WO2015189926A1 - リチウムイオン電池の負極材料、リチウムイオン電池、リチウムイオン電池の負極又は負極材料の製造方法及びその製造装置 - Google Patents
リチウムイオン電池の負極材料、リチウムイオン電池、リチウムイオン電池の負極又は負極材料の製造方法及びその製造装置 Download PDFInfo
- Publication number
- WO2015189926A1 WO2015189926A1 PCT/JP2014/065432 JP2014065432W WO2015189926A1 WO 2015189926 A1 WO2015189926 A1 WO 2015189926A1 JP 2014065432 W JP2014065432 W JP 2014065432W WO 2015189926 A1 WO2015189926 A1 WO 2015189926A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative electrode
- lithium ion
- silicon
- ion battery
- electrode material
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1395—Processes of manufacture of electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a negative electrode material for a lithium ion battery, a lithium ion battery, a method for manufacturing a negative electrode or a negative electrode material for a lithium ion battery, and a manufacturing apparatus therefor.
- lithium ion batteries are mixed with a negative electrode material and negative electrode active material (hereinafter also referred to as “negative electrode material”) graphite (natural graphite, artificial graphite, etc.) on the negative electrode side using a binder.
- the negative electrode provided with the prepared mixture layer.
- the positive electrode side is formed by binding a positive electrode material and a positive electrode active material lithium (Li) oxide powder (LiCoO 2 , LiNiO 2 , LiMnO 2, etc.) and conductive graphite (mainly carbon black, etc.) to a binder (PVdF Etc.) and a positive electrode provided with a mixture layer formed by coating.
- the cell container of the lithium ion battery is filled with an electrolytic solution, and a separator (mainly a polyolefin-based porous material or a porous polypropylene sheet) is provided between the negative electrode material and the positive electrode material. It has been.
- a separator mainly a polyolefin-based porous material or a porous polypropylene sheet
- the above-described separator is provided so as to allow the electrolyte solution to pass therethrough and cause movement of lithium ions so as to separate the electrodes from each other so that an electrical short circuit does not occur.
- the charging / discharging of the lithium ion battery is performed by moving lithium ions between the negative electrode material and the positive electrode material in the electrolytic solution. Lithium ions move to the negative electrode side during charging, and lithium ions move to the positive electrode side during discharging. Charging is performed through an externally connected power source, and discharging is performed through an externally connected resistor (load).
- silicon particles As an example of silicon particles, a powder having a diameter of about 38 microns ( ⁇ m) or less formed by pulverizing single crystal silicon with a mortar and classifying it with a mesh is heated at 30 ° C./min in an argon atmosphere. Some have been heated to a temperature of 150 ° C. (reached temperature) (see Patent Document 1). As another example, by supplying liquid silicon tetrachloride in high-temperature and high-concentration zinc gas and reacting at a high temperature of 1050 ° C.
- silicon tetrachloride is reduced to form silicon particles
- Fine silicon is crystallized and agglomerated at 1000 ° C. or lower, particularly 500 to 800 ° C., and the size of the formed silicon particles is adjusted and collected in an aqueous zinc chloride solution. It is disclosed that high-purity silicon particles having a particle size of about 1 to 100 ⁇ m can be obtained by this work, and that it is used (see Patent Document 2).
- the silicon particles disclosed in the above-mentioned prior art documents since it is necessary to perform a high-temperature synthesis and collection process, the manufacturing process until obtaining the silicon particles as the negative electrode material becomes extremely complicated. As a result, it is unavoidable that productivity is lowered and manufacturing costs are increased. Therefore, the silicon particles disclosed heretofore have a significant problem that the negative electrode characteristics of the lithium ion battery are poor and the industrial utility is not yet sufficient. That is, development of lithium ion batteries using silicon particles is still in progress.
- the present invention solves at least a part of various problems related to charge / discharge cycle characteristics, etc., which a negative electrode material using conventional silicon particles has, and thereby provides a negative electrode material for a high-performance lithium ion battery, a lithium ion battery, It can greatly contribute to the provision of a method for manufacturing a negative electrode or a negative electrode material of a lithium ion battery and a manufacturing apparatus therefor.
- the negative electrode material of one lithium ion battery of the present invention has fine silicon particles formed by pulverizing crystalline silicon.
- the silicon fine particles used as each of the negative electrode materials described above are, for example, chips or cuttings which are usually treated as industrial waste, which is obtained by cutting a molten or solid lump of silicon or an ingot with a fixed abrasive wire.
- the point that waste can be used as a starting material is worthy of special mention.
- the silicon fine particles formed by pulverizing the chip or cutting waste with a ball mill and / or a bead mill can maintain a high level of charge / discharge cycle characteristics of a lithium ion battery, and / or This is a preferred embodiment for realizing the improvement of the characteristics.
- one lithium ion battery of the present invention includes a negative electrode material having fine silicon particles formed by pulverizing crystalline silicon.
- the change in charge / discharge capacity is reduced even if charge / discharge is repeated, in other words, the charge / discharge cycle characteristics are maintained at a high level and / or the characteristics are improved. Can do.
- the negative electrode material manufacturing apparatus for one lithium ion battery of the present invention includes a pulverizing unit that forms fine silicon particles by pulverizing crystalline silicon.
- a crushing part for forming the silicon fine particles having a peak intensity larger than the intensity of other diffraction peaks is provided.
- the change in charge capacity and / or discharge capacity is small, in other words, for manufacturing lithium ion batteries having good charge / discharge cycle characteristics. Can contribute.
- the negative electrode manufacturing apparatus of one lithium ion battery of the present invention includes a pulverization unit that forms fine silicon particles serving as a negative electrode material by pulverizing crystalline silicon.
- the manufacturing method of the negative electrode material of one lithium ion battery of the present invention includes a pulverization step of forming fine silicon particles by pulverizing crystalline silicon.
- the manufacturing method of the negative electrode of one lithium ion battery of the present invention includes a pulverizing step of forming crystalline silicon particles as a negative electrode material by pulverizing crystalline silicon.
- the charge capacity and / or the discharge capacity change little even when charge and discharge are repeated, in other words, contribute to the production of a lithium ion battery having good charge / discharge cycle characteristics. Can do.
- the crystalline silicon in each of the above-described inventions includes not only single crystal silicon but also polycrystalline silicon. Further, metal silicon can be selected as the crystalline silicon in each of the above-described inventions.
- the negative electrode material of one lithium ion battery of the present invention it is possible to realize a lithium ion battery having a small change in charge / discharge capacity even when charge / discharge is repeated, in other words, a good charge / discharge cycle characteristic.
- a change in charge / discharge capacity can be reduced, in other words, cycle characteristics of charge / discharge can be improved.
- the manufacturing apparatus of one lithium ion battery of the present invention and the manufacturing method of one lithium ion battery of the present invention even if charging / discharging is repeated, the change in charge / discharge capacity is small, in other words, charging / discharging. This can contribute to the production of a lithium ion battery with good discharge cycle characteristics.
- FIG. 1 is a flow diagram showing a manufacturing process of a negative electrode material of the lithium ion battery of this embodiment.
- FIG. 2 is a schematic diagram showing a negative electrode material manufacturing apparatus and manufacturing process of the lithium ion battery of this embodiment.
- a negative electrode material for a lithium ion battery according to the present embodiment, a lithium ion battery including the negative electrode material, and a method for manufacturing the negative electrode material include a silicon cutting process in the production process of a silicon wafer used for a semiconductor product such as a solar battery.
