friction on the surface of the magnetic layer 13 can be particularly reduced. Therefore, the runnability of the magnetic recording medium 1 can be further improved.
  • CH 3 (CH 2 ) n COOH ⁇ ⁇ ⁇ (1) (However, in the general formula (1), n is an integer selected from the range of 14 or more and 22 or less.)
  • p is an integer selected from the range of 14 or more and 22 or less
  • q is an integer selected from the range of 2 or more and 5 or less.
  • the magnetic layer 13 includes aluminum oxide ( ⁇ , ⁇ or ⁇ alumina), chromium oxide, silicon oxide, diamond, garnet, emery, boron nitride, titanium carbide, silicon carbide, titanium carbide, and titanium oxide (titanium carbide). Rutile-type or anatase-type titanium oxide) and the like may be further contained.
  • the non-magnetic layer 12 contains a non-magnetic powder and a binder.
  • the non-magnetic layer 12 may contain additives such as electric particles, a lubricant, a curing agent, and a rust preventive, if necessary.
  • the thickness of the non-magnetic layer 12 is preferably 0.6 ⁇ m or more and 2.0 ⁇ m or less, and more preferably 0.8 ⁇ m or more and 1.4 ⁇ m or less.
  • the thickness of the non-magnetic layer 12 can be obtained by the same method (for example, TEM) as the method for obtaining the thickness of the magnetic layer 13. The magnification of the TEM image is appropriately adjusted according to the thickness of the non-magnetic layer 12.
  • the non-magnetic powder includes, for example, at least one of inorganic particle powder and organic particle powder. Further, the non-magnetic powder may contain a carbon material such as carbon black.
  • non-magnetic powder may be used alone, or two or more kinds of non-magnetic powder may be used in combination.
  • Inorganic particles include, for example, metals, metal oxides, metal carbonates, metal sulfates, metal nitrides, metal carbides, metal sulfides and the like.
  • Examples of the shape of the non-magnetic powder include, but are not limited to, various shapes such as needle shape, spherical shape, cube shape, and plate shape.
  • the binder is the same as the magnetic layer 13 described above.
  • the back layer 14 contains a non-magnetic powder and a binder.
  • the back layer 14 may contain additives such as a lubricant, a curing agent and an antistatic agent, if necessary.
  • additives such as a lubricant, a curing agent and an antistatic agent, if necessary.
  • the non-magnetic powder and the binder the same material as the material used for the non-magnetic layer 12 described above is used.
  • the average particle size of the non-magnetic powder is preferably 10 nm or more and 150 nm or less, and more preferably 15 nm or more and 110 nm or less.
  • the average particle size of the non-magnetic powder is obtained in the same manner as the average particle size D of the magnetic powder described above.
  • the non-magnetic powder may contain a non-magnetic powder having a particle size distribution of 2 or more.
  • the upper limit of the average thickness of the back layer 14 is preferably 0.6 ⁇ m or less.
  • the thickness of the non-magnetic layer 12 and the base material 11 can be kept thick even when the average thickness of the magnetic recording medium 1 is 5.6 ⁇ m. Therefore, the running stability of the magnetic recording medium 1 in the recording / reproducing device can be maintained.
  • the lower limit of the average thickness of the back layer 14 is not particularly limited, but is, for example, 0.2 ⁇ m or more.
  • the average thickness of the back layer 14 is obtained as follows. First, a 1/2 inch wide magnetic recording medium 1 is prepared and cut into a length of 250 mm to prepare a sample. Next, using a laser holo gauge manufactured by Mitutoyo as a measuring device, the thickness of the sample is measured at 5 points or more, and the measured values are simply averaged (arithmetic mean) to obtain the average value t of the magnetic recording medium 1. Calculate T [ ⁇ m]. The measurement position shall be randomly selected from the sample. Subsequently, the back layer 14 of the sample is removed with a solvent such as MEK (methyl ethyl ketone) or dilute hydrochloric acid.
  • MEK methyl ethyl ketone
  • the thickness of the sample was measured again at 5 points or more using the above laser holo gauge, and the measured values were simply averaged (arithmetic mean) to obtain the average value of the magnetic recording medium 1 from which the back layer 14 was removed.
  • t B [ ⁇ m] The measurement position shall be randomly selected from the sample.
  • the back layer 14 has a surface provided with a large number of protrusions.
  • the large number of protrusions is for forming a large number of holes on the surface of the magnetic layer 13 in a state where the magnetic recording medium 1 is wound in a roll shape.
  • the large number of pores is composed of, for example, a large number of non-magnetic particles protruding from the surface of the back layer 14.
  • a large number of protrusions provided on the surface of the back layer 14 are transferred to the surface of the magnetic layer 13 to form a large number of holes on the surface of the magnetic layer 13.
  • the method of forming a large number of holes is not limited to this.
  • a large number of holes may be formed on the surface of the magnetic layer 13 by adjusting the type of solvent contained in the paint for forming the magnetic layer, the drying conditions of the paint for forming the magnetic layer, and the like.
  • the upper limit of the average thickness (average total thickness) of the magnetic recording medium 1 is preferably 5.6 ⁇ m or less, more preferably 5.0 ⁇ m or less, more preferably 4.6 ⁇ m or less, still more preferably 4.4 ⁇ m or less. is there.
  • the lower limit of the average thickness of the magnetic recording medium 1 is not particularly limited, but is, for example, 3.5 ⁇ m or more.
  • the average thickness of the magnetic recording medium 1 is obtained by the procedure described in the above-mentioned method of obtaining the average thickness of the back layer 14.
  • the upper limit of the coercive force Hc in the longitudinal direction of the magnetic recording medium 1 is preferably 2000 Oe or less, more preferably 1900 Oe or less, and even more preferably 1800 Oe or less.
  • the lower limit of the coercive force Hc measured in the longitudinal direction of the magnetic recording medium 1 is preferably 1000 Oe or more, demagnetization due to leakage flux from the recording head can be suppressed.
  • the above coercive force Hc is obtained as follows. First, three magnetic recording media 1 are laminated with double-sided tape, and then punched with a punch having a diameter of 6.39 mm to prepare a measurement sample. Then, using a vibrating sample magnetometer (VSM), the MH of the measurement sample (entire magnetic recording medium 1) corresponding to the longitudinal direction of the magnetic recording medium 1 ((traveling direction of the magnetic recording medium 1)). The loop is measured. Next, the coating (non-magnetic layer 12, magnetic layer 13, back layer 14, etc.) is wiped with acetone, ethanol, etc., leaving only the substrate 11, and the result is obtained.
  • VSM vibrating sample magnetometer
  • the measurement conditions are: measurement mode: full loop, maximum magnetic field: 15 kOe, magnetic field step: 40 bits, Time constant of Locking amp: 0.3 sec, Waiting time: 1 sec, MH average number: 20.
  • the MH loop of the correction sample (base material 11) is subtracted from the MH loop of the measurement sample (entire magnetic recording medium 1) to perform background correction. This is done and a background corrected MH loop is obtained.
  • the measurement / analysis program attached to the "VSM-P7-15 type" is used for the calculation of this background correction.
  • the coercive force Hc is obtained from the obtained MH loop after background correction.
  • the measurement / analysis program attached to the "VSM-P7-15 type" is used for this calculation. It is assumed that all the above-mentioned measurements of the MH loop are performed at 25 ° C. Further, it is assumed that "demagnetic field correction" is not performed when measuring the MH loop in the longitudinal direction of the magnetic recording medium 1.
  • the degree of orientation (degree of vertical orientation) of the magnetic recording medium 1 in the vertical direction (thickness direction) is 65% or more, preferably 70% or more, more preferably 75% or more, and more preferably 80% or more.
  • the degree of vertical orientation is 65% or more, the vertical orientation of the magnetic powder becomes sufficiently high, so that a more excellent SNR can be obtained.
  • the degree of vertical orientation is obtained as follows. First, three magnetic recording media 1 are laminated with double-sided tape, and then punched with a punch having a diameter of 6.39 mm to prepare a measurement sample. Then, the MH loop of the measurement sample (the entire magnetic recording medium 1) corresponding to the vertical direction (thickness direction) of the magnetic recording medium 1 is measured using the VSM. Next, the coating film (non-magnetic layer 12, magnetic layer 13, back layer 14, etc.) is wiped off with acetone, ethanol, or the like, leaving only the base material 11.
  • the measurement conditions are: measurement mode: full loop, maximum magnetic field: 15 kOe, magnetic field step: 40 bits, Time constant of Locking amp: 0.3 sec, Waiting time: 1 sec, MH average number: 20.
  • the MH loop of the correction sample (base material 11) is subtracted from the MH loop of the measurement sample (entire magnetic recording medium 1) to perform background correction. This is done and a background corrected MH loop is obtained.
  • the measurement / analysis program attached to the "VSM-P7-15 type" is used for the calculation of this background correction.
  • the degree of orientation (longitudinal orientation) of the magnetic recording medium 1 in the longitudinal direction (traveling direction) is preferably 35% or less, more preferably 30% or less, and even more preferably 25% or less.
  • the degree of longitudinal orientation is 35% or less, the vertical orientation of the magnetic powder becomes sufficiently high, so that a more excellent SNR can be obtained.
  • the longitudinal orientation is obtained in the same manner as the vertical orientation except that the MH loop is measured in the longitudinal direction (traveling direction) of the magnetic recording medium 1 and the base material 11.
  • the ratio ( ⁇ B / ⁇ A ) of the dynamic friction coefficient ⁇ B between the surface of the magnetic head and the magnetic head is preferably 1.0 or more and 2.0 or less, the change in the friction coefficient due to the tension fluctuation during running is observed. Since it can be made smaller, the running of the tape can be stabilized.
  • the coefficient of dynamic friction ⁇ A between the surface of the magnetic layer 13 and the magnetic head when the tension applied to the magnetic recording medium 1 is 0.6 N is the ratio of the value ⁇ 5 at the 5th run and the value ⁇ 1000 at the 1000th run ( ⁇ 1000 /).
  • ⁇ 5 ) is preferably 1.0 or more and 2.0 or less, and more preferably 1.0 or more and 1.5 or less.
  • the ratio ( ⁇ B / ⁇ A ) is 1.0 or more and 2.0 or less, the change in the friction coefficient due to multiple running can be reduced, so that the running of the tape can be stabilized.
  • FIG. 2 is a schematic view of the magnetic recording medium 1 as viewed from above.
  • the magnetic layer 13 includes a plurality of data bands d (data bands d0 to d3) long in the longitudinal direction (X-axis direction) in which the data signal is written, and a plurality of data bands d long in the longitudinal direction in which the servo signal is written. It has the servo bands s (servo bands s0 to s4) of the above.
  • the servo bands s are arranged at positions that sandwich each data band d in the width direction (Y-axis direction).
  • the ratio of the area of the servo band s to the area of the entire surface of the magnetic layer 13 is typically 4.0% or less.
  • the width of the servo band s is typically 95 ⁇ m or less.
  • the ratio of the area of the servo band s to the area of the entire surface of the magnetic layer 13 is, for example, that the magnetic recording medium 1 is developed with a developing solution such as a ferricolloid developer, and then the developed magnetic recording medium 1 is optically used. It can be measured by observing with a microscope.
  • the number of servo bands s is one more than the number of data bands d.
  • the number of data bands d is 4 and the number of servo bands s is 5. (In the existing system, this method is adopted. Is common).
  • the number of data bands d and the number of servo bands s can be changed as appropriate, and these numbers may be increased.
  • the number of servo bands s is preferably 5 or more.
  • the number of servo bands s is 5 or more, the influence of the dimensional change in the width direction of the magnetic recording medium 1 on the reading accuracy of the servo signal can be suppressed, and stable recording / playback characteristics with less off-track can be ensured.
  • the number of data bands d is 8, 12, ... (That is, 4n (n is an integer of 2 or more)), and the number of servo bands s is 9, 13, ... (That is, 4n + 1 line (n is an integer of 2 or more)). In this case, it is possible to change the number of data bands d and the number of servo bands s without changing the existing system.
  • the data band d includes a plurality of recording tracks 5 that are long in the longitudinal direction and aligned in the width direction.
  • the data signal is recorded in the recording track 5 along the recording track 5.
  • the length of 1 bit in the longitudinal direction of the data signal recorded in the data band d is typically 48 nm or less.
  • the servo band s includes a servo signal recording pattern 6 of a predetermined pattern in which a servo signal is recorded by a servo signal recording device (not shown).
  • FIG. 3 is an enlarged view showing the recording track 5 in the data band d.
  • the recording tracks 5 are long in the longitudinal direction, aligned in the width direction, and have a predetermined recording track width Wd for each track in the width direction.
  • the recording track width Wd is typically 2.0 ⁇ m or less.
  • the recording track width Wd is measured, for example, by developing the magnetic recording medium 1 with a developing solution such as a ferricolloid developer, and then observing the developed magnetic recording medium 1 with an optical microscope. can do.
  • the number of recording tracks 5 included in one data band d is, for example, about 1000 to 2000.
  • FIG. 4 is an enlarged view showing the servo signal recording pattern 6 in the servo band s.
  • the servo signal recording pattern 6 includes a plurality of stripes 7 that are inclined with a predetermined azimuth angle ⁇ with respect to the width direction (Y-axis direction).
  • the plurality of stripes 7 are classified into a first stripe group 8 that is inclined clockwise with respect to the width direction (Y-axis direction) and a second stripe group 9 that is inclined counterclockwise with respect to the width direction. Will be done.
  • the shape of the stripe 7 and the like can be determined by, for example, developing the magnetic recording medium 1 with a developing solution such as a ferricolloid developer, and then observing the developed magnetic recording medium 1 with an optical microscope. Can be measured.
  • the servo trace line T which is a line traced by the servo lead head on the servo signal recording pattern 6, is shown by a broken line.
  • the servo trace line T is set along the longitudinal direction (X-axis direction), and is set with a predetermined interval Ps in the width direction.
  • the number of servo trace lines T per servo band s is, for example, about 30 to 60.
  • the distance Ps between two adjacent servo trace lines T is the same as the value of the recording track width Wd, and is, for example, 2.0 ⁇ m or less.
  • the distance Ps between two adjacent servo trace lines T is a value that determines the recording track width Wd. That is, when the interval Ps of the servo trace lines T is narrowed, the recording track width Wd becomes smaller and the number of recording tracks 5 included in one data band d increases. As a result, the data recording capacity is increased (or vice versa when the interval Ps is widened).
  • FIG. 5 is a schematic view showing the data recording device 20.
  • the coordinate system based on the data recording device 20 is represented by the XY'Z'coordinate system.
  • the data recording device 20 is configured to be able to load a cartridge 21 containing the magnetic recording medium 1.
  • the data recording device 20 can load one cartridge 21 will be described, but the data recording device 20 may be configured to be capable of loading a plurality of cartridges 21. ..
  • the data recording device 20 includes a spindle 27, a reel 22, a spindle drive device 23, a reel drive device 24, a plurality of guide rollers 25, a head unit 30, and a control device 26. Including.
  • the spindle 27 is configured so that the cartridge 21 can be loaded.
  • the cartridge 21 conforms to the LTO (Linear Tape Open) standard, and houses the wound magnetic recording medium 1 rotatably inside the case.
  • the reel 22 is configured so that the tip end side of the magnetic recording medium 1 drawn from the cartridge 21 can be fixed.
  • the spindle drive device 23 rotates the spindle 27 in response to a command from the control device 26.
  • the reel drive device 24 rotates the reel 22 in response to a command from the control device 26.
  • the guide roller 25 is a roller for guiding the traveling of the magnetic recording medium 1.
  • the control device 26 includes, for example, a control unit, a storage unit, a communication unit, and the like.
  • the control unit is composed of, for example, a CPU (Central Processing Unit) or the like, and controls each unit of the data recording device 20 in an integrated manner according to a program stored in the storage unit.
  • CPU Central Processing Unit
  • the storage unit includes a non-volatile memory in which various data and various programs are recorded, and a volatile memory used as a work area of the control unit.
  • the various programs may be read from a portable recording medium such as an optical disk or a semiconductor memory, or may be downloaded from a server device on a network.
  • the communication unit is configured to be able to communicate with other devices such as a PC (Personal Computer) and a server device.
  • the head unit 30 is configured to be capable of recording a data signal on the magnetic recording medium 1 in response to a command from the control device 26. Further, the head unit 30 is configured to be able to reproduce the data written in the magnetic recording medium 1 in response to a command from the control device 26.
  • FIG. 6 is a view of the head unit 30 as viewed from below.
  • the head unit 30 includes a first head unit 30a and a second head unit 30b.
  • the first head unit 30a and the second head unit 30b are symmetrically configured in the X'axis direction (traveling direction of the magnetic recording medium 1).
  • the first head unit 30a and the second head unit 30b are configured to be movable in the width direction (Y'axis direction).
  • the first head unit 30a is a head used when the magnetic recording medium 1 is traveling in the forward direction (the direction in which the magnetic recording medium 1 flows from the cartridge 21 side to the device 20 side).
  • the second head unit 30b is a head used when the magnetic recording medium 1 is traveling in the opposite direction (the direction in which the magnetic recording medium 1 flows from the device 20 side to the cartridge 21 side).
  • first head unit 30a and the second head unit 30b have basically the same configuration, the first head unit 30a will be described representatively.
  • the first head unit 30a has a unit main body 31, two servo lead heads 32, and a plurality of data write / read heads 33.
  • the servo lead head 32 is configured to be able to reproduce the servo signal by reading the magnetic flux generated from the magnetic information recorded on the magnetic recording medium 1 (servo band s) by an MR element (MR: Magneto Resistive) or the like. There is. That is, the servo lead head 32 reads the servo signal recording pattern 6 recorded on the servo band s, so that the servo signal is reproduced.
  • One servo lead head 32 is provided on each end of the unit main body 31 in the width direction (Y'axis direction). The distance between the two servo lead heads 32 in the width direction (Y'axis direction) is substantially the same as the distance between the adjacent servo bands s in the magnetic recording medium 1.
  • the data write / read heads 33 are arranged at equal intervals along the width direction (Y-axis direction). Further, the data write / lead head 33 is arranged at a position sandwiched between the two servo lead heads 32.
  • the number of data write / read heads 33 is, for example, about 20 to 40, but the number is not particularly limited.
  • the data write / read head 33 includes a data write head 34 and a data read head 35.
  • the data write head 34 is configured to be able to record a data signal on the magnetic recording medium 1 by a magnetic field generated from a magnetic gap.
  • the data read head 35 is configured to be able to reproduce a data signal by reading a magnetic field generated from magnetic information recorded on the magnetic recording medium 1 (data band d) by an MR element (MR: Magneto Resistive) or the like. Has been done.
  • MR element Magneto Resistive
  • the data write head 34 is arranged on the left side of the data read head 35 (upstream side when the magnetic recording medium 1 flows in the forward direction).
  • the data write head 34 is arranged on the right side of the data read head 35 (upstream side when the magnetic recording medium 1 flows in the opposite direction).
  • the data read head 35 is capable of reproducing the data signal immediately after the data write head 34 writes the data signal to the magnetic recording medium 1.
  • FIG. 7 is a diagram showing a state when the first head unit 30a is recording / reproducing a data signal.
  • the state when the magnetic recording medium 1 is traveling in the forward direction (the direction in which the magnetic recording medium 1 flows from the cartridge 21 side to the device 20 side) is shown.
  • the servo lead head 32 of one of the two servo lead heads 32 is one of the two adjacent servo bands s. It is located on the servo band s of, and reads the servo signal on the servo band s.
  • the other servo lead head 32 of the two servo lead heads 32 is located on the other servo band s of the two adjacent servo bands s, and reads the servo signal on the servo band s.
  • control device 26 determines whether or not the servo lead head 32 accurately traces on the target servo trace line T (see FIG. 4) based on the reproduced waveform of the servo signal recording pattern. To do.
  • the first stripe group 8 and the second stripe group 9 in the servo signal recording pattern 6 are inclined in opposite directions with respect to the width direction (Y-axis direction). Therefore, in the upper servo trace line T, the distance between the first stripe group 8 and the second stripe group 9 in the longitudinal direction (X-axis direction) is relatively narrow. On the other hand, on the lower servo trace line T, the distance between the first stripe group 8 and the second stripe group 9 in the longitudinal direction (X-axis direction) is relatively wide.
  • the servo lead head 32 is transferred to the magnetic recording medium 1.
  • the current position can be known.
  • the control device 26 can determine whether or not the servo lead head 32 accurately traces the target servo trace line T based on the reproduced waveform of the servo signal. Then, when the servo lead head 32 does not accurately trace on the target servo trace line T, the control device 26 moves the head unit 30 in the width direction (Y'axis direction) to move the head unit 30. Adjust the position of 30.
  • the data write / read head 33 records a data signal in the recording track 5 along the recording track 5 while the position in the width direction is adjusted (when the position is deviated).
  • the magnetic recording medium 1 runs in the opposite direction (the direction in which the magnetic recording medium 1 flows from the device 20 side to the cartridge 21 side).
  • the second head unit 30b is used as the head unit 30.
  • the data signal is recorded on the recording track 5 adjacent to the recording track 5 on which the data signal was recorded earlier.
  • the magnetic recording medium 1 records a data signal on the recording track 5 while the traveling direction is changed in the forward direction and the reverse direction and the traveling direction is changed many times.
  • the number of servo trace lines T is 50 and the number of data write / read heads 33 included in the first head unit 30a (or the second head unit 30b) is 32.
  • the number of recording tracks 5 included in one data band d is 50 ⁇ 32, which is 1600, and in order to record a data signal on all of the recording tracks 5, the magnetic recording medium 1 is reciprocated 25 times. I need to let you.
  • FIG. 8 is a diagram showing a reproduction waveform when the data signal recorded on the recording track included in the data band d is read. As shown in FIG. 8, the reproduced waveform when the data signal is read protrudes to the plus side and the minus side.
  • An isolated waveform basically refers to one of the waveforms.
  • the vertical axis is the intensity (arbitrary unit), and the horizontal axis is the length along the traveling direction (the same applies to FIG. 9).
  • FIG. 9 is a diagram for explaining the full width at half maximum in the isolated waveform. As shown in FIG. 9, the full width at half maximum is the width of the waveform at a height of half (50%) of the maximum value (100%) in the reproduced waveform of the data signal.
  • This full width at half maximum is a value indicating the sharpness of the peak in the reproduced waveform of the data signal. That is, the narrower the half-value width, the sharper the peak in the reproduced waveform, and conversely, the wider the half-value width, the dull the sharpness of the peak in the reproduced waveform.
  • FIG. 10 is a diagram for explaining the basic concept of the present technology, and is a diagram showing two stripes 7 in the servo signal recording pattern 6.
  • any stripe 7 among the plurality of stripes 7 included in the first stripe group 8 of the servo signal recording pattern 6 is designated as the first stripe 7a. Further, among the plurality of stripes 7 included in the second stripe group 9 of the servo signal recording pattern 6, any stripe 7 is designated as the second stripe 7b.
  • any servo trace line T among the plurality of servo trace lines T is designated as the first servo trace line T1. Further, the servo trace line T adjacent to the first servo trace line T1 is referred to as the second servo trace line T2.
  • P1 be the intersection of the first stripe 7a and the first servo trace line T1.
  • any point on the first stripe 7a may be designated as P1.
  • P2 be the intersection of the first stripe 7a and the second servo trace line T2.
  • a point on the first stripe 7a located at a position separated from P1 by the interval Ps (that is, the recording track width Wd) in the width direction (Y-axis direction) may be P2. ..
  • the distance in the longitudinal direction (X-axis direction) in P1 and P2 is defined as the distance D.
  • the distance D corresponds to the amount of deviation in the longitudinal direction from the adjacent track.
  • intersection of the second stripe 7b and the first servo trace line T1 is P3
  • intersection of the second stripe 7b and the second servo trace line T2 is P4.
  • the interval Ps of the servo trace lines T and the recording track width Wd are 1.56 ⁇ m, and the azimuth angle ⁇ is 12 degrees.
  • the distance D is 1.56 ⁇ tan 12 ° and is 0.33 ⁇ m.
  • the difference between the distance between P1 and P3 and the distance between P2 and P4 is 0.66 ⁇ m because it is twice the distance D.
  • the traveling speed of the magnetic recording medium 1 is 5 m / s, it is 0.66 / 5000000, which is 0.13 ⁇ s. This is the difference between the first period and the second period.
  • the data signal is recorded in 5).
  • the vertical orientation of the magnetic layer 13 is set to a certain value or more, so that the half width of the isolated waveform in the reproduced waveform of the data signal is set to a certain value or less. As a result, the peak in the reproduced waveform of the data signal becomes sharp.
  • the half width of the isolated waveform can be set to 185 nm or less.
  • the peak in the reproduction waveform of the data signal can be sharpened to such an extent that the above-mentioned minute difference (for example, 0.13 ⁇ s) can be discriminated (see each embodiment described later).
  • the magnetic recording medium 1 according to the first embodiment is prepared as a reference magnetic recording medium 1, and in the other examples and other comparative examples, various types such as the degree of vertical orientation are obtained with respect to the first embodiment. The value has changed.
  • the vertical orientation of the magnetic layer 13 was 65%, and the longitudinal orientation of the magnetic layer 13 was 35%.
  • the ratio of the distance D to the recording track width Wd (interval Ps of the servo trace line T) (see FIG. 10) was set to 21.3%. This ratio is related to the azimuth angle ⁇ (see FIG. 4) and is equal to the value of tan ⁇ expressed in%.
  • the azimuth angle ⁇ was set to 12 °.
  • the distance D (see FIG. 10) was set to 0.12 ⁇ m, and the recording track width Wd (interval Ps of the servo trace line T) was set to 0.56 ⁇ m.
  • hexagonal plate-shaped barium ferrite was used as the magnetic powder contained in the magnetic layer 13.
  • the half width of the isolated waveform in the reproduced waveform of the data signal was 170 nm.
  • the magnetic powder contained in the magnetic layer 13 was formed into a plate shape, and the aspect ratio of the magnetic powder was set to 2.8.
  • the particle volume (average volume Vave) of the magnetic powder was set to 1950 nm 3 .
  • the thickness of the magnetic layer 13 was set to 80 nm.
  • the half width of the isolated waveform can be obtained, for example, as follows. First, using a digital storage oscilloscope, for example, averaging of a plurality of isolated waveforms (synchronous addition averaging) is performed under the conditions of sampling: 500 Ms / s (2 nsec / point) and sampling number: 50,000 points. Then, the half width of the isolated waveform is calculated from the obtained isolated reproduced waveform. In the synchronous addition, the alignment is performed at the peak position in the waveform.
  • the data write head 34 for recording the data signal has a recording track width (Y'axis direction: width direction of the magnetic recording medium) of 7 ⁇ m and a magnetic gap length (X'axis direction: longitudinal direction of the magnetic recording medium).
  • the coil turns were set to 0.2 ⁇ m, the magnetic gap depth was set to 1 ⁇ m.
  • a "Large form factor" manufactured by Mountain Engineering II Inc. was used as the traveling device, and the tape traveling speed was 2 m / s and the recorded signal was a rectangular wave of 0.5 MHz.
  • a TMR head including a TMR element (TMR: Tunnel Magneto Resistive) is used as the data read head 35 for reading the data signal.
  • the reproduction track width (Y'axis direction: width direction of the magnetic recording medium) of the servo signal in the TMR head is 0.5 ⁇ m.
  • the spacing between the two shields in the TMR head used here (X'axis direction: transport direction of the magnetic recording medium) is 0.1 ⁇ m
  • the bias current in the TMR head is less than 4 mA
  • the element resistance is 77 ⁇ . Will be done.
  • the transport speed of the magnetic recording medium 1 was 2 m / s, and the lap angle was 1.8 °.
  • the degree of vertical orientation of the magnetic layer 13 was increased to 66% as compared with the first embodiment. Further, the degree of longitudinal orientation of the magnetic layer 13 was lowered to 31%. In the second embodiment, the vertical orientation of the magnetic layer 13 was increased (the longitudinal orientation was decreased) as compared with the first embodiment, so that the half width of the isolated waveform was narrower than that of the first embodiment. It was 150 nm. The other points are the same as those in the first embodiment.
  • the vertical orientation of the magnetic layer 13 was further increased to 70% as compared with the second embodiment. Further, the degree of longitudinal orientation of the magnetic layer 13 was further reduced to 29%. In the third embodiment, the vertical orientation of the magnetic layer 13 is further increased (the longitudinal orientation is further reduced) as compared with the second embodiment, so that the half width of the isolated waveform is smaller than that of the second embodiment. Was also narrowed to 140 nm. The other points are the same as those in the first embodiment.
  • the vertical orientation of the magnetic layer 13 was further increased to 71% as compared with the third embodiment. Further, the degree of longitudinal orientation of the magnetic layer 13 was further reduced to 25%. In the fourth embodiment, the vertical orientation of the magnetic layer 13 is further increased (the longitudinal orientation is further reduced) as compared with the third embodiment, so that the half width of the isolated waveform is smaller than that of the third embodiment. Was also narrowed to 130 nm. The other points are the same as those in the first embodiment.
  • the vertical orientation of the magnetic layer 13 was 66%, and the longitudinal orientation of the magnetic layer 13 was 31%.
  • the degree of vertical orientation and the degree of longitudinal orientation in the 5th to 14th Examples are the same as those in the 2nd Example.
  • the azimuth angle ⁇ (see FIG. 4) of the servo signal recording pattern 6 is different from that of the first to fourth embodiments, and the azimuth angle ⁇ is 24 degrees.
  • the distance D (see FIG. 10) is different from that of the first to fourth embodiments, and is set to 0.17 ⁇ m.
  • the ratio of the distance D (see FIG. 10) to the recording track width Wd (interval Ps of the servo trace line T) is different from that of the first to fourth embodiments. It is said to be 5%.
  • the vertical orientation and the longitudinal orientation are the same as those in the second embodiment, so that the full width at half maximum of the isolated waveform was 150 nm in the data read head adopted this time.
  • the other points are the same as those in the first embodiment.
  • the vertical orientation of the magnetic layer 13 was 66%, and the longitudinal orientation of the magnetic layer 13 was 31%.
  • the azimuth angle ⁇ (see FIG. 4) of the servo signal recording pattern 6 is different from that of the first to fifth embodiments, and the azimuth angle ⁇ is 18 degrees.
  • the ratio of the distance D (see FIG. 10) to the recording track width Wd (interval Ps of the servo trace line T) is different from that of the first to fifth embodiments. It is said to be 32.5%.
  • the recording track width Wd (interval Ps of the servo trace line T) was also different from that of the first to fifth embodiments, and was set to 0.52 ⁇ m. Further, in the sixth embodiment, the distance D (see FIG. 10) was set to 0.17 ⁇ m. Then, in the sixth embodiment, the half width of the isolated waveform was 160 ⁇ m.
  • the same magnetic recording medium 1 as the magnetic recording medium 1 used in the 2nd embodiment is used, and the recording track width Wd (interval Ps of the servo trace line T) is changed.
  • the recording track width Wd (interval Ps of the servo trace lines T) was set to 2.91 ⁇ m, and the distance D was set to 0.62 ⁇ m.
  • the recording track width Wd (interval Ps of the servo trace lines T) was set to 1.55 ⁇ m, and the distance D was set to 0.33 ⁇ m. Further, in the ninth embodiment, the recording track width Wd (interval Ps of the servo trace lines T) was set to 0.56 ⁇ m, and the distance D was set to 0.12 ⁇ m. Further, in the tenth embodiment, the recording track width Wd (interval Ps of the servo trace lines T) was set to 0.38 ⁇ m, and the distance D was set to 0.08 ⁇ m.
  • the half width of the isolated waveform does not change unless the vertical orientation degree, the azimuth angle ⁇ , etc. are changed (7th to 10th Examples).
  • the half-value width of is 150 nm, which is the same as in the second embodiment).
  • the components of the magnetic powder contained in the magnetic layer 13 are different from those in the second embodiment, but other points are the same as those in the second embodiment.
  • hexagonal plate-shaped strontium ferrite was used as the magnetic powder.
  • the aspect ratio of this magnetic powder was 3.
  • spherical ⁇ -iron oxide particles were used as the magnetic powder.
  • the aspect ratio of this magnetic powder was 1.1.
  • spherical gallium ferrite was used as the magnetic powder.
  • the aspect ratio of this magnetic powder was 1.
  • cubic cobalt-containing ferrite was used as the magnetic powder.
  • the aspect ratio of this magnetic powder was 1.7.
  • the components of the magnetic powder contained in the magnetic layer 13 are different, but the vertical orientation (66%) and the azimuth angle (12 °) are different. Etc., so that the half width of the isolated waveform is the same value (150 nm).
  • the vertical orientation is low (55%, 61%) and the longitudinal orientation is high (46%, 40%), so that the half width of the isolated waveform is wide, 210 nm. It is 190 nm.
  • this difference is obtained when the difference between the first period and the second period is small (distance D is small). (Or, it is considered that the distance D) cannot be accurately determined.
  • the vertical orientation is high (65% or more) and the longitudinal orientation is low (35% or less), so that the half width of the isolated waveform is narrowed. (185 nm or less). Therefore, in the first to eighteenth embodiments, since the peak in the reproduced waveform of the data signal is sharp, even if the difference between the first period and the second period is small (even if the distance D is small), this The difference (or distance D) can be accurately determined.
  • Table 2 shows yet another various examples and various comparative examples.
  • the degree of vertical orientation of the magnetic layer 13 was further increased to 75% as compared with the 4th example. Further, the degree of longitudinal orientation of the magnetic layer 13 was further reduced to 23%. The other points are the same as those in the fourth embodiment (same as the first embodiment). In the fifteenth embodiment, the vertical orientation of the magnetic layer 13 was further increased (the longitudinal orientation was further reduced) as compared with the fourth embodiment, so that the half width of the isolated waveform was higher than that of the fourth embodiment. Was also narrowed to 128 nm.
  • the degree of vertical orientation of the magnetic layer 13 was further increased to 80% as compared with the 15th example. Further, the degree of longitudinal orientation of the magnetic layer 13 was further reduced to 21%. The other points are the same as those in the 19th embodiment (same as the 1st embodiment). In the twentieth embodiment, the vertical orientation of the magnetic layer 13 was further increased (the longitudinal orientation was further reduced) as compared with the fifteenth embodiment, so that the half width of the isolated waveform was further increased than that of the fifteenth embodiment. Was also narrowed to 120 nm.
  • the degree of vertical orientation of the magnetic layer 13 was further increased to 85% as compared with the 16th example. Further, the degree of longitudinal orientation of the magnetic layer 13 was further reduced to 18%. The other points are the same as those in the 16th embodiment (same as the 1st embodiment). In the 17th example, the vertical orientation of the magnetic layer 13 was further increased (the longitudinal orientation was further decreased) as compared with the 16th embodiment, so that the half width of the isolated waveform was further increased than that of the 16th embodiment. was also narrowed to 109 nm.
  • the particle volume (average volume Vave) of the magnetic powder was made smaller than that of the 1st example to 1600 nm 3 .
  • the other points are the same as those in the first embodiment.
  • the half width of the isolated waveform was smaller than that of the 1st example because the particle volume was smaller than that of the 1st example, and was 120 nm.
  • the half width of the isolated waveform is narrowed because the magnetization transition region is narrowed.
  • the particle volume (average volume Vave) of the magnetic powder was further reduced to 1300 nm 3 as compared with the 18th example.
  • the 18th Example the same as the 1st Example.
  • the half width of the isolated waveform was further narrowed as compared with the 18th example because the particle volume was smaller than that of the 18th example, which was 115 nm.
  • the vertical orientation of the magnetic layer 13 was 75% and the longitudinal orientation of the magnetic layer 13 was 23%, as in the 15th embodiment.
  • the thickness of the magnetic layer 13 was made thinner than that of the 15th example (than that of the 1st example) to 60 nm. The other points are the same as those in the 15th embodiment (same as the 1st embodiment).
  • the thickness of the magnetic layer 13 was made thinner than that of the 15th example, so that the half width of the isolated waveform was narrower than that of the 15th example, which was 110 nm.
  • the vertical orientation of the magnetic layer 13 was further increased to 80% as compared with the 20th example. Further, the degree of longitudinal orientation of the magnetic layer 13 was further reduced to 21%. Further, in the 21st example, the thickness of the magnetic layer 13 was further reduced to 40 nm as compared with the 20th example. The other points are the same as those in the 20th embodiment (same as the 1st embodiment).
  • the 21st Example is the same as the 16th Example except that the thickness of the magnetic layer 13 is reduced from 80 nm to 40 nm.
  • the half-value width of the isolated waveform is narrowed to 90 nm because the thickness of the magnetic layer 13 is reduced as compared with the 16th embodiment.
  • the thickness of the magnetic layer 13 is 90 nm or less, it is considered that the value of the half width of the isolated waveform in the reproduced waveform of the data signal can be reduced (185 nm or less) to sharpen the peak in the reproduced waveform.
  • the particle volume of the magnetic powder was made larger than that in the first example, and the volume was set to 2500 nm 3 .
  • the other points are the same as those in the first embodiment.
  • the half-value width of the isolated waveform was wider than that of the first example because the particle volume of the magnetic powder was larger than that of the first example, which was 200 nm. The value of this half width (200 nm) has become wide and does not fall within an appropriate range (185 nm or less).
  • the particle volume of the magnetic powder was further increased to 2800 nm 3 as compared with the third comparative example.
  • the other points are the same as those of the third comparative example (same as the first embodiment).
  • the half-value width of the isolated waveform was further widened as compared with the third comparative example because the particle volume of the magnetic powder was further increased as compared with the third comparative example, which was 210 nm.
  • the value of this half width (210 nm) has become wide and does not fall within an appropriate range (185 nm or less).
  • the particle volume of the magnetic powder is 2300 nm 3 or less, it is considered that the value of the half width of the isolated waveform in the reproduced waveform of the data signal can be reduced (185 nm or less) to sharpen the peak in the reproduced waveform. ..
  • the vertical orientation of the magnetic layer 13 is 65% or more, and the half width of the isolated waveform in the reproduced waveform of the data signal is 185 nm or less (1st to 1st). 21 Example).
  • the peak in the reproduced waveform of the data signal becomes sharp, and even if the difference between the first period and the second period is small (even if the distance D is small), this difference (or distance D) can be accurately determined. can do.
  • the half width of the isolated waveform becomes narrower, the peak in the reproduced waveform of the data signal becomes sharper, and the accuracy of reading the data signal improves. Therefore, the half width of the isolated waveform is 170 nm or less (see the first to 21st examples), 150 nm or less (see the second to fourth, seventh to 21 embodiments), and 130 nm or less (see the fourth, 15 to 21 embodiments). (Refer to Example), 110 nm or less (Refer to Examples 17, 20, and 21) and the like.
  • the degree of vertical orientation of the magnetic layer 13 increases, the half width of the isolated waveform becomes narrower. Therefore, the degree of vertical orientation is 70% or more (see Examples 3 to 4, 15 to 17, 20 to 21), 75% or more (see Examples 15 to 17, 20 to 21), and 80% or more (see Examples 15 to 17, 20 to 21). 16 to 17 and 21 (see Examples)) and the like.
  • the distance D (distance in the length direction in P1 and P2) is 0.08 ⁇ m or more (1st to 21st Examples: in particular, refer to the 10th Example). As a result, it is possible to prevent the system from failing.
  • the distance D is small and the distance D is 0.62 ⁇ m or less (1st to 21st Examples: in particular, the 7th Example). reference).
  • the difference between the first period and the second period is obtained by setting the longitudinal orientation of the magnetic layer 13 to 35% or less (1st to 21st Examples: in particular, refer to the 1st Example). Even if is small (even if the distance D is small), this difference (or the distance D) can be determined more accurately.
  • the coercive force in the longitudinal direction of the magnetic recording medium 1 is 2000 Oe or less, even if the difference between the first period and the second period is small (even if the distance D is small), this difference (or even if the distance D is small) The distance D) can be determined more accurately.
  • the ratio of the area of the servo band s to the area of the entire surface of the magnetic layer 13 to 4.0% or less, the area of the data band d can be widened and the data recording capacity can be improved. .. Further, when the width of the servo band s is 95 ⁇ m or less, the width of the data band d becomes wide and the data recording capacity can be improved.
  • the recording track width Wd is set to 2.0 ⁇ m or less, the number of recording tracks 5 included in one data band d can be increased, thereby further improving the data recording density. Can be done.
  • the data recording density can be further improved.
  • the electromagnetic conversion characteristics can be improved. Further, by setting the thickness of the magnetic layer 13 to 90 nm or less, the electromagnetic conversion characteristics can be improved. Further, by setting the thickness of the magnetic layer 13 to 90 nm or less, the half width of the isolated waveform in the reproduced waveform of the data signal can be narrowed (185 nm or less), and the peak of the reproduced waveform of the data signal can be sharpened. (See 1st to 21st Examples). As a result, the reading accuracy of the data signal is improved, so that the number of recording tracks can be increased and the data recording density can be improved.
  • the particle volume (average volume Vave) of the magnetic powder is set to 2300 nm 3 or less, the half-value width of the isolated waveform in the reproduced waveform of the data signal is narrowed (185 nm or less), and the peak of the reproduced waveform of the data signal is made. It can be sharpened (see Examples 1 to 21). As a result, the reading accuracy of the data signal is improved, so that the number of recording tracks can be increased and the data recording density can be improved.
  • the data recording device 20 when predetermined data is stored in the magnetic recording medium 1 by the data recording device 20, and then (for example, after storage for a certain period of time), the data recording device 20 reproduces the data recorded in the magnetic recording medium 1. To do. In such a case, if the width of the magnetic recording medium 1 at the time of data reproduction fluctuates even slightly as compared with the width at the time of data recording of the magnetic recording medium 1, off-track (the data read head 35 erroneously records). (Being located on the track 5) may occur. Therefore, the data recorded on the magnetic recording medium 1 cannot be accurately reproduced, and an error may occur.
  • Examples of causes of fluctuations in the width of the magnetic recording medium 1 include fluctuations in temperature and fluctuations in humidity.
  • a method is used in which the magnetic recording medium 1 is designed so as not to expand and contract the magnetic recording medium 1 so as to cope with fluctuations in the width of the magnetic recording medium 1.
  • it is practically impossible to prevent the magnetic recording medium 1 from expanding and contracting at all.
  • the magnetic recording medium 1 is not made difficult to expand / contract, but conversely, the magnetic recording medium 1 is made easy to expand / contract to some extent, and the tension (X) of the magnetic recording medium 1 is set on the data recording device 20 side.
  • a method of controlling (increasing or decreasing) the axial direction (transportation direction of the magnetic recording medium 1) is used.
  • the data recording device 20 tensions the magnetic recording medium 1 in the longitudinal direction (X-axis direction) as necessary (when the width of the magnetic recording medium 1 is widened).
  • the width (Y-axis direction) of the magnetic recording medium 1 is reduced by increasing the value.
  • the data recording device 20 reduces the tension in the longitudinal direction of the magnetic recording medium 1 as necessary (when the width of the magnetic recording medium 1 is narrowed) during reproduction of the data signal to reduce the tension of the magnetic recording medium 1 in the longitudinal direction. Increase the width of 1.
  • the data recording device 20 may control the tension in the longitudinal direction of the magnetic recording medium 1 not only when the data signal is reproduced but also when the data signal is recorded.
  • the width of the magnetic recording medium 1 when the width of the magnetic recording medium 1 fluctuates due to temperature or the like, the width of the magnetic recording medium 1 can be adjusted by adjusting the width of the magnetic recording medium 1 as necessary. It becomes possible to make it constant. Therefore, it is considered that off-track can be prevented and the data recorded on the magnetic recording medium 1 can be accurately reproduced.
  • Tables 3 and 4 show various examples and various comparative examples.
  • the various Examples and Comparative Examples shown in Tables 3 and 4 correspond to the various Examples and Comparative Examples shown in Tables 1 and 2, and the same Examples and the same Comparative Examples are numbered the same. ing.
  • the first embodiment shown in Table 3 is the same as the first embodiment shown in Table 1, and the degree of vertical orientation in the first embodiment, the half width of the isolated waveform, and the like are shown in Table 1. As it is done.
  • a magnetic recording medium 1 having a tape width (Y-axis direction) of 12.65 mm is cut into a length of 100 mm (X-axis direction) to perform magnetic recording having a width of 12.65 mm and a length of 100 mm.
  • a sample of medium 1 was prepared. Then, this sample was set in the measuring machine, and the sample was stretched in the longitudinal direction (X-axis direction) by the measuring machine, and the load at that time was measured.
  • AUTO GRAPH AG-100D manufactured by Shimadzu Corporation was used as the measuring machine. The measurement temperature was room temperature, and the tensile speed was 10 mm / min.
  • FIG. 11 is a diagram showing the relationship between the elongation rate [%] in the longitudinal direction and the load [N].
  • the relationship between the elongation rate and the load is non-linear when the sample is hardly stretched (when the elongation rate is close to 0), and is linear when the sample is stretched to some extent. It is close to. Therefore, the value of the longitudinal 1% elongation load is not the value of the non-linear part, but the value of the part close to linear.
  • the load when the elongation rate of the magnetic recording medium 1 is 0.5% is set to ⁇ 0.5 [N], and the elongation rate of the magnetic recording medium 1 is 1.
  • This longitudinal 1% elongation load is a value indicating the difficulty of expansion and contraction of the magnetic recording medium 1 in the longitudinal direction (X-axis direction) due to an external force, and the larger this value is, the more the magnetic recording medium 1 expands and contracts in the longitudinal direction due to an external force. The smaller this value is, the easier it is for the magnetic recording medium 1 to expand and contract in the longitudinal direction due to an external force.
  • the longitudinal 1% elongation load is a value related to the longitudinal direction of the magnetic recording medium 1, but it also correlates with the difficulty of expansion and contraction of the magnetic recording medium 1 in the width direction (Y-axis direction). That is, the larger the value of the longitudinal 1% elongation load, the more difficult it is for the magnetic recording medium 1 to expand and contract in the width direction due to an external force, and the smaller this value, the more easily the magnetic recording medium 1 expands and contracts in the width direction due to an external force.
  • the longitudinal 1% elongation load is 0.6N or less.
  • the longitudinal 1% elongation load may be 0.58 N or less, 0.55 N or less, 0.5 N or less, 0.45 N or less, or the like.
  • the shrinkage rate in the longitudinal direction (X-axis direction) of the magnetic recording medium 1 (hereinafter, simply the longitudinal shrinkage rate) is shown in the second column from the left.
  • a method for measuring this longitudinal shrinkage rate will be described. In this measurement, first, the magnetic recording medium 1 was cut into a length of 50 mm (in the X-axis direction), and a sample of the magnetic recording medium 1 was prepared. Then, two indentations are made on the surface of the magnetic layer 13 of this sample with a needle at positions separated by 15 mm in the longitudinal direction (X-axis direction).
  • the distance L1 between the indentations at the two points is measured at room temperature using a measuring microscope TMU-220ES manufactured by Topcon and a coordinate measuring machine CA-1B. Then, the sample is stored (aged) for 72 hours in a constant temperature bath at 60 ° C. and 10% RH in a state where no tension is applied to the sample (tension-free). Then, the sample is taken out from the constant temperature bath and left in a room temperature environment for 1 hour, and the distance L2 between the two indentations is measured by the same method as described above.
  • This longitudinal shrinkage rate is a value indicating the ease of expansion and contraction in the longitudinal direction (X-axis direction) of the magnetic recording medium 1 due to heat in a tension-free state, and the larger this value is, the more the magnetic recording medium 1 is heated. It is easy to expand and contract in the longitudinal direction, and the smaller this value is, the less likely the magnetic recording medium 1 is to expand and contract in the longitudinal direction due to heat.
  • the longitudinal shrinkage ratio is a value related to the longitudinal direction of the magnetic recording medium 1, it also correlates with the ease of expansion and contraction of the magnetic recording medium 1 in the width direction (Y-axis direction). That is, the larger the value of the longitudinal shrinkage ratio, the easier the magnetic recording medium 1 expands and contracts in the width direction due to heat, and the smaller this value, the more difficult the magnetic recording medium 1 expands and contracts in the width direction due to heat.
  • the magnetic recording medium 1 expands and contracts.
  • the magnetic recording medium 1 expands and contracts due to environmental changes such as temperature changes because it induces off-track. Therefore, it is advantageous that the longitudinal shrinkage ratio is small.
  • the longitudinal shrinkage rate is 0.1% or less.
  • the longitudinal shrinkage rate may be 0.09% or less, 0.08% or less, 0.07% or less, 0.06% or less, 0.05% or less, and the like.
  • the magnetic recording medium 1 expands and contracts relatively easily when an external force is applied (tension control), but on the other hand, the magnetic recording medium 1 expands and contracts relatively easily due to environmental changes such as temperature fluctuations. Is configured so that it does not easily expand or contract.
  • the average thickness TL (average total thickness) of the magnetic recording medium 1 is shown in the third column from the left.
  • the method of obtaining the average thickness of the magnetic recording medium 1 is as described above.
  • the average thickness of the magnetic recording medium 1 correlates with the easiness of expansion and contraction of the magnetic recording medium 1 due to an external force.
  • the magnetic recording medium 1 becomes difficult to expand and contract. Therefore, from the viewpoint of tension control, it is advantageous that the average thickness of the magnetic recording medium 1 is thin.