- Various processes using silicon chips or silicon cutting scraps or polishing scraps hereinafter also referred to as “silicon chips or the like” or “chips or the like”) as waste materials in Is provided.
- the chips and the like include fine scraps obtained by pulverizing a silicon wafer to be discarded by a known pulverizer.
- the manufacturing method of the lithium ion battery of this embodiment includes the following steps (1), (2) and (4).
- the manufacturing method of the lithium ion battery of this embodiment can include the following step (3) as another aspect that can be adopted.
- (1) Cleaning step (S1) (2) Grinding step (S2) (3) Oxide film removal step (S3) (4)
- the negative electrode material and the negative electrode manufacturing apparatus 100 of the lithium ion battery mainly include a cleaning machine (cleaning and preliminary pulverizer) 10, a pulverizer 20, and a dryer (not shown).
- the rotary evaporator 40, and a mixing unit 60 that bears part of the negative electrode formation of the lithium ion battery.
- the negative electrode material of the lithium ion battery and the negative electrode manufacturing apparatus 100 of the present embodiment can include an oxide film removal tank 50 and a centrifuge 58 as another aspect that can be adopted.
- Cleaning step (S1) In the cleaning step (S1) of the present embodiment, for example, it is formed in the cutting process of single crystal or polycrystalline silicon, that is, a crystalline silicon lump or ingot (n-type crystalline silicon lump or ingot). Silicon chips and the like are cleaned. Typical silicon chips and the like are chips and the like in which a silicon ingot is cut out by a known wire or the like (typically, a fixed abrasive wire). Therefore, in the present embodiment, since the silicon fine particles constituting the negative electrode material of the lithium ion battery are formed using silicon chips, which have been conventionally regarded as waste, as the starting material, the manufacturing cost and / or the raw material Excellent in terms of easy procurement and resource utilization.
- the cleaning step (S1) of the present embodiment is mainly for the purpose of removing organic substances adhering in the formation process of the above-described silicon chips, typically organic substances such as coolants and additives used in the cutting process.
- the chips 1 to be cleaned are weighed, the chips 1, the predetermined first liquid, and the ball 11 have a bottomed cylindrical shape. It is introduced into the pot 13a. After sealing the inside of the pot 13a using the lid 13b, the two cylindrical rotating bodies 15 included in the ball mill which is the cleaning machine (cleaning and preliminary pulverizing machine) 10 are rotated, thereby rotating the rotary body 15 on the rotary body 15. The pot 13a is rotated. As a result, in the pot 13a, the chips 1 to be cleaned are dispersed in the first liquid, whereby the chips 1 are cleaned and preliminarily pulverized.
- the ball mill machine of this embodiment uses the steel balls, magnetic balls, cobblestones and the like stored in the pot 13a and the lid 13b as the ball type 11 (grinding medium), and rotates the pot 13a and the lid 13b. It is a crusher that gives a physical impact force.
- a suitable example of the first liquid is acetone.
- 300 milliliters (mL) of acetone is added to 100 grams (g) of silicon chips and the like, and a ball mill machine (in this embodiment, manufactured by MASUDA, Silicon chips and the like were dispersed in acetone by stirring in a pot 13a and a lid 13b placed on a rotating body 15 (Universal BALL MILL) for about 1 hour.
- Ball types of the ball mill machine were alumina balls having a particle diameter of ⁇ 10 millimeters (mm) and alumina balls having a particle diameter of ⁇ 20 mm.
- the cleaning step (S1) of the present embodiment the dispersion process is performed by pre-grinding and stirring silicon chips and the like in the first liquid in the ball mill. Accordingly, since the cleaning efficiency is remarkably improved as compared with the treatment of simply immersing in the first liquid, silicon particles suitable for improving the negative electrode characteristics of the lithium ion battery, particularly for improving the charge / discharge cycle characteristics, are used. Can be obtained.
- the lid 13b is opened to discharge the silicon particles together with the first liquid, and then the first liquid is removed by suction filtration with a known vacuum filtration means to become a waste liquid.
- the remaining silicon particles are dried in a known dryer. If necessary, the silicon particles obtained after the drying treatment are again preliminarily crushed and washed in the washing machine (washing / preliminary pulverizer) 10 in the same process.
- a suitable example of the second liquid of this embodiment is IPA (isopropyl alcohol).
- the silicon particles obtained in the second liquid and the washing step (S1) are placed in the pot 13a so that the second liquid is 95% of the silicon particles and 95% of the second liquid.
- a preliminary pulverization process is performed by rotating a cleaning machine (cleaning and preliminary pulverizer) 10. After relatively coarse particles are removed by passing the slurry containing silicon particles that have been subjected to pre-grinding treatment through a mesh having an opening of 180 microns, the obtained slurry containing silicon particles is used as a bead mill (this embodiment).
- Is further pulverized using a star mill LMZ015 manufactured by Ashizawa Fineting More specifically, a slurry containing silicon particles from which silicon chips having a particle diameter of 180 microns or more are removed is introduced into the inlet 21 of the pulverizer 20, and the slurry is circulated using a pump 28 while the slurry is circulated. At 22, a fine pulverization process is performed.
- a specific example of the bead type of the bead mill is zirconia beads having a particle diameter of ⁇ 0.5 mm.
- the second liquid is removed using a rotary evaporator 40 that automatically performs vacuum distillation to obtain finely pulverized silicon fine particles as a result. It is done.
- silicon fine particles can be obtained by introducing about 450 g of zirconia beads having a particle diameter of ⁇ 0.5 mm and performing a fine grinding process at a peripheral speed of 2908 rpm for 4 hours.
- the pulverization step (S2) it is also possible to perform the pulverization treatment by any one of the pulverizers other than those described above, or a combination of two or more of the pulverizers composed of a ball mill, a bead mill, a jet mill and a shock wave pulverizer. Another aspect that can be achieved.
- a pulverizer used in the pulverization step (S2) not only an automatic pulverizer but also a manual pulverizer may be employed.
- the silicon fine particles obtained by the above-described crushing step (S2) can be further crushed.
- Oxide film removal step (S3) In the present embodiment, an oxide film removing step (S3) is performed as a preferred embodiment. However, even if this oxide film removal step (S3) is not performed, at least a part of the effects of the present embodiment can be achieved.
- the silicon fine particles 2 obtained by the pulverizing step (S2) are brought into contact with hydrofluoric acid or an aqueous ammonium fluoride solution.
- the silicon fine particles 2 obtained by the pulverization step (S2) are dispersed by being immersed in an aqueous solution of hydrofluoric acid or ammonium fluoride.
- the silicon fine particles 2 are dispersed in a hydrofluoric acid or ammonium fluoride aqueous solution 55 by using a stirrer 57, whereby an oxide (on the surface of the silicon fine particles 2 ( Mainly silicon oxide) is removed.
- the silicon fine particles from which part or all of the surface oxide has been removed are separated from the hydrofluoric acid aqueous solution by the centrifuge 58. Thereafter, the silicon fine particles are immersed in a third liquid such as an ethanol solution. By removing the third liquid, silicon fine particles from which part or all of the oxide (or oxide film) on the surface that was originally formed are removed can be obtained.
- the process by the negative electrode formation process (S4) mentioned later is performed for a silicon
- the silicon fine particles are immersed in hydrofluoric acid or an aqueous ammonium fluoride solution to bring the hydrofluoric acid into contact with the silicon fine particles.
- a step of bringing hydrofluoric acid or an aqueous ammonium fluoride solution into contact with the silicon fine particles by the above method can also be employed.
- spraying a hydrofluoric acid aqueous solution onto silicon fine particles like a so-called shower is another aspect that can be employed.
- Negative electrode forming step (S4) The negative electrode material and the negative electrode manufacturing apparatus 100 of the lithium ion battery according to the present embodiment have a silicon fine material that becomes a negative electrode active material formed by the pulverization step (S2) or by the pulverization step (S2) and the oxide film removal step (S3).
- a mixing unit 60 is provided that mixes particles and a negative electrode material (for example, copper foil) using a binder (for example, ammonium carboxymethyl cellulose (CMC) and styrene butadiene rubber (SBR)).
- a negative electrode is formed using the mixture layer formed by the mixing unit 60.
- the silicon fine particles obtained by the pulverization step (S2) or by the pulverization step (S2) and the oxide film removal step (S3) are, for example, the number distribution of crystallite diameters of the respective silicon fine particles and / or It can be classified to reduce the variation in volume distribution.
- FIG. 3A is an SEM (scanning electron microscope) image of an example of silicon fine particles or aggregates thereof after the crushing step (S2) of the first embodiment.
- FIG. 3B is a figure which shows the SEM image of an example of the expanded silicon
- 3C is a diagram showing an SEM image of another example of an aggregate of silicon fine particles in the first embodiment, and FIG. 3C is an enlarged view of a part of (b) (a).
- FIG. 4 is a view showing a transmission electron microscope (TEM) image of the silicon fine particles of the first embodiment.
- TEM transmission electron microscope
- FIG. 3A As shown in FIG. 3A, not only individual silicon fine particles, but also silicon fine particles indicated by Y1 and Y2 or aggregates thereof were confirmed. Interestingly, when analyzed in more detail, as shown in FIG. 3B and the Z portion of FIGS. 3C (a) and 3 (b), the silicon fine particles or the aggregates thereof are so-called thin layered silicon fine particles. It was confirmed that it was an aggregate or aggregate in a state of being folded into a multi-layer petal shape or a scale shape.
- the TEM image shown in FIG. 4 focusing on individual silicon fine particles. Specifically, it has been confirmed that the individual silicon fine particles indicated by the region surrounded by the white line in FIG. 4 are crystalline, that is, single crystal silicon. In addition, it was confirmed that at least some of the silicon fine particles were amorphous polygonal crystallites having a size of about 2 nm to about 10 nm in a cross-sectional view. In FIG. 4, the crystal plane orientation is shown in each region surrounded by a white line.
- FIG. 5 shows (a) a crystallite size distribution indicating a number distribution with respect to a (111) -direction crystallite size of the silicon fine particles according to the first embodiment. (B) It is a graph which shows the crystallite diameter distribution which shows volume distribution. FIG. 5 shows the results obtained by analyzing the crystallite size distribution of the silicon fine particles after the pulverization step (S2) using the X-ray diffraction method.
- the horizontal axis represents the crystallite diameter (nm), and the vertical axis represents the frequency.
- the mode diameter was 1.6 nm and the median diameter (50% crystallite diameter) was 2.6 nm.
- the mode diameter was 6.3 nm and the median diameter was 9.9 nm. Accordingly, it was confirmed that the number distribution was 5 nm or less regardless of the mode diameter or the median diameter, and more specifically, a value of 3 nm or less was realized. Furthermore, in the volume distribution, it was confirmed that a value of 10 nm or less was realized regardless of the mode diameter or the median diameter.
- the silicon fine particles obtained after the pulverization step (S2) using the bead mill method had an average crystallite diameter of about 9.8 nm. .
- the crystallite size distribution of the silicon fine particles after the oxide film removing step (S3) is almost the same as that shown in FIG.
- the agglomerates or aggregates of silicon fine particles after at least the pulverization step (S2) or the oxide film removal step (S3) are:
- the thin silicon fine particles having a major axis in the range of about 100 nm or less are folded in a multi-layered petal shape or scale shape.
- the silicon fine particles are mainly composed of crystallites having a major axis of 10 nm or less.
- the silicon fine particles of the present embodiment include silicon fine particles having a crystallite diameter of 1 nm or less as shown in FIG. Interestingly, it was also confirmed that the average crystallite size in the volume distribution of the silicon fine particles of the present embodiment is about 10 nm. This numerical value can be said to be a very small value. Further, as described above, by further investigation, it was confirmed that the apparent volume diameter of the silicon fine particles was in the range of about 100 nm or less. In particular, by including a large number of ultrafine silicon particles having a crystallite diameter of 5 nm or less in the major axis, the charge / discharge cycle characteristics derived from the silicon fine particles used as the negative electrode material of the lithium ion battery described later are improved with higher accuracy. Is.
- FIG. 6A is a result of X-ray diffraction measurement of silicon fine particles or aggregates before the pulverization step (S2) of the first embodiment. It is the result of having analyzed the result (Q) of the X-ray-diffraction measurement of the silicon fine particle or its aggregate after (P) and a grinding
- FIG. 6B is an enlarged view of a part of the result (P) of FIG. 6A, and shows the silicon fine particles or aggregates thereof after the pulverization step (S2) of the first embodiment.
- the result (R) which analyzed the result of the X-ray-diffraction measurement in the limited angle range.
- the peak intensities of the C (002) plane and C (003) plane shown in FIG. 6B are about 1 wt% to about 3 wt% of graphite fine particles or silicon fine particles. Indicates that it is contained within the collective.
- the size of the fine graphite particles on the C (002) plane was about 35 nm
- the size of the fine graphite particles on the C (003) plane was about 75 nm.
- the diffraction peak attributed to Si (111) after the pulverization step (S2) has a larger half width than the diffraction peak attributed to other plane orientations. It was confirmed that In addition, the average crystallite diameter calculated using the Scherrer equation from the half width of the Si (111) peak after the pulverization step (S2) was 9.8 nm.
- the Si (111) arrangement interval of the crystal lattice of the silicon fine particles after the pulverization step (S2) is 0.31 nm (3.1 cm) as shown in FIG. From the above results, the silicon particles cut out by the fixed abrasive method and the silicon fine particles formed from the silicon particles are cut with Si (111) considered to have the weakest Si bonding force as a cut surface. it is conceivable that.
- the crystalline silicon fine particles having a plane orientation of (111) mainly have a multi-layer petal shape or a scale shape. It can be said that this is an aggregate in a state of being folded multiple times.
- lithium ions (Li + ) reach the negative electrode, lithium ions (Li + ) easily enter and exit the crevice gaps of the aggregate in a multi-layered petal-like or scaly manner. A unique effect can be achieved.
- the lithium ion battery of this embodiment uses the silicon fine particles produced in the first embodiment as a negative electrode material.
- the configuration other than the negative electrode material is the same as the configuration of a conventional CR2032-type coin cell lithium ion battery.
- FIG. 7 is a schematic configuration diagram of the lithium ion battery 500 of the present embodiment.
- the lithium ion battery 500 of this embodiment includes a negative electrode 512 that is electrically connected to the negative electrode material and the negative electrode material 514 and a positive electrode that is electrically connected to the positive electrode material and the positive electrode material 518 in the CR5102-type coin cell container 510. 516, a separator 520 that electronically insulates the negative electrode material and negative electrode material 514 from the positive electrode material and positive electrode material 518, and an electrolyte solution 530.