  • the average thickness of the magnetic recording medium 1 is typically 5.6 ⁇ m or less. Further, as described above, the average thickness of the magnetic recording medium 1 may be 5.0 ⁇ m or less, 4.6 ⁇ m or less, 4.4 ⁇ m or less, or the like.
  • the average thickness TB of the base material 11 is shown in the fourth column from the left.
  • the method of obtaining the average thickness of the base material 11 is as described above.
  • the thickness of the base material 11 occupies more than half of the total thickness of the magnetic recording medium 1. Therefore, the average thickness of the base material 11 correlates with the ease of expansion and contraction of the magnetic recording medium 1 due to an external force.
  • the average thickness of the base material 11 is typically 4.2 ⁇ m or less. Further, as described above, the average thickness of the base material 11 may be 3.8 ⁇ m or less, 3.4 ⁇ m or less, or the like.
  • (TL-TB) / TB is shown in the rightmost column.
  • the denominator of (TL-TB) / TB represents the average thickness TB of the base material 11, and the numerator is the average thickness (TL-TB) of the coating film (magnetic layer 13, non-magnetic layer 12 and back layer 14).
  • the average thickness of the coating film is a value obtained by subtracting the average thickness TB of the base material 11 from the average thickness TL of the magnetic recording medium 1. That is, (TL-TB) / TB means the ratio of the average thickness (TL-TB) of the coating film to the average thickness TB of the base material 11.
  • the coating film is less likely to expand and contract due to an external force than the base material 11. If the average thickness TB of the base material 11 is fixed and the average thickness (TL-TB) of the coating film is increased, the value of (TL-TB) / TB increases. In this case, the magnetic recording medium 1 Will be difficult to expand and contract.
  • this (TL-TB) / TB value has a correlation with the difficulty of expansion and contraction of the magnetic recording medium 1 due to an external force, and the larger this value is, the more difficult it is for the magnetic recording medium 1 to expand and contract due to an external force, and this value becomes smaller. Indeed, the magnetic recording medium 1 tends to expand and contract due to an external force. Therefore, from the viewpoint of tension control, it is advantageous that the value of (TL-TB) / TB is small.
  • the value of (TL-TB) / TB is 0.41 or less.
  • the value of (TL-TB) / TB may be 0.39 or less, 0.37 or less, 0.35 or less, and the like.
  • the Young's modulus in the longitudinal direction (X-axis direction) of the magnetic recording medium 1 is shown in the third column from the right.
  • the Young ratio in the longitudinal direction of the magnetic recording medium 1 is a value indicating the difficulty of expansion and contraction of the magnetic recording medium 1 in the longitudinal direction due to an external force, and the larger this value is, the more the magnetic recording medium 1 expands and contracts in the longitudinal direction due to the external force. It is difficult, and the smaller this value is, the more easily the magnetic recording medium 1 expands and contracts in the longitudinal direction due to an external force.
  • the Young's modulus in the longitudinal direction of the magnetic recording medium 1 is a value related to the longitudinal direction of the magnetic recording medium 1, but it also correlates with the difficulty of expansion and contraction in the width direction (Y-axis direction) of the magnetic recording medium 1. That is, the larger this value is, the more difficult it is for the magnetic recording medium 1 to expand and contract in the width direction due to an external force, and the smaller this value is, the more easily the magnetic recording medium 1 expands and contracts in the width direction due to an external force. Therefore, from the viewpoint of tension control, it is advantageous that the Young's modulus in the longitudinal direction of the magnetic recording medium 1 is small.
  • the Young's modulus in the longitudinal direction of the magnetic recording medium 1 is 8.5 GPa or less.
  • the Young's modulus in the longitudinal direction of the magnetic recording medium 1 may be 8.3 GPa or less, 7.9 GPa or less, 7.5 GPa or less, 7.1 GPa or less, and the like.
  • the Young's modulus is measured using a tensile tester (manufactured by Shimadzu Corporation, AG-100D). For example, if you want to measure Young's modulus in the longitudinal direction of the tape, cut the tape to a length of 180 mm and prepare a measurement sample. A jig that can fix the width of the tape (1/2 inch) is attached to the tensile tester, and the top and bottom of the tape width are fixed. The distance should be 100 mm. After chucking the tape sample, stress is gradually applied in the direction of pulling the sample. The pulling speed shall be 0.1 mm / min. From the change in stress and the amount of elongation at this time, Young's modulus is calculated using the following formula.
  • E ( ⁇ N / S) / ( ⁇ x / L) ⁇ 10 -3 ⁇ N... Change in stress (N) S... Cross-sectional area of test piece (mm 2 ) ⁇ x... Elongation amount (mm) L ... Distance between grip jigs (mm) The range of stress is 0.5N to 1.0N, and the stress change ( ⁇ N) and elongation ( ⁇ x) at this time are used in the calculation.
  • the Young's modulus in the longitudinal direction (X-axis direction) of the base material 11 is shown in the second column from the right.
  • the thickness of the base material 11 occupies more than half of the total thickness of the magnetic recording medium 1. Therefore, the Young's ratio in the longitudinal direction of the base material 11 correlates with the difficulty of expanding and contracting the magnetic recording medium 1 due to an external force, and the larger this value, the more difficult the magnetic recording medium 1 expands and contracts in the width direction due to an external force. The smaller the size, the easier it is for the magnetic recording medium 1 to expand and contract in the width direction due to an external force.
  • the Young's modulus in the longitudinal direction of the base material 11 is a value related to the longitudinal direction of the magnetic recording medium 1, but it also correlates with the difficulty of expansion and contraction of the magnetic recording medium 1 in the width direction (Y-axis direction). That is, the larger this value is, the more difficult it is for the magnetic recording medium 1 to expand and contract in the width direction due to an external force, and the smaller this value is, the more easily the magnetic recording medium 1 expands and contracts in the width direction due to an external force. Therefore, from the viewpoint of tension control, it is advantageous that the Young's modulus in the longitudinal direction of the base material 11 is small.
  • the Young's modulus in the longitudinal direction of the base material 11 is 8.0 GPa or less.
  • the Young's modulus in the longitudinal direction of the base material 11 may be 7.8 GPa or less, 7.4 GPa or less, 7.0 GPa or less, 6.4 GPa or less, and the like.
  • the longitudinal 1% elongation load was 0.58 N and the longitudinal contraction rate was 0.09%.
  • the average thickness TL of the magnetic recording medium 1 of the magnetic recording medium 1 was 5 ⁇ m
  • the average thickness TB of the base material 11 was 3.6 ⁇ m.
  • the ratio of the average thickness (TL-TB) of the coating film to the average thickness TB of the base material 11 was set to 0.39.
  • the Young's modulus in the longitudinal direction of the magnetic recording medium 1 was 8.3 GPa
  • the Young's modulus in the longitudinal direction of the base material 11 was 7.8 GPa.
  • the vertical orientation degree and the half width of the isolated waveform of the first embodiment are as shown in Table 1.
  • the average thickness of the material 11, the Young's modulus of the magnetic recording medium 1, the Young's modulus of the base material 11, and the values of (TL-TB) / TB are basically the same as those of the first embodiment.
  • the longitudinal 1% elongation load was smaller than that in the first embodiment and was 0.55 N (because the elements contained in the magnetic layer are different: see Table 1). Further, also in the 18th and 19th examples, the longitudinal 1% elongation load was smaller than that in the 1st example, and was 0.57N. The fact that the longitudinal 1% elongation load is smaller than that of the other examples means that the elasticity during tension control is better than that of the other examples.
  • Table 5 is a diagram showing still another example and comparative example.
  • the 22nd embodiment among various values (vertical orientation degree, longitudinal orientation degree, ..., (TL-TB) / TB) shown in column 17 in Table 5, values other than the longitudinal shrinkage rate are , The same as in the first embodiment (see Tables 1 and 3). Specifically, the 22nd example had a longitudinal shrinkage rate of 0.07%, which was smaller than that of the 1st example (and other examples). In the 22nd embodiment, since the longitudinal shrinkage rate is smaller than that in the 1st embodiment, it is more resistant to environmental changes such as temperature fluctuations (harder to expand and contract) than the 1st embodiment (and other examples).
  • the half width of the isolated waveform in the reproduced waveform of the data signal was 170 nm.
  • the longitudinal shrinkage rate was even smaller than that in the 22nd example, which was 0.04%.
  • the other points are the same as those in the 22nd embodiment.
  • the longitudinal shrinkage ratio is further smaller than that in the 22nd embodiment, it is more resistant to environmental changes such as temperature fluctuations (more difficult to expand and contract) than the 22nd embodiment (and other examples).
  • the half width of the isolated waveform in the reproduced waveform of the data signal was 170 nm.
  • the longitudinal contraction rate was larger than that in the 22nd embodiment (same as in the 1st embodiment) and was 0.09%, but the longitudinal 1% elongation load was larger than that in the 22nd embodiment. Was also small, 0.50N.
  • the longitudinal contraction rate of the 24th embodiment is slightly larger than that of the 22nd embodiment (same as that of the 1st embodiment), it is a little more vulnerable to environmental changes such as temperature fluctuations than the 22nd embodiment.
  • the longitudinal 1% elongation load is smaller than that in the 22nd embodiment, the elasticity at the time of tension control is better than that in the 22nd embodiment (and other examples).
  • the average thickness TL of the magnetic recording medium 1 is smaller than that of the 22nd example and is 4.3 ⁇ m
  • the average thickness TB of the base material 11 is smaller than that of the 22nd example and is 3.2 ⁇ m.
  • the value of (TL-TB) / TB was smaller than that in the 22nd example, which was 0.34. The other points are the same as those in the 22nd embodiment.
  • the values of the average thickness TL of the magnetic recording medium 1, the average thickness TB of the base material 11, and (TL-TB) / TB are smaller than those of the 22nd embodiment, so that the elasticity during tension control is achieved. Is better than 22nd Example (and other Examples).
  • the half width of the isolated waveform in the reproduced waveform of the data signal was 170 nm. Further, in the 25th example, the longitudinal 1% elongation load was further smaller than that in the 24th example, which was 0.43N. In the 25th embodiment, since the longitudinal 1% elongation load is even smaller than that in the 24th embodiment, the elasticity during tension control is even better than that in the 24th embodiment (and other examples).
  • the average thickness TB of the base material 11 is the same as that of the 24th embodiment (3.2 ⁇ m), while the average thickness TL of the magnetic recording medium 1 is further reduced as compared with the 24th embodiment. It was set to 4.2 ⁇ m. In this relationship, in the 25th example, the value of (TL-TB) / TB was smaller than that in the 24th example, and was set to 0.31.
  • the average thickness TL and (TL-TB) / TB values of the magnetic recording medium 1 are smaller than those of the 24th embodiment, so that the elasticity of the magnetic recording medium 1 at the time of tension control is 24th. Even better than the examples (and other examples).
  • the Young's modulus in the longitudinal direction of the magnetic recording medium 1 is smaller than that in the 24th embodiment, which is 7.4 GPa, and the Young's modulus in the longitudinal direction of the base material 11 is also smaller than that in the 24th embodiment. , 6.4 GPa. Other points are the same as those in the 24th embodiment.
  • the Young's modulus in the longitudinal direction of the magnetic recording medium 1 and the Young's modulus in the longitudinal direction of the base material 11 are smaller than those in the 24th embodiment, so that the elasticity of the magnetic recording medium 1 at the time of tension control is the second. Even better than 24 examples (and other examples).
  • the thickness of the magnetic layer 13 was made thicker than that of the 22nd example (than that of the first example) to be 88 nm. Other points are the same as in the 22nd embodiment (same as the 1st embodiment). In the 26th example, the thickness of the magnetic layer 13 was made thicker than that in the 22nd example, so that the half width of the isolated waveform was wider than that in the 22nd example, which was 185 nm.
  • the particle volume (average volume Vave) of the magnetic powder contained in the magnetic layer 13 was set to 2800 nm 3 . Due to this relationship, the half width of the isolated waveform in the reproduced waveform of the data signal is large, which is 210 nm. This half width value (210 nm) is not within an appropriate range (185 nm or less).
  • the longitudinal shrinkage rate was 0.11%. This value of longitudinal shrinkage (0.11%) is not within the appropriate range (0.1% or less) and is therefore vulnerable to environmental changes such as temperature fluctuations, which can lead to off-tracking. It is thought that it will be expensive.
  • the particle volume (average volume Vave) of the magnetic powder was set to 2800 nm 3 as in the fifth comparative example. Due to this relationship, the half-value width of the isolated waveform in the reproduced waveform of the data signal is 210 nm, and the value of the half-value width is not within an appropriate range (185 nm or less).
  • the longitudinal 1% elongation load was 0.61N. This value (0.61N) is not within an appropriate range (0.6N or less), and therefore it is considered that the elasticity of the magnetic recording medium 1 at the time of tension control is poor.
  • the value of (TL-TB) / TB was 0.43. This value (0.43) is not within an appropriate range (0.41 or less), and therefore it is considered that the elasticity of the magnetic recording medium 1 at the time of tension control is poor.
  • the longitudinal 1% elongation load is 0.6 N or less.
  • the elasticity of the magnetic recording medium 1 becomes high, so that the width of the magnetic recording medium 1 can be easily adjusted by tension control. Therefore, even if the width of the magnetic recording medium 1 fluctuates due to temperature or the like (for example, in an accelerated deterioration environment such as one month at 45 ° C.), magnetic recording can be performed by adjusting the width of the magnetic recording medium 1.
  • the width of the medium 1 can be made constant. Therefore, off-tracking can be prevented, and the data recorded on the magnetic recording medium 1 can be accurately reproduced.
  • the present embodiment it is possible to deal with slight fluctuations in the width of the magnetic recording medium 1, and as a result, the number of recording tracks of the magnetic recording medium 1 can be increased, and high-density recording of data can be achieved. Can be realized.
  • high-density recording of data is realized by the vertical orientation of the magnetic layer 13 (65% or more) and the half width of the isolated waveform of the data signal (185 nm or less). The synergistic effect with this effect makes it possible to realize higher-density recording of data.
  • the longitudinal shrinkage rate is 0.1% or less.
  • the width of the magnetic recording medium 1 is less likely to fluctuate due to temperature or the like (for example, even in a long-term accelerated deterioration environment such as one month at 45 ° C.). Therefore, off-tracking can be prevented, and the data recorded on the magnetic recording medium 1 can be accurately reproduced.
  • the average thickness TL of the magnetic recording medium 1 is 5.6 ⁇ m or less.
  • the elasticity of the magnetic recording medium 1 due to an external force is further increased, so that the width of the magnetic recording medium 1 can be further adjusted by tension control. Therefore, off-tracking can be prevented more appropriately, and the data recorded on the magnetic recording medium 1 can be reproduced more accurately.
  • the average thickness TB of the base material 11 is 4.2 ⁇ m or less.
  • the value of (TL-TB) / TB is set to 0.41 or less.
  • the elasticity of the magnetic recording medium 1 due to an external force is further increased, so that the width of the magnetic recording medium 1 can be further adjusted by tension control. Therefore, off-tracking can be prevented more appropriately, and the data recorded on the magnetic recording medium 1 can be reproduced more accurately.
  • the Young's modulus in the longitudinal direction of the magnetic recording medium 1 is 8.5 GPa or less.
  • the elasticity of the magnetic recording medium 1 due to an external force is further increased, so that the width of the magnetic recording medium 1 can be further adjusted by tension control. Therefore, off-tracking can be prevented more appropriately, and the data recorded on the magnetic recording medium 1 can be reproduced more accurately.
  • the Young's modulus in the longitudinal direction of the base material 11 is 8.0 GPa or less.
  • the elasticity of the magnetic recording medium 1 due to an external force is further increased, so that the width of the magnetic recording medium 1 can be further adjusted by tension control. Therefore, off-tracking can be prevented more appropriately, and the data recorded on the magnetic recording medium 1 can be reproduced more accurately.
  • a non-magnetic layer forming paint is prepared by kneading and dispersing a non-magnetic powder, a binder, a lubricant and the like in a solvent.
  • a paint for forming a magnetic layer is prepared by kneading and dispersing a magnetic powder, a binder, a lubricant and the like in a solvent.
  • a coating material for forming a back layer is prepared by kneading and dispersing a binder, a non-magnetic powder and the like in a solvent.
  • the paint for forming a magnetic layer for example, the following solvent, dispersion device, and kneading device can be used.
  • Examples of the solvent used for preparing the above-mentioned paint include a ketone solvent such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, an alcohol solvent such as methanol, ethanol and propanol, methyl acetate, ethyl acetate, butyl acetate and propyl acetate.
  • a ketone solvent such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone
  • an alcohol solvent such as methanol, ethanol and propanol, methyl acetate, ethyl acetate, butyl acetate and propyl acetate.
  • Ester solvents such as ethyl lactate and ethylene glycol acetate, ether solvents such as diethylene glycol dimethyl ether, 2-ethoxyethanol, tetrahydrofuran and dioxane, aromatic hydrocarbon solvents such as benzene, toluene and xylene, methylene chloride, ethylene chloride, Examples thereof include halogenated hydrocarbon solvents such as carbon tetrachloride, chloroform and chlorobenzene. These may be used alone or may be mixed appropriately.
  • a continuous twin-screw kneader for example, a continuous twin-screw kneader, a continuous twin-screw kneader that can be diluted in multiple stages, a kneader, a pressure kneader, a roll kneader, or the like can be used.
  • the device is not particularly limited to these devices.
  • disperser used for the above-mentioned paint preparation for example, a roll mill, a ball mill, a horizontal sand mill, a vertical sand mill, a spike mill, a pin mill, a tower mill, a pearl mill (for example, "DCP mill” manufactured by Eirich), a homogenizer, and an ultrasonic mill Dispersing devices such as a sound wave disperser can be used, but the device is not particularly limited to these devices.
  • the non-magnetic layer forming paint is applied to one main surface of the base material 11 and dried to form the non-magnetic layer 12.
  • the magnetic layer forming paint is applied onto the non-magnetic layer 12 and dried to form the magnetic layer 13 on the non-magnetic layer 12.
  • the magnetic powder is magnetically oriented in the thickness direction of the base material 11 by, for example, a solenoid coil.
  • the magnetic powder may be magnetically oriented in the traveling direction (longitudinal direction) of the base material 11 by, for example, a solenoid coil, and then magnetic field oriented in the thickness direction of the base material 11.
  • the back layer 14 is formed by applying the back layer forming paint to the other main surface of the base material 11 and drying it. As a result, the magnetic recording medium 1 is obtained.
  • the obtained magnetic recording medium 1 is subjected to calendar processing to smooth the surface of the magnetic layer 13.
  • the magnetic recording medium 1 subjected to the calendar processing is wound into a roll shape, and then the magnetic recording medium 1 is heat-treated in this state to magnetically magnetize a large number of protrusions 14A on the surface of the back layer 14. Transfer to the surface of layer 13. As a result, a large number of holes 13A are formed on the surface of the magnetic layer 13.
  • the temperature of the heat treatment is preferably 55 ° C. or higher and 75 ° C. or lower.
  • the temperature of the heat treatment is 55 ° C. or higher, good transferability can be obtained.
  • the temperature of the heat treatment is 75 ° C. or higher, the amount of pores becomes too large and the amount of lubricant on the surface becomes excessive.
  • the temperature of the heat treatment is the temperature of the atmosphere that holds the magnetic recording medium 1.
  • the heat treatment time is preferably 15 hours or more and 40 hours or less.
  • the heat treatment time is 15 hours or more, good transferability can be obtained.
  • the heat treatment time is 40 hours or less, the decrease in productivity can be suppressed.
  • the magnetic recording medium 1 is cut into a predetermined width (for example, 1/2 inch width). From the above, the target magnetic recording medium 1 can be obtained.
  • Carbon black 2 parts by mass (manufactured by Tokai Carbon Co., Ltd., product name: Seast TA)
  • Vinyl chloride resin 1.1 parts by mass (resin solution: resin content 30% by mass, cyclohexanone 70% by mass)
  • n-Butyl stearate 2 parts by mass Methyl ethyl ketone: 121.3 parts by mass
  • Toluene 121.3 parts by mass
  • Cyclohexanone 60.7 parts by mass
  • Needle-shaped iron oxide powder 100 parts by mass ( ⁇ -Fe 2 O 3 , average major axis length 0.15 ⁇ m)
  • Vinyl chloride resin 55.6 parts by mass (resin solution: resin content 30% by mass, cyclohexanone 70% by mass)
  • Carbon black 10 parts by mass (average particle size 20 nm)
  • polyisocyanate (trade name: Coronate L, manufactured by Nippon Polyurethane Industry Co., Ltd.): 4 parts by mass and myristic acid: 2 parts by mass are added as a curing agent. Was added.
  • the type and blending amount of the inorganic particles may be changed as follows. Carbon black particle powder (average particle size 20 nm): 80 parts by mass Carbon black particle powder (average particle size 270 nm): 20 parts by mass
  • the type and blending amount of the inorganic particles may be changed as follows. Carbon black particle powder (average particle size 270 nm): 100 parts by mass
  • PEN film long poleethylene naphthalate film
  • a non-magnetic layer having an average thickness of 1.0 to 1.1 ⁇ m and a magnetic layer having an average thickness of 40 to 100 nm were formed on one main surface having a thickness of 4.0 ⁇ m as follows. First, a non-magnetic layer forming paint was applied on one main surface of the PEN film and dried to form a non-magnetic layer.
  • a magnetic layer was formed by applying a paint for forming a magnetic layer on the non-magnetic layer and drying it.
  • the magnetic powder was magnetically oriented in the thickness direction of the film by a solenoid coil.
  • the strength of the magnetic field from the solenoid coil can be adjusted (2 to 3 times the holding power of the magnetic powder), the solid content of the magnetic layer forming paint can be adjusted, and the drying conditions of the magnetic layer forming paint (drying) can be adjusted.
  • drying drying
  • the degree of orientation in the thickness direction (vertical direction) and the degree of orientation in the longitudinal direction of the magnetic recording medium are determined. Set to a value.
  • a back layer forming paint was applied and dried on the other main surface of the PEN film to form a non-magnetic layer.
  • a magnetic recording medium was obtained.
  • the present technology can also have the following configurations.
  • the magnetic layer includes a data band long in the longitudinal direction in which a data signal is written and a servo band long in the longitudinal direction in which a servo signal is written, and has a vertical orientation degree of 65% or more.
  • the half width of the isolated waveform in the reproduced waveform of the data signal is 185 nm or less.
  • the thickness of the magnetic layer is 90 nm or less.
  • the magnetic recording medium according to any one of (1) to (8) above.
  • the data band has a plurality of recording tracks that are long in the longitudinal direction, aligned in the width direction, and have a predetermined recording track width for each track in the width direction.
  • the servo signal recording pattern includes a plurality of stripes that are inclined with a predetermined azimuth angle with respect to the width direction. Of the plurality of stripes, an arbitrary point on an arbitrary stripe is designated as P1, and a point on the arbitrary stripe located at a position separated from P1 by the recording track width in the width direction is designated as P2.
  • the magnetic recording medium When the distance between the P1 and the P2 in the length direction is 0.08 ⁇ m or more, the magnetic recording medium. (10) The magnetic recording medium according to (9) above. A magnetic recording medium in which the distance between P1 and P2 in the length direction is 0.62 ⁇ m or less. (11) The magnetic recording medium according to any one of (1) to (10) above.
  • the magnetic layer is a magnetic recording medium having a longitudinal orientation degree of 35% or less.
  • the magnetic recording medium is a magnetic recording medium having a coercive force of 2000 Oe or less in the longitudinal direction. (13) The magnetic recording medium according to any one of (1) to (12) above.
  • the data band has a plurality of recording tracks that are long in the longitudinal direction, aligned in the width direction, and have a predetermined recording track width for each track in the width direction.
  • a magnetic recording medium having a recording track width of 2.0 ⁇ m or less.
  • a magnetic recording medium in which the length of one bit in the longitudinal direction of a data signal recorded in the data band is 48 nm or less.
  • the magnetic layer is a magnetic recording medium containing a magnetic powder of hexagonal ferrite, ⁇ -iron oxide, or cobalt-containing ferrite. (20) The magnetic recording medium according to any one of (1) to (19) above.
  • the load when the elongation rate of the magnetic recording medium is 0.5% is ⁇ 0.5
  • the load when the elongation rate of the magnetic recording medium is 1.5% is ⁇ 1.
  • the value of ⁇ 1.5- ⁇ 0.5 is 0.6N or less, which is a magnetic recording medium.
  • the magnetic recording medium is a magnetic recording medium in which the width of the magnetic recording medium is adjusted by controlling the tension in the longitudinal direction.
  • the magnetic layer includes a data band long in the longitudinal direction in which a data signal is written and a servo band long in the longitudinal direction in which a servo signal is written, and has a vertical orientation degree of 65% or more.
  • the half width of the isolated waveform in the reproduced waveform of the data signal is 185 nm or less.
  • the thickness of the magnetic layer is 90 nm or less.
  • a cartridge in which the thickness of the base material is 4.2 ⁇ m or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