- the lithium ion battery 500 of the present embodiment has an external circuit including a power source 540 and a resistor 550 connected to the negative electrode 512 and the positive electrode 516 in order to realize charging and discharging.
- the manufacturing method of the lithium ion battery 500 of this embodiment is as follows.
- about 0.3 g of silicon fine particles produced in the first embodiment is about 10 mL (1% by weight CMC binder aqueous solution, SBR binder aqueous dispersion (manufactured by JSR Corporation, TRD2001)). In a milliliter) solution. At this time, it mix
- the slurry prepared by mixing using an agate mortar is 15 ⁇ m thick on one side of a copper foil of about 9 cm (length) ⁇ 10 cm (width) so as to have a thickness of about 100 ⁇ m to about 200 ⁇ m after drying.
- a drying process is performed on the hot plate in the air at 80 ° C. for about 1 hour.
- the above-mentioned copper foil is punched into a circular shape having a diameter corresponding to the battery standard CR 2032 type coin cell together with the dry slurry to form a working electrode.
- the material dried again by vacuum heating at 120 ° C. for 6 hours in the glow box is pasted on the inner surface of the negative electrode 512 made of copper foil, whereby A negative electrode is produced.
- the positive electrode a lithium substrate punched into a circle having a diameter of 13 mm was used as the positive electrode 516 in order to evaluate the characteristics of the negative electrode material using a half-cell lithium ion battery.
- a known positive electrode can be used instead of the positive electrode 516 described above.
- the separator 520 of the present embodiment is a porous polyprolene sheet.
- the electrolytic solution 530 of the present embodiment is prepared by adding 1 mol of lithium hexafluorophosphate (1 L) in a solvent (1 L) of ethylene carbonate (EC) / diethyl carbonate (DEC) mixed at a volume ratio of 1/1. LiPF 6 ) is dissolved, and an amount within the amount satisfying the internal volume (about 1 mL) of the CR2032-type coin cell is injected.
- Examples of the electrolytic solvent constituting the electrolytic solution 530 in this embodiment are ethylene carbonate (EC), propylene carbonate (PC) (polyprolene sheet) cyclic carbonate, dimethyl carbonate (DMC), and diethyl carbonate (DEC). ) And the like. Further, a supporting salt such as lithium hexafluorophosphate (LiPF) or lithium tetrafluoroborate (LiBF) can be used by dissolving in the above-mentioned electrolytic solvent.
- EC ethylene carbonate
- PC propylene carbonate
- DMC dimethyl carbonate
- DEC diethyl carbonate
- LiPF lithium hexafluorophosphate
- LiBF lithium tetrafluoroborate
- FIG. 8 is a graph showing the cycle characteristics of charging of the lithium ion battery 500 of the second embodiment.
- FIG. 9 is a graph showing the discharge cycle characteristics of the lithium ion battery 500 of the second embodiment.
- the horizontal axis in each figure indicates the number of times the charge / discharge process is repeated. Further, a to g described at the top of each figure indicate a current density (mA / g) during charging and a period thereof. Therefore, for example, a relatively gentle charging process with a current density of 200 (mA / g) is performed in the period a, and a rapid current density of 5000 (mA / g) is performed in the period d. It shows that the charging process is being performed.
- the second implementation described above was used, except that a negative electrode using commercially available silicon particles (manufactured by Soekawa Rikagaku Co., Ltd., particle size 1 ⁇ m to 2 ⁇ m, purity 99.9%) was used as the negative electrode active material
- a lithium ion battery having a configuration similar to that of the embodiment was examined under the same conditions as the charge / discharge cycle characteristics described above. As a result, it was confirmed that both the charge capacity value and the discharge capacity value deteriorated rapidly (in an inversely proportional curve) from the 20th cycle, as shown in FIGS.
- the charge capacity value and the discharge capacity value decreased from about 1500 (mAh / g) to about 800 (mAh / g) from the 20th cycle to the 30th cycle. . From the above results, it was revealed that the lithium ion battery 500 of the second embodiment is remarkably superior to the comparative example described above.
- the lithium ion battery 500 of the second embodiment is several times higher than the theoretical value of about 370 mAh / g, which is the theoretical value of the lithium ion battery having a negative electrode as a negative electrode active material made of graphite, which has been conventionally employed. It became clear that not only the charge / discharge capacity of about 1500 mAh / g was realized, but also very stable charge / discharge cycle characteristics. In addition, unlike the commercially available silicon particles, by using the silicon fine particles and / or aggregates thereof according to the first embodiment, the capacity is high and the charge / discharge cycle characteristics are excellent. It was confirmed that a lithium ion battery could be realized.
- ⁇ Other embodiments By the way, in each of the above-described embodiments, as a starting material, a single-crystal or polycrystalline silicon lump or silicon chips formed in the cutting process of an ingot is exemplified, but other forms of silicon are exemplified. It is another aspect in which chips and the like are used as a starting material. Specifically, silicon chips and the like are not necessarily formed in the cutting process of silicon ingots in the production process of semiconductor products. It is also possible to cut them randomly or randomly. In addition, so-called silicon waste materials such as silicon chips and silicon polishing scraps that are normally discarded can be used as starting materials for the silicon fine particles in each of the above-described embodiments. Also, fine waste obtained by pulverizing a waste wafer or the like may be included. Furthermore, silicon fine particles using a material such as metallic silicon chips or silicon polishing dust as a starting material can also be used.
- the impurity concentration of the n-type crystalline silicon in each of the above embodiments is not particularly limited. Further, not only n-type but also p-type crystalline silicon can be employed. Furthermore, crystalline silicon which is a genuine semiconductor can also be employed as the crystalline silicon in each of the embodiments described above. Note that since movement of electrons in the negative electrode material of the lithium ion battery is emphasized, it is more preferable to use crystalline silicon containing an n-type impurity. Further, the graphite fine particles of about 1 wt% to about 3 wt% indicated by the peak intensities of the C (002) plane and the C (003) plane shown in FIG. Since it is contained in the aggregate, some or all of these graphites will be added to the points that can contribute to the improvement of the conductivity of the negative electrode material.
- the silicon fine particles of the above-described embodiments and the lithium ion battery including the same are not limited to application to the coin cell type structure introduced in the second embodiment. Therefore, the present invention can be applied to various devices or apparatuses including or using a lithium ion battery having a larger electric capacity than a coin cell type structure. Moreover, it is another one aspect
- the negative electrode manufacturing apparatus 200 shown in FIG. 12 is adopted as an alternative device for the negative electrode material and negative electrode manufacturing apparatus 100 shown in FIG. 2 in the first embodiment. Also good. Specifically, from the viewpoint of simplification of equipment and / or reduction of manufacturing cost, in the negative electrode manufacturing apparatus 200 for a lithium ion battery, a cleaning machine for cleaning silicon chips formed in the cutting process of silicon. Reference numeral 10 denotes an aspect also serving as a pulverizer 20 that forms fine silicon particles by pulverizing washed silicon chips and the like. Therefore, in the apparatus / method shown in FIG. 12, for example, beads having a relatively large diameter are used in the cleaning process, and beads having a relatively small diameter are used in the pulverization process, so that the negative electrode material of the lithium ion battery is used. Silicon fine particles will be obtained.