【課題】データの記録密度をさらに向上させることができる技術を提供する。 【解決手段】本技術に係る磁気記録媒体は、基材と磁性層とを有し、長手方向に長く、幅方向に短いテープ状の磁気記録媒体であって、前記磁性層は、データ信号が書き込まれる前記長手方向に長いデータバンドと、サーボ信号が書き込まれる前記長手方向に長いサーボバンドとを含み、垂直配向度が65%以上であり、前記データ信号の再生波形における孤立波形の半値幅が185nm以下であり、前記磁性層の厚さが、90nm以下であり、前記基材の厚さが、4.2μm以下である。

Description

磁気記録媒体及びカートリッジ
 本技術は、磁気記録媒体等の技術に関する。
 近年、電子データのバックアップなどの用途で磁気記録媒体が広く利用されている。磁気記録媒体の一つとして、磁性層を有する磁気記録媒体が広く普及している。
 磁気記録媒体の磁性層には、複数の記録トラックを含むデータバンドが設けられており、この記録トラックに対してデータが記録される。また、磁性層においては、幅方向でデータバンドを挟み込む位置にサーボバンドが設けられ、このサーボバンドにサーボ信号が記録される。磁気ヘッドは、サーボバンドに記録されたサーボ信号を読み取ることで、記録トラックに対して位置合わせを行う。
 磁気記録媒体への記録方式としては、磁性層内の磁性粒子を水平方向に磁化させてデータを記録する水平磁気記録方式と、磁性層内の磁性粒子を垂直方向に磁化させてデータを記録する垂直磁気記録方式とが知られている。垂直磁気記録方式は、水平磁気記録方式に比べて高密度にデータを記録することができる。
特開2014-199706号公報
 近年においては、記録すべきデータ量の増加から、さらなる高密度記録化が要請されおり、データの記録密度をさらに向上させることができる技術が求められている。
 以上のような事情に鑑み、本技術の目的は、データの記録密度をさらに向上させることができる技術を提供することにある。
 本技術に係る磁気記録媒体は、磁性層を有し、長手方向に長く、幅方向に短いテープ状の磁気記録媒体であって、前記磁性層は、データ信号が書き込まれる前記長手方向に長いデータバンドと、サーボ信号が書き込まれる前記長手方向に長いサーボバンドとを含み、垂直配向度が65%以上であり、前記データ信号の再生波形における孤立波形の半値幅が185nm以下であり、前記磁性層の厚さが、90nm以下であり、前記基材の厚さが、4.2μm以下である。
 これにより、データの記録密度をさらに向上させることができる。
 上記磁気記録媒体において、前記孤立波形の半値幅が170nm以下であってもよい。
 上記磁気記録媒体において、前記孤立波形の半値幅が150nm以下であってもよい。
 上記磁気記録媒体において、前記孤立波形の半値幅が130nm以下であってもよい。
 上記磁気記録媒体において、前記孤立波形の半値幅が110nm以下であってもよい。
 上記磁気記録媒体において、前記垂直配向度が70%以上であってもよい。
 上記磁気記録媒体において、前記垂直配向度が75%以上であってもよい。
 上記磁気記録媒体において、前記垂直配向度が80%以上であってもよい。
 上記磁気記録媒体において、前記データバンドは、前記長手方向に長く、前記幅方向に整列され、前記幅方向でトラック毎に所定の記録トラック幅を有する複数の記録トラックを有し、サーボ信号記録パターンは、前記幅方向に対して所定のアジマス角を持って傾斜する複数のストライプを含み、前記複数のストライプうち、任意のストライプ上の任意の点をP1とし、前記P1に対して、前記幅方向で前記記録トラック幅分、離れた位置にある前記任意のストライプ上の点をP2としたとき、前記P1及び前記P2における前記長さ方向での距離が、0.08μm以上であってもよい。
 上記磁気記録媒体において、前記P1及び前記P2における前記長さ方向での距離が、0.62μm以下であってもよい。
 上記磁気記録媒体において、前記磁性層は、長手配向度が35%以下であってもよい。
 上記磁気記録媒体は、長手方向の保磁力が2000Oe以下であってもよい。
 上記磁気記録媒体において、前記磁性層の表面全体の面積に対する前記サーボバンドの面積の比率が、4.0%以下であってもよい。
 上記磁気記録媒体において、前記磁性層は、磁性粉を含み、前記磁性粉の粒子体積が2300nm以下であってもよい。
 上記磁気記録媒体において、データバンドの本数が4n(nは、2以上の整数)であり、サーボバンドの本数が、4n+1であってもよい。
 上記磁気記録媒体において、前記サーボバンドの幅が、95μm以下であってもよい。
 上記磁気記録媒体において、前記データバンドは、前記長手方向に長く、前記幅方向に整列され、前記幅方向でトラック毎に所定の記録トラック幅を有する複数の記録トラックを有し、前記記録トラック幅は、2.0μm以下であってもよい。
 上記磁気記録媒体において、前記データバンドに記録されるデータ信号における前記長手方向の1ビット長が、48nm以下であってもよい。
 上記磁気記録媒体において、前記磁性層は、六方晶フェライト、ε酸化鉄、又はコバルト含有フェライトの磁性粉を含んでいてもよい。
 上記磁気記録媒体において、前記磁気記録媒体の長手方向の引張試験において、前記磁気記録媒体における伸び率0.5%のときの荷重をσ0.5とし、磁気記録媒体における伸び率1.5%のときの荷重をσ1.5としたとき、σ1.5-σ0.5の値が、0.6N以下であってもよい。
 上記磁気記録媒体において、前記磁気記録媒体は、60℃で72時間保管されたとき、前記長手方向の収縮率が0.1%以下であってもよい。
 上記磁気記録媒体において、前記磁気記録媒体の厚さが5.6μm以下であってもよい。
 上記磁気記録媒体において、前記基材の厚さをTB、前記磁気記録媒体の厚さをTLとしたとき、(TL-TB)/TBの値が、0.41以下であってもよい。
 上記磁気記録媒体において、前記磁気記録媒体の長手方向のヤング率は、8.5GPa以下であってもよい。
 上記磁気記録媒体において、前記基材の長手方向のヤング率は、8.0GPa以下であってもよい。
 上記磁気記録媒体において、前記磁気記録媒体は、前記長手方向におけるテンションを増減させることで前記磁気記録媒体の幅が調整されてもよい。
 本技術に係るカートリッジは、基材と磁性層とを有し、長手方向に長く、幅方向に短いテープ状の磁気記録媒体を含むカートリッジであって、前記磁性層は、データ信号が書き込まれる前記長手方向に長いデータバンドと、サーボ信号が書き込まれる前記長手方向に長いサーボバンドとを含み、垂直配向度が65%以上であり、前記データ信号の再生波形における孤立波形の半値幅が185nm以下であり、前記磁性層の厚さが、90nm以下であり、前記基材の厚さが、4.2μm以下である。
 以上のように、本技術によれば、データの記録密度をさらに向上させることができる技術を提供することができる。
磁気記録媒体を側方から見た模式図である。 磁気記録媒体を上方から見た模式図である。 データバンドにおける記録トラックを示す拡大図である。 サーボバンドにおけるサーボ信号記録パターンを示す拡大図である。 データ記録装置を示す模式図である。 ヘッドユニットを下側から見た図である。 第1のヘッドユニットがデータ信号の記録/再生を行っているときの様子を示す図である。 データバンドに含まれる記録トラックに記録されたデータ信号を読み取ったときの再生波形を示す図である。 孤立波形における半値幅を説明するための図である。 本技術の基本的な考え方を説明するための図であり、サーボ信号記録パターンにおける2つのストライプを示す図である。 引張試験における磁気記録媒体の長手方向の伸び率と、荷重との関係を示す図である。
 以下、本技術に係る実施形態を、図面を参照しながら説明する。
 <磁気記録媒体の構成>
 まず、磁気記録媒体1における基本的な構成について説明する。図1は、磁気記録媒体1を側方から見た模式図である。
 図1及び図2に示すように、磁気記録媒体1は、長手方向(X軸方向)に長く、幅方向(Y軸方向)に短く、厚さ方向(Z軸方向)に薄いテープ状に構成されている。なお、本明細書(及び図面)においては、磁気記録媒体1を基準とした座標系をXYZ座標系で表すこととする。
 磁気記録媒体1は、好ましくは96nm以下、より好ましくは75nm以下、さらにより好ましくは60nm以下、特に好ましくは50nm以下の最短記録波長で信号を記録可能に構成されている。磁気記録媒体1は、記録用ヘッドとしてリング型ヘッドを備えるデータ記録装置に用いられることが好ましい。
 図1を参照して、磁気記録媒体1は、長手方向(X軸方向)に長いテープ状の基材11と、基材11の一方の主面上に設けられた非磁性層12と、非磁性層12上に設けられた磁性層13と、基材11の他方の主面上に設けられたバック層14とを含む。なお、バック層14は、必要に応じて設けられればよく、このバック層14は省略されてもよい。
 [基材]
 基材11は、非磁性層12および磁性層13を支持する非磁性支持体である。基材11は、長尺のフィルム状を有する。基材11の平均厚みの上限値は、好ましくは4.2μm以下、より好ましくは3.8μm以下、さらにより好ましくは3.4μm以下である。基材11の平均厚みの上限値が4.2μm以下であると、1つのカートリッジ21(図5参照)内に記録できる記録容量を一般的な磁気記録媒体よりも高めることができる。
 基材11の平均厚みは以下のようにして求められる。まず、1/2インチ幅の磁気記録媒体1を準備し、それを250mmの長さに切り出し、サンプルを作製する。続いて、サンプルの基材11以外の層(すなわち非磁性層12、磁性層13およびバック層14)をMEK(メチルエチルケトン)または希塩酸等の溶剤で除去する。次に、測定装置としてMitsutoyo社製レーザーホロゲージを用いて、サンプル(基材11)の厚みを5点以上の位置で測定し、それらの測定値を単純に平均(算術平均)して、基材11の平均厚みを算出する。なお、測定位置は、サンプルから無作為に選ばれるものとする。
 基材11は、例えば、ポリエステル類、ポリオレフィン類、セルロース誘導体、ビニル系樹脂、およびその他の高分子樹脂のうちの少なくとも1種を含む。基材11が上記材料のうちの2種以上を含む場合、それらの2種以上の材料は混合されていてもよいし、共重合されていてもよいし、積層されていてもよい。
 ポリエステル類は、例えば、PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、PBT(ポリブチレンテレフタレート)、PBN(ポリブチレンナフタレート)、PCT(ポリシクロヘキシレンジメチレンテレフタレート)、PEB(ポリエチレン-p-オキシベンゾエート)およびポリエチレンビスフェノキシカルボキシレートのうちの少なくとも1種を含む。
 ポリオレフィン類は、例えば、PE(ポリエチレン)およびPP(ポリプロピレン)のうちの少なくとも1種を含む。セルロース誘導体は、例えば、セルロースジアセテート、セルローストリアセテート、CAB(セルロースアセテートブチレート)およびCAP(セルロースアセテートプロピオネート)のうちの少なくとも1種を含む。ビニル系樹脂は、例えば、PVC(ポリ塩化ビニル)およびPVDC(ポリ塩化ビニリデン)のうちの少なくとも1種を含む。
 その他の高分子樹脂は、例えば、PA(ポリアミド、ナイロン)、芳香族PA(芳香族ポリアミド、アラミド)、PI(ポリイミド)、芳香族PI(芳香族ポリイミド)、PAI(ポリアミドイミド)、芳香族PAI(芳香族ポリアミドイミド)、PBO(ポリベンゾオキサゾール、例えばザイロン(登録商標))、ポリエーテル、PEK(ポリエーテルケトン)、ポリエーテルエステル、PES(ポリエーテルサルフォン)、PEI(ポリエーテルイミド)、PSF(ポリスルフォン)、PPS(ポリフェニレンスルフィド)、PC(ポリカーボネート)、PAR(ポリアリレート)およびPU(ポリウレタン)のうちの少なくとも1種を含む。
 [磁性層]
 磁性層13は、データ信号を記録するための記録層である。磁性粉、結着剤、導電性粒子等を含む。磁性層13は、必要に応じて、潤滑剤、研磨剤、防錆剤などの添加剤をさらに含んでいてもよい。磁性層13は、多数の孔部が設けられた表面を有している。これらの多数の孔部には、潤滑剤が蓄えられている。多数の孔部は、磁性層の表面に対して垂直方向に延設されていることが好ましい。
 磁性層13の垂直配向度(反磁界補正なし:以下同様)は、典型的には、65%以上とされる。また、磁性層13の長手配向度は、典型的には、35%以下とされる。
 磁性層13の厚さは、典型的には、35nm以上90nm以下とされる。このように、磁性層13の厚さを35nm以上90nm以下とすることで、電磁変換特性を向上させることができる。さらに、データ信号の再生波形における孤立波形の半値幅(後述)の観点からすると、磁性層13の厚さは、好ましくは90nm以下、より好ましくは80nm以下、より好ましくは60nm以下、さらにより好ましくは40nm以下とされる。磁性層13の厚さが90nm以下とされることで、データ信号の再生波形における孤立波形の半値幅を狭くして(185nm以下)、データ信号の再生波形のピークを鋭くすることができる。これにより、データ信号の読み取り精度が向上するため、記録トラック数を増加させてデータの記録密度を向上させることができる(詳細は後述)。
 磁性層13の厚さは、例えば、以下の様にして求めることができる。まず、磁気記録媒体1を、その主面に対して垂直に薄く加工して試料片を作製し、その試験片の断面を透過型電子顕微鏡(Transmission Electron Microscope:TEM)により、下記の条件で観察を行う。
  装置:TEM(日立製作所製H9000NAR)
  加速電圧:300kV
  倍率:100,000倍
 次に、得られたTEM像を用い、磁気記録媒体10の長手方向で少なくとも10点以上の位置で磁性層13の厚さを測定した後、それらの測定値を単純に平均(算術平均)して磁性層13の厚さとする。なお、測定位置は、試験片から無作為に選ばれるものとする。
(磁性粉)
 磁性粉は、ε酸化鉄を含有するナノ粒子(以下「ε酸化鉄粒子」という。)の粉末を含む。ε酸化鉄粒子は微粒子でも高保磁力を得ることができる。ε酸化鉄粒子に含まれるε酸化鉄は、磁気記録媒体1の厚み方向(垂直方向)に優先的に結晶配向していることが好ましい。
 ε酸化鉄粒子は、球状もしくはほぼ球状を有しているか、または立方体状もしくはほぼ立方体状を有している。ε酸化鉄粒子が上記のような形状を有しているため、磁性粒子としてε酸化鉄粒子を用いた場合、磁性粒子として六角板状のバリウムフェライト粒子を用いた場合に比べて、磁気記録媒体1の厚み方向における粒子同士の接触面積を低減し、粒子同士の凝集を抑制することができる。したがって、磁性粉の分散性を高め、より良好なSNR(Signal-to-Noise Ratio)を得ることができる。
 ε酸化鉄粒子は、コアシェル型構造を有する。具体的には、ε酸化鉄粒子は、コア部と、このコア部の周囲に設けられた2層構造のシェル部とを備える。2層構造のシェル部は、コア部上に設けられた第1シェル部と、第1シェル部上に設けられた第2シェル部とを備える。
 コア部は、ε酸化鉄を含む。コア部に含まれるε酸化鉄は、ε-Fe結晶を主相とするものが好ましく、単相のε-Feからなるものがより好ましい。
 第1シェル部は、コア部の周囲のうちの少なくとも一部を覆っている。具体的には、第1シェル部は、コア部の周囲を部分的に覆っていてもよいし、コア部の周囲全体を覆っていてもよい。コア部と第1シェル部の交換結合を十分なものとし、磁気特性を向上する観点からすると、コア部21の表面全体を覆っていることが好ましい。
 第1シェル部は、いわゆる軟磁性層であり、例えば、α-Fe、Ni-Fe合金またはFe-Si-Al合金等の軟磁性体を含む。α-Feは、コア部21に含まれるε酸化鉄を還元することにより得られるものであってもよい。
 第2シェル部は、酸化防止層としての酸化被膜である。第2シェル部は、α酸化鉄、酸化アルミニウムまたは酸化ケイ素を含む。α酸化鉄は、例えばFe、FeおよびFeOのうちの少なくとも1種の酸化鉄を含む。第1シェル部がα-Fe(軟磁性体)を含む場合には、α酸化鉄は、第1シェル部22aに含まれるα-Feを酸化することにより得られるものであってもよい。
 ε酸化鉄粒子が、上述のように第1シェル部を有することで、熱安定性を確保するためにコア部単体の保磁力Hcを大きな値に保ちつつ、ε酸化鉄粒子(コアシェル粒子)全体としての保磁力Hcを記録に適した保磁力Hcに調整できる。また、ε酸化鉄粒子が、上述のように第2シェル部を有することで、磁気記録媒体の製造工程およびその工程前において、ε酸化鉄粒子が空気中に暴露されて、粒子表面に錆び等が発生することにより、ε酸化鉄粒子の特性が低下することを抑制することができる。したがって、磁気記録媒体1の特性劣化を抑制することができる。
 磁性粉の平均粒子サイズ(平均最大粒子サイズ)は、好ましくは22nm以下、より好ましくは8nm以上22nm以下、さらにより好ましくは12nm以上22nm以下である。
 磁性粉の平均アスペクト比が、好ましくは1以上2.5以下、より好ましくは1以上2.1以下、さらにより好ましくは1以上1.8以下である。磁性粉の平均アスペクト比が1以上2.5以下の範囲内であると、磁性粉の凝集を抑制することができ、また、磁性層13の形成工程において磁性粉を垂直配向させる際に、磁性粉に加わる抵抗を抑制することができる。したがって、磁性粉の垂直配向性を向上させることができる。
 磁性粉の平均体積Vave(粒子体積)は、好ましくは2300nm以下、より好ましくは2200nm以下、より好ましくは2100nm以下、より好ましくは1950nm以下、より好ましくは1600nm以下、さらにより好ましくは1300nm以下である。磁性粉の平均体積Vaveが2300nm以下であると、データ信号の再生波形における孤立波形の半値幅を狭くして(185nm以下)、データ信号の再生波形のピークを鋭くすることができる。これにより、データ信号の読み取り精度が向上するため、記録トラック数を増加させてデータの記録密度を向上させることができる(詳細は後述)。なお、磁性粉の平均体積Vaveは、小さければ小さいほど良いので体積の下限値については特に限定されないが、例えば、下限値は、1000nm以上とされる。
 上記の磁性粉の平均粒子サイズ、平均アスペクト比及び平均体積Vaveは、以下のようにして求められる(例えば、磁性粉がε酸化鉄粒子のような球体等の形状を有している場合)。まず、測定対象となる磁気記録媒体1をFIB(Focused Ion Beam)法等により加工して薄片を作製し、TEMにより薄片の断面観察を行う。次に、撮影したTEM写真から50個の磁性粉を無作為に選び出し、各磁性粉の長軸長DLと短軸長DSを測定する。ここで、長軸長DLとは、磁性粉の輪郭に接するように、あらゆる角度から引いた2本の平行線間の距離のうち最大のもの(いわゆる最大フェレ径)を意味する。一方、短軸長DSとは、磁性粉の長軸と直交する方向における磁性粉の長さのうち最大のものを意味する。
 続いて、測定した50個の磁性粉の長軸長DLを単純に平均(算術平均)して平均長軸長DLaveを求める。そして、このようにして求めた平均長軸長DLaveを磁性粉の平均粒子サイズとする。また、測定した50個の磁性粉の短軸長DSを単純に平均(算術平均)して平均短軸長DSaveを求める。次に、平均長軸長DLaveおよび平均短軸長DSaveから磁性粉の平均アスペクト比(DLave/DSave)を求める。
 次に、平均長軸長DLaveを用いて以下の式から磁性粉の平均体積Vave(粒子体積)を求める。
 Vave=π/6×DLave
 ここでの説明では、ε酸化鉄粒子が2層構造のシェル部を有している場合について説明したが、ε酸化鉄粒子が単層構造のシェル部を有していてもよい。この場合、シェル部は、第1シェル部と同様の構成を有する。但し、ε酸化鉄粒子の特性劣化を抑制する観点からすると、上述したように、ε酸化鉄粒子が2層構造のシェル部を有していることが好ましい。
 以上の説明では、ε酸化鉄粒子がコアシェル構造を有している場合について説明したが、ε酸化鉄粒子が、コアシェル構造に代えて添加剤を含んでいてもよいし、コアシェル構造を有すると共に添加剤を含んでいてもよい。この場合、ε酸化鉄粒子のFeの一部が添加剤で置換される。ε酸化鉄粒子が添加剤を含むことによっても、ε酸化鉄粒子全体としての保磁力Hcを記録に適した保磁力Hcに調整できるため、記録容易性を向上することができる。添加剤は、鉄以外の金属元素、好ましくは3価の金属元素、より好ましくはAl、GaおよびInのうちの少なくとも1種、さらにより好ましくはAlおよびGaのうちの少なくとも1種である。
 具体的には、添加剤を含むε酸化鉄は、ε-Fe2-x結晶(但し、Mは鉄以外の金属元素、好ましくは3価の金属元素、より好ましくはAl、GaおよびInのうちの少なくとも1種、さらにより好ましくはAlおよびGaのうちの少なくとも1種である。xは、例えば0<x<1である。)である。
 磁性粉は、六方晶フェライトを含有するナノ粒子(以下「六方晶フェライト粒子」という。)の粉末を含んでいてもよい。六方晶フェライト粒子は、例えば、六角板状またはほぼ六角板状を有する。六方晶フェライトは、好ましくはBa、Sr、PbおよびCaのうちの少なくとも1種、より好ましくはBaおよびSrのうちの少なくとも1種を含む。六方晶フェライトは、具体的には例えばバリウムフェライトまたはストロンチウムフェライトであってもよい。バリウムフェライトは、Ba以外にSr、PbおよびCaのうちの少なくとも1種をさらに含んでいてもよい。ストロンチウムフェライトは、Sr以外にBa、PbおよびCaのうちの少なくとも1種をさらに含んでいてもよい。
 より具体的には、六方晶フェライトは、一般式MFe1219で表される平均組成を有する。但し、Mは、例えばBa、Sr、PbおよびCaのうちの少なくとも1種の金属、好ましくはBaおよびSrのうちの少なくとも1種の金属である。Mが、Baと、Sr、PbおよびCaからなる群より選ばれる1種以上の金属との組み合わせであってもよい。また、Mが、Srと、Ba、PbおよびCaからなる群より選ばれる1種以上の金属との組み合わせであってもよい。上記一般式においてFeの一部が他の金属元素で置換されていてもよい。
 磁性粉が六方晶フェライト粒子の粉末を含む場合、磁性粉の平均粒子サイズは、好ましくは50nm以下、より好ましくは10nm以上40nm以下、さらにより好ましくは15nm以上30nm以下である。磁性粉が六方晶フェライト粒子の粉末を含む場合、磁性粉の平均アスペクト比及び磁性粉の平均体積Vaveは上述したとおりである。
 なお、磁性粉の平均粒子サイズ、平均アスペクト比および平均体積Vaveは以下のようにして求められる(例えば、磁性粉が六方晶フェライトのような板状の形状を有している場合)。まず、測定対象となる磁気記録媒体1をFIB法等により加工して薄片を作製し、TEMにより薄片の断面観察を行う。次に、撮影したTEM写真から、水平方向に対して75度以上の角度で配向した磁性粉を50個無作為に選び出し、各磁性粉の最大板厚DAを測定する。続いて、測定した50個の磁性粉の最大板厚DAを単純に平均(算術平均)して平均最大板厚DAaveを求める。
 次に、磁気記録媒体1の磁性層13の表面をTEMにより観察を行う。次に、撮影したTEM写真から50個の磁性粉を無作為に選び出し、各磁性粉の最大板径DBを測定する。ここで、最大板径DBとは、磁性粉の輪郭に接するように、あらゆる角度から引いた2本の平行線間の距離のうち最大のもの(いわゆる最大フェレ径)を意味する。続いて、測定した50個の磁性粉の最大板径DBを単純に平均(算術平均)して平均最大板径DBaveを求める。そして、このようにして求めた平均最大板径DBaveを磁性粉の平均粒子サイズとする。次に、平均最大板厚DAaveおよび平均最大板径DBaveから磁性粉の平均アスペクト比(DBave/DAave)を求める。
 次に、平均最大板厚DAaveおよび平均最大板径DBaveを用いて以下の式から磁性粉の平均体積Vave(粒子体積)を求める。
 Vave=3√3/8×DAave×DBave
 磁性粉は、Co含有スピネルフェライトを含有するナノ粒子(以下「コバルトフェライト粒子」という。)の粉末を含んでいてもよい。コバルトフェライト粒子は、一軸異方性を有することが好ましい。コバルトフェライト粒子は、例えば、立方体状またはほぼ立方体状を有している。Co含有スピネルフェライトが、Co以外にNi、Mn、Al、CuおよびZnのうちの少なくとも1種をさらに含んでいてもよい。
 Co含有スピネルフェライトは、例えば以下の式(1)で表される平均組成を有する。
 CoFe ・・・(1)
(但し、式(1)中、Mは、例えば、Ni、Mn、Al、CuおよびZnのうちの少なくとも1種の金属である。xは、0.4≦x≦1.0の範囲内の値である。yは、0≦y≦0.3の範囲内の値である。但し、x、yは(x+y)≦1.0の関係を満たす。zは3≦z≦4の範囲内の値である。Feの一部が他の金属元素で置換されていてもよい。)
 磁性粉がコバルトフェライト粒子の粉末を含む場合、磁性粉の平均粒子サイズは、好ましくは25nm以下、より好ましくは23nm以下である。磁性粉がコバルトフェライト粒子の粉末を含む場合、磁性粉の平均アスペクト比は上述の方法で求められ、磁性粉の平均体積Vaveは下記に示す方法で求められる。
 なお、磁性粉がコバルトフェライト粒子のような立方体状の形状を有している場合、磁性粉の平均体積Vave(粒子体積)は、以下のようにして求めることができる。まず、磁気記録媒体1の磁性層13の表面をTEMにより観察し、次に、撮影したTEM写真から50個の磁性粉を無作為に選び出し、各磁性粉の辺の長さDCを測定する。続いて、測定した50個の磁性粉の辺の長さDCを単純に平均(算術平均)して平均辺長DCaveを求める。次に、平均辺長DCaveを用いて以下の式から磁性粉の平均体積Vave(粒子体積)を求める。
 Vave=DCave
(結着剤)
 結着剤としては、ポリウレタン系樹脂、塩化ビニル系樹脂等に架橋反応を付与した構造の樹脂が好ましい。しかしながら結着剤はこれらに限定されるものではなく、磁気記録媒体1に対して要求される物性等に応じて、その他の樹脂を適宜配合してもよい。配合する樹脂としては、通常、塗布型の磁気記録媒体1において一般的に用いられる樹脂であれば、特に限定されない。
 例えば、ポリ塩化ビニル、ポリ酢酸ビニル、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-アクリロニトリル共重合体、アクリル酸エステル-アクリロニトリル共重合体、アクリル酸エステル-塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-アクリロニトリル共重合体、アクリル酸エステル-アクリロニトリル共重合体、アクリル酸エステル-塩化ビニリデン共重合体、メタクリル酸エステル-塩化ビニリデン共重合体、メタクリル酸エステル-塩化ビニル共重合体、メタクリル酸エステル-エチレン共重合体、ポリ弗化ビニル、塩化ビニリデン-アクリロニトリル共重合体、アクリロニトリル-ブタジエン共重合体、ポリアミド樹脂、ポリビニルブチラール、セルロース誘導体(セルロースアセテートブチレート、セルロースダイアセテート、セルローストリアセテート、セルロースプロピオネート、ニトロセルロース)、スチレンブタジエン共重合体、ポリエステル樹脂、アミノ樹脂、合成ゴム等が挙げられる。
 また、熱硬化性樹脂、または反応型樹脂の例としては、フェノール樹脂、エポキシ樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂、シリコーン樹脂、ポリアミン樹脂、尿素ホルムアルデヒド樹脂等が挙げられる。
 また、上述した各結着剤には、磁性粉の分散性を向上させる目的で、-SOM、-OSOM、-COOM、P=O(OM)等の極性官能基が導入されていてもよい。ここで、式中Mは、水素原子、またはリチウム、カリウム、ナトリウム等のアルカリ金属である。
 さらに、極性官能基としては、-NR1R2、-NR1R2R3の末端基を有する側鎖型のもの、>NR1R2の主鎖型のものが挙げられる。ここで、式中R1、R2、R3は、水素原子、または炭化水素基であり、Xは弗素、塩素、臭素、ヨウ素等のハロゲン元素イオン、または無機もしくは有機イオンである。また、極性官能基としては、-OH、-SH、-CN、エポキシ基等も挙げられる。
(潤滑剤)
 潤滑剤は、下記の一般式(1)で示される化合物、および下記の一般式(2)で示される化合物を含むことが好ましい。潤滑剤がこれらの化合物を含むことで、磁性層13の表面の動摩擦係数を特に低減することができる。したがって、磁気記録媒体1の走行性をさらに向上することができる。
 CH(CHCOOH ・・・(1)
(但し、一般式(1)において、nは14以上22以下の範囲から選ばれる整数である。)
 CH(CHCOO(CHCH ・・・(2)
(但し、一般式(2)において、pは14以上22以下の範囲から選ばれる整数であり、qは2以上5以下の範囲から選ばれる整数である。)
(添加剤)
 磁性層13は、非磁性補強粒子として、酸化アルミニウム(α、βまたはγアルミナ)、酸化クロム、酸化珪素、ダイヤモンド、ガーネット、エメリー、窒化ホウ素、チタンカーバイト、炭化珪素、炭化チタン、酸化チタン(ルチル型またはアナターゼ型の酸化チタン)等をさらに含んでいてもよい。
[非磁性層12]
 非磁性層12は、非磁性粉及び結着剤を含む。非磁性層12は、必要に応じて、電動性粒子、潤滑剤、硬化剤、防錆材などの添加剤を含んでいてもよい。