- Silicon fine particles and a lithium ion battery including the same include, for example, various power generation or power storage devices (including small household power storage devices and large power storage systems), smartphones, portable information terminals, portable electronic devices (portable devices). Telephone, portable music player, notebook computer, digital camera / video), electric vehicle, hybrid electric vehicle (HEV) or plug-in hybrid electric vehicle (PHEV), motor-driven motorcycle, motor as power source It can be suitable for various devices or apparatuses including a motor tricycle, other transport machines or vehicles.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Silicon Compounds (AREA)
Abstract
Description
2 シリコン微細粒子
10 洗浄機(洗浄兼予備粉砕機)
11 ボール種
13a ポット
13b 蓋
15 回転軸
20 粉砕機
21 導入口
22 処理室
24 排出口
25 フィルタ
30 乾燥機
40 ロータリーエバポレータ
50 酸化膜除去槽
55 フッ化水素酸又はフッ化アンモニウム水溶液
57 撹拌器
58 遠心分離機
60 混合部
100 リチウムイオン電池の負極材料及び負極の製造装置
500 リチウムイオン電池
510 容器
512 負電極
514 負極材及び負極材料
516 正電極
518 正極材及び正極材料
520 セパレータ
530 電解液
540 電源
550 抵抗
図1は、本実施形態のリチウムイオン電池の負極材料の製造工程を示すフロー図である。また、図2は、本実施形態のリチウムイオン電池の負極材料の製造装置及び製造工程を示す概要図である。
(1)洗浄工程(S1)
(2)粉砕工程(S2)
(3)酸化膜除去工程(S3)
(4)負極形成工程(S4)
本実施形態の洗浄工程(S1)においては、例えば、単結晶又は多結晶のシリコン、すなわち、結晶性シリコンの塊又はインゴット(n型の結晶性シリコンの塊又はインゴット)の切削過程において形成されるシリコンの切粉等が洗浄される。代表的なシリコンの切粉等は、シリコンのインゴットが公知のワイヤ等(代表的には、固定砥粒ワイヤ)によって削り出される切粉等である。従って、本実施形態においては、従来、云わば廃材とされてきたシリコンの切粉等を出発材として、リチウムイオン電池の負極材料を構成するシリコン微細粒子を形成するため、製造コスト及び又は原材料の調達の容易性、及び資源の活用性の観点で優れている。
その後、粉砕工程(S2)においては、洗浄されたシリコン粒子に所定の第2液体を添加して、ビーズミル機内においてシリコン粒子の粉砕処理が行われる。
本実施形態においては、好適な一態様として酸化膜除去工程(S3)が行われる。ただし、この酸化膜除去工程(S3)が行われなくても、本実施形態の効果の少なくとも一部の効果が奏される。
本実施形態のリチウムイオン電池の負極材料及び負極の製造装置100は、粉砕工程(S2)によって、あるいは粉砕工程(S2)及び酸化膜除去工程(S3)によって形成された負極活物質となるシリコン微細粒子と、負極材(例えば、銅箔)とを結着材(例えば、アンモニウムカルボキシルメチルセルロース(CMC)及びスチレンブタジエンゴム(SBR))を用いて混合する混合部60を備えている。この混合部60によって形成される合剤層を用いて負電極が形成される。
なお、上述の粉砕工程(S2)によって、あるいは粉砕工程(S2)及び酸化膜除去工程(S3)によって得られたシリコン微細粒子は、例えば、各シリコン微細粒子の結晶子径の個数分布及び/又は体積分布のバラつきを軽減するために分級され得る。
1.SEM像及びTEM像よるシリコン微細粒子の解析
図5は、第1の実施形態のシリコン微細粒子の(111)方向結晶子径に対する、(a)個数分布を示す結晶子径分布と、(b)体積分布を示す結晶子径分布とを示すグラフである。図5は、粉砕工程(S2)後のシリコン微細粒子の結晶子径分布を、X線回折法を用いて解析することによって得られた結果を示している。図5(a)及び図5(b)は、いずれも、横軸が結晶子径(nm)を表し、縦軸は、頻度を表している。
図6(a)は、第1の実施形態の粉砕工程(S2)前のシリコン微細粒子又はその凝集体のX線回折測定の結果(P)及び粉砕工程(S2)後のシリコン微細粒子又はその凝集体のX線回折測定の結果(Q)を、広い角度範囲において解析した結果である。また、図6(b)は、図6(a)の結果(P)の一部を拡大したものであり、第1の実施形態の粉砕工程(S2)後のシリコン微細粒子又はその凝集体のX線回折測定の結果を限定された角度範囲において解析した結果(R)である。なお、図6(b)内に示されたC(002)面及びC(003)面の各ピーク強度は、約1wt%~約3wt%のグラファイトの微粒子がシリコン微細粒子群又はシリコン微細粒子の集合体内に含まれていることを示している。なお、一例としてのC(002)面のグラファイトの微粒子の大きさは、約35nmであり、C(003)面のグラファイトの微粒子の大きさは、約75nmであった。
本実施形態のリチウムイオン電池は、第1の実施形態において作製したシリコン微細粒子を負極材料として用いている。なお、負極材料以外の構成は、従来のCR2032型のコインセル構造リチウムイオン電池の構成と同様である。
上述の構成を備えるリチウムイオン電池500を用いて、充放電サイクル特性を測定した結果について説明する。図8は、第2の実施形態のリチウムイオン電池500の充電のサイクル特性を示すグラフである。また、図9は、第2の実施形態のリチウムイオン電池500の放電のサイクル特性を示すグラフである。
ところで、上述の各実施形態においては、出発材として、単結晶又は多結晶のシリコンの塊又はインゴットの切削過程において形成されるシリコンの切粉等を例示しているが、その他の形態のシリコンの切粉等を出発材とすることも採用し得る他の一態様である。具体的には、シリコンの切粉等は、半導体製品の生産過程におけるシリコンのインゴットの切削加工において必然的に形成されるものに限らず、予め選定した結晶性シリコンのインゴットを切削機で一様に又はランダムに切削して作製することも可能である。また、通常は廃棄物とされるシリコンの切粉やシリコンの研磨屑等のいわゆるシリコン廃材が、上述の各実施形態のシリコン微細粒子の出発材となり得るが、該シリコン廃材には、ウェハの破片、廃棄ウェハ等を粉砕することによって得られる微細な屑も含まれ得る。さらに、金属性のシリコンの切粉やシリコンの研磨屑といった材料を出発材料として用いるシリコン微細粒子も、採用し得る。
Claims (26)
- 結晶性シリコンを粉砕することによって形成されるシリコン微細粒子を有する、
リチウムイオン電池の負極材料。 - 前記結晶性シリコンが、固定砥粒ワイヤによって削り出される切粉又は切削屑である、
請求項1に記載のリチウムイオン電池の負極材料。 - 前記シリコン微細粒子が、前記結晶性シリコンをビーズミル機によって粉砕することにより形成される、
請求項1又は請求項2に記載のリチウムイオン電池の負極材料。 - 結晶性シリコンからなるシリコン微細粒子のX線回折測定による、2θ=28.4°付近のSi(111)に帰属する回折ピークの強度が、その他の回折ピークの強度よりも大きい、
請求項1乃至請求項3のいずれか1項に記載のリチウムイオン電池の負極材料。 - 透過電子顕微鏡(TEM)像において観察される、前記シリコン微細粒子を形成する不定形の多角形状の結晶子を含む、
請求項1乃至請求項4のいずれか1項に記載のリチウムイオン電池の負極材料。 - 結晶性シリコンを粉砕することによって形成されるシリコン微細粒子を有する負極材料を備えた、
リチウムイオン電池。 - 前記結晶性シリコンが、固定砥粒ワイヤによって削り出される切粉又は切削屑である、
請求項6のリチウムイオン電池。 - 前記シリコン微細粒子が、前記結晶性シリコンをビーズミル機によって粉砕することにより形成される、
請求項6又は請求項7に記載のリチウムイオン電池。 - 結晶性シリコンからなるシリコン微細粒子のX線回折測定による、2θ=28.4°付近のSi(111)に帰属する回折ピークの強度が、その他の回折ピークの強度よりも大きい、
請求項6乃至請求項8のいずれか1項に記載のリチウムイオン電池。 - 透過電子顕微鏡(TEM)像において観察される、前記シリコン微細粒子を形成する不定形の多角形の結晶子を含む、
請求項6乃至請求項9のいずれか1項に記載のリチウムイオン電池。 - 前記負極材料を備えた負極に対して、5000(mA/g)の電流密度を与える条件で充放電を30回繰り返したうちの第30回目の充電容量(mAh/g)の、第1回目の充電容量からの容量低下が0.5%以下である、
請求項6乃至請求項10のいずれか1項に記載のリチウムイオン電池。 - 請求項6乃至請求項11のいずれか1項に記載のリチウムイオン電池を備える装置。
- 結晶性シリコンを粉砕することにより、シリコン微細粒子を形成する粉砕部を備える、
リチウムイオン電池の負極材料の製造装置。 - 前記結晶性シリコンが、固定砥粒ワイヤによって削り出される切粉又は切削屑である、
請求項13に記載のリチウムイオン電池の負極材料の製造装置。 - 前記シリコン微細粒子が、前記結晶性シリコンをビーズミル機によって粉砕することにより形成される、
請求項13又は請求項14に記載のリチウムイオン電池の負極材料の製造装置。 - 結晶性シリコンからなるシリコン微細粒子のX線回折測定による、2θ=28.4°付近のSi(111)に帰属する回折ピークの強度がその他の回折ピークの強度よりも大きい前記シリコン微細粒子を形成する粉砕部を備える、
請求項13乃至請求項15いずれか1項に記載のリチウムイオン電池の負極材料の製造装置。 - 結晶性シリコンを粉砕することにより、負極材料となるシリコン微細粒子を形成する粉砕部を備える、
リチウムイオン電池の負極の製造装置。 - 前記結晶性シリコンが、固定砥粒ワイヤによって削り出される切粉又は切削屑である、
請求項17に記載のリチウムイオン電池の負極の製造装置。 - 前記シリコン微細粒子が、前記結晶性シリコンをビーズミル機によって粉砕することにより形成される、
請求項17又は請求項18に記載のリチウムイオン電池の負極の製造装置。 - 結晶性シリコンからなるシリコン微細粒子のX線回折測定による、2θ=28.4°付近のSi(111)に帰属する回折ピークの強度がその他の回折ピークの強度よりも大きい負極材料となる前記シリコン微細粒子を形成する粉砕部を備える、
請求項17乃至請求項19のいずれか1項に記載のリチウムイオン電池の負極の製造装置。 - 結晶性シリコンを粉砕することにより、シリコン微細粒子を形成する粉砕工程を含む、
リチウムイオン電池の負極材料の製造方法。 - 前記結晶性シリコンが、固定砥粒ワイヤによって削り出される切粉又は切削屑である、
請求項21に記載のリチウムイオン電池の負極材料の製造方法。 - 前記シリコン微細粒子が、前記結晶性シリコンをビーズミル機によって粉砕することにより形成される、
請求項21又は請求項22に記載のリチウムイオン電池の負極材料の製造方法。 - 結晶性シリコンからなるシリコン微細粒子のX線回折測定による、2θ=28.4°付近のSi(111)に帰属する回折ピークの強度がその他の回折ピークの強度よりも大きい前記シリコン微細粒子を形成する、粉砕工程を含む、
請求項21乃至請求項23のいずれか1項に記載のリチウムイオン電池の負極材料の製造方法。 - 結晶性シリコンを粉砕することにより、負極材料となるシリコン微細粒子を形成する粉砕工程を含む、
リチウムイオン電池の負極の製造方法。 - 結晶性シリコンからなるシリコン微細粒子のX線回折測定による、2θ=28.4°付近のSi(111)に帰属する回折ピークの強度がその他の回折ピークの強度よりも大きい負極材料となる前記シリコン微細粒子を形成する、粉砕工程を含む、
リチウムイオン電池の負極の製造方法。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480079578.9A CN106415897B (zh) | 2014-06-11 | 2014-06-11 | 锂离子电池的负极材料、锂离子电池、锂离子电池的负极或负极材料的制造方法及制造装置 |
PCT/JP2014/065432 WO2015189926A1 (ja) | 2014-06-11 | 2014-06-11 | リチウムイオン電池の負極材料、リチウムイオン電池、リチウムイオン電池の負極又は負極材料の製造方法及びその製造装置 |
JP2015507275A JP5866589B1 (ja) | 2014-06-11 | 2014-06-11 | リチウムイオン電池の負極又は負極材料の製造方法 |
KR1020217017593A KR102476118B1 (ko) | 2014-06-11 | 2014-06-11 | 리튬이온 전지의 음극 재료, 리튬이온 전지, 리튬이온 전지의 음극 또는 음극 재료의 제조방법 및 그 제조장치 |
MYPI2016704536A MY174462A (en) | 2014-06-11 | 2014-06-11 | Negative electrode material for lithium ion batteries, lithium ion battery, method and apparatus for producing negative electrode for lithium ion batteries, and method and apparatus for producing negative electrode material for lithium ion batteries |
KR1020167036287A KR102280508B1 (ko) | 2014-06-11 | 2014-06-11 | 리튬이온 전지의 음극 재료, 리튬이온 전지, 리튬이온 전지의 음극 또는 음극 재료의 제조방법 및 그 제조장치 |
CN202010436052.9A CN111755689A (zh) | 2014-06-11 | 2014-06-11 | 锂离子电池的负极材料、锂离子电池、锂离子电池的负极或负极材料的制造方法及制造装置 |
TW104117976A TW201545979A (zh) | 2014-06-11 | 2015-06-03 | 鋰離子電池的負極材料、鋰離子電池、鋰離子電池的負極或負極材料的製造方法及其製造裝置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/065432 WO2015189926A1 (ja) | 2014-06-11 | 2014-06-11 | リチウムイオン電池の負極材料、リチウムイオン電池、リチウムイオン電池の負極又は負極材料の製造方法及びその製造装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015189926A1 true WO2015189926A1 (ja) | 2015-12-17 |
Family
ID=54833057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/065432 WO2015189926A1 (ja) | 2014-06-11 | 2014-06-11 | リチウムイオン電池の負極材料、リチウムイオン電池、リチウムイオン電池の負極又は負極材料の製造方法及びその製造装置 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5866589B1 (ja) |
KR (2) | KR102280508B1 (ja) |
CN (2) | CN111755689A (ja) |
TW (1) | TW201545979A (ja) |
WO (1) | WO2015189926A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017188329A (ja) * | 2016-04-06 | 2017-10-12 | 小林 光 | リチウムイオン電池の負極材料、リチウムイオン電池、リチウムイオン電池の負極材料の製造方法及びその製造装置 |
JP2018028037A (ja) * | 2016-08-19 | 2018-02-22 | 小林 光 | 複合樹脂材料、複合樹脂材料の製造装置、及び複合樹脂材料の製造方法、並びに複合樹脂材料用添加剤 |
JP2019530151A (ja) * | 2016-09-12 | 2019-10-17 | イメリス グラファイト アンド カーボン スイッツァランド リミティド | 組成物及びその使用 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3324419B1 (en) | 2016-11-18 | 2020-04-22 | Samsung Electronics Co., Ltd. | Porous silicon composite cluster structure, method of preparing the same, carbon composite using the same, and electrode, lithium battery, and device each including the same |
KR102701081B1 (ko) | 2018-10-25 | 2024-09-04 | 삼성전자주식회사 | 다공성 실리콘 함유 복합체, 이를 이용한 탄소 복합체, 이를 포함한 전극, 리튬 전지 및 전자소자 |
CN111755679A (zh) * | 2020-07-06 | 2020-10-09 | 马鞍山科达普锐能源科技有限公司 | 一种锂离子电池负极材料用含硅粉末及其制备方法 |