 非磁性層12の厚さは、好ましくは0.6μm以上2.0μm以下、より好ましくは0.8μm以上1.4μm以下である。非磁性層12の厚さは、磁性層13の厚さを求める方法と同様の方法(例えば、TEM)により求めることができる。なお、TEM像の倍率は、非磁性層12の厚さに応じて適宜調整される。
(非磁性粉)
 非磁性粉は、例えば無機粒子粉または有機粒子粉の少なくとも1種を含む。また、非磁性粉は、カーボンブラック等の炭素材料を含んでいてもよい。なお、1種の非磁性粉を単独で用いてもよいし、2種以上の非磁性粉を組み合わせて用いてもよい。無機粒子は、例えば、金属、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物または金属硫化物等を含む。非磁性粉の形状としては、例えば、針状、球状、立方体状、板状等の各種形状が挙げられるが、これに限定されるものではない。
(結着剤)
 結着剤は、上述の磁性層13と同様である。
[バック層14]
 バック層14は、非磁性粉及び結着剤を含む。バック層14は、必要に応じて潤滑剤、硬化剤及び帯電防止剤などの添加剤を含んでいてもよい。非磁性粉、結着剤としては、上述の非磁性層12に用いられる材料と同様の材料が用いられる。
 (非磁性粉)
 非磁性粉の平均粒子サイズは、好ましくは10nm以上150nm以下、より好ましくは15nm以上110nm以下である。非磁性粉の平均粒子サイズは、上記の磁性粉の平均粒子サイズDと同様にして求められる。非磁性粉が、2以上の粒度分布を有する非磁性粉を含んでいてもよい。
 バック層14の平均厚みの上限値は、好ましくは0.6μm以下である。バック層14の平均厚みの上限値が0.6μm以下であると、磁気記録媒体1の平均厚みが5.6μmである場合でも、非磁性層12や基材11の厚みを厚く保つことができるので、磁気記録媒体1の記録再生装置内での走行安定性を保つことができる。バック層14の平均厚みの下限値は特に限定されるものではないが、例えば0.2μm以上である。
 バック層14の平均厚みは以下のようにして求められる。まず、1/2インチ幅の磁気記録媒体1を準備し、それを250mmの長さに切り出し、サンプルを作製する。次に、測定装置としてMitsutoyo社製レーザーホロゲージを用いて、サンプルの厚みを5点以上で測定し、それらの測定値を単純に平均(算術平均)して、磁気記録媒体1の平均値t[μm]を算出する。なお、測定位置は、サンプルから無作為に選ばれるものとする。続いて、サンプルのバック層14をMEK(メチルエチルケトン)または希塩酸等の溶剤で除去する。その後、再び上記のレーザーホロゲージを用いてサンプルの厚みを5点以上で測定し、それらの測定値を単純に平均(算術平均)して、バック層14を除去した磁気記録媒体1の平均値t[μm]を算出する。なお、測定位置は、サンプルから無作為に選ばれるものとする。その後、以下の式よりバック層14の平均厚みt[μm]を求める。
 t[μm]=t[μm]-t[μm]
 バック層14は、多数の突部が設けられた表面を有している。多数の突部は、磁気記録媒体1をロール状に巻き取った状態において、磁性層13の表面に多数の孔部を形成するためのものである。多数の孔部は、例えば、バック層14の表面から突出された多数の非磁性粒子により構成されている。
 ここでの説明では、バック層14の表面に設けられた多数の突部を、磁性層13の表面に転写することにより、磁性層13の表面に多数の孔部を形成する場合について説明したが、多数の孔部の形成方法はこれに限定されるものではない。例えば、磁性層形成用塗料に含まれる溶剤の種類および磁性層形成用塗料の乾燥条件等を調整することで、磁性層13の表面に多数の孔部を形成するようにしてもよい。
[磁気記録媒体の平均厚み]
 磁気記録媒体1の平均厚み(平均全厚)の上限値が、好ましくは5.6μm以下、より好ましくは5.0μm以下、より好ましくは、4.6μm以下、さらにより好ましくは4.4μm以下である。磁気記録媒体1の平均厚みが5.6μm以下であると、カートリッジ21内に記録できる記録容量を一般的な磁気記録媒体よりも高めることができる。磁気記録媒体1の平均厚みの下限値は特に限定されるものではないが、例えば3.5μm以上である。
 磁気記録媒体1の平均厚みは、上述のバック層14の平均厚みの求め方において説明した手順により求められる。
(保磁力Hc)
 磁気記録媒体1の長手方向における保磁力Hcの上限値が、好ましくは2000Oe以下、より好ましくは1900Oe以下、さらにより好ましくは1800Oe以下である。
 磁気記録媒体1の長手方向に測定した保磁力Hcの下限値が、好ましくは1000Oe以上、であると、記録ヘッドからの漏れ磁束による減磁を押さえることができる。
 上記の保磁力Hcは以下のようにして求められる。まず、磁気記録媒体1が両面テープで3枚重ね合わされた後、φ6.39mmのパンチで打ち抜かれて、測定サンプルが作成される。そして、振動試料型磁力計(Vibrating Sample Magnetometer:VSM)を用いて磁気記録媒体1の長手方向((磁気記録媒体1の走行方向)に対応する測定サンプル(磁気記録媒体1全体)のM-Hループが測定される。次に、アセトンまたはエタノール等が用いられて塗膜(非磁性層12、磁性層13およびバック層14等)が払拭され、基材11のみが残される。そして、得られた基材11が両面テープで3枚重ね合わされた後、φ6.39mmのパンチで打ち抜かれて、バックグラウンド補正用のサンプル(以下、単に補正用サンプル)とされる。その後、VSMが用いられて基材11の長手方向(磁気記録媒体1の走行方向)に対応する補正用サンプル(基材11)のM-Hループが測定される。
 測定サンプル(磁気記録媒体1全体)のM-Hループ、補正用サンプル(基材11)のM-Hループの測定においては、東英工業製の好感度振動試料型磁力計「VSM-P7-15型」が用いられる。測定条件は、測定モード:フルループ、最大磁界:15kOe、磁界ステップ:40bit、Time constant of Locking amp:0.3sec、Waiting time:1sec、MH平均数:20とされる。
 2つのM-Hループが得られた後、測定サンプル(磁気記録媒体1全体)のM-Hループから補正用サンプル(基材11)のM-Hループが差し引かれることで、バックグラウンド補正が行われ、バックグラウンド補正後のM-Hループが得られる。このバックグラウンド補正の計算には、「VSM-P7-15型」に付属されている測定・解析プログラムが用いられる。
 得られたバックグラウンド補正後のM-Hループから保磁力Hcが求められる。なお、この計算には、「VSM-P7-15型」に付属されている測定・解析プログラムが用いられる。なお、上記のM-Hループの測定はいずれも、25℃にて行われるものとする。また、M-Hループを磁気記録媒体1の長手方向に測定する際の"反磁界補正"は行わないものとする。
(配向度(角形比))
 磁気記録媒体1の垂直方向(厚み方向)における配向度(垂直配向度)が、65%以上、好ましくは70%以上、より好ましくは75%以上、より好ましくは80%以上である。垂直配向度が65%以上であると、磁性粉の垂直配向性が十分に高くなるため、より優れたSNRを得ることができる。
 垂直配向度は以下のようにして求められる。まず、磁気記録媒体1が両面テープで3枚重ね合わされた後、φ6.39mmのパンチで打ち抜かれて、測定サンプルが作成される。そして、VSMを用いて磁気記録媒体1の垂直方向(厚み方向)に対応する測定サンプル(磁気記録媒体1全体)のM-Hループが測定される。次に、アセトンまたはエタノール等が用いられて塗膜(非磁性層12、磁性層13およびバック層14等)が払拭され、基材11のみが残される。そして、得られた基材11が両面テープで3枚重ね合わされた後、φ6.39mmのパンチで打ち抜かれて、バックグラウンド補正用のサンプル(以下、単に補正用サンプル)とされる。その後、VSMが用いられて基材11の垂直方向(磁気記録媒体1の垂直方向)に対応する補正用サンプル(基材11)のM-Hループが測定される。
 測定サンプル(磁気記録媒体1全体)のM-Hループ、補正用サンプル(基材11)のM-Hループの測定においては、東英工業製の好感度振動試料型磁力計「VSM-P7-15型」が用いられる。測定条件は、測定モード:フルループ、最大磁界:15kOe、磁界ステップ:40bit、Time constant of Locking amp:0.3sec、Waiting time:1sec、MH平均数:20とされる。
 2つのM-Hループが得られた後、測定サンプル(磁気記録媒体1全体)のM-Hループから補正用サンプル(基材11)のM-Hループが差し引かれることで、バックグラウンド補正が行われ、バックグラウンド補正後のM-Hループが得られる。このバックグラウンド補正の計算には、「VSM-P7-15型」に付属されている測定・解析プログラムが用いられる。
 得られたバックグラウンド補正後のM-Hループの飽和磁化Ms(emu)および残留磁化Mr(emu)が以下の式に代入されて、垂直配向度(%)が計算される。なお、上記のM-Hループの測定はいずれも、25℃にて行われるものとする。また、M-Hループを磁気記録媒体1の垂直方向に測定する際の"反磁界補正"は行わないものとする。なお、この計算には、「VSM-P7-15型」に付属されている測定・解析プログラムが用いられる。
 垂直配向度(%)=(Mr/Ms)×100
 磁気記録媒体1の長手方向(走行方向)における配向度(長手配向度)が、好ましくは35%以下、より好ましくは30%以下、さらにより好ましくは25%以下である。長手配向度が35%以下であると、磁性粉の垂直配向性が十分に高くなるため、より優れたSNRを得ることができる。
 長手配向度は、M-Hループを磁気記録媒体1および基材11の長手方向(走行方向)に測定すること以外は垂直配向度と同様にして求められる。
(動摩擦係数)
 磁気記録媒体1に加わる張力が1.2Nであるときの磁性層13の表面と磁気ヘッドの間の動摩擦係数μAと、磁気記録媒体1に加わる張力が0.4Nであるときの磁性層13の表面と磁気ヘッドの間の動摩擦係数μB との比率(μ/μ)が、好ましくは1.0以上で2.0以下であると、走行時の張力変動による摩擦係数の変化を小さくできるためテープの走行を安定させることができる。
 磁気記録媒体1に加わる張力が0.6Nであるときの磁性層13の表面と磁気ヘッドの間の動摩擦係数μが走行5回目の値μ5と1000回目の値 μ1000との比率(μ1000/μ5)が、好ましくは1.0以上2.0以下、より好ましくは1.0以上1.5以下である。比率(μ/μ)が1.0以上で2.0以下であると、多数回走行による摩擦係数の変化を小さくできるためテープの走行を安定させることができる。
[データバンド及びサーボバンド]
 図2は、磁気記録媒体1を上方から見た模式図である。図2を参照して、磁性層13は、データ信号が書き込まれる長手方向(X軸方向)に長い複数のデータバンドd(データバンドd0~d3)と、サーボ信号が書き込まれる長手方向に長い複数のサーボバンドs(サーボバンドs0~s4)とを有している。サーボバンドsは、幅方向(Y軸方向)で各データバンドdを挟み込む位置に配置される。
 本技術において、磁性層13の表面全体の面積に対するサーボバンドsの面積の比率は、典型的には、4.0%以下とされる。なお、サーボバンドsの幅は、典型的には、95μm以下とされる。磁性層13の表面全体の面積に対するサーボバンドsの面積の比率は、例えば、磁気記録媒体1を、フェリコロイド現像液等の現像液を用いて現像し、その後、現像した磁気記録媒体1を光学顕微鏡で観察することで測定することができる。
 サーボバンドsは、データバンドdを挟み込む位置に配置されため、サーボバンドsの本数は、データバンドdの本数よりも1本多くなる。図2に示す例では、データバンドdの本数が4本とされ、サーボバンドsの本数が5本とされた場合の例が示されている(既存のシステムにおいては、この方式が採用されることが一般的)。
 なお、データバンドdの本数、サーボバンドsの本数は、適宜変更することができ、これらの本数は、増やされてもよい。
 この場合、サーボバンドsの数は、好ましくは5以上とされる。サーボバンドsの数が5以上であると、磁気記録媒体1の幅方向の寸法変化によるサーボ信号の読み取り精度への影響を抑制し、オフトラックが少ない安定した記録再生特性を確保できる。
 また、データバンドdの本数が、8本、12本、・・(つまり、4n本(nは、2以上の整数))とされ、サーボバンドsの本数が、9本、13本、・・(つまり、4n+1本(nは、2以上の整数))とされてもよい。この場合、既存のシステムを変更することなく、データバンドdの本数、サーボバンドsの本数の変更に対応することができる。
 データバンドdは、長手方向に長く、幅方向に整列された複数の記録トラック5を含む。データ信号は、この記録トラック5に沿って、記録トラック5内に記録される。なお、本技術において、データバンドdに記録されるデータ信号における長手方向の1ビット長は、典型的には、48nm以下とされる。サーボバンドsは、サーボ信号記録装置(不図示)によってサーボ信号が記録された所定パターンのサーボ信号記録パターン6を含む。
 図3は、データバンドdにおける記録トラック5を示す拡大図である。図3に示すように、記録トラック5は、長手方向に長く、幅方向に整列され、また、幅方向でトラック毎に所定の記録トラック幅Wdを有している。この記録トラック幅Wdは、典型的には、2.0μm以下とされる。なお、このような記録トラック幅Wdは、例えば、磁気記録媒体1を、フェリコロイド現像液等の現像液を用いて現像し、その後、現像した磁気記録媒体1を光学顕微鏡で観察することで測定することができる。
 1本のデータバンドdに含まれる記録トラック5の本数は、例えば、1000本から2000本程度とされる。
 図4は、サーボバンドsにおけるサーボ信号記録パターン6を示す拡大図である。図4に示すように、サーボ信号記録パターン6は、幅方向(Y軸方向)に対して所定のアジマス角αを持って傾斜する複数のストライプ7を含む。この複数のストライプ7は、幅方向(Y軸方向)に対して時計回りに傾斜する第1のストライプ群8と、幅方向に対して反時計回りに傾斜する第2のストライプ群9とに分類される。なお、このようなストライプ7の形状などは、例えば、磁気記録媒体1を、フェリコロイド現像液等の現像液を用いて現像し、その後、現像した磁気記録媒体1を光学顕微鏡で観察することで測定することができる。
 図4には、サーボ信号記録パターン6上をサーボリードヘッドによってトレースされるラインであるサーボトレースラインTが破線により示されている。サーボトレースラインTは、長手方向(X軸方向)に沿って設定され、また、幅方向に所定の間隔Psを開けて設定される。
 1本のサーボバンドsあたりのサーボトレースラインTの本数は、例えば、30本から60本程度とされる。
 隣接する2つのサーボトレースラインTの間隔Psは、記録トラック幅Wdの値と同じであり、例えば、2.0μm以下とされる。ここで、隣接する2つのサーボトレースラインTの間隔Psは、記録トラック幅Wdを決定付ける値とされている。つまり、サーボトレースラインTの間隔Psが狭められると、記録トラック幅Wdが小さくなり、1本のデータバンドdに含まれる記録トラック5の本数が増える。結果として、データの記録容量が増えることになる(間隔Psが広くなる場合は、その逆)。したがって、記録容量の増加を図るには記録トラック幅Wdを小さくする必要があるが、サーボトレースラインTの間隔Psも狭められることになる結果、隣接するサーボトレースラインを正確にトレースすることが困難になる。そこで本実施形態では、後述するように、再生信号幅すなわちデータ信号の再生波形における孤立波形の半値幅を狭くすることで、記録トラック幅Wdの狭小化にも対応可能としている。
 <データ記録装置20>
 次に、磁気記録媒体1に対して、データ信号の記録及び再生を行うデータ記録装置20について説明する。図5は、データ記録装置20を示す模式図である。なお、本明細書(及び図面)においては、データ記録装置20を基準とした座標系をX'Y'Z'座標系で表すこととする。
 データ記録装置20は、磁気記録媒体1を収容したカートリッジ21を装填可能に構成されている。なお、ここでは、説明を容易にするため、データ記録装置20が1つのカートリッジ21を装填可能な場合について説明するが、データ記録装置20が複数のカートリッジ21を装填可能に構成されていてもよい。
 図5に示すように、データ記録装置20は、スピンドル27と、リール22と、スピンドル駆動装置23と、リール駆動装置24と、複数のガイドローラ25と、ヘッドユニット30と、制御装置26とを含む。
 スピンドル27は、カートリッジ21を装填可能に構成されている。カートリッジ21は、LTO(Linear Tape Open)規格に準拠しており、巻回された磁気記録媒体1を、ケースの内部において回転可能に収容している。リール22は、カートリッジ21から引き出された磁気記録媒体1の先端側を固定可能に構成されている。
 スピンドル駆動装置23は、制御装置26からの指令に応じて、スピンドル27を回転させる。リール駆動装置24は、制御装置26からの指令に応じて、リール22を回転させる。磁気記録媒体1に対してデータ信号の記録/再生が行われるとき、スピンドル駆動装置23及びリール駆動装置24により、スピンドル27及びリール22が回転されて、磁気記録媒体1が走行される。ガイドローラ25は、磁気記録媒体1の走行をガイドするためのローラである。
 制御装置26は、例えば、制御部、記憶部、通信部などを含む。制御部は、例えば、CPU(Central Processing Unit)等により構成されており、記憶部に記憶されたプログラムに従い、データ記録装置20の各部を統括的に制御する。
 記憶部は、各種のデータや各種のプログラムが記録される不揮発性のメモリと、制御部の作業領域として用いられる揮発性のメモリとを含む。上記各種のプログラムは、光ディスク、半導体メモリ等の可搬性の記録媒体から読み取られてもよいし、ネットワーク上のサーバ装置からダウンロードされてもよい。通信部は、PC(Personal Computer)、サーバ装置等の他の装置との間で互いに通信可能に構成されている。
 ヘッドユニット30は、制御装置26からの指令に応じて、磁気記録媒体1に対してデータ信号を記録することが可能に構成されている。また、ヘッドユニット30は、制御装置26からの指令に応じて、磁気記録媒体1に書き込まれたデータを再生することが可能に構成されている。
 図6は、ヘッドユニット30を下側から見た図である。図6に示すように、ヘッドユニット30は、第1のヘッドユニット30aと、第2のヘッドユニット30bとを含む。第1のヘッドユニット30aと、第2のヘッドユニット30bとは、X'軸方向(磁気記録媒体1の走行方向)で対称に構成されている。この第1のヘッドユニット30a及び第2のヘッドユニット30bは、幅方向(Y'軸方向)に移動可能に構成されている。
 第1のヘッドユニット30aは、磁気記録媒体1が順方向(カートリッジ21側から装置20側に流れる方向)に走行されているときに使用されるヘッドである。一方、第2のヘッドユニット30bは、磁気記録媒体1が逆方向(装置20側からカートリッジ21側に流れる方向)に走行されているときに使用されるヘッドである。
 第1のヘッドユニット30a及び第2のヘッドユニット30bは、基本的に同様の構成であるため、第1のヘッドユニット30aについて代表的に説明する。
 第1のヘッドユニット30aは、ユニット本体31と、2つのサーボリードヘッド32と、複数のデータライト/リードヘッド33とを有する。
 サーボリードヘッド32は、磁気記録媒体1(サーボバンドs)に記録された磁気的情報から発生する磁束をMR素子(MR:Magneto Resistive)などにより読み取ることで、サーボ信号を再生可能に構成されている。つまり、サーボリードヘッド32により、サーボバンドs上に記録されたサーボ信号記録パターン6が読み取られることで、サーボ信号が再生される。サーボリードヘッド32は、ユニット本体31における幅方向(Y'軸方向)の両端側にそれぞれ1つずつ設けられる。2つのサーボリードヘッド32の幅方向(Y'軸方向)における間隔は、磁気記録媒体1における隣接するサーボバンドs間の距離と略同じとされている。
 データライト/リードヘッド33は、幅方向(Y軸方向)に沿って、等間隔に配置されている。また、データライト/リードヘッド33は、2つのサーボリードヘッド32に挟み込まれる位置に配置されている。データライト/リードヘッド33の数は、例えば、20個~40個程度とされるが、この個数ついては特に限定されない。
 データライト/リードヘッド33は、データライトヘッド34と、データリードヘッド35とを含む。データライトヘッド34は、磁気ギャップから発生する磁界によって、磁気記録媒体1に対してデータ信号を記録することが可能に構成されている。また、データリードヘッド35は、磁気記録媒体1(データバンドd)に記録された磁気的情報から発生する磁界をMR素子(MR:Magneto Resistive)などにより読み取ることで、データ信号を再生可能に構成されている。
 第1のヘッドユニット30aにおいては、データライトヘッド34が、データリードヘッド35の左側(磁気記録媒体1が順方向に流れる場合の上流側)に配置される。一方、第2のヘッドユニット30bにおいては、データライトヘッド34が、データリードヘッド35の右側(磁気記録媒体1が逆方向に流れる場合の上流側)に配置される。なお、データリードヘッド35は、データライトヘッド34が磁気記録媒体1にデータ信号を書き込んだ直後に、このデータ信号を再生可能とされている。
 図7は、第1のヘッドユニット30aがデータ信号の記録/再生を行っているときの様子を示す図である。なお、図7に示す例では、磁気記録媒体1が順方向(カートリッジ21側から装置20側に流れる方向)に走行されているときの様子が示されている。
 図7に示すように、第1のヘッドユニット30aがデータ信号の記録/再生を行うとき、2つのサーボリードヘッド32のうち一方のサーボリードヘッド32は、隣接する2つのサーボバンドsのうち一方のサーボバンドs上に位置し、このサーボバンドs上のサーボ信号を読み取る。
 また、2つのサーボリードヘッド32のうち他方のサーボリードヘッド32は、隣接する2つのサーボバンドsのうち他方のサーボバンドs上に位置し、このサーボバンドs上のサーボ信号を読み取る。
 また、このとき、制御装置26は、サーボ信号記録パターンの再生波形に基づいて、サーボリードヘッド32が、目的とするサーボトレースラインT(図4参照)上を正確にトレースしているかどうかを判定する。
 この原理について説明する。図4に示すように、サーボ信号記録パターン6における第1のストライプ群8と、第2のストライプ群9とでは、幅方向(Y軸方向)に対して傾斜する方向が逆となっている。このため、上側のサーボトレースラインTでは、第1のストライプ群8と、第2のストライプ群9との間の長手方向(X軸方向)での距離は、相対的に狭くなっている。一方、下側のサーボトレースラインT上では、第1のストライプ群8と、第2のストライプ群9との間の長手方向(X軸方向)での距離は、相対的に広くなっている。
 このため、第1のストライプ群8の再生波形が検出された時刻と、第2のストライプ群9の再生波形が検出された時刻との差を求めれば、サーボリードヘッド32が磁気記録媒体1に対して幅方向(Y軸方向)で、現在どの位置に位置するかが分かる。
 従って、制御装置26は、サーボ信号の再生波形に基づいて、目的とするサーボトレースラインT上をサーボリードヘッド32が正確にトレースしているかどうかを判定することができる。そして、制御装置26は、目的とするサーボトレースラインT上をサーボリードヘッド32が正確にトレースしていない場合には、ヘッドユニット30を幅方向(Y'軸方向)に移動させて、ヘッドユニット30の位置を調整する。
 図7に戻り、データライト/リードヘッド33は、幅方向での位置が調整(ずれた場合)されながら、記録トラック5に沿って、記録トラック5内にデータ信号を記録する。
 ここで、磁気記録媒体1がカートリッジ21から全て引き出されると、今度は、逆方向(装置20側からカートリッジ21側に流れる方向)に磁気記録媒体1が走行される。このとき、ヘッドユニット30として、第2のヘッドユニット30bが使用される。
 また、このとき、サーボトレースラインTは、先ほどのサーボトレースラインTに隣接するサーボトレースラインTが使用される。この場合、ヘッドユニット30は、幅方向(Y'軸方向)において、サーボトレースラインTの間隔Ps分(=記録トラック幅Wd分)、移動される。
 また、この場合、先ほどデータ信号が記録された記録トラック5に隣接する記録トラック5に対して、データ信号が記録される。
 このように、磁気記録媒体1は、順方向及び逆方向に走行方向が変えられて何往復もされながら、記録トラック5に対してデータ信号が記録される。
 ここで、例えば、サーボトレースラインTの本数が、50本であり、第1のヘッドユニット30a(あるいは、第2のヘッドユニット30b)に含まれるデータライト/リードヘッド33の数が32個の場合を想定する。この場合、1本のデータバンドdに含まれる記録トラック5の本数は、50×32で1600本であり、この記録トラック5すべてにデータ信号を記録するためには、磁気記録媒体1を25往復させる必要がある。
 <本技術の基本的な考え方>
 次に、本技術の基本的な考え方について説明する。本技術においては、データ信号の再生波形における孤立波形の半値幅(PW50)に着目している。まず、この孤立波形の半値幅について説明する。
 図8は、データバンドdに含まれる記録トラックに記録されたデータ信号を読み取ったときの再生波形を示す図である。図8に示すように、データ信号を読み取ったときの再生波形は、プラス側及びマイナス側に突出する。孤立波形は、基本的にいずれかの波形を指す。図8において、縦軸は強度(任意単位)、横軸は走行方向に沿った長さである(図9においても同様)。
 図9は、孤立波形における半値幅を説明するための図である。図9に示すように、半値幅は、データ信号の再生波形における最大値(100%)の半分(50%)の高さにおける波形の幅である。
 この半値幅は、データ信号の再生波形におけるピークの鋭さを示す値である。つまり、半値幅が狭くなるほど、再生波形におけるピークの鋭さが増し、逆に、半値幅が広くなるほど、再生波形におけるピークの鋭さが鈍くなる。
 図10は、本技術の基本的な考え方を説明するための図であり、サーボ信号記録パターン6における2つのストライプ7を示す図である。
 図10を参照して、サーボ信号記録パターン6の第1のストライプ群8に含まれる複数のストライプ7のうち、任意のストライプ7を第1のストライプ7aとする。また、サーボ信号記録パターン6の第2のストライプ群9に含まれる複数のストライプ7のうち、任意のストライプ7を第2のストライプ7bとする。
 また、複数のサーボトレースラインTのうち任意のサーボトレースラインTを第1のサーボトレースラインT1とする。また、第1のサーボトレースラインT1に隣接するサーボトレースラインTを第2のサーボトレースラインT2とする。
 また、第1のストライプ7aと、第1のサーボトレースラインT1との交点をP1とする。なお、このP1について、第1のストライプ7a上において、任意の点をP1としてもよい。
 また、第1のストライプ7aと、第2のサーボトレースラインT2との交点をP2とする。なお、このP2について、P1に対して、幅方向(Y軸方向)で間隔Ps分(つまり、記録トラック幅Wd分)、離れた位置にある第1のストライプ7a上の点をP2としてもよい。
 また、P1及びP2における長手方向(X軸方向)での距離を距離Dとする。距離Dは、隣接するトラックとの長手方向のずれ量に相当する。
 また、第2のストライプ7bと、第1のサーボトレースラインT1との交点をP3とし、第2のストライプ7bと、第2のサーボトレースラインT2との交点をP4とする。
 第1のサーボトレースラインT1がトレースされているとき、P1において再生波形が検出された時刻と、P3において再生波形が検出された時刻との差を判断する必要がある。この差を第1の期間とする。
 同様に、第2のトレースラインTがトレースされているとき、P2において再生波形が検出された時刻と、P4において再生波形が検出された時刻との差を判断する必要がある。この差を第2の期間とする。
 次に、第1の期間と、第2の期間との差を考える。ここで、サーボトレースラインTの間隔Ps、及び記録トラック幅Wdが1.56μmであるとし、アジマス角αが12度であるとする。この場合、距離Dは、1.56×tan12°で、0.33μmとなる。P1及びP3の間の距離と、P2及びP4の間の距離との差は、距離Dの2倍なので、0.66μmである。
 このとき、磁気記録媒体1の走行速度が5m/sであるとすると、0.66/5000000で、0.13μsとなる。これが、第1の期間と、第2の期間との差である。
 つまり、第1のサーボトレースラインT1及び第2のサーボトレースラインT2を正確にトレースするためには、0.13μsの微小な差を正確に判断する必要がある(これができないと、隣の記録トラック5にデータ信号が記録されてしまう)。
 しかしながら、データ信号の再生波形(図8参照)におけるピークの鋭さが鈍い場合、このような微小な差を正確に判断することはできない。特に、記録トラック5の本数を増やすために、記録トラック幅Wdを小さくし、サーボトレースラインTの間隔Psを小さくすると、距離Dがさらに狭まり、第1の期間と第2の期間との差がさらに小さくなる。
 そこで、本技術においては、磁性層13の垂直配向度を一定の値以上とすることで、データ信号の再生波形における孤立波形の半値幅を一定の値以下としている。これにより、データ信号の再生波形におけるピークが鋭くなる。
 より具体的には、磁性層13の垂直配向度を65%以上とすることで、孤立波形の半値幅を185nm以下とすることができる。これにより、上記のような微小な差(例えば、0.13μs)を識別可能な程度に、データ信号の再生波形におけるピークを鋭くすることができる(後述の各実施例参照)。
<各種実施例及び各種比較例>
 次に、本技術における各種実施例及び各種比較例について説明する。表1に、各種実施例及び各種比較例を示す。
Figure JPOXMLDOC01-appb-T000001
 まず、第1実施例に係る磁気記録媒体1が基準となる磁気記録媒体1として用意され、他の実施例及び他の比較例では、第1実施例に対して、垂直配向度等の各種の値が変化された。
 表1に示すように、第1実施例では、磁性層13の垂直配向度が65%とされ、磁性層13の長手配向度が35%とされた。また、第1実施例では、記録トラック幅Wd(サーボトレースラインTの間隔Ps)に対する距離Dの比(図10参照)が、21.3%とされた。なお、この比は、アジマス角α(図4参照)と関係があり、tanαを%で表した値に等しい。なお、第1実施例では、アジマス角αは、12°とされた。
 また、第1実施例では、距離D(図10参照)が、0.12μmとされ、記録トラック幅Wd(サーボトレースラインTの間隔Ps)が0.56μmとされた。また、第1実施例では、磁性層13に含まれる磁性粉として、六角板状のバリウムフェライトが用いられた。
 また、第1実施例では、データ信号の再生波形における孤立波形の半値幅が、170nmであった。また、第1実施例では、磁性層13に含まれる磁性粉が、板状とされ、この磁性粉におけるアスペクト比が、2.8とされた。また、磁性粉の粒子体積(平均体積Vave)は、1950nmとされた。また、磁性層13の厚さは、80nmとされた。
 なお、孤立波形の半値幅は、例えば、以下の様にして求めることができる。まず、デジタル・ストレージ・オシロスコープを用いて、例えば、サンプリング:500Ms/s(2nsec/point)、サンプリング数:50000ポイントの条件で、複数の孤立波形の平均化(同期加算平均)を行う。そして、得られた孤立再生波形から孤立波形の半値幅を算出する。なお、同期加算は、波形におけるピーク位置において位置合わせが行われる。
 また、データ信号を記録するデータライトヘッド34としては、記録トラック幅(Y'軸方向:磁気記録媒体の幅方向)が7μm、磁気ギャップ長(X'軸方向:磁気記録媒体の長手方向)が0.2μm、コイルのターン数が12、磁気ギャップ深さが1μmとされた。走行装置には、Mountain Engineering II Inc.製「Large form factor」が用いられ、テープ走行速度は2m/s、記録信号は0.5MHzの矩形波とされた。
 さらに、データ信号を読み取るデータリードヘッド35として、TMR素子(TMR:Tunnel Magneto Resistive)を含むTMRヘッドが用いられる。このTMRヘッドにおけるサーボ信号の再生トラック幅(Y'軸方向:磁気記録媒体の幅方向)は0.5μmとされる。また、ここで使用したTMRヘッドにおける2つのシールド間のスペーシング(X'軸方向:磁気記録媒体の搬送方向)は0.1μmとされ、TMRヘッドにおけるバイアス電流は4mA未満、素子抵抗は77Ωとされる。また、磁気記録媒体1の搬送速度は2m/s、ラップ角は1.8°とされた。
 第2実施例では、第1実施例に対して、磁性層13の垂直配向度が上げられて、66%とされた。また、磁性層13の長手配向度が下げられ、31%とされた。第2実施例では、磁性層13の垂直配向度が第1実施例よりも上げられた(長手配向度が下げられた)ことにより、孤立波形の半値幅が、第1実施例よりも狭まっており、150nmであった。なお、その他の点については、第1実施例と同じである。
 第3実施例では、第2実施例よりも磁性層13の垂直配向度がさらに上げられて、70%とされた。また、磁性層13の長手配向度がさらに下げられ、29%とされた。第3実施例では、磁性層13の垂直配向度が第2実施例よりもさらに上げられた(長手配向度がさらに下げられた)ことにより、孤立波形の半値幅が、第2実施例よりも狭まっており、140nmであった。なお、その他の点については、第1実施例と同じである。
 第4実施例では、第3実施例よりも磁性層13の垂直配向度がさらに上げられて、71%とされた。また、磁性層13の長手配向度がさらに下げられ、25%とされた。第4実施例では、磁性層13の垂直配向度が第3実施例よりもさらに上げられた(長手配向度がさらに下げられた)ことにより、孤立波形の半値幅が、第3実施例よりも狭まっており、130nmであった。なお、その他の点については、第1実施例と同じである。
 第5実施例では、磁性層13の垂直配向度が66%とされ、また、磁性層13の長手配向度が31%とされた。なお、第5実施例~第14実施例における垂直配向度及び長手配向度は、第2実施例と同様である。
 また、第5実施例では、サーボ信号記録パターン6のアジマス角α(図4参照)が第1実施例~第4実施例とは異なっており、アジマス角αが24度とされている。この関係で、第5実施例では、距離D(図10参照)が、第1実施例~第4実施例とは異なっており、0.17μmとされている。また、第5実施形態では、記録トラック幅Wd(サーボトレースラインTの間隔Ps)に対する距離Dの比(図10参照)が、第1実施例~第4実施例とは異なっており、44.5%とされている。
 第5実施例では、垂直配向度、長手配向度が第2実施例と同じであるため、今回採用したデータリードヘッドでは、孤立波形の半値幅は150nmであった。なお、その他の点については、第1実施例と同様である。
 第6実施例では、磁性層13の垂直配向度が66%とされ、また、磁性層13の長手配向度が31%とされた。また、第6実施例では、サーボ信号記録パターン6のアジマス角α(図4参照)が第1実施例~第5実施例とは異なっており、アジマス角αが18度とされている。
 この関係で、第6実施例では、記録トラック幅Wd(サーボトレースラインTの間隔Ps)に対する距離Dの比(図10参照)が、第1実施例~第5実施例とは異なっており、32.5%とされている。
 また、第6実施例では、記録トラック幅Wd(サーボトレースラインTの間隔Ps)も、第1実施例~第5実施例とは異なっており、0.52μmとされた。また、第6実施例では、距離D(図10参照)が0.17μmとされた。そして、第6実施例では、孤立波形の半値幅が、160μmであった。
 第7実施例~第10実施例では、第2実施例で使用した磁気記録媒体1と同じ磁気記録媒体1を使用して、記録トラック幅Wd(サーボトレースラインTの間隔Ps)を変化させている。具体的には、第7実施例では、記録トラック幅Wd(サーボトレースラインTの間隔Ps)が、2.91μmとされ、距離Dが0.62μmとされた。
 また、第8実施例では、記録トラック幅Wd(サーボトレースラインTの間隔Ps)が、1.55μmとされ、距離Dが0.33μmとされた。また、第9実施例では、記録トラック幅Wd(サーボトレースラインTの間隔Ps)が、0.56μmとされ、距離Dが0.12μmとされた。また、第10実施例では、記録トラック幅Wd(サーボトレースラインTの間隔Ps)が、0.38μmとされ、距離Dが0.08μmとされた。
 なお、記録トラック幅Wd(サーボトレースラインTの間隔Ps)が変えられても、垂直配向度、アジマス角α等が変わらなければ、孤立波形の半値幅は変わらない(第7~第10実施例の半値幅は、第2実施例と同じ150nm)。
 第11実施例~第14実施例では、磁性層13に含まれる磁性粉の成分が、第2実施例と異なっているが、その他の点については、第2実施例と同様である。
 第11実施例では、磁性粉として、六角板状のストロンチウムフェライトが用いられた。この磁性粉のアスペクト比は、3であった。第12実施例では、磁性粉として、球状のε酸化鉄粒子が用いられた。この磁性粉のアスペクト比は、1.1であった。
 第13実施例では、磁性粉として、球状のガリウムフェライトが用いられた。この磁性粉のアスペクト比は、1であった。第14実施例では、磁性粉として、立方状のコバルト含有フェライトが用いられた。この磁性粉のアスペクト比は、1.7であった。
 第11実施例~第14実施例(及び第2実施例)では、磁性層13に含まれる磁性粉の成分が、それぞれ異なっているが、垂直配向度(66%)、アジマス角(12°)等が同じであるので、孤立波形の半値幅が同じ値(150nm)となっている。
 第1比較例及び第2比較例では、垂直配向度が低く(55%、61%)、長手配向度が高い(46%、40%)ことから、孤立波形の半値幅が広く、210nm、190nmとなっている。この第1の比較例、第2の比較例では、データ信号の再生波形におけるピークが鈍いことから、第1の期間と第2の期間の差が小さい(距離Dが小さい)ときに、この差(あるいは、距離D)を正確に判断することができないと考えられる。
 これに対して、第1実施例~第18実施例では、垂直配向度が高く(65%以上)、長手配向度が低い(35%以下)ことから、孤立波形の半値幅が狭くなっている(185nm以下)。従って、第1実施例~第18実施例では、データ信号の再生波形におけるピークが鋭いことから、第1の期間と第2の期間の差が小さくても(距離Dが小さくても)、この差(あるいは、距離D)を正確に判断することができる。
 表2に、さらに別の各種実施例及び各種比較例を示す。
Figure JPOXMLDOC01-appb-T000002
 第15実施例では、第4実施例よりも磁性層13の垂直配向度がさらに上げられて、75%とされた。また、磁性層13の長手配向度がさらに下げられ、23%とされた。なお、その他の点については、第4実施例と同じ(第1実施例と同じ)である。第15実施例では、磁性層13の垂直配向度が第4実施例よりもさらに上げられた(長手配向度がさらに下げられた)ことにより、孤立波形の半値幅が、第4実施例よりも狭まっており、128nmであった。
 第16実施例では、第15実施例よりも磁性層13の垂直配向度がさらに上げられて、80%とされた。また、磁性層13の長手配向度がさらに下げられ、21%とされた。なお、その他の点については、第19実施例と同じ(第1実施例と同じ)である。第20実施例では、磁性層13の垂直配向度が第15実施例よりもさらに上げられた(長手配向度がさらに下げられた)ことにより、孤立波形の半値幅が、第15実施例よりも狭まっており、120nmであった。
 第17実施例では、第16実施例よりも磁性層13の垂直配向度がさらに上げられて、85%とされた。また、磁性層13の長手配向度がさらに下げられ、18%とされた。なお、その他の点については、第16実施例と同じ(第1実施例と同じ)である。第17実施例では、磁性層13の垂直配向度が第16実施例よりもさらに上げられた(長手配向度がさらに下げられた)ことにより、孤立波形の半値幅が、第16実施例よりも狭まっており、109nmであった。
 第18実施例では、第1実施例よりも磁性粉の粒子体積(平均体積Vave)が小さくされて1600nmとされた。なお、その他の点については、第1実施例と同じである。第18実施例では、粒子体積が第1実施例よりも小さくされたことにより、孤立波形の半値幅が、第1実施例よりも小さくなっており、120nmであった。なお、磁性粉の粒子体積が小さくされると孤立波形の半値幅が狭まるのは、磁化遷移領域が狭くなるためである。
 第19実施例では、第18実施例よりも磁性粉の粒子体積(平均体積Vave)がさらに小さくされて1300nmとされた。なお、その他の点については、第18実施例と同じ(第1実施例と同じ)である。第19実施例では、粒子体積が第18実施例よりも小さくされたことにより、孤立波形の半値幅が、第18実施例よりもさらに狭まっており、115nmであった。
 第20実施例では、第15実施例と同様に、磁性層13の垂直配向度が75%とされ、磁性層13の長手配向度が23%とされた。一方、第20実施例では、第15実施例よりも(第1実施例よりも)磁性層13の厚みが薄くされて60nmとされた。なお、その他の点については、第15実施例と同じ(第1実施例と同じ)である。第20実施例では、磁性層13の厚みが第15実施例よりも薄くされたことにより、孤立波形の半値幅が、第15実施例よりも狭まっており、110nmであった。
 第21実施例では、第20実施例よりも磁性層13の垂直配向度がさらに上げられて、80%とされた。また、磁性層13の長手配向度がさらに下げられ、21%とされた。さらに、第21実施例では、第20実施例よりも磁性層13の厚みがさらに薄くされて40nmとされた。なお、その他の点については、第20実施例と同じ(第1実施例と同じ)である。
 ここで、第21実施例は、第16実施例と比べると、磁性層13の厚みが80nmから40nmに薄くされた点を除いて、それ以外の条件が同じである。第21実施例では、第16実施例と比べて、磁性層13の厚みが薄くされたことにより、孤立波形の半値幅が狭まって、90nmとなっている。
 なお、磁性層13の厚みが90nm以下であれば、データ信号の再生波形における孤立波形の半値幅の値を小さくして(185nm以下)、再生波形におけるピークを鋭くすることができると考えられる。
 第3比較例では、第1実施例よりも磁性粉の粒子体積が大きくされて、2500nmとされた。なお、その他の点については、第1実施例と同じである。第3比較例では、第1実施例よりも磁性粉の粒子体積が大きくされたことにより、孤立波形の半値幅が、第1実施例よりも広がってしまっており、200nmであった。この半値幅の値(200nm)は、広くなってしまっており適切な範囲(185nm以下)に収まっていない。
 第4比較例では、第3比較例よりも磁性粉の粒子体積がさらに大きくされて、2800nmとされた。なお、その他の点については、第3比較例と同じ(第1実施例と同じ)である。第4比較例では、第3比較例よりも磁性粉の粒子体積がさらに大きくされたことにより、孤立波形の半値幅が、第3比較例よりもさらに広がってしまっており、210nmであった。この半値幅の値(210nm)は、広くなってしまっており適切な範囲(185nm以下)に収まっていない。
 なお、磁性粉の粒子体積が2300nm以下であれば、データ信号の再生波形における孤立波形の半値幅の値を小さくして(185nm以下)、再生波形におけるピークを鋭くすることができると考えられる。
<作用等>
 以上説明したように、本技術においては、磁性層13の垂直配向度が65%以上とされ、データ信号の再生波形における孤立波形の半値幅が185nm以下とされている(第1実施例~第21実施例参照)。これにより、データ信号の再生波形におけるピークが鋭くなり、第1の期間と第2の期間の差が小さくても(距離Dが小さくても)、この差(あるいは、距離D)を正確に判断することができる。
 このように、第1の期間と第2の期間の差が小さくても(距離Dが小さくても)、この差(あるいは、距離D)を正確に判断することができるので、サーボトレースラインTの間隔Psを小さくすることができ、記録トラック幅Wdを小さくすることができる。従って、1本のデータバンドdに含まれる記録トラック5の数を増やすことができ、これにより、データの記録密度をさらに向上させることができる。
 ここで、孤立波形の半値幅が狭くなるほどデータ信号の再生波形におけるピークが鋭くなり、データ信号の読み取りの精度が向上する。従って、孤立波形の半値幅は、170nm以下(第1実施例~第21実施例参照)、150nm以下(第2~4、7~21実施形態参照)、130nm以下(第4、15~21実施例参照)、110nm以下(第17、20、21実施例参照)などとされていてもよい。
 また、磁性層13の垂直配向度が上がるほど、孤立波形の半値幅が狭くなる。従って、垂直配向度は、70%以上(第3~4、15~17、20~21実施例参照)、75%以上(第15~17、20~21実施例参照)、80%以上(第16~17、21実施例参照)などとされていてもよい。
 また、本技術においては、距離D(P1及びP2における長さ方向での距離)が、0.08μm以上とされる(第1実施例~第21実施例:特に、第10実施例参照)。これにより、システムが破綻してしまうことを防止することができる。
 なお、本技術においては、距離Dが小さく、距離Dが0.62μm以下とされるような場合に適用されると有利である(第1実施例~第21実施例:特に、第7実施例参照)。
 また、磁性層13の長手配向度が35%以下(第1実施例~第21実施例:特に、第1実施例参照)とされることで、第1の期間と第2の期間の差が小さくても(距離Dが小さくても)、この差(あるいは、距離D)をさらに正確に判断することができる。
 また、磁気記録媒体1の長手方向の保磁力が2000Oe以下とされることで、第1の期間と第2の期間の差が小さくても(距離Dが小さくても)、この差(あるいは、距離D)をさらに正確に判断することができる。
 また、磁性層13の表面全体の面積に対するサーボバンドsの面積の比率が、4.0%以下とされることで、データバンドdの面積が広くなり、データの記録容量を向上させることができる。また、サーボバンドsの幅が、95μm以下とされることで、データバンドdの幅が広くなり、データの記録容量を向上させることができる。
 また、記録トラック幅Wdが、2.0μm以下とされることで、1本のデータバンドdに含まれる記録トラック5の数を増やすことができ、これにより、データの記録密度をさらに向上させることができる。
 また、データバンドdに記録されるデータ信号における長手方向の1ビット長が、48nm以下とされることで、データの記録密度をさらに向上させることができる。
 また、磁性層13の厚さが、90nm以下とされることで、電磁変換特性を向上させることができる。また、磁性層13の厚さが90nm以下とされることで、データ信号の再生波形における孤立波形の半値幅を狭くして(185nm以下)、データ信号の再生波形のピークを鋭くすることができる(第1実施例~第21実施例参照)。これにより、データ信号の読み取り精度が向上するため、記録トラック数を増加させてデータの記録密度を向上させることができる。
 また、磁性粉の粒子体積(平均体積Vave)が2300nm以下とされることで、データ信号の再生波形における孤立波形の半値幅を狭くして(185nm以下)、データ信号の再生波形のピークを鋭くすることができる(第1実施例~第21実施例参照)。これにより、データ信号の読み取り精度が向上するため、記録トラック数を増加させてデータの記録密度を向上させることができる。
<磁気記録媒体の伸縮性及びテンションコントロール>
 次に、磁気記録媒体1の伸縮性及びデータ記録装置20による磁気記録媒体1のテンションコントロールについて説明する。LTO規格では、データの高密度記録化の要請により、記録トラック数が急激に増加している。このような場合、記録トラック幅が狭くなってしまい、磁気記録媒体1の幅(Y軸方向)のわずかな変動が問題となる場合がある。
 例えば、データ記録装置20によって、磁気記録媒体1に所定のデータが記憶され、その後(例えば、一定期間保管後)、データ記録装置20により、磁気記録媒体1に記録されたデータが再生されるとする。このような場合、データ再生時の磁気記録媒体1の幅が、磁気記録媒体1のデータ記録時の幅に比べてわずかにでも変動してしまうと、オフトラック(データリードヘッド35が誤った記録トラック5上に位置してしまうこと)が発生してしまう場合がある。このため、磁気記録媒体1に記録されたデータが正確に再生できずにエラーが発生してしまう可能性がある。
 磁気記録媒体1の幅の変動の原因としては、例えば、温度の変動、湿度の変動等が挙げられる。一般的には、磁気記録媒体1を伸縮しないように磁気記録媒体1を設計することで、磁気記録媒体1の幅の変動に対応するといった手法が用いられる。しかしながら、磁気記録媒体1を全く伸縮しないようにすることは現実的には不可能である。
 そこで、本実施形態では、磁気記録媒体1を伸縮し難くするのではなく、逆に、ある程度磁気記録媒体1を伸縮しやすくし、また、データ記録装置20側で磁気記録媒体1のテンション(X軸方向:磁気記録媒体1の搬送方向)をコントロールする(増減させる)といった手法が用いられる。
 具体的には、データ記録装置20は、データ信号の再生時において、必要に応じて(磁気記録媒体1の幅が広がっている場合)、磁気記録媒体1の長手方向(X軸方向)のテンションを高くすることで磁気記録媒体1の幅(Y軸方向)を小さくする。また、データ記録装置20は、データ信号の再生時において、必要に応じて(磁気記録媒体1の幅が狭まっている場合)、磁気記録媒体1の長手方向のテンションを低くすることで磁気記録媒体1の幅を大きくする。なお、データ記録装置20は、データ信号の再生時だけでなく、データ信号の記録時においても磁気記録媒体1の長手方向のテンションをコントロールしてもよい。
 このような方法によれば、例えば、温度等により磁気記録媒体1の幅が変動したしまったときに、必要に応じて磁気記録媒体1の幅を調整することで、磁気記録媒体1の幅を一定にすることが可能となる。従って、オフトラックを防止することができ、磁気記録媒体1に記録されたデータを正確に再生することが可能であると考えられる。
 表3及び表4に、各種実施例及び各種比較例を示す。表3及び表4に示す各種実施例及び各種比較例は、表1及び表2に示す各種実施例及び各種比較例に対応しており、同じ実施例、同じ比較例については同じ番号が付されている。例えば、表3に示される第1実施例は、表1に示される第1実施例と同じものであり、第1実施例における垂直配向度や、孤立波形の半値幅等は、表1に示されている通りである。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3及び表4においては、最も左に、引張試験において、磁気記録媒体1を長手方向(X軸方向)に1%伸ばしたときの荷重[N](以下、単に、長手1%伸び荷重)が示されている。
 この長手1%伸び荷重の測定方法について説明する。この測定においては、まず、テープ幅(Y軸方向)が12.65mmの磁気記録媒体1を100mmの長さ(X軸方向)に切断することで、幅12.65mm、長さ100mmの磁気記録媒体1のサンプルが用意された。そして、このサンプルが測定機にセットされ、測定機によりサンプルが長手方向(X軸方向)に伸ばされてそのときの荷重が測定された。測定機としては、島津製作所製のAUTO GRAPH AG-100Dが用いられた。また、測定温度は、室温とされ、引っ張り速度は10mm/minとされた。
 図11は、長手方向の伸び率[%]と、荷重[N]との関係を示す図である。図11に示すように、伸び率と、荷重との関係は、サンプルがほとんど伸びていない場合には(伸び率が0に近いとき)非線形となっており、サンプルがある程度伸びた場合には線形に近くなっている。従って、長手1%伸び荷重の値は、非線形である箇所の値ではなく、線形に近い箇所の値が用いられる。
 具体的には、磁気記録媒体1の長手方向の引張試験において、磁気記録媒体1の伸び率0.5%のときの荷重をσ0.5[N]とし、磁気記録媒体1の伸び率1.5%のときの荷重をσ1.5[N]としたとき、長手1%伸び荷重は、以下の式により表される。
 長手1%伸び荷重[N]=σ1.5-σ0.5
 この長手1%伸び荷重は、外力による磁気記録媒体1の長手方向(X軸方向)における伸縮のし難さを示す値であり、この値が大きいほど磁気記録媒体1は外力により長手方向に伸縮し難く、この値が小さいほど磁気記録媒体1は外力により長手方向に伸縮しやすい。
 なお、長手1%伸び荷重は、磁気記録媒体1の長手方向に関する値であるが、磁気記録媒体1の幅方向(Y軸方向)の伸縮のし難さとも相関がある。つまり、この長手1%伸び荷重の値が大きいほど磁気記録媒体1は外力により幅方向に伸縮し難く、この値が小さいほど磁気記録媒体1は外力により幅方向に伸縮しやすい。
 本実施形態においては、磁気記録媒体1が幅方向に伸縮しやすい方がテンションコントロールにより磁気記録媒体1の幅を調整しやすいので、長手1%伸び荷重は、小さい方が有利である。
 典型的には、長手1%伸び荷重は、0.6N以下とされる。なお、長手1%伸び荷重は、0.58N以下、0.55N以下、0.5N以下、0.45N以下などとされてもよい。
 表3及び表4においては、左から2列目に、磁気記録媒体1の長手方向(X軸方向)の収縮率(以下、単に長手収縮率)が示されている。この長手収縮率の測定方法について説明する。この測定においては、まず、磁気記録媒体1が50mmの長さ(X軸方向)に切断されて磁気記録媒体1のサンプルが用意された。そして、このサンプルの磁性層13の表面において長手方向(X軸方向)に15mm離れた位置に針で2点の圧痕がつけられる。
 次に、トプコン社製の測定顕微鏡TMU-220ES及び座標測定機CA-1Bが用いられて、2点の圧痕間の距離L1が室温で測定される。その後、サンプルに対して張力が掛からない状態(テンションフリー)で、60℃、10%RH状態の恒温槽内で72時間保管(エイジング)される。その後、サンプルが恒温槽から取り出されて室温環境で1時間放置され、上記と同様の方法で2点の圧痕間の距離L2が測定される。
 そして、距離L1(エイジング前)と距離L2(エイジング後)とに基づいて、以下の式により長手収縮率[%]が求められる。
 長手収縮率={(L1-L2)/L1}×100
 この長手収縮率は、テンションフリーの状態での熱による磁気記録媒体1の長手方向(X軸方向)における伸縮のし易さを示す値であり、この値が大きいほど熱により磁気記録媒体1は長手方向に伸縮し易く、この値が小さいほど熱により磁気記録媒体1は長手方向に伸縮しにくい。
 なお、長手収縮率は、磁気記録媒体1の長手方向に関する値であるが、磁気記録媒体1の幅方向(Y軸方向)の伸縮のし易さとも相関がある。つまり、この長手収縮率の値が大きいほど磁気記録媒体1は熱により幅方向に伸縮し易く、この値が小さいほど熱により磁気記録媒体1は幅方向に伸縮し難い。
 上述のように、テンションコントロールの観点からは、磁気記録媒体1は伸縮した方が有利である。一方、温度変化などの環境変化によって磁気記録媒体1が伸縮してしまうのはオフトラックを誘発してしまうため好ましくない。従って、長手収縮率は、小さい方が有利である。
 典型的には、長手収縮率は、0.1%以下とされる。なお、長手収縮率は、0.09%以下、0.08%以下、0.07%以下、0.06%以下、0.05%以下等とされてもよい。
 なお、本実施形態においては、磁気記録媒体1は、外力が加えられたとき(テンションコントロール)には、比較的に容易に伸縮するが、一方で、温度変動などの環境変化によって磁気記録媒体1が容易には伸縮しないように構成される。
 表3及び表4において、左から3列目には、磁気記録媒体1の平均厚みTL(平均全厚)が示されている。この磁気記録媒体1の平均厚みの求め方については、上記した通りである。
 磁気記録媒体1の平均厚みは、外力による磁気記録媒体1の伸縮しやすさと相関があり、磁気記録媒体1の平均厚みが薄くなるほど外力により磁気記録媒体1が伸縮し易くなり、厚くなるほど外力により磁気記録媒体1が伸縮し難くなる。従って、テンションコントロールの観点から、磁気記録媒体1の平均厚みは、薄い方が有利である。
 上述のように、磁気記録媒体1の平均厚みは、典型的には、5.6μm以下とされる。また、上述のように、磁気記録媒体1の平均厚みは、5.0μm以下、4.6μm以下、4.4μm以下などとされてもよい。
 表3及び表4において、左から4列目には、基材11の平均厚みTBが示されている。この基材11の平均厚みの求め方については、上記した通りである。基材11の厚さは、磁気記録媒体1の全体の厚さの半分以上を占めている。従って、この基材11の平均厚みは、外力による磁気記録媒体1の伸縮しやすさと相関があり、基材11の平均厚みが薄くなるほど外力により磁気記録媒体1が伸縮し易くなり、厚くなるほど外力により磁気記録媒体1が伸縮し難くなる。従って、テンションコントロールの観点から、基材11の平均厚みは、薄い方が有利である。
 上述のように、基材11の平均厚みは、典型的には、4.2μm以下とされる。また、上述のように、基材11の平均厚みは、3.8μm以下、3.4μm以下などとされてもよい。
 表3及び表4において、最も右の列には、(TL-TB)/TBが示されている。(TL-TB)/TBの分母は、基材11の平均厚みTBを表しており、分子は、塗膜(磁性層13、非磁性層12及びバック層14)の平均厚み(TL-TB)を表している。なお、塗膜の平均厚みは、磁気記録媒体1の平均厚みTLから基材11の平均厚みTBを引いた値とされている。つまり、(TL-TB)/TBは、基材11の平均厚みTBに対する、塗膜の平均厚み(TL-TB)の割合を意味している。ここで、塗膜は、基材11に比べると外力により伸縮し難い。仮に、基材11の平均厚みTBを固定して、塗膜の平均厚み(TL-TB)を大きくすると、(TL-TB)/TBの値は、大きくなるが、この場合、磁気記録媒体1は、伸縮し難くなることになる。
 つまり、この(TL-TB)/TBの値は、外力による磁気記録媒体1の伸縮し難さと相関があり、この値が大きくなるほど外力により磁気記録媒体1が伸縮し難くなり、この値が小さくなるほど外力により磁気記録媒体1が伸縮し易くなる。従って、テンションコントロールの観点から、(TL-TB)/TBの値は、小さい方が有利である。