CN113198790A (zh) * | 2021-04-27 | 2021-08-03 | 郑州市博卓科技有限公司 | 一种锂离子电池硅氧负极材料的制备系统 |
KR102454488B1 (ko) * | 2022-04-27 | 2022-10-14 | 주식회사 이큐브머티리얼즈 | 산화붕소가 적용된 리튬이온이차전지용 실리콘 음극재 제조방법 |
KR102452560B1 (ko) * | 2022-04-27 | 2022-10-11 | 주식회사 이큐브머티리얼즈 | 리튬이온이차전지용 실리콘 음극재 제조방법 |
KR102454487B1 (ko) * | 2022-04-27 | 2022-10-14 | 주식회사 이큐브머티리얼즈 | 산화붕소가 적용된 리튬이온이차전지용 실리콘 음극재 |
KR102452519B1 (ko) * | 2022-04-27 | 2022-10-07 | 주식회사 이큐브머티리얼즈 | 리튬이온이차전지용 실리콘 음극재 |
KR20240149547A (ko) * | 2023-04-06 | 2024-10-15 | 네오 배터리 머티리얼즈 엘티디 | 실리콘 복합체 제조 방법 |
KR102708353B1 (ko) | 2023-06-28 | 2024-09-23 | 주식회사 이큐브머티리얼즈 | 리튬이온이차전지용 실리콘 음극재 |
KR102708357B1 (ko) | 2023-06-28 | 2024-09-23 | 주식회사 이큐브머티리얼즈 | 리튬이온이차전지용 실리콘 음극재 제조방법 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005032733A (ja) * | 1996-07-19 | 2005-02-03 | Sony Corp | 非水電解液二次電池用負極材料及び非水電解液二次電池 |
JP2008277232A (ja) * | 2007-04-05 | 2008-11-13 | Hitachi Chem Co Ltd | リチウム二次電池用負極材料、その製造方法及びそれを用いたリチウム二次電池用負極、リチウム二次電池 |
JP2012206923A (ja) * | 2011-03-29 | 2012-10-25 | Tmc Kk | シリコン微粉末の製造方法 |
JP2012229146A (ja) * | 2011-04-27 | 2012-11-22 | Hikari Kobayashi | シリコン微細粒子の製造方法及びそれを用いたSiインク、太陽電池並びに半導体装置 |
JP2013177264A (ja) * | 2012-02-28 | 2013-09-09 | Hikari Kobayashi | Si微細粒子による薄膜層の形成方法、半導体装置および半導体装置の製造方法、並びに太陽電池および太陽電池の製造方法。 |
JP2014101268A (ja) * | 2012-11-16 | 2014-06-05 | Quan An Resource Co Ltd | シリコン材料の製造方法、アノード材料及びリチウムイオン電池のアノード電極の製造方法 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1048357C (zh) * | 1994-04-01 | 2000-01-12 | 株式会社东芝 | 用于锂二次电池的负电极及其生产方法 |
JP3713900B2 (ja) * | 1996-07-19 | 2005-11-09 | ソニー株式会社 | 負極材料及びこれを用いた非水電解液二次電池 |
JP4965790B2 (ja) * | 2002-10-28 | 2012-07-04 | 株式会社Gsユアサ | 非水電解質二次電池 |
JP4046601B2 (ja) * | 2002-12-03 | 2008-02-13 | 大阪瓦斯株式会社 | リチウム二次電池用負極材及びそれを用いたリチウム二次電池 |
KR100721500B1 (ko) * | 2003-03-26 | 2007-05-23 | 캐논 가부시끼가이샤 | 리튬2차전지용의 전극재료 및 이 전극재료를 가진전극구조체 |
TWI254473B (en) * | 2003-03-26 | 2006-05-01 | Canon Kk | Electrode material for lithium secondary battery, electrode structure comprising the electrode material and secondary battery comprising the electrode structure |
JP2004362895A (ja) * | 2003-06-03 | 2004-12-24 | Sony Corp | 負極材料およびそれを用いた電池 |
JP4442146B2 (ja) * | 2003-07-11 | 2010-03-31 | ソニー株式会社 | リチウムイオン二次電池用負極材料およびそれを用いたリチウムイオン二次電池 |
JP4281055B2 (ja) * | 2003-08-08 | 2009-06-17 | 株式会社ジーエス・ユアサコーポレーション | 非水電解質及び非水電解質電池並びに非水電解質電池の製造方法 |
US7790316B2 (en) * | 2004-03-26 | 2010-09-07 | Shin-Etsu Chemical Co., Ltd. | Silicon composite particles, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell |
JP4929182B2 (ja) * | 2005-11-04 | 2012-05-09 | ステラケミファ株式会社 | 蓄電素子 |
JP4985949B2 (ja) * | 2006-03-27 | 2012-07-25 | 信越化学工業株式会社 | 珪素−珪素酸化物−リチウム系複合体の製造方法、並びに非水電解質二次電池用負極材 |
JP5315665B2 (ja) * | 2007-10-31 | 2013-10-16 | ソニー株式会社 | リチウムイオン二次電池用負極およびリチウムイオン二次電池 |
JP5245559B2 (ja) * | 2008-06-16 | 2013-07-24 | 信越化学工業株式会社 | 非水電解質二次電池用負極材及びその製造方法、ならびにリチウムイオン二次電池及び電気化学キャパシタ |
JP2010225494A (ja) * | 2009-03-25 | 2010-10-07 | Shin-Etsu Chemical Co Ltd | 非水電解質二次電池用負極材及びその製造方法、ならびにリチウムイオン二次電池 |
JP5181002B2 (ja) * | 2009-08-21 | 2013-04-10 | 尾池工業株式会社 | 鱗片状薄膜微粉末分散液又は鱗片状薄膜微粉末、及びこれを用いたペースト、電池用電極、並びにリチウム二次電池 |
JP5646188B2 (ja) * | 2010-02-23 | 2014-12-24 | 三星エスディアイ株式会社Samsung SDI Co.,Ltd. | リチウムイオン二次電池用負極活物質 |
JP5533601B2 (ja) | 2010-11-11 | 2014-06-25 | 有限会社シーエス技術研究所 | 高純度シリコン微粉末の製造装置 |
JP2013122905A (ja) * | 2011-11-10 | 2013-06-20 | Sanyo Special Steel Co Ltd | 鱗片状Si系合金負極材料 |
US20130252101A1 (en) * | 2012-03-21 | 2013-09-26 | University Of Southern California | Nanoporous silicon and lithium ion battery anodes formed therefrom |
CN102969509B (zh) * | 2012-10-15 | 2016-03-23 | 宁德新能源科技有限公司 | 一种锂离子电池硅碳复合材料的制备方法 |
CA2889306A1 (en) | 2012-10-26 | 2014-05-01 | Hitachi Chemical Company, Ltd. | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
CN103094533B (zh) * | 2012-11-26 | 2015-05-20 | 中南大学 | 一种多核型核壳结构硅碳复合负极材料及制备方法 |
CN103367727B (zh) * | 2013-07-12 | 2015-07-15 | 深圳市贝特瑞新能源材料股份有限公司 | 一种锂离子电池硅碳负极材料及其制备方法 |
-
2014
- 2014-06-11 CN CN202010436052.9A patent/CN111755689A/zh active Pending
- 2014-06-11 CN CN201480079578.9A patent/CN106415897B/zh active Active