 典型的には、(TL-TB)/TBの値は、0.41以下とされる。なお、(TL-TB)/TBの値は、0.39以下、0.37以下、0.35以下などとされてもよい。
 表3及び表4において、右から3列目には、磁気記録媒体1の長手方向(X軸方向)のヤング率が示されている。磁気記録媒体1の長手方向のヤング率は、外力による磁気記録媒体1の長手方向における伸縮のし難さを示す値であり、この値が大きいほど外力により磁気記録媒体1は長手方向に伸縮し難く、この値が小さいほど外力により磁気記録媒体1は長手方向に伸縮しやすい。
 なお、磁気記録媒体1の長手方向のヤング率は、磁気記録媒体1の長手方向に関する値であるが、磁気記録媒体1の幅方向(Y軸方向)の伸縮のし難さとも相関がある。つまり、この値が大きいほど磁気記録媒体1は外力により幅方向に伸縮し難く、この値が小さいほど磁気記録媒体1は外力により幅方向に伸縮しやすい。従って、テンションコントロールの観点から、磁気記録媒体1の長手方向のヤング率は、小さい方が有利である。
 典型的には、磁気記録媒体1の長手方向のヤング率は、8.5GPa以下とされる。なお、磁気記録媒体1の長手方向のヤング率は、8.3GPa以下、7.9GPa以下、7.5GPa以下、7.1GPa以下などとされてもよい。
 ヤング率の測定には引っ張り試験機(島津製作所製、AG-100D)を用いて測定する。
例えば、テープ長手方向のヤング率を測定したい場合は、テープを180mmの長さにカットして測定サンプルを準備する。上記引っ張り試験機にテープの幅(1/2インチ)を固定できる冶具を取り付け、テープ幅の上下を固定する。
 距離は100mmにする。テープサンプルをチャック後、サンプルを引っ張る方向に応力を徐々にかけていく。引っ張り速度は0.1mm/minとする。この時の応力の変化と伸び量から、以下の式を用いてヤング率を計算する。
E=(ΔN/S)/(Δx/L) ×10-3
ΔN…応力の変化(N)
S…試験片の断面積(mm2)
Δx…伸び量(mm)
L…つかみ治具間距離(mm)
 応力の範囲としては0.5Nから1.0Nとし、この時の応力変化(ΔN)と伸び量(Δx)を計算に使用する。
 表3及び表4において、右から2列目には、基材11の長手方向(X軸方向)のヤング率が示されている。基材11の厚さは、磁気記録媒体1の全体の厚さの半分以上を占めている。従って、基材11の長手方向のヤング率は、外力による磁気記録媒体1の伸縮し難さと相関があり、この値が大きいほど磁気記録媒体1は外力により幅方向に伸縮し難く、この値が小さいほど磁気記録媒体1は外力により幅方向に伸縮しやすい。
 なお、基材11の長手方向のヤング率は、磁気記録媒体1の長手方向に関する値であるが、磁気記録媒体1の幅方向(Y軸方向)の伸縮のし難さとも相関がある。つまり、この値が大きいほど磁気記録媒体1は外力により幅方向に伸縮し難く、この値が小さいほど磁気記録媒体1は外力により幅方向に伸縮しやすい。従って、テンションコントロールの観点から、基材11の長手方向のヤング率は、小さい方が有利である。
 典型的には、基材11の長手方向のヤング率は、8.0GPa以下とされる。なお、基材11の長手方向のヤング率は、7.8GPa以下、7.4GPa以下、7.0GPa以下、6.4GPa以下などとされてもよい。
 表3を参照して、第1実施例では、長手1%伸び荷重が、0.58Nであり、長手収縮率が0.09%であった。また、磁気記録媒体1の磁気記録媒体1の平均厚みTLは、5μmとされ、基材11の平均厚みTBは、3.6μmとされた。また、基材11の平均厚みTBに対する、塗膜の平均厚み(TL-TB)の割合((TL-TB)/TB)が0.39とされた。
 また、第1実施例では、磁気記録媒体1の長手方向のヤング率が8.3GPaであり、基材11の長手方向のヤング率が7.8GPaであった。なお、第1実施例の垂直配向度、孤立波形の半値幅などは、表1に示す通りである。
 表3及び表4を参照して、第2実施例~第21実施例、第1比較例~第4比較例について、長手1%伸び荷重、長手収縮率、磁気記録媒体1の平均厚み、基材11の平均厚み、磁気記録媒体1のヤング率、基材11のヤング率、(TL-TB)/TBの値は、第1実施例と基本的に同じである。
 但し、第12実施例~第14実施例については、長手1%伸び荷重が第1実施例よりも小さく、0.55Nであった(磁性層の含有元素が異なるため:表1参照)。また、第18実施例及び第19実施例についても長手1%伸び荷重が第1実施例よりも小さく、0.57Nであった。なお、長手1%伸び荷重が他の実施例よりも小さいことは、テンションコントロール時における伸縮性が他の実施例よりも良いことを意味している。
 次に、更に別の実施例及び比較例について説明する。表5は、更に別の実施例及び比較例を示す図である。
Figure JPOXMLDOC01-appb-T000005
 第22実施例について、表5に17列で示される各種の値(垂直配向度、長手配向度、・・・・、(TL-TB)/TB)のうち、長手収縮率以外の値は、第1実施例と同じである(表1、表3参照)。具体的に、第22実施例は、長手収縮率が第1実施例(及び他の実施例)よりも小さく、0.07%であった。第22実施例では、長手収縮率が第1実施例よりも小さいので、第1実施例(及び他の実施例)よりも温度変動などの環境変化に強い(伸縮し難い)。
 第23実施例は、データ信号の再生波形における孤立波形の半値幅が170nmであった。また、第23実施例は、長手収縮率が第22実施例よりもさらに小さく、0.04%であった。なお、その他の点は、第22実施例と同じである。第23実施例では、長手収縮率が第22実施例よりもさらに小さいので、第22実施例(及び他の実施例)よりも、さらに温度変動などの環境変化に強い(さらに伸縮し難い)。
 第24実施例は、データ信号の再生波形における孤立波形の半値幅が170nmであった。また、第24実施例は、長手収縮率が第22実施例よりも大きく(第1実施例等とは同じ)、0.09%であったが、長手1%伸び荷重が第22実施例よりも小さく、0.50Nであった。
 第24実施例は、長手収縮率が第22実施例よりも少し大きいので(第1実施例等とは同じ)、第22実施例に比べると温度変動などの環境変化には少し弱い。しかし、第24実施例は、長手1%伸び荷重が第22実施例よりも小さいので、テンションコントロール時における伸縮性が第22実施例(及び他の実施例)よりも良い。
 また、第24実施例は、磁気記録媒体1の平均厚みTLが第22実施例よりも小さく、4.3μmとされ、基材11の平均厚みTBが第22実施例よりも小さく、3.2μmとされた。また、第24実施例は、(TL-TB)/TBの値が、第22実施例よりも小さく、0.34とされた。なお、その他の点は、第22実施例と同じである。
 第24実施例では、磁気記録媒体1の平均厚みTL、基材11の平均厚みTB、(TL-TB)/TBの値がそれぞれ、第22実施例よりも小さいので、テンションコントロール時における伸縮性が第22実施例(及び他の実施例)よりも良い。
 第25実施例は、データ信号の再生波形における孤立波形の半値幅が170nmであった。また、第25実施例は、長手1%伸び荷重が第24実施例よりさらに小さく、0.43Nであった。第25実施例は、長手1%伸び荷重が第24実施例よりもさらに小さいので、テンションコントロール時における伸縮性が第24実施例(及び他の実施例)よりもさらに良い。
 また、第25実施例では、基材11の平均厚みTBが第24実施例と同じ(3.2μm)とされつつ、磁気記録媒体1の平均厚みTLが第24実施例よりもさらに小さくされて4.2μmとされた。この関係で、第25実施例では、(TL-TB)/TBの値が、第24実施例よりも小さく、0.31とされた。
 第25実施例では、磁気記録媒体1の平均厚みTL、(TL-TB)/TBの値がそれぞれ、第24実施例よりも小さいので、テンションコントロール時における磁気記録媒体1の伸縮性が第24実施例(及び他の実施例)よりもさらに良い。
 また、第25実施例では、磁気記録媒体1の長手方向のヤング率が第24実施例よりも小さく、7.4GPaであり、基材11の長手方向のヤング率も第24実施例よりも小さく、6.4GPaであった。その他の点については、第24実施例と同じである。
 第25実施例では、磁気記録媒体1の長手方向のヤング率、基材11の長手方向のヤング率がそれぞれ第24実施例よりも小さくため、テンションコントロール時における磁気記録媒体1の伸縮性が第24実施例(及び他の実施例)よりもさらに良い。
 第26実施例は、第22実施例よりも(第1実施例よりも)磁性層13の厚みが厚くされて88nmとされた。その他の点については、第22実施例と同じ(第1実施例と同じ)である。第26実施例では、磁性層13の厚みが第22実施例よりも厚くされたことにより、孤立波形の半値幅が、第22実施例よりも広くなっており、185nmであった。
 第5比較例では、磁性層13に含まれる磁性粉の粒子体積(平均体積Vave)が、2800nmとされた。この関係で、データ信号の再生波形における孤立波形の半値幅が大きくなっており、210nmであった。この半値幅の値(210nm)は、適切な範囲(185nm以下)に収まっていない。
 また、第5比較例では、長手収縮率が0.11%であった。この長手収縮率の値(0.11%)は、適切な範囲(0.1%以下)に収まっておらず、従って、温度変動などの環境変化に弱く、オフトラックが生じてしまう可能性が高くなってしまうと考えられる。
 第6比較例では、第5比較例と同様に磁性粉の粒子体積(平均体積Vave)が、2800nmとされた。この関係で、データ信号の再生波形における孤立波形の半値幅が210nmとなっており、半値幅の値が適切な範囲(185nm以下)に収まっていない。
 また、第6比較例では、長手1%伸び荷重が、0.61Nであった。この値(0.61N)は、適切な範囲(0.6N以下)に収まっておらず、従って、テンションコントロール時における磁気記録媒体1の伸縮性が悪いと考えられる。
 また、第6比較例では、(TL-TB)/TBの値が0.43であった。この値(0.43)は、適切な範囲(0.41以下)に収まっておらず、従って、テンションコントロール時における磁気記録媒体1の伸縮性が悪いと考えられる。
 [磁気記録媒体1の伸縮性による作用]
 以上説明したように、本実施形態においては、長手1%伸び荷重が、0.6N以下とされる。これにより、磁気記録媒体1の伸縮性が高くなるため、テンションコントロールによる磁気記録媒体1の幅の調整が容易となる。従って、(例えば、45℃で一ヶ月のような加速劣化環境下で)温度等により磁気記録媒体1の幅が変動したしまったとしても、磁気記録媒体1の幅を調整することで、磁気記録媒体1の幅を一定にすることが可能となる。従って、オフトラックを防止することができ、磁気記録媒体1に記録されたデータを正確に再生することが可能となる。
 また、本実施形態では、磁気記録媒体1の幅のわずかな変動に対処することが可能となるので、結果として、磁気記録媒体1の記録トラック数を増やすことができ、データの高密度記録化を実現することができる。なお、上述のように、本実施形態では、磁性層13の垂直配向度(65%以上)、及びデータ信号の孤立波形の半値幅(185nm以下)により、データの高密度記録化を実現しており、この効果との相乗効果で、さらなるデータの高密度記録化が実現可能となる。
 また、本実施形態においては、長手収縮率が、0.1%以下とされる。これにより、温度等により磁気記録媒体1の幅が変動し難くなる(例えば、45℃で一ヶ月のような長期の加速劣化環境下でも)。従って、オフトラックを防止することができ、磁気記録媒体1に記録されたデータを正確に再生することが可能となる。
 また、本実施形態においては、磁気記録媒体1の平均厚みTLが、5.6μm以下とされる。これにより、外力による磁気記録媒体1の伸縮性がさらに高くなるため、テンションコントロールによる磁気記録媒体1の幅の調整がさらに容易となる。従って、オフトラックをさらに適切に防止することができ、磁気記録媒体1に記録されたデータをさらに正確に再生することが可能となる。
 また、本実施形態においては、基材11の平均厚みTBが、4.2μm以下とされる。これにより、外力による磁気記録媒体1の伸縮性がさらに高くなるため、テンションコントロールによる磁気記録媒体1の幅の調整がさらに容易となる。従って、オフトラックをさらに適切に防止することができ、磁気記録媒体1に記録されたデータをさらに正確に再生することが可能となる。
 また、本実施形態においては、(TL-TB)/TBの値が、0.41以下とされる。これにより、外力による磁気記録媒体1の伸縮性がさらに高くなるため、テンションコントロールによる磁気記録媒体1の幅の調整がさらに容易となる。従って、オフトラックをさらに適切に防止することができ、磁気記録媒体1に記録されたデータをさらに正確に再生することが可能となる。
 また、本実施形態においては、磁気記録媒体1の長手方向のヤング率が、8.5GPa以下とされる。これにより、外力による磁気記録媒体1の伸縮性がさらに高くなるため、テンションコントロールによる磁気記録媒体1の幅の調整がさらに容易となる。従って、オフトラックをさらに適切に防止することができ、磁気記録媒体1に記録されたデータをさらに正確に再生することが可能となる。
 また、本実施形態においては、基材11の長手方向のヤング率が、8.0GPa以下とされる。これにより、外力による磁気記録媒体1の伸縮性がさらに高くなるため、テンションコントロールによる磁気記録媒体1の幅の調整がさらに容易となる。従って、オフトラックをさらに適切に防止することができ、磁気記録媒体1に記録されたデータをさらに正確に再生することが可能となる。
<磁気記録媒体の製造方法>
 次に、磁気記録媒体1の製造方法について説明する。まず、非磁性粉、結着剤および潤滑剤等を溶剤に混練、分散させることにより、非磁性層形成用塗料を調製する。次に、磁性粉、結着剤および潤滑剤等を溶剤に混練、分散させることにより、磁性層形成用塗料を調製する。次に、結着剤および非磁性粉等を溶剤に混練、分散させることにより、バック層形成用塗料を調製する。磁性層形成用塗料、非磁性層形成用塗料およびバック層形成用塗料の調製には、例えば、以下の溶剤、分散装置および混練装置を用いることができる。
 上述の塗料調製に用いられる溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒、メタノール、エタノール、プロパノール等のアルコール系溶媒、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸プロピル、乳酸エチル、エチレングリコールアセテート等のエステル系溶媒、ジエチレングリコールジメチルエーテル、2-エトキシエタノール、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒、メチレンクロライド、エチレンクロライド、四塩化炭素、クロロホルム、クロロベンゼン等のハロゲン化炭化水素系溶媒等が挙げられる。これらは単独で用いてもよく、適宜混合して用いてもよい。
 上述の塗料調製に用いられる混練装置としては、例えば、連続二軸混練機、多段階で希釈可能な連続二軸混練機、ニーダー、加圧ニーダー、ロールニーダー等の混練装置を用いることができるが、特にこれらの装置に限定されるものではない。また、上述の塗料調製に用いられる分散装置としては、例えば、ロールミル、ボールミル、横型サンドミル、縦型サンドミル、スパイクミル、ピンミル、タワーミル、パールミル(例えばアイリッヒ社製「DCPミル」等)、ホモジナイザー、超音波分散機等の分散装置を用いることができるが、特にこれらの装置に限定されるものではない。
 次に、非磁性層形成用塗料を基材11の一方の主面に塗布して乾燥させることにより、非磁性層12を形成する。続いて、この非磁性層12上に磁性層形成用塗料を塗布して乾燥させることにより、磁性層13を非磁性層12上に形成する。なお、乾燥の際に、例えばソレノイドコイルにより、磁性粉を基材11の厚み方向に磁場配向させることが好ましい。また、乾燥の際に、例えばソレノイドコイルにより、磁性粉を基材11の走行方向(長手方向)に磁場配向させたのちに、基材11の厚み方向に磁場配向させるようにしてもよい。磁性層13の形成後、バック層形成用塗料を基材11の他方の主面に塗布して乾燥させることにより、バック層14を形成する。これにより、磁気記録媒体1が得られる。
 その後、得られた磁気記録媒体1にカレンダー処理を行い、磁性層13の表面を平滑化する。次に、カレンダー処理が施された磁気記録媒体1をロール状に巻き取ったのち、この状態で磁気記録媒体1に加熱処理を行うことにより、バック層14の表面の多数の突部14Aを磁性層13の表面に転写する。これにより、磁性層13の表面に多数の孔部13Aが形成される。
 加熱処理の温度は、55℃以上75℃以下であることが好ましい。加熱処理の温度が55℃以上であると、良好な転写性を得ることができる。一方、加熱処理の温度が75℃以上であると、細孔量が多くなりすぎ、表面の潤滑剤が過多になってしまう。ここで、加熱処理の温度は、磁気記録媒体1を保持する雰囲気の温度である。
 加熱処理の時間は、15時間以上40時間以下であることが好ましい。加熱処理の時間が15時間以上であると、良好な転写性を得ることができる。一方、加熱処理の時間が40時間以下であると、生産性の低下を抑制することができる。
 最後に、磁気記録媒体1を所定の幅(例えば1/2インチ幅)に裁断する。以上により、目的とする磁気記録媒体1が得られる。
[磁性層形成用塗料の調製工程]
 次に、磁性層形成用塗料の調整工程について説明する。まず、下記配合の第1組成物をエクストルーダで混練した。次に、ディスパーを備えた攪拌タンクに、混練した第1組成物と、下記配合の第2組成物を加えて予備混合を行った。続いて、さらにサンドミル混合を行い、フィルター処理を行い、磁性層形成用塗料を調製した。
(第1組成物)
バリウムフェライト(BaFe1219)粒子の粉末(六角板状、アスペクト比2.8、粒子体積1950nm):100質量部
塩化ビニル系樹脂(シクロヘキサノン溶液30質量%):10質量部
(重合度300、Mn=10000、極性基としてOSOK=0.07mmol/g、2級OH=0.3mmol/gを含有する。)
酸化アルミニウム粉末:5質量部
(α-Al、平均粒径0.2μm)
カーボンブラック:2質量部
(東海カーボン社製、商品名:シーストTA)
(第2組成物)
塩化ビニル系樹脂:1.1質量部
(樹脂溶液:樹脂分30質量%、シクロヘキサノン70質量%)
n-ブチルステアレート:2質量部
メチルエチルケトン:121.3質量部
トルエン:121.3質量部
シクロヘキサノン:60.7質量部
 最後に、上述のようにして調製した磁性層形成用塗料に、硬化剤として、ポリイソシアネート(商品名:コロネートL、日本ポリウレタン社製):4質量部と、ミリスチン酸:2質量部とを添加した。
[非磁性層形成用塗料の調製工程]
 次に、非磁性層形成用塗料の調整工程について説明する。まず、下記配合の第3組成物をエクストルーダで混練した。次に、ディスパーを備えた攪拌タンクに、混練した第3組成物と、下記配合の第4組成物を加えて予備混合を行った。続いて、さらにサンドミル混合を行い、フィルター処理を行い、非磁性層形成用塗料を調製した。
(第3組成物)
針状酸化鉄粉末:100質量部
(α-Fe、平均長軸長0.15μm)
塩化ビニル系樹脂:55.6質量部
(樹脂溶液:樹脂分30質量%、シクロヘキサノン70質量%)
カーボンブラック:10質量部
(平均粒径20nm)
(第4組成物)
ポリウレタン系樹脂UR8200(東洋紡績製):18.5質量部
n-ブチルステアレート:2質量部
メチルエチルケトン:108.2質量部
トルエン:108.2質量部
シクロヘキサノン:18.5質量部
 最後に、上述のようにして調製した非磁性層形成用塗料に、硬化剤として、ポリイソシアネート(商品名:コロネートL、日本ポリウレタン社製):4質量部と、ミリスチン酸:2質量部とを添加した。
[バック層形成用塗料の調製工程]
 次に、バック層形成用塗料の調整工程について説明する。下記原料を、ディスパーを備えた攪拌タンクで混合を行い、フィルター処理を行うことで、バック層形成用塗料を調製した。
 カーボンブラック粒子の粉末(平均粒径20nm):90質量部
 カーボンブラック粒子の粉末(平均粒径270nm):10質量部
ポリエステルポリウレタン:100質量部
(日本ポリウレタン社製、商品名:N-2304)
メチルエチルケトン:500質量部
トルエン:400質量部
シクロヘキサノン:100質量部
なお、無機粒子の種類および配合量を以下のように変更してもよい。
 カーボンブラック粒子の粉末(平均粒径20nm):80質量部
 カーボンブラック粒子の粉末(平均粒径270nm):20質量部
また、無機粒子の種類および配合量を以下のように変更してもよい。
 カーボンブラック粒子の粉末(平均粒径270nm):100質量部
[塗布工程]
 上述のようにして調製した磁性層形成用塗料および非磁性層形成用塗料を用いて、非磁性支持体である長尺のポレエチレンナフタレートフィルム(以下「PENフィルム」という。)(例えば、平均厚み4.0μm)の一方の主面上に平均厚み1.0~1.1μmの非磁性層、および平均厚み40~100nmの磁性層を以下のようにして形成した。まず、PENフィルムの一方の主面上に非磁性層形成用塗料を塗布、乾燥させることにより、非磁性層を形成した。次に、非磁性層上に磁性層形成用塗料を塗布、乾燥させることにより、磁性層を形成した。なお、磁性層形成用塗料の乾燥の際に、ソレノイドコイルにより、磁性粉をフィルムの厚み方向に磁場配向させた。なお、ソレノイドコイルからの磁界の強さを調整したり(磁性粉の保持力の2~3倍)、磁性層形成用塗料の固形分を調整したり、磁性層形成用塗料の乾燥条件(乾燥温度および乾燥時間)の調整により、磁場中で磁性粉が配向するための条件を調整したりすることによって、磁気記録媒体の厚み方向(垂直方向)における配向度および長手方向における配向度を所定の値に設定した。続いて、PENフィルムの他方の主面上にバック層形成用塗料を塗布、乾燥させることにより、非磁性層を形成した。これにより、磁気記録媒体が得られた。なお、配向度を高くするためには、磁性層形成用塗料の分散状態を良くする必要がある。さらに、垂直配向度を高くするために、磁気記録媒体が配向装置内に入る前に、事前に磁性粉を磁化しておく方法も有効である。
[カレンダー工程、転写工程]
 続いて、カレンダー処理を行い、磁性層の表面を平滑化した。次に、得られた磁気記録媒体をロール状に巻き取ったのち、この状態で磁気記録媒体に60℃、10時間の加熱処理を2回行った。これにより、バック層の表面の多数の突部が磁性層の表面に転写され、磁性層の表面に多数の孔部が形成された。
[裁断工程]
 上述のようにして得られた磁気記録媒体を1/2インチ(12.65mm)幅に裁断した。これにより、目的とする長尺状の磁気記録媒体が得られた。
<各種変形例>
 本技術は、以下の構成をとることもできる。
(1)基材と磁性層とを有し、長手方向に長く、幅方向に短いテープ状の磁気記録媒体であって、
 前記磁性層は、データ信号が書き込まれる前記長手方向に長いデータバンドと、サーボ信号が書き込まれる前記長手方向に長いサーボバンドとを含み、垂直配向度が65%以上であり、
 前記データ信号の再生波形における孤立波形の半値幅が185nm以下であり、
 前記磁性層の厚さが、90nm以下であり、
 前記基材の厚さが、4.2μm以下である
 磁気記録媒体。
(2) 上記(1)に記載の磁気記録媒体であって、
 前記孤立波形の半値幅が170nm以下である
 磁気記録媒体。
(3) 上記(2)に記載の磁気記録媒体であって、
 前記孤立波形の半値幅が150nm以下である
 磁気記録媒体。
(4) 上記(3)に記載の磁気記録媒体であって、
 前記孤立波形の半値幅が130nm以下である
 磁気記録媒体。
(5) 上記(4)に記載の磁気記録媒体であって、
 前記孤立波形の半値幅が110nm以下である
 磁気記録媒体。
(6) 上記(1)~(5)のうちいずれか1つに記載の磁気記録媒体であって、
 前記垂直配向度が70%以上である
 磁気記録媒体。
(7) 上記(6)に記載の磁気記録媒体であって、
 前記垂直配向度が75%以上である
 磁気記録媒体。
(8) 上記(7)に記載の磁気記録媒体であって、
 前記垂直配向度が80%以上である
 磁気記録媒体。
(9) 上記(1)~(8)のうちいずれか1つに記載の磁気記録媒体であって、
 前記データバンドは、前記長手方向に長く、前記幅方向に整列され、前記幅方向でトラック毎に所定の記録トラック幅を有する複数の記録トラックを有し、
 サーボ信号記録パターンは、前記幅方向に対して所定のアジマス角を持って傾斜する複数のストライプを含み、
 前記複数のストライプうち、任意のストライプ上の任意の点をP1とし、前記P1に対して、前記幅方向で前記記録トラック幅分、離れた位置にある前記任意のストライプ上の点をP2としたとき、前記P1及び前記P2における前記長さ方向での距離が、0.08μm以上である
 磁気記録媒体。
(10) 上記(9)に記載の磁気記録媒体であって、
 前記P1及び前記P2における前記長さ方向での距離が、0.62μm以下である
 磁気記録媒体。
(11) 上記(1)~(10)のうちいずれか1つに記載の磁気記録媒体であって、
 前記磁性層は、長手配向度が35%以下である
 磁気記録媒体。
(12) 上記(1)~(11)のうちいずれか1つに記載の磁気記録媒体であって、
 前記磁気記録媒体は、長手方向の保磁力が2000Oe以下である
 磁気記録媒体。
(13) 上記(1)~(12)のうちいずれか1つに記載の磁気記録媒体であって、
 前記磁性層の表面全体の面積に対する前記サーボバンドの面積の比率が、4.0%以下である
 磁気記録媒体。
(14) 上記(1)~(13)のうちいずれか1つに記載の磁気記録媒体であって、前記磁性層は、磁性粉を含み、前記磁性粉の粒子体積が2300nm以下である磁気記録媒体。
(15) 上記(1)~(14)のうちいずれか1つに記載の磁気記録媒体であって、
 データバンドの本数が4n(nは、2以上の整数)であり、サーボバンドの本数が、4n+1である
 磁気記録媒体。
(16) 上記(1)~(15)のうちいずれか1つに記載の磁気記録媒体であって、
 前記サーボバンドの幅が、95μm以下である
 磁気記録媒体。
(17) 上記(1)~(16)のうちいずれか1つに記載の磁気記録媒体であって、
 前記データバンドは、前記長手方向に長く、前記幅方向に整列され、前記幅方向でトラック毎に所定の記録トラック幅を有する複数の記録トラックを有し、
 前記記録トラック幅は、2.0μm以下である
 磁気記録媒体。
(18) 上記(1)~(17)のうちいずれか1つに記載の磁気記録媒体であって、
 前記データバンドに記録されるデータ信号における前記長手方向の1ビット長が、48nm以下である
 磁気記録媒体。
(19) 上記(1)~(18)のうちいずれか1つに記載の磁気記録媒体であって、
 前記磁性層は、六方晶フェライト、ε酸化鉄、又はコバルト含有フェライトの磁性粉を含む
 磁気記録媒体。
(20) 上記(1)~(19)のうちいずれか1つに記載の磁気記録媒体であって、
 前記磁気記録媒体の長手方向の引張試験において、前記磁気記録媒体における伸び率0.5%のときの荷重をσ0.5とし、磁気記録媒体における伸び率1.5%のときの荷重をσ1.5としたとき、σ1.5-σ0.5の値が、0.6N以下である
 磁気記録媒体。
(21) 上記(1)~(20)のうちいずれか1つに記載の磁気記録媒体であって、
 前記磁気記録媒体は、60℃で72時間保管されたとき、前記長手方向の収縮率が0.1%以下である
 磁気記録媒体。
(22) 上記(1)~(21)のうちいずれか1つに記載の磁気記録媒体であって、
 前記磁気記録媒体の厚さが5.6μm以下である
 磁気記録媒体。
(23) 上記(1)~(22)のうちいずれか1つに記載の磁気記録媒体であって、
 前記基材の厚さをTB、前記磁気記録媒体の厚さをTLとしたとき、(TL-TB)/TBの値が、0.41以下である
 磁気記録媒体。
(24) 上記(1)~(23)のうちいずれか1つに記載の磁気記録媒体であって、
 前記磁気記録媒体の長手方向のヤング率は、8.5GPa以下である
 磁気記録媒体。
(25) 上記(1)~(24)のうちいずれか1つに記載の磁気記録媒体であって、
 前記基材の長手方向のヤング率は、8.0GPa以下である
 磁気記録媒体。
(26) 上記(1)~(25)のうちいずれか1つに記載の磁気記録媒体であって、
 前記磁気記録媒体は、前記長手方向におけるテンションがコントロールされることで前記磁気記録媒体の幅が調整される
 磁気記録媒体。
(27)基材と磁性層とを有し、長手方向に長く、幅方向に短いテープ状の磁気記録媒体を含むカートリッジであって、
 前記磁性層は、データ信号が書き込まれる前記長手方向に長いデータバンドと、サーボ信号が書き込まれる前記長手方向に長いサーボバンドとを含み、垂直配向度が65%以上であり、
 前記データ信号の再生波形における孤立波形の半値幅が185nm以下であり、
 前記磁性層の厚さが、90nm以下であり、
 前記基材の厚さが、4.2μm以下である
 カートリッジ。
d・・・データバンド
s・・・サーボバンド
5・・・記録トラック
6・・・サーボ信号記録パターン
7・・・ストライプ
1・・・磁気記録媒体
11・・基材
12・・非磁性層
13・・磁性層
14・・バック層
20・・データ記録装置