- 2014-06-11 JP JP2015507275A patent/JP5866589B1/ja active Active
- 2014-06-11 WO PCT/JP2014/065432 patent/WO2015189926A1/ja active Application Filing
- 2014-06-11 KR KR1020167036287A patent/KR102280508B1/ko active IP Right Grant
- 2014-06-11 KR KR1020217017593A patent/KR102476118B1/ko active IP Right Grant
-
2015
- 2015-06-03 TW TW104117976A patent/TW201545979A/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005032733A (ja) * | 1996-07-19 | 2005-02-03 | Sony Corp | 非水電解液二次電池用負極材料及び非水電解液二次電池 |
JP2008277232A (ja) * | 2007-04-05 | 2008-11-13 | Hitachi Chem Co Ltd | リチウム二次電池用負極材料、その製造方法及びそれを用いたリチウム二次電池用負極、リチウム二次電池 |
JP2012206923A (ja) * | 2011-03-29 | 2012-10-25 | Tmc Kk | シリコン微粉末の製造方法 |
JP2012229146A (ja) * | 2011-04-27 | 2012-11-22 | Hikari Kobayashi | シリコン微細粒子の製造方法及びそれを用いたSiインク、太陽電池並びに半導体装置 |
JP2013177264A (ja) * | 2012-02-28 | 2013-09-09 | Hikari Kobayashi | Si微細粒子による薄膜層の形成方法、半導体装置および半導体装置の製造方法、並びに太陽電池および太陽電池の製造方法。 |
JP2014101268A (ja) * | 2012-11-16 | 2014-06-05 | Quan An Resource Co Ltd | シリコン材料の製造方法、アノード材料及びリチウムイオン電池のアノード電極の製造方法 |
Non-Patent Citations (2)
Title |
---|
MASANORI MAEDA ET AL.: "Fabrication of Si nanoparticles from Si swarf and application to solar cells", APPLIED SURFACE SCIENCE, vol. 312, 30 June 2014 (2014-06-30), pages 39 - 42, XP029038956, Retrieved from the Internet <URL:http://www.sciencedirect.com/ science /article/pii/S0169433214004358> [retrieved on 20140630] * |
TAKETOSHI MATSUMOTO ET AL.: "Si nanoparticles fabricated from Si swarf by photochemical etching method", JOURNAL OF NANOPARTICLE RESEARCH, vol. 16, no. 3, 26 March 2014 (2014-03-26), pages 2240, XP055242659, ISSN: 1388-0764 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017188329A (ja) * | 2016-04-06 | 2017-10-12 | 小林 光 | リチウムイオン電池の負極材料、リチウムイオン電池、リチウムイオン電池の負極材料の製造方法及びその製造装置 |
JP2021170542A (ja) * | 2016-04-06 | 2021-10-28 | 日新化成株式会社 | リチウムイオン電池の負極材料、リチウムイオン電池、リチウムイオン電池の負極材料の製造方法及びその製造装置 |
JP7525191B2 (ja) | 2016-04-06 | 2024-07-30 | 日新化成株式会社 | リチウムイオン電池の負極材料、リチウムイオン電池、リチウムイオン電池の負極材料の製造方法及びその製造装置 |
JP2018028037A (ja) * | 2016-08-19 | 2018-02-22 | 小林 光 | 複合樹脂材料、複合樹脂材料の製造装置、及び複合樹脂材料の製造方法、並びに複合樹脂材料用添加剤 |
JP2019530151A (ja) * | 2016-09-12 | 2019-10-17 | イメリス グラファイト アンド カーボン スイッツァランド リミティド | 組成物及びその使用 |
Also Published As
Publication number | Publication date |
---|---|
KR20170018350A (ko) | 2017-02-17 |
KR20210071110A (ko) | 2021-06-15 |
JP5866589B1 (ja) | 2016-02-17 |
CN111755689A (zh) | 2020-10-09 |
JPWO2015189926A1 (ja) | 2017-04-20 |
TW201545979A (zh) | 2015-12-16 |
KR102280508B1 (ko) | 2021-07-21 |
CN106415897B (zh) | 2020-06-12 |
CN106415897A (zh) | 2017-02-15 |
KR102476118B1 (ko) | 2022-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5866589B1 (ja) | リチウムイオン電池の負極又は負極材料の製造方法 | |
TWI644476B (zh) | 鋰離子二次電池用負極活性物質及其製造方法 | |
JP7385096B2 (ja) | リチウムイオン電池の負極材料又は負極の製造装置及びその製造方法 | |
JP2016001613A (ja) | リチウムイオン電池の負極材料、リチウムイオン電池、リチウムイオン電池の負極又は負極材料の製造方法 | |
JP7525191B2 (ja) | リチウムイオン電池の負極材料、リチウムイオン電池、リチウムイオン電池の負極材料の製造方法及びその製造装置 | |
JP6761928B2 (ja) | 固体電解質ガラス及びその製造方法、固体電解質ガラス用前駆体、サスペンジョン、リチウムイオン電池用電極並びにリチウムイオン電池 | |
CN106414326B (zh) | 纳米硅材料及其制造方法和二次电池的负极 | |
CN106458610A (zh) | 含铜的硅材料及其制造方法和负极活性物质以及二次电池 | |
JP2015195171A (ja) | リチウムイオン2次電池用負極活物質およびその製造方法 | |
JP6451071B2 (ja) | リチウムイオン2次電池用カーボンシリコン系負極活物質およびその製造方法 | |
JP6746906B2 (ja) | シリコン系粒子およびそれを含むリチウムイオン二次電池用負極活物質並びにそれらの製造方法 | |
JP6739142B2 (ja) | リチウムイオン2次電池用負極活物質およびその製造方法 | |
JP2018085316A (ja) | リチウムイオン電池の負極材料、リチウムイオン電池及びその動作方法並びにリチウムイオン電池の負極又は負極材料の製造方法 | |
Cheng et al. | Synthesizing nano-sized (∼ 20 nm) Li 4 Ti 5 O 12 at low temperature for a high-rate performance lithium ion battery anode | |
JP5969554B2 (ja) | 二次電池用正極活物質及びその製造方法 | |
WO2017149731A1 (ja) | リチウムイオン電池の負極材料、リチウムイオン電池、リチウムイオン電池の負極材料の製造方法 | |
KR20140099513A (ko) | 탄소의 존재하에 분쇄를 이용하는 Li4Ti5O12계 재료의 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015507275 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14894588 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20167036287 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14894588 Country of ref document: EP Kind code of ref document: A1 |