Claims (27)

  1.  基材と磁性層とを有し、長手方向に長く、幅方向に短いテープ状の磁気記録媒体であって、
     前記磁性層は、データ信号が書き込まれる前記長手方向に長いデータバンドと、サーボ信号が書き込まれる前記長手方向に長いサーボバンドとを含み、垂直配向度が65%以上であり、
     前記データ信号の再生波形における孤立波形の半値幅が185nm以下であり、
     前記磁性層の厚さが、90nm以下であり、
     前記基材の厚さが、4.2μm以下である
     磁気記録媒体。
  2.  請求項1に記載の磁気記録媒体であって、
     前記孤立波形の半値幅が170nm以下である
     磁気記録媒体。
  3.  請求項2に記載の磁気記録媒体であって、
     前記孤立波形の半値幅が150nm以下である
     磁気記録媒体。
  4.  請求項3に記載の磁気記録媒体であって、
     前記孤立波形の半値幅が130nm以下である
     磁気記録媒体。
  5.  請求項4に記載の磁気記録媒体であって、
     前記孤立波形の半値幅が110nm以下である
     磁気記録媒体。
  6.  請求項1に記載の磁気記録媒体であって、
     前記垂直配向度が70%以上である
     磁気記録媒体。
  7.  請求項6に記載の磁気記録媒体であって、
     前記垂直配向度が75%以上である
     磁気記録媒体。
  8.  請求項7に記載の磁気記録媒体であって、
     前記垂直配向度が80%以上である
     磁気記録媒体。
  9.  請求項1に記載の磁気記録媒体であって、
     前記データバンドは、前記長手方向に長く、前記幅方向に整列され、前記幅方向でトラック毎に所定の記録トラック幅を有する複数の記録トラックを有し、
     サーボ信号記録パターンは、前記幅方向に対して所定のアジマス角を持って傾斜する複数のストライプを含み、
     前記複数のストライプうち、任意のストライプ上の任意の点をP1とし、前記P1に対して、前記幅方向で前記記録トラック幅分、離れた位置にある前記任意のストライプ上の点をP2としたとき、前記P1及び前記P2における前記長さ方向での距離が、0.08μm以上である
     磁気記録媒体。
  10.  請求項9に記載の磁気記録媒体であって、
     前記P1及び前記P2における前記長さ方向での距離が、0.62μm以下である
     磁気記録媒体。
  11.  請求項1に記載の磁気記録媒体であって、
     前記磁性層は、長手配向度が35%以下である
     磁気記録媒体。
  12.  請求項1に記載の磁気記録媒体であって、
     前記磁気記録媒体は、長手方向の保磁力が2000Oe以下である
     磁気記録媒体。
  13.  請求項1に記載の磁気記録媒体であって、
     前記磁性層の表面全体の面積に対する前記サーボバンドの面積の比率が、4.0%以下である
     磁気記録媒体。
  14.  請求項1に記載の磁気記録媒体であって、
     前記磁性層は、磁性粉を含み、
     前記磁性粉の粒子体積が2300nm以下である
     磁気記録媒体。
  15.  請求項1に記載の磁気記録媒体であって、
     データバンドの本数が4n(nは、2以上の整数)であり、サーボバンドの本数が、4n+1である
     磁気記録媒体。
  16.  請求項1に記載の磁気記録媒体であって、
     前記サーボバンドの幅が、95μm以下である
     磁気記録媒体。
  17.  請求項1に記載の磁気記録媒体であって、
     前記データバンドは、前記長手方向に長く、前記幅方向に整列され、前記幅方向でトラック毎に所定の記録トラック幅を有する複数の記録トラックを有し、
     前記記録トラック幅は、2.0μm以下である
     磁気記録媒体。
  18.  請求項1に記載の磁気記録媒体であって、
     前記データバンドに記録されるデータ信号における前記長手方向の1ビット長が、48nm以下である
     磁気記録媒体。
  19.  請求項1に記載の磁気記録媒体であって、
     前記磁性層は、六方晶フェライト、ε酸化鉄、又はコバルト含有フェライトの磁性粉を含む
     磁気記録媒体。
  20.  請求項1に記載の磁気記録媒体であって、
     前記磁気記録媒体の長手方向の引張試験において、前記磁気記録媒体における伸び率0.5%のときの荷重をσ0.5とし、磁気記録媒体における伸び率1.5%のときの荷重をσ1.5としたとき、σ1.5-σ0.5の値が、0.6N以下である
     磁気記録媒体。
  21.  請求項1に記載の磁気記録媒体であって、
     前記磁気記録媒体は、60℃で72時間保管されたとき、前記長手方向の収縮率が0.1%以下である
     磁気記録媒体。
  22.  請求項1に記載の磁気記録媒体であって、
     前記磁気記録媒体の厚さが5.6μm以下である
     磁気記録媒体。
  23.  請求項1に記載の磁気記録媒体であって、
     前記基材の厚さをTB、前記磁気記録媒体の厚さをTLとしたとき、(TL-TB)/TBの値が、0.41以下である
     磁気記録媒体。
  24.  請求項1に記載の磁気記録媒体であって、
     前記磁気記録媒体の長手方向のヤング率は、8.5GPa以下である
     磁気記録媒体。
  25.  請求項1に記載の磁気記録媒体であって、
     前記基材の長手方向のヤング率は、8.0GPa以下である
     磁気記録媒体。
  26.  請求項1に記載の磁気記録媒体であって、
     前記磁気記録媒体は、前記長手方向におけるテンションを増減させることで前記磁気記録媒体の幅が調整される
     磁気記録媒体。
  27.  基材と磁性層とを有し、長手方向に長く、幅方向に短いテープ状の磁気記録媒体を含むカートリッジであって、
     前記磁性層は、データ信号が書き込まれる前記長手方向に長いデータバンドと、サーボ信号が書き込まれる前記長手方向に長いサーボバンドとを含み、垂直配向度が65%以上であり、
     前記データ信号の再生波形における孤立波形の半値幅が195nm以下であり、
     前記磁性層の厚さが、90nm以下であり、
     前記基材の厚さが、4.2μm以下である
     カートリッジ。
PCT/JP2019/018533 2019-03-29 2019-05-09 磁気記録媒体及びカートリッジ WO2020202584A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021511081A JP7255674B2 (ja) 2019-03-29 2019-05-09 データ再生装置
US17/598,728 US11651781B2 (en) 2019-03-29 2019-05-09 Tape-shaped magnetic recording medium and cartridge
JP2023055161A JP2023082110A (ja) 2019-03-29 2023-03-30 データ再生装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019069188 2019-03-29
JP2019-069188 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020202584A1 true WO2020202584A1 (ja) 2020-10-08

Family

ID=72667875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018533 WO2020202584A1 (ja) 2019-03-29 2019-05-09 磁気記録媒体及びカートリッジ

Country Status (3)

Country Link
US (1) US11651781B2 (ja)
JP (2) JP7255674B2 (ja)
WO (1) WO2020202584A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7375813B2 (ja) * 2019-03-29 2023-11-08 ソニーグループ株式会社 磁気記録媒体及びサーボ信号記録装置
US11495254B2 (en) * 2020-10-08 2022-11-08 Western Digital Technologies, Inc. Media non-contacting magnetic recording head

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238346A (ja) * 2009-03-31 2010-10-21 Fujifilm Corp 磁気テープカートリッジ
JP2011216149A (ja) * 2010-03-31 2011-10-27 Fujifilm Corp 磁気記録媒体用結合剤、磁気記録媒体用組成物、および磁気記録媒体
JP2014117905A (ja) * 2012-12-18 2014-06-30 Toray Ind Inc 塗工用ポリエステルフィルム
JP2014199706A (ja) * 2013-03-15 2014-10-23 ソニー株式会社 磁気記録媒体、サーボ信号記録装置及び磁気記録媒体の製造方法
WO2015198514A1 (ja) * 2014-06-24 2015-12-30 ソニー株式会社 磁気記録媒体
JP2019008847A (ja) * 2017-06-23 2019-01-17 富士フイルム株式会社 磁気テープおよび磁気テープ装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019159464A1 (ja) * 2018-02-16 2019-08-22 ソニー株式会社 磁気記録媒体及びカートリッジ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238346A (ja) * 2009-03-31 2010-10-21 Fujifilm Corp 磁気テープカートリッジ
JP2011216149A (ja) * 2010-03-31 2011-10-27 Fujifilm Corp 磁気記録媒体用結合剤、磁気記録媒体用組成物、および磁気記録媒体
JP2014117905A (ja) * 2012-12-18 2014-06-30 Toray Ind Inc 塗工用ポリエステルフィルム
JP2014199706A (ja) * 2013-03-15 2014-10-23 ソニー株式会社 磁気記録媒体、サーボ信号記録装置及び磁気記録媒体の製造方法
WO2015198514A1 (ja) * 2014-06-24 2015-12-30 ソニー株式会社 磁気記録媒体
JP2019008847A (ja) * 2017-06-23 2019-01-17 富士フイルム株式会社 磁気テープおよび磁気テープ装置

Also Published As

Publication number Publication date
JPWO2020202584A1 (ja) 2020-10-08
JP2023082110A (ja) 2023-06-13
US11651781B2 (en) 2023-05-16
US20220148618A1 (en) 2022-05-12
JP7255674B2 (ja) 2023-04-11

Similar Documents

Publication Publication Date Title
JP6927405B2 (ja) 磁気記録媒体
JP6729783B2 (ja) 磁気記録媒体
JP2020170580A (ja) 磁気記録テープとその製造方法、磁気記録テープカートリッジ
JP7247953B2 (ja) 磁気記録媒体及びカートリッジ
WO2021033330A1 (ja) 磁気記録媒体、磁気記録再生装置および磁気記録媒体カートリッジ
JP2023082110A (ja) データ再生装置
JP7063411B2 (ja) 磁気記録媒体、磁気記録再生装置および磁気記録媒体カートリッジ
WO2021033331A1 (ja) 磁気記録媒体、磁気記録再生装置および磁気記録媒体カートリッジ
US11830532B2 (en) Magnetic recording medium including magnetic layer having magnetic powder, magnetic recording/reproducing device, and magnetic recording medium cartridge
WO2023037585A1 (ja) サーボパターン記録装置、サーボパターン記録方法、磁気テープの製造方法、磁気テープ
WO2021059542A1 (ja) 磁気記録媒体、磁気記録再生装置および磁気記録媒体カートリッジ
WO2020203785A1 (ja) 磁気記録媒体及びサーボ信号記録装置
WO2023153024A1 (ja) サーボ記録装置、サーボライトヘッド、磁気テープの製造方法及び磁気テープ
JP2021057098A (ja) 磁気記録媒体、磁気記録再生装置および磁気記録媒体カートリッジ
JP2021034105A (ja) 磁気記録媒体、磁気記録再生装置および磁気記録媒体カートリッジ
JP2021034104A (ja) 磁気記録媒体、磁気記録再生装置および磁気記録媒体カートリッジ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923203

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511081

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19923203

Country of ref document: EP

Kind code of ref document: A1